
A tutorial on order-invariant logics

Nicole Schweikardt

Humboldt-Universität zu Berlin

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

In this tutorial

I Consider finite directed graphs G = (V G,EG).

Sometimes, nodes are additionally colored by a symbol from a finite alphabet Σ.

I p is a graph property, if the following is true for all graphs G and H:

if G ∼= H, then G has property p ⇐⇒ H has property p

I q is a k -ary graph-query, if the following is true:

if π : G ∼= H, then for all a1, . . . , ak ∈ V G,(
a1, . . . , ak

)
∈ q(G) ⇐⇒

(
π(a1), . . . , π(ak)

)
∈ q(H)

I I.e., graph-properties and queries are closed under isomorphisms.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 2

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

In this tutorial

I Consider finite directed graphs G = (V G,EG).

Sometimes, nodes are additionally colored by a symbol from a finite alphabet Σ.

I p is a graph property, if the following is true for all graphs G and H:

if G ∼= H, then G has property p ⇐⇒ H has property p

I q is a k -ary graph-query, if the following is true:

if π : G ∼= H, then for all a1, . . . , ak ∈ V G,(
a1, . . . , ak

)
∈ q(G) ⇐⇒

(
π(a1), . . . , π(ak)

)
∈ q(H)

I I.e., graph-properties and queries are closed under isomorphisms.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 2

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

In this tutorial

I Consider finite directed graphs G = (V G,EG).

Sometimes, nodes are additionally colored by a symbol from a finite alphabet Σ.

I p is a graph property, if the following is true for all graphs G and H:

if G ∼= H, then G has property p ⇐⇒ H has property p

I q is a k -ary graph-query, if the following is true:

if π : G ∼= H, then for all a1, . . . , ak ∈ V G,(
a1, . . . , ak

)
∈ q(G) ⇐⇒

(
π(a1), . . . , π(ak)

)
∈ q(H)

I I.e., graph-properties and queries are closed under isomorphisms.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 2

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

In this tutorial

I Consider finite directed graphs G = (V G,EG).

Sometimes, nodes are additionally colored by a symbol from a finite alphabet Σ.

I p is a graph property, if the following is true for all graphs G and H:

if G ∼= H, then G has property p ⇐⇒ H has property p

I q is a k -ary graph-query, if the following is true:

if π : G ∼= H, then for all a1, . . . , ak ∈ V G,(
a1, . . . , ak

)
∈ q(G) ⇐⇒

(
π(a1), . . . , π(ak)

)
∈ q(H)

I I.e., graph-properties and queries are closed under isomorphisms.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 2

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Logics expressing graph-properties and queries
Classical logics like, e.g.
I FO (first-order logic: Boolean combinations + quantification over nodes)
I LFP (least fixed point logic: FO + inductive definitions of relations)

express graph-properties and queries in a straightforward way.

Example: The query

q(G) = { x ∈ V G : x lies on a triangle }

is expressed in FO via

ϕ(x) := ∃y ∃z
(

E(x , y) ∧ E(y , z) ∧ E(z, x)
)

Drawback:
FO and LFP are too weak to express (some) computationally easy properties, e.g.,
properties concerning the size of V G or EG.
Stronger logics like, e.g., SO or ESO can express computationally hard properties
and queries.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 3

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Logics expressing graph-properties and queries
Classical logics like, e.g.
I FO (first-order logic: Boolean combinations + quantification over nodes)
I LFP (least fixed point logic: FO + inductive definitions of relations)

express graph-properties and queries in a straightforward way.

Example: The query

q(G) = { x ∈ V G : x lies on a triangle }

is expressed in FO via

ϕ(x) := ∃y ∃z
(

E(x , y) ∧ E(y , z) ∧ E(z, x)
)

Drawback:
FO and LFP are too weak to express (some) computationally easy properties, e.g.,
properties concerning the size of V G or EG.
Stronger logics like, e.g., SO or ESO can express computationally hard properties
and queries.
NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 3

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Overview

Introduction

Invariant logics

Undecidability

Expressiveness

Locality Results

Order-invariant logics on strings

Final Remarks

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 4

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Overview

Introduction

Invariant logics

Undecidability

Expressiveness

Locality Results

Order-invariant logics on strings

Final Remarks

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 5

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Invariant logics
Idea:

I Extend the expressive power of a logic by allowing formulas to also use
arithmetic predicates like <, +, ×, . . . , Halt, . . . on V G.

I For this, identify V G with the set [n] := {0, 1, . . . , n−1} for n = |V G|
and interpret <, +, ×, . . . , Halt, . . . in the natural way.

I To ensure closure under isomorphisms, restrict attention to formulas
independent of the particular way of identifying V G with [n].
These formulas are called Arb-invariant.

Definition: Let L be a logic (e.g., FO, MSO, LFP).
A L(E , <)-formula ϕ(~x) is order-invariant on G = (V G,EG) ⇐⇒
for all tuples of nodes ~a in V G, for all linear orders <1 and <2 on V G,

and the
matching addition relations +1, +2,

and the according multiplications ×1, ×2,

and
other numerical predicates,

(G, <1) |= ϕ(~a) ⇐⇒ (G, <2) |= ϕ(~a).

For Arb-invariant sentences, shortly write G |= ϕ for (G, <1,+1,×1 . . .) |= ϕ.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 6

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Invariant logics
Idea:

I Extend the expressive power of a logic by allowing formulas to also use
arithmetic predicates like <, +, ×, . . . , Halt, . . . on V G.

I For this, identify V G with the set [n] := {0, 1, . . . , n−1} for n = |V G|
and interpret <, +, ×, . . . , Halt, . . . in the natural way.

I To ensure closure under isomorphisms, restrict attention to formulas
independent of the particular way of identifying V G with [n].
These formulas are called Arb-invariant.

Definition: Let L be a logic (e.g., FO, MSO, LFP).
A L(E , <)-formula ϕ(~x) is order-invariant on G = (V G,EG) ⇐⇒
for all tuples of nodes ~a in V G, for all linear orders <1 and <2 on V G,

and the
matching addition relations +1, +2,

and the according multiplications ×1, ×2,

and
other numerical predicates,

(G, <1) |= ϕ(~a) ⇐⇒ (G, <2) |= ϕ(~a).

For Arb-invariant sentences, shortly write G |= ϕ for (G, <1,+1,×1 . . .) |= ϕ.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 6

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Invariant logics
Idea:

I Extend the expressive power of a logic by allowing formulas to also use
arithmetic predicates like <, +, ×, . . . , Halt, . . . on V G.

I For this, identify V G with the set [n] := {0, 1, . . . , n−1} for n = |V G|
and interpret <, +, ×, . . . , Halt, . . . in the natural way.

I To ensure closure under isomorphisms, restrict attention to formulas
independent of the particular way of identifying V G with [n].
These formulas are called Arb-invariant.

Definition: Let L be a logic (e.g., FO, MSO, LFP).
A L(E , <)-formula ϕ(~x) is order-invariant on G = (V G,EG) ⇐⇒
for all tuples of nodes ~a in V G, for all linear orders <1 and <2 on V G,

and the
matching addition relations +1, +2,

and the according multiplications ×1, ×2,

and
other numerical predicates,

(G, <1) |= ϕ(~a) ⇐⇒ (G, <2) |= ϕ(~a).

For Arb-invariant sentences, shortly write G |= ϕ for (G, <1,+1,×1 . . .) |= ϕ.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 6

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Invariant logics
Idea:

I Extend the expressive power of a logic by allowing formulas to also use
arithmetic predicates like <, +, ×, . . . , Halt, . . . on V G.

I For this, identify V G with the set [n] := {0, 1, . . . , n−1} for n = |V G|
and interpret <, +, ×, . . . , Halt, . . . in the natural way.

I To ensure closure under isomorphisms, restrict attention to formulas
independent of the particular way of identifying V G with [n].
These formulas are called Arb-invariant.

Definition: Let L be a logic (e.g., FO, MSO, LFP).
A L(E , <,+)-formula ϕ(~x) is addition-invariant on G = (V G,EG) ⇐⇒
for all tuples of nodes ~a in V G, for all linear orders <1 and <2 on V G, and the
matching addition relations +1, +2,

and the according multiplications ×1, ×2,

and
other numerical predicates,

(G, <1,+1) |= ϕ(~a) ⇐⇒ (G, <2,+2) |= ϕ(~a).

For Arb-invariant sentences, shortly write G |= ϕ for (G, <1,+1,×1 . . .) |= ϕ.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 6

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Invariant logics
Idea:

I Extend the expressive power of a logic by allowing formulas to also use
arithmetic predicates like <, +, ×, . . . , Halt, . . . on V G.

I For this, identify V G with the set [n] := {0, 1, . . . , n−1} for n = |V G|
and interpret <, +, ×, . . . , Halt, . . . in the natural way.

I To ensure closure under isomorphisms, restrict attention to formulas
independent of the particular way of identifying V G with [n].
These formulas are called Arb-invariant.

Definition: Let L be a logic (e.g., FO, MSO, LFP).
A L(E , <,+,×)-formula ϕ(~x) is (+,×)-invariant on G = (V G,EG) ⇐⇒
for all tuples of nodes ~a in V G, for all linear orders <1 and <2 on V G, and the
matching addition relations +1, +2, and the according multiplications ×1, ×2,

and
other numerical predicates,

(G, <1,+1,×1) |= ϕ(~a) ⇐⇒ (G, <2,+2,×2) |= ϕ(~a).

For Arb-invariant sentences, shortly write G |= ϕ for (G, <1,+1,×1 . . .) |= ϕ.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 6

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Invariant logics
Idea:

I Extend the expressive power of a logic by allowing formulas to also use
arithmetic predicates like <, +, ×, . . . , Halt, . . . on V G.

I For this, identify V G with the set [n] := {0, 1, . . . , n−1} for n = |V G|
and interpret <, +, ×, . . . , Halt, . . . in the natural way.

I To ensure closure under isomorphisms, restrict attention to formulas
independent of the particular way of identifying V G with [n].
These formulas are called Arb-invariant.

Definition: Let L be a logic (e.g., FO, MSO, LFP).
A L(E , <,+,×, . . .)-formula ϕ(~x) is Arb-invariant on G = (V G,EG) ⇐⇒
for all tuples of nodes ~a in V G, for all linear orders <1 and <2 on V G, and the
matching addition relations +1, +2, and the according multiplications ×1, ×2, and
other numerical predicates,

(G, <1,+1,×1, . . .) |= ϕ(~a) ⇐⇒ (G, <2,+2,×2, . . .) |= ϕ(~a).

For Arb-invariant sentences, shortly write G |= ϕ for (G, <1,+1,×1 . . .) |= ϕ.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 6

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Invariant logics
Idea:

I Extend the expressive power of a logic by allowing formulas to also use
arithmetic predicates like <, +, ×, . . . , Halt, . . . on V G.

I For this, identify V G with the set [n] := {0, 1, . . . , n−1} for n = |V G|
and interpret <, +, ×, . . . , Halt, . . . in the natural way.

I To ensure closure under isomorphisms, restrict attention to formulas
independent of the particular way of identifying V G with [n].
These formulas are called Arb-invariant.

Definition: Let L be a logic (e.g., FO, MSO, LFP).
A L(E , <,+,×, . . .)-formula ϕ(~x) is Arb-invariant on G = (V G,EG) ⇐⇒
for all tuples of nodes ~a in V G, for all linear orders <1 and <2 on V G, and the
matching addition relations +1, +2, and the according multiplications ×1, ×2, and
other numerical predicates,

(G, <1,+1,×1, . . .) |= ϕ(~a) ⇐⇒ (G, <2,+2,×2, . . .) |= ϕ(~a).

For Arb-invariant sentences, shortly write G |= ϕ for (G, <1,+1,×1 . . .) |= ϕ.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 6

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Example
• An addition-invariant FO(E , <,+)-sentence ϕ such that

G |= ϕ ⇐⇒ |V G| is odd.

ϕ := ∃x ∃z
(

x + x = z ∧ ∀y (y < z ∨ y = z)
)

• Similarly, there is an (+,×)-invariant FO(E , <,+,×)-sentence ψ such that

G |= ψ ⇐⇒ |V G|−1 is a prime number.

• And there is an Arb-invariant FO(E , <,Halt)-sentence χ such that

G |= χ ⇐⇒ |V G|−1 is the index of a Turing machine halting on empty input:

Simply choose χ := ∃x
(

Halt(x) ∧ ∀y (y < x ∨ y = x)
)
.

Thus:

order-inv FO < addition-inv FO < (+,×)-inv FO < Arb-invariant FO.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 7

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Example
• An addition-invariant FO(E , <,+)-sentence ϕ such that

G |= ϕ ⇐⇒ |V G| is odd.

ϕ := ∃x ∃z
(

x + x = z ∧ ∀y (y < z ∨ y = z)
)

• Similarly, there is an (+,×)-invariant FO(E , <,+,×)-sentence ψ such that

G |= ψ ⇐⇒ |V G|−1 is a prime number.

• And there is an Arb-invariant FO(E , <,Halt)-sentence χ such that

G |= χ ⇐⇒ |V G|−1 is the index of a Turing machine halting on empty input:

Simply choose χ := ∃x
(

Halt(x) ∧ ∀y (y < x ∨ y = x)
)
.

Thus:

order-inv FO < addition-inv FO < (+,×)-inv FO < Arb-invariant FO.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 7

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Example
• An addition-invariant FO(E , <,+)-sentence ϕ such that

G |= ϕ ⇐⇒ |V G| is odd.

ϕ := ∃x ∃z
(

x + x = z ∧ ∀y (y < z ∨ y = z)
)

• Similarly, there is an (+,×)-invariant FO(E , <,+,×)-sentence ψ such that

G |= ψ ⇐⇒ |V G|−1 is a prime number.

• And there is an Arb-invariant FO(E , <,Halt)-sentence χ such that

G |= χ ⇐⇒ |V G|−1 is the index of a Turing machine halting on empty input:

Simply choose χ := ∃x
(

Halt(x) ∧ ∀y (y < x ∨ y = x)
)
.

Thus:

order-inv FO < addition-inv FO < (+,×)-inv FO < Arb-invariant FO.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 7

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Example
• An addition-invariant FO(E , <,+)-sentence ϕ such that

G |= ϕ ⇐⇒ |V G| is odd.

ϕ := ∃x ∃z
(

x + x = z ∧ ∀y (y < z ∨ y = z)
)

• Similarly, there is an (+,×)-invariant FO(E , <,+,×)-sentence ψ such that

G |= ψ ⇐⇒ |V G|−1 is a prime number.

• And there is an Arb-invariant FO(E , <,Halt)-sentence χ such that

G |= χ ⇐⇒ |V G|−1 is the index of a Turing machine halting on empty input:

Simply choose χ := ∃x
(

Halt(x) ∧ ∀y (y < x ∨ y = x)
)
.

Thus:

order-inv FO < addition-inv FO < (+,×)-inv FO < Arb-invariant FO.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 7

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Example
• An addition-invariant FO(E , <,+)-sentence ϕ such that

G |= ϕ ⇐⇒ |V G| is odd.

ϕ := ∃x ∃z
(

x + x = z ∧ ∀y (y < z ∨ y = z)
)

• Similarly, there is an (+,×)-invariant FO(E , <,+,×)-sentence ψ such that

G |= ψ ⇐⇒ |V G|−1 is a prime number.

• And there is an Arb-invariant FO(E , <,Halt)-sentence χ such that

G |= χ ⇐⇒ |V G|−1 is the index of a Turing machine halting on empty input:

Simply choose χ := ∃x
(

Halt(x) ∧ ∀y (y < x ∨ y = x)
)
.

Thus:

order-inv FO < addition-inv FO < (+,×)-inv FO < Arb-invariant FO.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 7

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Expressive power of invariant logics
Known results:
I Order-invariant LFP precisely captures the polynomial time computable

graph-properties and queries. (Immerman, Vardi, 1982)

I Arb-invariant LFP precisely captures the graph-properties and queries that
belong to the comlexity class P/poly. (Makowsky, 1998)
P/poly consists of all problems solvable by circuit families of polynomial size

I Arb-invariant FO precisely captures the graph-properties and queries that belong
to the circuit complexity class AC0. (Immerman, 1980s)
AC0 consists of all problems solvable by circuit families of polynomial size and
constant depth, using NOT-gates and AND- and OR-gates of unbounded fan-in.

I Arb-invariant FO+MOD precisely captures the graph-properties and queries that
belong to the circuit complexity class ACC.
ACC consists of all problems solvable by circuit families of polynomial size and
constant depth, using also MOD-gates of unbounded fan-in.

I (+,×)-invariant FO precisely captures the graph-properties and queries that
belong to uniform AC0.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 8

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Expressive power of invariant logics
Known results:
I Order-invariant LFP precisely captures the polynomial time computable

graph-properties and queries. (Immerman, Vardi, 1982)

I Arb-invariant LFP precisely captures the graph-properties and queries that
belong to the comlexity class P/poly. (Makowsky, 1998)
P/poly consists of all problems solvable by circuit families of polynomial size

I Arb-invariant FO precisely captures the graph-properties and queries that belong
to the circuit complexity class AC0. (Immerman, 1980s)
AC0 consists of all problems solvable by circuit families of polynomial size and
constant depth, using NOT-gates and AND- and OR-gates of unbounded fan-in.

I Arb-invariant FO+MOD precisely captures the graph-properties and queries that
belong to the circuit complexity class ACC.
ACC consists of all problems solvable by circuit families of polynomial size and
constant depth, using also MOD-gates of unbounded fan-in.

I (+,×)-invariant FO precisely captures the graph-properties and queries that
belong to uniform AC0.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 8

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Expressive power of invariant logics
Known results:
I Order-invariant LFP precisely captures the polynomial time computable

graph-properties and queries. (Immerman, Vardi, 1982)

I Arb-invariant LFP precisely captures the graph-properties and queries that
belong to the comlexity class P/poly. (Makowsky, 1998)
P/poly consists of all problems solvable by circuit families of polynomial size

I Arb-invariant FO precisely captures the graph-properties and queries that belong
to the circuit complexity class AC0. (Immerman, 1980s)
AC0 consists of all problems solvable by circuit families of polynomial size and
constant depth, using NOT-gates and AND- and OR-gates of unbounded fan-in.

I Arb-invariant FO+MOD precisely captures the graph-properties and queries that
belong to the circuit complexity class ACC.
ACC consists of all problems solvable by circuit families of polynomial size and
constant depth, using also MOD-gates of unbounded fan-in.

I (+,×)-invariant FO precisely captures the graph-properties and queries that
belong to uniform AC0.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 8

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Expressive power of invariant logics
Known results:
I Order-invariant LFP precisely captures the polynomial time computable

graph-properties and queries. (Immerman, Vardi, 1982)

I Arb-invariant LFP precisely captures the graph-properties and queries that
belong to the comlexity class P/poly. (Makowsky, 1998)
P/poly consists of all problems solvable by circuit families of polynomial size

I Arb-invariant FO precisely captures the graph-properties and queries that belong
to the circuit complexity class AC0. (Immerman, 1980s)
AC0 consists of all problems solvable by circuit families of polynomial size and
constant depth, using NOT-gates and AND- and OR-gates of unbounded fan-in.

I Arb-invariant FO+MOD precisely captures the graph-properties and queries that
belong to the circuit complexity class ACC.
ACC consists of all problems solvable by circuit families of polynomial size and
constant depth, using also MOD-gates of unbounded fan-in.

I (+,×)-invariant FO precisely captures the graph-properties and queries that
belong to uniform AC0.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 8

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Expressive power of invariant logics
Known results:
I Order-invariant LFP precisely captures the polynomial time computable

graph-properties and queries. (Immerman, Vardi, 1982)

I Arb-invariant LFP precisely captures the graph-properties and queries that
belong to the comlexity class P/poly. (Makowsky, 1998)
P/poly consists of all problems solvable by circuit families of polynomial size

I Arb-invariant FO precisely captures the graph-properties and queries that belong
to the circuit complexity class AC0. (Immerman, 1980s)
AC0 consists of all problems solvable by circuit families of polynomial size and
constant depth, using NOT-gates and AND- and OR-gates of unbounded fan-in.

I Arb-invariant FO+MOD precisely captures the graph-properties and queries that
belong to the circuit complexity class ACC.
ACC consists of all problems solvable by circuit families of polynomial size and
constant depth, using also MOD-gates of unbounded fan-in.

I (+,×)-invariant FO precisely captures the graph-properties and queries that
belong to uniform AC0.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 8

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Overview

Introduction

Invariant logics

Undecidability

Expressiveness

Locality Results

Order-invariant logics on strings

Final Remarks

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 9

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Order-invariance is undecidable
Invariant logics are not logics in the strict formal sense:
They have an undecidable syntax.

Precisely:

The following problem is undecidable (for binary symbol E and unary symbol C):

Exercise: Get rid of C!

ORDER-INVARIANCE ON FINITE COLORED GRAPHS:
Input: a FO(E ,C, <)-sentence ϕ

Question: Is ϕ order-invariant on all finite colored graphs?

Proof: By a reduction using Trakhtenbrot’s theorem.
I Assume, for contradiction, that order-invariance is decidable.
I Then, also the problem “Is a given FO(E)-sentence ψ true for all finite graphs?”

is decidable as follows:
(1) If there is a one-vertex-graph, in which ψ is not true, then stop with output

“no”. Otherwise, proceed with (2).
(2) Let χ be a formula that is not order-invariant on structures of size > 2.

E.g., χ := ∃x
(
C(x) ∧ ∀y(x 6 y)

)
.

Stop with output “yes” iff the formula (¬ψ → χ) is order-invariant.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 10

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Order-invariance is undecidable
Invariant logics are not logics in the strict formal sense:
They have an undecidable syntax. Precisely:

The following problem is undecidable (for binary symbol E and unary symbol C):

Exercise: Get rid of C!

ORDER-INVARIANCE ON FINITE COLORED GRAPHS:
Input: a FO(E ,C, <)-sentence ϕ

Question: Is ϕ order-invariant on all finite colored graphs?

Proof: By a reduction using Trakhtenbrot’s theorem.

I Assume, for contradiction, that order-invariance is decidable.
I Then, also the problem “Is a given FO(E)-sentence ψ true for all finite graphs?”

is decidable as follows:
(1) If there is a one-vertex-graph, in which ψ is not true, then stop with output

“no”. Otherwise, proceed with (2).
(2) Let χ be a formula that is not order-invariant on structures of size > 2.

E.g., χ := ∃x
(
C(x) ∧ ∀y(x 6 y)

)
.

