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Abstract—The utilization of existing radio signals such as
802.11 (WiFi) for device-free detection of human presence
and movement indoors has garnered significant interest among
researchers in academia and industry. Improving the efficiency
of buildings, particularly in terms of heating and energy costs,
relies on accurately detecting room occupancy. Our approach
uses channel state information (CSI) obtained from commodity
802.11ac hardware as input to machine learning based on One
Class Support Vector Machine (OC-SVM). Unlike other methods
that necessitate extensive learning in environments with and
without human presence, our approach treats human presence
as a novelty. This simplifies the training process, as we only
need to learn from environments without human presence,
specifically empty rooms. Furthermore, since we focus solely
on analyzing the magnitude information of the CSI data, there
is no requirement for intricate sanitization of the phase in-
formation. Experimental results using standard WiFi hardware
demonstrate exceptional performance, with accuracy, sensitivity,
and specificity exceeding 97% in most cases. Furthermore, our
proposed approach is practical, as it incurs minimal overhead
in terms of radio resource usage. Simply capturing CSI data
with a sampling rate of 5 Hz on only a few OFDM subcarriers
from a 5 MHz channel is sufficient.

Index terms— wireless sensing, device-free detection

I. Introduction

The device-free detection of human presence finds applica-
tions in security, healthcare, and smart buildings. Traditional
methods often rely on optical cameras and Passive Infra-
Red (PIR) sensors. However, these technologies have certain
limitations. Cameras require a direct line of sight and raise
privacy concerns. PIR sensors, on the other hand, are unable
to detect static individuals. An alternative approach is to
passively analyze radio signals such as 802.11 WiFi, which
are already extensively deployed in residential and enterprise
areas. This alternative, termed as wireless sensing, offers
several advantages, including accessibility, convenience, and
cost-effectiveness, as existing WiFi infrastructure can be uti-
lized at zero additional cost.

The wireless sensing methods function as follows. When
a wireless signal like WiFi is transmitted from devices such
as smartphones, it travels through various paths to reach the
receiver, such as an access point. These paths can be direct
when there is a line of sight (LOS) between the transmitter
and receiver, or indirect when the signal reflects off walls
and objects. As a result, the Channel State Information (CSI)
extracted from the received WiFi signal contains valuable

information about the surrounding environment. This infor-
mation can be utilized to conduct device-free WiFi sensing.

There are a variety of wireless sensing applications ranging
from activity detection, such as gesture recognition [1], [2],
localization [3], and fall detection [4]. In these applications,
the utilization of unique signatures that emerge during signal
propagation on the CSI is crucial while activities are being
performed. In the specific case of presence detection, previous
studies have shown that even when a person remains station-
ary, there are alterations in the signal propagation caused by
factors such as breathing [5] or prolonged slight movements.

While known solutions for device-free presence detection
have shown to achieve high accuracy [6], there remains
a need for low-complexity and robust solutions. Presence
detection typically requires training data that encompasses
both the presence and absence of humans in a well-defined
environment. Collecting data for human absence can be rel-
atively straightforward by transmitting radio signals through
an empty room. However, gathering data for human presence
can be challenging as it requires capturing various scenarios,
including static individuals, people in motion, and individuals
in different positions, ideally in all possible locations within
the room. Therefore, by training a classifier solely with data
collected in an empty room, it is possible to reduce the
reliance on the calibration of human presence data collection.

Contributions: We propose an approach for presence de-
tection that involves analyzing CSI data using One Class
Support Vector Machine (OC-SVM). Specifically, we focus
solely on analyzing the magnitude information of the CSI
data. The system is trained using CSI data collected from
empty rooms only. The actual presence detection is based
on novelty detection. Experimental results using commodity
WiFi hardware demonstrate exceptional performance, with
accuracy, sensitivity, and specificity exceeding 97% in most
cases. This high level of performance is achieved by si-
multaneously analyzing the temporal, frequency (OFDM),
and spatial (MIMO) domains of the CSI data. Additionally,
our proposed approach is practical as it imposes minimal
overhead in terms of used radio resources. A sampling rate
of just 5 Hz for CSI data on a few OFDM subcarriers from
a 5 MHz channel is sufficient. Lastly, the use of multiple
antennas enhances the detection performance.



