A tutorial on order-invariant logics

Nicole Schweikardt

Humboldt-Universität zu Berlin

• Consider finite directed graphs $G = (V^G, E^G)$.

Sometimes, nodes are additionally colored by a symbol from a finite alphabet Σ .

• Consider finite directed graphs $G = (V^G, E^G)$.

Sometimes, nodes are additionally colored by a symbol from a finite alphabet $\boldsymbol{\Sigma}.$

- ▶ *p* is a graph property, if the following is true for all graphs *G* and *H*:
 - if $G \cong H$, then G has property $p \iff H$ has property p

• Consider finite directed graphs $G = (V^G, E^G)$.

Sometimes, nodes are additionally colored by a symbol from a finite alphabet $\boldsymbol{\Sigma}.$

- *p* is a graph property, if the following is true for all graphs *G* and *H*:
 if *G* ≅ *H*, then *G* has property *p* ⇔ *H* has property *p*
- q is a k-ary graph-query, if the following is true:

$$\begin{array}{ll} \text{if } \pi: G \cong H, \text{ then for all } a_1, \ldots, a_k \in V^G, \\ (a_1, \ldots, a_k) \in q(G) \iff (\pi(a_1), \ldots, \pi(a_k)) \in q(H) \end{array}$$

• Consider finite directed graphs $G = (V^G, E^G)$.

Sometimes, nodes are additionally colored by a symbol from a finite alphabet Σ .

- *p* is a graph property, if the following is true for all graphs *G* and *H*:
 if *G* ≅ *H*, then *G* has property *p* ⇔ *H* has property *p*
- q is a k-ary graph-query, if the following is true:

$$\begin{array}{ll} f \ \pi : G \cong H, \ \text{then for all } a_1, \ldots, a_k \in V^G, \\ (a_1, \ldots, a_k) \ \in \ q(G) \ \iff \ (\pi(a_1), \ldots, \pi(a_k)) \ \in \ q(H) \end{array}$$

I.e., graph-properties and queries are closed under isomorphisms.

i

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Logics expressing graph-properties and queries

Classical logics like, e.g.

- ► FO (first-order logic: Boolean combinations + quantification over nodes)
- ► LFP (least fixed point logic: FO + inductive definitions of relations) express graph-properties and queries in a straightforward way.

Example: The query

$$q(G) = \{ x \in V^G : x \text{ lies on a triangle } \}$$

is expressed in FO via

$$\varphi(x) := \exists y \exists z (E(x, y) \land E(y, z) \land E(z, x))$$

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Logics expressing graph-properties and queries

Classical logics like, e.g.

- ► FO (first-order logic: Boolean combinations + quantification over nodes)
- ► LFP (least fixed point logic: FO + inductive definitions of relations) express graph-properties and queries in a straightforward way.

Example: The query

$$q(G) = \{ x \in V^G : x \text{ lies on a triangle } \}$$

is expressed in FO via

$$\varphi(x) := \exists y \exists z (E(x, y) \land E(y, z) \land E(z, x))$$

Drawback:

FO and LFP are too weak to express (some) computationally easy properties, e.g., properties concerning the size of V^G or E^G .

Stronger logics like, e.g., SO or ESO can express computationally hard properties and queries.

NICOLE SCHWEIKARDT

Overview

Introduction

Invariant logics

Undecidability

Expressiveness

Locality Results

Order-invariant logics on strings

Final Remarks

Overview

Introduction

Invariant logics

Undecidability

Expressiveness

Locality Results

Order-invariant logics on strings

Final Remarks

NICOLE SCHWEIKARDT

Idea:

- Extend the expressive power of a logic by allowing formulas to also use arithmetic predicates like <, +, ×, ..., Halt, ... on V^G.
- For this, identify V^G with the set [n] := {0, 1, ..., n−1} for n = |V^G| and interpret <, +, ×, ..., Halt, ... in the natural way.</p>

Idea:

- Extend the expressive power of a logic by allowing formulas to also use arithmetic predicates like <, +, ×, ..., Halt, ... on V^G.
- For this, identify V^G with the set [n] := {0, 1, ..., n−1} for n = |V^G| and interpret <, +, ×, ..., Halt, ... in the natural way.</p>
- To ensure closure under isomorphisms, restrict attention to formulas independent of the particular way of identifying V^G with [n]. These formulas are called Arb-invariant.

Idea:

- Extend the expressive power of a logic by allowing formulas to also use arithmetic predicates like <, +, ×, ..., Halt, ... on V^G.
- For this, identify V^G with the set [n] := {0, 1, ..., n−1} for n = |V^G| and interpret <, +, ×, ..., Halt, ... in the natural way.</p>
- To ensure closure under isomorphisms, restrict attention to formulas independent of the particular way of identifying V^G with [n]. These formulas are called Arb-invariant.

Definition: Let \mathcal{L} be a logic (e.g., FO, MSO, LFP).

A $\mathcal{L}(E, <)$ -formula $\varphi(\vec{x})$ is order-invariant on $G = (V^G, E^G) \iff$ for all tuples of nodes \vec{a} in V^G , for all linear orders $<_1$ and $<_2$ on V^G ,

$$(G, <_1) \models \varphi(\vec{a}) \quad \iff \quad (G, <_2) \models \varphi(\vec{a}).$$

Idea:

- Extend the expressive power of a logic by allowing formulas to also use arithmetic predicates like <, +, ×, ..., Halt, ... on V^G.
- For this, identify V^G with the set [n] := {0, 1, ..., n−1} for n = |V^G| and interpret <, +, ×, ..., Halt, ... in the natural way.</p>
- To ensure closure under isomorphisms, restrict attention to formulas independent of the particular way of identifying V^G with [n]. These formulas are called Arb-invariant.

Definition: Let \mathcal{L} be a logic (e.g., FO, MSO, LFP).

A $\mathcal{L}(E, <, +)$ -formula $\varphi(\vec{x})$ is addition-invariant on $G = (V^G, E^G) \iff$ for all tuples of nodes \vec{a} in V^G , for all linear orders $<_1$ and $<_2$ on V^G , and the matching addition relations $+_1, +_2$,

$$(G, <_1, +_1) \models \varphi(\vec{a}) \quad \Longleftrightarrow \quad (G, <_2, +_2) \models \varphi(\vec{a}).$$

Idea:

- ► Extend the expressive power of a logic by allowing formulas to also use arithmetic predicates like <, +, ×, ..., Halt, ... on V^G.
- For this, identify V^G with the set [n] := {0, 1, ..., n−1} for n = |V^G| and interpret <, +, ×, ..., Halt, ... in the natural way.</p>
- To ensure closure under isomorphisms, restrict attention to formulas independent of the particular way of identifying V^G with [n]. These formulas are called Arb-invariant.

Definition: Let \mathcal{L} be a logic (e.g., FO, MSO, LFP). A $\mathcal{L}(E, <, +, \times)$ -formula $\varphi(\vec{x})$ is $(+, \times)$ -invariant on $G = (V^G, E^G) \iff$ for all tuples of nodes \vec{a} in V^G , for all linear orders $<_1$ and $<_2$ on V^G , and the matching addition relations $+_1, +_2$, and the according multiplications \times_1, \times_2 ,

$$(G, <_1, +_1, \times_1) \models \varphi(\vec{a}) \quad \Longleftrightarrow \quad (G, <_2, +_2, \times_2) \models \varphi(\vec{a}).$$

Idea:

- ► Extend the expressive power of a logic by allowing formulas to also use arithmetic predicates like <, +, ×, ..., Halt, ... on V^G.
- For this, identify V^G with the set [n] := {0, 1, ..., n−1} for n = |V^G| and interpret <, +, ×, ..., Halt, ... in the natural way.</p>
- To ensure closure under isomorphisms, restrict attention to formulas independent of the particular way of identifying V^G with [n]. These formulas are called Arb-invariant.

Definition: Let \mathcal{L} be a logic (e.g., FO, MSO, LFP). A $\mathcal{L}(E, <, +, \times, ...)$ -formula $\varphi(\vec{x})$ is Arb-invariant on $G = (V^G, E^G) \iff$ for all tuples of nodes \vec{a} in V^G , for all linear orders $<_1$ and $<_2$ on V^G , and the matching addition relations $+_1, +_2$, and the according multiplications \times_1, \times_2 , and other numerical predicates,

$$(G, <_1, +_1, \times_1, \ldots) \models \varphi(\vec{a}) \iff (G, <_2, +_2, \times_2, \ldots) \models \varphi(\vec{a}).$$

Idea:

- ► Extend the expressive power of a logic by allowing formulas to also use arithmetic predicates like <, +, ×, ..., Halt, ... on V^G.
- For this, identify V^G with the set [n] := {0, 1, ..., n−1} for n = |V^G| and interpret <, +, ×, ..., Halt, ... in the natural way.</p>
- To ensure closure under isomorphisms, restrict attention to formulas independent of the particular way of identifying V^G with [n]. These formulas are called Arb-invariant.

Definition: Let \mathcal{L} be a logic (e.g., FO, MSO, LFP).

A $\mathcal{L}(E, <, +, \times, ...)$ -formula $\varphi(\vec{x})$ is Arb-invariant on $G = (V^G, E^G) \iff$ for all tuples of nodes \vec{a} in V^G , for all linear orders $<_1$ and $<_2$ on V^G , and the matching addition relations $+_1, +_2$, and the according multiplications \times_1, \times_2 , and other numerical predicates,

 $(G, <_1, +_1, \times_1, \ldots) \models \varphi(\vec{a}) \quad \Longleftrightarrow \quad (G, <_2, +_2, \times_2, \ldots) \models \varphi(\vec{a}).$

For Arb-invariant sentences, shortly write $G \models \varphi$ for $(G, <_1, +_1, \times_1 ...) \models \varphi$.

NICOLE SCHWEIKARDT

• An addition-invariant FO(E, <, +)-sentence φ such that

$$G \models \varphi \iff |V^G|$$
 is odd.

$$\varphi := \exists x \exists z (x + x = z \land \forall y (y < z \lor y = z))$$

• An addition-invariant FO(E, <, +)-sentence φ such that

$$G \models \varphi \iff |V^G| \text{ is odd.}$$
$$\varphi := \exists x \exists z \left(x + x = z \land \forall y \left(y < z \lor y = z \right) \right)$$

• Similarly, there is an $(+, \times)$ -invariant FO $(E, <, +, \times)$ -sentence ψ such that

$$G \models \psi \iff |V^G| - 1$$
 is a prime number.

• An addition-invariant FO(E, <, +)-sentence φ such that

$$G \models \varphi \iff |V^G| \text{ is odd.}$$
$$\varphi := \exists x \exists z \left(x + x = z \land \forall y \left(y < z \lor y = z \right) \right)$$

- Similarly, there is an $(+, \times)$ -invariant FO $(E, <, +, \times)$ -sentence ψ such that $G \models \psi \iff |V^G|-1$ is a prime number.
- And there is an Arb-invariant FO(*E*, <, *Halt*)-sentence χ such that
 G ⊨ χ ⇔ |V^G|−1 is the index of a Turing machine halting on empty input:

• An addition-invariant FO(E, <, +)-sentence φ such that

$$G \models \varphi \iff |V^G| \text{ is odd.}$$
$$\varphi := \exists x \exists z \left(x + x = z \land \forall y \left(y < z \lor y = z \right) \right)$$

- Similarly, there is an $(+, \times)$ -invariant FO $(E, <, +, \times)$ -sentence ψ such that $G \models \psi \iff |V^G|-1$ is a prime number.
- And there is an Arb-invariant FO(*E*, <, *Halt*)-sentence χ such that $G \models \chi \iff |V^G| - 1$ is the index of a Turing machine halting on empty input: Simply choose $\chi := \exists x (Halt(x) \land \forall y (y < x \lor y = x)).$

• An addition-invariant FO(E, <, +)-sentence φ such that

$$G \models \varphi \iff |V^G| \text{ is odd.}$$
$$\varphi := \exists x \exists z \left(x + x = z \land \forall y \left(y < z \lor y = z \right) \right)$$

- Similarly, there is an $(+, \times)$ -invariant FO $(E, <, +, \times)$ -sentence ψ such that $G \models \psi \iff |V^G|-1$ is a prime number.
- And there is an Arb-invariant FO(*E*, <, *Halt*)-sentence χ such that $G \models \chi \iff |V^G| - 1$ is the index of a Turing machine halting on empty input: Simply choose $\chi := \exists x (Halt(x) \land \forall y (y < x \lor y = x)).$

Thus:

order-inv FO $\ < \$ addition-inv FO $\ < \$ (+, \times)-inv FO $\ < \$ Arb-invariant FO.

Known results:

 Order-invariant LFP precisely captures the polynomial time computable graph-properties and queries. (Immerman, Vardi, 1982)

Known results:

- Order-invariant LFP precisely captures the polynomial time computable graph-properties and queries. (Immerman, Vardi, 1982)
- Arb-invariant LFP precisely captures the graph-properties and queries that belong to the comlexity class *P*_{/poly}. (Makowsky, 1998)
 *P*_{/poly} consists of all problems solvable by circuit families of polynomial size

Known results:

- Order-invariant LFP precisely captures the polynomial time computable graph-properties and queries. (Immerman, Vardi, 1982)
- Arb-invariant LFP precisely captures the graph-properties and queries that belong to the comlexity class *P*_{/poly}. (Makowsky, 1998)
 *P*_{/poly} consists of all problems solvable by circuit families of polynomial size
- Arb-invariant FO precisely captures the graph-properties and queries that belong to the circuit complexity class AC⁰. (Immerman, 1980s)
 AC⁰ consists of all problems solvable by circuit families of polynomial size and constant depth, using NOT-gates and AND- and OR-gates of unbounded fan-in.

Known results:

- Order-invariant LFP precisely captures the polynomial time computable graph-properties and queries. (Immerman, Vardi, 1982)
- Arb-invariant LFP precisely captures the graph-properties and queries that belong to the comlexity class *P*_{/poly}. (Makowsky, 1998)
 *P*_{/poly} consists of all problems solvable by circuit families of polynomial size
- Arb-invariant FO precisely captures the graph-properties and queries that belong to the circuit complexity class AC⁰. (Immerman, 1980s)
 AC⁰ consists of all problems solvable by circuit families of polynomial size and constant depth, using NOT-gates and AND- and OR-gates of unbounded fan-in.
- Arb-invariant FO+MOD precisely captures the graph-properties and queries that belong to the circuit complexity class ACC.

ACC consists of all problems solvable by circuit families of polynomial size and constant depth, using also MOD-gates of unbounded fan-in.

Known results:

- Order-invariant LFP precisely captures the polynomial time computable graph-properties and queries. (Immerman, Vardi, 1982)
- Arb-invariant LFP precisely captures the graph-properties and queries that belong to the comlexity class *P*_{/poly}. (Makowsky, 1998)
 *P*_{/poly} consists of all problems solvable by circuit families of polynomial size
- Arb-invariant FO precisely captures the graph-properties and queries that belong to the circuit complexity class AC⁰. (Immerman, 1980s)
 AC⁰ consists of all problems solvable by circuit families of polynomial size and constant depth, using NOT-gates and AND- and OR-gates of unbounded fan-in.
- Arb-invariant FO+MOD precisely captures the graph-properties and queries that belong to the circuit complexity class ACC.

ACC consists of all problems solvable by circuit families of polynomial size and constant depth, using also MOD-gates of unbounded fan-in.

 (+, ×)-invariant FO precisely captures the graph-properties and queries that belong to uniform AC⁰.

NICOLE SCHWEIKARDT

rings Fi

FINAL REMARKS

Introduction

Invariant logics

Undecidability

Expressiveness

Locality Results

Order-invariant logics on strings

Final Remarks

NICOLE SCHWEIKARDT

EXPRESSIVENE

Order-invariance is undecidable

Invariant logics are not logics in the strict formal sense: They have an undecidable syntax.

Invariant logics are not logics in the strict formal sense: They have an undecidable syntax. Precisely:

The following problem is undecidable (for binary symbol E and unary symbol C):

ORDER-INVARIANCE ON FINITE COLORED GRAPHS:

Input: a FO(E, C, <)-sentence φ

Question: Is φ order-invariant on all finite colored graphs?

Proof: By a reduction using Trakhtenbrot's theorem.

Invariant logics are not logics in the strict formal sense: They have an undecidable syntax. Precisely:

The following problem is undecidable (for binary symbol E and unary symbol C):

ORDER-INVARIANCE ON FINITE COLORED GRAPHS:

Input: a FO(E, C, <)-sentence φ

Question: Is φ order-invariant on all finite colored graphs?

Proof: By a reduction using Trakhtenbrot's theorem.

- Assume, for contradiction, that order-invariance is decidable.
- Then, also the problem "Is a given FO(E)-sentence ψ true for all finite graphs?" is decidable as follows:

Invariant logics are not logics in the strict formal sense: They have an undecidable syntax. Precisely:

The following problem is undecidable (for binary symbol E and unary symbol C):

ORDER-INVARIANCE ON FINITE COLORED GRAPHS:

Input: a FO(E, C, <)-sentence φ

Question: Is φ order-invariant on all finite colored graphs?