Stop with output “yes” iff the formula (¬ψ → χ) is order-invariant.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 10

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Order-invariance is undecidable
Invariant logics are not logics in the strict formal sense:
They have an undecidable syntax. Precisely:

The following problem is undecidable (for binary symbol E and unary symbol C):

Exercise: Get rid of C!

ORDER-INVARIANCE ON FINITE COLORED GRAPHS:
Input: a FO(E ,C, <)-sentence ϕ

Question: Is ϕ order-invariant on all finite colored graphs?

Proof: By a reduction using Trakhtenbrot’s theorem.
I Assume, for contradiction, that order-invariance is decidable.
I Then, also the problem “Is a given FO(E)-sentence ψ true for all finite graphs?”

is decidable as follows:

(1) If there is a one-vertex-graph, in which ψ is not true, then stop with output
“no”. Otherwise, proceed with (2).

(2) Let χ be a formula that is not order-invariant on structures of size > 2.
E.g., χ := ∃x

(
C(x) ∧ ∀y(x 6 y)

)
.

Stop with output “yes” iff the formula (¬ψ → χ) is order-invariant.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 10

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Order-invariance is undecidable
Invariant logics are not logics in the strict formal sense:
They have an undecidable syntax. Precisely:

The following problem is undecidable (for binary symbol E and unary symbol C):

Exercise: Get rid of C!

ORDER-INVARIANCE ON FINITE COLORED GRAPHS:
Input: a FO(E ,C, <)-sentence ϕ

Question: Is ϕ order-invariant on all finite colored graphs?

Proof: By a reduction using Trakhtenbrot’s theorem.
I Assume, for contradiction, that order-invariance is decidable.
I Then, also the problem “Is a given FO(E)-sentence ψ true for all finite graphs?”

is decidable as follows:
(1) If there is a one-vertex-graph, in which ψ is not true, then stop with output

“no”.

Otherwise, proceed with (2).
(2) Let χ be a formula that is not order-invariant on structures of size > 2.

E.g., χ := ∃x
(
C(x) ∧ ∀y(x 6 y)

)
.

Stop with output “yes” iff the formula (¬ψ → χ) is order-invariant.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 10

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Order-invariance is undecidable
Invariant logics are not logics in the strict formal sense:
They have an undecidable syntax. Precisely:

The following problem is undecidable (for binary symbol E and unary symbol C):

Exercise: Get rid of C!

ORDER-INVARIANCE ON FINITE COLORED GRAPHS:
Input: a FO(E ,C, <)-sentence ϕ

Question: Is ϕ order-invariant on all finite colored graphs?

Proof: By a reduction using Trakhtenbrot’s theorem.
I Assume, for contradiction, that order-invariance is decidable.
I Then, also the problem “Is a given FO(E)-sentence ψ true for all finite graphs?”

is decidable as follows:
(1) If there is a one-vertex-graph, in which ψ is not true, then stop with output

“no”. Otherwise, proceed with (2).

(2) Let χ be a formula that is not order-invariant on structures of size > 2.
E.g., χ := ∃x

(
C(x) ∧ ∀y(x 6 y)

)
.

Stop with output “yes” iff the formula (¬ψ → χ) is order-invariant.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 10

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Order-invariance is undecidable
Invariant logics are not logics in the strict formal sense:
They have an undecidable syntax. Precisely:

The following problem is undecidable (for binary symbol E and unary symbol C):

Exercise: Get rid of C!

ORDER-INVARIANCE ON FINITE COLORED GRAPHS:
Input: a FO(E ,C, <)-sentence ϕ

Question: Is ϕ order-invariant on all finite colored graphs?

Proof: By a reduction using Trakhtenbrot’s theorem.
I Assume, for contradiction, that order-invariance is decidable.
I Then, also the problem “Is a given FO(E)-sentence ψ true for all finite graphs?”

is decidable as follows:
(1) If there is a one-vertex-graph, in which ψ is not true, then stop with output

“no”. Otherwise, proceed with (2).
(2) Let χ be a formula that is not order-invariant on structures of size > 2.

E.g., χ := ∃x
(
C(x) ∧ ∀y(x 6 y)

)
.

Stop with output “yes” iff the formula (¬ψ → χ) is order-invariant.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 10

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Order-invariance is undecidable
Invariant logics are not logics in the strict formal sense:
They have an undecidable syntax. Precisely:

The following problem is undecidable (for binary symbol E and unary symbol C):

Exercise: Get rid of C!

ORDER-INVARIANCE ON FINITE COLORED GRAPHS:
Input: a FO(E ,C, <)-sentence ϕ

Question: Is ϕ order-invariant on all finite colored graphs?

Proof: By a reduction using Trakhtenbrot’s theorem.
I Assume, for contradiction, that order-invariance is decidable.
I Then, also the problem “Is a given FO(E)-sentence ψ true for all finite graphs?”

is decidable as follows:
(1) If there is a one-vertex-graph, in which ψ is not true, then stop with output

“no”. Otherwise, proceed with (2).
(2) Let χ be a formula that is not order-invariant on structures of size > 2.

E.g., χ := ∃x
(
C(x) ∧ ∀y(x 6 y)

)
.

Stop with output “yes” iff the formula (¬ψ → χ) is order-invariant.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 10

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Order-invariance is undecidable
Invariant logics are not logics in the strict formal sense:
They have an undecidable syntax. Precisely:

The following problem is undecidable (for binary symbol E and unary symbol C):

Exercise: Get rid of C!

ORDER-INVARIANCE ON FINITE COLORED GRAPHS:
Input: a FO(E ,C, <)-sentence ϕ

Question: Is ϕ order-invariant on all finite colored graphs?

Proof: By a reduction using Trakhtenbrot’s theorem.
I Assume, for contradiction, that order-invariance is decidable.
I Then, also the problem “Is a given FO(E)-sentence ψ true for all finite graphs?”

is decidable as follows:
(1) If there is a one-vertex-graph, in which ψ is not true, then stop with output

“no”. Otherwise, proceed with (2).
(2) Let χ be a formula that is not order-invariant on structures of size > 2.

E.g., χ := ∃x
(
C(x) ∧ ∀y(x 6 y)

)
.

Stop with output “yes” iff the formula (¬ψ → χ) is order-invariant.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 10

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Order-invariance is undecidable
Invariant logics are not logics in the strict formal sense:
They have an undecidable syntax. Precisely:

The following problem is undecidable (for binary symbol E and unary symbol C):
Exercise: Get rid of C!

ORDER-INVARIANCE ON FINITE COLORED GRAPHS:
Input: a FO(E ,C, <)-sentence ϕ

Question: Is ϕ order-invariant on all finite colored graphs?

Proof: By a reduction using Trakhtenbrot’s theorem.
I Assume, for contradiction, that order-invariance is decidable.
I Then, also the problem “Is a given FO(E)-sentence ψ true for all finite graphs?”

is decidable as follows:
(1) If there is a one-vertex-graph, in which ψ is not true, then stop with output

“no”. Otherwise, proceed with (2).
(2) Let χ be a formula that is not order-invariant on structures of size > 2.

E.g., χ := ∃x
(
C(x) ∧ ∀y(x 6 y)

)
.

Stop with output “yes” iff the formula (¬ψ → χ) is order-invariant.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 10

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Order-invariance for unary signatures is decidable

Let {C1, . . . ,C`} consist of unary relation symbols (i.e., node colors).

Theorem: Order-invariance of a given FO(C1, . . . ,C`, <)-sentence ϕ
(on the class of all finite colored sets) is decidable.

Decision procedure:

I ϕ defines a language L of finite strings.

I ϕ is order-invariant ⇐⇒ L is commutative.

Definition: L is commutative iff
for all w = a1 · · · an and all permutations π ∈ Sn

we have w ∈ L ⇐⇒ aπ(1) · · · aπ(n) ∈ L.

I Commutativity of regular string-languages is decidable.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 11

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Order-invariance for unary signatures is decidable

Let {C1, . . . ,C`} consist of unary relation symbols (i.e., node colors).

Theorem: Order-invariance of a given FO(C1, . . . ,C`, <)-sentence ϕ
(on the class of all finite colored sets) is decidable.

Decision procedure:

I ϕ defines a language L of finite strings.

I ϕ is order-invariant ⇐⇒ L is commutative.

Definition: L is commutative iff
for all w = a1 · · · an and all permutations π ∈ Sn

we have w ∈ L ⇐⇒ aπ(1) · · · aπ(n) ∈ L.

I Commutativity of regular string-languages is decidable.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 11

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Order-invariance for unary signatures is decidable

Let {C1, . . . ,C`} consist of unary relation symbols (i.e., node colors).

Theorem: Order-invariance of a given FO(C1, . . . ,C`, <)-sentence ϕ
(on the class of all finite colored sets) is decidable.

Decision procedure:

I ϕ defines a language L of finite strings.

I ϕ is order-invariant ⇐⇒ L is commutative.

Definition: L is commutative iff
for all w = a1 · · · an and all permutations π ∈ Sn

we have w ∈ L ⇐⇒ aπ(1) · · · aπ(n) ∈ L.

I Commutativity of regular string-languages is decidable.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 11

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Order-invariance for unary signatures is decidable

Let {C1, . . . ,C`} consist of unary relation symbols (i.e., node colors).

Theorem: Order-invariance of a given FO(C1, . . . ,C`, <)-sentence ϕ
(on the class of all finite colored sets) is decidable.

Decision procedure:

I ϕ defines a language L of finite strings.

I ϕ is order-invariant ⇐⇒ L is commutative.

Definition: L is commutative iff
for all w = a1 · · · an and all permutations π ∈ Sn

we have w ∈ L ⇐⇒ aπ(1) · · · aπ(n) ∈ L.

I Commutativity of regular string-languages is decidable.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 11

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Addition-invariance for unary signatures is undecidable

Theorem: Addition-invariance of a given FO(C, <,+)-sentence ϕ
(on the class of all finite colored sets) is not decidable.

Proof:

Notation: [N] := {0, 1, . . . ,N}

I Let H ⊆ N be recursively enumerable, but not decidable.
I Goal: Construct, for each n ∈ N, a FO(C, <,+)-sentence ψ̃n such that

n 6∈ H ⇐⇒ ψ̃n is addition-invariant.
I Since H is r.e., it is FO-definable in bounded arithmetic. Thus, there is a

FO(<,+,×)-formula ψ(z) such that for all n ∈ N we have:

n ∈ H ⇐⇒ there is an N > n such that ([N], <,+,×) |= ψ(n).

I Let C be the set of all square numbers. Known:
• × is FO(<,+,C)-definable in ([N], <,+,C) via ϕ×(x , y , z).
• “C = square numbers” is FO(<,+,C)-definable via ϕC=squares.

I Substitute ϕ× for × in ψ(z) and let, for each n ∈ N, ψ̃n := ψ(n) ∧ ϕC=squares.
Note: ψ̃n is an FO(<,+,C)-sentence.

I Furthermore, n 6∈ H ⇐⇒ ψ̃n is addition-invariant.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 12

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Addition-invariance for unary signatures is undecidable

Theorem: Addition-invariance of a given FO(C, <,+)-sentence ϕ
(on the class of all finite colored sets) is not decidable.

Proof:

Notation: [N] := {0, 1, . . . ,N}

I Let H ⊆ N be recursively enumerable, but not decidable.
I Goal: Construct, for each n ∈ N, a FO(C, <,+)-sentence ψ̃n such that

n 6∈ H ⇐⇒ ψ̃n is addition-invariant.

I Since H is r.e., it is FO-definable in bounded arithmetic. Thus, there is a
FO(<,+,×)-formula ψ(z) such that for all n ∈ N we have:

n ∈ H ⇐⇒ there is an N > n such that ([N], <,+,×) |= ψ(n).

I Let C be the set of all square numbers. Known:
• × is FO(<,+,C)-definable in ([N], <,+,C) via ϕ×(x , y , z).
• “C = square numbers” is FO(<,+,C)-definable via ϕC=squares.

I Substitute ϕ× for × in ψ(z) and let, for each n ∈ N, ψ̃n := ψ(n) ∧ ϕC=squares.
Note: ψ̃n is an FO(<,+,C)-sentence.

I Furthermore, n 6∈ H ⇐⇒ ψ̃n is addition-invariant.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 12

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Addition-invariance for unary signatures is undecidable

Theorem: Addition-invariance of a given FO(C, <,+)-sentence ϕ
(on the class of all finite colored sets) is not decidable.

Proof:

Notation: [N] := {0, 1, . . . ,N}

I Let H ⊆ N be recursively enumerable, but not decidable.
I Goal: Construct, for each n ∈ N, a FO(C, <,+)-sentence ψ̃n such that

n 6∈ H ⇐⇒ ψ̃n is addition-invariant.
I Since H is r.e., it is FO-definable in bounded arithmetic.

Thus, there is a
FO(<,+,×)-formula ψ(z) such that for all n ∈ N we have:

n ∈ H ⇐⇒ there is an N > n such that ([N], <,+,×) |= ψ(n).

I Let C be the set of all square numbers. Known:
• × is FO(<,+,C)-definable in ([N], <,+,C) via ϕ×(x , y , z).
• “C = square numbers” is FO(<,+,C)-definable via ϕC=squares.

I Substitute ϕ× for × in ψ(z) and let, for each n ∈ N, ψ̃n := ψ(n) ∧ ϕC=squares.
Note: ψ̃n is an FO(<,+,C)-sentence.

I Furthermore, n 6∈ H ⇐⇒ ψ̃n is addition-invariant.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 12

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Addition-invariance for unary signatures is undecidable

Theorem: Addition-invariance of a given FO(C, <,+)-sentence ϕ
(on the class of all finite colored sets) is not decidable.

Proof: Notation: [N] := {0, 1, . . . ,N}
I Let H ⊆ N be recursively enumerable, but not decidable.
I Goal: Construct, for each n ∈ N, a FO(C, <,+)-sentence ψ̃n such that

n 6∈ H ⇐⇒ ψ̃n is addition-invariant.
I Since H is r.e., it is FO-definable in bounded arithmetic. Thus, there is a

FO(<,+,×)-formula ψ(z) such that for all n ∈ N we have:

n ∈ H ⇐⇒ there is an N > n such that ([N], <,+,×) |= ψ(n).

I Let C be the set of all square numbers. Known:
• × is FO(<,+,C)-definable in ([N], <,+,C) via ϕ×(x , y , z).
• “C = square numbers” is FO(<,+,C)-definable via ϕC=squares.

I Substitute ϕ× for × in ψ(z) and let, for each n ∈ N, ψ̃n := ψ(n) ∧ ϕC=squares.
Note: ψ̃n is an FO(<,+,C)-sentence.

I Furthermore, n 6∈ H ⇐⇒ ψ̃n is addition-invariant.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 12

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Addition-invariance for unary signatures is undecidable

Theorem: Addition-invariance of a given FO(C, <,+)-sentence ϕ
(on the class of all finite colored sets) is not decidable.

Proof: Notation: [N] := {0, 1, . . . ,N}
I Let H ⊆ N be recursively enumerable, but not decidable.
I Goal: Construct, for each n ∈ N, a FO(C, <,+)-sentence ψ̃n such that

n 6∈ H ⇐⇒ ψ̃n is addition-invariant.
I Since H is r.e., it is FO-definable in bounded arithmetic. Thus, there is a

FO(<,+,×)-formula ψ(z) such that for all n ∈ N we have:

n ∈ H ⇐⇒ there is an N > n such that ([N], <,+,×) |= ψ(n).

I Let C be the set of all square numbers. Known:

• × is FO(<,+,C)-definable in ([N], <,+,C) via ϕ×(x , y , z).
• “C = square numbers” is FO(<,+,C)-definable via ϕC=squares.

I Substitute ϕ× for × in ψ(z) and let, for each n ∈ N, ψ̃n := ψ(n) ∧ ϕC=squares.
Note: ψ̃n is an FO(<,+,C)-sentence.

I Furthermore, n 6∈ H ⇐⇒ ψ̃n is addition-invariant.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 12

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Addition-invariance for unary signatures is undecidable

Theorem: Addition-invariance of a given FO(C, <,+)-sentence ϕ
(on the class of all finite colored sets) is not decidable.

Proof: Notation: [N] := {0, 1, . . . ,N}
I Let H ⊆ N be recursively enumerable, but not decidable.
I Goal: Construct, for each n ∈ N, a FO(C, <,+)-sentence ψ̃n such that

n 6∈ H ⇐⇒ ψ̃n is addition-invariant.
I Since H is r.e., it is FO-definable in bounded arithmetic. Thus, there is a

FO(<,+,×)-formula ψ(z) such that for all n ∈ N we have:

n ∈ H ⇐⇒ there is an N > n such that ([N], <,+,×) |= ψ(n).

I Let C be the set of all square numbers. Known:
• × is FO(<,+,C)-definable in ([N], <,+,C) via ϕ×(x , y , z).

• “C = square numbers” is FO(<,+,C)-definable via ϕC=squares.
I Substitute ϕ× for × in ψ(z) and let, for each n ∈ N, ψ̃n := ψ(n) ∧ ϕC=squares.

Note: ψ̃n is an FO(<,+,C)-sentence.
I Furthermore, n 6∈ H ⇐⇒ ψ̃n is addition-invariant.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 12

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Addition-invariance for unary signatures is undecidable

Theorem: Addition-invariance of a given FO(C, <,+)-sentence ϕ
(on the class of all finite colored sets) is not decidable.

Proof: Notation: [N] := {0, 1, . . . ,N}
I Let H ⊆ N be recursively enumerable, but not decidable.
I Goal: Construct, for each n ∈ N, a FO(C, <,+)-sentence ψ̃n such that

n 6∈ H ⇐⇒ ψ̃n is addition-invariant.
I Since H is r.e., it is FO-definable in bounded arithmetic. Thus, there is a

FO(<,+,×)-formula ψ(z) such that for all n ∈ N we have:

n ∈ H ⇐⇒ there is an N > n such that ([N], <,+,×) |= ψ(n).

I Let C be the set of all square numbers. Known:
• × is FO(<,+,C)-definable in ([N], <,+,C) via ϕ×(x , y , z).
• “C = square numbers” is FO(<,+,C)-definable via ϕC=squares.

I Substitute ϕ× for × in ψ(z) and let, for each n ∈ N, ψ̃n := ψ(n) ∧ ϕC=squares.
Note: ψ̃n is an FO(<,+,C)-sentence.

I Furthermore, n 6∈ H ⇐⇒ ψ̃n is addition-invariant.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 12

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Addition-invariance for unary signatures is undecidable

Theorem: Addition-invariance of a given FO(C, <,+)-sentence ϕ
(on the class of all finite colored sets) is not decidable.

Proof: Notation: [N] := {0, 1, . . . ,N}
I Let H ⊆ N be recursively enumerable, but not decidable.
I Goal: Construct, for each n ∈ N, a FO(C, <,+)-sentence ψ̃n such that

n 6∈ H ⇐⇒ ψ̃n is addition-invariant.
I Since H is r.e., it is FO-definable in bounded arithmetic. Thus, there is a

FO(<,+,×)-formula ψ(z) such that for all n ∈ N we have:

n ∈ H ⇐⇒ there is an N > n such that ([N], <,+,×) |= ψ(n).

I Let C be the set of all square numbers. Known:
• × is FO(<,+,C)-definable in ([N], <,+,C) via ϕ×(x , y , z).
• “C = square numbers” is FO(<,+,C)-definable via ϕC=squares.

I Substitute ϕ× for × in ψ(z) and let, for each n ∈ N, ψ̃n := ψ(n) ∧ ϕC=squares.

Note: ψ̃n is an FO(<,+,C)-sentence.
I Furthermore, n 6∈ H ⇐⇒ ψ̃n is addition-invariant.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 12

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Addition-invariance for unary signatures is undecidable

Theorem: Addition-invariance of a given FO(C, <,+)-sentence ϕ
(on the class of all finite colored sets) is not decidable.

Proof: Notation: [N] := {0, 1, . . . ,N}
I Let H ⊆ N be recursively enumerable, but not decidable.
I Goal: Construct, for each n ∈ N, a FO(C, <,+)-sentence ψ̃n such that

n 6∈ H ⇐⇒ ψ̃n is addition-invariant.
I Since H is r.e., it is FO-definable in bounded arithmetic. Thus, there is a

FO(<,+,×)-formula ψ(z) such that for all n ∈ N we have:

n ∈ H ⇐⇒ there is an N > n such that ([N], <,+,×) |= ψ(n).

I Let C be the set of all square numbers. Known:
• × is FO(<,+,C)-definable in ([N], <,+,C) via ϕ×(x , y , z).
• “C = square numbers” is FO(<,+,C)-definable via ϕC=squares.

I Substitute ϕ× for × in ψ(z) and let, for each n ∈ N, ψ̃n := ψ(n) ∧ ϕC=squares.
Note: ψ̃n is an FO(<,+,C)-sentence.

I Furthermore, n 6∈ H ⇐⇒ ψ̃n is addition-invariant.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 12

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Addition-invariance for unary signatures is undecidable

Theorem: Addition-invariance of a given FO(C, <,+)-sentence ϕ
(on the class of all finite colored sets) is not decidable.

Proof: Notation: [N] := {0, 1, . . . ,N}
I Let H ⊆ N be recursively enumerable, but not decidable.
I Goal: Construct, for each n ∈ N, a FO(C, <,+)-sentence ψ̃n such that

n 6∈ H ⇐⇒ ψ̃n is addition-invariant.
I Since H is r.e., it is FO-definable in bounded arithmetic. Thus, there is a

FO(<,+,×)-formula ψ(z) such that for all n ∈ N we have:

n ∈ H ⇐⇒ there is an N > n such that ([N], <,+,×) |= ψ(n).

I Let C be the set of all square numbers. Known:
• × is FO(<,+,C)-definable in ([N], <,+,C) via ϕ×(x , y , z).
• “C = square numbers” is FO(<,+,C)-definable via ϕC=squares.

I Substitute ϕ× for × in ψ(z) and let, for each n ∈ N, ψ̃n := ψ(n) ∧ ϕC=squares.
Note: ψ̃n is an FO(<,+,C)-sentence.

I Furthermore, n 6∈ H ⇐⇒ ψ̃n is addition-invariant.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 12

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Overview

Introduction

Invariant logics

Undecidability

Expressiveness

Locality Results

Order-invariant logics on strings

Final Remarks

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 13

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

FO < order-invariant FO — Gurevich’s proof

Theorem (Gurevich):
For a finite set X let BX := (2X ,⊆) be the Boolean algebra over X .