II. RelatedWork

An overview of wireless sensing for detection of human
activity is given by Liu et al. [7]. Accordingly, the major-
ity of proposed applications rely on processing RSSI and
CSI data as techniques like Frequency Modulated Carrier
Wave (FMCW) rely on customized hardware. In contrast to
RSSI-based detection approaches which process CSI data are
powerful as CSI allows to perform very fine-grained channel
measurements (i.e., both amplitude and phase information for
multiple subcarriers). Most approaches found in literature rely
on analyzing amplitude, phase or phase difference to detect
the presence of a human indoors. Nishimori et al. [8] analyzed
the influence of antenna arrangement on the wireless signal
propagation in typical indoor environments and proposed an
intrusion detection system based on processing CSI from
MIMO channels. DeMan [9] is based on the extraction of the
maximum eigenvalues of the covariance matrix from succes-
sive CSI data, which is including both amplitude and phase.
Ding et al. [10] proposed to analyze the phase difference
between adjacent antenna pairs for passive device-free motion
detection. According to Zou et al. [11] the shape similarity
of multiple OFDM subcarriers could be used as a feature
for input to supervised learning like random forest. Wu et
al. [12] proposed the use of learning based on Support Vector
Machine (SVM) for the detection of even a stationary human
through its naturally breathing. They use subtle motion of the
moving chest to register wave like patterns on the received
OFDM signal. Additionally, the phase information of the CSI
data can offer rich information about the variation of the
channel. However due to phase noise in CSI obtained from
commodity hardware, proper preprocessing is needed [13].

III. Background - Channel State Information

A radio signal propagating through the wireless channel
to the receiver through multiple paths experiences several
effects. Reflection on walls or scattering through obstacles
will produce additional copies of the transmitted signal, so-
called multipath components. These different components of
the signal correspond to pulses at the receiver at different
arrival times. The Channel Impulse Response (CIR) is used
to describe these impulses. When assuming a time-invariant
channel the CIR can be denoted as [14]:

h(t) =
N∑

n=0

ane− jϕnδ(t − tn) (1)

where an is the amplitude and ϕn is the phase of the nth
multipath component at the time t and N is the total number of
multipath components and δ(t) is the Dirac delta function. The
sum of amplitude and phase of these multipath components
can result in constructive or destructive interference, which
result in larger or smaller pulses. In the time domain, the
received signal r(t) is the convolution of the transmitted signal
s(t) and the CIR h(t):

r(t) = s(t) ⊗ h(t) (2)
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Fig. 1: Flowgraph of proposed device-free presence detection.

Hence in the frequency domain, the received signal spectrum
R( f ) is the multiplication of the transmitted signal spectrum
S ( f ) and the Channel Frequency Response (CFR) H( f ):

R( f ) = S ( f ) × H( f ) (3)

Using eq. 2 and 3, the CIR can be derived from CFR [14]:

h(t) =
1
Ps
F
−1{S ∗( f )R( f )} (4)

where F−1 denotes the inverse Fourier transform, R( f ) is
the Fourier transform of the received signal r(t) and S ∗( f )
is the complex conjugate of the Fourier transform of the
transmitted signal s(t). Here Ps approximates the transmitted
signal power. As each OFDM subcarrier experiences flat
fading the received signal r of a subcarrier operating at the
center frequency f can be described as:

r( f ) = H( f )s + n (5)

where s is the transmitted symbol vector and n is the additive
white Gaussian noise. When using m receive and n transmit
antennas, the MIMO-OFDM channel matrix H for an OFDM
subcarrier centered at frequency f can be described as:

H( f ) =


H1,1 . H1,n
...

. . .
...

Hm,1 . Hm,n

 (6)

whose complex entries Hi j are the sampled CFR from the
jth transmit to the ith receive antenna. CSI samples can be
estimated at the receiver by using pilot symbols scattered
through the OFDM subcarriers.

IV. System Design
Our device-free presence detection scheme consists of four

major steps (Fig. 1) which are described in this section.

A. Capturing CSI Data
Standard IEEE 802.11 devices are capable of calculating

the CFR from received WiFi frames. Unfortunately, most
chips do not provide this functionality as an API and changes
must be made to the driver, e.g. [15], [16]. In case of Intel
9260 NIC which we used for our prototype (see §V) the
complex CSI data captured from a single WiFi frame has
the dimensions:

Ntx × Nrx × Nsc (7)

where Nrx and Ntx is the number of receive and transmit
antennas respectively. Nsc is the number of OFDM subcarriers
which is dependent from the channel bandwidth, e.g. for a
40 MHz channel it is Nsc = 114.



B. Preprocessing CSI Data

The raw CSI data captured with a sample rate of S Hz must
be preprocessed before it can be passed to ML algorithms.
Our CSI pre-processing pipeline is similar to the one proposed
by Wu et al. [9] except that we only analyze the magnitude
of the CSI data and discard the phase information. This
is beneficial as due to phase noise additional non-trivial
preprocessing of CSI would be needed [13].