Proof: By a reduction using Trakhtenbrot's theorem.

- Assume, for contradiction, that order-invariance is decidable.
- Then, also the problem "Is a given FO(E)-sentence ψ true for all finite graphs?" is decidable as follows:
 - If there is a one-vertex-graph, in which ψ is not true, then stop with output (1)"no".

Invariant logics are not logics in the strict formal sense: They have an undecidable syntax. Precisely:

The following problem is undecidable (for binary symbol E and unary symbol C):

ORDER-INVARIANCE ON FINITE COLORED GRAPHS:

Input: a FO(E, C, <)-sentence φ

Question: Is φ order-invariant on all finite colored graphs?

Proof: By a reduction using Trakhtenbrot's theorem.

- Assume, for contradiction, that order-invariance is decidable.
- Then, also the problem "Is a given FO(E)-sentence ψ true for all finite graphs?" is decidable as follows:
 - (1) If there is a one-vertex-graph, in which ψ is not true, then stop with output "no". Otherwise, proceed with (2).

Invariant logics are not logics in the strict formal sense: They have an undecidable syntax. Precisely:

The following problem is undecidable (for binary symbol E and unary symbol C):

ORDER-INVARIANCE ON FINITE COLORED GRAPHS:

Input: a FO(E, C, <)-sentence φ

Question: Is φ order-invariant on all finite colored graphs?

By a reduction using Trakhtenbrot's theorem. Proof:

- Assume, for contradiction, that order-invariance is decidable.
- Then, also the problem "Is a given FO(E)-sentence ψ true for all finite graphs?" is decidable as follows:
 - (1) If there is a one-vertex-graph, in which ψ is not true, then stop with output "no". Otherwise, proceed with (2).
 - (2) Let χ be a formula that is not order-invariant on structures of size ≥ 2 .

Invariant logics are not logics in the strict formal sense: They have an undecidable syntax. Precisely:

The following problem is undecidable (for binary symbol E and unary symbol C):

ORDER-INVARIANCE ON FINITE COLORED GRAPHS:

Input: a FO(E, C, <)-sentence φ

Question: Is φ order-invariant on all finite colored graphs?

By a reduction using Trakhtenbrot's theorem. Proof:

- Assume, for contradiction, that order-invariance is decidable.
- Then, also the problem "Is a given FO(E)-sentence ψ true for all finite graphs?" is decidable as follows:
 - (1) If there is a one-vertex-graph, in which ψ is not true, then stop with output "no". Otherwise, proceed with (2).
 - (2) Let χ be a formula that is not order-invariant on structures of size ≥ 2 . E.g., $\chi := \exists x (C(x) \land \forall y (x \leq y)).$

Invariant logics are not logics in the strict formal sense: They have an undecidable syntax. Precisely:

The following problem is undecidable (for binary symbol E and unary symbol C):

ORDER-INVARIANCE ON FINITE COLORED GRAPHS:

Input: a FO(E, C, <)-sentence φ

Question: Is φ order-invariant on all finite colored graphs?

By a reduction using Trakhtenbrot's theorem. Proof:

- Assume, for contradiction, that order-invariance is decidable.
- Then, also the problem "Is a given FO(E)-sentence ψ true for all finite graphs?" is decidable as follows:
 - (1) If there is a one-vertex-graph, in which ψ is not true, then stop with output "no". Otherwise, proceed with (2).

(2) Let χ be a formula that is not order-invariant on structures of size ≥ 2 . E.g., $\chi := \exists x (C(x) \land \forall y (x \leq y)).$ Stop with output "yes" iff the formula $(\neg \psi \rightarrow \chi)$ is order-invariant.

Invariant logics are not logics in the strict formal sense: They have an undecidable syntax. Precisely:

The following problem is undecidable (for binary symbol *E* and unary symbol *C*): **Exercise:** Get rid of *C*!

ORDER-INVARIANCE ON FINITE COLORED GRAPHS:

Input: a FO(E, C, <)-sentence φ

Question: Is φ order-invariant on all finite colored graphs?

Proof: By a reduction using Trakhtenbrot's theorem.

- Assume, for contradiction, that order-invariance is decidable.
- Then, also the problem "Is a given FO(E)-sentence ψ true for all finite graphs?" is decidable as follows:
 - (1) If there is a one-vertex-graph, in which ψ is <u>not</u> true, then stop with output "no". Otherwise, proceed with (2).

(2) Let χ be a formula that is <u>not</u> order-invariant on structures of size ≥ 2 . E.g., $\chi := \exists x (C(x) \land \forall y(x \leq y))$. Stop with output "yes" iff the formula $(\neg \psi \rightarrow \chi)$ is order-invariant.
Let $\{C_1, \ldots, C_\ell\}$ consist of unary relation symbols (i.e., node colors).

Theorem: Order-invariance of a given $FO(C_1, \ldots, C_{\ell}, <)$ -sentence φ (on the class of all finite colored sets) is decidable.

Let $\{C_1, \ldots, C_\ell\}$ consist of unary relation symbols (i.e., node colors).

Theorem: Order-invariance of a given $FO(C_1, \ldots, C_{\ell}, <)$ -sentence φ (on the class of all finite colored sets) is decidable.

Decision procedure:

• φ defines a language *L* of finite strings.

Let $\{C_1, \ldots, C_\ell\}$ consist of unary relation symbols (i.e., node colors).

Theorem: Order-invariance of a given $FO(C_1, \ldots, C_{\ell}, <)$ -sentence φ (on the class of all finite colored sets) is decidable.

Decision procedure:

- φ defines a language *L* of finite strings.
- φ is order-invariant \iff *L* is commutative.

Definition: *L* is commutative iff for all $w = a_1 \cdots a_n$ and all permutations $\pi \in S_n$ we have $w \in L \iff a_{\pi(1)} \cdots a_{\pi(n)} \in L$.

Let $\{C_1, \ldots, C_\ell\}$ consist of unary relation symbols (i.e., node colors).

Theorem: Order-invariance of a given $FO(C_1, \ldots, C_{\ell}, <)$ -sentence φ (on the class of all finite colored sets) is decidable.

Decision procedure:

- φ defines a language *L* of finite strings.
- φ is order-invariant \iff *L* is commutative.

Definition: *L* is commutative iff for all $w = a_1 \cdots a_n$ and all permutations $\pi \in S_n$ we have $w \in L \iff a_{\pi(1)} \cdots a_{\pi(n)} \in L$.

Commutativity of regular string-languages is decidable.

Theorem: Addition-invariance of a given FO(C, <, +)-sentence φ (on the class of all finite colored sets) is <u>not</u> decidable.

Theorem: Addition-invariance of a given FO(C, <, +)-sentence φ (on the class of all finite colored sets) is <u>not</u> decidable.

Proof:

- Let $H \subseteq \mathbb{N}$ be recursively enumerable, but not decidable.
- Goal: Construct, for each n ∈ N, a FO(C, <, +)-sentence ψ̃_n such that n ∉ H ⇔ ψ̃_n is addition-invariant.

Theorem: Addition-invariance of a given FO(C, <, +)-sentence φ (on the class of all finite colored sets) is <u>not</u> decidable.

Proof:

- Let $H \subseteq \mathbb{N}$ be recursively enumerable, but not decidable.
- ▶ **Goal:** Construct, for each $n \in \mathbb{N}$, a FO(*C*, <, +)-sentence $\tilde{\psi}_n$ such that $n \notin H \iff \tilde{\psi}_n$ is addition-invariant.
- Since *H* is r.e., it is FO-definable in bounded arithmetic.

Theorem: Addition-invariance of a given FO(C, <, +)-sentence φ (on the class of all finite colored sets) is <u>not</u> decidable.

Proof: Notation: $[N] := \{0, 1, ..., N\}$

- Let $H \subseteq \mathbb{N}$ be recursively enumerable, but not decidable.
- ▶ **Goal:** Construct, for each $n \in \mathbb{N}$, a FO(*C*, <, +)-sentence $\tilde{\psi}_n$ such that $n \notin H \iff \tilde{\psi}_n$ is addition-invariant.
- Since *H* is r.e., it is FO-definable in bounded arithmetic. Thus, there is a $FO(<, +, \times)$ -formula $\psi(z)$ such that for all $n \in \mathbb{N}$ we have:

 $n \in H \iff$ there is an N > n such that $([N], <, +, \times) \models \psi(n)$.

Theorem: Addition-invariance of a given FO(C, <, +)-sentence φ (on the class of all finite colored sets) is <u>not</u> decidable.

Proof: Notation: $[N] := \{0, 1, ..., N\}$

- Let $H \subseteq \mathbb{N}$ be recursively enumerable, but not decidable.
- ▶ **Goal:** Construct, for each $n \in \mathbb{N}$, a FO(*C*, <, +)-sentence $\tilde{\psi}_n$ such that $n \notin H \iff \tilde{\psi}_n$ is addition-invariant.
- ▶ Since *H* is r.e., it is FO-definable in bounded arithmetic. Thus, there is a $FO(<, +, \times)$ -formula $\psi(z)$ such that for all $n \in \mathbb{N}$ we have:

 $n \in H \iff$ there is an N > n such that $([N], <, +, \times) \models \psi(n)$.

• Let *C* be the set of all square numbers. Known:

Theorem: Addition-invariance of a given FO(C, <, +)-sentence φ (on the class of all finite colored sets) is <u>not</u> decidable.

Proof: Notation: $[N] := \{0, 1, ..., N\}$

- Let $H \subseteq \mathbb{N}$ be recursively enumerable, but not decidable.
- ▶ **Goal:** Construct, for each $n \in \mathbb{N}$, a FO(*C*, <, +)-sentence $\tilde{\psi}_n$ such that $n \notin H \iff \tilde{\psi}_n$ is addition-invariant.
- ▶ Since *H* is r.e., it is FO-definable in bounded arithmetic. Thus, there is a $FO(<, +, \times)$ -formula $\psi(z)$ such that for all $n \in \mathbb{N}$ we have:

 $n \in H \iff$ there is an N > n such that $([N], <, +, \times) \models \psi(n)$.

- Let *C* be the set of all square numbers. Known:
 - × is FO(<,+, C)-definable in ([N],<,+,C) via $\varphi_{\times}(x,y,z)$.

Theorem: Addition-invariance of a given FO(C, <, +)-sentence φ (on the class of all finite colored sets) is <u>not</u> decidable.

Proof: Notation: $[N] := \{0, 1, ..., N\}$

- Let $H \subseteq \mathbb{N}$ be recursively enumerable, but not decidable.
- ▶ **Goal:** Construct, for each $n \in \mathbb{N}$, a FO(*C*, <, +)-sentence $\tilde{\psi}_n$ such that $n \notin H \iff \tilde{\psi}_n$ is addition-invariant.
- ▶ Since *H* is r.e., it is FO-definable in bounded arithmetic. Thus, there is a $FO(<, +, \times)$ -formula $\psi(z)$ such that for all $n \in \mathbb{N}$ we have:

 $n \in H \iff$ there is an N > n such that $([N], <, +, \times) \models \psi(n)$.

- Let *C* be the set of all square numbers. Known:
 - × is FO(<, +, C)-definable in ([N], <, +, C) via $\varphi_{\times}(x, y, z)$.
 - "C = square numbers" is FO(<, +, C)-definable via $\varphi_{C=squares}$.

Theorem: Addition-invariance of a given FO(C, <, +)-sentence φ (on the class of all finite colored sets) is <u>not</u> decidable.

Proof: Notation: $[N] := \{0, 1, ..., N\}$

- Let $H \subseteq \mathbb{N}$ be recursively enumerable, but not decidable.
- ▶ **Goal:** Construct, for each $n \in \mathbb{N}$, a FO(*C*, <, +)-sentence $\tilde{\psi}_n$ such that $n \notin H \iff \tilde{\psi}_n$ is addition-invariant.
- ▶ Since *H* is r.e., it is FO-definable in bounded arithmetic. Thus, there is a $FO(<, +, \times)$ -formula $\psi(z)$ such that for all $n \in \mathbb{N}$ we have:

 $n \in H \iff$ there is an N > n such that $([N], <, +, \times) \models \psi(n)$.

- Let *C* be the set of all square numbers. Known:
 - × is FO(<, +, C)-definable in ([N], <, +, C) via $\varphi_{\times}(x, y, z)$.
 - "C = square numbers" is FO(<, +, C)-definable via $\varphi_{C=squares}$.

Substitute φ_{\times} for \times in $\psi(z)$ and let, for each $n \in \mathbb{N}$, $\tilde{\psi}_n := \psi(n) \land \varphi_{C=squares}$.

Theorem: Addition-invariance of a given FO(C, <, +)-sentence φ (on the class of all finite colored sets) is <u>not</u> decidable.

Proof: Notation: $[N] := \{0, 1, ..., N\}$

- Let $H \subseteq \mathbb{N}$ be recursively enumerable, but not decidable.
- ▶ **Goal:** Construct, for each $n \in \mathbb{N}$, a FO(*C*, <, +)-sentence $\tilde{\psi}_n$ such that $n \notin H \iff \tilde{\psi}_n$ is addition-invariant.
- ▶ Since *H* is r.e., it is FO-definable in bounded arithmetic. Thus, there is a $FO(<, +, \times)$ -formula $\psi(z)$ such that for all $n \in \mathbb{N}$ we have:

 $n \in H \iff$ there is an N > n such that $([N], <, +, \times) \models \psi(n)$.

- Let *C* be the set of all square numbers. Known:
 - × is FO(<, +, C)-definable in ([N], <, +, C) via $\varphi_{\times}(x, y, z)$.

• "C = square numbers" is FO(<, +, C)-definable via $\varphi_{C=squares}$.

Substitute φ_× for × in ψ(z) and let, for each n ∈ N, ψ_n := ψ(n) ∧ φ_{C=squares}. Note: ψ_n is an FO(<, +, C)-sentence.</p>

Theorem: Addition-invariance of a given FO(C, <, +)-sentence φ (on the class of all finite colored sets) is <u>not</u> decidable.

Proof: Notation: $[N] := \{0, 1, ..., N\}$

- Let $H \subseteq \mathbb{N}$ be recursively enumerable, but not decidable.
- ▶ **Goal:** Construct, for each $n \in \mathbb{N}$, a FO(*C*, <, +)-sentence $\tilde{\psi}_n$ such that $n \notin H \iff \tilde{\psi}_n$ is addition-invariant.
- Since *H* is r.e., it is FO-definable in bounded arithmetic. Thus, there is a $FO(<, +, \times)$ -formula $\psi(z)$ such that for all $n \in \mathbb{N}$ we have:

 $n \in H \iff$ there is an N > n such that $([N], <, +, \times) \models \psi(n)$.

- Let *C* be the set of all square numbers. Known:
 - × is FO(<,+, C)-definable in ([N], <, +, C) via $\varphi_{\times}(x, y, z)$.

• "C = square numbers" is FO(<, +, C)-definable via $\varphi_{C=squares}$.

- Substitute φ_× for × in ψ(z) and let, for each n ∈ N, ψ_n := ψ(n) ∧ φ_{C=squares}. Note: ψ_n is an FO(<, +, C)-sentence.</p>
- ▶ Furthermore, $n \notin H \iff \tilde{\psi}_n$ is addition-invariant.

NICOLE SCHWEIKARDT

A TUTORIAL ON ORDER-INVARIANT LOGICS

Overview

Introduction

Invariant logics

Undecidability

Expressiveness

Locality Results

Order-invariant logics on strings

Final Remarks

NICOLE SCHWEIKARDT

Theorem (Gurevich):

For a finite set X let $\mathcal{B}_X := (2^X, \subseteq)$ be the Boolean algebra over X.

Theorem (Gurevich):

For a finite set X let $\mathcal{B}_X := (2^X, \subseteq)$ be the Boolean algebra over X.

There is an order-inv. FO(\subseteq , <)-sentence φ_{even} such that for every finite set *X*:

 $\mathcal{B}_X \models \varphi_{even} \iff |X|$ is even.

Theorem (Gurevich): For a finite set X let $\mathcal{B}_X := (2^X, \subseteq)$ be the Boolean algebra over X. There is an order-inv. $FO(\subseteq, <)$ -sentence φ_{even} such that for every finite set X: $\mathcal{B}_X \models \varphi_{even} \iff |X|$ is even. But there is no $FO(\subseteq)$ -sentence ψ_{even} such that for every finite set X: $\mathcal{B}_X \models \psi_{even} \iff |X|$ is even.

Theorem (Gurevich): For a finite set X let $\mathcal{B}_X := (2^X, \subseteq)$ be the Boolean algebra over X. There is an order-inv. $FO(\subseteq, <)$ -sentence φ_{even} such that for every finite set X: $\mathcal{B}_X \models \varphi_{even} \iff |X|$ is even.

But there is no FO(\subseteq)-sentence ψ_{even} such that for every finite set *X*:

$$\mathcal{B}_X \models \psi_{even} \iff |X|$$
 is even.