There is an order-inv. FO(⊆, <)-sentence ϕeven such that for every finite set X :

BX |= ϕeven ⇐⇒ |X | is even.

But there is no FO(⊆)-sentence ψeven such that for every finite set X :

BX |= ψeven ⇐⇒ |X | is even.

Proof:

Part 1: ϕeven expresses that there is a set z that contains the first (w.r.t. <) atom of
X , every other (w.r.t. <) atom of X , but not the last (w.r.t. <) atom of X .

Part 2: Use an Ehrenfeucht-Fraïssé game argument to show that
BX ≡r BY for all finite X ,Y of cardinality > 2r .

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 14

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

FO < order-invariant FO — Gurevich’s proof

Theorem (Gurevich):
For a finite set X let BX := (2X ,⊆) be the Boolean algebra over X .

There is an order-inv. FO(⊆, <)-sentence ϕeven such that for every finite set X :

BX |= ϕeven ⇐⇒ |X | is even.

But there is no FO(⊆)-sentence ψeven such that for every finite set X :

BX |= ψeven ⇐⇒ |X | is even.

Proof:

Part 1: ϕeven expresses that there is a set z that contains the first (w.r.t. <) atom of
X , every other (w.r.t. <) atom of X , but not the last (w.r.t. <) atom of X .

Part 2: Use an Ehrenfeucht-Fraïssé game argument to show that
BX ≡r BY for all finite X ,Y of cardinality > 2r .

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 14

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

FO < order-invariant FO — Gurevich’s proof

Theorem (Gurevich):
For a finite set X let BX := (2X ,⊆) be the Boolean algebra over X .

There is an order-inv. FO(⊆, <)-sentence ϕeven such that for every finite set X :

BX |= ϕeven ⇐⇒ |X | is even.

But there is no FO(⊆)-sentence ψeven such that for every finite set X :

BX |= ψeven ⇐⇒ |X | is even.

Proof:

Part 1: ϕeven expresses that there is a set z that contains the first (w.r.t. <) atom of
X , every other (w.r.t. <) atom of X , but not the last (w.r.t. <) atom of X .

Part 2: Use an Ehrenfeucht-Fraïssé game argument to show that
BX ≡r BY for all finite X ,Y of cardinality > 2r .

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 14

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

FO < order-invariant FO — Gurevich’s proof

Theorem (Gurevich):
For a finite set X let BX := (2X ,⊆) be the Boolean algebra over X .

There is an order-inv. FO(⊆, <)-sentence ϕeven such that for every finite set X :

BX |= ϕeven ⇐⇒ |X | is even.

But there is no FO(⊆)-sentence ψeven such that for every finite set X :

BX |= ψeven ⇐⇒ |X | is even.

Proof:

Part 1: ϕeven expresses that there is a set z that contains the first (w.r.t. <) atom of
X , every other (w.r.t. <) atom of X , but not the last (w.r.t. <) atom of X .

Part 2: Use an Ehrenfeucht-Fraïssé game argument to show that
BX ≡r BY for all finite X ,Y of cardinality > 2r .

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 14

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

FO < order-invariant FO — Gurevich’s proof

Theorem (Gurevich):
For a finite set X let BX := (2X ,⊆) be the Boolean algebra over X .

There is an order-inv. FO(⊆, <)-sentence ϕeven such that for every finite set X :

BX |= ϕeven ⇐⇒ |X | is even.

But there is no FO(⊆)-sentence ψeven such that for every finite set X :

BX |= ψeven ⇐⇒ |X | is even.

Proof:

Part 1: ϕeven expresses that there is a set z that contains the first (w.r.t. <) atom of
X , every other (w.r.t. <) atom of X , but not the last (w.r.t. <) atom of X .

Part 2: Use an Ehrenfeucht-Fraïssé game argument to show that
BX ≡r BY for all finite X ,Y of cardinality > 2r .

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 14

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

FO < order-invariant FO — Potthoff’s proof
Theorem (Potthoff):
Represent a finite unordered binary tree T by a {E ,D}-structure AT where
(A,EA) = T and DA is the transitive closure of EA (i.e., the descendant-relation).

There is an order-inv. FO(E ,D, <)-sentence ϕeven such that
for every finite full binary tree T we have:

AT |= ϕeven ⇐⇒ every leaf of T has even height.

But there is no FO(E ,D)-sentence ψeven such that for every full binary tree T :

AT |= ψeven ⇐⇒ every leaf of T has even height.

Proof:

Part 2: Use an Ehrenfeucht-Fraïssé game argument to show that AT ≡r AT ′ for all
unordered full binary trees of height > 2r+1.

Part 1: For simplicity, we here only construct ϕeven that is order-invariant on AT for
full binary trees T .

Exercise: Work out the details for the general case!

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 15

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

FO < order-invariant FO — Potthoff’s proof
Theorem (Potthoff):
Represent a finite unordered binary tree T by a {E ,D}-structure AT where
(A,EA) = T and DA is the transitive closure of EA (i.e., the descendant-relation).

There is an order-inv. FO(E ,D, <)-sentence ϕeven such that
for every finite full binary tree T we have:

AT |= ϕeven ⇐⇒ every leaf of T has even height.

But there is no FO(E ,D)-sentence ψeven such that for every full binary tree T :

AT |= ψeven ⇐⇒ every leaf of T has even height.

Proof:

Part 2: Use an Ehrenfeucht-Fraïssé game argument to show that AT ≡r AT ′ for all
unordered full binary trees of height > 2r+1.

Part 1: For simplicity, we here only construct ϕeven that is order-invariant on AT for
full binary trees T .

Exercise: Work out the details for the general case!

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 15

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

FO < order-invariant FO — Potthoff’s proof
Theorem (Potthoff):
Represent a finite unordered binary tree T by a {E ,D}-structure AT where
(A,EA) = T and DA is the transitive closure of EA (i.e., the descendant-relation).

There is an order-inv. FO(E ,D, <)-sentence ϕeven such that
for every finite full binary tree T we have:

AT |= ϕeven ⇐⇒ every leaf of T has even height.

But there is no FO(E ,D)-sentence ψeven such that for every full binary tree T :

AT |= ψeven ⇐⇒ every leaf of T has even height.

Proof:

Part 2: Use an Ehrenfeucht-Fraïssé game argument to show that AT ≡r AT ′ for all
unordered full binary trees of height > 2r+1.

Part 1: For simplicity, we here only construct ϕeven that is order-invariant on AT for
full binary trees T .

Exercise: Work out the details for the general case!

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 15

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

FO < order-invariant FO — Potthoff’s proof
Theorem (Potthoff):
Represent a finite unordered binary tree T by a {E ,D}-structure AT where
(A,EA) = T and DA is the transitive closure of EA (i.e., the descendant-relation).

There is an order-inv. FO(E ,D, <)-sentence ϕeven such that
for every finite full binary tree T we have:

AT |= ϕeven ⇐⇒ every leaf of T has even height.

But there is no FO(E ,D)-sentence ψeven such that for every full binary tree T :

AT |= ψeven ⇐⇒ every leaf of T has even height.

Proof:

Part 2: Use an Ehrenfeucht-Fraïssé game argument to show that AT ≡r AT ′ for all
unordered full binary trees of height > 2r+1.

Part 1: For simplicity, we here only construct ϕeven that is order-invariant on AT for
full binary trees T .

Exercise: Work out the details for the general case!

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 15

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

FO < order-invariant FO — Potthoff’s proof
Theorem (Potthoff):
Represent a finite unordered binary tree T by a {E ,D}-structure AT where
(A,EA) = T and DA is the transitive closure of EA (i.e., the descendant-relation).

There is an order-inv. FO(E ,D, <)-sentence ϕeven such that
for every finite full binary tree T we have:

AT |= ϕeven ⇐⇒ every leaf of T has even height.

But there is no FO(E ,D)-sentence ψeven such that for every full binary tree T :

AT |= ψeven ⇐⇒ every leaf of T has even height.

Proof:

Part 2: Use an Ehrenfeucht-Fraïssé game argument to show that AT ≡r AT ′ for all
unordered full binary trees of height > 2r+1.

Part 1: For simplicity, we here only construct ϕeven that is order-invariant on AT for
full binary trees T .

Exercise: Work out the details for the general case!

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 15

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

FO < order-invariant FO — Potthoff’s proof
Theorem (Potthoff):
Represent a finite unordered binary tree T by a {E ,D}-structure AT where
(A,EA) = T and DA is the transitive closure of EA (i.e., the descendant-relation).

There is an order-inv. FO(E ,D, <)-sentence ϕeven such that
for every finite full binary tree T we have:

AT |= ϕeven ⇐⇒ every leaf of T has even height.

But there is no FO(E ,D)-sentence ψeven such that for every full binary tree T :

AT |= ψeven ⇐⇒ every leaf of T has even height.

Proof:

Part 2: Use an Ehrenfeucht-Fraïssé game argument to show that AT ≡r AT ′ for all
unordered full binary trees of height > 2r+1.

Part 1: For simplicity, we here only construct ϕeven that is order-invariant on AT for
full binary trees T .

Exercise: Work out the details for the general case!
NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 15

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Part 1: For simplicity, we here only construct ϕeven that is order-invariant on AT for
full binary trees T .

I Use < to order the children of each node a of T : If b1 < b2 are the children of a,
then b1 is called the 1-child and b2 the 2-child of a.

I Consider the zig-zag-path which starts in the root, visits the root’s 1-child, that
node’s 2-child, that node’s 1-child, etc.

I A full binary tree T has even height iff the last node on the zig-zag-path is a
2-child. This can be expressed in order-inv. FO(E ,D, <) which states that
I exists x0, xh such that
I root(x0), leaf(xh), xh is a 2-child,
I the node x1 satisfying E(x0, x1) ∧ D(x1, xh) is a 1-child
I for any 3 nodes u, v ,w such that

E(u, v) and E(v ,w) and (D(w , xh) ∨ w = xh) we have:
v is a 1-child iff w is a 2-child.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 16

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Part 1: For simplicity, we here only construct ϕeven that is order-invariant on AT for
full binary trees T .

I Use < to order the children of each node a of T :

If b1 < b2 are the children of a,
then b1 is called the 1-child and b2 the 2-child of a.

I Consider the zig-zag-path which starts in the root, visits the root’s 1-child, that
node’s 2-child, that node’s 1-child, etc.

I A full binary tree T has even height iff the last node on the zig-zag-path is a
2-child. This can be expressed in order-inv. FO(E ,D, <) which states that
I exists x0, xh such that
I root(x0), leaf(xh), xh is a 2-child,
I the node x1 satisfying E(x0, x1) ∧ D(x1, xh) is a 1-child
I for any 3 nodes u, v ,w such that

E(u, v) and E(v ,w) and (D(w , xh) ∨ w = xh) we have:
v is a 1-child iff w is a 2-child.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 16

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Part 1: For simplicity, we here only construct ϕeven that is order-invariant on AT for
full binary trees T .

I Use < to order the children of each node a of T : If b1 < b2 are the children of a,
then b1 is called the 1-child and b2 the 2-child of a.

I Consider the zig-zag-path which starts in the root, visits the root’s 1-child, that
node’s 2-child, that node’s 1-child, etc.

I A full binary tree T has even height iff the last node on the zig-zag-path is a
2-child. This can be expressed in order-inv. FO(E ,D, <) which states that
I exists x0, xh such that
I root(x0), leaf(xh), xh is a 2-child,
I the node x1 satisfying E(x0, x1) ∧ D(x1, xh) is a 1-child
I for any 3 nodes u, v ,w such that

E(u, v) and E(v ,w) and (D(w , xh) ∨ w = xh) we have:
v is a 1-child iff w is a 2-child.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 16

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Part 1: For simplicity, we here only construct ϕeven that is order-invariant on AT for
full binary trees T .

I Use < to order the children of each node a of T : If b1 < b2 are the children of a,
then b1 is called the 1-child and b2 the 2-child of a.

I Consider the zig-zag-path which starts in the root, visits the root’s 1-child, that
node’s 2-child, that node’s 1-child, etc.

I A full binary tree T has even height iff the last node on the zig-zag-path is a
2-child. This can be expressed in order-inv. FO(E ,D, <) which states that
I exists x0, xh such that
I root(x0), leaf(xh), xh is a 2-child,
I the node x1 satisfying E(x0, x1) ∧ D(x1, xh) is a 1-child
I for any 3 nodes u, v ,w such that

E(u, v) and E(v ,w) and (D(w , xh) ∨ w = xh) we have:
v is a 1-child iff w is a 2-child.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 16

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Part 1: For simplicity, we here only construct ϕeven that is order-invariant on AT for
full binary trees T .

I Use < to order the children of each node a of T : If b1 < b2 are the children of a,
then b1 is called the 1-child and b2 the 2-child of a.

I Consider the zig-zag-path which starts in the root, visits the root’s 1-child, that
node’s 2-child, that node’s 1-child, etc.

I A full binary tree T has even height iff the last node on the zig-zag-path is a
2-child.

This can be expressed in order-inv. FO(E ,D, <) which states that
I exists x0, xh such that
I root(x0), leaf(xh), xh is a 2-child,
I the node x1 satisfying E(x0, x1) ∧ D(x1, xh) is a 1-child
I for any 3 nodes u, v ,w such that

E(u, v) and E(v ,w) and (D(w , xh) ∨ w = xh) we have:
v is a 1-child iff w is a 2-child.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 16

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Part 1: For simplicity, we here only construct ϕeven that is order-invariant on AT for
full binary trees T .

I Use < to order the children of each node a of T : If b1 < b2 are the children of a,
then b1 is called the 1-child and b2 the 2-child of a.

I Consider the zig-zag-path which starts in the root, visits the root’s 1-child, that
node’s 2-child, that node’s 1-child, etc.

I A full binary tree T has even height iff the last node on the zig-zag-path is a
2-child. This can be expressed in order-inv. FO(E ,D, <) which states that
I exists x0, xh such that
I root(x0), leaf(xh), xh is a 2-child,

I the node x1 satisfying E(x0, x1) ∧ D(x1, xh) is a 1-child
I for any 3 nodes u, v ,w such that

E(u, v) and E(v ,w) and (D(w , xh) ∨ w = xh) we have:
v is a 1-child iff w is a 2-child.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 16

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Part 1: For simplicity, we here only construct ϕeven that is order-invariant on AT for
full binary trees T .

I Use < to order the children of each node a of T : If b1 < b2 are the children of a,
then b1 is called the 1-child and b2 the 2-child of a.

I Consider the zig-zag-path which starts in the root, visits the root’s 1-child, that
node’s 2-child, that node’s 1-child, etc.

I A full binary tree T has even height iff the last node on the zig-zag-path is a
2-child. This can be expressed in order-inv. FO(E ,D, <) which states that
I exists x0, xh such that
I root(x0), leaf(xh), xh is a 2-child,
I the node x1 satisfying E(x0, x1) ∧ D(x1, xh) is a 1-child

I for any 3 nodes u, v ,w such that
E(u, v) and E(v ,w) and (D(w , xh) ∨ w = xh) we have:
v is a 1-child iff w is a 2-child.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 16

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Part 1: For simplicity, we here only construct ϕeven that is order-invariant on AT for
full binary trees T .

I Use < to order the children of each node a of T : If b1 < b2 are the children of a,
then b1 is called the 1-child and b2 the 2-child of a.

I Consider the zig-zag-path which starts in the root, visits the root’s 1-child, that
node’s 2-child, that node’s 1-child, etc.

I A full binary tree T has even height iff the last node on the zig-zag-path is a
2-child. This can be expressed in order-inv. FO(E ,D, <) which states that
I exists x0, xh such that
I root(x0), leaf(xh), xh is a 2-child,
I the node x1 satisfying E(x0, x1) ∧ D(x1, xh) is a 1-child
I for any 3 nodes u, v ,w such that

E(u, v) and E(v ,w) and (D(w , xh) ∨ w = xh) we have:
v is a 1-child iff w is a 2-child.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 16

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

FO < order-invariant FO — Otto’s proof
Let σ = {E ,∼,∈,V ,V ′,P′} with binary E ,∼,∈ and unary V ,V ′,P′.

Represent a graph G = (V ,E) on 2n nodes by the σ-structure S2n(G):

Theorem (Otto):
There is an order-inv. FO(σ,<)-sentence ϕconn, but no FO(σ)-sentence, such that
for all n ∈ N and all graphs G on 2n nodes we have

S2n(G) |= ϕconn ⇐⇒ G is connected.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 17

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

FO < order-invariant FO — Otto’s proof
Let σ = {E ,∼,∈,V ,V ′,P′} with binary E ,∼,∈ and unary V ,V ′,P′.

Represent a graph G = (V ,E) on 2n nodes by the σ-structure S2n(G):

Theorem (Otto):
There is an order-inv. FO(σ,<)-sentence ϕconn, but no FO(σ)-sentence, such that
for all n ∈ N and all graphs G on 2n nodes we have

S2n(G) |= ϕconn ⇐⇒ G is connected.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 17

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Successor-invariant FO

By a much more elaborate construction, one can also show:

Theorem (Rossman, LICS’03)
On the class of all finite structures,
successor-invariant FO is strictly more expressive than FO.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 18

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

FO+MOD2 < order-invariant FO+MOD2

FO+MOD2 : the extension of FO by modulo 2 counting quantifiers
∃0 mod 2x ψ(x) : the number of nodes x satisfying ψ(x) is congruent 0 modulo 2.

Theorem (Niemistö):
There is an order-invariant FO+MOD2(E)-sentence ϕeven cycles that is satisfied by
a finite directed graph G = (V G,EG) iff

(1) G is a disjoint union of directed cycles, and

(2) the number of even-length cycles is even.

Proof:
I (1) can be expressed in FO: “every node has in- and out-degree 1”
I Every G satisfying (1) is the cycle decomposition of a permutation π.
I G has an even number of even-length cycles ⇐⇒
π is an even permutation, i.e., sgn(π) = 1 ⇐⇒
π has an even number of inversions (i, j) such that i < j and π(i) > π(j).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 19

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

FO+MOD2 < order-invariant FO+MOD2

FO+MOD2 : the extension of FO by modulo 2 counting quantifiers
∃0 mod 2x ψ(x) : the number of nodes x satisfying ψ(x) is congruent 0 modulo 2.

Theorem (Niemistö):
There is an order-invariant FO+MOD2(E)-sentence ϕeven cycles that is satisfied by
a finite directed graph G = (V G,EG) iff

(1) G is a disjoint union of directed cycles, and

(2) the number of even-length cycles is even.

Proof:
I (1) can be expressed in FO: “every node has in- and out-degree 1”
I Every G satisfying (1) is the cycle decomposition of a permutation π.

I G has an even number of even-length cycles ⇐⇒
π is an even permutation, i.e., sgn(π) = 1 ⇐⇒
π has an even number of inversions (i, j) such that i < j and π(i) > π(j).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 19

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

FO+MOD2 < order-invariant FO+MOD2

FO+MOD2 : the extension of FO by modulo 2 counting quantifiers
∃0 mod 2x ψ(x) : the number of nodes x satisfying ψ(x) is congruent 0 modulo 2.

Theorem (Niemistö):
There is an order-invariant FO+MOD2(E)-sentence ϕeven cycles that is satisfied by
a finite directed graph G = (V G,EG) iff

(1) G is a disjoint union of directed cycles, and

(2) the number of even-length cycles is even.

Proof:
I (1) can be expressed in FO: “every node has in- and out-degree 1”
I Every G satisfying (1) is the cycle decomposition of a permutation π.
I G has an even number of even-length cycles ⇐⇒

π is an even permutation, i.e., sgn(π) = 1 ⇐⇒
π has an even number of inversions (i, j) such that i < j and π(i) > π(j).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 19

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

FO+MOD2 < order-invariant FO+MOD2

FO+MOD2 : the extension of FO by modulo 2 counting quantifiers
∃0 mod 2x ψ(x) : the number of nodes x satisfying ψ(x) is congruent 0 modulo 2.

Theorem (Niemistö):
There is an order-invariant FO+MOD2(E)-sentence ϕeven cycles that is satisfied by
a finite directed graph G = (V G,EG) iff

(1) G is a disjoint union of directed cycles, and

(2) the number of even-length cycles is even.

Proof:
I (1) can be expressed in FO: “every node has in- and out-degree 1”
I Every G satisfying (1) is the cycle decomposition of a permutation π.
I G has an even number of even-length cycles ⇐⇒
π is an even permutation, i.e., sgn(π) = 1 ⇐⇒

π has an even number of inversions (i, j) such that i < j and π(i) > π(j).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 19

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

FO+MOD2 < order-invariant FO+MOD2

FO+MOD2 : the extension of FO by modulo 2 counting quantifiers
∃0 mod 2x ψ(x) : the number of nodes x satisfying ψ(x) is congruent 0 modulo 2.

Theorem (Niemistö):
There is an order-invariant FO+MOD2(E)-sentence ϕeven cycles that is satisfied by
a finite directed graph G = (V G,EG) iff

(1) G is a disjoint union of directed cycles, and

(2) the number of even-length cycles is even.

Proof:
I (1) can be expressed in FO: “every node has in- and out-degree 1”
I Every G satisfying (1) is the cycle decomposition of a permutation π.
I G has an even number of even-length cycles ⇐⇒
π is an even permutation, i.e., sgn(π) = 1 ⇐⇒
π has an even number of inversions (i, j) such that i < j and π(i) > π(j).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 19

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Order-invariant MSO
CMSO : the extension of MSO by modulo counting quantifiers
∃r mod mx ψ(x) : the number of nodes x satisfying ψ(x) is congruent r modulo m.

Known:

I On trees:
Order-invariant MSO = CMSO (Courcelle 1996, Lapoire 1998)

I On the class of all finite structures:
Order-invariant MSO > CMSO (Ganzow, Rubin 2008)

The separating example:
I Consider 2-dimensional grids, represented as structures of the form(

V G, Same_Row, Same_Column
)
.

I Order-invariant MSO can express that
the number of columns is a multiple of the number of rows.

I CMSO cannot (for showing this, use a variant of EF-games).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 20

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Order-invariant MSO
CMSO : the extension of MSO by modulo counting quantifiers
∃r mod mx ψ(x) : the number of nodes x satisfying ψ(x) is congruent r modulo m.

Known:

I On trees:
Order-invariant MSO = CMSO (Courcelle 1996, Lapoire 1998)

I On the class of all finite structures:
Order-invariant MSO > CMSO (Ganzow, Rubin 2008)

The separating example:
I Consider 2-dimensional grids, represented as structures of the form(

V G, Same_Row, Same_Column
)
.

