A tutorial on order-invariant logics

Nicole Schweikardt

Humboldt-Universitét zu Berlin

INTRODUCTION

In this tutorial

» Consider finite directed graphs G = (V¢ E®).

Sometimes, nodes are additionally colored by a symbol from a finite alphabet X

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

INTRODUCTION

In this tutorial

» Consider finite directed graphs G = (V¢ E®).

Sometimes, nodes are additionally colored by a symbol from a finite alphabet X

> pis a graph property, if the following is true for all graphs G and H:
if G= H, then G has property p <= H has property p

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

INTRODUCTION

In this tutorial

» Consider finite directed graphs G = (V¢ E®).

Sometimes, nodes are additionally colored by a symbol from a finite alphabet X

> pis a graph property, if the following is true for all graphs G and H:
if G= H, then G has property p <= H has property p

> qis a k-ary graph-query, if the following is true:

if 7: G H, thenforall ay,...,ax € VG,

(ar,...,a) € q(G) <= (m(a1),...,m(ak)) € q(H)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

INTRODUCTION

In this tutorial

v

Consider finite directed graphs G = (V¢, E®).

Sometimes, nodes are additionally colored by a symbol from a finite alphabet X

> pis a graph property, if the following is true for all graphs G and H:
if G= H, then G has property p <= H has property p

> qis a k-ary graph-query, if the following is true:
if 7: G H, thenforall ay,...,ax € VG,

(ar,...,a) € q(G) <= (m(a1),...,m(ak)) € q(H)

> l.e., graph-properties and queries are closed under isomorphisms.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

INTRODUCTION

Logics expressing graph-properties and queries
Classical logics like, e.g.
» FO (first-order logic: Boolean combinations + quantification over nodes)
» LFP (least fixed point logic: FO + inductive definitions of relations)
express graph-properties and queries in a straightforward way.

Example: The query

q(G) = {xeV®: xlieson atriangle }

is expressed in FO via

o(x) = 3y 3z (E(x,y) N E(y,2) A E(z,x))

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

INTRODUCTION

Logics expressing graph-properties and queries
Classical logics like, e.g.
» FO (first-order logic: Boolean combinations + quantification over nodes)
» LFP (least fixed point logic: FO + inductive definitions of relations)
express graph-properties and queries in a straightforward way.

Example: The query

q(G) = {xeV®: xlieson atriangle }

is expressed in FO via

o(x) = 3y 3z (E(x,y) N E(y,2) A E(z,x))

Drawback:

FO and LFP are too weak to express (some) computationally easy properties, e.g.,
properties concerning the size of V& or EC.

Stronger logics like, e.g., SO or ESO can express computationally hard properties
and queries.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

INTRODUCTION

Overview

Introduction

Invariant logics

Undecidability

Expressiveness

Locality Results

Order-invariant logics on strings

Final Remarks

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

INVARIANT LOGICS

Overview

Invariant logics

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

INVARIANT LOGICS

Invariant logics

Idea:
» Extend the expressive power of a logic by allowing formulas to also use
arithmetic predicates like <, +, x, ..., Halt, ... on V.

» For this, identify V¢ with the set [n] := {0,1,...,n—1} for n = | V€|
and interpret <, +, X, ..., Halt, ... in the natural way.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

INVARIANT LOGICS

Invariant logics

Idea:
» Extend the expressive power of a logic by allowing formulas to also use
arithmetic predicates like <, +, x, ..., Halt, ... on V.

» For this, identify V¢ with the set [n] := {0,1,...,n—1} for n = | V€|
and interpret <, +, X, ..., Halt, ... in the natural way.

» To ensure closure under isomorphisms, restrict attention to formulas
independent of the particular way of identifying V¢ with [n].
These formulas are called Arb-invariant.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

INVARIANT LOGICS

Invariant logics

Idea:
» Extend the expressive power of a logic by allowing formulas to also use
arithmetic predicates like <, +, x, ..., Halt, ... on V.

» For this, identify V¢ with the set [n] := {0,1,...,n—1} for n = | V€|
and interpret <, +, X, ..., Halt, ... in the natural way.

» To ensure closure under isomorphisms, restrict attention to formulas
independent of the particular way of identifying V¢ with [n].
These formulas are called Arb-invariant.

Definition: Let £ be a logic (e.g., FO, MSO, LFP).
A L(E, <)-formula ¢(x) is order-invariant on G = (V¢ E®) <«
for all tuples of nodes @ in V@, for all linear orders <; and <z on V€,

(G.<)Ew(@) <= (G <))

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

INVARIANT LOGICS

Invariant logics

Idea:
» Extend the expressive power of a logic by allowing formulas to also use
arithmetic predicates like <, +, x, ..., Halt, ... on V.

» For this, identify V¢ with the set [n] := {0,1,...,n—1} for n = | V€|
and interpret <, +, X, ..., Halt, ... in the natural way.
» To ensure closure under isomorphisms, restrict attention to formulas

independent of the particular way of identifying V¢ with [n].
These formulas are called Arb-invariant.

Definition: Let £ be a logic (e.g., FO, MSO, LFP).

A L(E,<,+)-formula ¢(X) is addition-invariant on G = (V¢, E®) «—

for all tuples of nodes @ in V¢, for all linear orders < and <z on V¢, and the
matching addition relations ++, +-»,

(Gv <1, +1)): ‘P(é) — (Ga <z, +2) ': 30(5)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

INVARIANT LOGICS

Invariant logics

Idea:
» Extend the expressive power of a logic by allowing formulas to also use
arithmetic predicates like <, +, x, ..., Halt, ... on V.

» For this, identify V¢ with the set [n] := {0,1,...,n—1} for n = | V€|
and interpret <, +, X, ..., Halt, ... in the natural way.

» To ensure closure under isomorphisms, restrict attention to formulas
independent of the particular way of identifying V¢ with [n].
These formulas are called Arb-invariant.

Definition: Let £ be a logic (e.g., FO, MSO, LFP).

A L(E, <,+, x)-formula p(X) is (+, x)-invarianton G = (V¢ E®) «—
for all tuples of nodes @ in V¢, for all linear orders <1 and <z on V¢, and the
matching addition relations ++, +2, and the according multiplications x1, x2,

(G <1,+1,x1) E (@) <= (G, <2, +2,x2) F ¢(a).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

INVARIANT LOGICS

Invariant logics

Idea:
» Extend the expressive power of a logic by allowing formulas to also use
arithmetic predicates like <, +, x, ..., Halt, ... on V.
» For this, identify V¢ with the set [n] := {0,1,...,n—1} for n = | V€|
and interpret <, +, X, ..., Halt, ... in the natural way.

» To ensure closure under isomorphisms, restrict attention to formulas
independent of the particular way of identifying V¢ with [n].
These formulas are called Arb-invariant.

Definition: Let £ be a logic (e.g., FO, MSO, LFP).

A L(E,<,+,x,...)formula p(X) is Arb-invariant on G = (V¢ E®) «—

for all tuples of nodes @ in V¢, for all linear orders < and <z on V¢, and the
matching addition relations +4, +2, and the according multiplications x1, x», and
other numerical predicates,

(G7<17+17X17"')):(P(a) — (67 <27+27><27"‘)):90(5)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

INVARIANT LOGICS

Invariant logics

Idea:
» Extend the expressive power of a logic by allowing formulas to also use
arithmetic predicates like <, +, x, ..., Halt, ... on V.

» For this, identify V¢ with the set [n] := {0,1,...,n—1} for n = | V€|
and interpret <, +, X, ..., Halt, ... in the natural way.

» To ensure closure under isomorphisms, restrict attention to formulas
independent of the particular way of identifying V¢ with [n].
These formulas are called Arb-invariant.

Definition: Let £ be a logic (e.g., FO, MSO, LFP).
A L(E,<,+,x,...)formula p(X) is Arb-invariant on G = (V¢ E®) «—
for all tuples of nodes @ in V¢, for all linear orders < and <z on V¢, and the
matching addition relations +4, +2, and the according multiplications x1, x», and
other numerical predicates,

(G7<17+17X17"')):(P(é) A (67 <27+27><27"‘)):90(5)
For Arb-invariant sentences, shortly write G = ¢ for (G, <1,+1, %1...) = .

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

INVARIANT LOGICS

Example

e An addition-invariant FO(E, <, 4+)-sentence ¢ such that
Gy <= |V° isodd.

@ = Hxﬂz(erx:z ANVy(y<zVv y:z)>

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

INVARIANT LOGICS

Example

e An addition-invariant FO(E, <, +)-sentence ¢ such that
Gy <= |V° isodd.

p = Hxﬂz(erx:z ANVy(y<zVv y:z)>

e Similarly, there is an (+, x)-invariant FO(E, <, +, x)-sentence v such that

GEYy <« |V%-1 isaprime number.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

INVARIANT LOGICS

Example

e An addition-invariant FO(E, <, +)-sentence ¢ such that
Gy <= |V° isodd.

p = Hxﬂz(erx:z ANVy(y<zVv y:z)>

e Similarly, there is an (+, x)-invariant FO(E, <, +, x)-sentence v such that

GEYy <« |V%-1 isaprime number.

o And there is an Arb-invariant FO(E, <, Halt)-sentence x such that

GEx <= |V%-1 istheindex of a Turing machine halting on empty input:

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 7

INVARIANT LOGICS

Example

e An addition-invariant FO(E, <, +)-sentence ¢ such that
Gy <= |V° isodd.

p = Hxﬂz(erx:z ANVy(y<zVv y:z)>

e Similarly, there is an (+, x)-invariant FO(E, <, +, x)-sentence v such that

GEYy <« |V%-1 isaprime number.

o And there is an Arb-invariant FO(E, <, Halt)-sentence x such that
GEx <= |V%-1 istheindex of a Turing machine halting on empty input:

Simply choose x = Ix (Hali(x) A Vy (y <x V y=Xx)).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

INVARIANT LOGICS

Example
e An addition-invariant FO(E, <, +)-sentence ¢ such that

Gy <= |V° isodd.

p = Hxﬂz(erx:z ANVy(y<zVv y:z)>

e Similarly, there is an (+, x)-invariant FO(E, <, +, x)-sentence v such that

GEYy <« |V%-1 isaprime number.

o And there is an Arb-invariant FO(E, <, Halt)-sentence x such that
GEx <= |V%-1 istheindex of a Turing machine halting on empty input:

Simply choose x = Ix (Hali(x) A Vy (y <x V y=Xx)).

Thus:
order-inv FO < addition-inv FO < (+, x)-inv FO < Arb-invariant FO.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

INVARIANT LOGICS

Expressive power of invariant logics
Known results:

» Order-invariant LFP precisely captures the polynomial time computable
graph-properties and queries. (Immerman, Vardi, 1982)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

INVARIANT LOGICS

Expressive power of invariant logics
Known results:

» Order-invariant LFP precisely captures the polynomial time computable
graph-properties and queries. (Immerman, Vardi, 1982)

» Arb-invariant LFP precisely captures the graph-properties and queries that
belong to the comlexity class Py . (Makowsky, 1998)

Pjeoly consists of all problems solvable by circuit families of polynomial size

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 8

INVARIANT LOGICS

Expressive power of invariant logics
Known results:

» Order-invariant LFP precisely captures the polynomial time computable
graph-properties and queries. (Immerman, Vardi, 1982)

» Arb-invariant LFP precisely captures the graph-properties and queries that
belong to the comlexity class Py . (Makowsky, 1998)
Pjeoly consists of all problems solvable by circuit families of polynomial size

» Arb-invariant FO precisely captures the graph-properties and queries that belong
to the circuit complexity class AC°. (Immerman, 1980s)

AC? consists of all problems solvable by circuit families of polynomial size and
constant depth, using NOT-gates and AND- and OR-gates of unbounded fan-in.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 8

INVARIANT LOGICS

Expressive power of invariant logics
Known results:

» Order-invariant LFP precisely captures the polynomial time computable
graph-properties and queries. (Immerman, Vardi, 1982)

» Arb-invariant LFP precisely captures the graph-properties and queries that
belong to the comlexity class Py . (Makowsky, 1998)
Pjeoly consists of all problems solvable by circuit families of polynomial size

» Arb-invariant FO precisely captures the graph-properties and queries that belong
to the circuit complexity class AC°. (Immerman, 1980s)
AC? consists of all problems solvable by circuit families of polynomial size and
constant depth, using NOT-gates and AND- and OR-gates of unbounded fan-in.

» Arb-invariant FO4+MOD precisely captures the graph-properties and queries that
belong to the circuit complexity class ACC.