Proof:

Part 1: φ_{even} expresses that there is a set *z* that contains the first (w.r.t. <) atom of *X*, every other (w.r.t. <) atom of *X*, but not the last (w.r.t. <) atom of *X*.

Theorem (Gurevich): For a finite set *X* let $\mathcal{B}_X := (2^X, \subseteq)$ be the Boolean algebra over *X*.

There is an order-inv. FO(\subseteq , <)-sentence φ_{even} such that for every finite set *X*:

 $\mathcal{B}_X \models \varphi_{even} \iff |X|$ is even.

But there is no FO(\subseteq)-sentence ψ_{even} such that for every finite set *X*:

 $\mathcal{B}_X \models \psi_{even} \iff |X|$ is even.

Proof:

Part 1: φ_{even} expresses that there is a set *z* that contains the first (w.r.t. <) atom of *X*, every other (w.r.t. <) atom of *X*, but not the last (w.r.t. <) atom of *X*.

Part 2: Use an Ehrenfeucht-Fraïssé game argument to show that $\mathcal{B}_X \equiv_r \mathcal{B}_Y$ for all finite X, Y of cardinality > 2^r.

Theorem (Potthoff):

Represent a finite unordered binary tree *T* by a $\{E, D\}$ -structure A_T where $(A, E^A) = T$ and D^A is the transitive closure of E^A (i.e., the descendant-relation).

Theorem (Potthoff):

Represent a finite unordered binary tree T by a $\{E, D\}$ -structure \mathcal{A}_T where $(A, E^{\mathcal{A}}) = T$ and $D^{\mathcal{A}}$ is the transitive closure of $E^{\mathcal{A}}$ (i.e., the descendant-relation).

There is an order-inv. FO(E, D, <)-sentence φ_{even} such that for every finite **full** binary tree T we have:

 $\mathcal{A}_T \models \varphi_{even} \iff$ every leaf of T has even height.

Theorem (Potthoff):

Represent a finite unordered binary tree *T* by a $\{E, D\}$ -structure A_T where $(A, E^A) = T$ and D^A is the transitive closure of E^A (i.e., the descendant-relation).

There is an order-inv. FO(E, D, <)-sentence φ_{even} such that for every finite **full** binary tree T we have:

 $\mathcal{A}_T \models \varphi_{even} \iff$ every leaf of T has even height.

But there is no FO(*E*, *D*)-sentence ψ_{even} such that for every full binary tree *T*:

 $\mathcal{A}_{\mathcal{T}} \models \psi_{\textit{even}} \iff$ every leaf of \mathcal{T} has even height.

Theorem (Potthoff):

Represent a finite unordered binary tree *T* by a $\{E, D\}$ -structure A_T where $(A, E^A) = T$ and D^A is the transitive closure of E^A (i.e., the descendant-relation).

There is an order-inv. FO(E, D, <)-sentence φ_{even} such that for every finite **full** binary tree T we have:

 $\mathcal{A}_T \models \varphi_{even} \iff$ every leaf of T has even height.

But there is no FO(*E*, *D*)-sentence ψ_{even} such that for every full binary tree *T*:

 $\mathcal{A}_{\mathcal{T}} \models \psi_{even} \iff$ every leaf of \mathcal{T} has even height.

Proof:

Part 2: Use an Ehrenfeucht-Fraïssé game argument to show that $A_T \equiv_r A_{T'}$ for all unordered full binary trees of height $\ge 2^{r+1}$.

Theorem (Potthoff):

Represent a finite unordered binary tree *T* by a $\{E, D\}$ -structure A_T where $(A, E^A) = T$ and D^A is the transitive closure of E^A (i.e., the descendant-relation).

There is an order-inv. FO(E, D, <)-sentence φ_{even} such that for every finite **full** binary tree T we have:

 $\mathcal{A}_T \models \varphi_{even} \iff$ every leaf of T has even height.

But there is no FO(*E*, *D*)-sentence ψ_{even} such that for every full binary tree *T*:

 $\mathcal{A}_{\mathcal{T}} \models \psi_{even} \iff$ every leaf of \mathcal{T} has even height.

Proof:

Part 2: Use an Ehrenfeucht-Fraïssé game argument to show that $A_T \equiv_r A_{T'}$ for all unordered full binary trees of height $\ge 2^{r+1}$.

Part 1: For simplicity, we here only construct φ_{even} that is order-invariant on $\mathcal{A}_{\mathcal{T}}$ for full binary trees \mathcal{T} .

NICOLE SCHWEIKARDT

Theorem (Potthoff):

Represent a finite unordered binary tree *T* by a $\{E, D\}$ -structure A_T where $(A, E^A) = T$ and D^A is the transitive closure of E^A (i.e., the descendant-relation).

There is an order-inv. FO(E, D, <)-sentence φ_{even} such that for every finite **full** binary tree T we have:

 $\mathcal{A}_T \models \varphi_{even} \iff$ every leaf of T has even height.

But there is no FO(*E*, *D*)-sentence ψ_{even} such that for every full binary tree *T*:

 $\mathcal{A}_{\mathcal{T}} \models \psi_{\textit{even}} \iff$ every leaf of \mathcal{T} has even height.

Proof:

Part 2: Use an Ehrenfeucht-Fraïssé game argument to show that $A_T \equiv_r A_{T'}$ for all unordered full binary trees of height $\ge 2^{r+1}$.

Part 1: For simplicity, we here only construct φ_{even} that is order-invariant on $\mathcal{A}_{\mathcal{T}}$ for full binary trees \mathcal{T} .

Exercise: Work out the details for the general case!

▶ Use < to order the children of each node *a* of *T*:

► Use < to order the children of each node *a* of *T*: If *b*₁ < *b*₂ are the children of *a*, then *b*₁ is called the 1-child and *b*₂ the 2-child of *a*.

- ► Use < to order the children of each node *a* of *T*: If *b*₁ < *b*₂ are the children of *a*, then *b*₁ is called the 1-child and *b*₂ the 2-child of *a*.
- Consider the zig-zag-path which starts in the root, visits the root's 1-child, that node's 2-child, that node's 1-child, etc.

- ► Use < to order the children of each node *a* of *T*: If *b*₁ < *b*₂ are the children of *a*, then *b*₁ is called the 1-child and *b*₂ the 2-child of *a*.
- Consider the zig-zag-path which starts in the root, visits the root's 1-child, that node's 2-child, that node's 1-child, etc.
- ► A full binary tree *T* has even height iff the last node on the zig-zag-path is a 2-child.

- ► Use < to order the children of each node *a* of *T*: If *b*₁ < *b*₂ are the children of *a*, then *b*₁ is called the 1-child and *b*₂ the 2-child of *a*.
- Consider the zig-zag-path which starts in the root, visits the root's 1-child, that node's 2-child, that node's 1-child, etc.
- A **full** binary tree *T* has even height iff the last node on the zig-zag-path is a 2-child. This can be expressed in order-inv. FO(E, D, <) which states that
 - exists x_0 , x_h such that
 - root(x_0), leaf(x_h), x_h is a 2-child,

- ► Use < to order the children of each node *a* of *T*: If *b*₁ < *b*₂ are the children of *a*, then *b*₁ is called the 1-child and *b*₂ the 2-child of *a*.
- Consider the zig-zag-path which starts in the root, visits the root's 1-child, that node's 2-child, that node's 1-child, etc.
- A full binary tree T has even height iff the last node on the zig-zag-path is a 2-child. This can be expressed in order-inv. FO(E, D, <) which states that
 - exists x_0 , x_h such that
 - root(x_0), leaf(x_h), x_h is a 2-child,
 - the node x_1 satisfying $E(x_0, x_1) \wedge D(x_1, x_h)$ is a 1-child

- ► Use < to order the children of each node *a* of *T*: If *b*₁ < *b*₂ are the children of *a*, then *b*₁ is called the 1-child and *b*₂ the 2-child of *a*.
- Consider the zig-zag-path which starts in the root, visits the root's 1-child, that node's 2-child, that node's 1-child, etc.
- A full binary tree T has even height iff the last node on the zig-zag-path is a 2-child. This can be expressed in order-inv. FO(E, D, <) which states that
 - exists x_0 , x_h such that
 - root(x_0), leaf(x_h), x_h is a 2-child,
 - the node x_1 satisfying $E(x_0, x_1) \wedge D(x_1, x_h)$ is a 1-child
 - For any 3 nodes u, v, w such that E(u, v) and E(v, w) and (D(w, x_h) ∨ w = x_h) we have: v is a 1-child iff w is a 2-child.

Let $\sigma = \{E, \sim, \in, V, V', P'\}$ with binary E, \sim, \in and unary V, V', P'.

Represent a graph G = (V, E) on 2n nodes by the σ -structure $S_{2n}(G)$:

Let $\sigma = \{E, \sim, \in, V, V', P'\}$ with binary E, \sim, \in and unary V, V', P'.

Represent a graph G = (V, E) on 2n nodes by the σ -structure $S_{2n}(G)$:

Theorem (Otto):

There is an order-inv. $FO(\sigma, <)$ -sentence φ_{conn} , but no $FO(\sigma)$ -sentence, such that for all $n \in \mathbb{N}$ and all graphs G on 2n nodes we have

 $S_{2n}(G) \models \varphi_{conn} \iff G$ is connected.
Successor-invariant FO

By a much more elaborate construction, one can also show:

Theorem (Rossman, LICS'03) On the class of all finite structures, successor-invariant FO is strictly more expressive than FO.

$FO+MOD_2$: the extension of FO by modulo 2 counting guantifiers $\exists^{0 \mod 2} x \psi(x)$: the number of nodes x satisfying $\psi(x)$ is congruent 0 modulo 2.

Theorem (Niemistö):

There is an order-invariant FO+MOD₂(*E*)-sentence $\varphi_{even cycles}$ that is satisfied by a finite directed graph $G = (V^G, E^G)$ iff

- (1) G is a disjoint union of directed cycles, and
- (2) the number of even-length cycles is even.

FO+MOD₂ : the extension of FO by modulo 2 counting quantifiers $\exists^{0 \mod 2} x \ \psi(x)$: the number of nodes *x* satisfying $\psi(x)$ is congruent 0 modulo 2.

Theorem (Niemistö):

There is an order-invariant FO+MOD₂(*E*)-sentence $\varphi_{even cycles}$ that is satisfied by a finite directed graph $G = (V^G, E^G)$ iff

(1) G is a disjoint union of directed cycles, and

(2) the number of even-length cycles is even.

- (1) can be expressed in FO: "every node has in- and out-degree 1"
- Every *G* satisfying (1) is the cycle decomposition of a permutation π .

FO+MOD₂ : the extension of FO by modulo 2 counting quantifiers $\exists^{0 \mod 2} x \ \psi(x)$: the number of nodes *x* satisfying $\psi(x)$ is congruent 0 modulo 2.

Theorem (Niemistö):

There is an order-invariant FO+MOD₂(*E*)-sentence $\varphi_{even cycles}$ that is satisfied by a finite directed graph $G = (V^G, E^G)$ iff

(1) G is a disjoint union of directed cycles, and

(2) the number of even-length cycles is even.

- (1) can be expressed in FO: "every node has in- and out-degree 1"
- Every *G* satisfying (1) is the cycle decomposition of a permutation π .
- G has an even number of even-length cycles \iff

$FO+MOD_2$: the extension of FO by modulo 2 counting guantifiers $\exists^{0 \mod 2} x \psi(x)$: the number of nodes x satisfying $\psi(x)$ is congruent 0 modulo 2.

Theorem (Niemistö):

There is an order-invariant FO+MOD₂(*E*)-sentence $\varphi_{even cycles}$ that is satisfied by a finite directed graph $G = (V^G, E^G)$ iff

(1) G is a disjoint union of directed cycles, and

(2) the number of even-length cycles is even.

- (1) can be expressed in FO: "every node has in- and out-degree 1"
- Every G satisfying (1) is the cycle decomposition of a permutation π .
- G has an even number of even-length cycles \iff π is an even permutation, i.e., sgn(π) = 1 \iff

FO+MOD₂ : the extension of FO by modulo 2 counting quantifiers $\exists^{0 \mod 2} x \ \psi(x)$: the number of nodes *x* satisfying $\psi(x)$ is congruent 0 modulo 2.

Theorem (Niemistö):

There is an order-invariant FO+MOD₂(*E*)-sentence $\varphi_{even cycles}$ that is satisfied by a finite directed graph $G = (V^G, E^G)$ iff

(1) G is a disjoint union of directed cycles, and

(2) the number of even-length cycles is even.

- (1) can be expressed in FO: "every node has in- and out-degree 1"
- Every *G* satisfying (1) is the cycle decomposition of a permutation π .
- G has an even number of even-length cycles \iff
 - π is an even permutation, i.e., $sgn(\pi) = 1 \iff$
 - π has an even number of inversions (i, j) such that i < j and $\pi(i) > \pi(j)$.

CMSO : the extension of MSO by modulo counting quantifiers

 $\exists^{r \mod m} x \psi(x)$: the number of nodes x satisfying $\psi(x)$ is congruent r modulo m.

CMSO : the extension of MSO by modulo counting quantifiers

 $\exists^{r \mod m} x \psi(x)$: the number of nodes x satisfying $\psi(x)$ is congruent r modulo m.

Known:

On trees:

Order-invariant MSO = CMSO

(Courcelle 1996, Lapoire 1998)

CMSO : the extension of MSO by modulo counting quantifiers $\exists^{r \mod m} x \ \psi(x)$: the number of nodes *x* satisfying $\psi(x)$ is congruent *r* modulo *m*.

Known:

On trees:

Order-invariant MSO = CMSO

(Courcelle 1996, Lapoire 1998)

On the class of all finite structures:
 Order-invariant MSO > CMSO

(Ganzow, Rubin 2008)

CMSO : the extension of MSO by modulo counting quantifiers $\exists^{r \mod m} x \ \psi(x)$: the number of nodes *x* satisfying $\psi(x)$ is congruent *r* modulo *m*.

Known:

On trees:

Order-invariant MSO = CMSO

(Courcelle 1996, Lapoire 1998)

On the class of all finite structures:
 Order-invariant MSO > CMSO

(Ganzow, Rubin 2008)

The separating example:

 Consider 2-dimensional grids, represented as structures of the form (V^G, Same_Row, Same_Column).

CMSO : the extension of **MSO** by modulo counting quantifiers $\exists^{r \mod m} x \ \psi(x)$: the number of nodes *x* satisfying $\psi(x)$ is congruent *r* modulo *m*.

Known:

On trees:

Order-invariant MSO = CMSO

(Courcelle 1996, Lapoire 1998)

(Ganzow, Rubin 2008)

On the class of all finite structures:
 Order-invariant MSO > CMSO

The separating example:

- Consider 2-dimensional grids, represented as structures of the form (V^G, Same_Row, Same_Column).
- Order-invariant MSO can express that the number of columns is a multiple of the number of rows.

CMSO : the extension of MSO by modulo counting quantifiers $\exists^{r \mod m} x \ \psi(x)$: the number of nodes *x* satisfying $\psi(x)$ is congruent *r* modulo *m*.

Known:

On trees:

Order-invariant MSO = CMSO

(Courcelle 1996, Lapoire 1998)

(Ganzow, Rubin 2008)

On the class of all finite structures:
 Order-invariant MSO > CMSO

The separating example:

- Consider 2-dimensional grids, represented as structures of the form (V^G, Same_Row, Same_Column).
- Order-invariant MSO can express that the number of columns is a multiple of the number of rows.
- CMSO cannot (for showing this, use a variant of EF-games).

NICOLE SCHWEIKARDT

Overview

Introduction

Invariant logics

Undecidability

Expressiveness

Locality Results

Order-invariant logics on strings

Final Remarks

NICOLE SCHWEIKARDT

Neighborhoods

Graph $G = (V^G, E^G)$

Distance dist(u, v): length of shortest path from u to v in undirected version of G.

Shell $S_r(a)$ of nodes at distance exactly *r* from *a*.

Ball $N_r(a)$ of radius r at a in G.

Neighborhoods

Graph $G = (V^G, E^G)$

Distance dist(u, v): length of shortest path from u to v in undirected version of G.

- Shell $S_r(a)$ of nodes at distance exactly *r* from *a*.
- Ball $N_r(a)$ of radius r at a in G.

Neighborhood $\mathcal{N}_r^G(a)$ of radius *r* at *a* in *G* : induced subgraph of *G* on $\mathcal{N}_r(a)$.

LOCALITY

Gaifman-local queries

- For a list $a = a_1, \ldots, a_k$ of nodes, $N_r(a) = N_r(a_1) \cup \cdots \cup N_r(a_k)$.
- The *r*-neighborhood $\mathcal{N}_r^G(a)$ is the induced subgraph of *G* on $N_r(a)$.