I Order-invariant MSO can express that
the number of columns is a multiple of the number of rows.

I CMSO cannot (for showing this, use a variant of EF-games).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 20

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Order-invariant MSO
CMSO : the extension of MSO by modulo counting quantifiers
∃r mod mx ψ(x) : the number of nodes x satisfying ψ(x) is congruent r modulo m.

Known:

I On trees:
Order-invariant MSO = CMSO (Courcelle 1996, Lapoire 1998)

I On the class of all finite structures:
Order-invariant MSO > CMSO (Ganzow, Rubin 2008)

The separating example:
I Consider 2-dimensional grids, represented as structures of the form(

V G, Same_Row, Same_Column
)
.

I Order-invariant MSO can express that
the number of columns is a multiple of the number of rows.

I CMSO cannot (for showing this, use a variant of EF-games).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 20

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Order-invariant MSO
CMSO : the extension of MSO by modulo counting quantifiers
∃r mod mx ψ(x) : the number of nodes x satisfying ψ(x) is congruent r modulo m.

Known:

I On trees:
Order-invariant MSO = CMSO (Courcelle 1996, Lapoire 1998)

I On the class of all finite structures:
Order-invariant MSO > CMSO (Ganzow, Rubin 2008)

The separating example:
I Consider 2-dimensional grids, represented as structures of the form(

V G, Same_Row, Same_Column
)
.

I Order-invariant MSO can express that
the number of columns is a multiple of the number of rows.

I CMSO cannot (for showing this, use a variant of EF-games).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 20

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Order-invariant MSO
CMSO : the extension of MSO by modulo counting quantifiers
∃r mod mx ψ(x) : the number of nodes x satisfying ψ(x) is congruent r modulo m.

Known:

I On trees:
Order-invariant MSO = CMSO (Courcelle 1996, Lapoire 1998)

I On the class of all finite structures:
Order-invariant MSO > CMSO (Ganzow, Rubin 2008)

The separating example:
I Consider 2-dimensional grids, represented as structures of the form(

V G, Same_Row, Same_Column
)
.

I Order-invariant MSO can express that
the number of columns is a multiple of the number of rows.

I CMSO cannot (for showing this, use a variant of EF-games).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 20

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Order-invariant MSO
CMSO : the extension of MSO by modulo counting quantifiers
∃r mod mx ψ(x) : the number of nodes x satisfying ψ(x) is congruent r modulo m.

Known:

I On trees:
Order-invariant MSO = CMSO (Courcelle 1996, Lapoire 1998)

I On the class of all finite structures:
Order-invariant MSO > CMSO (Ganzow, Rubin 2008)

The separating example:
I Consider 2-dimensional grids, represented as structures of the form(

V G, Same_Row, Same_Column
)
.

I Order-invariant MSO can express that
the number of columns is a multiple of the number of rows.

I CMSO cannot (for showing this, use a variant of EF-games).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 20

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Overview

Introduction

Invariant logics

Undecidability

Expressiveness

Locality Results

Order-invariant logics on strings

Final Remarks

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 21

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Neighborhoods
Graph G = (V G,EG)

Distance dist(u, v) : length of shortest path from u to v in undirected version of G.

Shell Sr (a) of nodes at distance exactly r from a.

Ball Nr (a) of radius r at a in G.

Neighborhood NG
r (a) of radius r at a in G : induced subgraph of G on Nr (a).

a

r = 1

r = 2

r = 0

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 22

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Neighborhoods
Graph G = (V G,EG)

Distance dist(u, v) : length of shortest path from u to v in undirected version of G.

Shell Sr (a) of nodes at distance exactly r from a.

Ball Nr (a) of radius r at a in G.

Neighborhood NG
r (a) of radius r at a in G : induced subgraph of G on Nr (a).

a a

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 22

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Gaifman-local queries

I For a list a = a1, . . . , ak of nodes, Nr (a) = Nr (a1) ∪ · · · ∪ Nr (ak).

I The r -neighborhood NG
r (a) is the induced subgraph of G on Nr (a).

Definition: Let q be a k -ary graph query. Let f : N→ N.
q is called f (n)-local if there is an n0 such that for every n > n0 and every graph G
with |V G| = n, the following is true for all k -tuples a and b of nodes:

if
(
NG

f (n)(a), a
) ∼= (

NG
f (n)(b), b

)
then a ∈ q(G) ⇐⇒ b ∈ q(G).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 23

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Gaifman-locality of FO

Theorem:

I For every graph query q that is FO-definable,
there is a constant c such that q is c-local.

(Hella, Libkin, Nurmonen 1990s; Gaifman ’82)

I For every graph query q that is FO-definable on ordered graphs
(i.e., q is definable in order-invariant FO),
there is a constant c such that q is c-local.

(Grohe, Schwentick ’98)

I For every graph query q that is FO-definable on graphs with arbitrary numerical
predicates (i.e., q is definable in Arb-invariant FO),
there is a constant c such that q is (log n)c-local.

(Anderson, van Melkebeek, S., Segoufin ’11)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 24

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Gaifman-locality of FO

Theorem:

I For every graph query q that is FO-definable,
there is a constant c such that q is c-local.

(Hella, Libkin, Nurmonen 1990s; Gaifman ’82)

I For every graph query q that is FO-definable on ordered graphs
(i.e., q is definable in order-invariant FO),
there is a constant c such that q is c-local.

(Grohe, Schwentick ’98)

I For every graph query q that is FO-definable on graphs with arbitrary numerical
predicates (i.e., q is definable in Arb-invariant FO),
there is a constant c such that q is (log n)c-local.

(Anderson, van Melkebeek, S., Segoufin ’11)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 24

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Gaifman-locality of FO

Theorem:

I For every graph query q that is FO-definable,
there is a constant c such that q is c-local.

(Hella, Libkin, Nurmonen 1990s; Gaifman ’82)

I For every graph query q that is FO-definable on ordered graphs
(i.e., q is definable in order-invariant FO),
there is a constant c such that q is c-local.

(Grohe, Schwentick ’98)

I For every graph query q that is FO-definable on graphs with arbitrary numerical
predicates (i.e., q is definable in Arb-invariant FO),
there is a constant c such that q is (log n)c-local.

(Anderson, van Melkebeek, S., Segoufin ’11)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 24

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Use locality for proving non-expressibility

Example: The reachability query

REACH(G) := { (a1, a2) : there is a directed path from a1 to a2 in G }

is not n
5 -local an thus cannot be expressed in Arb-invariant FO.

Proof: Consider the graph G:
a
1 b

1

a
2 b

2

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 25

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Use locality for proving non-expressibility

Similarly, one obtains that the following queries are not definable in Arb-invariant FO:

• Does node x lie on a cycle?

• Does node x belong to a connected component that is acyclic?

• Is node x reachable from a node that belongs to a triangle?

• Do nodes x and y have the same distance to node z?

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 26

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of Gaifman-locality theorem (1/5)

For every query q expressible by Arb-invariant FO, there is a c ∈ N such that
q is (log n)c-local.

Idea: Use known lower bounds in circuit complexity!

I Let q be expressible by an Arb-invariant FO formula.

I Then, q can be computed by an AC0 circuit family C (Immerman ’87).

I Assume that q is not (log n)c-local (for any c ∈ N), and
modify C to obtain a circuit family computing

PARITY := {w ∈ {0, 1}∗ : |w |1 is even}.

I This contradicts known lower bounds in circuit complexity theory (Håstad’86).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 27

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of Gaifman-locality theorem (1/5)

For every query q expressible by Arb-invariant FO, there is a c ∈ N such that
q is (log n)c-local.

Idea: Use known lower bounds in circuit complexity!

I Let q be expressible by an Arb-invariant FO formula.

I Then, q can be computed by an AC0 circuit family C (Immerman ’87).

I Assume that q is not (log n)c-local (for any c ∈ N), and
modify C to obtain a circuit family computing

PARITY := {w ∈ {0, 1}∗ : |w |1 is even}.

I This contradicts known lower bounds in circuit complexity theory (Håstad’86).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 27

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of Gaifman-locality theorem (1/5)

For every query q expressible by Arb-invariant FO, there is a c ∈ N such that
q is (log n)c-local.

Idea: Use known lower bounds in circuit complexity!

I Let q be expressible by an Arb-invariant FO formula.

I Then, q can be computed by an AC0 circuit family C (Immerman ’87).

I Assume that q is not (log n)c-local (for any c ∈ N), and
modify C to obtain a circuit family computing

PARITY := {w ∈ {0, 1}∗ : |w |1 is even}.

I This contradicts known lower bounds in circuit complexity theory (Håstad’86).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 27

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of Gaifman-locality theorem (1/5)

For every query q expressible by Arb-invariant FO, there is a c ∈ N such that
q is (log n)c-local.

Idea: Use known lower bounds in circuit complexity!

I Let q be expressible by an Arb-invariant FO formula.

I Then, q can be computed by an AC0 circuit family C (Immerman ’87).

I Assume that q is not (log n)c-local (for any c ∈ N), and
modify C to obtain a circuit family computing

PARITY := {w ∈ {0, 1}∗ : |w |1 is even}.

I This contradicts known lower bounds in circuit complexity theory (Håstad’86).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 27

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of Gaifman-locality theorem (2/5)
How to compute a graph query q(x) by a circuit family C?

• Represent graph G = (V G,EG) by a bitstring
β(G) corresponding to an adjacency matrix for G.

• Represent a node a ∈ V G by the bitstring
β(a) of the form 0∗10∗, carrying the 1 at position i iff node a corresponds to the
i-th row/column of the adjacency matrix.

• Let Rep(G, a) be the set of all bitstrings β(G)β(a), corresponding to all
adjacency matrices of G (i.e., all ways of embedding V in {1, . . . , |V |}).
Thus, Rep(G, a) is the set of all bitstrings representing (G, a).

• A unary graph query q(x) is computed by a circuit family C = (Cn)n∈N iff the
following is true:
for all G = (V G,EG), a ∈ V G, γ ∈ Rep(G, a): a ∈ q(G) ⇐⇒ C|γ| accepts γ.

• Known: A unary graph query q(x) is definable in Arb-invariant FO ⇐⇒
it is computed by an AC0-circuit family of constant depth and polynomial size.

(implicit in Immerman’87)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 28

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of Gaifman-locality theorem (2/5)
How to compute a graph query q(x) by a circuit family C?

• Represent graph G = (V G,EG) by a bitstring
β(G) corresponding to an adjacency matrix for G.

• Represent a node a ∈ V G by the bitstring
β(a) of the form 0∗10∗, carrying the 1 at position i iff node a corresponds to the
i-th row/column of the adjacency matrix.

• Let Rep(G, a) be the set of all bitstrings β(G)β(a), corresponding to all
adjacency matrices of G (i.e., all ways of embedding V in {1, . . . , |V |}).
Thus, Rep(G, a) is the set of all bitstrings representing (G, a).

• A unary graph query q(x) is computed by a circuit family C = (Cn)n∈N iff the
following is true:
for all G = (V G,EG), a ∈ V G, γ ∈ Rep(G, a): a ∈ q(G) ⇐⇒ C|γ| accepts γ.

• Known: A unary graph query q(x) is definable in Arb-invariant FO ⇐⇒
it is computed by an AC0-circuit family of constant depth and polynomial size.

(implicit in Immerman’87)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 28

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of Gaifman-locality theorem (2/5)
How to compute a graph query q(x) by a circuit family C?

• Represent graph G = (V G,EG) by a bitstring
β(G) corresponding to an adjacency matrix for G.

• Represent a node a ∈ V G by the bitstring
β(a) of the form 0∗10∗, carrying the 1 at position i iff node a corresponds to the
i-th row/column of the adjacency matrix.

• Let Rep(G, a) be the set of all bitstrings β(G)β(a), corresponding to all
adjacency matrices of G (i.e., all ways of embedding V in {1, . . . , |V |}).
Thus, Rep(G, a) is the set of all bitstrings representing (G, a).

• A unary graph query q(x) is computed by a circuit family C = (Cn)n∈N iff the
following is true:
for all G = (V G,EG), a ∈ V G, γ ∈ Rep(G, a): a ∈ q(G) ⇐⇒ C|γ| accepts γ.

• Known: A unary graph query q(x) is definable in Arb-invariant FO ⇐⇒
it is computed by an AC0-circuit family of constant depth and polynomial size.

(implicit in Immerman’87)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 28

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of Gaifman-locality theorem (2/5)
How to compute a graph query q(x) by a circuit family C?

• Represent graph G = (V G,EG) by a bitstring
β(G) corresponding to an adjacency matrix for G.

• Represent a node a ∈ V G by the bitstring
β(a) of the form 0∗10∗, carrying the 1 at position i iff node a corresponds to the
i-th row/column of the adjacency matrix.

• Let Rep(G, a) be the set of all bitstrings β(G)β(a), corresponding to all
adjacency matrices of G (i.e., all ways of embedding V in {1, . . . , |V |}).
Thus, Rep(G, a) is the set of all bitstrings representing (G, a).

• A unary graph query q(x) is computed by a circuit family C = (Cn)n∈N iff the
following is true:
for all G = (V G,EG), a ∈ V G, γ ∈ Rep(G, a): a ∈ q(G) ⇐⇒ C|γ| accepts γ.

• Known: A unary graph query q(x) is definable in Arb-invariant FO ⇐⇒
it is computed by an AC0-circuit family of constant depth and polynomial size.

(implicit in Immerman’87)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 28

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of Gaifman-locality theorem (2/5)
How to compute a graph query q(x) by a circuit family C?

• Represent graph G = (V G,EG) by a bitstring
β(G) corresponding to an adjacency matrix for G.

• Represent a node a ∈ V G by the bitstring
β(a) of the form 0∗10∗, carrying the 1 at position i iff node a corresponds to the
i-th row/column of the adjacency matrix.

• Let Rep(G, a) be the set of all bitstrings β(G)β(a), corresponding to all
adjacency matrices of G (i.e., all ways of embedding V in {1, . . . , |V |}).
Thus, Rep(G, a) is the set of all bitstrings representing (G, a).

• A unary graph query q(x) is computed by a circuit family C = (Cn)n∈N iff the
following is true:
for all G = (V G,EG), a ∈ V G, γ ∈ Rep(G, a): a ∈ q(G) ⇐⇒ C|γ| accepts γ.

• Known: A unary graph query q(x) is definable in Arb-invariant FO ⇐⇒
it is computed by an AC0-circuit family of constant depth and polynomial size.

(implicit in Immerman’87)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 28

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of Gaifman-locality theorem (3/5)
Let q(x) be a unary graph query expressible in Arb-invariant FO.

Let C = (Cn)n∈N be
an AC0-circuit family of constant depth d and polynomial size p(n) computing q.
I.e., for all G = (V G,EG), a ∈ V G, γ ∈ Rep(G, a): a ∈ q(G) ⇐⇒ C|γ| accepts γ.

For contradiction, assume q(x) is not (log n)c-local, for any c ∈ N.
Thus: For all c, n0 there exist n > n0, G = (V G,EG) with n nodes, a, b ∈ V G such
that for m := (log n)c ,

(
NG

m (a), a
) ∼= (NG

m (b), b
)
, but a ∈ q(G) and b 6∈ q(G).

For simplicity, consider the special case that dist(a, b) > 2m.

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V s.t.

(
NG

m (a), a
) ∼= (

NG
m (b), b

)
, dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Theorem: (Håstad ’86)
There exist `,m0 > 0 such that for all m > m0, no circuit of depth d and size
2`·m

1/(d−1)
computes parity on m bits.

Contradiction for c = 2d , since 2`·m
1/(d−1)

> 2`·(log n)2 = n` log n > p(n).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 29

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of Gaifman-locality theorem (3/5)
Let q(x) be a unary graph query expressible in Arb-invariant FO. Let C = (Cn)n∈N be
an AC0-circuit family of constant depth d and polynomial size p(n) computing q.

I.e., for all G = (V G,EG), a ∈ V G, γ ∈ Rep(G, a): a ∈ q(G) ⇐⇒ C|γ| accepts γ.

For contradiction, assume q(x) is not (log n)c-local, for any c ∈ N.
Thus: For all c, n0 there exist n > n0, G = (V G,EG) with n nodes, a, b ∈ V G such
that for m := (log n)c ,

(
NG

m (a), a
) ∼= (NG

m (b), b
)
, but a ∈ q(G) and b 6∈ q(G).

For simplicity, consider the special case that dist(a, b) > 2m.

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V s.t.

(
NG

m (a), a
) ∼= (

NG
m (b), b

)
, dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Theorem: (Håstad ’86)
There exist `,m0 > 0 such that for all m > m0, no circuit of depth d and size
2`·m

1/(d−1)
computes parity on m bits.

Contradiction for c = 2d , since 2`·m
1/(d−1)

> 2`·(log n)2 = n` log n > p(n).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 29

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of Gaifman-locality theorem (3/5)
Let q(x) be a unary graph query expressible in Arb-invariant FO. Let C = (Cn)n∈N be
an AC0-circuit family of constant depth d and polynomial size p(n) computing q.
I.e., for all G = (V G,EG), a ∈ V G, γ ∈ Rep(G, a): a ∈ q(G) ⇐⇒ C|γ| accepts γ.

For contradiction, assume q(x) is not (log n)c-local, for any c ∈ N.
Thus: For all c, n0 there exist n > n0, G = (V G,EG) with n nodes, a, b ∈ V G such
that for m := (log n)c ,

(
NG

m (a), a
) ∼= (NG

m (b), b
)
, but a ∈ q(G) and b 6∈ q(G).

For simplicity, consider the special case that dist(a, b) > 2m.

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V s.t.

(
NG

m (a), a
) ∼= (

NG
m (b), b

)
, dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Theorem: (Håstad ’86)
There exist `,m0 > 0 such that for all m > m0, no circuit of depth d and size
2`·m

1/(d−1)
computes parity on m bits.

Contradiction for c = 2d , since 2`·m
1/(d−1)

> 2`·(log n)2 = n` log n > p(n).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 29

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of Gaifman-locality theorem (3/5)
Let q(x) be a unary graph query expressible in Arb-invariant FO. Let C = (Cn)n∈N be
an AC0-circuit family of constant depth d and polynomial size p(n) computing q.
I.e., for all G = (V G,EG), a ∈ V G, γ ∈ Rep(G, a): a ∈ q(G) ⇐⇒ C|γ| accepts γ.

For contradiction, assume q(x) is not (log n)c-local, for any c ∈ N.

Thus: For all c, n0 there exist n > n0, G = (V G,EG) with n nodes, a, b ∈ V G such
that for m := (log n)c ,

(
NG

m (a), a
) ∼= (NG

m (b), b
)
, but a ∈ q(G) and b 6∈ q(G).

For simplicity, consider the special case that dist(a, b) > 2m.

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V s.t.

(
NG

m (a), a
) ∼= (

NG
m (b), b

)
, dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Theorem: (Håstad ’86)
There exist `,m0 > 0 such that for all m > m0, no circuit of depth d and size
2`·m

1/(d−1)
computes parity on m bits.

Contradiction for c = 2d , since 2`·m
1/(d−1)

> 2`·(log n)2 = n` log n > p(n).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 29

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of Gaifman-locality theorem (3/5)
Let q(x) be a unary graph query expressible in Arb-invariant FO. Let C = (Cn)n∈N be
an AC0-circuit family of constant depth d and polynomial size p(n) computing q.
I.e., for all G = (V G,EG), a ∈ V G, γ ∈ Rep(G, a): a ∈ q(G) ⇐⇒ C|γ| accepts γ.

For contradiction, assume q(x) is not (log n)c-local, for any c ∈ N.
Thus: For all c, n0 there exist n > n0, G = (V G,EG) with n nodes, a, b ∈ V G such
that

for m := (log n)c ,
(
NG

m (a), a
) ∼= (NG

m (b), b
)
, but a ∈ q(G) and b 6∈ q(G).

For simplicity, consider the special case that dist(a, b) > 2m.

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V s.t.

(
NG

m (a), a
) ∼= (

NG
m (b), b

)
, dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Theorem: (Håstad ’86)
There exist `,m0 > 0 such that for all m > m0, no circuit of depth d and size
2`·m

1/(d−1)
computes parity on m bits.

Contradiction for c = 2d , since 2`·m
1/(d−1)

> 2`·(log n)2 = n` log n > p(n).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 29

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of Gaifman-locality theorem (3/5)
Let q(x) be a unary graph query expressible in Arb-invariant FO. Let C = (Cn)n∈N be
an AC0-circuit family of constant depth d and polynomial size p(n) computing q.
I.e., for all G = (V G,EG), a ∈ V G, γ ∈ Rep(G, a): a ∈ q(G) ⇐⇒ C|γ| accepts γ.

For contradiction, assume q(x) is not (log n)c-local, for any c ∈ N.
Thus: For all c, n0 there exist n > n0, G = (V G,EG) with n nodes, a, b ∈ V G such
that for m := (log n)c ,

(
NG

m (a), a
) ∼= (NG

m (b), b
)
, but a ∈ q(G) and b 6∈ q(G).

For simplicity, consider the special case that dist(a, b) > 2m.

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V s.t.

(
NG

m (a), a
) ∼= (

NG
m (b), b

)
, dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Theorem: (Håstad ’86)
There exist `,m0 > 0 such that for all m > m0, no circuit of depth d and size
2`·m

1/(d−1)
computes parity on m bits.

Contradiction for c = 2d , since 2`·m
1/(d−1)

> 2`·(log n)2 = n` log n > p(n).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 29

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of Gaifman-locality theorem (3/5)
Let q(x) be a unary graph query expressible in Arb-invariant FO. Let C = (Cn)n∈N be
an AC0-circuit family of constant depth d and polynomial size p(n) computing q.
I.e., for all G = (V G,EG), a ∈ V G, γ ∈ Rep(G, a): a ∈ q(G) ⇐⇒ C|γ| accepts γ.

For contradiction, assume q(x) is not (log n)c-local, for any c ∈ N.
Thus: For all c, n0 there exist n > n0, G = (V G,EG) with n nodes, a, b ∈ V G such
that for m := (log n)c ,

(
NG

m (a), a
) ∼= (NG

m (b), b
)
, but a ∈ q(G) and b 6∈ q(G).

For simplicity, consider the special case that dist(a, b) > 2m.

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V s.t.

(
NG

m (a), a
) ∼= (

NG
m (b), b

)
, dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Theorem: (Håstad ’86)
There exist `,m0 > 0 such that for all m > m0, no circuit of depth d and size
2`·m

1/(d−1)
computes parity on m bits.

