Ablauf
1. Bitte sehen Sie schon im BUCH nach und wählen sich ein Thema aus, das noch nicht vergeben ist. Sie können sich auch ein eigenes Thema wählen. 
   Bitte kontaktieren Sie mich ab sofort (bis 9.10. und ab 24.10.) vorab per email.
   Ich werde Sie dann, wenn Sie sich auch in Agnes angemeldet haben, ab 25.10.2021 nacheinander zulassen bis die maximalle Teilnehmerzahl erreicht ist.
 
   Wählen Sie eines der noch nicht vergebenen vorgeschlagenen Themen oder, nach Rücksprache, ein anderes.
   Sobald Sie sich für ein Thema  entschieden haben, erscheinen Sie, zusammen mit Ihrem Thema, in der untenstehenden Liste. (ab 25.10.)
2. Sie arbeiten Ihren Vortrag aus, etwa 40min. (ohne Diskussion) und zeichnen ihn auf. 
   Eine Diskusion ist nur schriftlich vorgesehen, Ihre Kommilitonen können  später jederzeit zu jedem Vortrag Ihre Kommentare geben. 
   Sie können dann ggf. darauf antworten. Das geschieht im Diskussionsforum in Moodle.
   Sie müssen mit auf dem Bildschirm zu sehen sein. Ein kleines Fenster, auf dem man Ihr vollständiges Gesicht erkennt, reicht.
   Sie sollten genau ein Video einreichen, das darf aber zusammengeschnitten sein.
   Das Video muss in Moodle abspielbar sein. mp4-Format sollte ok sein.
   Da ich Sie bei Zoom akustisch nur sehr schwer verstehe, ist es besonders wichtig, dass Ihre Folien aussagekräftig sind.
   
3. Sie melden sich in Moodle an. Der Moodle-Kurs wird eingerichtet. Passwort wird Ihnen über Agnes mitgeteilt.
   Sie stellen Ihre Ausarbeitungen,  also ihr Video, in Moodle bis zur Deadline zur Verfügung. (Gerne auch früher)
       Deadline ist: 6.12.2021 23:59. 
4. Schriftliche Ausarbeitung zu ihrem eigenen Vortrag. Dazu genügen i.A. die (korrigierten) Vortragsfolien. Diese schicken Sie  über Moodle.
   Deadline ist auf den 3.1.2022 verlängert! 
5. Schriftliche Ausarbeitung zu einem anderen Vortrag Ihrer Wahl. Diese schicken Sie auch über Moodle.
       Deadline ist 31.1.2022
       Auch dazu gibt es wieder eine Liste. Jedes Thema dazu wird nur einmal vergeben. Bitte teilen Sie mir Ihre Wahl mit. 
       Themenvergabe in der Reihenfolge der Anmeldung.
       Diese Liste ist also eine Permutation der ursprünglichen, ohne Fixpunkt.  
Ich schicke Ihnen meine evtl. Kommentare zu den Vorträgen per email. Bereits durchgesehene Vorträge werden mit einem Stern(*) gekennzeichnet. Wenn die Ausarbeitung akzeptiert ist, gibt es einen weiteren Stern (*).
Liste der Vorträge (vorläufig)
**Leon Thiemann          Geburstagsparadox mit Schaltjahren und Buffon-Nadelproblem
**Heike Birsul          Unendlich viele Primzahlen, mindestens 4 Beweise   
**Gertrud Graser        Bertrand Postulat      
Thomas Nghia Hoang      Fermats Satz über Summen von Quadraten
*Malte Hückelkempkes    Irrationalität von e
**Bao Minh Frank Phan   Summe 1 durch n^2      
**Damien Heese          Kardinalzahlen         
**Viet Duy Hoang         Ungleichungen mit Anwendungen in der Graphentheorie
**Theo Paul Müller      Eulerscher Polyedersatz, mindestens 2 Beweise und Anwendungen
**Ase Asena Bayhan      5-Farbensatz, 2 Beweise
**Neil Ziolkowski       Satz von Pick          
**Christopher Langberg  Museumswächtersatz
**Charlotte Schwerdtner Coupon Sammler und Zufälliges Mischen   
**Nicolas Pascal Stephan Schubfachprinzip                      
**Franz Wilhelm Weiss   Satz von Turan
**Angelo Papenhoff      Aufzählung der rationalen Zahlen über Cantor hinaus
Fabian Hagen Hohenstein Heiratssatz
Manuela Gerlach         Gefangenenprobleme
Felix von Oertzen       Sekretärinnenproblem
Haji Rashidli           Satz von Sperner über die Länge von Antiketten
Liste der schriftlichen Ausarbeitungen zu einem anderen Vortrag (vorläufig)
**Ase Asena Bayhan      Eulerscher Polyedersatz, mindestens 2 Beweise und Anwendungen
**Charlotte Schwerdtner Museumswächtersatz
**Christopher Langberg    Heiratssatz
**Nicolas Pascal Stephan Geburstagsparadox mit Schaltjahren und Buffon-Nadelproblem
**Leon Thiemann           Bertrand Postulat
**Damien Heese            Coupon Sammler und Zufälliges Mischen
**Bao Minh Frank Phan   Ungleichungen mit Anwendungen in der Graphentheorie
**Neil Ziolkowski         Summe 1 durch n^2
**Gertrud Graser        Unendlich viele Primzahlen
**Angelo Papenhoff      Kardinalzahlen
**Franz Wilhelm Weiss   Satz von Pick
                        Irrationalität von e
**Viet Duy Hoang          5-Farbensatz
**Heike Birsul          Schubfachprinzip
                        Satz von Turan
**Theo Paul Müller      Aufzählung der rationalen Zahlen über Cantor hinaus
Beispielvortrag: 1   
                          