ACC consists of all problems solvable by circuit families of polynomial size and
constant depth, using also MOD-gates of unbounded fan-in.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 8

INVARIANT LOGICS

Expressive power of invariant logics
Known results:

» Order-invariant LFP precisely captures the polynomial time computable
graph-properties and queries. (Immerman, Vardi, 1982)

» Arb-invariant LFP precisely captures the graph-properties and queries that
belong to the comlexity class Py . (Makowsky, 1998)
Pjeoly consists of all problems solvable by circuit families of polynomial size

» Arb-invariant FO precisely captures the graph-properties and queries that belong
to the circuit complexity class AC°. (Immerman, 1980s)
AC? consists of all problems solvable by circuit families of polynomial size and
constant depth, using NOT-gates and AND- and OR-gates of unbounded fan-in.

» Arb-invariant FO4+MOD precisely captures the graph-properties and queries that
belong to the circuit complexity class ACC.

ACC consists of all problems solvable by circuit families of polynomial size and
constant depth, using also MOD-gates of unbounded fan-in.

> (4, x)-invariant FO precisely captures the graph-properties and queries that
belong to uniform AC°.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 8

UNDECIDABILITY

Overview

Undecidability

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

UNDECIDABILITY

Order-invariance is undecidable

Invariant logics are not logics in the strict formal sense:
They have an undecidable syntax.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

UNDECIDABILITY

Order-invariance is undecidable

Invariant logics are not logics in the strict formal sense:
They have an undecidable syntax. Precisely:

The following problem is undecidable (for binary symbol E and unary symbol C):

ORDER-INVARIANCE ON FINITE COLORED GRAPHS:
Input: a FO(E, C, <)-sentence ¢
Question: Is ¢ order-invariant on all finite colored graphs?

Proof: By a reduction using Trakhtenbrot’s theorem.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

UNDECIDABILITY

Order-invariance is undecidable

Invariant logics are not logics in the strict formal sense:
They have an undecidable syntax. Precisely:

The following problem is undecidable (for binary symbol E and unary symbol C):

ORDER-INVARIANCE ON FINITE COLORED GRAPHS:
Input: a FO(E, C, <)-sentence ¢
Question: Is ¢ order-invariant on all finite colored graphs?

Proof: By a reduction using Trakhtenbrot’s theorem.
» Assume, for contradiction, that order-invariance is decidable.
» Then, also the problem “Is a given FO(E)-sentence) true for all finite graphs?”
is decidable as follows:

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

UNDECIDABILITY

Order-invariance is undecidable

Invariant logics are not logics in the strict formal sense:
They have an undecidable syntax. Precisely:

The following problem is undecidable (for binary symbol E and unary symbol C):

ORDER-INVARIANCE ON FINITE COLORED GRAPHS:
Input: a FO(E, C, <)-sentence ¢
Question: Is ¢ order-invariant on all finite colored graphs?

Proof: By a reduction using Trakhtenbrot’s theorem.
» Assume, for contradiction, that order-invariance is decidable.
» Then, also the problem “Is a given FO(E)-sentence) true for all finite graphs?”

is decidable as follows:
(1) If there is a one-vertex-graph, in which ¢ is not true, then stop with output

“no”.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

UNDECIDABILITY

Order-invariance is undecidable

Invariant logics are not logics in the strict formal sense:
They have an undecidable syntax. Precisely:

The following problem is undecidable (for binary symbol E and unary symbol C):

ORDER-INVARIANCE ON FINITE COLORED GRAPHS:
Input: a FO(E, C, <)-sentence ¢
Question: Is ¢ order-invariant on all finite colored graphs?

Proof: By a reduction using Trakhtenbrot’s theorem.
» Assume, for contradiction, that order-invariance is decidable.
» Then, also the problem “Is a given FO(E)-sentence) true for all finite graphs?”

is decidable as follows:
(1) If there is a one-vertex-graph, in which ¢ is not true, then stop with output

“no”. Otherwise, proceed with (2).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

UNDECIDABILITY

Order-invariance is undecidable

Invariant logics are not logics in the strict formal sense:
They have an undecidable syntax. Precisely:

The following problem is undecidable (for binary symbol E and unary symbol C):

ORDER-INVARIANCE ON FINITE COLORED GRAPHS:
Input: a FO(E, C, <)-sentence ¢
Question: Is ¢ order-invariant on all finite colored graphs?

Proof: By a reduction using Trakhtenbrot’s theorem.
» Assume, for contradiction, that order-invariance is decidable.

» Then, also the problem “Is a given FO(E)-sentence) true for all finite graphs?”
is decidable as follows:

(1) If there is a one-vertex-graph, in which ¢ is not true, then stop with output
“no”. Otherwise, proceed with (2).

(2) Let x be a formula that is not order-invariant on structures of size > 2.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

UNDECIDABILITY

Order-invariance is undecidable

Invariant logics are not logics in the strict formal sense:
They have an undecidable syntax. Precisely:

The following problem is undecidable (for binary symbol E and unary symbol C):

ORDER-INVARIANCE ON FINITE COLORED GRAPHS:
Input: a FO(E, C, <)-sentence ¢
Question: Is ¢ order-invariant on all finite colored graphs?

Proof: By a reduction using Trakhtenbrot’s theorem.
» Assume, for contradiction, that order-invariance is decidable.

» Then, also the problem “Is a given FO(E)-sentence) true for all finite graphs?”
is decidable as follows:

(1) If there is a one-vertex-graph, in which ¢ is not true, then stop with output
“no”. Otherwise, proceed with (2).

(2) Let x be a formula that is not order-invariant on structures of size > 2.
E.g., x := 3Ix(C(x) AVy(x < y)).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

UNDECIDABILITY

Order-invariance is undecidable

Invariant logics are not logics in the strict formal sense:
They have an undecidable syntax. Precisely:

The following problem is undecidable (for binary symbol E and unary symbol C):

ORDER-INVARIANCE ON FINITE COLORED GRAPHS:
Input: a FO(E, C, <)-sentence ¢
Question: Is ¢ order-invariant on all finite colored graphs?

Proof: By a reduction using Trakhtenbrot’s theorem.
» Assume, for contradiction, that order-invariance is decidable.

» Then, also the problem “Is a given FO(E)-sentence) true for all finite graphs?”
is decidable as follows:
(1) If there is a one-vertex-graph, in which ¢ is not true, then stop with output
“no”. Otherwise, proceed with (2).
(2) Let x be a formula that is not order-invariant on structures of size > 2.
E.g., x := 3Ix(C(x) AVy(x < y)).
Stop with output “yes” iff the formula (—i) — x) is order-invariant. O

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 10

UNDECIDABILITY

Order-invariance is undecidable

Invariant logics are not logics in the strict formal sense:
They have an undecidable syntax. Precisely:

The following problem is undecidable (for binary symbol E and unary symbol C):
Exercise: Get rid of C!

ORDER-INVARIANCE ON FINITE COLORED GRAPHS:
Input: a FO(E, C, <)-sentence ¢
Question: Is ¢ order-invariant on all finite colored graphs?

Proof: By a reduction using Trakhtenbrot’s theorem.
» Assume, for contradiction, that order-invariance is decidable.

» Then, also the problem “Is a given FO(E)-sentence) true for all finite graphs?”
is decidable as follows:
(1) If there is a one-vertex-graph, in which ¢ is not true, then stop with output
“no”. Otherwise, proceed with (2).
(2) Let x be a formula that is not order-invariant on structures of size > 2.
E.g., x := 3Ix(C(x) AVy(x < y)).
Stop with output “yes” iff the formula (—i) — x) is order-invariant. O

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 10

UNDECIDABILITY

Order-invariance for unary signatures is decidable

Let {Cy, ..., C.} consist of unary relation symbols (i.e., node colors).

Theorem: Order-invariance of a given FO(Cy, ..., C,, <)-sentence ¢
(on the class of all finite colored sets) is decidable.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 11

UNDECIDABILITY

Order-invariance for unary signatures is decidable

Let {Cy,..., C¢} consist of unary relation symbols (i.e., node colors).

Theorem: Order-invariance of a given FO(Cy, ..., C,, <)-sentence ¢
(on the class of all finite colored sets) is decidable.

Decision procedure:

» o defines a language L of finite strings.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 11

UNDECIDABILITY

Order-invariance for unary signatures is decidable

Let {Cy, ..., C.} consist of unary relation symbols (i.e., node colors).

Theorem: Order-invariance of a given FO(Cy, ..., C,, <)-sentence ¢
(on the class of all finite colored sets) is decidable.

Decision procedure:
» o defines a language L of finite strings.

> o is order-invariant <= L is commutative.

Definition: L is commutative iff
forall w = a; - - - a, and all permutations © € S,
we have w € L <= a@)---anm € L.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 11

UNDECIDABILITY

Order-invariance for unary signatures is decidable

Let {Cy,..., C¢} consist of unary relation symbols (i.e., node colors).

Theorem: Order-invariance of a given FO(Cy, ..., C,, <)-sentence ¢
(on the class of all finite colored sets) is decidable.

Decision procedure:
» o defines a language L of finite strings.

> o is order-invariant <= L is commutative.

Definition: L is commutative iff
forall w = a; - - - a, and all permutations © € S,
we have w € L <= a@)---anm € L.

» Commutativity of regular string-languages is decidable.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

UNDECIDABILITY

Addition-invariance for unary signatures is undecidable

Theorem: Addition-invariance of a given FO(C, <, +)-sentence ¢
(on the class of all finite colored sets) is not decidable.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

UNDECIDABILITY

Addition-invariance for unary signatures is undecidable

Theorem: Addition-invariance of a given FO(C, <, +)-sentence ¢
(on the class of all finite colored sets) is not decidable.

Proof:
» Let H C N be recursively enumerable, but not decidable.

» Goal: Construct, foreachne N, a FO(C, <, +)-sentence ¥, such that
n¢g H <= 4, is addition-invariant.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

UNDECIDABILITY

Addition-invariance for unary signatures is undecidable

Theorem: Addition-invariance of a given FO(C, <, +)-sentence ¢
(on the class of all finite colored sets) is not decidable.

Proof:
» Let H C N be recursively enumerable, but not decidable.

» Goal: Construct, foreachne N, a FO(C, <, +)-sentence ¥n such that
n¢g H <= 4, is addition-invariant.

» Since H is r.e., it is FO-definable in bounded arithmetic.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

UNDECIDABILITY

Addition-invariance for unary signatures is undecidable

Theorem: Addition-invariance of a given FO(C, <, +)-sentence ¢
(on the class of all finite colored sets) is not decidable.

Proof: Notation: [N]:={0,1,...,N}
» Let H C N be recursively enumerable, but not decidable.

» Goal: Construct, foreachne N, a FO(C, <, +)-sentence ¥n such that
n¢g H <= 4, is addition-invariant.

» Since His r.e., it is FO-definable in bounded arithmetic. Thus, there is a
FO(<, +, x)-formula ¢(z) such that for all n € N we have:

ne H <= thereisan N > nsuchthat ([N],<,+, x) = ¥(n).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

UNDECIDABILITY

Addition-invariance for unary signatures is undecidable

Theorem: Addition-invariance of a given FO(C, <, +)-sentence ¢
(on the class of all finite colored sets) is not decidable.

Proof: Notation: [N]:={0,1,...,N}
» Let H C N be recursively enumerable, but not decidable.

» Goal: Construct, forgach neN,aFO(C, <,+)-sentence n, such that
n¢g H <= 4, is addition-invariant.

» Since His r.e., it is FO-definable in bounded arithmetic. Thus, there is a
FO(<, +, x)-formula ¢(z) such that for all n € N we have:

ne H <= thereisan N > nsuchthat ([N],<,+, x) = ¥(n).

» Let C be the set of all square numbers. Known:

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

UNDECIDABILITY

Addition-invariance for unary signatures is undecidable

Theorem: Addition-invariance of a given FO(C, <, +)-sentence ¢
(on the class of all finite colored sets) is not decidable.

Proof: Notation: [N]:={0,1,...,N}
» Let H C N be recursively enumerable, but not decidable.

» Goal: Construct, foreachne N, a FO(C, <, +)-sentence ¥n such that
n¢g H <= 4, is addition-invariant.

» Since His r.e., it is FO-definable in bounded arithmetic. Thus, there is a
FO(<, +, x)-formula ¢(z) such that for all n € N we have:

ne H <= thereisan N > nsuchthat ([N],<,+, x) = ¥(n).

» Let C be the set of all square numbers. Known:
e x is FO(<,+, C)-definable in ([N],<,+,C) via ¢ox(x,y,Z2).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

UNDECIDABILITY

Addition-invariance for unary signatures is undecidable

Theorem: Addition-invariance of a given FO(C, <, +)-sentence ¢
(on the class of all finite colored sets) is not decidable.

Proof: Notation: [N]:={0,1,...,N}
» Let H C N be recursively enumerable, but not decidable.

» Goal: Construct, foreachne N, a FO(C, <, +)-sentence ¥n such that
n¢g H <= 4, is addition-invariant.