We describe the dimensions of CSI data used as input as:

N × Ntx × Nrx × Nsc (8)

where N is the Number of CSI samples, Nrx is the number
of receive antennas, Ntx is the number of transmit antennas
and Nsc is the number of OFDM subcarriers. As we use
MIMO hardware we introduce an additional spatial domains
represented through the dimensions of Nrx and Ntx. By using
OFDM, the used subcarriers operate at distinct frequencies
and open up sensing through the frequency domain. Lastly,
through the time series of these CSI, temporal changes of the
other two domains can be observed as well.

First, we group our N CSI samples into Nt batches of size
Bt, with each batch resembling a time window of Bt

S s. This
results in the data dimension of our data array X, given by

X = Nt × Bt × Ntx × Nrx × Nsc (9)

Within this time t, we expect a change in the temporal domain
due to a person being present, even when this person is static,
through small scale motion or even breathing [12]. Note, that
Bt is dependent on the CSI sampling rate.

Then we reduce the dimensions by using only f subcarriers,
leaving us with Nsc → N f subcarriers. We select the f
subcarriers evenly distributed across all Nsc subcarriers which
gives us

Xreduced = Nt × Bt × Ntx × Nrx × N f (10)

This becomes possible as the subcarrier spacing in 802.11g/ac
is 312.5 kHz which is much smaller than the coherence
bandwidth in a typical indoor environment. Thus, adjacent
subcarriers have a similar progression [6] and a downsampling
is feasible.

Then we combine the dimensions of the receive (Nrx) and
transmit (Ntx) antennas. This gives us

Xreshaped = Nt × Bt × (NrxNtx) × N f (11)

reducing the dimensional complexity of the array by merging
the spatial domain.

The received signal from different antennas are fed into
different RF chains. These RF chains are not synchronized
and thus the measured CSI will be distorted by the phase
offsets between these RF chains [17]. This would require
sanitation of the phase information which would complicate
the algorithm. We therefore discard the phase information and
instead use the magnitude of our CSI only

Xabs = |Xreshaped| (12)

Afterwards we normalize each grouped batch Bt in respect
to the first CSI sample by element-wise division (Hadamard
division). This gives us

Xnorm = Xabs ÷ xabs
: ,0, : , : (13)

Now the first entry of any batch Bt consists only of a
matrix with the value 1, while the remaining entries of Bt

have a relative value. This is done because the absolute
CSI magnitude is highly dependent on the distance between
transmitter and receiver and the existence of LOS [6]. With
this normalization, we try to remove this environmental
information.

Then we apply a 2D DFT to each grouped, normalized
packet on the temporal and frequency domain to obtain the
Fourier coefficients Xfft from which we take the magnitude
(abs). Moreover, we shift the zero-frequency component to
the center of the spectrum:

Xnorm 2D-DFT
−−−−−−→ Xfft fftshift

−−−−→ Xfft+shift magnitude
−−−−−−−→ |Xfft+shift| (14)

Afterwards, we apply the periodic shift on the 2D DFT output,
so the zero frequency component is in the center of the array.

The difference of the minimum and maximum of the
Fourier coefficients can be too high to achieve good general-
ization. Therefore, we apply log10 (1 + x) to obtain

Xlog = log10 (1 + |Xfft+shift|) (15)

Finally, we cut off the left and right side of the matrix on
the batch dimension Bt to obtain a further reduced data array
Btw with only entries in its central dimension:

Xcrop
: ,i, : , : = Xlog

: , Bt−Btw
2 +i, : , :

, i = 0, . . . , Btw (16)

This further reduces the data complexity and is done to
increase the generalization. Because we used the periodic shift
before, the remaining data still contain the most important
information of the transformed Fourier coefficients. This
results in the final dimension format:

Xpreprocessed = Nt × Btw × (NrxNtx) × N f (17)

C. Presence Detection using OC-SVM

We denote presence detection as a binary classification
problem with:

presence =

1 ≈ no
−1 ≈ yes

. (18)

We assign presence with the class −1 and the absence of
presence with the class 1. We therefore consider data corre-
sponding to non-presence as regular and data corresponding
to presence as irregular, a novelty.

One-class SVM is an unsupervised algorithm that learns
a decision function for novelty detection by classifying new
data as similar or different to the training set. The data we
use to train this OC-SVM classifier is therefore collected from
the regular class, a room without human presence. Then the



trained OC-SVM model can be tested and evaluated using
unseen data from both classes.