Themenvorschläge (Auswahl) (Seitenangaben beziehen sich auf die 3. Auflage, sind aber nicht immer korrekt)
- unendlich viele Primzahlen, mindestens 4 verschiedene Beweise, BUCH, S. 3-6
- Bertrand-Postulat (Zwischen n und 2n ex. Primzahl, f.j. n), BUCH, S.7-10      
- Fermats Satz über Summen von Quadraten, BUCH, S. 17-22
- Stirling-Formel, extra Literatur
- Irrationalität von e und pi., BUCH, S.27-33
- Sum 1/n^2, BUCH, S.35-42
- Aufzählung der Menge der rationalen Zahlen über Cantor hinaus, BUCH, S. 112-115
- Kardinalzahlen, BUCH, S.117-126
- Ungleichungen, mit Anwendung auf die Graphentheorie, BUCH, S. 111-115
- Euler-Polyederformel, mind. 2 Beweise, Anwendungen, BUCH, S. 65-68
- 5 Farbensatz, 2 Beweise, BUCH, S. 199-202, Skript TheorInf 2
- Satz von Pick (Fläche eines Polygons mit ganzzahligen Ecken), BUCH, S.69-70
- Museumswächtersatz, BUCH, S. 203-205
- Geburtstagsparadox, BUCH, S. 157-158, mit Schaltjahren, extra Literatur
  und Buffon-Nadelproblem, BUCH, S.133-136
- Coupon-Sammler, BUCH, S. 158-159
  und  Zufälliges Mischen, BUCH, S.159-163
- Schubfachprinzip,   
- Binomialkoeffizienten, BUCH, S.15
- Satz von Turan, BUCH, S. 235-240
- Satz von Sperner üuber die Länge von Antiketten, BUCH S. 171-174
- Heiratssatz, BUCH S. 174-175 
- Kardinalzahlen, BUCH S. 123-126
- Gefangenenprobleme
- Sekretärinnenproblem
Für einen Seminarschein sind notwendig:
1. Ein erfolgreicher Seminarvortrag (40-45 min.)
2. schriftliche Ausarbeitungen dazu (z.B. evtl. modifizierte Vortragsfolien)
3. schriftliche Diskussion zu einem anderen Vortrag Ihrer Wahl (2-3 Seiten)
   
Wolfgang Kössler
Erstellt am 5.10.21, zuletzt geändert am 5.10.2021