Contradiction for c = 2d , since 2`·m
1/(d−1)

> 2`·(log n)2 = n` log n > p(n).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 29

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of Gaifman-locality theorem (3/5)
Let q(x) be a unary graph query expressible in Arb-invariant FO. Let C = (Cn)n∈N be
an AC0-circuit family of constant depth d and polynomial size p(n) computing q.
I.e., for all G = (V G,EG), a ∈ V G, γ ∈ Rep(G, a): a ∈ q(G) ⇐⇒ C|γ| accepts γ.

For contradiction, assume q(x) is not (log n)c-local, for any c ∈ N.
Thus: For all c, n0 there exist n > n0, G = (V G,EG) with n nodes, a, b ∈ V G such
that for m := (log n)c ,

(
NG

m (a), a
) ∼= (NG

m (b), b
)
, but a ∈ q(G) and b 6∈ q(G).

For simplicity, consider the special case that dist(a, b) > 2m.

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V s.t.

(
NG

m (a), a
) ∼= (

NG
m (b), b

)
, dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Theorem: (Håstad ’86)
There exist `,m0 > 0 such that for all m > m0, no circuit of depth d and size
2`·m

1/(d−1)
computes parity on m bits.

Contradiction for c = 2d , since 2`·m
1/(d−1)

> 2`·(log n)2 = n` log n > p(n).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 29

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of Gaifman-locality theorem (3/5)
Let q(x) be a unary graph query expressible in Arb-invariant FO. Let C = (Cn)n∈N be
an AC0-circuit family of constant depth d and polynomial size p(n) computing q.
I.e., for all G = (V G,EG), a ∈ V G, γ ∈ Rep(G, a): a ∈ q(G) ⇐⇒ C|γ| accepts γ.

For contradiction, assume q(x) is not (log n)c-local, for any c ∈ N.
Thus: For all c, n0 there exist n > n0, G = (V G,EG) with n nodes, a, b ∈ V G such
that for m := (log n)c ,

(
NG

m (a), a
) ∼= (NG

m (b), b
)
, but a ∈ q(G) and b 6∈ q(G).

For simplicity, consider the special case that dist(a, b) > 2m.

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V s.t.

(
NG

m (a), a
) ∼= (

NG
m (b), b

)
, dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Theorem: (Håstad ’86)
There exist `,m0 > 0 such that for all m > m0, no circuit of depth d and size
2`·m

1/(d−1)
computes parity on m bits.

Contradiction for c = 2d , since 2`·m
1/(d−1)

> 2`·(log n)2 = n` log n > p(n).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 29

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of Gaifman-locality theorem (4/5)

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V s.t.

(
NG

m (a), a
) ∼= (

NG
m (b), b), dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Proof:

Consider w ∈ {0, 1}m.
For i ∈ {0, 1, . . . ,m − 1} with wi = 1:

Swap the endpoints of the edges
leaving Ni (a) with the corresponding
endpoints of the edges leaving Ni (b).

The resulting graph Gw ∼= G.

(Gw , a) ∼=

{
(G, a), if |w |1 even
(G, b), if |w |1 odd

Circuit C distinguishes these cases.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 30

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of Gaifman-locality theorem (4/5)

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V s.t.

(
NG

m (a), a
) ∼= (

NG
m (b), b), dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Proof:

Consider w ∈ {0, 1}m.
For i ∈ {0, 1, . . . ,m − 1} with wi = 1:

Swap the endpoints of the edges
leaving Ni (a) with the corresponding
endpoints of the edges leaving Ni (b).

The resulting graph Gw ∼= G.

(Gw , a) ∼=

{
(G, a), if |w |1 even
(G, b), if |w |1 odd

Circuit C distinguishes these cases.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 30

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of Gaifman-locality theorem (4/5)

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V s.t.

(
NG

m (a), a
) ∼= (

NG
m (b), b), dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Proof:

Consider w ∈ {0, 1}m.

For i ∈ {0, 1, . . . ,m − 1} with wi = 1:

Swap the endpoints of the edges
leaving Ni (a) with the corresponding
endpoints of the edges leaving Ni (b).

The resulting graph Gw ∼= G.

(Gw , a) ∼=

{
(G, a), if |w |1 even
(G, b), if |w |1 odd

Circuit C distinguishes these cases.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 30

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of Gaifman-locality theorem (4/5)

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V s.t.

(
NG

m (a), a
) ∼= (

NG
m (b), b), dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Proof:

Consider w ∈ {0, 1}m.

For i ∈ {0, 1, . . . ,m − 1} with wi = 1:

Swap the endpoints of the edges
leaving Ni (a) with the corresponding
endpoints of the edges leaving Ni (b).

The resulting graph Gw ∼= G.

(Gw , a) ∼=

{
(G, a), if |w |1 even
(G, b), if |w |1 odd

Circuit C distinguishes these cases.

a b

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 30

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of Gaifman-locality theorem (4/5)

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V s.t.

(
NG

m (a), a
) ∼= (

NG
m (b), b), dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Proof:

Consider w ∈ {0, 1}m.

For i ∈ {0, 1, . . . ,m − 1} with wi = 1:

Swap the endpoints of the edges
leaving Ni (a) with the corresponding
endpoints of the edges leaving Ni (b).

The resulting graph Gw ∼= G.

(Gw , a) ∼=

{
(G, a), if |w |1 even
(G, b), if |w |1 odd

Circuit C distinguishes these cases.

a b

0

m

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 30

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of Gaifman-locality theorem (4/5)

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V s.t.

(
NG

m (a), a
) ∼= (

NG
m (b), b), dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Proof:

Consider w ∈ {0, 1}m.
For i ∈ {0, 1, . . . ,m − 1} with wi = 1:

Swap the endpoints of the edges
leaving Ni (a) with the corresponding
endpoints of the edges leaving Ni (b).

The resulting graph Gw ∼= G.

(Gw , a) ∼=

{
(G, a), if |w |1 even
(G, b), if |w |1 odd

Circuit C distinguishes these cases.

a b

0

m

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 30

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of Gaifman-locality theorem (4/5)

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V s.t.

(
NG

m (a), a
) ∼= (

NG
m (b), b), dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Proof:

Consider w ∈ {0, 1}m.
For i ∈ {0, 1, . . . ,m − 1} with wi = 1:

Swap the endpoints of the edges
leaving Ni (a) with the corresponding
endpoints of the edges leaving Ni (b).

The resulting graph Gw ∼= G.

(Gw , a) ∼=

{
(G, a), if |w |1 even
(G, b), if |w |1 odd

Circuit C distinguishes these cases.

a b

0

m

i

i+ 1

u

v

π(u)

π(v)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 30

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of Gaifman-locality theorem (4/5)

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V s.t.

(
NG

m (a), a
) ∼= (

NG
m (b), b), dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Proof:

Consider w ∈ {0, 1}m.
For i ∈ {0, 1, . . . ,m − 1} with wi = 1:

Swap the endpoints of the edges
leaving Ni (a) with the corresponding
endpoints of the edges leaving Ni (b).

The resulting graph Gw ∼= G.

(Gw , a) ∼=

{
(G, a), if |w |1 even
(G, b), if |w |1 odd

Circuit C distinguishes these cases.

a b

0

m

i

i+ 1

u

v

π(u)

π(v)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 30

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of Gaifman-locality theorem (4/5)

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V s.t.

(
NG

m (a), a
) ∼= (

NG
m (b), b), dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Proof:

Consider w ∈ {0, 1}m.
For i ∈ {0, 1, . . . ,m − 1} with wi = 1:

Swap the endpoints of the edges
leaving Ni (a) with the corresponding
endpoints of the edges leaving Ni (b).

The resulting graph Gw ∼= G.

(Gw , a) ∼=

{
(G, a), if |w |1 even
(G, b), if |w |1 odd

Circuit C distinguishes these cases.

a b

0

m

i

i+ 1

u

v

π(u)

π(v)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 30

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of Gaifman-locality theorem (4/5)

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V s.t.

(
NG

m (a), a
) ∼= (

NG
m (b), b), dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Proof:

Consider w ∈ {0, 1}m.
For i ∈ {0, 1, . . . ,m − 1} with wi = 1:

Swap the endpoints of the edges
leaving Ni (a) with the corresponding
endpoints of the edges leaving Ni (b).

The resulting graph Gw ∼= G.

(Gw , a) ∼=

{
(G, a), if |w |1 even
(G, b), if |w |1 odd

Circuit C distinguishes these cases.

0

m

i

i+ 1v π(v)

b a

π(u) u

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 30

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of Gaifman-locality theorem (4/5)

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V s.t.

(
NG

m (a), a
) ∼= (

NG
m (b), b), dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Proof:

Consider w ∈ {0, 1}m.
For i ∈ {0, 1, . . . ,m − 1} with wi = 1:

Swap the endpoints of the edges
leaving Ni (a) with the corresponding
endpoints of the edges leaving Ni (b).

The resulting graph Gw ∼= G.

(Gw , a) ∼=

{
(G, a), if |w |1 even
(G, b), if |w |1 odd

Circuit C distinguishes these cases.

0

m

b a

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 30

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of Gaifman-locality theorem (4/5)

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V s.t.

(
NG

m (a), a
) ∼= (

NG
m (b), b), dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Proof:

Consider w ∈ {0, 1}m.
For i ∈ {0, 1, . . . ,m − 1} with wi = 1:

Swap the endpoints of the edges
leaving Ni (a) with the corresponding
endpoints of the edges leaving Ni (b).

The resulting graph Gw ∼= G.

(Gw , a) ∼=

{
(G, a), if |w |1 even
(G, b), if |w |1 odd

Circuit C distinguishes these cases.

b a

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 30

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of Gaifman-locality theorem (4/5)

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V s.t.

(
NG

m (a), a
) ∼= (

NG
m (b), b), dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Proof:

Consider w ∈ {0, 1}m.
For i ∈ {0, 1, . . . ,m − 1} with wi = 1:

Swap the endpoints of the edges
leaving Ni (a) with the corresponding
endpoints of the edges leaving Ni (b).

The resulting graph Gw ∼= G.

(Gw , a) ∼=

{
(G, a), if |w |1 even
(G, b), if |w |1 odd

Circuit C distinguishes these cases.

b a

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 30

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of Gaifman-locality theorem (4/5)

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V s.t.

(
NG

m (a), a
) ∼= (

NG
m (b), b), dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Proof:

Consider w ∈ {0, 1}m.
For i ∈ {0, 1, . . . ,m − 1} with wi = 1:

Swap the endpoints of the edges
leaving Ni (a) with the corresponding
endpoints of the edges leaving Ni (b).

The resulting graph Gw ∼= G.

(Gw , a) ∼=

{
(G, a), if |w |1 even
(G, b), if |w |1 odd

Circuit C distinguishes these cases.

0

m

b a

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 30

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of Gaifman-locality theorem (4/5)

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V s.t.

(
NG

m (a), a
) ∼= (

NG
m (b), b), dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Proof:

Consider w ∈ {0, 1}m.
For i ∈ {0, 1, . . . ,m − 1} with wi = 1:

Swap the endpoints of the edges
leaving Ni (a) with the corresponding
endpoints of the edges leaving Ni (b).

The resulting graph Gw ∼= G.

(Gw , a) ∼=

{
(G, a), if |w |1 even
(G, b), if |w |1 odd

Circuit C distinguishes these cases.

0

m

b a

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 30

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of Gaifman-locality theorem (4/5)

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V s.t.

(
NG

m (a), a
) ∼= (

NG
m (b), b), dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Proof:

Consider w ∈ {0, 1}m.
For i ∈ {0, 1, . . . ,m − 1} with wi = 1:

Swap the endpoints of the edges
leaving Ni (a) with the corresponding
endpoints of the edges leaving Ni (b).

The resulting graph Gw ∼= G.

(Gw , a) ∼=

{
(G, a), if |w |1 even
(G, b), if |w |1 odd

Circuit C distinguishes these cases.
0

m

b a

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 30

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of Gaifman-locality theorem (5/5)
Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V s.t.

(
NG

m (a), a
) ∼= (

NG
m (b), b

)
, dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

How to obtain C̃ from C?
I Consider C for a fixed input string γ ∈ Rep(G, a).
I Fix all input bits (as in γ) that do not correspond to potential edges between the

shells Si and Si+1, for i < m.

I For all i < m and all u ∈ Si (a), v ∈ Si+1(a) consider the potential edges
e = {u, v}, e′ = {π(u), π(v)}, ẽ = {u, π(v)}, ẽ′ = {π(u), v}.

I Replace input gates of C as follows:

e by (e ∧ ¬wi) e′ by (e′ ∧ ¬wi)

ẽ by (e ∧ wi) ẽ′ by (e′ ∧ wi)

I This yields a circuit C̃ of the same size and depth as C which, on input
w ∈ {0, 1}m does the same as C on input (Gw , a).
Thus, C̃ accepts iff |w |1 is even.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 31

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of Gaifman-locality theorem (5/5)
Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V s.t.

(
NG

m (a), a
) ∼= (

NG
m (b), b

)
, dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

How to obtain C̃ from C?
I Consider C for a fixed input string γ ∈ Rep(G, a).
I Fix all input bits (as in γ) that do not correspond to potential edges between the

shells Si and Si+1, for i < m.
I For all i < m and all u ∈ Si (a), v ∈ Si+1(a) consider the potential edges

e = {u, v}, e′ = {π(u), π(v)}, ẽ = {u, π(v)}, ẽ′ = {π(u), v}.

I Replace input gates of C as follows:

e by (e ∧ ¬wi) e′ by (e′ ∧ ¬wi)

ẽ by (e ∧ wi) ẽ′ by (e′ ∧ wi)

I This yields a circuit C̃ of the same size and depth as C which, on input
w ∈ {0, 1}m does the same as C on input (Gw , a).
Thus, C̃ accepts iff |w |1 is even.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 31

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of Gaifman-locality theorem (5/5)
Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V s.t.

(
NG

m (a), a
) ∼= (

NG
m (b), b

)
, dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

How to obtain C̃ from C?
I Consider C for a fixed input string γ ∈ Rep(G, a).
I Fix all input bits (as in γ) that do not correspond to potential edges between the

shells Si and Si+1, for i < m.
I For all i < m and all u ∈ Si (a), v ∈ Si+1(a) consider the potential edges

e = {u, v}, e′ = {π(u), π(v)}, ẽ = {u, π(v)}, ẽ′ = {π(u), v}.
I Replace input gates of C as follows:

e by (e ∧ ¬wi) e′ by (e′ ∧ ¬wi)

ẽ by (e ∧ wi) ẽ′ by (e′ ∧ wi)

I This yields a circuit C̃ of the same size and depth as C which, on input
w ∈ {0, 1}m does the same as C on input (Gw , a).
Thus, C̃ accepts iff |w |1 is even.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 31

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of Gaifman-locality theorem (5/5)
Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V s.t.

(
NG

m (a), a
) ∼= (

NG
m (b), b

)
, dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

How to obtain C̃ from C?
I Consider C for a fixed input string γ ∈ Rep(G, a).
I Fix all input bits (as in γ) that do not correspond to potential edges between the

shells Si and Si+1, for i < m.
I For all i < m and all u ∈ Si (a), v ∈ Si+1(a) consider the potential edges

e = {u, v}, e′ = {π(u), π(v)}, ẽ = {u, π(v)}, ẽ′ = {π(u), v}.
I Replace input gates of C as follows:

e by (e ∧ ¬wi) e′ by (e′ ∧ ¬wi)

ẽ by (e ∧ wi) ẽ′ by (e′ ∧ wi)

I This yields a circuit C̃ of the same size and depth as C which, on input
w ∈ {0, 1}m does the same as C on input (Gw , a).
Thus, C̃ accepts iff |w |1 is even.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 31

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Summary: Gaifman-locality of Arb-invariant FO (1/2)

Theorem: (Anderson, Melkebeek, S., Segoufin ’11)

(a) For every query q expressible by Arb-invariant FO there is a c ∈ N such that
q is (log n)c-local.

(b) For every d ∈ N there is a (+,×)-invariant FO query qd (x) that is
not (log n)d -local.

The query qd (x) states:

(1) The graph has at most (log n)d+1 non-isolated vertices.

(Use the polylog-counting capability of FO(+,×))

(2) Node x is reachable from a node that belongs to a triangle.

(Show that in graphs satisfying (1), reachability by paths of length (log n)d+1 can
be expressed in (+,×)-invariant FO)

Note: This query is not (log n)d -local.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 32

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Summary: Gaifman-locality of Arb-invariant FO (1/2)

Theorem: (Anderson, Melkebeek, S., Segoufin ’11)

(a) For every query q expressible by Arb-invariant FO there is a c ∈ N such that
q is (log n)c-local.

(b) For every d ∈ N there is a (+,×)-invariant FO query qd (x) that is
not (log n)d -local.

The query qd (x) states:

(1) The graph has at most (log n)d+1 non-isolated vertices.

(Use the polylog-counting capability of FO(+,×))

(2) Node x is reachable from a node that belongs to a triangle.

(Show that in graphs satisfying (1), reachability by paths of length (log n)d+1 can
be expressed in (+,×)-invariant FO)

Note: This query is not (log n)d -local.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 32

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Summary: Gaifman-locality of Arb-invariant FO (1/2)

Theorem: (Anderson, Melkebeek, S., Segoufin ’11)

(a) For every query q expressible by Arb-invariant FO there is a c ∈ N such that
q is (log n)c-local.

(b) For every d ∈ N there is a (+,×)-invariant FO query qd (x) that is
not (log n)d -local.

The query qd (x) states:

(1) The graph has at most (log n)d+1 non-isolated vertices.

(Use the polylog-counting capability of FO(+,×))

(2) Node x is reachable from a node that belongs to a triangle.

(Show that in graphs satisfying (1), reachability by paths of length (log n)d+1 can
be expressed in (+,×)-invariant FO)

Note: This query is not (log n)d -local.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 32

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Summary: Gaifman-locality of Arb-invariant FO (1/2)

Theorem: (Anderson, Melkebeek, S., Segoufin ’11)

(a) For every query q expressible by Arb-invariant FO there is a c ∈ N such that
q is (log n)c-local.

(b) For every d ∈ N there is a (+,×)-invariant FO query qd (x) that is
not (log n)d -local.

The query qd (x) states:

(1) The graph has at most (log n)d+1 non-isolated vertices.

(Use the polylog-counting capability of FO(+,×))

(2) Node x is reachable from a node that belongs to a triangle.

(Show that in graphs satisfying (1), reachability by paths of length (log n)d+1 can
be expressed in (+,×)-invariant FO)

Note: This query is not (log n)d -local.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 32

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Summary: Gaifman-locality of Arb-invariant FO (1/2)

Theorem: (Anderson, Melkebeek, S., Segoufin ’11)

(a) For every query q expressible by Arb-invariant FO there is a c ∈ N such that
q is (log n)c-local.

(b) For every d ∈ N there is a (+,×)-invariant FO query qd (x) that is
not (log n)d -local.

The query qd (x) states:

(1) The graph has at most (log n)d+1 non-isolated vertices.

(Use the polylog-counting capability of FO(+,×))

(2) Node x is reachable from a node that belongs to a triangle.

(Show that in graphs satisfying (1), reachability by paths of length (log n)d+1 can
be expressed in (+,×)-invariant FO)

Note: This query is not (log n)d -local.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 32

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Summary: Gaifman-locality of Arb-invariant FO (2/2)
Goal: Show that in graphs with 6 (log n)c non-isolated vertices, reachability by

paths of length (log n)c can be expressed in (+,×)-invariant FO.

Lemma: (Durand, Lautemann, More ’07)
For every c ∈ N there is a FO(<,+,×,S)-formula bijc(x , y) such that for all
n ∈ N, all S ⊆ [n] := {0, . . . , n−1}, all a, i < n we have

([n], <,+,×,S) |= bijc(a, i) ⇐⇒ |S| < (log n)c and
a is the i-th smallest element of S.

I Using this, identify the non-isolated vertices with numbers < (log n)c and
represent them by bitstrings of length c log log n.

I Identify an arbitrary vertex of G with a number < n, whose binary representation
encodes a sequence of `(n) := log n

c log log n non-isolated vertices.
I Use this to express that there is a path of length `(n) from node x to node y .
I Iterate this for c+1 times to express that there is a path of length
`(n)c+1 > (log n)c from x to y .

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 33

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Summary: Gaifman-locality of Arb-invariant FO (2/2)
Goal: Show that in graphs with 6 (log n)c non-isolated vertices, reachability by

paths of length (log n)c can be expressed in (+,×)-invariant FO.

Lemma: (Durand, Lautemann, More ’07)
For every c ∈ N there is a FO(<,+,×,S)-formula bijc(x , y) such that for all
n ∈ N, all S ⊆ [n] := {0, . . . , n−1}, all a, i < n we have

([n], <,+,×,S) |= bijc(a, i) ⇐⇒ |S| < (log n)c and
a is the i-th smallest element of S.

I Using this, identify the non-isolated vertices with numbers < (log n)c and
represent them by bitstrings of length c log log n.

I Identify an arbitrary vertex of G with a number < n, whose binary representation
encodes a sequence of `(n) := log n

c log log n non-isolated vertices.
I Use this to express that there is a path of length `(n) from node x to node y .
I Iterate this for c+1 times to express that there is a path of length
`(n)c+1 > (log n)c from x to y .

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 33

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Summary: Gaifman-locality of Arb-invariant FO (2/2)
Goal: Show that in graphs with 6 (log n)c non-isolated vertices, reachability by

paths of length (log n)c can be expressed in (+,×)-invariant FO.

Lemma: (Durand, Lautemann, More ’07)
For every c ∈ N there is a FO(<,+,×,S)-formula bijc(x , y) such that for all
n ∈ N, all S ⊆ [n] := {0, . . . , n−1}, all a, i < n we have

([n], <,+,×,S) |= bijc(a, i) ⇐⇒ |S| < (log n)c and
a is the i-th smallest element of S.

I Using this, identify the non-isolated vertices with numbers < (log n)c and
represent them by bitstrings of length c log log n.

I Identify an arbitrary vertex of G with a number < n, whose binary representation
encodes a sequence of `(n) := log n

c log log n non-isolated vertices.
I Use this to express that there is a path of length `(n) from node x to node y .

I Iterate this for c+1 times to express that there is a path of length
`(n)c+1 > (log n)c from x to y .

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 33

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Summary: Gaifman-locality of Arb-invariant FO (2/2)
Goal: Show that in graphs with 6 (log n)c non-isolated vertices, reachability by

paths of length (log n)c can be expressed in (+,×)-invariant FO.

