Coexistence Gaps in Space via Interference Nulling for LTE-U/WiFi Coexistence

Suzan Bayhan, Anatolij Zubow, and Adam Wolisz
TKN, TU Berlin
http://www.tkn.tu-berlin.de/

IEEE WoWMoM 2018
Chania, Crete, Greece
LTE operators’ interest in unlicensed operation

- Mobile network operators (MNO) can expand their capacity with unlicensed spectrum via **carrier aggregation**
- Bundling licensed+unlicensed spectrum: less over-provisioning needed
- No spectrum fees!
- Lots of capacity at 5 GHz
- LTE-unlicensed (LTE-U)
LTE operators’ interest in unlicensed operation

- Mobile network operators (MNO) can expand their capacity with unlicensed spectrum via **carrier aggregation**
- Bundling licensed+unlicensed spectrum: less over-provisioning needed
- No spectrum fees!
- Lots of capacity at 5 GHz
- LTE-unlicensed (LTE-U)

A big challenge: Coexistence with the WiFi
LTE-Unlicensed (LTE-U)
Why is coexistence a challenge?

LTE incompatible for unlicensed spectrum sharing

<table>
<thead>
<tr>
<th>LTE</th>
<th>WiFi</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Scheduled access</td>
<td>• Random access</td>
</tr>
<tr>
<td>• Continuous transmission</td>
<td>• Listen before talk (LBT)</td>
</tr>
</tbody>
</table>
Why is coexistence a challenge?

LTE incompatible for unlicensed spectrum sharing

LTE
- Scheduled access
- Continuous transmission

WiFi
- Random access
- Listen before talk (LBT)

Is the channel idle? received signal ≥ ED threshold

Channel busy, Defer access

LTE-BS scheduler

LTE-BS scheduler
Why is coexistence a challenge?

LTE incompatible for unlicensed spectrum sharing

<table>
<thead>
<tr>
<th>LTE</th>
<th>WiFi</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Scheduled access</td>
<td>• Random access</td>
</tr>
<tr>
<td>• Continuous transmission</td>
<td>• Listen before talk (LBT)</td>
</tr>
</tbody>
</table>

LTE-BS scheduler

Is the channel idle? received signal >? ED threshold

Channel busy, Defer access

LTE incompatible for unlicensed spectrum sharing

LTE incompatible for unlicensed spectrum sharing

WiFi might suffer from LTE if coexistence schemes are not implemented!
Coexistence gaps put by LTE-U

• Coexistence gap: Resource blocks left for the other technology’s use for fair coexistence
Coexistence gaps put by LTE-U

- Coexistence gap: Resource blocks left for the other technology’s use for fair coexistence

Coexistence gaps in:

- Frequency (channel selection)
- Time (duty-cycling)
- Space (power adaptation)
Coexistence gaps put by LTE-U

- Coexistence gap: Resource blocks left for the other technology’s use for fair coexistence
Coexistence gaps put by LTE-U

- Coexistence gap: Resource blocks left for the other technology’s use for fair coexistence

Our contribution in this paper:
coexistence gaps in multiple domains via interference nulling
Interference-nulling for coexistence

- Our idea: use precoding at LTE-U BS to achieve interference nulling towards WiFi node(s) while beamforming towards LTE-UE
Our idea: use precoding at LTE-U BS to achieve interference nulling towards WiFi node(s) while beamforming towards LTE-UE.
Motivation

Our idea: use precoding at LTE-U BS to achieve interference nulling towards WiFi node(s) while beamforming towards LTE-UE.
Our idea: use precoding at LTE-U BS to achieve interference nulling towards WiFi node(s) while beamforming towards LTE-UE
Interference-nulling for coexistence

- Our idea: use precoding at LTE-U BS to achieve interference nulling towards WiFi node(s) while beamforming towards LTE-UE

Interference nulling can enable concurrent LTE-U and WiFi transmissions: improved coexistence compared to separation of transmissions
Cross-technology interference nulling based coexistence

• Challenge:
 • LTE-U BS needs to know:
 • locations of WiFi stations
 • its complex Channel State Information (CSI) towards WiFi station
 • No communication channel bw. LTE-U BS and WiFi
 • In this paper, we assume all information is available at the LTE-U BS
A brief overview of LTE-U

