On Practical Selective Jamming of Bluetooth Low Energy Advertising

S. Brauer, A. Zubow, S. Zehl, M. Roshandel, S. M. Sohi
Technical University Berlin & Deutsche Telekom Labs
Germany
Outline

• Motivation,
• Problem Statement,
• System Model,
• Bluetooth LE Advertising Primer,
• Proposed Jamming Solution,
• Evaluation,
• Countermeasures,
• Conclusion & Future Work.
Motivation

• The *Bluetooth Low Energy* (BLE) protocol stack gave rise to whole new class of devices: **BLE beacons**

• Beacons are small, often battery-powered devices, that continuously broadcast information by using the *BLE Advertising* process

• Despite their limited functionality they can be used to implement complex services, e.g.:

 – Targeted advertisement

 – Mobile Payment authentication (e.g. PayPal)

 – Indoor Navigation
Motivation (II)

• BLE beacons have seen a steady rise in popularity:
 – 72% of all retailers are expected to have beacon technology installed until 2019,
 – Hence the security of BLE beacons is worth investigating.

• BLE is prone to jamming attacks like any wireless technology,

• Purpose of this work is to discuss the risk of such a jamming attack on BLE beacons,

• Common definition for risk:

\[\text{Risk} = \text{Likelihood} \times \text{Impact} \]
Problem Statement

- We devised **five criteria** to evaluate the risk of a jammer:
 - Jamming success (impact),
 - Energy-efficiency (impact),
 - Cost (likelihood),
 - Possible countermeasures/detection methods (likelihood & impact),
 - Ability to selectively jam targets (impact).

- Can we build a jammer that is optimized for this criteria?
 - A low-cost, energy-efficient selective jammer
System Model

- We consider the basic scenario consisting of:
 - A BLE beacon source emitting BLE advertisement packets,
 - A receiver which performs passive scanning for BLE adv packets,
 - A single jammer node.
Bluetooth LE Advertising Primer

- BLE operates in 2.4 GHz ISM band,
- Bit rate: 1 Mbit/s → 1 bit = 1 µs air time
- 40 channels, 2 MHz each:
Bluetooth LE Advertising Primer (II)

- Advertising channel: channels 37, 38 and 39 (yellow),
- Advertising Channel are spread across the spectrum to avoid interference (Wi-Fi),
- Advertising uses a **frequency hopping** scheme to improve **robustness**, i.e. a beacon is transmitted on different adv. channels.
Bluetooth LE Advertising Primer (III)

- Advertising takes place at a regular interval `advInterval` (>20ms) with an added pseudo-random delay `advDelay` (between 0.625ms and 20ms) for collision avoidance.

- **Note**: During each `Advertising Event` the beacon is transmitted on all (!) three advertising channels.
Bluetooth LE Advertising Primer (IV)

- During each *Advertising Event* a beacon **hops** through all used advertising channels (mostly all 3) in **ascending order**.

 ![Diagram](image)

 - Advertising event entered
 - Adv_idx = 37
 - \(\leq 10 \text{ms} \)
 - Advertising event entered
 - Adv_idx = 38
 - \(\leq 10 \text{ms} \)
 - Advertising event entered
 - Adv_idx = 39
 - \(\leq 10 \text{ms} \)

- Two subsequent advertising packets within one Adv. Event must be less than 10 ms apart. **A minimum time is not specified.**
Bluetooth LE Advertising Primer (V)

- Basic BLE framing:
 - Preamble + Access Address used as correlation code,
 - No Forward Error Correction (FEC), so every bit error results in a corrupted packet (detected using CRC)
Jammer Design Principles

• We use commercially off-the-shelf (COTS) hardware that is BLE capable
 – Minimizes the cost,
 – This hardware is often already optimized for low energy consumption

• To save energy we employ a narrow-band jamming scheme with frequency hopping
 – Doesn’t waste energy on unused bandwidth,
 – Makes our jammer harder to detect.