» Since His r.e., it is FO-definable in bounded arithmetic. Thus, there is a
FO(<, +, x)-formula ¢(z) such that for all n € N we have:

ne H <= thereisan N > nsuchthat ([N],<,+, x) = ¥(n).

» Let C be the set of all square numbers. Known:
e x is FO(<,+, C)-definable in ([N],<,+,C) via ox(X,y,Z2).
e “C = square numbers’ is FO(<, +, C)-definable via ¢c—squares-

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

UNDECIDABILITY

Addition-invariance for unary signatures is undecidable

Theorem: Addition-invariance of a given FO(C, <, +)-sentence ¢
(on the class of all finite colored sets) is not decidable.

Proof: Notation: [N]:={0,1,...,N}
» Let H C N be recursively enumerable, but not decidable.

» Goal: Construct, foreachne N, a FO(C, <, +)-sentence ¥n such that
n¢g H <= 4, is addition-invariant.

» Since His r.e., it is FO-definable in bounded arithmetic. Thus, there is a
FO(<, +, x)-formula ¢(z) such that for all n € N we have:

ne H < thereisan N > nsuchthat ([N],<,+, x) = ¥(n).
» Let C be the set of all square numbers. Known:
e x is FO(<,+, C)-definable in ([N],<,+,C) via ox(X,y,Z2).
e “C = square numbers’ is FO(<, +, C)-definable via ¢c—squares-
> Substitute ¢ for x in ¢(z) and let, for each n € N, P = (n) A P C=squares-

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 12

UNDECIDABILITY

Addition-invariance for unary signatures is undecidable

Theorem: Addition-invariance of a given FO(C, <, +)-sentence ¢
(on the class of all finite colored sets) is not decidable.

Proof: Notation: [N]:={0,1,...,N}
» Let H C N be recursively enumerable, but not decidable.

» Goal: Construct, foreachne N, a FO(C, <, +)-sentence ¥n such that
n¢g H <= 4, is addition-invariant.

» Since His r.e., it is FO-definable in bounded arithmetic. Thus, there is a
FO(<, +, x)-formula ¢(z) such that for all n € N we have:

ne H <= thereisan N > nsuchthat ([N],<,+, x) = ¢(n).
» Let C be the set of all square numbers. Known:
e x is FO(<,+, C)-definable in ([N],<,+,C) via ox(X,y,Z2).
e “C = square numbers’ is FO(<, +, C)-definable via ¢c—squares-
» Substitute p for x in 1(z) and let, for each n € N, 1, := 1(n) A pc—squares-
Note: ¢ is an FO(<, +, C)-sentence.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 12

UNDECIDABILITY

Addition-invariance for unary signatures is undecidable

Theorem: Addition-invariance of a given FO(C, <, +)-sentence ¢
(on the class of all finite colored sets) is not decidable.

Proof: Notation: [N]:={0,1,...,N}
» Let H C N be recursively enumerable, but not decidable.

» Goal: Construct, foreachne N, a FO(C, <, +)-sentence ¥n such that
n¢g H <= 4, is addition-invariant.

» Since His r.e., it is FO-definable in bounded arithmetic. Thus, there is a
FO(<, +, x)-formula ¢(z) such that for all n € N we have:

ne H <= thereisan N > nsuchthat ([N],<,+, x) = ¢(n).
» Let C be the set of all square numbers. Known:
e x is FO(<,+, C)-definable in ([N],<,+,C) via ox(X,y,Z2).
e “C = square numbers’ is FO(<, +, C)-definable via ¢c—squares-
> Substitute ¢ for x in ¢(z) and let, for each n € N, P = (n) A P C=squares-
Note: ¢ is an FO(<, +, C)-sentence.
» Furthermore, n¢ H <= 4, is addition-invariant. O

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 12

Expressiveness

NICOLE SCHWEIKARDT

EXPRESSIVENESS

Overview

A TUTORIAL ON ORDER-INVARIANT LOGICS

EXPRESSIVENESS

FO < order-invariant FO — Gurevich’s proof

Theorem (Gurevich):
For a finite set X let Bx := (2%, C) be the Boolean algebra over X.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

EXPRESSIVENESS

FO < order-invariant FO — Gurevich’s proof

Theorem (Gurevich):
For a finite set X let Bx := (2%, C) be the Boolean algebra over X.

There is an order-inv. FO(C, <)-sentence geven Such that for every finite set X:

Bx ':Sﬁeven < |X‘ is even.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

EXPRESSIVENESS

FO < order-invariant FO — Gurevich’s proof

Theorem (Gurevich):
For a finite set X let Bx := (2%, C) be the Boolean algebra over X.

There is an order-inv. FO(C, <)-sentence geven such that for every finite set X

Bx ':Sﬁeven < |X‘ is even.

But there is no FO(C)-sentence veven such that for every finite set X:

Bx = teven <= |X| is even.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

EXPRESSIVENESS

FO < order-invariant FO — Gurevich’s proof

Theorem (Gurevich):
For a finite set X let Bx := (2%, C) be the Boolean algebra over X.

There is an order-inv. FO(C, <)-sentence geven Such that for every finite set X:

Bx ':Sﬁeven < |X‘ is even.

But there is no FO(C)-sentence veven such that for every finite set X:

Bx = teven <= |X| is even.

Proof:

Part 1: peven €Xpresses that there is a set z that contains the first (w.r.t. <) atom of
X, every other (w.r.t. <) atom of X, but not the last (w.r.t. <) atom of X.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

EXPRESSIVENESS

FO < order-invariant FO — Gurevich’s proof

Theorem (Gurevich):
For a finite set X let Bx := (2%, C) be the Boolean algebra over X.

There is an order-inv. FO(C, <)-sentence geven Such that for every finite set X:

Bx ':Sﬁeven < |X‘ is even.

But there is no FO(C)-sentence veven such that for every finite set X:

Bx = teven <= |X| is even.

Proof:

Part 1: peven €Xpresses that there is a set z that contains the first (w.r.t. <) atom of
X, every other (w.r.t. <) atom of X, but not the last (w.r.t. <) atom of X.

Part 2: Use an Ehrenfeucht-Fraissé game argument to show that
Bx =, By for all finite X, Y of cardinality > 2". O

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 14

EXPRESSIVENESS

FO < order-invariant FO — Potthoff’s proof

Theorem (Potthoff):

Represent a finite unordered binary tree T by a {E, D}-structure Ar where
(A, E*) = T and D* is the transitive closure of E* (i.e., the descendant-relation).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 15

EXPRESSIVENESS

FO < order-invariant FO — Potthoff’s proof

Theorem (Potthoff):
Represent a finite unordered binary tree T by a {E, D}-structure Ar where
(A, E*) = T and D* is the transitive closure of E* (i.e., the descendant-relation).

There is an order-inv. FO(E, D, <)-sentence weven such that
for every finite full binary tree T we have:

AT E peven < every leaf of T has even height.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

EXPRESSIVENESS

FO < order-invariant FO — Potthoff’s proof

Theorem (Potthoff):
Represent a finite unordered binary tree T by a {E, D}-structure A; where
(A, E*) = T and D* is the transitive closure of E* (i.e., the descendant-relation).

There is an order-inv. FO(E, D, <)-sentence weven such that
for every finite full binary tree T we have:

AT E peven < every leaf of T has even height.

But there is no FO(E, D)-sentence even such that for every full binary tree T:

At = vYewen <= everyleaf of T has even height.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

EXPRESSIVENESS

FO < order-invariant FO — Potthoff’s proof

Theorem (Potthoff):
Represent a finite unordered binary tree T by a {E, D}-structure A; where
(A, E*) = T and D* is the transitive closure of E* (i.e., the descendant-relation).

There is an order-inv. FO(E, D, <)-sentence weven such that
for every finite full binary tree T we have:

AT E peven < every leaf of T has even height.

But there is no FO(E, D)-sentence even such that for every full binary tree T:

At = vYewen <= everyleaf of T has even height.

Proof:
Part 2: Use an Ehrenfeucht-Fraissé game argument to show that A7 =, Ay for all
unordered full binary trees of height > 2"*+1,

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

EXPRESSIVENESS

FO < order-invariant FO — Potthoff’s proof

Theorem (Potthoff):
Represent a finite unordered binary tree T by a {E, D}-structure A; where
(A, E*) = T and D* is the transitive closure of E* (i.e., the descendant-relation).

There is an order-inv. FO(E, D, <)-sentence weven such that
for every finite full binary tree T we have:

AT E peven < every leaf of T has even height.

But there is no FO(E, D)-sentence even such that for every full binary tree T:

At = vYewen <= everyleaf of T has even height.

Proof:
Part 2: Use an Ehrenfeucht-Fraissé game argument to show that A7 =, Ay for all
unordered full binary trees of height > 2"*+1,

Part 1: For simplicity, we here only construct weven that is order-invariant on Ay for
full binary trees T.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

EXPRESSIVENESS

FO < order-invariant FO — Potthoff’s proof

Theorem (Potthoff):
Represent a finite unordered binary tree T by a {E, D}-structure A; where
(A, E*) = T and D* is the transitive closure of E* (i.e., the descendant-relation).

There is an order-inv. FO(E, D, <)-sentence weven such that
for every finite full binary tree T we have:

AT E peven < every leaf of T has even height.

But there is no FO(E, D)-sentence even such that for every full binary tree T:

At = vYewen <= everyleaf of T has even height.

Proof:
Part 2: Use an Ehrenfeucht-Fraissé game argument to show that A7 =, Ay for all
unordered full binary trees of height > 2"*+1,

Part 1: For simplicity, we here only construct weven that is order-invariant on Ay for

full binary trees T.
Exercise: Work out the details for the general case!
15

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

EXPRESSIVENESS

Part 1: For simplicity, we here only construct peven that is order-invariant on Ar for
full binary trees T.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

EXPRESSIVENESS
Part 1: For simplicity, we here only construct peven that is order-invariant on Ar for
full binary trees T.

» Use < to order the children of each node aof T:

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

EXPRESSIVENESS

Part 1: For simplicity, we here only construct peven that is order-invariant on Ar for
full binary trees T.

» Use < to order the children of each node aof T: If by < by are the children of a,
then by is called the 1-child and b, the 2-child of a.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 16

EXPRESSIVENESS

Part 1: For simplicity, we here only construct peven that is order-invariant on Ar for
full binary trees T.

» Use < to order the children of each node aof T: If by < by are the children of a,
then by is called the 1-child and b, the 2-child of a.

» Consider the zig-zag-path which starts in the root, visits the root’s 1-child, that
node’s 2-child, that node’s 1-child, etc.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 16

EXPRESSIVENESS

Part 1: For simplicity, we here only construct peven that is order-invariant on Ar for
full binary trees T.

» Use < to order the children of each node aof T: If by < by are the children of a,
then by is called the 1-child and b, the 2-child of a.

» Consider the zig-zag-path which starts in the root, visits the root’s 1-child, that
node’s 2-child, that node’s 1-child, etc.

» A full binary tree T has even height iff the last node on the zig-zag-path is a
2-child.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 16

EXPRESSIVENESS

Part 1: For simplicity, we here only construct peven that is order-invariant on Ar for
full binary trees T.

» Use < to order the children of each node aof T: If by < by are the children of a,
then by is called the 1-child and b, the 2-child of a.

» Consider the zig-zag-path which starts in the root, visits the root’s 1-child, that
node’s 2-child, that node’s 1-child, etc.

» A full binary tree T has even height iff the last node on the zig-zag-path is a
2-child. This can be expressed in order-inv. FO(E, D, <) which states that

» exists xp, X such that
> root(xo), leaf(xy), xnis a 2-child,

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 16

EXPRESSIVENESS

Part 1: For simplicity, we here only construct peven that is order-invariant on Ar for
full binary trees T.

» Use < to order the children of each node aof T: If by < by are the children of a,
then by is called the 1-child and b, the 2-child of a.

» Consider the zig-zag-path which starts in the root, visits the root’s 1-child, that
node’s 2-child, that node’s 1-child, etc.

» A full binary tree T has even height iff the last node on the zig-zag-path is a
2-child. This can be expressed in order-inv. FO(E, D, <) which states that

» exists xp, X such that
> root(xo), leaf(xy), xnis a 2-child,
» the node x¢ satisfying E(xo, X1) A D(x1, x») is a 1-child

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 16

EXPRESSIVENESS

Part 1: For simplicity, we here only construct peven that is order-invariant on Ar for
full binary trees T.

» Use < to order the children of each node aof T: If by < by are the children of a,
then by is called the 1-child and b, the 2-child of a.

» Consider the zig-zag-path which starts in the root, visits the root’s 1-child, that
node’s 2-child, that node’s 1-child, etc.