- LTE-U implements duty-cycling (no listen-before-talk before medium access)
- **CSAT**: Carrier-sense Adaptive Transmission by Qualcomm
 - LTE-U BS senses the medium
 - LTE-U must leave the medium for WiFi proportional to the number of WiFi nodes observed in the neighborhood (N_{cs}).
- Airtime = LTE $T_{on}/(T_{on}+T_{off})$

LTE-U airtime for fair coexistence

- Ncs: number of WiFi nodes in carrier sensing range (CSR) of the LTE-U BS

\[
\text{airtime} = \frac{1}{1+N_{cs}}
\]
LTE-U airtime for fair coexistence

- Ncs: number of WiFi nodes in carrier sensing range (CSR) of the LTE-U BS

\[
\text{airtime} = \frac{1}{1 + N_{cs}}
\]

Interference nulling moves the airtime figure above without violating the fairness notion

\[
\alpha_l(K_\varnothing) = \frac{1}{(N_{cs} - K_\varnothing) + 1}.
\]
Medium access under interference nulling

Promises a **win-win** solution for both LTE and WiFi
- Increased throughput for both
- Lower medium access delay for both

1-D time domain gaps
(LTE duty-cycling)

Our proposal:
2-D coexistence gaps

Transmission to **nulled WiFi** nodes
How does nulling affect WiFi’s medium access?

If receiver is nulled:
no signal, high SNIR

If transmitter is nulled:
channel idle, channel access (airtime=1)
Caveats!

LTE-U uses some of its antenna resources (degrees of freedom) for nulling

• Nulling towards particular direction might lower the gain from beamforming towards its own UE (WiFi in a similar angular direction to UE)

• Increase in airtime vs. decrease in LTE-U DL SNR due to lower gain from beam forming

• Nulling may not always improve WiFi throughput

• Longer airtime for LTE during which WiFi has some DL traffic
Caveats!

LTE-U uses some of its antenna resources (degrees of freedom) for nulling

- Nulling towards particular direction might lower the gain from beamforming towards its own UE (WiFi in a similar angular direction to UE)
- Increase in airtime vs. decrease in LTE-U DL SNR due to lower gain from beam forming
- Nulling may not always improve WiFi throughput
- Longer airtime for LTE during which WiFi has some DL traffic

Best trade-off: both LTE and WiFi does not decrease performance over no-nulling case
Which WiFi nodes (AP and STAs) to null?
Which WiFi nodes (AP and STAs) to null?

- **STA1**: hard to separate from UE, i.e. nulling STA1 will reduce gain of beamforming towards UE.

![Diagram showing WiFi nodes and UE](image)
Which WiFi nodes (AP and STAs) to null?

- **STA1**: hard to separate from UE, i.e. nulling STA1 will reduce gain of beamforming towards UE
- **STA2**: no need, outside range
- **STA3**: no need, outside range

Motivation

Problem statement

Our proposal

Performance Analysis

Take-aways
Which WiFi nodes (AP and STAs) to null?

STA1: hard to separate from UE, i.e. nulling STA1 will reduce gain of beamforming towards UE

STA2, STA3, STA4: no need, outside range

STA4: null together

Motivation Problem statement Our proposal Performance Analysis Take-aways
Which WiFi nodes (AP and STAs) to null?

- **STA1**: hard to separate from UE, i.e. nulling STA1 will reduce gain of beamforming towards UE
- **STA2, STA3, STA4**: no need, outside range
- **STA4**: null together
- **null AP only**
Which WiFi nodes (AP and STAs) to null?

- **STA1**: hard to separate from UE, i.e. nulling STA1 will reduce gain of beamforming towards UE

- **STA2** and **STA3**: no need, outside range

- **STA4**: null together
- STA4 null AP only

Motivation | Problem statement | Our proposal | Performance Analysis | Take-aways
Which WiFi nodes (AP and STAs) to null?