Definition: Let *q* be a *k*-ary graph query. Let $f : \mathbb{N} \to \mathbb{N}$. *q* is called f(n)-local if there is an n_0 such that for every $n \ge n_0$ and every graph *G* with $|V^G| = n$, the following is true for all *k*-tuples *a* and *b* of nodes:

 $\text{if} \quad \left(\mathcal{N}^G_{f(n)}(a),a\right) \;\cong\; \left(\mathcal{N}^G_{f(n)}(b),b\right) \quad \text{then} \quad a\in q(G) \iff b\in q(G).$

Gaifman-locality of FO

Theorem:

For every graph query q that is FO-definable, there is a constant c such that q is c-local.
(Hella Libkin Nurmanan 1000a: Caifman '82)

(Hella, Libkin, Nurmonen 1990s; Gaifman '82)

Gaifman-locality of FO

Theorem:

- For every graph query q that is FO-definable, there is a constant c such that q is c-local. (Hella, Libkin, Nurmonen 1990s; Gaifman '82)
- For every graph query q that is FO-definable on ordered graphs (i.e., q is definable in order-invariant FO), there is a constant c such that q is c-local.

(Grohe, Schwentick '98)

Gaifman-locality of FO

Theorem:

- For every graph query q that is FO-definable, there is a constant c such that q is c-local. (Hella, Libkin, Nurmonen 1990s; Gaifman '82)
- For every graph query q that is FO-definable on ordered graphs (i.e., q is definable in order-invariant FO), there is a constant c such that q is c-local.

(Grohe, Schwentick '98)

For every graph query q that is FO-definable on graphs with arbitrary numerical predicates (i.e., q is definable in Arb-invariant FO), there is a constant c such that q is (log n)^c-local.
(Anderson user Mallachaelt, C. Sanaufin it d

(Anderson, van Melkebeek, S., Segoufin '11)

Use locality for proving non-expressibility

Example: The reachability query

REACH(G) := { (a_1, a_2) : there is a directed path from a_1 to a_2 in G }

is not $\frac{n}{5}$ -local an thus cannot be expressed in Arb-invariant FO.

Proof: Consider the graph G: $a_1 \ b_1$

 b_2

 a_2

Use locality for proving non-expressibility

Similarly, one obtains that the following queries are not definable in Arb-invariant FO:

- Does node *x* lie on a cycle?
- Does node x belong to a connected component that is acyclic?
- Is node x reachable from a node that belongs to a triangle?
- Do nodes x and y have the same distance to node z?

For every query q expressible by Arb-invariant FO, there is a $c \in \mathbb{N}$ such that q is $(\log n)^c$ -local.

For every query q expressible by Arb-invariant FO, there is a $c \in \mathbb{N}$ such that q is $(\log n)^c$ -local.

Idea: Use known lower bounds in circuit complexity!

For every query q expressible by Arb-invariant FO, there is a $c \in \mathbb{N}$ such that q is $(\log n)^c$ -local.

Idea: Use known lower bounds in circuit complexity!

- Let *q* be expressible by an Arb-invariant FO formula.
- Then, q can be computed by an AC⁰ circuit family C (Immerman '87).

For every query q expressible by Arb-invariant FO, there is a $c \in \mathbb{N}$ such that q is $(\log n)^c$ -local.

Idea: Use known lower bounds in circuit complexity!

- Let *q* be expressible by an Arb-invariant FO formula.
- Then, q can be computed by an AC⁰ circuit family C (Immerman '87).
- Assume that q is not (log n)^c-local (for any c ∈ N), and modify C to obtain a circuit family computing

PARITY := $\{w \in \{0,1\}^* : |w|_1 \text{ is even}\}.$

This contradicts known lower bounds in circuit complexity theory (Håstad'86).

Proof of Gaifman-locality theorem (2/5)

How to compute a graph query q(x) by a circuit family C?

• Represent graph $G = (V^G, E^G)$ by a bitstring $\beta(G)$ corresponding to an adjacency matrix for *G*.

- Represent graph $G = (V^G, E^G)$ by a bitstring $\beta(G)$ corresponding to an adjacency matrix for *G*.
- Represent a node $a \in V^G$ by the bitstring $\beta(a)$ of the form 0*10*, carrying the 1 at position *i* iff node *a* corresponds to the *i*-th row/column of the adjacency matrix.

- Represent graph $G = (V^G, E^G)$ by a bitstring $\beta(G)$ corresponding to an adjacency matrix for *G*.
- Represent a node $a \in V^G$ by the bitstring $\beta(a)$ of the form 0*10*, carrying the 1 at position *i* iff node *a* corresponds to the *i*-th row/column of the adjacency matrix.
- Let *Rep*(*G*, *a*) be the set of all bitstrings β(*G*)β(*a*), corresponding to all adjacency matrices of *G* (i.e., all ways of embedding *V* in {1,..., |*V*|}). Thus, *Rep*(*G*, *a*) is the set of all bitstrings representing (*G*, *a*).

- Represent graph $G = (V^G, E^G)$ by a bitstring $\beta(G)$ corresponding to an adjacency matrix for *G*.
- Represent a node $a \in V^G$ by the bitstring $\beta(a)$ of the form 0*10*, carrying the 1 at position *i* iff node *a* corresponds to the *i*-th row/column of the adjacency matrix.
- Let *Rep*(*G*, *a*) be the set of all bitstrings β(*G*)β(*a*), corresponding to all adjacency matrices of *G* (i.e., all ways of embedding *V* in {1,..., |*V*|}). Thus, *Rep*(*G*, *a*) is the set of all bitstrings representing (*G*, *a*).
- A unary graph query q(x) is computed by a circuit family C = (C_n)_{n∈N} iff the following is true: for all G = (V^G, E^G), a ∈ V^G, γ ∈ Rep(G, a): a ∈ q(G) ⇔ C_{|γ|} accepts γ.

- Represent graph $G = (V^G, E^G)$ by a bitstring $\beta(G)$ corresponding to an adjacency matrix for *G*.
- Represent a node $a \in V^G$ by the bitstring $\beta(a)$ of the form 0^*10^* , carrying the 1 at position *i* iff node *a* corresponds to the *i*-th row/column of the adjacency matrix.
- Let *Rep*(*G*, *a*) be the set of all bitstrings β(*G*)β(*a*), corresponding to all adjacency matrices of *G* (i.e., all ways of embedding *V* in {1,..., |*V*|}). Thus, *Rep*(*G*, *a*) is the set of all bitstrings representing (*G*, *a*).
- A unary graph query q(x) is computed by a circuit family C = (C_n)_{n∈ℕ} iff the following is true: for all G = (V^G, E^G), a ∈ V^G, γ ∈ Rep(G, a): a ∈ q(G) ⇐→ C_{|γ|} accepts γ.
- Known: A unary graph query q(x) is definable in Arb-invariant FO ⇒ it is computed by an AC⁰-circuit family of constant depth and polynomial size. (implicit in Immerman'87)

Let q(x) be a unary graph query expressible in Arb-invariant FO.

Let q(x) be a unary graph query expressible in Arb-invariant FO. Let $C = (C_n)_{n \in \mathbb{N}}$ be an AC⁰-circuit family of constant depth *d* and polynomial size p(n) computing *q*.

Let q(x) be a unary graph query expressible in Arb-invariant FO. Let $C = (C_n)_{n \in \mathbb{N}}$ be an AC⁰-circuit family of constant depth *d* and polynomial size p(n) computing *q*. I.e., for all $G = (V^G, E^G)$, $a \in V^G$, $\gamma \in Rep(G, a)$: $a \in q(G) \iff C_{|\gamma|}$ accepts γ .

Let q(x) be a unary graph query expressible in Arb-invariant FO. Let $C = (C_n)_{n \in \mathbb{N}}$ be an AC⁰-circuit family of constant depth *d* and polynomial size p(n) computing *q*. I.e., for all $G = (V^G, E^G)$, $a \in V^G$, $\gamma \in Rep(G, a)$: $a \in q(G) \iff C_{|\gamma|}$ accepts γ .

For contradiction, assume q(x) is not $(\log n)^c$ -local, for any $c \in \mathbb{N}$.

Let q(x) be a unary graph query expressible in Arb-invariant FO. Let $C = (C_n)_{n \in \mathbb{N}}$ be an AC⁰-circuit family of constant depth *d* and polynomial size p(n) computing *q*. I.e., for all $G = (V^G, E^G)$, $a \in V^G$, $\gamma \in Rep(G, a)$: $a \in q(G) \iff C_{|\gamma|}$ accepts γ .

For contradiction, assume q(x) is not $(\log n)^c$ -local, for any $c \in \mathbb{N}$. Thus: For all c, n_0 there exist $n > n_0$, $G = (V^G, E^G)$ with n nodes, $a, b \in V^G$ such that

Let q(x) be a unary graph query expressible in Arb-invariant FO. Let $C = (C_n)_{n \in \mathbb{N}}$ be an AC⁰-circuit family of constant depth *d* and polynomial size p(n) computing *q*. I.e., for all $G = (V^G, E^G)$, $a \in V^G$, $\gamma \in Rep(G, a)$: $a \in q(G) \iff C_{|\gamma|}$ accepts γ .

For contradiction, assume q(x) is not $(\log n)^c$ -local, for any $c \in \mathbb{N}$. Thus: For all c, n_0 there exist $n > n_0$, $G = (V^G, E^G)$ with n nodes, $a, b \in V^G$ such that for $m := (\log n)^c$, $(\mathcal{N}_m^G(a), a) \cong (\mathcal{N}_m^G(b), b)$, but $a \in q(G)$ and $b \notin q(G)$.
Let q(x) be a unary graph query expressible in Arb-invariant FO. Let $C = (C_n)_{n \in \mathbb{N}}$ be an AC⁰-circuit family of constant depth *d* and polynomial size p(n) computing *q*. I.e., for all $G = (V^G, E^G)$, $a \in V^G$, $\gamma \in Rep(G, a)$: $a \in q(G) \iff C_{|\gamma|}$ accepts γ .

For contradiction, assume q(x) is not $(\log n)^c$ -local, for any $c \in \mathbb{N}$. Thus: For all c, n_0 there exist $n > n_0$, $G = (V^G, E^G)$ with n nodes, $a, b \in V^G$ such that for $m := (\log n)^c$, $(\mathcal{N}_m^G(a), a) \cong (\mathcal{N}_m^G(b), b)$, but $a \in q(G)$ and $b \notin q(G)$. For simplicity, consider the special case that dist(a, b) > 2m.

Let q(x) be a unary graph query expressible in Arb-invariant FO. Let $C = (C_n)_{n \in \mathbb{N}}$ be an AC⁰-circuit family of constant depth *d* and polynomial size p(n) computing *q*. I.e., for all $G = (V^G, E^G)$, $a \in V^G$, $\gamma \in Rep(G, a)$: $a \in q(G) \iff C_{|\gamma|}$ accepts γ .

For contradiction, assume q(x) is not $(\log n)^c$ -local, for any $c \in \mathbb{N}$. Thus: For all c, n_0 there exist $n > n_0$, $G = (V^G, E^G)$ with n nodes, $a, b \in V^G$ such that for $m := (\log n)^c$, $(\mathcal{N}_m^G(a), a) \cong (\mathcal{N}_m^G(b), b)$, but $a \in q(G)$ and $b \notin q(G)$. For simplicity, consider the special case that dist(a, b) > 2m.

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ s.t. $(\mathcal{N}_m^G(a), a) \cong (\mathcal{N}_m^G(b), b)$, dist(a, b) > 2m. Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b). Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits.

Let q(x) be a unary graph query expressible in Arb-invariant FO. Let $C = (C_n)_{n \in \mathbb{N}}$ be an AC⁰-circuit family of constant depth *d* and polynomial size p(n) computing *q*. I.e., for all $G = (V^G, E^G)$, $a \in V^G$, $\gamma \in Rep(G, a)$: $a \in q(G) \iff C_{|\gamma|}$ accepts γ .

For contradiction, assume q(x) is not $(\log n)^c$ -local, for any $c \in \mathbb{N}$. Thus: For all c, n_0 there exist $n > n_0$, $G = (V^G, E^G)$ with n nodes, $a, b \in V^G$ such that for $m := (\log n)^c$, $(\mathcal{N}_m^G(a), a) \cong (\mathcal{N}_m^G(b), b)$, but $a \in q(G)$ and $b \notin q(G)$. For simplicity, consider the special case that dist(a, b) > 2m.

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ s.t. $(\mathcal{N}_m^G(a), a) \cong (\mathcal{N}_m^G(b), b)$, dist(a, b) > 2m. Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b). Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits.

Theorem:

(Håstad '86)

There exist ℓ , $m_0 > 0$ such that for all $m \ge m_0$, no circuit of depth d and size $2^{\ell \cdot m^{1/(d-1)}}$ computes parity on m bits.

Contradiction for c = 2d, since $2^{\ell \cdot m^{1/(d-1)}} > 2^{\ell \cdot (\log n)^2} = n^{\ell \log n} > p(n)$.

NICOLE SCHWEIKARDT

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ s.t. $(\mathcal{N}_m^G(a), a) \cong (\mathcal{N}_m^G(b), b)$, dist(a, b) > 2m. Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b). Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits.

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ s.t. $(\mathcal{N}_m^G(a), a) \cong (\mathcal{N}_m^G(b), b)$, dist(a, b) > 2m. Let circuit *C* accept all strings in Rep(G, a) and reject all strings in Rep(G, b). Then there is a circuit \tilde{C} of the same size & depth as *C* computing parity on *m* bits.

Proof:

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ s.t. $(\mathcal{N}_m^G(a), a) \cong (\mathcal{N}_m^G(b), b)$, dist(a, b) > 2m. Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b). Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits.

Proof:

Consider $w \in \{0, 1\}^m$.

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ s.t. $(\mathcal{N}_m^G(a), a) \cong (\mathcal{N}_m^G(b), b)$, dist(a, b) > 2m. Let circuit *C* accept all strings in Rep(G, a) and reject all strings in Rep(G, b). Then there is a circuit \tilde{C} of the same size & depth as *C* computing parity on *m* bits.

Proof:

Consider $w \in \{0,1\}^m$.

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ s.t. $(\mathcal{N}_m^G(a), a) \cong (\mathcal{N}_m^G(b), b)$, dist(a, b) > 2m. Let circuit *C* accept all strings in Rep(G, a) and reject all strings in Rep(G, b). Then there is a circuit \tilde{C} of the same size & depth as *C* computing parity on *m* bits.

Proof:

Consider $w \in \{0,1\}^m$.

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ s.t. $(\mathcal{N}_m^G(a), a) \cong (\mathcal{N}_m^G(b), b)$, dist(a, b) > 2m. Let circuit *C* accept all strings in Rep(G, a) and reject all strings in Rep(G, b). Then there is a circuit \tilde{C} of the same size & depth as *C* computing parity on *m* bits.

Proof:

Consider $w \in \{0, 1\}^m$. For $i \in \{0, 1, ..., m - 1\}$ with $w_i = 1$:

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ s.t. $(\mathcal{N}_m^G(a), a) \cong (\mathcal{N}_m^G(b), b)$, dist(a, b) > 2m. Let circuit *C* accept all strings in Rep(G, a) and reject all strings in Rep(G, b). Then there is a circuit \tilde{C} of the same size & depth as *C* computing parity on *m* bits.

Proof:

Consider $w \in \{0, 1\}^m$. For $i \in \{0, 1, ..., m - 1\}$ with $w_i = 1$:

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ s.t. $(\mathcal{N}_m^G(a), a) \cong (\mathcal{N}_m^G(b), b)$, dist(a, b) > 2m. Let circuit *C* accept all strings in Rep(G, a) and reject all strings in Rep(G, b). Then there is a circuit \tilde{C} of the same size & depth as *C* computing parity on *m* bits.

Proof:

Consider $w \in \{0, 1\}^m$.

For
$$i \in \{0, 1, ..., m - 1\}$$
 with $w_i = 1$:

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ s.t. $(\mathcal{N}_m^G(a), a) \cong (\mathcal{N}_m^G(b), b)$, dist(a, b) > 2m. Let circuit *C* accept all strings in Rep(G, a) and reject all strings in Rep(G, b). Then there is a circuit \tilde{C} of the same size & depth as *C* computing parity on *m* bits.

Proof:

Consider $w \in \{0, 1\}^m$.

For
$$i \in \{0, 1, ..., m - 1\}$$
 with $w_i = 1$:

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ s.t. $(\mathcal{N}_m^G(a), a) \cong (\mathcal{N}_m^G(b), b)$, dist(a, b) > 2m. Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b). Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits.

Proof:

Consider $w \in \{0,1\}^m$.

For
$$i \in \{0, 1, ..., m - 1\}$$
 with $w_i = 1$:

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ s.t. $(\mathcal{N}_m^G(a), a) \cong (\mathcal{N}_m^G(b), b)$, dist(a, b) > 2m. Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b). Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits.

Proof:

Consider $w \in \{0, 1\}^m$.

For $i \in \{0, 1, ..., m-1\}$ with $w_i = 1$:

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ s.t. $(\mathcal{N}_m^G(a), a) \cong (\mathcal{N}_m^G(b), b)$, dist(a, b) > 2m. Let circuit *C* accept all strings in Rep(G, a) and reject all strings in Rep(G, b). Then there is a circuit \tilde{C} of the same size & depth as *C* computing parity on *m* bits.