» A full binary tree T has even height iff the last node on the zig-zag-path is a
2-child. This can be expressed in order-inv. FO(E, D, <) which states that

» exists xp, X such that

> root(xo), leaf(xy), xnis a 2-child,

» the node x¢ satisfying E(xo, X1) A D(x1, x») is a 1-child

» for any 3 nodes u, v, w such that
E(u,v) and E(v,w) and (D(w, xp) V w = x») we have:
v is a 1-child iff w is a 2-child.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 16

EXPRESSIVENESS

FO < order-invariant FO — Otto’s proof
Leto = {E,~, €, V, V' P’} with binary E, ~, € and unary V, V' P’
Represent a graph G = (V, E) on 2n nodes by the o-structure Sz,(G):

E ~ e

e |
:zéﬁif
== \\\
==, .

e
v v =2V

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

EXPRESSIVENESS

FO < order-invariant FO — Otto’s proof
Leto = {E,~, €, V, V' P’} with binary E, ~, € and unary V, V' P’
Represent a graph G = (V, E) on 2n nodes by the o-structure Sz,(G):

E ~ e

e |
:zéﬁif
== \\\
==, .

e
v v =2V

Theorem (Otto):

There is an order-inv. FO(o, <)-sentence ¢conn, but no FO(o)-sentence, such that
for all n € N and all graphs G on 2n nodes we have

Son(G) E ¢eonn <= G is connected.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

EXPRESSIVENESS

Successor-invariant FO

By a much more elaborate construction, one can also show:

Theorem (Rossman, LICS’03)

On the class of all finite structures,
successor-invariant FO is strictly more expressive than FO.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 18

EXPRESSIVENESS

FO+MOD, < order-invariant FO4+MOD,

FO+MOD: : the extension of FO by modulo 2 counting quantifiers
30med2x 4)(x) : the number of nodes x satisfying v (x) is congruent 0 modulo 2.

Theorem (Niemisto):
There is an order-invariant FO+MOD;(E)-sentence even cycies that is satisfied by

a finite directed graph G = (V¢, E%) iff
(1) G is adisjoint union of directed cycles, and
(2) the number of even-length cycles is even.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

EXPRESSIVENESS

FO+MOD, < order-invariant FO4+MOD,

FO+MOD: : the extension of FO by modulo 2 counting quantifiers
30med2x 4)(x) : the number of nodes x satisfying v (x) is congruent 0 modulo 2.

Theorem (Niemisto):
There is an order-invariant FO+MOD;(E)-sentence even cycies that is satisfied by

a finite directed graph G = (V¢, E%) iff
(1) G is adisjoint union of directed cycles, and
(2) the number of even-length cycles is even.

Proof:
> (1) can be expressed in FO: “every node has in- and out-degree 1”

» Every G satisfying (1) is the cycle decomposition of a permutation .

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

EXPRESSIVENESS

FO+MOD, < order-invariant FO4+MOD,

FO+MOD: : the extension of FO by modulo 2 counting quantifiers
30med2x 4)(x) : the number of nodes x satisfying v (x) is congruent 0 modulo 2.

Theorem (Niemisto):
There is an order-invariant FO+MOD;(E)-sentence even cycies that is satisfied by

a finite directed graph G = (V¢, E%) iff
(1) G is adisjoint union of directed cycles, and
(2) the number of even-length cycles is even.

Proof:
> (1) can be expressed in FO: “every node has in- and out-degree 1”

» Every G satisfying (1) is the cycle decomposition of a permutation .
» G has an even number of even-length cycles <=

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

EXPRESSIVENESS

FO+MOD, < order-invariant FO4+MOD,

FO+MOD: : the extension of FO by modulo 2 counting quantifiers
30med2x 4)(x) : the number of nodes x satisfying v (x) is congruent 0 modulo 2.

Theorem (Niemisto):
There is an order-invariant FO+MOD;(E)-sentence even cycies that is satisfied by

a finite directed graph G = (V¢, E%) iff
(1) G is adisjoint union of directed cycles, and
(2) the number of even-length cycles is even.

Proof:
> (1) can be expressed in FO: “every node has in- and out-degree 1”

» Every G satisfying (1) is the cycle decomposition of a permutation .
» G has an even number of even-length cycles <=
m is an even permutation, i.e., sgn(r) =1 <~—

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

EXPRESSIVENESS

FO+MOD, < order-invariant FO4+MOD,

FO+MOD: : the extension of FO by modulo 2 counting quantifiers
30med2x 4)(x) : the number of nodes x satisfying v (x) is congruent 0 modulo 2.

Theorem (Niemisto):

There is an order-invariant FO+MOD,(E)-sentence @even oyoies that is satisfied by
a finite directed graph G = (V¢, E%) iff

(1) G is adisjoint union of directed cycles, and

(2) the number of even-length cycles is even.

Proof:
> (1) can be expressed in FO: “every node has in- and out-degree 1”

» Every G satisfying (1) is the cycle decomposition of a permutation .
» G has an even number of even-length cycles <=

m is an even permutation, i.e., sgn(r) =1 <~—

7 has an even number of inversions (i,j) suchthat i <j and =(i) > =(j).
O

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 19

EXPRESSIVENESS

Order-invariant MSO

CMSO : the extension of MSO by modulo counting quantifiers
3rmodmy 4 (x) : the number of nodes x satisfying ¢(x) is congruent r modulo m.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

20

EXPRESSIVENESS

Order-invariant MSO

CMSO : the extension of MSO by modulo counting quantifiers
3rmed My 4(x) : the number of nodes x satisfying ¥ (x) is congruent r modulo m.

Known:

» On trees:
Order-invariant MSO = CMSO (Courcelle 1996, Lapoire 1998)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 20

EXPRESSIVENESS

Order-invariant MSO

CMSO : the extension of MSO by modulo counting quantifiers
3rmed My 4(x) : the number of nodes x satisfying ¥ (x) is congruent r modulo m.

Known:

» On trees:
Order-invariant MSO = CMSO (Courcelle 1996, Lapoire 1998)

» On the class of all finite structures:
Order-invariant MSO > CMSO (Ganzow, Rubin 2008)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 20

EXPRESSIVENESS

Order-invariant MSO

CMSO : the extension of MSO by modulo counting quantifiers
3rmodmy 4 (x) : the number of nodes x satisfying ¢(x) is congruent r modulo m.
Known:

» On trees:
Order-invariant MSO = CMSO (Courcelle 1996, Lapoire 1998)

» On the class of all finite structures:
Order-invariant MSO > CMSO (Ganzow, Rubin 2008)

The separating example:

» Consider 2-dimensional grids, represented as structures of the form
(V€, Same_Row, Same_Column).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 20

EXPRESSIVENESS

Order-invariant MSO

CMSO : the extension of MSO by modulo counting quantifiers
3rmed My 4(x) : the number of nodes x satisfying ¥ (x) is congruent r modulo m.

Known:

» On trees:
Order-invariant MSO = CMSO (Courcelle 1996, Lapoire 1998)

» On the class of all finite structures:
Order-invariant MSO > CMSO (Ganzow, Rubin 2008)

The separating example:

» Consider 2-dimensional grids, represented as structures of the form
(V€, Same_Row, Same_Column).

» Order-invariant MSO can express that
the number of columns is a multiple of the number of rows.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 20

EXPRESSIVENESS

Order-invariant MSO

CMSO : the extension of MSO by modulo counting quantifiers
3rmodmy 4 (x) : the number of nodes x satisfying ¢(x) is congruent r modulo m.

Known:

» On trees:
Order-invariant MSO = CMSO (Courcelle 1996, Lapoire 1998)

» On the class of all finite structures:
Order-invariant MSO > CMSO (Ganzow, Rubin 2008)

The separating example:

» Consider 2-dimensional grids, represented as structures of the form
(V€, Same_Row, Same_Column).

» Order-invariant MSO can express that
the number of columns is a multiple of the number of rows.

» CMSO cannot (for showing this, use a variant of EF-games).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 20

Locality Results

NICOLE SCHWEIKARDT

LocALITY

Overview

A TUTORIAL ON ORDER-INVARIANT LOGICS

21

LocALITY

Neighborhoods
Graph G = (V% E®)
Distance dist(u, v) : length of shortest path from u to v in undirected version of G.
Shell S;(a) of nodes at distance exactly r from a.
Ball N;(a) of radius rat ain G.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 22

LocALITY

Neighborhoods
Graph G = (V% E®)
Distance dist(u, v) : length of shortest path from u to v in undirected version of G.
Shell S;(a) of nodes at distance exactly r from a.
Ball N;(a) of radius rat ain G.
Neighborhood N.8(a) of radius r at ain G : induced subgraph of G on N;(a).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 22

LocALITY

Gaifman-local queries

» Foralista=a,...,ax of nodes, N;(a) = N;(a1) U--- U N;(ak).

» The r-neighborhood N.6(a) is the induced subgraph of G on N,(a).

Definition: Let g be a k-ary graph query. Letf: N — N.

with | V€| = n, the following is true for all k-tuples a and b of nodes:

it (Niy(a),a) = (NG,(b),b) then acq(G) <= be q(G).

g is called f(n)-local if there is an ngy such that for every n > ng and every graph G

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

23

LocALITY

Gaifman-locality of FO

Theorem:
» For every graph query q that is FO-definable,

there is a constant ¢ such that q is c-local.
(Hella, Libkin, Nurmonen 1990s; Gaifman '82)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 24

LocALITY

Gaifman-locality of FO

Theorem:

» For every graph query q that is FO-definable,
there is a constant ¢ such that q is c-local.
(Hella, Libkin, Nurmonen 1990s; Gaifman '82)

» For every graph query q that is FO-definable on ordered graphs
(i.e., g is definable in order-invariant FO),
there is a constant ¢ such that q is c-local.
(Grohe, Schwentick '98)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 24

LocALITY

Gaifman-locality of FO

Theorem:

» For every graph query q that is FO-definable,
there is a constant ¢ such that q is c-local.
(Hella, Libkin, Nurmonen 1990s; Gaifman '82)

» For every graph query q that is FO-definable on ordered graphs
(i.e., g is definable in order-invariant FO),
there is a constant ¢ such that q is c-local.
(Grohe, Schwentick '98)

» For every graph query q that is FO-definable on graphs with arbitrary numerical
predicates (i.e., g is definable in Arb-invariant FO),
there is a constant ¢ such that g is (log n)°-local.
(Anderson, van Melkebeek, S., Segoufin ’11)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 24

LocALITY

Use locality for proving non-expressibility

Example: The reachability query
REACH(G) := {(a1,a2) : there is a directed path from a; to a in G }

is not £-local an thus cannot be expressed in Arb-invariant FO.

Proof: Consider the graph G: a, b
1

aj b2

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 25

LocALITY

Use locality for proving non-expressibility

Similarly, one obtains that the following queries are not definable in Arb-invariant FO:

Does node x lie on a cycle?

e Does node x belong to a connected component that is acyclic?

Is node x reachable from a node that belongs to a triangle?

Do nodes x and y have the same distance to node z?

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 26

LocALITY

Proof of Gaifman-locality theorem (1/5)

For every query q expressible by Arb-invariant FO, there is a ¢ € N such that
q is (log n)°-local.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

27

LocALITY

Proof of Gaifman-locality theorem (1/5)

For every query q expressible by Arb-invariant FO, there is a ¢ € N such that
q is (log n)°-local.

| Idea: Use known lower bounds in circuit complexity!

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

27

Proof of Gaifman-locality theorem (1/5)

For every query q expressible by Arb-invariant FO, there is a ¢ € N such that
q is (log n)°-local.

‘ Idea: Use known lower bounds in circuit complexity!

> Let g be expressible by an Arb-invariant FO formula.

» Then, g can be computed by an AC? circuit family C (Immerman '87).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

27

LocALITY

Proof of Gaifman-locality theorem (1/5)

For every query q expressible by Arb-invariant FO, there is a ¢ € N such that
q is (log n)°-local.

’ Idea: Use known lower bounds in circuit complexity!

v

Let g be expressible by an Arb-invariant FO formula.

» Then, g can be computed by an AC? circuit family ¢ (Immerman '87).