We transform the input for the classifier in the 2-
dimensional format of nsamples × nfeatures. Because we have
multidimensional data after our preprocessing with the di-
mension format given in equation 17, we flatten our data
dimensions of Btw, (NrxNtx) and N f into one dimension, which
serves us as the features for the input. So, we denote our input
data for the OC-SVM classifier as:

X = Nt × (BtwNtxNrxN f ) (19)

D. Postprocessing

The OC-SVM could wrongly classify human absence when
in reality the human is simply standing still. This is because
according to [6] a completely static human has only a low
effect on the CSI, making it sometimes indistinguishable from
CSI of an empty room. We therefore added an additional
postprocessing step as suggested by Liu et al. [6] in which
we analyze the last k results from the OC-SVM in order to
perform a majority vote. Hence, the appearance of a human
in a previously empty room is detected after ⌈ k

2 ⌉×
Bt
S seconds

at the earliest. Note, that our approach might create false
classifications during the transition of presence to no presence
and vice versa, i.e. when a person leaves or enters the room.
With k = 5 we would get at least two false detections during
the transition period. If no such transitions happen, we expect
to increase the overall detection rate.

V. Implementation

We implemented a prototype of our system using commod-
ity hardware. As experimentation platform, we used standard
notebooks equipped with Intel 9260 WiFi NICs. The Intel
9260 is an IEEE 802.11ac wave 2 compliant radio with
2x2 MIMO and channel width of up-to 160 MHz. During
the experiments a pair of such nodes was used to create a
point-to-point communication link. As operating system we
used Ubuntu 18.04 with a patched Linux Kernel to enable
the CSI functionality [18]. We run both the transmitter and
receiver in monitor mode with packet filtering. We implement
our presence detector fully in Python. Specifically, we used
the implementation OneClassSVM of scikit-learn [19] which
is based on the work of Schölkopf et al. [20]. During data
collection the CSI was stored in a database. The actual
presence detection was performed offline.

VI. Evaluation

The proposed approach was evaluated by means of exper-
iments using the prototype described in previous section.

A. Experimental Setup and Data Collection

The experiments were performed within three different
apartment rooms. The location of the two WiFi nodes as
well as furniture is shown in Fig. 2. The transmitter and
receiver inside the rooms a and c didn’t have LOS due
to the different heights and position atop of the desk. In
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Fig. 2: Environment: layout of rooms a, b and c.

TABLE I: Used parameters of our presence detection system.

Parameter Value

CSI sampling rate S 100 Hz
No.of CSI samples N 63k
No. of transmit/receive antennas Ntx × Nrx 2 × 2
No. of OFDM subcarriers Nsc 114
No. of time samples per batch Bt 128 (=̂ 1.28 s)
No. of batches Nt 490
No. of downsampled OFDM subcarriers N f 15
No. of downsampled time samples Btw 14
OC-SVM kernel rbf
OC-SVM nu parameter 0.005
OC-SVM gamma parameter 0.01
No. of features nfeatures 840
Majority vote over k 5

order to collect CSI data we transmitted unicast data packets
with a transmission rate of 100 Hz using BPSK modulation
with a coding rate (FEC) of 1/2 and channel bandwidth of
40 MHz. The experiment was performed in 2.4 GHz band
on channels 1 and 5 GHz band on channel 36. Finally, we
collected CSI under two scenarios: i) empty (human-free)
room and ii) human-present-occupied room. For the latter
scenario the human was walking, standing, and sitting, where
applicable, randomly inside the room. The person alternates
between the above-described actions and performs each action
for an unspecified time duration. The collected CSI datasets
were labeled accordingly. Each collection session lasts for
about 10.5 min, resulting in 63k CSI samples.

B. System Parameters

Table I shows our used system parameters for the detector.
In the preprocessing step we reduced the dimension of (com-
plex) CSI data from 63k×2×2×114 to just 490×14×4×15
of (real) data, which corresponds to a compression of around
99.3%. It is served as features for the input of the OC-SVM.
With the selected parameters the detection of person entering
a room takes place between 3.84 and 6.4 s.

For the training we used the data sets collected from empty
rooms. Afterwards, we tested our trained system by using
the datasets from both empty and occupied rooms. In order
to avoid the repeated use of the same dataset for training
and testing, we resample our training data. Data from each
room (a, b, c) and used radio channel (1, 36) are forming a
data set we use for training and testing. This results in six
different training and test data sets and thus in six trained
models. Although our presence detector was written entirely
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Fig. 3: Performance in 3 rooms (channel 1 and 36).

in Python, training took only ≈ 6 s on a modern PC. This
confirms the low complexity of the proposed approach.