Proof:

Consider $w \in \{0, 1\}^m$.

For $i \in \{0, 1, ..., m-1\}$ with $w_i = 1$:

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ s.t. $(\mathcal{N}_m^G(a), a) \cong (\mathcal{N}_m^G(b), b)$, dist(a, b) > 2m. Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b). Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:

Consider $w \in \{0, 1\}^m$.

For $i \in \{0, 1, \dots, m-1\}$ with $w_i = 1$:

Swap the endpoints of the edges leaving $N_i(a)$ with the corresponding endpoints of the edges leaving $N_i(b)$.

The resulting graph $G_w \cong G$.

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ s.t. $(\mathcal{N}_m^G(a), a) \cong (\mathcal{N}_m^G(b), b)$, dist(a, b) > 2m. Let circuit *C* accept all strings in Rep(G, a) and reject all strings in Rep(G, b). Then there is a circuit \tilde{C} of the same size & depth as *C* computing parity on *m* bits.

Proof:

Consider $w \in \{0,1\}^m$.

For $i \in \{0, 1, ..., m-1\}$ with $w_i = 1$:

Swap the endpoints of the edges leaving $N_i(a)$ with the corresponding endpoints of the edges leaving $N_i(b)$.

The resulting graph $G_w \cong G$.

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ s.t. $(\mathcal{N}_m^G(a), a) \cong (\mathcal{N}_m^G(b), b)$, dist(a, b) > 2m. Let circuit *C* accept all strings in Rep(G, a) and reject all strings in Rep(G, b). Then there is a circuit \tilde{C} of the same size & depth as *C* computing parity on *m* bits.

Proof:

Consider $w \in \{0, 1\}^m$.

For
$$i \in \{0, 1, ..., m-1\}$$
 with $w_i = 1$:

Swap the endpoints of the edges leaving $N_i(a)$ with the corresponding endpoints of the edges leaving $N_i(b)$.

The resulting graph $G_w \cong G$.

$$(G_w, a) \cong egin{cases} (G, a), & ext{if } |w|_1 ext{ even} \ (G, b), & ext{if } |w|_1 ext{ odd} \end{cases}$$

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ s.t. $(\mathcal{N}_m^G(a), a) \cong (\mathcal{N}_m^G(b), b)$, dist(a, b) > 2m. Let circuit *C* accept all strings in Rep(G, a) and reject all strings in Rep(G, b). Then there is a circuit \tilde{C} of the same size & depth as *C* computing parity on *m* bits.

Proof:

Consider $w \in \{0,1\}^m$.

For $i \in \{0, 1, ..., m-1\}$ with $w_i = 1$:

Swap the endpoints of the edges leaving $N_i(a)$ with the corresponding endpoints of the edges leaving $N_i(b)$.

The resulting graph $G_w \cong G$.

$$(G_w, a) \cong egin{cases} (G, a), & ext{if } |w|_1 ext{ even} \ (G, b), & ext{if } |w|_1 ext{ odd} \end{cases}$$

Circuit *C* distinguishes these cases.

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ s.t. $(\mathcal{N}_m^G(a), a) \cong (\mathcal{N}_m^G(b), b)$, dist(a, b) > 2m. Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b). Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits.

How to obtain \tilde{C} from C?

- Consider *C* for a fixed input string $\gamma \in \operatorname{Rep}(G, a)$.
- Fix all input bits (as in γ) that do *not* correspond to potential edges between the shells S_i and S_{i+1}, for i < m.</p>

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ s.t. $(\mathcal{N}_m^G(a), a) \cong (\mathcal{N}_m^G(b), b)$, dist(a, b) > 2m. Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b). Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits.

How to obtain \tilde{C} from C?

- Consider *C* for a fixed input string $\gamma \in \operatorname{Rep}(G, a)$.
- Fix all input bits (as in γ) that do *not* correspond to potential edges between the shells S_i and S_{i+1}, for i < m.</p>
- ► For all i < m and all $u \in S_i(a)$, $v \in S_{i+1}(a)$ consider the potential edges $e = \{u, v\}, e' = \{\pi(u), \pi(v)\}, \tilde{e} = \{u, \pi(v)\}, \tilde{e}' = \{\pi(u), v\}.$

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ s.t. $(\mathcal{N}_m^G(a), a) \cong (\mathcal{N}_m^G(b), b)$, dist(a, b) > 2m. Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b). Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits.

How to obtain \tilde{C} from C?

- Consider *C* for a fixed input string $\gamma \in \operatorname{Rep}(G, a)$.
- Fix all input bits (as in γ) that do *not* correspond to potential edges between the shells S_i and S_{i+1}, for i < m.</p>
- ► For all i < m and all $u \in S_i(a)$, $v \in S_{i+1}(a)$ consider the potential edges $e = \{u, v\}$, $e' = \{\pi(u), \pi(v)\}$, $\tilde{e} = \{u, \pi(v)\}$, $\tilde{e}' = \{\pi(u), v\}$.
- Replace input gates of C as follows:

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ s.t. $(\mathcal{N}_m^G(a), a) \cong (\mathcal{N}_m^G(b), b)$, dist(a, b) > 2m. Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b). Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits.

How to obtain \tilde{C} from C?

- Consider *C* for a fixed input string $\gamma \in \operatorname{Rep}(G, a)$.
- Fix all input bits (as in γ) that do *not* correspond to potential edges between the shells S_i and S_{i+1}, for i < m.</p>
- ► For all i < m and all $u \in S_i(a)$, $v \in S_{i+1}(a)$ consider the potential edges $e = \{u, v\}$, $e' = \{\pi(u), \pi(v)\}$, $\tilde{e} = \{u, \pi(v)\}$, $\tilde{e}' = \{\pi(u), v\}$.
- Replace input gates of C as follows:

е	by	$(e \land \neg w_i)$	e'	by	$(e' \land \neg w_i)$
ẽ	by	$(e \wedge w_i)$	\tilde{e}'	by	$(e' \land w_i)$

This yields a circuit C̃ of the same size and depth as C which, on input w ∈ {0, 1}^m does the same as C on input (G_w, a). Thus, C̃ accepts iff |w|₁ is even.

NICOLE SCHWEIKARDT

A TUTORIAL ON ORDER-INVARIANT LOGICS

Theorem:

(Anderson, Melkebeek, S., Segoufin '11)

(a) For every query q expressible by Arb-invariant FO there is a $c \in \mathbb{N}$ such that q is $(\log n)^c$ -local.

Theorem:

(Anderson, Melkebeek, S., Segoufin '11)

- (a) For every query q expressible by Arb-invariant FO there is a $c \in \mathbb{N}$ such that q is $(\log n)^c$ -local.
- (b) For every d ∈ N there is a (+, ×)-invariant FO query q_d(x) that is not (log n)^d-local.

Theorem:

(Anderson, Melkebeek, S., Segoufin '11)

- (a) For every query q expressible by Arb-invariant FO there is a c ∈ N such that q is (log n)^c-local.
- (b) For every d ∈ N there is a (+, ×)-invariant FO query q_d(x) that is not (log n)^d-local.

The query $q_d(x)$ states:

(1) The graph has at most $(\log n)^{d+1}$ non-isolated vertices.

(2) Node x is reachable from a node that belongs to a triangle.

```
Note: This query is not (\log n)^d-local.
```

Theorem:

(Anderson, Melkebeek, S., Segoufin '11)

- (a) For every query q expressible by Arb-invariant FO there is a c ∈ N such that q is (log n)^c-local.
- (b) For every d ∈ N there is a (+, ×)-invariant FO query q_d(x) that is not (log n)^d-local.

The query $q_d(x)$ states:

(1) The graph has at most $(\log n)^{d+1}$ non-isolated vertices.

(Use the polylog-counting capability of $FO(+, \times)$)

(2) Node *x* is reachable from a node that belongs to a triangle.

```
Note: This query is not (\log n)^d-local.
```

NICOLE SCHWEIKARDT

Theorem:

(Anderson, Melkebeek, S., Segoufin '11)

- (a) For every query q expressible by Arb-invariant FO there is a c ∈ N such that q is (log n)^c-local.
- (b) For every d ∈ N there is a (+, ×)-invariant FO query q_d(x) that is not (log n)^d-local.

The query $q_d(x)$ states:

(1) The graph has at most $(\log n)^{d+1}$ non-isolated vertices.

(Use the polylog-counting capability of $FO(+, \times)$)

(2) Node x is reachable from a node that belongs to a triangle.

(Show that in graphs satisfying (1), reachability by paths of length $(\log n)^{d+1}$ can be expressed in $(+, \times)$ -invariant FO)

Note: This query is not $(\log n)^d$ -local.

Goal: Show that in graphs with $\leq (\log n)^c$ non-isolated vertices, reachability by paths of length $(\log n)^c$ can be expressed in $(+, \times)$ -invariant FO.

Goal: Show that in graphs with $\leq (\log n)^c$ non-isolated vertices, reachability by paths of length $(\log n)^c$ can be expressed in $(+, \times)$ -invariant FO.

Lemma: (Durand, Lautemann, More '07) For every $c \in \mathbb{N}$ there is a FO(<, +, ×, S)-formula bij_c(x, y) such that for all $n \in \mathbb{N}$, all $S \subseteq [n] := \{0, ..., n-1\}$, all a, i < n we have $([n], <, +, \times, S) \models bij_c(a, i) \iff |S| < (\log n)^c$ and a is the i-th smallest element of S.

Using this, identify the non-isolated vertices with numbers < (log n)^c and represent them by bitstrings of length c log log n.

Goal: Show that in graphs with $\leq (\log n)^c$ non-isolated vertices, reachability by paths of length $(\log n)^c$ can be expressed in $(+, \times)$ -invariant FO.

Lemma: (Durand, Lautemann, More '07) For every $c \in \mathbb{N}$ there is a FO(<, +, ×, S)-formula bij_c(x, y) such that for all $n \in \mathbb{N}$, all $S \subseteq [n] := \{0, ..., n-1\}$, all a, i < n we have $([n], <, +, ×, S) \models bij_c(a, i) \iff |S| < (\log n)^c$ and a is the i-th smallest element of S.

- ► Using this, identify the non-isolated vertices with numbers < (log n)^c and represent them by bitstrings of length c log log n.
- Identify an arbitrary vertex of G with a number < n, whose binary representation encodes a sequence of ℓ(n) := log n / clog log n non-isolated vertices.</p>
- Use this to express that there is a path of length $\ell(n)$ from node x to node y.

Goal: Show that in graphs with $\leq (\log n)^c$ non-isolated vertices, reachability by paths of length $(\log n)^c$ can be expressed in $(+, \times)$ -invariant FO.

Lemma: (Durand, Lautemann, More '07) For every $c \in \mathbb{N}$ there is a FO(<, +, ×, S)-formula bij_c(x, y) such that for all $n \in \mathbb{N}$, all $S \subseteq [n] := \{0, ..., n-1\}$, all a, i < n we have $([n], <, +, ×, S) \models bij_c(a, i) \iff |S| < (\log n)^c$ and a is the *i*-th smallest element of S.

- ► Using this, identify the non-isolated vertices with numbers < (log n)^c and represent them by bitstrings of length c log log n.
- Identify an arbitrary vertex of G with a number < n, whose binary representation encodes a sequence of ℓ(n) := log n / clog log n non-isolated vertices.</p>
- Use this to express that there is a path of length l(n) from node x to node y.
- ▶ Iterate this for c+1 times to express that there is a path of length $\ell(n)^{c+1} \ge (\log n)^c$ from x to y.

NICOLE SCHWEIKARDT

EXPRESSIVENES

Locality of Arb-invariant FO+MOD_p

In a similar way, we can also prove:

Theorem:

(Harwath, S., '13)

Let p be a prime power and let $k \in \mathbb{N}$ be coprime with p.

For every k-ary query q expressible in Arb-invariant FO+MOD_p, there is a $c \in \mathbb{N}$ such that q is $(\log n)^c$ -shift-local w.r.t. k.

Locality of Arb-invariant FO+MOD_p

In a similar way, we can also prove:

Theorem:

(Harwath, S., '13)

Let p be a prime power and let $k \in \mathbb{N}$ be coprime with p.

For every k-ary query q expressible in Arb-invariant FO+MOD_p, there is a $c \in \mathbb{N}$ such that q is $(\log n)^c$ -shift-local w.r.t. k.

Definition: Let *q* be a *k*-ary graph query. Let $f : \mathbb{N} \to \mathbb{N}$.

q is called f(n)-shift-local w.r.t. *k* if there is an n_0 such that for every $n \ge n_0$ and every graph *G* with $|V^G| = n$, the following is true for all *k*-tuples (a_0, \ldots, a_{k-1}) of nodes:

if the f(n)-neighborhoods of the a_i are disjoint and isomorphic,

then $(a_0, a_1, \ldots, a_{k-1}) \in q(G) \iff (a_1, \ldots, a_{k-1}, a_0) \in q(G).$

EXPRESSIVENES

Locality of Arb-invariant FO+MOD_p

In a similar way, we can also prove:

Theorem:

```
(Harwath, S., '13)
```

Let p be a prime power and let $k \in \mathbb{N}$ be coprime with p.

For every k-ary query q expressible in Arb-invariant FO+MOD_p, there is a $c \in \mathbb{N}$ such that q is $(\log n)^c$ -shift-local w.r.t. k.

Definition: Let *q* be a *k*-ary graph query. Let $f : \mathbb{N} \to \mathbb{N}$.

q is called f(n)-shift-local w.r.t. *k* if there is an n_0 such that for every $n \ge n_0$ and every graph *G* with $|V^G| = n$, the following is true for all *k*-tuples (a_0, \ldots, a_{k-1}) of nodes:

if the f(n)-neighborhoods of the a_i are disjoint and isomorphic,

then $(a_0, a_1, \ldots, a_{k-1}) \in q(G) \iff (a_1, \ldots, a_{k-1}, a_0) \in q(G).$

Proof: Use the Razborov-Smolensky result for $AC^{0}[p]$ -circuits.

Expressivenes

Locality of Arb-invariant FO+MOD_p

In a similar way, we can also prove:

Theorem:

(Harwath, S., '13)

Let p be a prime power and let $k \in \mathbb{N}$ be coprime with p.

For every k-ary query q expressible in Arb-invariant FO+MOD_p, there is a $c \in \mathbb{N}$ such that q is $(\log n)^c$ -shift-local w.r.t. k.

Definition: Let *q* be a *k*-ary graph query. Let $f : \mathbb{N} \to \mathbb{N}$.

q is called f(n)-shift-local w.r.t. *k* if there is an n_0 such that for every $n \ge n_0$ and every graph *G* with $|V^G| = n$, the following is true for all *k*-tuples (a_0, \ldots, a_{k-1}) of nodes:

if the f(n)-neighborhoods of the a_i are disjoint and isomorphic,

then $(a_0, a_1, \ldots, a_{k-1}) \in q(G) \iff (a_1, \ldots, a_{k-1}, a_0) \in q(G).$

Proof: Use the Razborov-Smolensky result for AC⁰[*p*]-circuits.

Corollary: Easy proof that reachability is not definable in Arb-invariant $FO+MOD_{\rho}$, for prime power ρ .

NICOLE SCHWEIKARDT
STRINGS FINAL F

Introduction

Invariant logics

Undecidability

Expressiveness

Locality Results

Order-invariant logics on strings

Final Remarks

NICOLE SCHWEIKARDT

(labeled) chain-graphsthis chain-graph represents the string rbrg.

Edges correspond to the successor relation "*succ*" on the positions of the string. Write < -inv-FO(succ) for order-invariant FO on these graphs.

(labeled) chain-graphsthis chain-graph represents the string rbrg.

Edges correspond to the successor relation "*succ*" on the positions of the string. Write < -inv-FO(succ) for order-invariant FO on these graphs. Write +-inv-FO(succ) for addition-invariant FO on these graphs.

(labeled) chain-graphsthis chain-graph represents the string rbrg.

Edges correspond to the successor relation "*succ*" on the positions of the string. Write < -inv-FO(succ) for order-invariant FO on these graphs. Write +-inv-FO(succ) for addition-invariant FO on these graphs.

transitive closure of (labeled) chain-graphs

Edges correspond to the linear order "<" on the positions of the string. Write +-inv-FO(<) for addition-invariant FO on these graphs.

(labeled) chain-graphsthis chain-graph represents the string rbrg.

Edges correspond to the successor relation "*succ*" on the positions of the string. Write < -inv-FO(succ) for order-invariant FO on these graphs. Write +-inv-FO(succ) for addition-invariant FO on these graphs.

transitive closure of (labeled) chain-graphs

Edges correspond to the linear order "<" on the positions of the string. Write +-inv-FO(<) for addition-invariant FO on these graphs. Note that on these graphs, < -inv-FO(<) is the same as FO(<).