\4

Assume that g is not (log n)°-local (for any ¢ € N), and
modify C to obtain a circuit family computing

PARITY := {w € {0,1}" : |w|; is even}.

v

This contradicts known lower bounds in circuit complexity theory (Hastad’86).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 27

Proof of Gaifman-locality theorem (2/5)
How to compute a graph query q(x) by a circuit family C ?

e Represent graph G = (V¢ E€) by a bitstring
B(G) corresponding to an adjacency matrix for G.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

28

Proof of Gaifman-locality theorem (2/5)
How to compute a graph query q(x) by a circuit family C ?

e Represent graph G = (V¢ E€) by a bitstring
B(G) corresponding to an adjacency matrix for G.

e Represent a node a € V@ by the bitstring

B(a) of the form 0*10*, carrying the 1 at position i iff node a corresponds to the
i-th row/column of the adjacency matrix.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 28

LocALITY

Proof of Gaifman-locality theorem (2/5)
How to compute a graph query q(x) by a circuit family C ?

e Represent graph G = (V¢ E€) by a bitstring
B(G) corresponding to an adjacency matrix for G.

e Represent a node a € V@ by the bitstring
B(a) of the form 0*10*, carrying the 1 at position i iff node a corresponds to the
i-th row/column of the adjacency matrix.

o Let Rep(G, a) be the set of all bitstrings 3(G)S(a), corresponding to all
adjacency matrices of G (i.e., all ways of embedding Vin {1,...,|V|}).
Thus, Rep(G, a) is the set of all bitstrings representing (G, a).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 28

LocALITY

Proof of Gaifman-locality theorem (2/5)
How to compute a graph query q(x) by a circuit family C ?

e Represent graph G = (V¢ E€) by a bitstring
B(G) corresponding to an adjacency matrix for G.

e Represent a node a € V@ by the bitstring
B(a) of the form 0*10*, carrying the 1 at position i iff node a corresponds to the
i-th row/column of the adjacency matrix.

o Let Rep(G, a) be the set of all bitstrings 3(G)S(a), corresponding to all
adjacency matrices of G (i.e., all ways of embedding Vin {1,...,|V|}).
Thus, Rep(G, a) is the set of all bitstrings representing (G, a).

e A unary graph query gq(x) is computed by a circuit family C = (Cn)nen iff the

following is true:
forall G= (V¢ E®),ac VO vy c Rep(G,a): ac q(G) «— C, accepts 7.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 28

LocALITY

Proof of Gaifman-locality theorem (2/5)
How to compute a graph query q(x) by a circuit family C ?

e Represent graph G = (V¢ E€) by a bitstring
B(G) corresponding to an adjacency matrix for G.

e Represent a node a € V@ by the bitstring
B(a) of the form 0*10*, carrying the 1 at position i iff node a corresponds to the
i-th row/column of the adjacency matrix.

o Let Rep(G, a) be the set of all bitstrings 3(G)S(a), corresponding to all
adjacency matrices of G (i.e., all ways of embedding Vin {1,...,|V|}).
Thus, Rep(G, a) is the set of all bitstrings representing (G, a).

e A unary graph query gq(x) is computed by a circuit family C = (Cn)nen iff the
following is true:
forall G= (V¢ E®),ac VO vy c Rep(G,a): ac q(G) «— C, accepts 7.

e Known: A unary graph query g(x) is definable in Arb-invariant FO <
it is computed by an AC°-circuit family of constant depth and polynomial size.
(implicit in Immerman’87)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 28

LocALITY

Proof of Gaifman-locality theorem (3/5)

Let g(x) be a unary graph query expressible in Arb-invariant FO.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

29

LocALITY

Proof of Gaifman-locality theorem (3/5)

Let g(x) be a unary graph query expressible in Arb-invariant FO. Let C = (Cy)nen be
an AC°-circuit family of constant depth d and polynomial size p(n) computing q.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 29

LocALITY

Proof of Gaifman-locality theorem (3/5)

Let g(x) be a unary graph query expressible in Arb-invariant FO. Let C = (Cp)nen be
an AC°-circuit family of constant depth d and polynomial size p(n) computing q.
l.e., forall G= (V% E®),ac V¢ ~c Rep(G,a): ac q(G) <= C, accepts 7.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 29

LocALITY

Proof of Gaifman-locality theorem (3/5)

Let g(x) be a unary graph query expressible in Arb-invariant FO. Let C = (Cp)nen be
an AC°-circuit family of constant depth d and polynomial size p(n) computing q.
l.e., forall G= (V% E®),ac V¢ ~c Rep(G,a): ac q(G) <= C, accepts 7.

For contradiction, assume g(x) is not (log n)°-local, for any ¢ € N.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 29

LocALITY

Proof of Gaifman-locality theorem (3/5)

Let g(x) be a unary graph query expressible in Arb-invariant FO. Let C = (Cp)nen be
an AC°-circuit family of constant depth d and polynomial size p(n) computing q.
l.e., forall G= (V% E®),ac V¢ ~c Rep(G,a): ac q(G) <= C, accepts 7.

For contradiction, assume g(x) is not (log n)°-local, for any ¢ € N.
Thus: For all ¢, no there exist n > ny, G = (V¢, E®) with n nodes, a, b € V¢ such

that

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 29

LocALITY

Proof of Gaifman-locality theorem (3/5)

Let g(x) be a unary graph query expressible in Arb-invariant FO. Let C = (Cp)nen be
an AC°-circuit family of constant depth d and polynomial size p(n) computing q.
l.e., forall G= (V% E®),ac V¢ ~c Rep(G,a): ac q(G) <= C, accepts 7.

For contradiction, assume g(x) is not (log n)°-local, for any ¢ € N.
Thus: For all ¢, no there exist n > ny, G = (V¢, E®) with n nodes, a, b € V¢ such
that for m:= (log n)°, (N5(a),a) = (N (b),b),buta € g(G) and b & q(G).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 29

LocALITY

Proof of Gaifman-locality theorem (3/5)

Let g(x) be a unary graph query expressible in Arb-invariant FO. Let C = (Cp)nen be
an AC°-circuit family of constant depth d and polynomial size p(n) computing q.
l.e., forall G= (V% E®),ac V¢ ~c Rep(G,a): ac q(G) <= C, accepts 7.

For contradiction, assume q(x) is not (Iog n)°-local, for any ¢ € N.
Thus: For all ¢, no there exist n > ny, G = (VC, EG) with n nodes, a, b € V¢ such

that for m:= (log n)°, (N5(a),a) = (N (b),b),buta € g(G) and b & q(G).
For simplicity, consider the special case that dist(a, b) > 2m.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 29

LocALITY

Proof of Gaifman-locality theorem (3/5)

Let g(x) be a unary graph query expressible in Arb-invariant FO. Let C = (Cp)nen be
an AC°-circuit family of constant depth d and polynomial size p(n) computing q.
l.e., forall G= (V% E®),ac V¢ ~c Rep(G,a): ac q(G) <= C, accepts 7.

For contradiction, assume q(x) is not (Iog n)°-local, for any ¢ € N.
Thus: For all ¢, no there exist n > ny, G = (VC, EG) with n nodes, a, b € V¢ such
that for m:= (log n)°, (N5(a),a) = (N (b),b),buta € g(G) and b & q(G).

For simplicity, consider the special case that dist(a, b) > 2m.

Key Lemma:

LetmeN,G=(V,E),abe Vst (N5(a)a) = (Ng(b),b), dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 29

LocALITY

Proof of Gaifman-locality theorem (3/5)

Let g(x) be a unary graph query expressible in Arb-invariant FO. Let C = (Cp)nen be
an AC°-circuit family of constant depth d and polynomial size p(n) computing q.
l.e., forall G= (V% E®),ac V¢ ~c Rep(G,a): ac q(G) <= C, accepts 7.

For contradiction, assume q(x) is not (Iog n)°-local, for any ¢ € N.
Thus: For all ¢, no there exist n > ny, G = (VC, EG) with n nodes, a, b € V¢ such
that for m:= (log n)°, (N5(a),a) = (N (b),b),buta € g(G) and b & q(G).

For simplicity, consider the special case that dist(a, b) > 2m.

Key Lemma:

LetmeN,G=(V,E),abe Vst (N5(a)a) = (Ng(b),b), dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

Then there is a circuit C of the same size & depth as C computing parity on m bits.

Theorem: (Hastad '86)
There exist £, my > 0 such that for all m > my, no circuit of depth d and size
ot:m!/(@=D computes parity on m bits.

Contradiction for ¢ = 2d, since 2¢™/™" = 2t:00am? — ptiogn - p(py, O

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 29

LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:
LetmeN,G=(V,E), a,be Vst (NF(a).a) = (Ng(b),b), dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

Then there is a circuit C of the same size & depth as C computing parity on m bits.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

30

LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:
LetmeN,G=(V,E), a,be Vst (NF(a).a) = (Ng(b),b), dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

30

LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:
LetmeN,G=(V,E), a,be Vst (NF(a).a) = (Ng(b),b), dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:
Consider w € {0,1}".

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

30

LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:
LetmeN,G=(V,E), a,be Vst (NF(a).a) = (Ng(b),b), dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:
Consider w € {0,1}".

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

30

LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

LetmeN,G=(V,E), a,be Vst (NF(a).a) = (Ng(b),b), dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:
Consider w € {0,1}".

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

30

LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

LetmeN,G=(V,E), a,be Vst (NF(a).a) = (Ng(b),b), dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:

Consider w € {0,1}".
Forie {0,1,...,m—1} withw; = 1:

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

30

LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

LetmeN,G=(V,E), a,be Vst (NF(a).a) = (Ng(b),b), dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:

Consider w € {0,1}".
Forie {0,1,...,m—1} withw; = 1:

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 30

LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

LetmeN,G=(V,E), a,be Vst (NF(a).a) = (Ng(b),b), dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:

Consider w € {0,1}".

Forie {0,1,...,m—1} withw; = 1:
Swap the endpoints of the edges

leaving N;(a) with the corresponding
endpoints of the edges leaving N;(b).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 30

LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

LetmeN,G=(V,E), a,be Vst (NF(a).a) = (Ng(b),b), dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:

Consider w € {0,1}".

Forie {0,1,...,m—1} withw; = 1:
Swap the endpoints of the edges

leaving N;(a) with the corresponding
endpoints of the edges leaving N;(b).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 30

LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

LetmeN,G=(V,E), a,be Vst (NF(a).a) = (Ng(b),b), dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:

Consider w € {0,1}".

Forie {0,1,...,m—1} withw; = 1:
Swap the endpoints of the edges

leaving N;(a) with the corresponding
endpoints of the edges leaving N;(b).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 30

LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

LetmeN,G=(V,E), a,be Vst (NF(a).a) = (Ng(b),b), dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:

Consider w € {0,1}".

Forie {0,1,...,m—1} withw; = 1:
Swap the endpoints of the edges

leaving N;(a) with the corresponding
endpoints of the edges leaving N;(b).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 30

LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

LetmeN,G=(V,E), a,be Vst (NF(a).a) = (Ng(b),b), dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:

Consider w € {0,1}".

Forie {0,1,...,m—1} withw; = 1:
Swap the endpoints of the edges

leaving N;(a) with the corresponding
endpoints of the edges leaving N;(b).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

30

LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

LetmeN,G=(V,E), a,be Vst (NF(a).a) = (Ng(b),b), dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:
Consider w € {0,1}".
Forie {0,1,...,m—1} withw; = 1:

Swap the endpoints of the edges
leaving N;(a) with the corresponding
endpoints of the edges leaving N;(b).

The resulting graph Gw = G.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

30

LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

LetmeN,G=(V,E), a,be Vst (NF(a).a) = (Ng(b),b), dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:
Consider w € {0,1}".
Forie {0,1,...,m—1} withw; = 1:

Swap the endpoints of the edges
leaving N;(a) with the corresponding
endpoints of the edges leaving N;(b).

The resulting graph Gw = G.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 30

LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

LetmeN,G=(V,E), a,be Vst (NF(a).a) = (Ng(b),b), dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:

Consider w € {0,1}".

Forie {0,1,...,m—1} withw; = 1:
Swap the endpoints of the edges

leaving N;(a) with the corresponding
endpoints of the edges leaving N;(b).

The resulting graph Gw = G.
(G,a), if|w|seven
G =
(G, 2) {(G, b), if ws odd

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 30

LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

LetmeN,G=(V,E), a,be Vst (NF(a).a) = (Ng(b),b), dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:
Consider w € {0,1}".
Forie {0,1,...,m—1} withw; = 1:

Swap the endpoints of the edges
leaving N;(a) with the corresponding
endpoints of the edges leaving N;(b).

The resulting graph G, = G.
(G,a), if|w|seven
Gu,a) =
(G, 2) {(G,b), if [w|; odd
Circuit C distinguishes these cases.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

30

LocALITY

Proof of Gaifman-locality theorem (5/5)

Key Lemma:

LetmeN,G=(V,E),abe Vst (N5(a),a) = (Ng(b),b), dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

How to obtain C from C?

» Consider C for a fixed input string v € Rep(G, a).
» Fix all input bits (as in) that do not correspond to potential edges between the
shells S; and S, 1, fori < m.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 31

LocALITY

Proof of Gaifman-locality theorem (5/5)

Key Lemma:

LetmeN,G=(V,E),abe Vst (N5(a),a) = (Ng(b),b), dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

Then there is a circuit C of the same size & depth as C computing parity on m bits.