Lemma: (Durand, Lautemann, More ’07)
For every c ∈ N there is a FO(<,+,×,S)-formula bijc(x , y) such that for all
n ∈ N, all S ⊆ [n] := {0, . . . , n−1}, all a, i < n we have

([n], <,+,×,S) |= bijc(a, i) ⇐⇒ |S| < (log n)c and
a is the i-th smallest element of S.

I Using this, identify the non-isolated vertices with numbers < (log n)c and
represent them by bitstrings of length c log log n.

I Identify an arbitrary vertex of G with a number < n, whose binary representation
encodes a sequence of `(n) := log n

c log log n non-isolated vertices.
I Use this to express that there is a path of length `(n) from node x to node y .
I Iterate this for c+1 times to express that there is a path of length
`(n)c+1 > (log n)c from x to y .

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 33

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Locality of Arb-invariant FO+MODp

In a similar way, we can also prove:

Theorem: (Harwath, S., ’13)
Let p be a prime power and let k ∈ N be coprime with p.
For every k-ary query q expressible in Arb-invariant FO+MODp, there is a c ∈ N
such that q is (log n)c-shift-local w.r.t. k.

Definition: Let q be a k -ary graph query. Let f : N→ N.
q is called f (n)-shift-local w.r.t. k if there is an n0 such that for every n > n0 and every
graph G with |V G| = n, the following is true for all k -tuples (a0, . . . , ak−1) of nodes:

if the f (n)-neighborhoods of the ai are disjoint and isomorphic,

then (a0, a1, . . . , ak−1) ∈ q(G) ⇐⇒ (a1, . . . , ak−1, a0) ∈ q(G).

Proof: Use the Razborov-Smolensky result for AC0[p]-circuits.

Corollary: Easy proof that reachability is not definable in Arb-invariant FO+MODp,
for prime power p.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 34

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Locality of Arb-invariant FO+MODp

In a similar way, we can also prove:

Theorem: (Harwath, S., ’13)
Let p be a prime power and let k ∈ N be coprime with p.
For every k-ary query q expressible in Arb-invariant FO+MODp, there is a c ∈ N
such that q is (log n)c-shift-local w.r.t. k.

Definition: Let q be a k -ary graph query. Let f : N→ N.
q is called f (n)-shift-local w.r.t. k if there is an n0 such that for every n > n0 and every
graph G with |V G| = n, the following is true for all k -tuples (a0, . . . , ak−1) of nodes:

if the f (n)-neighborhoods of the ai are disjoint and isomorphic,

then (a0, a1, . . . , ak−1) ∈ q(G) ⇐⇒ (a1, . . . , ak−1, a0) ∈ q(G).

Proof: Use the Razborov-Smolensky result for AC0[p]-circuits.

Corollary: Easy proof that reachability is not definable in Arb-invariant FO+MODp,
for prime power p.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 34

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Locality of Arb-invariant FO+MODp

In a similar way, we can also prove:

Theorem: (Harwath, S., ’13)
Let p be a prime power and let k ∈ N be coprime with p.
For every k-ary query q expressible in Arb-invariant FO+MODp, there is a c ∈ N
such that q is (log n)c-shift-local w.r.t. k.

Definition: Let q be a k -ary graph query. Let f : N→ N.
q is called f (n)-shift-local w.r.t. k if there is an n0 such that for every n > n0 and every
graph G with |V G| = n, the following is true for all k -tuples (a0, . . . , ak−1) of nodes:

if the f (n)-neighborhoods of the ai are disjoint and isomorphic,

then (a0, a1, . . . , ak−1) ∈ q(G) ⇐⇒ (a1, . . . , ak−1, a0) ∈ q(G).

Proof: Use the Razborov-Smolensky result for AC0[p]-circuits.

Corollary: Easy proof that reachability is not definable in Arb-invariant FO+MODp,
for prime power p.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 34

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Locality of Arb-invariant FO+MODp

In a similar way, we can also prove:

Theorem: (Harwath, S., ’13)
Let p be a prime power and let k ∈ N be coprime with p.
For every k-ary query q expressible in Arb-invariant FO+MODp, there is a c ∈ N
such that q is (log n)c-shift-local w.r.t. k.

Definition: Let q be a k -ary graph query. Let f : N→ N.
q is called f (n)-shift-local w.r.t. k if there is an n0 such that for every n > n0 and every
graph G with |V G| = n, the following is true for all k -tuples (a0, . . . , ak−1) of nodes:

if the f (n)-neighborhoods of the ai are disjoint and isomorphic,

then (a0, a1, . . . , ak−1) ∈ q(G) ⇐⇒ (a1, . . . , ak−1, a0) ∈ q(G).

Proof: Use the Razborov-Smolensky result for AC0[p]-circuits.

Corollary: Easy proof that reachability is not definable in Arb-invariant FO+MODp,
for prime power p.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 34

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Overview

Introduction

Invariant logics

Undecidability

Expressiveness

Locality Results

Order-invariant logics on strings

Final Remarks

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 35

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Represent words as labeled graphs

I (labeled) chain-graphs this chain-graph represents the string rbrg.

Edges correspond to the successor relation “succ” on the positions of the string.
Write < -inv-FO(succ) for order-invariant FO on these graphs.

Write +-inv-FO(succ) for addition-invariant FO on these graphs.

I transitive closure of (labeled) chain-graphs

Edges correspond to the linear order “<” on the positions of the string.
Write +-inv-FO(<) for addition-invariant FO on these graphs.
Note that on these graphs, < -inv-FO(<) is the same as FO(<).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 36

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Represent words as labeled graphs

I (labeled) chain-graphs this chain-graph represents the string rbrg.

Edges correspond to the successor relation “succ” on the positions of the string.
Write < -inv-FO(succ) for order-invariant FO on these graphs.
Write +-inv-FO(succ) for addition-invariant FO on these graphs.

I transitive closure of (labeled) chain-graphs

Edges correspond to the linear order “<” on the positions of the string.

Write +-inv-FO(<) for addition-invariant FO on these graphs.
Note that on these graphs, < -inv-FO(<) is the same as FO(<).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 36

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Represent words as labeled graphs

I (labeled) chain-graphs this chain-graph represents the string rbrg.

Edges correspond to the successor relation “succ” on the positions of the string.
Write < -inv-FO(succ) for order-invariant FO on these graphs.
Write +-inv-FO(succ) for addition-invariant FO on these graphs.

I transitive closure of (labeled) chain-graphs

Edges correspond to the linear order “<” on the positions of the string.
Write +-inv-FO(<) for addition-invariant FO on these graphs.

Note that on these graphs, < -inv-FO(<) is the same as FO(<).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 36

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Represent words as labeled graphs

I (labeled) chain-graphs this chain-graph represents the string rbrg.

Edges correspond to the successor relation “succ” on the positions of the string.
Write < -inv-FO(succ) for order-invariant FO on these graphs.
Write +-inv-FO(succ) for addition-invariant FO on these graphs.

I transitive closure of (labeled) chain-graphs

Edges correspond to the linear order “<” on the positions of the string.
Write +-inv-FO(<) for addition-invariant FO on these graphs.
Note that on these graphs, < -inv-FO(<) is the same as FO(<).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 36

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Known results

FO(succ) = locally threshold testable languages (Thomas)
FO(<) = star-free regular languages (McNaughton, Papert)

MSO(<) = regular languages (Büchi, Elgot, Trakhtenbrot)
MSO(<) = MSO(succ) = MLFP(<) = MLFP(succ)

<-inv-FO(succ) = FO(succ) (Benedikt, Segoufin, 2005)
+-inv-MLFP(succ) ⊇ DLIN (S., 2004)
+-inv-MSO(succ) = the linear time hierarchy (More & Olive 1997, S. 2004)

FO(<) = <-inv-FO(<) +-inv-FO(<) (+,×)-inv-FO(<) ⊆ uniform AC0.

The following problem is undecidable: (Benedikt, Segoufin, 2005)

ORDER-INVARIANCE ON FINITE LABELED CHAIN-GRAPHS:
Input: a FO(<,E ,C1, . . . ,C`)-sentence ϕ

Question: Is ϕ order-invariant on all finite labeled chain-graphs?

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 37

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Known results

FO(succ) = locally threshold testable languages (Thomas)
FO(<) = star-free regular languages (McNaughton, Papert)

MSO(<) = regular languages (Büchi, Elgot, Trakhtenbrot)
MSO(<) = MSO(succ) = MLFP(<) = MLFP(succ)

<-inv-FO(succ) = FO(succ) (Benedikt, Segoufin, 2005)
+-inv-MLFP(succ) ⊇ DLIN (S., 2004)
+-inv-MSO(succ) = the linear time hierarchy (More & Olive 1997, S. 2004)

FO(<) = <-inv-FO(<) +-inv-FO(<) (+,×)-inv-FO(<) ⊆ uniform AC0.

The following problem is undecidable: (Benedikt, Segoufin, 2005)

ORDER-INVARIANCE ON FINITE LABELED CHAIN-GRAPHS:
Input: a FO(<,E ,C1, . . . ,C`)-sentence ϕ

Question: Is ϕ order-invariant on all finite labeled chain-graphs?

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 37

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Known results

FO(succ) = locally threshold testable languages (Thomas)
FO(<) = star-free regular languages (McNaughton, Papert)

MSO(<) = regular languages (Büchi, Elgot, Trakhtenbrot)
MSO(<) = MSO(succ) = MLFP(<) = MLFP(succ)

<-inv-FO(succ) = FO(succ) (Benedikt, Segoufin, 2005)
+-inv-MLFP(succ) ⊇ DLIN (S., 2004)
+-inv-MSO(succ) = the linear time hierarchy (More & Olive 1997, S. 2004)

FO(<) = <-inv-FO(<) +-inv-FO(<) (+,×)-inv-FO(<) ⊆ uniform AC0.

The following problem is undecidable: (Benedikt, Segoufin, 2005)

ORDER-INVARIANCE ON FINITE LABELED CHAIN-GRAPHS:
Input: a FO(<,E ,C1, . . . ,C`)-sentence ϕ

Question: Is ϕ order-invariant on all finite labeled chain-graphs?

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 37

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Known results

FO(succ) = locally threshold testable languages (Thomas)
FO(<) = star-free regular languages (McNaughton, Papert)

MSO(<) = regular languages (Büchi, Elgot, Trakhtenbrot)
MSO(<) = MSO(succ) = MLFP(<) = MLFP(succ)

<-inv-FO(succ) = FO(succ) (Benedikt, Segoufin, 2005)
+-inv-MLFP(succ) ⊇ DLIN (S., 2004)
+-inv-MSO(succ) = the linear time hierarchy (More & Olive 1997, S. 2004)

FO(<) = <-inv-FO(<) +-inv-FO(<) (+,×)-inv-FO(<) ⊆ uniform AC0.

The following problem is undecidable: (Benedikt, Segoufin, 2005)

ORDER-INVARIANCE ON FINITE LABELED CHAIN-GRAPHS:
Input: a FO(<,E ,C1, . . . ,C`)-sentence ϕ

Question: Is ϕ order-invariant on all finite labeled chain-graphs?

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 37

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Known results

FO(succ) = locally threshold testable languages (Thomas)
FO(<) = star-free regular languages (McNaughton, Papert)

MSO(<) = regular languages (Büchi, Elgot, Trakhtenbrot)
MSO(<) = MSO(succ) = MLFP(<) = MLFP(succ)

<-inv-FO(succ) = FO(succ) (Benedikt, Segoufin, 2005)
+-inv-MLFP(succ) ⊇ DLIN (S., 2004)
+-inv-MSO(succ) = the linear time hierarchy (More & Olive 1997, S. 2004)

FO(<) = <-inv-FO(<) +-inv-FO(<) (+,×)-inv-FO(<) ⊆ uniform AC0.

The following problem is undecidable: (Benedikt, Segoufin, 2005)

ORDER-INVARIANCE ON FINITE LABELED CHAIN-GRAPHS:
Input: a FO(<,E ,C1, . . . ,C`)-sentence ϕ

Question: Is ϕ order-invariant on all finite labeled chain-graphs?

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 37

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

The “Algebraic” Approach

Let L1 and L2 be logics.

Goal: Show that L1 can define exactly the same string-languages as L2.

Approach:

(0) Identify a suitable set of operations O on strings.

(1) Show that a property p of strings is definable in L1 iff it is closed under every
operation op ∈ O. I.e., for every string s:

s has property p ⇐⇒ op(s) has property p.

(2) Show that a property p of strings is closed under every operation op ∈ O iff
it is definable in L2.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 38

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

The “Algebraic” Approach

Let L1 and L2 be logics.

Goal: Show that L1 can define exactly the same string-languages as L2.

Approach:

(0) Identify a suitable set of operations O on strings.

(1) Show that a property p of strings is definable in L1 iff it is closed under every
operation op ∈ O. I.e., for every string s:

s has property p ⇐⇒ op(s) has property p.

(2) Show that a property p of strings is closed under every operation op ∈ O iff
it is definable in L2.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 38

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

The “Algebraic” Approach

Let L1 and L2 be logics.

Goal: Show that L1 can define exactly the same string-languages as L2.

Approach:

(0) Identify a suitable set of operations O on strings.

(1) Show that a property p of strings is definable in L1 iff it is closed under every
operation op ∈ O.

I.e., for every string s:

s has property p ⇐⇒ op(s) has property p.

(2) Show that a property p of strings is closed under every operation op ∈ O iff
it is definable in L2.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 38

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

The “Algebraic” Approach

Let L1 and L2 be logics.

Goal: Show that L1 can define exactly the same string-languages as L2.

Approach:

(0) Identify a suitable set of operations O on strings.

(1) Show that a property p of strings is definable in L1 iff it is closed under every
operation op ∈ O. I.e., for every string s:

s has property p ⇐⇒ op(s) has property p.

(2) Show that a property p of strings is closed under every operation op ∈ O iff
it is definable in L2.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 38

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

The “Algebraic” Approach

Let L1 and L2 be logics.

Goal: Show that L1 can define exactly the same string-languages as L2.

Approach:

(0) Identify a suitable set of operations O on strings.

(1) Show that a property p of strings is definable in L1 iff it is closed under every
operation op ∈ O. I.e., for every string s:

s has property p ⇐⇒ op(s) has property p.

(2) Show that a property p of strings is closed under every operation op ∈ O iff
it is definable in L2.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 38

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

An example
Theorem (Benedikt, Segoufin, ’09): <-inv-FO(succ) = FO(succ)

A string-language is definable in <-inv-FO(succ) iff it is definable in FO(succ).

Main ingredients of the proof:
I Use a result by Beauquier and Pin (1989) stating that a string-language is

definable in FO(succ) iff it is aperiodic and closed under swaps.
• A string language L is aperiodic iff there exists a number ` ∈ N such that for

all strings u, x , v we have

u x` v ∈ L ⇐⇒ u x`+1 v ∈ L.

• L is closed under swaps iff for all strings u, v , e, x , y , z such that e, f are
idempotents (i.e., for all u, v we have uev ∈ L iff ue2v ∈ L), we have

u e x f y e z f v ∈ L ⇐⇒ u e z f y e x f v ∈ L.

I Show that every string-language definable in <-inv-FO(succ) is aperiodic and
closed under swaps.
(For this, you can use Ehrenfeucht-Fraïssé games.)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 39

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

An example
Theorem (Benedikt, Segoufin, ’09): <-inv-FO(succ) = FO(succ)

A string-language is definable in <-inv-FO(succ) iff it is definable in FO(succ).

Main ingredients of the proof:
I Use a result by Beauquier and Pin (1989) stating that a string-language is

definable in FO(succ) iff it is aperiodic and closed under swaps.

• A string language L is aperiodic iff there exists a number ` ∈ N such that for
all strings u, x , v we have

u x` v ∈ L ⇐⇒ u x`+1 v ∈ L.

• L is closed under swaps iff for all strings u, v , e, x , y , z such that e, f are
idempotents (i.e., for all u, v we have uev ∈ L iff ue2v ∈ L), we have

u e x f y e z f v ∈ L ⇐⇒ u e z f y e x f v ∈ L.

I Show that every string-language definable in <-inv-FO(succ) is aperiodic and
closed under swaps.
(For this, you can use Ehrenfeucht-Fraïssé games.)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 39

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

An example
Theorem (Benedikt, Segoufin, ’09): <-inv-FO(succ) = FO(succ)

A string-language is definable in <-inv-FO(succ) iff it is definable in FO(succ).

Main ingredients of the proof:
I Use a result by Beauquier and Pin (1989) stating that a string-language is

definable in FO(succ) iff it is aperiodic and closed under swaps.
• A string language L is aperiodic iff there exists a number ` ∈ N such that for

all strings u, x , v we have

u x` v ∈ L ⇐⇒ u x`+1 v ∈ L.

• L is closed under swaps iff for all strings u, v , e, x , y , z such that e, f are
idempotents (i.e., for all u, v we have uev ∈ L iff ue2v ∈ L), we have

u e x f y e z f v ∈ L ⇐⇒ u e z f y e x f v ∈ L.

I Show that every string-language definable in <-inv-FO(succ) is aperiodic and
closed under swaps.
(For this, you can use Ehrenfeucht-Fraïssé games.)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 39

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

An example
Theorem (Benedikt, Segoufin, ’09): <-inv-FO(succ) = FO(succ)

A string-language is definable in <-inv-FO(succ) iff it is definable in FO(succ).

Main ingredients of the proof:
I Use a result by Beauquier and Pin (1989) stating that a string-language is

definable in FO(succ) iff it is aperiodic and closed under swaps.
• A string language L is aperiodic iff there exists a number ` ∈ N such that for

all strings u, x , v we have

u x` v ∈ L ⇐⇒ u x`+1 v ∈ L.

• L is closed under swaps iff for all strings u, v , e, x , y , z such that e, f are
idempotents (i.e., for all u, v we have uev ∈ L iff ue2v ∈ L), we have

u e x f y e z f v ∈ L ⇐⇒ u e z f y e x f v ∈ L.

I Show that every string-language definable in <-inv-FO(succ) is aperiodic and
closed under swaps.
(For this, you can use Ehrenfeucht-Fraïssé games.)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 39

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

An example
Theorem (Benedikt, Segoufin, ’09): <-inv-FO(succ) = FO(succ)

A string-language is definable in <-inv-FO(succ) iff it is definable in FO(succ).

Main ingredients of the proof:
I Use a result by Beauquier and Pin (1989) stating that a string-language is

definable in FO(succ) iff it is aperiodic and closed under swaps.
• A string language L is aperiodic iff there exists a number ` ∈ N such that for

all strings u, x , v we have

u x` v ∈ L ⇐⇒ u x`+1 v ∈ L.

• L is closed under swaps iff for all strings u, v , e, x , y , z such that e, f are
idempotents (i.e., for all u, v we have uev ∈ L iff ue2v ∈ L), we have

u e x f y e z f v ∈ L ⇐⇒ u e z f y e x f v ∈ L.

I Show that every string-language definable in <-inv-FO(succ) is aperiodic and
closed under swaps.
(For this, you can use Ehrenfeucht-Fraïssé games.)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 39

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Different situation for FO+MOD2

Proposition (Harwath, S., ’13): <-inv-FO+MOD2(succ) 6= FO+MOD2(succ)

There exists a string-language L which is
definable in <-inv-FO+MOD2(succ), but not in FO+MOD2(succ).

L looks as follows:

I L = L1 ∪ L2

I L1 = { w ∈ 1∗ 2 0∗ 1∗ 0∗ : |w |1 odd }

I L2 = { w ∈ 1∗ 0∗ 1∗ 2 0∗ : |w |1 even }

L is NOT definable in FO+MOD2(succ):
I Use the Hanf-locality of FO+MOD(succ)

L is definable in <-inv-FO+MOD2(succ):
I By a FO-reduction using Niemistö’s <-inv-FO+MOD2(E)-sentence ϕeven cycles,

discussed at the beginning of this tutorial.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 40

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Different situation for FO+MOD2

Proposition (Harwath, S., ’13): <-inv-FO+MOD2(succ) 6= FO+MOD2(succ)

There exists a string-language L which is
definable in <-inv-FO+MOD2(succ), but not in FO+MOD2(succ).

L looks as follows:

I L = L1 ∪ L2

I L1 = { w ∈ 1∗ 2 0∗ 1∗ 0∗ : |w |1 odd }

I L2 = { w ∈ 1∗ 0∗ 1∗ 2 0∗ : |w |1 even }

L is NOT definable in FO+MOD2(succ):
I Use the Hanf-locality of FO+MOD(succ)

L is definable in <-inv-FO+MOD2(succ):
I By a FO-reduction using Niemistö’s <-inv-FO+MOD2(E)-sentence ϕeven cycles,

discussed at the beginning of this tutorial.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 40

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Different situation for FO+MOD2

Proposition (Harwath, S., ’13): <-inv-FO+MOD2(succ) 6= FO+MOD2(succ)

There exists a string-language L which is
definable in <-inv-FO+MOD2(succ), but not in FO+MOD2(succ).

L looks as follows:

I L = L1 ∪ L2

I L1 = { w ∈ 1∗ 2 0∗ 1∗ 0∗ : |w |1 odd }

I L2 = { w ∈ 1∗ 0∗ 1∗ 2 0∗ : |w |1 even }

L is NOT definable in FO+MOD2(succ):
I Use the Hanf-locality of FO+MOD(succ)

L is definable in <-inv-FO+MOD2(succ):
I By a FO-reduction using Niemistö’s <-inv-FO+MOD2(E)-sentence ϕeven cycles,

discussed at the beginning of this tutorial.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 40

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Different situation for FO+MOD2

Proposition (Harwath, S., ’13): <-inv-FO+MOD2(succ) 6= FO+MOD2(succ)

There exists a string-language L which is
definable in <-inv-FO+MOD2(succ), but not in FO+MOD2(succ).

L looks as follows:

I L = L1 ∪ L2

I L1 = { w ∈ 1∗ 2 0∗ 1∗ 0∗ : |w |1 odd }

I L2 = { w ∈ 1∗ 0∗ 1∗ 2 0∗ : |w |1 even }

L is NOT definable in FO+MOD2(succ):
I Use the Hanf-locality of FO+MOD(succ)

L is definable in <-inv-FO+MOD2(succ):
I By a FO-reduction using Niemistö’s <-inv-FO+MOD2(E)-sentence ϕeven cycles,

discussed at the beginning of this tutorial.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 40

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Different situation for FO+MOD2

Proposition (Harwath, S., ’13): <-inv-FO+MOD2(succ) 6= FO+MOD2(succ)

There exists a string-language L which is
definable in <-inv-FO+MOD2(succ), but not in FO+MOD2(succ).