LOCALITY

STRINGS FI

FINAL REMARKS

Known results

- FO(*succ*) = locally threshold testable languages
 - FO(<) = star-free regular languages
- MSO(<) = regular languages
- MSO(<) = MSO(succ) = MLFP(<) = MLFP(succ)

(Thomas) (McNaughton, Papert) (Büchi, Elgot, Trakhtenbrot)

LOCALITY

STRINGS FIN

FINAL REMARKS

Known results

FO(succ) = locally threshold testable languages(Thomas)FO(<) = star-free regular languages(McNaughton, Papert)MSO(<) = regular languages(Büchi, Elgot, Trakhtenbrot)MSO(<) = MSO(succ) = MLFP(<) = MLFP(succ)(Benedikt, Segoufin, 2005)<-inv-FO(succ) = FO(succ)(Benedikt, Segoufin, 2005) $+-inv-MLFP(succ) \supseteq DLIN$ (S., 2004)+-inv-MSO(succ) = the linear time hierarchy(More & Olive 1997, S. 2004)

LOCALITY

STRINGS FIN

FINAL REMARKS

Known results

 $\mathsf{FO}(<) \ = \ <\text{-inv-FO}(<) \ \varsubsetneq \ +\text{-inv-FO}(<) \ \subsetneq \ (+,\times)\text{-inv-FO}(<) \ \subseteq \ \mathsf{uniform} \ \mathsf{AC}^{\mathsf{0}}.$

LOCALITY

STRINGS FINAL

Known results

```
FO(succ) = locally threshold testable languages(Thomas)FO(<) = star-free regular languages(McNaughton, Papert)MSO(<) = regular languages(Büchi, Elgot, Trakhtenbrot)MSO(<) = MSO(succ) = MLFP(<) = MLFP(succ)</td>(Benedikt, Segoufin, 2005)<-inv-FO(succ) = FO(succ)(Benedikt, Segoufin, 2005)+-inv-MLFP(succ) \supseteq DLIN(S., 2004)+-inv-MSO(succ) = the linear time hierarchy(More & Olive 1997, S. 2004)
```

```
\mathsf{FO}(<) \ = \ <\text{-inv-FO}(<) \ \subsetneq \ +\text{-inv-FO}(<) \ \subsetneq \ (+,\times)\text{-inv-FO}(<) \ \subseteq \ \text{uniform AC}^{0}.
```

The following problem is undecidable:

(Benedikt, Segoufin, 2005)

ORDER-INVARIANCE ON FINITE LABELED CHAIN-GRAPHS:

Input: a FO($<, E, C_1, \ldots, C_\ell$)-sentence φ

Question: Is φ order-invariant on all finite labeled chain-graphs?

NICOLE SCHWEIKARDT

LOCALITY

STRINGS F

FINAL REMARKS

Known results

FO(<i>succ</i>) = locally threshold testable languages FO(<) = star-free regular languages MSO(<) = regular languages MSO(<) = MSO(<i>succ</i>) = MLFP(<) = MLFP(<i>succ</i>)	(Thomas) (McNaughton, Papert) (Büchi, Elgot, Trakhtenbrot)
<-inv-FO(<i>succ</i>) = FO(<i>succ</i>)	(Benedikt, Segoufin, 2005)
+-inv-MLFP(<i>succ</i>) \supseteq DLIN	(S., 2004)
+-inv-MSO(<i>succ</i>) = the linear time hierarchy	(More & Olive 1997, S. 2004)

 $\mathsf{FO}(<) \ = \ <\text{-inv-FO}(<) \ \subsetneq \ +\text{-inv-FO}(<) \ \subsetneq \ (+,\times)\text{-inv-FO}(<) \ \subseteq \ \mathsf{uniform} \ \mathsf{AC}^0.$

The following problem is undecidable:

(Benedikt, Segoufin, 2005)

ORDER-INVARIANCE ON FINITE LABELED CHAIN-GRAPHS:

Input: a FO($<, E, C_1, \ldots, C_\ell$)-sentence φ

Question: Is φ order-invariant on all finite labeled chain-graphs?

NICOLE SCHWEIKARDT

Let L_1 and L_2 be logics.

Goal: Show that L_1 can define exactly the same string-languages as L_2 .

Approach:

STRINGS

The "Algebraic" Approach

Let L_1 and L_2 be logics.

Goal: Show that L_1 can define exactly the same string-languages as L_2 .

Approach:

(0) Identify a suitable set of operations \mathcal{O} on strings.

Let L_1 and L_2 be logics.

Goal: Show that L_1 can define exactly the same string-languages as L_2 .

Approach:

- (0) Identify a suitable set of operations \mathcal{O} on strings.
- (1) Show that a property *p* of strings is definable in L_1 iff it is closed under every operation $op \in O$.

Let L_1 and L_2 be logics.

Goal: Show that L_1 can define exactly the same string-languages as L_2 .

Approach:

- (0) Identify a suitable set of operations \mathcal{O} on strings.
- (1) Show that a property *p* of strings is definable in L_1 iff it is closed under every operation $op \in \mathcal{O}$. I.e., for every string *s*:

s has property $p \iff op(s)$ has property p.

Let L_1 and L_2 be logics.

Goal: Show that L_1 can define exactly the same string-languages as L_2 .

Approach:

- (0) Identify a suitable set of operations \mathcal{O} on strings.
- (1) Show that a property *p* of strings is definable in L_1 iff it is closed under every operation $op \in \mathcal{O}$. I.e., for every string *s*:

s has property $p \iff op(s)$ has property p.

(2) Show that a property p of strings is closed under every operation op ∈ O iff it is definable in L₂.

An example

Theorem (Benedikt, Segoufin, '09): <-inv-FO(succ) = FO(succ)A string-language is definable in <-inv-FO(succ) iff it is definable in FO(succ).

An example

Theorem (Benedikt, Segoufin, '09): <-inv-FO(succ) = FO(succ)A string-language is definable in <-inv-FO(succ) iff it is definable in FO(succ).

Main ingredients of the proof:

Use a result by Beauquier and Pin (1989) stating that a string-language is definable in FO(succ) iff it is aperiodic and closed under swaps.

An example

Theorem (Benedikt, Segoufin, '09): <-inv-FO(succ) = FO(succ)A string-language is definable in <-inv-FO(succ) iff it is definable in FO(succ).

Main ingredients of the proof:

- Use a result by Beauquier and Pin (1989) stating that a string-language is definable in FO(succ) iff it is aperiodic and closed under swaps.
 - A string language L is aperiodic iff there exists a number ℓ ∈ N such that for all strings u, x, v we have

$$u x^{\ell} v \in L \quad \Longleftrightarrow \quad u x^{\ell+1} v \in L.$$

An example

Theorem (Benedikt, Segoufin, '09): <-inv-FO(succ) = FO(succ)A string-language is definable in <-inv-FO(succ) iff it is definable in FO(succ).

Main ingredients of the proof:

- Use a result by Beauquier and Pin (1989) stating that a string-language is definable in FO(succ) iff it is aperiodic and closed under swaps.
 - A string language L is aperiodic iff there exists a number ℓ ∈ N such that for all strings u, x, v we have

$$u x^{\ell} v \in L \quad \Longleftrightarrow \quad u x^{\ell+1} v \in L.$$

L is closed under swaps iff for all strings u, v, e, x, y, z such that e, f are idempotents (i.e., for all u, v we have uev ∈ L iff ue²v ∈ L), we have

$$u exf y ezf v \in L \iff u ezf y exf v \in L.$$

An example

Theorem (Benedikt, Segoufin, '09): <-inv-FO(succ) = FO(succ)A string-language is definable in <-inv-FO(succ) iff it is definable in FO(succ).

Main ingredients of the proof:

- Use a result by Beauquier and Pin (1989) stating that a string-language is definable in FO(succ) iff it is aperiodic and closed under swaps.
 - A string language L is aperiodic iff there exists a number ℓ ∈ N such that for all strings u, x, v we have

$$u x^{\ell} v \in L \quad \iff \quad u x^{\ell+1} v \in L.$$

L is closed under swaps iff for all strings u, v, e, x, y, z such that e, f are idempotents (i.e., for all u, v we have uev ∈ L iff ue²v ∈ L), we have

$$u exf y ezf v \in L \iff u ezf y exf v \in L.$$

Show that every string-language definable in <-inv-FO(succ) is aperiodic and closed under swaps.</p>

(For this, you can use Ehrenfeucht-Fraïssé games.)

Different situation for FO+MOD₂

Proposition (Harwath, S., '13): $<-inv-FO+MOD_2(succ) \neq FO+MOD_2(succ)$

There exists a string-language *L* which is definable in <-inv-FO+MOD₂(*succ*), but not in FO+MOD₂(*succ*).

Different situation for FO+MOD₂

Proposition (Harwath, S., '13): $<-inv-FO+MOD_2(succ) \neq FO+MOD_2(succ)$

There exists a string-language *L* which is definable in <-inv-FO+MOD₂(*succ*), but not in FO+MOD₂(*succ*).

L looks as follows:

 $\blacktriangleright L = L_1 \cup L_2$

Proposition (Harwath, S., '13): <-inv-FO+MOD₂(succ) \neq FO+MOD₂(succ) There exists a string-language L which is definable in <-inv-FO+MOD₂(succ), but not in FO+MOD₂(succ).

L looks as follows:

- $\blacktriangleright L = L_1 \cup L_2$
- $L_1 = \{ w \in 1^* 20^* 1^* 0^* : |w|_1 \text{ odd } \}$

Proposition (Harwath, S., '13): <-inv-FO+MOD₂(succ) \neq FO+MOD₂(succ) There exists a string-language *L* which is definable in <-inv-FO+MOD₂(succ), but not in FO+MOD₂(succ).

L looks as follows:

- $\blacktriangleright L = L_1 \cup L_2$
- $L_1 = \{ w \in 1^* 20^* 1^* 0^* : |w|_1 \text{ odd } \}$
- $L_2 = \{ w \in 1^* 0^* 1^* 2 0^* : |w|_1 \text{ even } \}$

Proposition (Harwath, S., '13): <-inv-FO+MOD₂(succ) \neq FO+MOD₂(succ) There exists a string-language L which is definable in <-inv-FO+MOD₂(succ), but not in FO+MOD₂(succ).

L looks as follows:

- $\blacktriangleright L = L_1 \cup L_2$
- $\blacktriangleright L_1 = \{ w \in 1^* 20^* 1^* 0^* : |w|_1 \text{ odd } \}$
- $L_2 = \{ w \in 1^* 0^* 1^* 2 0^* : |w|_1 \text{ even } \}$

L is NOT definable in FO+MOD₂(*succ*):

► Use the Hanf-locality of FO+MOD(*succ*)

Proposition (Harwath, S., '13): <-inv-FO+MOD₂(succ) \neq FO+MOD₂(succ) There exists a string-language L which is definable in <-inv-FO+MOD₂(succ), but not in FO+MOD₂(succ).

L looks as follows:

- $\blacktriangleright L = L_1 \cup L_2$
- $\blacktriangleright L_1 = \{ w \in 1^* 20^* 1^* 0^* : |w|_1 \text{ odd } \}$
- $L_2 = \{ w \in 1^* 0^* 1^* 2 0^* : |w|_1 \text{ even } \}$

L is NOT definable in FO+MOD₂(*succ*):

Use the Hanf-locality of FO+MOD(succ)

L is definable in <-inv-FO+MOD₂(*succ*):

By a FO-reduction using Niemistö's <-inv-FO+MOD₂(E)-sentence φ_{even cycles}, discussed at the beginning of this tutorial.

STRINGS

$FO+MOD_2$ < order-invariant $FO+MOD_2$

FO+MOD₂ : the extension of FO by modulo 2 counting quantifiers $\exists^{0 \mod 2} x \ \psi(x)$: the number of nodes *x* satisfying $\psi(x)$ is congruent 0 modulo 2.

Theorem (Niemistö):

There is an order-invariant FO+MOD₂(*E*)-sentence $\varphi_{even cycles}$ that is satisfied by a finite directed graph $G = (V^G, E^G)$ iff

(1) G is a disjoint union of directed cycles, and

(2) the number of even-length cycles is even.

Proof:

- (1) can be expressed in FO: "every node has in- and out-degree 1"
- Every *G* satisfying (1) is the cycle decomposition of a permutation π .
- G has an even number of even-length cycles \iff
 - π is an even permutation, i.e., $sgn(\pi) = 1 \iff$
 - π has an even number of inversions (i, j) such that i < j and $\pi(i) > \pi(j)$.

- $\blacktriangleright L_1 = \{ w \in 1^* 2 0^* 1^* 0^* : |w|_1 \text{ odd } \}$
- $L_2 = \{ w \in 1^* 0^* 1^* 2 0^* : |w|_1 \text{ even } \}$

L is definable in <-inv-FO+MOD₂(*succ*):

By a FO-reduction using Niemistö's <-inv-FO+MOD₂(*E*)-sentence φ_{even cycles}, expressing that the number of even-length cycles is even:

Simulate a disjoint union of cycles by a FO-formula that adds edges

from the unique 2-position to the first position

- $\blacktriangleright L_1 = \{ w \in 1^* 2 0^* 1^* 0^* : |w|_1 \text{ odd } \}$
- $L_2 = \{ w \in 1^* 0^* 1^* 2 0^* : |w|_1 \text{ even } \}$

L is definable in <-inv-FO+MOD₂(*succ*):

By a FO-reduction using Niemistö's <-inv-FO+MOD₂(E)-sentence φ_{even cycles}, expressing that the number of even-length cycles is even:

Simulate a disjoint union of cycles by a FO-formula that adds edges

- from the unique 2-position to the first position
- ▶ from the unique 1 directly left to a 0 to the unique 1 directly right to 0,

- $\blacktriangleright L_1 = \{ w \in 1^* 2 0^* 1^* 0^* : |w|_1 \text{ odd } \}$
- $L_2 = \{ w \in 1^* 0^* 1^* 2 0^* : |w|_1 \text{ even } \}$

L is definable in <-inv-FO+MOD₂(*succ*):

By a FO-reduction using Niemistö's <-inv-FO+MOD₂(E)-sentence φ_{even cycles}, expressing that the number of even-length cycles is even:

Simulate a disjoint union of cycles by a FO-formula that adds edges

- from the unique 2-position to the first position
- ▶ from the unique 1 directly left to a 0 to the unique 1 directly right to 0, and then deletes all 0-positions.

- $\blacktriangleright L_1 = \{ w \in 1^* 2 0^* 1^* 0^* : |w|_1 \text{ odd } \}$
- $L_2 = \{ w \in 1^* 0^* 1^* 2 0^* : |w|_1 \text{ even } \}$

L is definable in <-inv-FO+MOD₂(*succ*):

By a FO-reduction using Niemistö's <-inv-FO+MOD₂(*E*)-sentence φ_{even cycles}, expressing that the number of even-length cycles is even:

Simulate a disjoint union of cycles by a FO-formula that adds edges

- from the unique 2-position to the first position
- ▶ from the unique 1 directly left to a 0 to the unique 1 directly right to 0, and then deletes all 0-positions.

Situation:

- $w \in 1^* 20^* 1^* 0^* \implies 2$ cycles, sum of lenghts: $|w|_1 + 1$
- $w \in 1^* \ 0^* \ 1^* \ 2 \ 0^* \implies 1$ cycle, length: $|w|_1 + 1$

NICOLE SCHWEIKARDT

Theorem:

 A tree-language is definable in <-invariant FO(*succ*) iff it is definable in FO(*succ*). (Benedikt, Segoufin '09) (They use aperiodicity and closure under guarded swaps.)

- A tree-language is definable in <-invariant FO(*succ*) iff it is definable in FO(*succ*). (Benedikt, Segoufin '09) (They use aperiodicity and closure under guarded swaps.)
- A colored finite set is definable in +-invariant FO iff it is definable in FO_{card} (i.e., FO with predicates testing the cardinality of the universe modulo fixed numbers).
 (S., Segoufin '10)

- A tree-language is definable in <-invariant FO(*succ*) iff it is definable in FO(*succ*). (Benedikt, Segoufin '09) (They use aperiodicity and closure under guarded swaps.)
- A colored finite set is definable in +-invariant FO iff it is definable in FO_{card} (i.e., FO with predicates testing the cardinality of the universe modulo fixed numbers).
 (S., Segoufin '10)
- A regular string- or tree-language is definable in +-invariant FO(*succ*) iff it is definable in FO_{card}(*succ*). (S., Segoufin '10 and Harwath, S. '12) (They use closure under transfers and closure under guarded swaps.)