How to obtain C from C?

» Consider C for a fixed input string v € Rep(G, a).

» Fix all input bits (as in) that do not correspond to potential edges between the
shells S; and S, 1, fori < m.

» Foralli< mandallu e Si(a), v e Si;1(a) consider the potential edges

e={u,v}, & = {n(u),n(v)}, &= {u,n(v)}, & = {n(v), v}

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 31

LocALITY

Proof of Gaifman-locality theorem (5/5)

Key Lemma:

LetmeN,G=(V,E),abe Vst (N5(a),a) = (Ng(b),b), dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

Then there is a circuit C of the same size & depth as C computing parity on m bits.

How to obtain C from C?

» Consider C for a fixed input string v € Rep(G, a).

» Fix all input bits (as in) that do not correspond to potential edges between the
shells S; and S, 1, fori < m.

» Foralli< mandallu e Si(a), v e Si;1(a) consider the potential edges
e={u,v}, & = {n(u),n(v)}, &= {u,n(v)}, & = {n(v), v}
» Replace input gates of C as follows:
e by (en-w) e by (' A—-w)
é by (eAw) & by (¢ Aw)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 31

LocALITY

Proof of Gaifman-locality theorem (5/5)

Key Lemma:

LetmeN,G=(V,E),abe Vst (N5(a),a) = (Ng(b),b), dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

Then there is a circuit C of the same size & depth as C computing parity on m bits.

How to obtain C from C?

» Consider C for a fixed input string v € Rep(G, a).

» Fix all input bits (as in) that do not correspond to potential edges between the
shells S; and S, 1, fori < m.

» Foralli< mandallu e Si(a), v e Si;1(a) consider the potential edges
e={u,v}, & = {n(u),n(v)}, &= {u,n(v)}, & = {n(v), v}
» Replace input gates of C as follows:
e by (en-w) e by (' A—-w)
é by (eAw) & by (¢ Aw)

» This yields a circuit C of the same size and depth as C which, on input
w € {0,1}™ does the same as C on input (Gw, a).
Thus, C accepts iff |w|y is even. O

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 31

LocALITY

Summary: Gaifman-locality of Arb-invariant FO (1/2)

Theorem: (Anderson, Melkebeek, S., Segoufin ’11)

(a) Forevery query q expressible by Arb-invariant FO there is a ¢ € N such that
q is (log n)°-local.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

32

LocALITY

Summary: Gaifman-locality of Arb-invariant FO (1/2)

Theorem: (Anderson, Melkebeek, S., Segoufin ’11)

(a) Forevery query q expressible by Arb-invariant FO there is a ¢ € N such that
q is (log n)°-local.

(b) Foreveryd € N there is a (+, x)-invariant FO query q4(x) that is
not (log n)?-local.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

32

LocALITY

Summary: Gaifman-locality of Arb-invariant FO (1/2)

Theorem: (Anderson, Melkebeek, S., Segoufin ’11)
(a) Forevery query q expressible by Arb-invariant FO there is a ¢ € N such that
q is (log n)°-local.

(b) Foreveryd € N there is a (+, x)-invariant FO query qq4(x) that is
not (log n)?-local.

The query qq(x) states:

(1) The graph has at most (log n)®*" non-isolated vertices.

(2) Node x is reachable from a node that belongs to a triangle.

Note: This query is not (log n)9-local.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 32

LocALITY

Summary: Gaifman-locality of Arb-invariant FO (1/2)

Theorem: (Anderson, Melkebeek, S., Segoufin ’11)
(a) Forevery query q expressible by Arb-invariant FO there is a ¢ € N such that
q is (log n)°-local.

(b) Foreveryd € N there is a (+, x)-invariant FO query qq4(x) that is
not (log n)?-local.

The query qq(x) states:

(1) The graph has at most (log n)®*" non-isolated vertices.

(Use the polylog-counting capability of FO(+, x))

(2) Node x is reachable from a node that belongs to a triangle.

Note: This query is not (log n)9-local.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 32

LocALITY

Summary: Gaifman-locality of Arb-invariant FO (1/2)

Theorem: (Anderson, Melkebeek, S., Segoufin ’11)
(a) Forevery query q expressible by Arb-invariant FO there is a ¢ € N such that
q is (log n)°-local.

(b) Foreveryd € N there is a (+, x)-invariant FO query qq4(x) that is
not (log n)?-local.

The query qq(x) states:

(1) The graph has at most (log n)®*" non-isolated vertices.

(Use the polylog-counting capability of FO(+, x))

(2) Node x is reachable from a node that belongs to a triangle.

(Show that in graphs satisfying (1), reachability by paths of length (log n)®*" can
be expressed in (+, x)-invariant FO)

Note: This query is not (log n)9-local.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 32

LocALITY

Summary: Gaifman-locality of Arb-invariant FO (2/2)

Goal: Show that in graphs with < (log n)¢ non-isolated vertices, reachability by
paths of length (log n)° can be expressed in (+, x)-invariant FO.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 33

LocALITY

Summary: Gaifman-locality of Arb-invariant FO (2/2)

Goal: Show that in graphs with < (log n)¢ non-isolated vertices, reachability by
paths of length (log n)° can be expressed in (+, x)-invariant FO.

Lemma: (Durand, Lautemann, More "07)
For every ¢ € N there is a FO(<, +, x, S)-formula bij,(x, y) such that for all
neN,allS§C[n]:=1{0,...,n—-1}, alla,i < n we have

([n], <,+, %, S) E bij,(a,i) < |S] < (logn)® and
a is the i-th smallest element of S.

» Using this, identify the non-isolated vertices with numbers < (log n)¢ and
represent them by bitstrings of length clog log n.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 33

LocALITY

Summary: Gaifman-locality of Arb-invariant FO (2/2)

Goal: Show that in graphs with < (log n)¢ non-isolated vertices, reachability by
paths of length (log n)° can be expressed in (+, x)-invariant FO.

Lemma: (Durand, Lautemann, More "07)
For every ¢ € N there is a FO(<, +, x, S)-formula bij,(x, y) such that for all
neN,allS§C[n]:=1{0,...,n—-1}, alla,i < n we have

([n], <,+, %, S) E bij,(a,i) < |S] < (logn)® and
a is the i-th smallest element of S.

» Using this, identify the non-isolated vertices with numbers < (log n)¢ and
represent them by bitstrings of length clog log n.

» Identify an arbitrary vertex of G with a number < n, whose binary representation

encodes a sequence of ¢(n) := Cl;z%ggn non-isolated vertices.

» Use this to express that there is a path of length ¢(n) from node x to node y.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

33

LocALITY

Summary: Gaifman-locality of Arb-invariant FO (2/2)

Goal: Show that in graphs with < (log n)¢ non-isolated vertices, reachability by
paths of length (log n)° can be expressed in (+, x)-invariant FO.

Lemma: (Durand, Lautemann, More "07)
For every ¢ € N there is a FO(<, +, x, S)-formula bij,(x, y) such that for all
neN,allS§C[n]:=1{0,...,n—-1}, alla,i < n we have

([n], <,+, %, S) E bij,(a,i) < |S] < (logn)® and
a is the i-th smallest element of S.

» Using this, identify the non-isolated vertices with numbers < (log n)¢ and
represent them by bitstrings of length clog log n.

» Identify an arbitrary vertex of G with a number < n, whose binary representation

encodes a sequence of £(n) := Clc'f’;ilgw non-isolated vertices.

» Use this to express that there is a path of length ¢(n) from node x to node y.
> lterate this for c+1 times to express that there is a path of length
£(n)°*" > (log n)° from x to y. O

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 33

LocALITY

Locality of Arb-invariant FO+MOD,

In a similar way, we can also prove:

Theorem: (Harwath, S., ’13)

Let p be a prime power and let k € N be coprime with p.
For every k-ary query q expressible in Arb-invariant FO+MOD,, thereisac € N

such that q is (log n)°-shift-local w.r.t. k.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

34

LocALITY

Locality of Arb-invariant FO+MOD,

In a similar way, we can also prove:

Theorem: (Harwath, S., ’13)

Let p be a prime power and let k € N be coprime with p.
For every k-ary query q expressible in Arb-invariant FO+MOD,, thereisac € N

such that q is (log n)°-shift-local w.r.t. k.

Definition: Let q be a k-ary graph query. Letf: N — N.
g is called f(n)-shift-local w.r.t. k if there is an ny such that for every n > ng and every
graph G with | V€| = n, the following is true for all k-tuples (ao, . . ., ax_1) of nodes:

if the f(n)-neighborhoods of the a; are disjoint and isomorphic,

then (ap,at,...,ak—1) € Q(G) <= (ai1,...,a-1,a) € q(G).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 34

LocALITY

Locality of Arb-invariant FO+MOD,

In a similar way, we can also prove:

Theorem: (Harwath, S., ’13)
Let p be a prime power and let k € N be coprime with p.

For every k-ary query q expressible in Arb-invariant FO+MOD,, thereisac € N
such that q is (log n)°-shift-local w.r.t. k.

Definition: Let q be a k-ary graph query. Letf: N — N.

g is called f(n)-shift-local w.r.t. k if there is an ny such that for every n > ng and every
graph G with | V€| = n, the following is true for all k-tuples (ao, . . ., ax_1) of nodes:

if the f(n)-neighborhoods of the a; are disjoint and isomorphic,

then (ap,at,...,ak—1) € Q(G) <= (ai1,...,a-1,a) € q(G).

Proof: Use the Razborov-Smolensky result for AC°[p]-circuits.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 34

LocALITY

Locality of Arb-invariant FO+MOD,

In a similar way, we can also prove:

Theorem: (Harwath, S., ’13)
Let p be a prime power and let k € N be coprime with p.

For every k-ary query q expressible in Arb-invariant FO+MOD,, thereisac € N
such that q is (log n)°-shift-local w.r.t. k.

Definition: Let q be a k-ary graph query. Letf: N — N.

g is called f(n)-shift-local w.r.t. k if there is an ny such that for every n > ng and every
graph G with | V€| = n, the following is true for all k-tuples (ao, . . ., ax_1) of nodes:

if the f(n)-neighborhoods of the a; are disjoint and isomorphic,

then (ap,at,...,ak—1) € Q(G) <= (ai1,...,a-1,a) € q(G).

Proof: Use the Razborov-Smolensky result for AC°[p]-circuits.

Corollary: Easy proof that reachability is not definable in Arb-invariant FO+MOD,,
for prime power p.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 34

Overview

Order-invariant logics on strings

NICOLE SCHWEIKARDT

A TUTORIAL ON ORDER-INVARIANT LOGICS

STRINGS

35

STRINGS

Represent words as labeled graphs

> (labeled) chain-graphs this chain-graph represents the string rbrg.
o—0—0—0

Edges correspond to the successor relation “succ” on the positions of the string.
Write < -inv-FO(succ) for order-invariant FO on these graphs.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 36

STRINGS

Represent words as labeled graphs

> (labeled) chain-graphs this chain-graph represents the string rbrg.
o—0—0—0

Edges correspond to the successor relation “succ” on the positions of the string.

Write < -inv-FO(succ) for order-invariant FO on these graphs.
Write +-inv-FO(succ) for addition-invariant FO on these graphs.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 36

STRINGS

Represent words as labeled graphs

> (labeled) chain-graphs this chain-graph represents the string rbrg.
o—0—0—0

Edges correspond to the successor relation “succ” on the positions of the string.

Write < -inv-FO(succ) for order-invariant FO on these graphs.
Write +-inv-FO(succ) for addition-invariant FO on these graphs.

» transitive closure of (labeled) chain-graphs

m

o—0—0—0
N

Edges correspond to the linear order “<” on the positions of the string.
Write +-inv-FO(<) for addition-invariant FO on these graphs.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 36

STRINGS

Represent words as labeled graphs

> (labeled) chain-graphs this chain-graph represents the string rbrg.
o—0—0—0

Edges correspond to the successor relation “succ” on the positions of the string.

Write < -inv-FO(succ) for order-invariant FO on these graphs.
Write +-inv-FO(succ) for addition-invariant FO on these graphs.

» transitive closure of (labeled) chain-graphs

//Q

o—0—0—0
Edges correspond to the linear order “<” on the positions of the string.
Write +-inv-FO(<) for addition-invariant FO on these graphs.