C. Performance Metrics

Our metrics for evaluation are the accuracy, sensitivity and
specificity. Accuracy is the percentage of correctly classified
results. It shows us the overall performance of a model.
Sensitivity is the percentage of correctly classified presence.
Specificity is the percentage of correctly classified non-
presence. These two metrics will be used to get further insight
on the performance of a model.

D. Detection Accuracy, Sensitivity, Specificity

In our first experiment we analyzed the performance of
our detector in the three different rooms using channel 1
and 36 respectively. Therefore, our detector was learned for
each room and channel independently. As can be seen from
Fig. 3 we achieved very good performance. The accuracy is
ranging from 98.86% up to 100%. The average accuracy is
99.79% for channel 1 and 99.52% for channel 36. Regarding
the capability of our system to detect human absence channel
1 achieved an average sensitivity of 99.72%. This is higher
than the average sensitivity on channel 36 with a score
of 99.51%. On channel 1 and in environment b we only
achieved a sensitivity of 99.17%. A lower human absence
rate of 99.17% and 99.38% was achieved in the environments
b and c on channel 36 respectively. Our system detected
human presence with a rate of 100% on multiple environment-
channel combinations. Only in environment a on channel 1
and b on channel 36 we got a lower specificity of 99.58% and
98.54%. We see that in the smaller environment b our system
achieved the least percentage of correct classifications.

So far, we trained and tested our model independently
for each room and channel configuration. Next, we train a
single model with data from all rooms at once and test with
testing data from each room. Fig. 4 shows the results. The
performance loss compared to Fig. 3 is very small, i.e., at
most a drop of one percentage point. This confirms that
training a single model is sufficient.

E. Impact of Spatial Domain

Next, we want to analyze the gain from having multiple
antennas at the transmitter and receiver, i.e., MIMO. The
impact of that spatial domain is shown in Fig. 5. The best
performance is achieved when using all two transmit and
receive antennas resulting in 4 spatial paths from which the
CSI can be obtained. By lowering the number of antennas,
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we see a dramatic drop in performance. With only a single
spatial domain, i.e., SISO with single TX and RX antenna,
we see for some combination a drop in specificity to only
65%. Also, the accuracy can be low as 82.5%. This confirms
the need to use MIMO systems with 2 or more antennas.

F. Impact of CSI Sampling Rate

Estimating the CSI creates overhead as packets need to
be transmitted which are consuming valuable radio resources
which could be otherwise used for ordinary communication.
Therefore, we want to analyze the impact of CSI sampling
rate of the detection performance. Fig. 6 shows the results.
Both accuracy and specificity are affected by the used CSI
sampling rate whereas the sensitivity stays at the maximum.
Hence there is a tradeoff between overhead and performance
of the detection which has to be taken into account.

G. Impact of Channel Bandwidth

Like the CSI sampling rate the bandwidth used by the prob-
ing packets creates overhead in terms of used radio resources.
Therefore, in Fig. 7 we analyzed its impact. Again, we see
no impact on sensitivity whereas the impact of accuracy and
specificity is visible but small.

H. Impact of Downsampling in Frequency Domain

Here, we analyze the impact of downsampling in frequency
domain N f , cf. eq. 10. From Fig. 8 we see that optimal
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Fig. 8: Impact of downsampling N f (trained with data from
all rooms while tested with data from room A, channel=1).

results can be achieved for N f = 28. However, to keep
the computational overhead low the value can be reduced to
N f = 8 without significantly affecting the performance of
the detector. However, analyzing just a single subcarrier, i.e.,
N f = 1, is not sufficient.

I. Impact of Batch Size

Finally, we want to study the impact of the selected batch
size Bt, cf. eq. 9, on the performance. From Fig. 9 we see
that values below 1.2 s for Bt lead to performance degradation
especially in terms of specificity which can drop to just 88%
when using Bt = 16 ms. Hence, we can conclude to have a
tradeoff between the accuracy and latency.

VII. Conclusions

In this paper, we proposed a low-complexity device-free
human presence detection method which utilizes the CSI
provided by commodity 802.11 (WiFi) devices. The key idea
is to utilize OC-SVM for novelty detection, hence requiring
training to be performed in empty rooms only. It is of low-
complexity both in terms of required radio resources, i.e.,
CSI sampling rate and bandwidth, as well as computational
complexity. The proposed approach was prototypically imple-
mented and experimentally evaluated.
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Fig. 9: Impact of batch size Bt (trained with data from all
rooms while tested with data from room A, channel=1).
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