- A tree-language is definable in <-invariant FO(*succ*) iff it is definable in FO(*succ*). (Benedikt, Segoufin '09) (They use aperiodicity and closure under guarded swaps.)
- A colored finite set is definable in +-invariant FO iff it is definable in FO_{card} (i.e., FO with predicates testing the cardinality of the universe modulo fixed numbers).
 (S., Segoufin '10)
- A regular string- or tree-language is definable in +-invariant FO(*succ*) iff it is definable in FO_{card}(*succ*). (S., Segoufin '10 and Harwath, S. '12) (They use closure under transfers and closure under guarded swaps.)
- A regular string-language is definable in Arb-invariant FO(*succ*) iff it is definable in FO_{card}(*succ*). (Anderson, van Melkebeek, S., Segoufin '11)

- A tree-language is definable in <-invariant FO(*succ*) iff it is definable in FO(*succ*). (Benedikt, Segoufin '09) (They use aperiodicity and closure under guarded swaps.)
- A colored finite set is definable in +-invariant FO iff it is definable in FO_{card} (i.e., FO with predicates testing the cardinality of the universe modulo fixed numbers).
 (S., Segoufin '10)
- A regular string- or tree-language is definable in +-invariant FO(*succ*) iff it is definable in FO_{card}(*succ*). (S., Segoufin '10 and Harwath, S. '12) (They use closure under transfers and closure under guarded swaps.)
- A regular string-language is definable in Arb-invariant FO(succ) iff it is definable in FO_{card}(succ). (Anderson, van Melkebeek, S., Segoufin '11)
LOCALITY

Regular languages definable in +-inv-FO(<)

Theorem:

(S., Segoufin, 2010)

STRINGS

Let L be a regular language. The following are equivalent:

- (1) L is definable in +-inv-FO(<).
- (2) L is definable in $FO_{Card}(<)$.

LOCALITY

Regular languages definable in +-inv-FO(<)

Theorem:

(S., Segoufin, 2010)

STRINGS

Let L be a regular language. The following are equivalent:

- (1) L is definable in +-inv-FO(<).
- (2) L is definable in $FO_{Card}(<)$.

Definition: FO_{Card}(<)

FO(<) with length modulo predicates Im(i, q), for all $i, q \in \mathbb{N}$:

$$\forall w \in \Sigma^* : w \models \mathit{Im}(i,q) \iff |w| \equiv i \bmod q.$$

LOCALITY

Regular languages definable in +-inv-FO(<)

Theorem:

(S., Segoufin, 2010)

STRINGS

Let L be a regular language. The following are equivalent:

- (1) L is definable in +-inv-FO(<).
- (2) L is definable in $FO_{Card}(<)$.

(3) L is a finite union of languages of the form $S \cap Z_i^q$, where

• S is star-free regular (i.e., S is FO(<)-definable)

•
$$Z_i^q = \{w : |w| \equiv i \mod q\}.$$

Definition: FO_{Card}(<)

FO(<) with length modulo predicates Im(i, q), for all $i, q \in \mathbb{N}$:

$$\forall w \in \Sigma^* : w \models \mathit{Im}(i,q) \iff |w| \equiv i \bmod q.$$

STRINGS

Regular languages definable in +-inv-FO(<)

Theorem:

(S., Segoufin, 2010)

Let L be a regular language. The following are equivalent:

- (1) L is definable in +-inv-FO(<).
- (2) L is definable in $FO_{Card}(<)$.

(3) L is a finite union of languages of the form $S \cap Z_i^q$, where

• S is star-free regular (i.e., S is FO(<)-definable)

$$\bullet Z_i^q = \{w : |w| \equiv i \mod q\}.$$

(4) L is closed under transfers.

Definition: FO_{Card}(<)

FO(<) with length modulo predicates Im(i, q), for all $i, q \in \mathbb{N}$:

$$\forall \ w \in \Sigma^* \ : \ w \models \mathit{Im}(i,q) \iff |w| \equiv i \ \mathsf{mod} \ q.$$

Regular languages definable in +-inv-FO(<)

Theorem:

(S., Segoufin, 2010)

STRINGS

Let L be a regular language. The following are equivalent:

- (1) L is definable in +-inv-FO(<).
- (2) L is definable in $FO_{Card}(<)$.
- (3) L is a finite union of languages of the form $S \cap Z_i^q$, where
 - S is star-free regular (i.e., S is FO(<)-definable)

$$\bullet Z_i^q = \{w : |w| \equiv i \mod q\}.$$

(4) L is closed under transfers.

Definition: L is closed under transfers $\iff \forall x, y, z \in \Sigma^*$ we have:

f
$$|x| = |z|$$
, then $x^r x y z^r =_L x^r y z z^r$.

Regular languages definable in +-inv-FO(<)

Theorem:

(S., Segoufin, 2010)

STRINGS

Let L be a regular language. The following are equivalent:

- (1) L is definable in +-inv-FO(<).
- (2) L is definable in $FO_{Card}(<)$.
- (3) L is a finite union of languages of the form $S \cap Z_i^q$, where
 - S is star-free regular (i.e., S is FO(<)-definable)

$$\bullet Z_i^q = \{w : |w| \equiv i \mod q\}.$$

i

(4) L is closed under transfers.

Definition: L is closed under transfers $\iff \forall x, y, z \in \Sigma^*$ we have:

f
$$|x| = |z|$$
, then $x^r x y z^r =_L x^r y z z^r$.

syntactic congruence $=_L$: $x =_L y \iff (\forall u, v \in \Sigma^* : uxv \in L \iff uyv \in L)$

Regular languages definable in +-inv-FO(<)

Theorem:

(S., Segoufin, 2010)

STRINGS

Let L be a regular language. The following are equivalent:

- (1) L is definable in +-inv-FO(<).
- (2) L is definable in $FO_{Card}(<)$.
- (3) L is a finite union of languages of the form $S \cap Z_i^q$, where
 - S is star-free regular (i.e., S is FO(<)-definable)

$$\bullet Z_i^q = \{w : |w| \equiv i \mod q\}.$$

(4) L is closed under transfers.

Definition: L is closed under transfers $\iff \forall x, y, z \in \Sigma^*$ we have:

if
$$|x| = |z|$$
, then $x'xyz' =_L x'yzz'$.

syntactic congruence $=_L$: $x =_L y \iff (\forall u, v \in \Sigma^* : uxv \in L \iff uyv \in L)$

 $z \in \Sigma^*$ is called idempotent $\iff zz =_L z$.

LOCALITY

Regular languages definable in +-inv-FO(<)

Theorem:

(S., Segoufin, 2010)

STRINGS

Let L be a regular language. The following are equivalent:

- (1) L is definable in +-inv-FO(<).
- (2) L is definable in $FO_{Card}(<)$.

(3) L is a finite union of languages of the form $S \cap Z_i^q$, where

• S is star-free regular (i.e., S is FO(<)-definable)

$$\bullet Z_i^q = \{w : |w| \equiv i \mod q\}.$$

(4) L is closed under transfers.

Definition: L is closed under transfers $\iff \forall x, y, z \in \Sigma^*$ we have:

f
$$|x| = |z|$$
, then $x^r x y z^r =_L x^r y z z^r$.

syntactic congruence $=_L$: $x =_L y \iff (\forall u, v \in \Sigma^* : uxv \in L \iff uyv \in L)$

 $z \in \Sigma^*$ is called idempotent $\iff zz =_L z$.

i

L regular $\implies \exists r \in \mathbb{N} : \forall x \in \Sigma^*, x^r \text{ is idempotent}$

LOCALITY

Regular languages definable in +-inv-FO(<)

Theorem:

(S., Segoufin, 2010)

STRINGS

Let L be a regular language. The following are equivalent:

- (1) L is definable in +-inv-FO(<).
- (2) L is definable in $FO_{Card}(<)$.
- (3) L is a finite union of languages of the form $S \cap Z_i^q$, where
 - S is star-free regular (i.e., S is FO(<)-definable)

$$\bullet Z_i^q = \{w : |w| \equiv i \mod q\}.$$

(4) L is closed under transfers.

Definition: L is closed under transfers $\iff \forall x, y, z \in \Sigma^*$ we have:

f
$$|x| = |z|$$
, then $x^r x y z^r =_L x^r y z z^r$.

Observation:

Given an automaton for a regular language L, it is decidable whether L is closed under transfers.

NICOLE SCHWEIKARDT

STRINGS

Regular languages definable in +-inv-FO(<)

Theorem:

(S., Segoufin, 2010)

Let L be a regular language. The following are equivalent:

- (1) L is definable in +-inv-FO(<).
- (2) L is definable in $FO_{Card}(<)$.
- (3) L is a finite union of languages of the form $S \cap Z_i^q$, where
 - S is star-free regular (i.e., S is FO(<)-definable)

$$\bullet Z_i^q = \{w : |w| \equiv i \mod q\}.$$

(4) L is closed under transfers.

Proof: (2) ⇐⇒(3): easy.

LOCALITY

Regular languages definable in +-inv-FO(<)

Theorem:

(S., Segoufin, 2010)

STRINGS

Let L be a regular language. The following are equivalent:

- (1) L is definable in +-inv-FO(<).
- (2) L is definable in $FO_{Card}(<)$.

(3) L is a finite union of languages of the form $S \cap Z_i^q$, where

• S is star-free regular (i.e., S is FO(<)-definable)

$$\bullet Z_i^q = \{w : |w| \equiv i \mod q\}.$$

(4) L is closed under transfers.

Proof:

(2)
$$\iff$$
(3): easy.
(2) \implies (1): easy. E.g.: $|w| \equiv 1 \mod 2 \iff w \models \exists x \exists z (x + x = z \land \forall y (y < z \lor y = z))$

Regular languages definable in +-inv-FO(<)

Theorem:

(S., Segoufin, 2010)

STRINGS

Let L be a regular language. The following are equivalent:

- (1) L is definable in +-inv-FO(<).
- (2) L is definable in $FO_{Card}(<)$.

(3) L is a finite union of languages of the form $S \cap Z_i^q$, where

• S is star-free regular (i.e., S is FO(<)-definable)

$$\bullet Z_i^q = \{w : |w| \equiv i \mod q\}.$$

(4) L is closed under transfers.

Proof:

(2)
$$\iff$$
(3): easy.
(2) \implies (1): easy. E.g.: $|w| \equiv 1 \mod 2 \iff$
 $w \models \exists x \exists z (x + x = z \land \forall y (y < z \lor y = z))$
(1) \implies (4): use Ehrenfeucht-Fraïssé games.

LOCALITY

Regular languages definable in +-inv-FO(<)

Theorem:

(S., Segoufin, 2010)

STRINGS

Let L be a regular language. The following are equivalent:

- (1) L is definable in +-inv-FO(<).
- (2) L is definable in $FO_{Card}(<)$.

(3) L is a finite union of languages of the form $S \cap Z_i^q$, where

• S is star-free regular (i.e., S is FO(<)-definable)

$$Z_i^q = \{w : |w| \equiv i \mod q\}.$$

(4) L is closed under transfers.

Proof:

(2) \Longrightarrow (1): easy. E.g.: $|w| \equiv 1 \mod 2 \iff$

$$w \models \exists x \exists z (x + x = z \land \forall y (y < z \lor y = z))$$

(1) \Longrightarrow (4): use Ehrenfeucht-Fraïssé games.

(4) \Longrightarrow (2): use tools from algebraic automata theory.

Proof of (4) \Longrightarrow (2): *L* is regular & closed under transfers. **Goal:** Show that *L* is definable in FO_{Card}(<).

Choose a suitable number q > 0.

For $0 \leq i < q$ let $L_i := L \cap Z_i^q$, where $Z_i^q := \{w \in \Sigma^* : |w| \equiv i \mod q\}$.

Clearly, $L = \bigcup_{0 \le i < q} L_i$.

Proof of (4) \Longrightarrow (2): *L* is regular & closed under transfers. **Goal:** Show that *L* is definable in FO_{Card}(<).

Choose a suitable number q > 0. For $0 \le i < q$ let $L_i := L \cap Z_i^q$, where $Z_i^q := \{w \in \Sigma^* : |w| \equiv i \mod q\}$. Clearly, $L = \bigcup_{0 \le i < q} L_i$. **Goal:** Show that L_i is definable in $FO_{Card}(<)$. Proof of (4) \Longrightarrow (2): *L* is regular & closed under transfers. **Goal:** Show that *L* is definable in FO_{Card}(<).

Choose a suitable number q > 0.

🕨 skip proo

For $0 \leq i < q$ let $L_i := L \cap Z_i^q$, where $Z_i^q := \{w \in \Sigma^* : |w| \equiv i \mod q\}$.

Clearly, $L = \bigcup_{0 \le i < q} L_i$. **Goal:** Show that L_i is definable in FO_{Card}(<).

Approach: Find a regular language M_i such that

• $L_i = M_i \cap Z_i^q$,

• The minimal DFA for *M_i* does not contain any counter.

Then, apply

Theorem:(McNaughton & Papert, 1971)Let M be a regular language. Then, the following are equivalent:(1) The minimal DFA for M does not contain any counter.(2) M is definable in FO(<) (i.e., M is star-free regular).</td>

skip proof

For contradiction, assume that *L* is not closed under transfers. Then:

$$\exists x, y, z, u, v \in \Sigma^* : |x| = |z| \text{ and } ux^r x y z^r v \in L \text{ and } ux^r y z z^r v \notin L$$

Thus:

$$\forall \alpha, \beta \ge 1 : \left(u x^{\alpha r} x y z^{\beta r} v \in L \text{ and } u x^{\alpha r} y z z^{\beta r} v \notin L \right).$$

Situation: Fixed $x, y, z, u, v \in \Sigma^*$ with |x| = |z| such that $\forall \alpha, \beta \ge 1$: $(ux^{\alpha r} x y z^{\beta r} v \in L \text{ and } ux^{\alpha r} y z z^{\beta r} v \notin L).$

Situation: Fixed $x, y, z, u, v \in \Sigma^*$ with |x| = |z| such that $\forall \alpha, \beta \ge 1 : (u x^{\alpha r} x y z^{\beta r} v \in L \text{ and } u x^{\alpha r} y z z^{\beta r} v \notin L).$

Idea: Consider the languages

 $L_{1} := \{ w \in uyv \, x \, (xz \, | \, zz)^{*} : \, |w|_{x}, |w|_{z} \ge r, \ |w|_{x} \equiv 1 \ [r], \ |w|_{z} \equiv 0 \ [r] \},$

 $L_2 := \{ w \in uyv \, x \, (xz \, | \, zz)^* : \, |w|_x, |w|_z \ge r, \ |w|_x \equiv 0 \, [r], \ |w|_z \equiv 1 \, [r] \}.$

Situation: Fixed $x, y, z, u, v \in \Sigma^*$ with |x| = |z| such that $\forall \alpha, \beta \ge 1 : (u x^{\alpha r} x y z^{\beta r} v \in L \text{ and } u x^{\alpha r} y z z^{\beta r} v \notin L).$

Idea: Consider the languages

 $L_{1} := \{ w \in uyv \, x \, (xz \, | \, zz)^{*} : \, |w|_{x}, |w|_{z} \ge r, \ |w|_{x} \equiv 1 \ [r], \ |w|_{z} \equiv 0 \ [r] \},$

 $L_{2} := \{ w \in uyv \, x \, (xz \, | \, zz)^{*} : \, |w|_{x}, |w|_{z} \ge r, \ |w|_{x} \equiv 0 \ [r], \ |w|_{z} \equiv 1 \ [r] \}.$

Situation: Fixed $x, y, z, u, v \in \Sigma^*$ with |x| = |z| such that $\forall \alpha, \beta \ge 1 : (u x^{\alpha r} x y z^{\beta r} v \in L \text{ and } u x^{\alpha r} y z z^{\beta r} v \notin L).$

Idea: Consider the languages

 $L_{1} := \{ w \in uyv \, x \, (xz \, | \, zz)^{*} : \, |w|_{x}, |w|_{z} \ge r, \ |w|_{x} \equiv 1 \ [r], \ |w|_{z} \equiv 0 \ [r] \},$

 $L_{2} := \{ w \in uyv \, x \, (xz \, | \, zz)^{*} : \, |w|_{x}, |w|_{z} \ge r, \ |w|_{x} \equiv 0 \ [r], \ |w|_{z} \equiv 1 \ [r] \}.$

Definition: A formula ψ separates L	1 from L	$_{2} \iff$
$\forall w_1 \in L_1 : w_1 \models \psi$	and	$\forall w_2 \in L_2 : w_2 \not\models \psi.$

Lemma 1: If *L* is definable in +-inv-FO(<), then there is a FO(<, +)-formula that separates L_1 from L_2 .

Situation: Fixed $x, y, z, u, v \in \Sigma^*$ with |x| = |z| such that $\forall \alpha, \beta \ge 1 : (u x^{\alpha r} x y z^{\beta r} v \in L \text{ and } u x^{\alpha r} y z z^{\beta r} v \notin L).$

Idea: Consider the languages

 $L_{1} := \{ w \in uyv \, x \, (xz \, | \, zz)^{*} : \, |w|_{x}, |w|_{z} \ge r, \ |w|_{x} \equiv 1 \ [r], \ |w|_{z} \equiv 0 \ [r] \},$

 $L_{2} := \{ w \in uyv \, x \, (xz \, | \, zz)^{*} : \, |w|_{x}, |w|_{z} \ge r, \ |w|_{x} \equiv 0 \, [r], \ |w|_{z} \equiv 1 \, [r] \}.$

<i>Definition:</i> A formula ψ separates L_1 from $L_2 \iff$		
$\forall \ \textbf{\textit{w}}_1 \in \textbf{\textit{L}}_1 \ : \ \textbf{\textit{w}}_1 \models \psi$	and	$\forall w_2 \in L_2 : w_2 \not\models \psi.$

Lemma 1: If *L* is definable in +-inv-FO(<), then there is a FO(<, +)-formula that separates L_1 from L_2 .