Note that on these graphs, < -inv-FO(<) is the same as FO(<).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 36

STRINGS

Known results

FO(succ) = locally threshold testable languages (Thomas)
FO(<) = star-free regular languages (McNaughton, Papert)
MSO(<) = regular languages (Buchi, Elgot, Trakhtenbrot)

MSO(<) = MSO(succ) = MLFP(<) = MLFP(succ)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 37

STRINGS

Known results

FO(succ) = locally threshold testable languages (Thomas)
FO(<) = star-free regular languages (McNaughton, Papert)
MSO(<) = regular languages (Buchi, Elgot, Trakhtenbrot)

MSO(<) = MSO(succ) = MLFP(<) = MLFP(succ)

<-inv-FO(succ) = FO(succ)

(Benedikt, Segoufin, 2005)
~+-inv-MLFP(succ) O DLIN

(S., 2004)
+-inv-MSO(succ) = the linear time hierarchy (More & Olive 1997, S. 2004)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 37

STRINGS

Known results

FO(succ) = locally threshold testable languages (Thomas)
FO(<) = star-free regular languages (McNaughton, Papert)
MSO(<) = regular languages (Buchi, Elgot, Trakhtenbrot)

MSO(<) = MSO(succ) = MLFP(<) = MLFP(succ)

<-inv-FO(succ) = FO(succ) (Benedikt, Segoufin, 2005)
+-inv-MLFP(succ) > DLIN (S., 2004)
+-inv-MSO(succ) = the linear time hierarchy (More & Olive 1997, S. 2004)

FO(<) = <-inv-FO(<) & +-inv-FO(<) & (4, x)-inv-FO(<) C uniform AC°.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 37

STRINGS

Known results

FO(succ) = locally threshold testable languages (Thomas)
FO(<) = star-free regular languages (McNaughton, Papert)
MSO(<) = regular languages (Buchi, Elgot, Trakhtenbrot)
MSO(<) = MSO(succ) = MLFP(<) = MLFP(succ)
<-inv-FO(succ) = FO(succ) (Benedikt, Segoufin, 2005)
~+-inv-MLFP(succ) O DLIN (S., 2004)
+-inv-MSO(succ) = the linear time hierarchy (More & Olive 1997, S. 2004)

FO(<) = <-inv-FO(<) & +-inv-FO(<) & (4, x)-inv-FO(<) C uniform AC°.

The following problem is undecidable: (Benedikt, Segoufin, 2005)

ORDER-INVARIANCE ON FINITE LABELED CHAIN-GRAPHS:
Input: aFO(<, E, Cy, ..., C;)-sentence ¢
Question: s ¢ order-invariant on all finite labeled chain-graphs?

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 37

STRINGS

Known results

FO(succ) = locally threshold testable languages (Thomas)
FO(<) = star-free regular languages (McNaughton, Papert)
MSO(<) = regular languages (Buchi, Elgot, Trakhtenbrot)
MSO(<) = MSO(succ) = MLFP(<) = MLFP(succ)
<-inv-FO(succ) = FO(succ) (Benedikt, Segoufin, 2005)
~+-inv-MLFP(succ) O DLIN (S., 2004)
+-inv-MSO(succ) = the linear time hierarchy (More & Olive 1997, S. 2004)

FO(<) = <-inv-FO(<) & +-inv-FO(<) & (4, x)-inv-FO(<) C uniform AC°.

The following problem is undecidable: (Benedikt, Segoufin, 2005)

ORDER-INVARIANCE ON FINITE LABELED CHAIN-GRAPHS:
Input: aFO(<, E, Cy, ..., C;)-sentence ¢
Question: s ¢ order-invariant on all finite labeled chain-graphs?

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 37

STRINGS

The “Algebraic” Approach

Let Ly and L, be logics.

Goal: Show that Ly can define exactly the same string-languages as L.

Approach:

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

38

STRINGS

The “Algebraic” Approach

Let Ly and L, be logics.

Goal: Show that Ly can define exactly the same string-languages as L.

Approach:

(0) Identify a suitable set of operations O on strings.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

38

STRINGS

The “Algebraic” Approach
Let Ly and L, be logics.
Goal: Show that Ly can define exactly the same string-languages as L.

Approach:

(0) Identify a suitable set of operations O on strings.

(1) Show that a property p of strings is definable in L, iff it is closed under every
operation op € O.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 38

STRINGS

The “Algebraic” Approach

Let Ly and L, be logics.

Goal: Show that Ly can define exactly the same string-languages as L.

Approach:

(0) Identify a suitable set of operations O on strings.

(1) Show that a property p of strings is definable in L, iff it is closed under every
operation op € O. l.e., for every string s:

s has property p < op(s) has property p.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 38

STRINGS

The “Algebraic” Approach

Let Ly and L, be logics.

Goal: Show that Ly can define exactly the same string-languages as L.

Approach:

(0) Identify a suitable set of operations O on strings.

(1) Show that a property p of strings is definable in L, iff it is closed under every
operation op € O. l.e., for every string s:

s has property p < op(s) has property p.

(2) Show that a property p of strings is closed under every operation op € O iff
it is definable in L,.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 38

STRINGS

An example

Theorem (Benedikt, Segoufin, '09): <-inv-FO(succ) = FO(succ)

A string-language is definable in <-inv-FO(succ) iff it is definable in FO(succ).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

39

STRINGS

An example

Theorem (Benedikt, Segoufin, '09): <-inv-FO(succ) = FO(succ)
A string-language is definable in <-inv-FO(succ) iff it is definable in FO(succ).

Main ingredients of the proof:

» Use a result by Beauquier and Pin (1989) stating that a string-language is
definable in FO(succ) iff it is aperiodic and closed under swaps.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

39

STRINGS

An example

Theorem (Benedikt, Segoufin, '09): <-inv-FO(succ) = FO(succ)
A string-language is definable in <-inv-FO(succ) iff it is definable in FO(succ).

Main ingredients of the proof:

» Use a result by Beauquier and Pin (1989) stating that a string-language is
definable in FO(succ) iff it is aperiodic and closed under swaps.

o A string language L is aperiodic iff there exists a number ¢ € N such that for
all strings u, x, v we have

ux*vel = ux*'vel

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 39

STRINGS

An example

Theorem (Benedikt, Segoufin, '09): <-inv-FO(succ) = FO(succ)
A string-language is definable in <-inv-FO(succ) iff it is definable in FO(succ).

Main ingredients of the proof:

» Use a result by Beauquier and Pin (1989) stating that a string-language is
definable in FO(succ) iff it is aperiodic and closed under swaps.

o A string language L is aperiodic iff there exists a number ¢ € N such that for
all strings u, x, v we have

ux*vel = ux*'vel

e L is closed under swaps iff for all strings u, v, e, x, y, z such that e, f are
idempotents (i.e., for all u, v we have uev € L iff ue®v € L), we have

uexfyezfvel < uezfyexfv e L

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 39

STRINGS

An example

Theorem (Benedikt, Segoufin, '09): <-inv-FO(succ) = FO(succ)
A string-language is definable in <-inv-FO(succ) iff it is definable in FO(succ).

Main ingredients of the proof:

» Use a result by Beauquier and Pin (1989) stating that a string-language is
definable in FO(succ) iff it is aperiodic and closed under swaps.

o A string language L is aperiodic iff there exists a number ¢ € N such that for
all strings u, x, v we have

ux*vel = ux*'vel

e L is closed under swaps iff for all strings u, v, e, x, y, z such that e, f are
idempotents (i.e., for all u, v we have uev € L iff ue®v € L), we have
uexfyezfvel < uezfyexfv e L

» Show that every string-language definable in <-inv-FO(succ) is aperiodic and
closed under swaps.

(For this, you can use Ehrenfeucht-Fraissé games.) O

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 39

STRINGS

Different situation for FO4+MOD»

Proposition (Harwath, S., '13): <-inv-FO+MOD,(succ) # FO+MOD,(succ)
There exists a string-language L which is
definable in <-inv-FO+MOD;(succ), but not in FO+MOD,(succ).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

40

STRINGS

Different situation for FO4+MOD»

Proposition (Harwath, S., '13): <-inv-FO+MOD,(succ) # FO+MOD,(succ)
There exists a string-language L which is
definable in <-inv-FO+MOD;(succ), but not in FO+MOD,(succ).

L looks as follows:

» [= [{UL

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 40

STRINGS

Different situation for FO4+MOD»

Proposition (Harwath, S., '13): <-inv-FO+MOD,(succ) # FO+MOD,(succ)
There exists a string-language L which is
definable in <-inv-FO+MOD;(succ), but not in FO+MOD,(succ).

L looks as follows:
» [= [{UL
» L ={we1°20°1"0" : |w|; odd }

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 40

STRINGS

Different situation for FO+MOD,

Proposition (Harwath, S., '13): <-inv-FO+MOD,(succ) # FO+MOD,(succ)
There exists a string-language L which is
definable in <-inv-FO+MOD;(succ), but not in FO+MOD,(succ).

L looks as follows:
» | = UL
» L ={we1°20°1"0" : |w|; odd }

> L, = {we1°0°1°20" : |w|; even}

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 40

STRINGS

Different situation for FO4+MOD»

Proposition (Harwath, S., '13): <-inv-FO+MOD,(succ) # FO+MOD,(succ)
There exists a string-language L which is
definable in <-inv-FO+MOD;(succ), but not in FO+MOD,(succ).

L looks as follows:

» L= LUl

» L ={we1°20°1"0" : |w|; odd }
» b ={we1°0"1"20" : |w|; even}

L is NOT definable in FO+MOD5(succ):
» Use the Hanf-locality of FO+MOD(succ)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

40

STRINGS

Different situation for FO4+MOD»

Proposition (Harwath, S., '13): <-inv-FO+MOD,(succ) # FO+MOD,(succ)
There exists a string-language L which is
definable in <-inv-FO+MOD;(succ), but not in FO+MOD,(succ).

L looks as follows:

» L= LUl

» L ={we1°20°1"0" : |w|; odd }
» b ={we1°0"1"20" : |w|; even}

L is NOT definable in FO+MOD,(succ):
» Use the Hanf-locality of FO+MOD(succ)

L is definable in <-inv-FO+MOD;(succ):

» By a FO-reduction using Niemistd’s <-inv-FO+MOD;(E)-sentence peven cyciess
discussed at the beginning of this tutorial.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 40

STRINGS

FO+MOD, < order-invariant FO4+MOD,

FO+MOD: : the extension of FO by modulo 2 counting quantifiers
30med2x 4)(x) : the number of nodes x satisfying v (x) is congruent 0 modulo 2.

Theorem (Niemisto):

There is an order-invariant FO+MOD,(E)-sentence @even oyoies that is satisfied by
a finite directed graph G = (V¢, E%) iff

(1) G is adisjoint union of directed cycles, and

(2) the number of even-length cycles is even.

Proof:
> (1) can be expressed in FO: “every node has in- and out-degree 1”

» Every G satisfying (1) is the cycle decomposition of a permutation .
» G has an even number of even-length cycles <=

m is an even permutation, i.e., sgn(r) =1 <~—

7 has an even number of inversions (i,j) suchthat i <j and =(i) > =(j).
O

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 41

STRINGS
» [= UL
» Ly ={we1°20°1"0* : |w|; odd }
» b ={we1°0"1"20" : |w|; even}
L is definable in <-inv-FO+MOD;(succ):

» By a FO-reduction using Niemistd’s <-inv-FO+MOD»(E)-sentence weven cycies:
expressing that the number of even-length cycles is even:

Simulate a disjoint union of cycles by a FO-formula that adds edges
» from the unique 2-position to the first position

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 42

STRINGS
» [= UL
> L = {we1°20°1°0" : |w|, 0dd}

» b ={we1°0°1"20" : |w|; even }

L is definable in <-inv-FO+MOD;(succ):

» By a FO-reduction using Niemistd’s <-inv-FO+MOD»(E)-sentence weven cycies:
expressing that the number of even-length cycles is even:

Simulate a disjoint union of cycles by a FO-formula that adds edges

» from the unique 2-position to the first position
» from the unique 1 directly left to a 0 to the unique 1 directly right to O,

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 42

STRINGS

» [= UL
> L = {we1°20°1°0" : |w|, 0dd}

» b ={we1°0°1"20" : |w|; even }

L is definable in <-inv-FO+MOD;(succ):

» By a FO-reduction using Niemistd’s <-inv-FO+MOD»(E)-sentence weven cycies:
expressing that the number of even-length cycles is even:

Simulate a disjoint union of cycles by a FO-formula that adds edges

» from the unique 2-position to the first position

» from the unique 1 directly left to a 0 to the unique 1 directly right to O,
and then deletes all 0-positions.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 42

STRINGS

» [= UL
> L = {we1°20°1°0" : |w|, 0dd}

» b ={we1°0°1"20" : |w|; even }

L is definable in <-inv-FO+MOD;(succ):

» By a FO-reduction using Niemistd’s <-inv-FO+MOD»(E)-sentence weven cycies:
expressing that the number of even-length cycles is even:

Simulate a disjoint union of cycles by a FO-formula that adds edges

» from the unique 2-position to the first position

» from the unique 1 directly left to a 0 to the unique 1 directly right to O,
and then deletes all 0-positions.