• The duration of the jamming signal can be kept at a minimum (no FEC in BLE)
Proposed Jamming Solution

• Selective, reactive narrow-band jammer:
 – Because we can only jam a single BLE channel at a time (→ narrowband) fast channel hopping has to be applied,

• The jammer is pre-programmed using an API:
 – Two options: **white list or black list** of device addresses to be jammed,
 – Configuration of the BLE adv. channels being used.
Proposed Jamming Solution (II)

• Jammer consists of two components:
 1. **Detection**: jammer **decodes packets on-the-fly** to decide whether to jam this particular packet based on the **device address**,
 2. **Jamming**: on successful detection the jammer emits a short jamming signal.
Selective, Reactive Narrow-band Jammer

- FSM of jammer w/ all 3 Adv channels used:
Implementation Details

• Jammer node: RedBearLab BLE Nano
 – BLE devkit equipped with a Nordic nRF51822 SoC and an integrated antenna,
 – nRF51822 is equipped with a BLE capable transceiver,
 – Max TX power: +4dBm,
 – Cheap: ca. 20 €,
 – Fast turn-around time (time needed to switch from receiving to transmitting): 140 µs,
 – Easily programmable
Evaluation Methodology

- Primary performance **metric** is **Advertising Success Rate**:

 \[
 ASR = \frac{\text{# correctly received BLE adv. events}}{\text{total number of transmitted BLE adv. events}}
 \]

- **Objective**: min. ASR, i.e. ASR=0 is perfect jamming.

- Another **metric** is the area covered by the jammer:
 - Spatial area around the jammer with ASR < \(\tau \)

Experiment setup.

![Diagram of interference and distances between devices]

- **d_{sj}**: Sensing distance between Jammer and Beacon source
- **d_{sr}**: Distance between Jammer and Receiver
- **d_{jr}**: Distance between Jammer and Receiver (interference)
Evaluation Methodology (II)

• Receiver:
 – Optimal receiver, i.e. dedicated Rf receiver (BLE Nano) for each BLE Adv. channel,
 – Every packet is logged (+CRC packets) using *Nordic Sniffer* and written to PCAP file for post-analysis in MATLAB,

• Sender:
 – Commercial beacon (Gigaset G-Tag)
 • Adv. interval of 1 sec + all 3 Adv channels
Evaluation Methodology (III)

- We set-up an outdoor experiment:
 - Beacon source, jammer and receiver are put on a line elevated by 1 m from the ground (grass field),
 - Distance between beacon source and the receiver was set to $d_{sr}=3.7$ m,
 - The distance between the jammer and receiver (d_{jr}) nodes were varied from 1 to 10 meters.
Results

- At $d=76$ cm the ASR is zero, i.e. jammer successfully jam each transmitted BLE adv. frame transmitted on each channel (37, 38 and 39),
- At $d=100$ cm the ASR=3%,
- Note: TX power of jammer was just 4 dBm.
Countermeasures

• We can divide countermeasures into two categories

 1. Attack Detection
 - Detect the presence of the jammer to allow further actions to be taken, e.g. removal of jammer,
 - Decoy packets & K-mean clustering

 2. Attack Mitigation
 - Actions that limit the impact of the jammer.
Countermeasures – Attack Mitigation

• **Use random channel hopping**
 – Our jammer cannot adapt to random hopping pattern, i.e. adv. channels are used in random order,
 – But, we can use three jammer nodes, each configured to listen on a particular channel => no hopping required.

• **Use randomized device addresses** for BLE beacons,

• **Use of short BLE frames**
 – Our jammer’s ability to jam is limited by its reaction time, i.e. 174 µs, => BLE payloads > 19 bytes,
 – But, the two most popular beacon protocols *iBeacon* and *Eddystone* both have larger payloads.
Conclusions & Future Work

• Can we build a low-cost, energy-efficient selective BLE jammer?
 – Yes, we can (with some limitations)
• Due to the low effort necessary, potential victims should anticipate jamming attacks
 – Especially if they have a commercial interest in their beacon network (e.g. retailers)
• Ongoing research: how to deal with BLE beacons whose device addresses is randomized.