- STA1: hard to separate from UE, i.e. nulling STA1 will reduce gain of beamforming towards UE
- STA2, STA3: no need, outside range
- STA4: null together
- STA4: null AP only

Which option is better?
We model airtime and average rate
Throughput for WiFi nodes

Case 1: Only time-domain gaps (No LTE interference)

\[R_{i,w}^0 = (1 - \alpha_i) B \log(1 + \frac{P_{w}d_{i,w}^{-\gamma}}{B \eta_0}) \]

- WiFi airtime remaining from LTE
- WiFi channel capacity

Case 2: Time and space-domain gaps: (LTE interference during LTE-on period)

\[\alpha_i B \log(1 + \frac{P_{w}d_{i,w}^{-\gamma}}{B \eta_0 + P_l d_{i,l}^{-\gamma} \Phi_i}) + (1 - \alpha_i) B \log(1 + \frac{P_{w}d_{i,w}^{-\gamma}}{B \eta_0}) \]

- LTE on-period
- LTE off-period
Throughput for LTE UE

- We assume that LTE scheduler first decides which UE to serve in the DL

\[R_{j,l} = \alpha_l r_{j,l} \]

\[r_{j,l} = \begin{cases}
 r_{j,l}^0 = B \log(1 + \frac{P_l d_{j,l}^{-\gamma} \Phi_j}{B\eta_0}), & \text{blocked WiFi AP} \\
 r_{j,l}^1 = B \log(1 + \frac{P_l d_{j,l}^{-\gamma} \Phi_j}{B\eta_0 + P_w d_{j,w}^{-\gamma}}), & \text{unblocked WiFi AP}
\end{cases} \]

WiFi interference when AP is unblocked (nulled or LTE-BS is outside AP’s sensing range)

Optimisation problem: please see the details in the paper
Greedy WiFi node selection for nulling

• Under a given # of antennas (K):
 • select the WiFi node which gives highest gain in the metric (LTE, WiFi, sum capacity)
 • add nodes till max.nulls (#antennas-1) are reached or no increase in gain

Complexity of the selection algorithm: $O((N + 1)^2)$, N is number of WiFi stations in CSR of LTE-U BS
Performance analysis

- Python simulations, Matlab’s Phased Array system toolbox
- LCMV beamformer
- Baseline: no nulling, duty-cycling, i.e., LTE-U CSAT
- Parameters to investigate:
 - distance between LTE and WiFi cells
 - number of antennas at LTE-U BS
 - number of WiFi users
- Performance metrics:
 - Throughput gain in LTE, gain in WiFi
 - Medium access delay for LTE and WiFi
Throughput gain (8 WiFi stations)
Throughput gain (8 WiFi stations)
Throughput gain (8 WiFi stations)

Motivation

Problem statement

Our proposal

Performance Analysis

Take-aways
Throughput gain (8 WiFi stations)

- Throughput increase for LTE/WiFi: up to 221%, 44%
- Significant improvement: inter-technology hidden node distances
How does airtime and SNIR change by nulling?

10 antennas at the LTE-U BS

- Slight decrease in LTE SNIR, but huge increase in its airtime
- WiFi only slightly affected
How does airtime and SNIR change by nulling?

- Slight decrease in LTE SNIR, but huge increase in its airtime
- WiFi only slightly affected

10 antennas at the LTE-U BS

- Airtime increase of LTE

![Diagram showing airtime and SNIR changes](image-url)
How does airtime and SNIR change by nulling?

Slight decrease in LTE SNIR, but huge increase in its airtime

WiFi only slightly affected
Medium access delay decreases

- Interference nulling decreases medium access delay
Key take-aways

• Interference nulling for improving coexistence: coexistence gaps in space and time

• Promising gains in throughput, medium access delay

• LTE benefits more from nulling than WiFi:
 • future research on how to change our formula to make it fair

• We assumed existence of perfect CSI at LTE-U BS towards each WiFi node
 • practically hard to obtain because of incompatible PHYs

• our recent paper addresses this problem
Key take-aways

• Interference nulling for improving coexistence: coexistence gaps in space and time
• Promising gains in throughput, medium access delay
• LTE benefits more from nulling than WiFi:
 • future research on how to change our formula to make it fair
• We assumed existence of perfect CSI at LTE-U BS towards each WiFi node
 • practically hard to obtain because of incompatible PHYs
 • our recent paper addresses this problem

Thank you,
Suzan Bayhan. suzanbayhan.github.io