L looks as follows:

I L = L1 ∪ L2

I L1 = { w ∈ 1∗ 2 0∗ 1∗ 0∗ : |w |1 odd }

I L2 = { w ∈ 1∗ 0∗ 1∗ 2 0∗ : |w |1 even }

L is NOT definable in FO+MOD2(succ):
I Use the Hanf-locality of FO+MOD(succ)

L is definable in <-inv-FO+MOD2(succ):
I By a FO-reduction using Niemistö’s <-inv-FO+MOD2(E)-sentence ϕeven cycles,

discussed at the beginning of this tutorial.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 40

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Different situation for FO+MOD2

Proposition (Harwath, S., ’13): <-inv-FO+MOD2(succ) 6= FO+MOD2(succ)

There exists a string-language L which is
definable in <-inv-FO+MOD2(succ), but not in FO+MOD2(succ).

L looks as follows:

I L = L1 ∪ L2

I L1 = { w ∈ 1∗ 2 0∗ 1∗ 0∗ : |w |1 odd }

I L2 = { w ∈ 1∗ 0∗ 1∗ 2 0∗ : |w |1 even }

L is NOT definable in FO+MOD2(succ):
I Use the Hanf-locality of FO+MOD(succ)

L is definable in <-inv-FO+MOD2(succ):
I By a FO-reduction using Niemistö’s <-inv-FO+MOD2(E)-sentence ϕeven cycles,

discussed at the beginning of this tutorial.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 40

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

FO+MOD2 < order-invariant FO+MOD2

FO+MOD2 : the extension of FO by modulo 2 counting quantifiers
∃0 mod 2x ψ(x) : the number of nodes x satisfying ψ(x) is congruent 0 modulo 2.

Theorem (Niemistö):
There is an order-invariant FO+MOD2(E)-sentence ϕeven cycles that is satisfied by
a finite directed graph G = (V G,EG) iff

(1) G is a disjoint union of directed cycles, and

(2) the number of even-length cycles is even.

Proof:
I (1) can be expressed in FO: “every node has in- and out-degree 1”
I Every G satisfying (1) is the cycle decomposition of a permutation π.
I G has an even number of even-length cycles ⇐⇒
π is an even permutation, i.e., sgn(π) = 1 ⇐⇒
π has an even number of inversions (i, j) such that i < j and π(i) > π(j).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 41

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

I L = L1 ∪ L2

I L1 = { w ∈ 1∗ 2 0∗ 1∗ 0∗ : |w |1 odd }

I L2 = { w ∈ 1∗ 0∗ 1∗ 2 0∗ : |w |1 even }

L is definable in <-inv-FO+MOD2(succ):
I By a FO-reduction using Niemistö’s <-inv-FO+MOD2(E)-sentence ϕeven cycles,

expressing that the number of even-length cycles is even:

Simulate a disjoint union of cycles by a FO-formula that adds edges
I from the unique 2-position to the first position

I from the unique 1 directly left to a 0 to the unique 1 directly right to 0,

and then deletes all 0-positions.

Situation:
I w ∈ 1∗ 2 0∗ 1∗ 0∗ =⇒ 2 cycles, sum of lenghts: |w |1 + 1
I w ∈ 1∗ 0∗ 1∗ 2 0∗ =⇒ 1 cycle, length: |w |1 + 1

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 42

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

I L = L1 ∪ L2

I L1 = { w ∈ 1∗ 2 0∗ 1∗ 0∗ : |w |1 odd }

I L2 = { w ∈ 1∗ 0∗ 1∗ 2 0∗ : |w |1 even }

L is definable in <-inv-FO+MOD2(succ):
I By a FO-reduction using Niemistö’s <-inv-FO+MOD2(E)-sentence ϕeven cycles,

expressing that the number of even-length cycles is even:

Simulate a disjoint union of cycles by a FO-formula that adds edges
I from the unique 2-position to the first position
I from the unique 1 directly left to a 0 to the unique 1 directly right to 0,

and then deletes all 0-positions.

Situation:
I w ∈ 1∗ 2 0∗ 1∗ 0∗ =⇒ 2 cycles, sum of lenghts: |w |1 + 1
I w ∈ 1∗ 0∗ 1∗ 2 0∗ =⇒ 1 cycle, length: |w |1 + 1

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 42

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

I L = L1 ∪ L2

I L1 = { w ∈ 1∗ 2 0∗ 1∗ 0∗ : |w |1 odd }

I L2 = { w ∈ 1∗ 0∗ 1∗ 2 0∗ : |w |1 even }

L is definable in <-inv-FO+MOD2(succ):
I By a FO-reduction using Niemistö’s <-inv-FO+MOD2(E)-sentence ϕeven cycles,

expressing that the number of even-length cycles is even:

Simulate a disjoint union of cycles by a FO-formula that adds edges
I from the unique 2-position to the first position
I from the unique 1 directly left to a 0 to the unique 1 directly right to 0,

and then deletes all 0-positions.

Situation:
I w ∈ 1∗ 2 0∗ 1∗ 0∗ =⇒ 2 cycles, sum of lenghts: |w |1 + 1
I w ∈ 1∗ 0∗ 1∗ 2 0∗ =⇒ 1 cycle, length: |w |1 + 1

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 42

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

I L = L1 ∪ L2

I L1 = { w ∈ 1∗ 2 0∗ 1∗ 0∗ : |w |1 odd }

I L2 = { w ∈ 1∗ 0∗ 1∗ 2 0∗ : |w |1 even }

L is definable in <-inv-FO+MOD2(succ):
I By a FO-reduction using Niemistö’s <-inv-FO+MOD2(E)-sentence ϕeven cycles,

expressing that the number of even-length cycles is even:

Simulate a disjoint union of cycles by a FO-formula that adds edges
I from the unique 2-position to the first position
I from the unique 1 directly left to a 0 to the unique 1 directly right to 0,

and then deletes all 0-positions.

Situation:
I w ∈ 1∗ 2 0∗ 1∗ 0∗ =⇒ 2 cycles, sum of lenghts: |w |1 + 1
I w ∈ 1∗ 0∗ 1∗ 2 0∗ =⇒ 1 cycle, length: |w |1 + 1

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 42

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Further results proved by the algebraic approach

Theorem:

I A tree-language is definable in <-invariant FO(succ) iff
it is definable in FO(succ). (Benedikt, Segoufin ’09)
(They use aperiodicity and closure under guarded swaps.)

I A colored finite set is definable in +-invariant FO iff it is definable in FOcard (i.e.,
FO with predicates testing the cardinality of the universe modulo fixed numbers).

(S., Segoufin ’10)

I A regular string- or tree-language is definable in +-invariant FO(succ) iff
it is definable in FOcard(succ). (S., Segoufin ’10 and Harwath, S. ’12)
(They use closure under transfers and closure under guarded swaps.)

I A regular string-language is definable in Arb-invariant FO(succ) iff it is definable
in FOcard(succ). (Anderson, van Melkebeek, S., Segoufin ’11)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 43

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Further results proved by the algebraic approach

Theorem:

I A tree-language is definable in <-invariant FO(succ) iff
it is definable in FO(succ). (Benedikt, Segoufin ’09)
(They use aperiodicity and closure under guarded swaps.)

I A colored finite set is definable in +-invariant FO iff it is definable in FOcard (i.e.,
FO with predicates testing the cardinality of the universe modulo fixed numbers).

(S., Segoufin ’10)

I A regular string- or tree-language is definable in +-invariant FO(succ) iff
it is definable in FOcard(succ). (S., Segoufin ’10 and Harwath, S. ’12)
(They use closure under transfers and closure under guarded swaps.)

I A regular string-language is definable in Arb-invariant FO(succ) iff it is definable
in FOcard(succ). (Anderson, van Melkebeek, S., Segoufin ’11)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 43

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Further results proved by the algebraic approach

Theorem:

I A tree-language is definable in <-invariant FO(succ) iff
it is definable in FO(succ). (Benedikt, Segoufin ’09)
(They use aperiodicity and closure under guarded swaps.)

I A colored finite set is definable in +-invariant FO iff it is definable in FOcard (i.e.,
FO with predicates testing the cardinality of the universe modulo fixed numbers).

(S., Segoufin ’10)

I A regular string- or tree-language is definable in +-invariant FO(succ) iff
it is definable in FOcard(succ). (S., Segoufin ’10 and Harwath, S. ’12)
(They use closure under transfers and closure under guarded swaps.)

I A regular string-language is definable in Arb-invariant FO(succ) iff it is definable
in FOcard(succ). (Anderson, van Melkebeek, S., Segoufin ’11)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 43

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Further results proved by the algebraic approach

Theorem:

I A tree-language is definable in <-invariant FO(succ) iff
it is definable in FO(succ). (Benedikt, Segoufin ’09)
(They use aperiodicity and closure under guarded swaps.)

I A colored finite set is definable in +-invariant FO iff it is definable in FOcard (i.e.,
FO with predicates testing the cardinality of the universe modulo fixed numbers).

(S., Segoufin ’10)

I A regular string- or tree-language is definable in +-invariant FO(succ) iff
it is definable in FOcard(succ). (S., Segoufin ’10 and Harwath, S. ’12)
(They use closure under transfers and closure under guarded swaps.)

I A regular string-language is definable in Arb-invariant FO(succ) iff it is definable
in FOcard(succ). (Anderson, van Melkebeek, S., Segoufin ’11)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 43

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Further results proved by the algebraic approach

Theorem:

I A tree-language is definable in <-invariant FO(succ) iff
it is definable in FO(succ). (Benedikt, Segoufin ’09)
(They use aperiodicity and closure under guarded swaps.)

I A colored finite set is definable in +-invariant FO iff it is definable in FOcard (i.e.,
FO with predicates testing the cardinality of the universe modulo fixed numbers).

(S., Segoufin ’10)

I A regular string- or tree-language is definable in +-invariant FO(succ) iff
it is definable in FOcard(succ). (S., Segoufin ’10 and Harwath, S. ’12)
(They use closure under transfers and closure under guarded swaps.)

I A regular string-language is definable in Arb-invariant FO(succ) iff it is definable
in FOcard(succ). (Anderson, van Melkebeek, S., Segoufin ’11)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 43

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Regular languages definable in +-inv-FO(<)

Theorem: (S., Segoufin, 2010)

Let L be a regular language. The following are equivalent:

(1) L is definable in +-inv-FO(<).

(2) L is definable in FOCard(<).

(3) L is a finite union of languages of the form S ∩ Z q
i , where

• S is star-free regular (i.e., S is FO(<)-definable)
• Z q

i = {w : |w | ≡ i mod q}.

(4) L is closed under transfers.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 44

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Regular languages definable in +-inv-FO(<)

Theorem: (S., Segoufin, 2010)

Let L be a regular language. The following are equivalent:

(1) L is definable in +-inv-FO(<).

(2) L is definable in FOCard(<).

(3) L is a finite union of languages of the form S ∩ Z q
i , where

• S is star-free regular (i.e., S is FO(<)-definable)
• Z q

i = {w : |w | ≡ i mod q}.

(4) L is closed under transfers.

Definition: FOCard(<)

FO(<) with length modulo predicates lm(i, q), for all i, q ∈ N :

∀ w ∈ Σ∗ : w |= lm(i, q) ⇐⇒ |w | ≡ i mod q.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 44

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Regular languages definable in +-inv-FO(<)

Theorem: (S., Segoufin, 2010)

Let L be a regular language. The following are equivalent:

(1) L is definable in +-inv-FO(<).

(2) L is definable in FOCard(<).

(3) L is a finite union of languages of the form S ∩ Z q
i , where

• S is star-free regular (i.e., S is FO(<)-definable)
• Z q

i = {w : |w | ≡ i mod q}.

(4) L is closed under transfers.

Definition: FOCard(<)

FO(<) with length modulo predicates lm(i, q), for all i, q ∈ N :

∀ w ∈ Σ∗ : w |= lm(i, q) ⇐⇒ |w | ≡ i mod q.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 44

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Regular languages definable in +-inv-FO(<)

Theorem: (S., Segoufin, 2010)

Let L be a regular language. The following are equivalent:

(1) L is definable in +-inv-FO(<).

(2) L is definable in FOCard(<).

(3) L is a finite union of languages of the form S ∩ Z q
i , where

• S is star-free regular (i.e., S is FO(<)-definable)
• Z q

i = {w : |w | ≡ i mod q}.

(4) L is closed under transfers.

Definition: FOCard(<)

FO(<) with length modulo predicates lm(i, q), for all i, q ∈ N :

∀ w ∈ Σ∗ : w |= lm(i, q) ⇐⇒ |w | ≡ i mod q.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 44

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Regular languages definable in +-inv-FO(<)

Theorem: (S., Segoufin, 2010)

Let L be a regular language. The following are equivalent:

(1) L is definable in +-inv-FO(<).

(2) L is definable in FOCard(<).

(3) L is a finite union of languages of the form S ∩ Z q
i , where

• S is star-free regular (i.e., S is FO(<)-definable)
• Z q

i = {w : |w | ≡ i mod q}.

(4) L is closed under transfers.

Definition: L is closed under transfers ⇐⇒ ∀ x , y , z ∈ Σ∗ we have:

if |x | = |z|, then x r xyz r =L x r yzz r .

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 44

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Regular languages definable in +-inv-FO(<)

Theorem: (S., Segoufin, 2010)

Let L be a regular language. The following are equivalent:

(1) L is definable in +-inv-FO(<).

(2) L is definable in FOCard(<).

(3) L is a finite union of languages of the form S ∩ Z q
i , where

• S is star-free regular (i.e., S is FO(<)-definable)
• Z q

i = {w : |w | ≡ i mod q}.

(4) L is closed under transfers.

Definition: L is closed under transfers ⇐⇒ ∀ x , y , z ∈ Σ∗ we have:

if |x | = |z|, then x r xyz r =L x r yzz r .

syntactic congruence =L: x =L y ⇐⇒
(
∀ u, v ∈ Σ∗ : uxv ∈ L ⇐⇒ uyv ∈ L

)

z ∈ Σ∗ is called idempotent ⇐⇒ zz =L z.
L regular =⇒ ∃ r ∈ N : ∀ x ∈ Σ∗, x r is idempotent

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 44

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Regular languages definable in +-inv-FO(<)

Theorem: (S., Segoufin, 2010)

Let L be a regular language. The following are equivalent:

(1) L is definable in +-inv-FO(<).

(2) L is definable in FOCard(<).

(3) L is a finite union of languages of the form S ∩ Z q
i , where

• S is star-free regular (i.e., S is FO(<)-definable)
• Z q

i = {w : |w | ≡ i mod q}.

(4) L is closed under transfers.

Definition: L is closed under transfers ⇐⇒ ∀ x , y , z ∈ Σ∗ we have:

if |x | = |z|, then x r xyz r =L x r yzz r .

syntactic congruence =L: x =L y ⇐⇒
(
∀ u, v ∈ Σ∗ : uxv ∈ L ⇐⇒ uyv ∈ L

)
z ∈ Σ∗ is called idempotent ⇐⇒ zz =L z.

L regular =⇒ ∃ r ∈ N : ∀ x ∈ Σ∗, x r is idempotent

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 44

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Regular languages definable in +-inv-FO(<)

Theorem: (S., Segoufin, 2010)

Let L be a regular language. The following are equivalent:

(1) L is definable in +-inv-FO(<).

(2) L is definable in FOCard(<).

(3) L is a finite union of languages of the form S ∩ Z q
i , where

• S is star-free regular (i.e., S is FO(<)-definable)
• Z q

i = {w : |w | ≡ i mod q}.

(4) L is closed under transfers.

Definition: L is closed under transfers ⇐⇒ ∀ x , y , z ∈ Σ∗ we have:

if |x | = |z|, then x r xyz r =L x r yzz r .

syntactic congruence =L: x =L y ⇐⇒
(
∀ u, v ∈ Σ∗ : uxv ∈ L ⇐⇒ uyv ∈ L

)
z ∈ Σ∗ is called idempotent ⇐⇒ zz =L z.
L regular =⇒ ∃ r ∈ N : ∀ x ∈ Σ∗, x r is idempotent

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 44

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Regular languages definable in +-inv-FO(<)

Theorem: (S., Segoufin, 2010)

Let L be a regular language. The following are equivalent:

(1) L is definable in +-inv-FO(<).

(2) L is definable in FOCard(<).

(3) L is a finite union of languages of the form S ∩ Z q
i , where

• S is star-free regular (i.e., S is FO(<)-definable)
• Z q

i = {w : |w | ≡ i mod q}.

(4) L is closed under transfers.

Definition: L is closed under transfers ⇐⇒ ∀ x , y , z ∈ Σ∗ we have:

if |x | = |z|, then x r xyz r =L x r yzz r .

Observation:
Given an automaton for a regular language L, it is decidable whether L is
closed under transfers.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 44

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Regular languages definable in +-inv-FO(<)

Theorem: (S., Segoufin, 2010)

Let L be a regular language. The following are equivalent:

(1) L is definable in +-inv-FO(<).

(2) L is definable in FOCard(<).

(3) L is a finite union of languages of the form S ∩ Z q
i , where

• S is star-free regular (i.e., S is FO(<)-definable)
• Z q

i = {w : |w | ≡ i mod q}.

(4) L is closed under transfers.

Proof:
(2)⇐⇒(3): easy.

(2) =⇒(1): easy. E.g.: |w | ≡ 1 mod 2 ⇐⇒

w |= ∃x ∃z
(
x + x = z ∧ ∀y (y < z ∨ y = z)

)
(1) =⇒(4): use Ehrenfeucht-Fraïssé games.

(4) =⇒(2): use tools from algebraic automata theory.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 44

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Regular languages definable in +-inv-FO(<)

Theorem: (S., Segoufin, 2010)

Let L be a regular language. The following are equivalent:

(1) L is definable in +-inv-FO(<).

(2) L is definable in FOCard(<).

(3) L is a finite union of languages of the form S ∩ Z q
i , where

• S is star-free regular (i.e., S is FO(<)-definable)
• Z q

i = {w : |w | ≡ i mod q}.

(4) L is closed under transfers.

Proof:
(2)⇐⇒(3): easy.

(2) =⇒(1): easy. E.g.: |w | ≡ 1 mod 2 ⇐⇒

w |= ∃x ∃z
(
x + x = z ∧ ∀y (y < z ∨ y = z)

)

(1) =⇒(4): use Ehrenfeucht-Fraïssé games.

(4) =⇒(2): use tools from algebraic automata theory.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 44

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Regular languages definable in +-inv-FO(<)

Theorem: (S., Segoufin, 2010)

Let L be a regular language. The following are equivalent:

(1) L is definable in +-inv-FO(<).

(2) L is definable in FOCard(<).

(3) L is a finite union of languages of the form S ∩ Z q
i , where

• S is star-free regular (i.e., S is FO(<)-definable)
• Z q

i = {w : |w | ≡ i mod q}.

(4) L is closed under transfers.

Proof:
(2)⇐⇒(3): easy.

(2) =⇒(1): easy. E.g.: |w | ≡ 1 mod 2 ⇐⇒

w |= ∃x ∃z
(
x + x = z ∧ ∀y (y < z ∨ y = z)

)
(1) =⇒(4): use Ehrenfeucht-Fraïssé games.

(4) =⇒(2): use tools from algebraic automata theory.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 44

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Regular languages definable in +-inv-FO(<)

Theorem: (S., Segoufin, 2010)

Let L be a regular language. The following are equivalent:

(1) L is definable in +-inv-FO(<).

(2) L is definable in FOCard(<).

(3) L is a finite union of languages of the form S ∩ Z q
i , where

• S is star-free regular (i.e., S is FO(<)-definable)
• Z q

i = {w : |w | ≡ i mod q}.

(4) L is closed under transfers.

Proof:
(2)⇐⇒(3): easy.

(2) =⇒(1): easy. E.g.: |w | ≡ 1 mod 2 ⇐⇒

w |= ∃x ∃z
(
x + x = z ∧ ∀y (y < z ∨ y = z)

)
(1) =⇒(4): use Ehrenfeucht-Fraïssé games.

(4) =⇒(2): use tools from algebraic automata theory.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 44

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of (4)=⇒(2): L is regular & closed under transfers.
Goal: Show that L is definable in FOCard(<).

Choose a suitable number q > 0. skip proof

For 0 6 i < q let Li := L ∩ Z q
i , where Z q

i := {w ∈ Σ∗ : |w | ≡ i mod q}.

Clearly, L =
⋃

06i<q

Li .

Goal: Show that Li is definable in FOCard(<).

Approach: Find a regular language Mi such that

• Li = Mi ∩ Z q
i ,

• The minimal DFA for Mi does not contain any counter.

Then, apply

Theorem: (McNaughton & Papert, 1971)
Let M be a regular language. Then, the following are equivalent:
(1) The minimal DFA for M does not contain any counter.
(2) M is definable in FO(<) (i.e., M is star-free regular).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 45

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of (4)=⇒(2): L is regular & closed under transfers.
Goal: Show that L is definable in FOCard(<).

Choose a suitable number q > 0. skip proof

For 0 6 i < q let Li := L ∩ Z q
i , where Z q

i := {w ∈ Σ∗ : |w | ≡ i mod q}.

Clearly, L =
⋃

06i<q

Li . Goal: Show that Li is definable in FOCard(<).

Approach: Find a regular language Mi such that

• Li = Mi ∩ Z q
i ,

• The minimal DFA for Mi does not contain any counter.

Then, apply

Theorem: (McNaughton & Papert, 1971)
Let M be a regular language. Then, the following are equivalent:
(1) The minimal DFA for M does not contain any counter.
(2) M is definable in FO(<) (i.e., M is star-free regular).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 45

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of (4)=⇒(2): L is regular & closed under transfers.
Goal: Show that L is definable in FOCard(<).

Choose a suitable number q > 0. skip proof

For 0 6 i < q let Li := L ∩ Z q
i , where Z q

i := {w ∈ Σ∗ : |w | ≡ i mod q}.

Clearly, L =
⋃

06i<q

Li . Goal: Show that Li is definable in FOCard(<).

Approach: Find a regular language Mi such that

• Li = Mi ∩ Z q
i ,

• The minimal DFA for Mi does not contain any counter.