Proof: Construct a FO(<,+) interpretation that, on $w \in uyv \times (xz | zz)^*$, evaluates φ on the corrensponding string w' of the form $u(x)^* y(z)^* v$.

Situation: Fixed $x, y, z, u, v \in \Sigma^*$ with |x| = |z| such that $\forall \alpha, \beta \ge 1 : (u x^{\alpha r} x y z^{\beta r} v \in L \text{ and } u x^{\alpha r} y z z^{\beta r} v \notin L).$

Idea: Consider the languages

 $L_{1} := \{ w \in uyv \, x \, (xz \, | \, zz)^{*} : \, |w|_{x}, |w|_{z} \ge r, \ |w|_{x} \equiv 1 \ [r], \ |w|_{z} \equiv 0 \ [r] \},$

 $L_{2} := \{ w \in uyv \, x \, (xz \, | \, zz)^{*} : \, |w|_{x}, |w|_{z} \ge r, \ |w|_{x} \equiv 0 \ [r], \ |w|_{z} \equiv 1 \ [r] \}.$

Definition: A formula ψ separates L	1 from L	2 ⇔
$\forall \ \boldsymbol{w}_1 \in \boldsymbol{L}_1 \ : \ \boldsymbol{w}_1 \models \boldsymbol{\psi}$	and	$\forall w_2 \in L_2 : w_2 \not\models \psi.$

Lemma 1: If *L* is definable in +-inv-FO(<), then there is a FO(<, +)-formula that separates L_1 from L_2 .

Proof: Construct a FO(<,+) interpretation that, on $w \in uyv x (xz | zz)^*$, evaluates φ on the corrensponding string w' of the form $u(x)^* y(z)^* v$.

Clearly, • $w \in L_1 \implies w' \in L \implies w' \models \varphi$, • $w \in L_2 \implies w' \notin L \implies w' \notin \varphi$.

NICOLE SCHWEIKARDT

Situation: Fixed $x, y, z, u, v \in \Sigma^*$ with |x| = |z| such that $\forall \alpha, \beta \ge 1 : (u x^{\alpha r} x y z^{\beta r} v \in L \text{ and } u x^{\alpha r} y z z^{\beta r} v \notin L).$

Idea: Consider the languages

 $L_{1} := \{ w \in uyv \, x \, (xz \, | \, zz)^{*} : \, |w|_{x}, |w|_{z} \ge r, \ |w|_{x} \equiv 1 \ [r], \ |w|_{z} \equiv 0 \ [r] \},$

 $L_{2} := \{ w \in uyv \, x \, (xz \, | \, zz)^{*} : \, |w|_{x}, |w|_{z} \ge r, \ |w|_{x} \equiv 0 \ [r], \ |w|_{z} \equiv 1 \ [r] \}.$

Definition: A formula ψ separates L	1 from L	$_{2} \iff$
$\forall w_1 \in L_1 : w_1 \models \psi$	and	$\forall w_2 \in L_2 : w_2 \not\models \psi.$

Lemma 1: If *L* is definable in +-inv-FO(<), then there is a FO(<, +)-formula that separates L_1 from L_2 .

Situation: Fixed $x, y, z, u, v \in \Sigma^*$ with |x| = |z| such that $\forall \alpha, \beta \ge 1 : (u x^{\alpha r} x y z^{\beta r} v \in L \text{ and } u x^{\alpha r} y z z^{\beta r} v \notin L).$

Idea: Consider the languages

 $L_{1} := \{ w \in uyv \, x \, (xz \, | \, zz)^{*} : \, |w|_{x}, |w|_{z} \ge r, \ |w|_{x} \equiv 1 \ [r], \ |w|_{z} \equiv 0 \ [r] \},$

 $L_{2} := \{ w \in uyv \, x \, (xz \, | \, zz)^{*} : \, |w|_{x}, |w|_{z} \ge r, \ |w|_{x} \equiv 0 \ [r], \ |w|_{z} \equiv 1 \ [r] \}.$

<i>Definition:</i> A formula ψ separates L_1 from $L_2 \iff$			
$\forall \ \boldsymbol{w}_1 \in \boldsymbol{L}_1 \ : \ \boldsymbol{w}_1 \models \psi$	and	$\forall w_2 \in L_2 : w_2 \not\models \psi.$	

Lemma 1: If *L* is definable in +-inv-FO(<), then there is a FO(<, +)-formula that separates L_1 from L_2 .

Lemma 2: No formula of FO(<, +) can separate L_1 from L_2 .

Situation: Fixed $x, y, z, u, v \in \Sigma^*$ with |x| = |z| such that $\forall \alpha, \beta \ge 1 : (u x^{\alpha r} x y z^{\beta r} v \in L \text{ and } u x^{\alpha r} y z z^{\beta r} v \notin L).$

Idea: Consider the languages

 $L_{1} := \{ w \in uyv \, x \, (xz \, | \, zz)^{*} : \, |w|_{x}, |w|_{z} \ge r, \ |w|_{x} \equiv 1 \ [r], \ |w|_{z} \equiv 0 \ [r] \},$

 $L_{2} := \{ w \in uyv \, x \, (xz \, | \, zz)^{*} : \, |w|_{x}, |w|_{z} \ge r, \ |w|_{x} \equiv 0 \ [r], \ |w|_{z} \equiv 1 \ [r] \}.$

Lemma 1: If *L* is definable in +-inv-FO(<), then there is a FO(<, +)-formula that separates L_1 from L_2 .

Lemma 2: No formula of FO(<, +) can separate L_1 from L_2 . *Proof idea:* Use Ehrenfeucht-Fraïssé games.

NICOLE SCHWEIKARDT

Situation: Fixed $x, y, z, u, v \in \Sigma^*$ with |x| = |z| such that $\forall \alpha, \beta \ge 1 : (u x^{\alpha r} x y z^{\beta r} v \in L \text{ and } u x^{\alpha r} y z z^{\beta r} v \notin L).$

Idea: Consider the languages

 $L_{1} := \{ w \in uyv \, x \, (xz \, | \, zz)^{*} : \, |w|_{x}, |w|_{z} \ge r, \ |w|_{x} \equiv 1 \ [r], \ |w|_{z} \equiv 0 \ [r] \},$

 $L_{2} := \{ w \in uyv \, x \, (xz \, | \, zz)^{*} : \, |w|_{x}, |w|_{z} \ge r, \ |w|_{x} \equiv 0 \ [r], \ |w|_{z} \equiv 1 \ [r] \}.$

Lemma 1: If *L* is definable in +-inv-FO(<), then there is a FO(<, +)-formula that separates L_1 from L_2 .

Lemma 2: No formula of FO(<, +) can separate L_1 from L_2 .

CONTRADICTION.

NICOLE SCHWEIKARDT

Regular languages definable in +-inv-FO(<)

Theorem:

(S., Segoufin, 2010)

STRINGS

Let L be a regular language. The following are equivalent:

- (1) L is definable in +-inv-FO(<).
- (2) L is definable in $FO_{Card}(<)$.
- (3) L is a finite union of languages of the form $S \cap Z_i^q$, where
 - S is star-free regular (i.e., S is FO(<)-definable)

•
$$Z_i^q = \{w : |w| \equiv i \mod q\}.$$

(4) L is closed under transfers.

Regular languages definable in +-inv-FO(<)

Theorem:

(S., Segoufin, 2010)

STRINGS

Let L be a regular language. The following are equivalent:

- (1) L is definable in +-inv-FO(<).
- (2) L is definable in $FO_{Card}(<)$.

(3) L is a finite union of languages of the form $S \cap Z_i^q$, where

• S is star-free regular (i.e., S is FO(<)-definable)

$$\bullet Z_i^q = \{w : |w| \equiv i \mod q\}.$$

(4) L is closed under transfers.

Question: What happens if the linear order < on the string is not available?

We first consider the case where only the successor relation "succ" is available.

Regular languages definable in +-inv-FO(succ)

Theorem:

(S., Segoufin, 2010)

Let L be a regular language. The following are equivalent:

- (1) L is definable in +-inv-FO(succ).
- (2) L is definable in $FO_{Card}(succ)$.
- (3) L is a finite union of languages of the form $T \cap Z_i^q$, where
 - T is locally threshold testable (i.e., T is FO(succ)-definable)

$$\bullet Z_i^q = \{w : |w| \equiv i \mod q\}.$$

(4) L is closed under transfers and under swaps.

Proof method: Similar as for the previous theorem.

Definition: L is closed under swaps \iff

for all $e, f, x, y, z \in \Sigma^*$ such that e, f are idempotent we have

 $exfyezf =_L ezfyexf$

Observation: Given an automaton for a regular language *L*, it is decidable whether *L* is closed under transfers and under swaps.

NICOLE SCHWEIKARDT

Regular languages definable in +-inv-FO(succ)

Theorem:

(S., Segoufin, 2010)

STRINGS

Let L be a regular language. The following are equivalent:

- (1) L is definable in +-inv-FO(succ).
- (2) L is definable in FO_{Card}(succ).
- (3) L is a finite union of languages of the form $T \cap Z_i^q$, where
 - T is locally threshold testable (i.e., T is FO(succ)-definable)

$$\bullet Z_i^q = \{w : |w| \equiv i \mod q\}.$$

(4) L is closed under transfers and under swaps.

By combining this with the poly-logarithmic-locality of Arb-invariant FO, we obtain:

Theorem:(Anderson, Melkebeek, S., Segoufin, 2011)Let L be a regular language. Then,L is definable in Arb-invariant FO(succ) iff L is definable in FO_{Card}(succ).

Regular languages definable in +-inv-FO(succ)

Theorem:

(S., Segoufin, 2010)

Let L be a regular language. The following are equivalent:

- (1) L is definable in +-inv-FO(succ).
- (2) L is definable in FO_{Card}(succ).
- (3) L is a finite union of languages of the form $T \cap Z_i^q$, where
 - T is locally threshold testable (i.e., T is FO(succ)-definable)
 - $Z_i^q = \{w : |w| \equiv i \mod q\}.$
- (4) L is closed under transfers and under swaps.

The result extends from words to trees:

Regular languages definable in +-inv-FO(=)

Theorem:

(S., Segoufin, 2010)

- Let L be a regular language. The following are equivalent:
- (1) L is definable in +-inv-FO(=).
- (2) L is definable in $FO_{Card}(=)$.
- (3) L is commutative, closed under transfers and under swaps.

Definition: L is commutative \iff

 $\forall m \in \mathbb{N} \quad \forall a_1, \dots, a_m \in \Sigma \quad \forall \text{ permutations } \pi \text{ of } \{1, \dots, m\} :$ $a_1 a_2 \cdots a_m \in L \iff a_{\pi(1)} a_{\pi(2)} \cdots a_{\pi(m)} \in L.$

An open question

Open Question:

Are all languages definable in addition-invariant FO regular?

Known:

(S., Segoufin, 2010)

- Arb-invariant FO can define non-regular languages, e.g., $L = \{w \in \{1\}^* : |w| \text{ is a prime number } \}.$
- Every deterministic context-free language definable in addition-invariant FO is regular.
- Every commutative language definable in addition-invariant FO is regular.
- Every bounded language definable in addition-invariant FO is regular.

Bounded languages

Definition:

(Ginsburg & Spanier, 1964)

 $L \subseteq \Sigma^*$ is bounded \iff

 $\exists k \in \mathbb{N}$ and k strings $w_1, \ldots, w_k \in \Sigma^*$ such that $L \subseteq w_1^* w_2^* \cdots w_k^*$.

Theorem:

(S., Segoufin, 2010)

Every bounded language definable in +-inv-FO(<) is regular.

Bounded languages

Definition:

(Ginsburg & Spanier, 1964)

 $L \subseteq \Sigma^*$ is bounded \iff

 $\exists k \in \mathbb{N}$ and k strings $w_1, \ldots, w_k \in \Sigma^*$ such that $L \subseteq w_1^* w_2^* \cdots w_k^*$.

(S., Segoufin, 2010)

Every bounded language definable in +-inv-FO(<) is regular.

Proof method:

Theorem:

- Identify $w_1^* w_2^* \cdots w_k^*$ with \mathbb{N}^k via $(x_1, \dots, x_k) \in \mathbb{N}^k \cong w_1^{x_1} w_2^{x_2} \cdots w_k^{x_k}$. Thus: $L \subseteq w_1^* w_2^* \cdots w_k^* \cong S(L) \subseteq \mathbb{N}^k$.
- Note that *S*(*L*) is semi-linear, since *L* is definable in +-inv-FO(<).
- Reason about semi-linear sets ...
Bounded languages

Definition:

(Ginsburg & Spanier, 1964)

 $L \subseteq \Sigma^*$ is bounded \iff

 $\exists k \in \mathbb{N}$ and k strings $w_1, \ldots, w_k \in \Sigma^*$ such that $L \subseteq w_1^* w_2^* \cdots w_k^*$.

(S., Segoufin, 2010)

Every bounded language definable in +-inv-FO(<) is regular.

Proof method:

Theorem:

- Identify $w_1^* w_2^* \cdots w_k^*$ with \mathbb{N}^k via $(x_1, \dots, x_k) \in \mathbb{N}^k \cong w_1^{x_1} w_2^{x_2} \cdots w_k^{x_k}$. Thus: $L \subseteq w_1^* w_2^* \cdots w_k^* \cong S(L) \subseteq \mathbb{N}^k$.
- Note that *S*(*L*) is semi-linear, since *L* is definable in +-inv-FO(<).
- Reason about semi-linear sets ...

Corollary:

Every commutative language definable in +-inv-FO(<) is regular.

Characterization of colored sets definable in +-inv-FO

Definition: A colored finite set is a finite relational structure over a finite signature that contains only unary relation symbols.

Theorem:(S., Segoufin, 2010)Over the class of colored finite sets, +-inv-FO(=) and FO_{Card}(=) have the same
expressive power.

Proof:

- Every +-inv-FO(=) sentence over colored sets defines a commutative language.
- Every commutative language definable in +-inv-FO(<) is regular.
- Every regular language definable in +-inv-FO(=) is definable in FO_{Card}(=).

Characterization of colored sets definable in +-inv-FO

Definition: A colored finite set is a finite relational structure over a finite signature that contains only unary relation symbols.

Theorem:(S., Segoufin, 2010)Over the class of colored finite sets, +-inv-FO(=) and FO_{Card}(=) have the sameexpressive power.

Note: $FO_{Card}(=)$ is a logic (with a decidable syntax); +-inv-FO(=) is not.

More precisely: The following problem is undecidable:

Input: a FO(<, +, *C*)-sentence φ (*C* a unary relation symbol) Question: Is φ addition-invariant on all finite {*C*}-structures?

Overview

Introduction

- Invariant logics
- Undecidability
- Expressiveness
- Locality Results
- Order-invariant logics on strings

Final Remarks

Gaifman-locality

 $\text{If } (\mathcal{N}^G_r(a),a)\cong \big(\mathcal{N}^G_r(b),b\big) \ \text{ then } \ \big(a\in q(G) \iff b\in q(G)\big).$

Known:

- Queries definable in order-invariant FO are Gaifman-local with respect to a constant locality radius. (Grohe, Schwentick '98)
- Queries definable in Arb-invariant FO are Gaifman-local with respect to a poly-logarithmic locality radius. (Anderson, Melkebeek, S., Segoufin '11)

Open Question:

How about addition-invariant FO: is it Gaifman-local with respect to a constant locality radius?

Hanf-locality

A graph property p is Hanf-local w.r.t. locality radius r, if any two graphs having the same r-neighbourhood types with the same multiplicities, are not distinguished by p.

Known:

- Properties of graphs definable in FO are Hanf-local w.r.t. a constant locality radius. (Fagin, Stockmeyer, Vardi '95)
- Properties of strings or trees definable by order-invariant FO are Hanf-local w.r.t. a constant locality radius. (Benedikt, Segoufin '09)
- Properties of strings definable by Arb-invariant FO are Hanf-local w.r.t. a poly-logarithmic locality radius. (Anderson, van Melkebeek, S., Segoufin '11)
- Properties of strings definable by Arb-invariant FO+MOD*p*, for odd prime powers *p*, are Hanf-local w.r.t. a poly-logarithmic locality radius.
 For even *p*, they aren't. (Harwath, S. '13)

Open Question:

Which of these results generalise from strings to arbitrary finite graphs?

NICOLE SCHWEIKARDT

Decidable Characterisations

Open Question:

Are there decidable characterisations of

- order-invariant FO?
- addition-invariant FO?
- $(+, \times)$ -invariant FO?

Known:

- On finite strings and trees: order-invariant FO \equiv FO. (Benedikt, Segoufin '10)
- On finite coloured sets: addition-invariant FO = FO enriched by "cardinality modulo" quantifiers. (S., Segoufin '10)

INTRODUCTION

IANT LOGICS

NDECIDABILITY

XPRESSIVENESS

LOCALITY

TRINGS

FINAL REMARKS

Thank You!

NICOLE SCHWEIKARDT