Then, apply

Theorem: (McNaughton & Papert, 1971)
Let M be a regular language. Then, the following are equivalent:
(1) The minimal DFA for M does not contain any counter.
(2) M is definable in FO(<) (i.e., M is star-free regular).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 45

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of (1)=⇒(4): Let L be regular and definable by a ϕ in +-inv-FO(<).
Goal: Show that L is closed under transfers.

skip proof

For contradiction, assume that L is not closed under transfers. Then:

∃ x , y , z, u, v ∈ Σ∗ : |x | = |z| and

u x r x y z r v ∈ L and u x r y z z r v 6∈ L.

Thus:

∀ α, β > 1 :
(

u xαr x y zβr v ∈ L and u xαr y z zβr v 6∈ L
)
.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 46

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of (1)=⇒(4): Let L be regular and definable by a ϕ in +-inv-FO(<).
Goal: Show that L is closed under transfers. Proof by contradiction:

Situation: Fixed x , y , z, u, v ∈ Σ∗ with |x | = |z| such that
∀ α, β > 1 :

(
u xαr x y zβr v ∈ L and u xαr y z zβr v 6∈ L

)
.

Idea: Consider the languages

L1 := { w ∈ uyv x (xz | zz)∗ : |w |x , |w |z > r , |w |x ≡ 1 [r], |w |z ≡ 0 [r] },

L2 := { w ∈ uyv x (xz | zz)∗ : |w |x , |w |z > r , |w |x ≡ 0 [r], |w |z ≡ 1 [r] }.

Definition: A formula ψ separates L1 from L2 ⇐⇒
∀ w1 ∈ L1 : w1 |= ψ and ∀ w2 ∈ L2 : w2 6|= ψ.

Lemma 1: If L is definable in +-inv-FO(<), then there is a FO(<,+)-formula that
separates L1 from L2.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 47

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of (1)=⇒(4): Let L be regular and definable by a ϕ in +-inv-FO(<).
Goal: Show that L is closed under transfers. Proof by contradiction:

Situation: Fixed x , y , z, u, v ∈ Σ∗ with |x | = |z| such that
∀ α, β > 1 :

(
u xαr x y zβr v ∈ L and u xαr y z zβr v 6∈ L

)
.

Idea: Consider the languages

L1 := { w ∈ uyv x (xz | zz)∗ : |w |x , |w |z > r , |w |x ≡ 1 [r], |w |z ≡ 0 [r] },

L2 := { w ∈ uyv x (xz | zz)∗ : |w |x , |w |z > r , |w |x ≡ 0 [r], |w |z ≡ 1 [r] }.

Definition: A formula ψ separates L1 from L2 ⇐⇒
∀ w1 ∈ L1 : w1 |= ψ and ∀ w2 ∈ L2 : w2 6|= ψ.

Lemma 1: If L is definable in +-inv-FO(<), then there is a FO(<,+)-formula that
separates L1 from L2.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 47

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of (1)=⇒(4): Let L be regular and definable by a ϕ in +-inv-FO(<).
Goal: Show that L is closed under transfers. Proof by contradiction:

Situation: Fixed x , y , z, u, v ∈ Σ∗ with |x | = |z| such that
∀ α, β > 1 :

(
u xαr x y zβr v ∈ L and u xαr y z zβr v 6∈ L

)
.

Idea: Consider the languages

L1 := { w ∈ uyv x (xz | zz)∗ : |w |x , |w |z > r , |w |x ≡ 1 [r], |w |z ≡ 0 [r] },

L2 := { w ∈ uyv x (xz | zz)∗ : |w |x , |w |z > r , |w |x ≡ 0 [r], |w |z ≡ 1 [r] }.

Definition: A formula ψ separates L1 from L2 ⇐⇒
∀ w1 ∈ L1 : w1 |= ψ and ∀ w2 ∈ L2 : w2 6|= ψ.

Lemma 1: If L is definable in +-inv-FO(<), then there is a FO(<,+)-formula that
separates L1 from L2.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 47

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of (1)=⇒(4): Let L be regular and definable by a ϕ in +-inv-FO(<).
Goal: Show that L is closed under transfers. Proof by contradiction:

Situation: Fixed x , y , z, u, v ∈ Σ∗ with |x | = |z| such that
∀ α, β > 1 :

(
u xαr x y zβr v ∈ L and u xαr y z zβr v 6∈ L

)
.

Idea: Consider the languages

L1 := { w ∈ uyv x (xz | zz)∗ : |w |x , |w |z > r , |w |x ≡ 1 [r], |w |z ≡ 0 [r] },

L2 := { w ∈ uyv x (xz | zz)∗ : |w |x , |w |z > r , |w |x ≡ 0 [r], |w |z ≡ 1 [r] }.

Definition: A formula ψ separates L1 from L2 ⇐⇒
∀ w1 ∈ L1 : w1 |= ψ and ∀ w2 ∈ L2 : w2 6|= ψ.

Lemma 1: If L is definable in +-inv-FO(<), then there is a FO(<,+)-formula that
separates L1 from L2.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 47

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of (1)=⇒(4): Let L be regular and definable by a ϕ in +-inv-FO(<).
Goal: Show that L is closed under transfers. Proof by contradiction:

Situation: Fixed x , y , z, u, v ∈ Σ∗ with |x | = |z| such that
∀ α, β > 1 :

(
u xαr x y zβr v ∈ L and u xαr y z zβr v 6∈ L

)
.

Idea: Consider the languages

L1 := { w ∈ uyv x (xz | zz)∗ : |w |x , |w |z > r , |w |x ≡ 1 [r], |w |z ≡ 0 [r] },

L2 := { w ∈ uyv x (xz | zz)∗ : |w |x , |w |z > r , |w |x ≡ 0 [r], |w |z ≡ 1 [r] }.

Definition: A formula ψ separates L1 from L2 ⇐⇒
∀ w1 ∈ L1 : w1 |= ψ and ∀ w2 ∈ L2 : w2 6|= ψ.

Lemma 1: If L is definable in +-inv-FO(<), then there is a FO(<,+)-formula that
separates L1 from L2.
Proof: Construct a FO(<,+) interpretation that, on w ∈ uyv x (xz | zz)∗, evaluates
ϕ on the corrensponding string w ′ of the form u (x)∗ y (z)∗ v .

Clearly, • w ∈ L1 =⇒ w ′ ∈ L =⇒ w ′ |= ϕ,
• w ∈ L2 =⇒ w ′ 6∈ L =⇒ w ′ 6|= ϕ.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 47

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of (1)=⇒(4): Let L be regular and definable by a ϕ in +-inv-FO(<).
Goal: Show that L is closed under transfers. Proof by contradiction:

Situation: Fixed x , y , z, u, v ∈ Σ∗ with |x | = |z| such that
∀ α, β > 1 :

(
u xαr x y zβr v ∈ L and u xαr y z zβr v 6∈ L

)
.

Idea: Consider the languages

L1 := { w ∈ uyv x (xz | zz)∗ : |w |x , |w |z > r , |w |x ≡ 1 [r], |w |z ≡ 0 [r] },

L2 := { w ∈ uyv x (xz | zz)∗ : |w |x , |w |z > r , |w |x ≡ 0 [r], |w |z ≡ 1 [r] }.

Definition: A formula ψ separates L1 from L2 ⇐⇒
∀ w1 ∈ L1 : w1 |= ψ and ∀ w2 ∈ L2 : w2 6|= ψ.

Lemma 1: If L is definable in +-inv-FO(<), then there is a FO(<,+)-formula that
separates L1 from L2.
Proof: Construct a FO(<,+) interpretation that, on w ∈ uyv x (xz | zz)∗, evaluates
ϕ on the corrensponding string w ′ of the form u (x)∗ y (z)∗ v .
Clearly, • w ∈ L1 =⇒ w ′ ∈ L =⇒ w ′ |= ϕ,

• w ∈ L2 =⇒ w ′ 6∈ L =⇒ w ′ 6|= ϕ.
NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 47

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of (1)=⇒(4): Let L be regular and definable by a ϕ in +-inv-FO(<).
Goal: Show that L is closed under transfers. Proof by contradiction:

Situation: Fixed x , y , z, u, v ∈ Σ∗ with |x | = |z| such that
∀ α, β > 1 :

(
u xαr x y zβr v ∈ L and u xαr y z zβr v 6∈ L

)
.

Idea: Consider the languages

L1 := { w ∈ uyv x (xz | zz)∗ : |w |x , |w |z > r , |w |x ≡ 1 [r], |w |z ≡ 0 [r] },

L2 := { w ∈ uyv x (xz | zz)∗ : |w |x , |w |z > r , |w |x ≡ 0 [r], |w |z ≡ 1 [r] }.

Definition: A formula ψ separates L1 from L2 ⇐⇒
∀ w1 ∈ L1 : w1 |= ψ and ∀ w2 ∈ L2 : w2 6|= ψ.

Lemma 1: If L is definable in +-inv-FO(<), then there is a FO(<,+)-formula that
separates L1 from L2.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 47

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of (1)=⇒(4): Let L be regular and definable by a ϕ in +-inv-FO(<).
Goal: Show that L is closed under transfers. Proof by contradiction:

Situation: Fixed x , y , z, u, v ∈ Σ∗ with |x | = |z| such that
∀ α, β > 1 :

(
u xαr x y zβr v ∈ L and u xαr y z zβr v 6∈ L

)
.

Idea: Consider the languages

L1 := { w ∈ uyv x (xz | zz)∗ : |w |x , |w |z > r , |w |x ≡ 1 [r], |w |z ≡ 0 [r] },

L2 := { w ∈ uyv x (xz | zz)∗ : |w |x , |w |z > r , |w |x ≡ 0 [r], |w |z ≡ 1 [r] }.

Definition: A formula ψ separates L1 from L2 ⇐⇒
∀ w1 ∈ L1 : w1 |= ψ and ∀ w2 ∈ L2 : w2 6|= ψ.

Lemma 1: If L is definable in +-inv-FO(<), then there is a FO(<,+)-formula that
separates L1 from L2.

Lemma 2: No formula of FO(<,+) can separate L1 from L2.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 47

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of (1)=⇒(4): Let L be regular and definable by a ϕ in +-inv-FO(<).
Goal: Show that L is closed under transfers. Proof by contradiction:

Situation: Fixed x , y , z, u, v ∈ Σ∗ with |x | = |z| such that
∀ α, β > 1 :

(
u xαr x y zβr v ∈ L and u xαr y z zβr v 6∈ L

)
.

Idea: Consider the languages

L1 := { w ∈ uyv x (xz | zz)∗ : |w |x , |w |z > r , |w |x ≡ 1 [r], |w |z ≡ 0 [r] },

L2 := { w ∈ uyv x (xz | zz)∗ : |w |x , |w |z > r , |w |x ≡ 0 [r], |w |z ≡ 1 [r] }.

Definition: A formula ψ separates L1 from L2 ⇐⇒
∀ w1 ∈ L1 : w1 |= ψ and ∀ w2 ∈ L2 : w2 6|= ψ.

Lemma 1: If L is definable in +-inv-FO(<), then there is a FO(<,+)-formula that
separates L1 from L2.

Lemma 2: No formula of FO(<,+) can separate L1 from L2.
Proof idea: Use Ehrenfeucht-Fraïssé games.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 47

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Proof of (1)=⇒(4): Let L be regular and definable by a ϕ in +-inv-FO(<).
Goal: Show that L is closed under transfers. Proof by contradiction:

Situation: Fixed x , y , z, u, v ∈ Σ∗ with |x | = |z| such that
∀ α, β > 1 :

(
u xαr x y zβr v ∈ L and u xαr y z zβr v 6∈ L

)
.

Idea: Consider the languages

L1 := { w ∈ uyv x (xz | zz)∗ : |w |x , |w |z > r , |w |x ≡ 1 [r], |w |z ≡ 0 [r] },

L2 := { w ∈ uyv x (xz | zz)∗ : |w |x , |w |z > r , |w |x ≡ 0 [r], |w |z ≡ 1 [r] }.

Definition: A formula ψ separates L1 from L2 ⇐⇒
∀ w1 ∈ L1 : w1 |= ψ and ∀ w2 ∈ L2 : w2 6|= ψ.

Lemma 1: If L is definable in +-inv-FO(<), then there is a FO(<,+)-formula that
separates L1 from L2.

Lemma 2: No formula of FO(<,+) can separate L1 from L2.

CONTRADICTION.
NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 47

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Regular languages definable in +-inv-FO(<)

Theorem: (S., Segoufin, 2010)

Let L be a regular language. The following are equivalent:

(1) L is definable in +-inv-FO(<).

(2) L is definable in FOCard(<).

(3) L is a finite union of languages of the form S ∩ Z q
i , where

• S is star-free regular (i.e., S is FO(<)-definable)
• Z q

i = {w : |w | ≡ i mod q}.

(4) L is closed under transfers.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 48

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Regular languages definable in +-inv-FO(<)

Theorem: (S., Segoufin, 2010)

Let L be a regular language. The following are equivalent:

(1) L is definable in +-inv-FO(<).

(2) L is definable in FOCard(<).

(3) L is a finite union of languages of the form S ∩ Z q
i , where

• S is star-free regular (i.e., S is FO(<)-definable)
• Z q

i = {w : |w | ≡ i mod q}.

(4) L is closed under transfers.

Question: What happens if the linear order < on the string is not available?

We first consider the case where only the successor relation “succ” is available.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 48

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Regular languages definable in +-inv-FO(succ)

Theorem: (S., Segoufin, 2010)

Let L be a regular language. The following are equivalent:

(1) L is definable in +-inv-FO(succ).

(2) L is definable in FOCard(succ).

(3) L is a finite union of languages of the form T ∩ Z q
i , where

• T is locally threshold testable (i.e., T is FO(succ)-definable)
• Z q

i = {w : |w | ≡ i mod q}.
(4) L is closed under transfers and under swaps.

Proof method: Similar as for the previous theorem.

Definition: L is closed under swaps ⇐⇒
for all e, f , x , y , z ∈ Σ∗ such that e, f are idempotent we have

e x f y e z f =L e z f y e x f

Observation: Given an automaton for a regular language L, it is decidable whether
L is closed under transfers and under swaps.
NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 49

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Regular languages definable in +-inv-FO(succ)

Theorem: (S., Segoufin, 2010)

Let L be a regular language. The following are equivalent:

(1) L is definable in +-inv-FO(succ).

(2) L is definable in FOCard(succ).

(3) L is a finite union of languages of the form T ∩ Z q
i , where

• T is locally threshold testable (i.e., T is FO(succ)-definable)
• Z q

i = {w : |w | ≡ i mod q}.
(4) L is closed under transfers and under swaps.

By combining this with the poly-logarithmic-locality of Arb-invariant FO, we obtain:

Theorem: (Anderson, Melkebeek, S., Segoufin, 2011)

Let L be a regular language. Then,
L is definable in Arb-invariant FO(succ) iff L is definable in FOCard(succ).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 49

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Regular languages definable in +-inv-FO(succ)

Theorem: (S., Segoufin, 2010)

Let L be a regular language. The following are equivalent:

(1) L is definable in +-inv-FO(succ).

(2) L is definable in FOCard(succ).

(3) L is a finite union of languages of the form T ∩ Z q
i , where

• T is locally threshold testable (i.e., T is FO(succ)-definable)
• Z q

i = {w : |w | ≡ i mod q}.
(4) L is closed under transfers and under swaps.

The result extends from words to trees:

Theorem: (Harwath, S., 2012)
Let L be a regular tree language. The following are equivalent:

(1) L is definable in +-inv-FO(S1,S2).

(2) L is definable in FOCard(S1,S2).

(3) L is closed under transfers and swaps.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 49

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Regular languages definable in +-inv-FO(=)

Theorem: (S., Segoufin, 2010)

Let L be a regular language. The following are equivalent:

(1) L is definable in +-inv-FO(=).

(2) L is definable in FOCard(=).

(3) L is commutative, closed under transfers and under swaps.

Definition: L is commutative ⇐⇒

∀ m ∈ N ∀ a1, . . . , am ∈ Σ ∀ permutations π of {1, . . . ,m} :

a1a2 · · · am ∈ L ⇐⇒ aπ(1)aπ(2) · · · aπ(m) ∈ L.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 50

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

An open question

Open Question:
Are all languages definable in addition-invariant FO regular?

Known: (S., Segoufin, 2010)

I Arb-invariant FO can define non-regular languages, e.g.,
L = {w ∈ {1}∗ : |w | is a prime number }.

I Every deterministic context-free language definable in addition-invariant FO is
regular.

I Every commutative language definable in addition-invariant FO is regular.

I Every bounded language definable in addition-invariant FO is regular.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 51

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Bounded languages
Definition: (Ginsburg & Spanier, 1964)
L ⊆ Σ∗ is bounded ⇐⇒

∃ k ∈ N and k strings w1, . . . ,wk ∈ Σ∗ such that L ⊆ w∗1 w∗2 · · ·w∗k .

Theorem: (S., Segoufin, 2010)

Every bounded language definable in +-inv-FO(<) is regular.

Proof method:

• Identify w∗1 w∗2 · · ·w∗k with Nk via (x1, . . . , xk) ∈ Nk =̂ wx1
1 wx2

2 · · ·w
xk
k .

Thus: L ⊆ w∗1 w∗2 · · ·w∗k =̂ S(L) ⊆ Nk .

• Note that S(L) is semi-linear, since L is definable in +-inv-FO(<).

• Reason about semi-linear sets . . .

Corollary:
Every commutative language definable in +-inv-FO(<) is regular.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 52

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Bounded languages
Definition: (Ginsburg & Spanier, 1964)
L ⊆ Σ∗ is bounded ⇐⇒

∃ k ∈ N and k strings w1, . . . ,wk ∈ Σ∗ such that L ⊆ w∗1 w∗2 · · ·w∗k .

Theorem: (S., Segoufin, 2010)

Every bounded language definable in +-inv-FO(<) is regular.

Proof method:

• Identify w∗1 w∗2 · · ·w∗k with Nk via (x1, . . . , xk) ∈ Nk =̂ wx1
1 wx2

2 · · ·w
xk
k .

Thus: L ⊆ w∗1 w∗2 · · ·w∗k =̂ S(L) ⊆ Nk .

• Note that S(L) is semi-linear, since L is definable in +-inv-FO(<).

• Reason about semi-linear sets . . .

Corollary:
Every commutative language definable in +-inv-FO(<) is regular.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 52

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Bounded languages
Definition: (Ginsburg & Spanier, 1964)
L ⊆ Σ∗ is bounded ⇐⇒

∃ k ∈ N and k strings w1, . . . ,wk ∈ Σ∗ such that L ⊆ w∗1 w∗2 · · ·w∗k .

Theorem: (S., Segoufin, 2010)

Every bounded language definable in +-inv-FO(<) is regular.

Proof method:

• Identify w∗1 w∗2 · · ·w∗k with Nk via (x1, . . . , xk) ∈ Nk =̂ wx1
1 wx2

2 · · ·w
xk
k .

Thus: L ⊆ w∗1 w∗2 · · ·w∗k =̂ S(L) ⊆ Nk .

• Note that S(L) is semi-linear, since L is definable in +-inv-FO(<).

• Reason about semi-linear sets . . .

Corollary:
Every commutative language definable in +-inv-FO(<) is regular.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 52

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Characterization of colored sets definable in +-inv-FO

Definition: A colored finite set is a finite relational structure over a finite signature
that contains only unary relation symbols.

Theorem: (S., Segoufin, 2010)

Over the class of colored finite sets, +-inv-FO(=) and FOCard(=) have the same
expressive power.

Proof:

• Every +-inv-FO(=) sentence over colored sets defines a
commutative language.

• Every commutative language definable in +-inv-FO(<) is regular.

• Every regular language definable in +-inv-FO(=) is definable in FOCard(=).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 53

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Characterization of colored sets definable in +-inv-FO

Definition: A colored finite set is a finite relational structure over a finite signature
that contains only unary relation symbols.

Theorem: (S., Segoufin, 2010)

Over the class of colored finite sets, +-inv-FO(=) and FOCard(=) have the same
expressive power.

Note: FOCard(=) is a logic (with a decidable syntax); +-inv-FO(=) is not.

More precisely: The following problem is undecidable:

Input: a FO(<,+,C)-sentence ϕ (C a unary relation symbol)
Question: Is ϕ addition-invariant on all finite {C}-structures ?

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 53

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Overview

Introduction

Invariant logics

Undecidability

Expressiveness

Locality Results

Order-invariant logics on strings

Final Remarks

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 54

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Gaifman-locality
If
(
NG

r (a), a
) ∼= (

NG
r (b), b

)
then

(
a ∈ q(G) ⇐⇒ b ∈ q(G)

)
.

Known:

I Queries definable in order-invariant FO are Gaifman-local with respect to a
constant locality radius. (Grohe, Schwentick ’98)

I Queries definable in Arb-invariant FO are Gaifman-local with respect to a
poly-logarithmic locality radius. (Anderson, Melkebeek, S., Segoufin ’11)

Open Question:

I How about addition-invariant FO:
is it Gaifman-local with respect to a constant locality radius?

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 55

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Hanf-locality
A graph property p is Hanf-local w.r.t. locality radius r , if

any two graphs having the same r -neighbourhood types with the same multiplicities,
are not distinguished by p.

Known:
I Properties of graphs definable in FO are Hanf-local w.r.t. a constant locality

radius. (Fagin, Stockmeyer, Vardi ’95)
I Properties of strings or trees definable by order-invariant FO are Hanf-local w.r.t.

a constant locality radius. (Benedikt, Segoufin ’09)

I Properties of strings definable by Arb-invariant FO are Hanf-local w.r.t. a
poly-logarithmic locality radius. (Anderson, van Melkebeek, S., Segoufin ’11)

I Properties of strings definable by Arb-invariant FO+MODp, for odd prime
powers p, are Hanf-local w.r.t. a poly-logarithmic locality radius.
For even p, they aren’t. (Harwath, S. ’13)

Open Question:
I Which of these results generalise from strings to arbitrary finite graphs?

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 56

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Decidable Characterisations

Open Question:

Are there decidable characterisations of

I order-invariant FO?
I addition-invariant FO?
I (+,×)-invariant FO?

Known:

I On finite strings and trees: order-invariant FO ≡ FO. (Benedikt, Segoufin ’10)
I On finite coloured sets: addition-invariant FO ≡ FO enriched by “cardinality

modulo” quantifiers. (S., Segoufin ’10)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 57

INTRODUCTION INVARIANT LOGICS UNDECIDABILITY EXPRESSIVENESS LOCALITY STRINGS FINAL REMARKS

Thank You!

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 58

	Introduction
	Invariant logics
	Undecidability
	Expressiveness
	Locality Results
	Order-invariant logics on strings
	Final Remarks