Situation:
» we120°1°0° = 2cycles, sum of lenghts: |w|{ + 1
»wel17°0"1"20° = 1cycle, length: |w|; + 1

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 42

STRINGS

Further results proved by the algebraic approach

Theorem:
> A tree-language is definable in <-invariant FO(succ) iff

it is definable in FO(succ). (Benedikt, Segoufin ’09)
(They use aperiodicity and closure under guarded swaps.)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 43

STRINGS

Further results proved by the algebraic approach

Theorem:

> A tree-language is definable in <-invariant FO(succ) iff
it is definable in FO(succ). (Benedikt, Segoufin '09)
(They use aperiodicity and closure under guarded swaps.)

» A colored finite set is definable in +-invariant FO iff it is definable in FOcarq (i-€.,
FO with predicates testing the cardinality of the universe modulo fixed numbers).
(S., Segoufin ’10)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 43

STRINGS

Further results proved by the algebraic approach

Theorem:

> A tree-language is definable in <-invariant FO(succ) iff
it is definable in FO(succ). (Benedikt, Segoufin '09)
(They use aperiodicity and closure under guarded swaps.)

» A colored finite set is definable in +-invariant FO iff it is definable in FOcarq (i-€.,
FO with predicates testing the cardinality of the universe modulo fixed numbers).
(S., Segoufin ’10)

> A regular string- or tree-language is definable in +-invariant FO(succ) iff
it is definable in FOcarq(succ). (S., Segoufin’10 and Harwath, S.’12)
(They use closure under transfers and closure under guarded swaps.)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 43

STRINGS

Further results proved by the algebraic approach

Theorem:

> A tree-language is definable in <-invariant FO(succ) iff
it is definable in FO(succ). (Benedikt, Segoufin '09)
(They use aperiodicity and closure under guarded swaps.)

» A colored finite set is definable in +-invariant FO iff it is definable in FOcarq (i-€.,
FO with predicates testing the cardinality of the universe modulo fixed numbers).
(S., Segoufin ’10)

> A regular string- or tree-language is definable in +-invariant FO(succ) iff
it is definable in FOcarq(succ). (S., Segoufin’10 and Harwath, S.’12)
(They use closure under transfers and closure under guarded swaps.)

> A regular string-language is definable in Arb-invariant FO(succ) iff it is definable
in FOcara(SUCC). (Anderson, van Melkebeek, S., Segoufin '11)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 43

STRINGS

Further results proved by the algebraic approach

Theorem:

> A tree-language is definable in <-invariant FO(succ) iff
it is definable in FO(succ). (Benedikt, Segoufin '09)
(They use aperiodicity and closure under guarded swaps.)

» A colored finite set is definable in +-invariant FO iff it is definable in FOcarq (i-€.,
FO with predicates testing the cardinality of the universe modulo fixed numbers).
(S., Segoufin ’10)

» A regular string- or tree-language is definable in +-invariant FO(succ) iff
it is definable in FO¢arq(Ssucc). (S., Segoufin’10 and Harwath, S.’12)
(They use closure under transfers and closure under guarded swaps.)

> A regular string-language is definable in Arb-invariant FO(succ) iff it is definable
in FOcara(SUCC). (Anderson, van Melkebeek, S., Segoufin '11)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 43

STRINGS

Regular languages definable in +-inv-FO(<)

Theorem:

Let L be a regular language. The following are equivalent:
(1) L is definable in +-inv-FO(<).

(2) L is definable in FOcag(<).

(S., Segoufin, 2010)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

44

STRINGS

Regular languages definable in +-inv-FO(<)

Theorem: (S., Segoufin, 2010)
Let L be a regular language. The following are equivalent:

(1) L is definable in +-inv-FO(<).

(2) L is definable in FOcarg(<)-

Definition: FOcar(<)
FO(<) with length modulo predicates Im(i, q), foralli,g € N:

YweX : wkEIm(i,q) < |w|=imodgq.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 44

STRINGS

Regular languages definable in +-inv-FO(<)

Theorem: (S., Segoufin, 2010)
Let L be a regular language. The following are equivalent:

(1) L is definable in +-inv-FO(<).

(2) L is definable in FOcag(<).

(3) L is a finite union of languages of the form S Z?, where

o S is star-free regular (i.e., S is FO(<)-definable)
e Z = {w:|w|=imod q}.

Definition: FOcar(<)
FO(<) with length modulo predicates Im(i, q), foralli,g € N:

VweX : wkIm(i,q) < |w|=imodgq.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 44

STRINGS

Regular languages definable in +-inv-FO(<)

Theorem: (S., Segoufin, 2010)
Let L be a regular language. The following are equivalent:

(1) L is definable in +-inv-FO(<).

(2) L is definable in FOcag(<).

(3) L is a finite union of languages of the form SN Z?, where

o S is star-free regular (i.e., S is FO(<)-definable)
e Z = {w:|w|=imod q}.

(4) L is closed under transfers.

Definition: FOcar(<)
FO(<) with length modulo predicates Im(i, q), foralli,g € N:

YweX : wkEIm(i,q) < |w|=imodgq.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 44

STRINGS

Regular languages definable in +-inv-FO(<)

Theorem: (S., Segoufin, 2010)
Let L be a regular language. The following are equivalent:

(1) L is definable in +-inv-FO(<).

(2) L is definable in FOcag(<).

(3) L is a finite union of languages of the form SN Z?, where

o S is star-free regular (i.e., S is FO(<)-definable)
e Z = {w:|w|=imod q}.

(4) L is closed under transfers.

Definition: Lis closed under transfers <= V x,y,z € £* we have:

if |x]=|z|, then x'xyz' =, x"yzz".

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 44

STRINGS

Regular languages definable in +-inv-FO(<)

Theorem: (S., Segoufin, 2010)
Let L be a regular language. The following are equivalent:

(1) L is definable in +-inv-FO(<).

(2) L is definable in FOcag(<).

(3) L is a finite union of languages of the form SN Z?, where

o S is star-free regular (i.e., S is FO(<)-definable)
e Z = {w:|w|=imod q}.

(4) L is closed under transfers.

Definition: Lis closed under transfers <= V x,y,z € £* we have:
if |x]=|z|, then x'xyz' =, x"yzz".

syntactic congruence =;: x =, y < (V uveXr® i uxvel < uyve L)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 44

STRINGS

Regular languages definable in +-inv-FO(<)

Theorem: (S., Segoufin, 2010)
Let L be a regular language. The following are equivalent:

(1) L is definable in +-inv-FO(<).

(2) L is definable in FOcag(<).

(3) L is a finite union of languages of the form SN Z?, where

o S is star-free regular (i.e., S is FO(<)-definable)
e Z = {w:|w|=imod q}.

(4) L is closed under transfers.

Definition: Lis closed under transfers <= V x,y,z € £* we have:
if |x]=|z|, then x'xyz' =, x"yzz".

syntactic congruence =;: x =, y < (V uveXr® i uxvel < uyve L)
z € ¥* is called idempotent <— zz =, z.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 44

STRINGS

Regular languages definable in +-inv-FO(<)

Theorem: (S., Segoufin, 2010)
Let L be a regular language. The following are equivalent:

(1) L is definable in +-inv-FO(<).

(2) L is definable in FOcag(<).

(3) L is a finite union of languages of the form SN Z?, where

o S is star-free regular (i.e., S is FO(<)-definable)
e Z = {w:|w|=imod q}.

(4) L is closed under transfers.

Definition: Lis closed under transfers <= V x,y,z € £* we have:
if |x]=|z|, then x'xyz' =, x"yzz".

syntactic congruence =;: x =, y < (V uveXr® i uxvel < uyve L)
z € ¥* is called idempotent <— zz =, z.
Lregular = JreN: Vxe X, x"isidempotent

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 44

STRINGS

Regular languages definable in +-inv-FO(<)

Theorem: (S., Segoufin, 2010)
Let L be a regular language. The following are equivalent:
(1) L is definable in +-inv-FO(<).
(2) L is definable in FOcag(<).
(3) L is a finite union of languages of the form SN Z?, where
o S is star-free regular (i.e., S is FO(<)-definable)
e Z = {w:|w|=imod q}.

(4) L is closed under transfers.

Definition: Lis closed under transfers <= V x,y,z € £* we have:

if |x]=|z|, then x'xyz' =, x"yzz".

Observation:
Given an automaton for a regular language L, it is decidable whether L is
closed under transfers.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 44

STRINGS

Regular languages definable in +-inv-FO(<)

Theorem: (S., Segoufin, 2010)
Let L be a regular language. The following are equivalent:

(1) L is definable in +-inv-FO(<).

(2) L is definable in FOcag(<).

(3) L is a finite union of languages of the form SN Z?, where

o S is star-free regular (i.e., S is FO(<)-definable)
e Z = {w:|w|=imod q}.

(4) L is closed under transfers.

Proof:
100 (2)<=(3): easy.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 44

STRINGS

Regular languages definable in +-inv-FO(<)

Theorem: (S., Segoufin, 2010)
Let L be a regular language. The following are equivalent:

(1) L is definable in +-inv-FO(<).

(2) L is definable in FOcag(<).

(3) L is a finite union of languages of the form SN Z?, where

o S is star-free regular (i.e., S is FO(<)-definable)
e Z = {w:|w|=imod q}.

(4) L is closed under transfers.

Proof:
100 (2)<=(3): easy.

(2)=(1): easy. E.g.: |w|=1mod2 <=

wikE Ix3z(x+x=zAVy(y<zvy=2z))

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 44

STRINGS

Regular languages definable in +-inv-FO(<)

Theorem: (S., Segoufin, 2010)
Let L be a regular language. The following are equivalent:

(1) L is definable in +-inv-FO(<).

(2) L is definable in FOcag(<).

(3) L is a finite union of languages of the form SN Z?, where

o S is star-free regular (i.e., S is FO(<)-definable)
e Z = {w:|w|=imod q}.

(4) L is closed under transfers.

Proof:
100 (2)<=(3): easy.

(2)=-(1): easy. E.g.: [w/=1mod2 <«~—
wikE Ix3z(x+x=zAVy(y<zvy=2z))

(1)=(4): use Ehrenfeucht-Fraissé games.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 44

STRINGS

Regular languages definable in +-inv-FO(<)

Theorem: (S., Segoufin, 2010)
Let L be a regular language. The following are equivalent:

(1) L is definable in +-inv-FO(<).

(2) L is definable in FOcag(<).

(3) L is a finite union of languages of the form SN Z?, where

o S is star-free regular (i.e., S is FO(<)-definable)
e Z = {w:|w|=imod q}.

(4) L is closed under transfers.

Proof:
100 (2)<=(3): easy.

(2)=-(1): easy. E.g.: [w/=1mod2 <«~—

wikE Ix3z(x+x=zAVy(y<zvy=2z))
—(4): use Ehrenfeucht-Fraissé games.
—(2): use tools from algebraic automata theory.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 44

STRINGS

Proof of (4)=(2): Lis regular & closed under transfers.
Goal: Show that L is definable in FO¢arq(<).

Choose a suitable number g > 0.
Foro<i<glet L := L n Z!, where Z7 := {wex":|w|=imodq}.

Clearly, L= []J L.

0<i<q

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 45

STRINGS

Proof of (4)=(2): Lis regular & closed under transfers.
Goal: Show that L is definable in FO¢arq(<).

Choose a suitable number g > 0.

Foro<i<glet L := L n Z!, where Z7 := {wex":|w|=imodq}.

Clearly, L=] L. Goal: Show that L; is definable in FOgara(<).
0<i<q

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 45

STRINGS

Proof of (4)=(2): Lis regular & closed under transfers.
Goal: Show that L is definable in FOgarg(<).

Choose a suitable number g > 0.

Foro<i<glet L := L n Z!, where Z7 := {wex":|w|=imodq}.
Clearly, L=] L. Goal: Show that L; is definable in FOgarq(<).
0<i<q

Approach: Find a regular language M; such that
o Li = MnZ,
e The minimal DFA for M; does not contain any counter.

Then, apply

Theorem: (McNaughton & Papert, 1971)
Let M be a regular language. Then, the following are equivalent:

(1) The minimal DFA for M does not contain any counter.

(2) M is definable in FO(<) (i.e., M is star-free regular).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 45

STRINGS

Proof of (1)==-(4): Let L be regular and definable by a ¢ in +-inv-FO(<).
Goal: Show that L is closed under transfers.

» skip proof

For contradiction, assume that L is not closed under transfers. Then:

* —
y Sy ey M . -
Ix,y,z,u,vexr x| =1]z| and

ux"xyz'vel and ux"yzz'v ¢ L

Thus:

Va, 821 (ux(”xyzﬂrv el and ux*yzz""v ¢ L).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 46

STRINGS

Proof of (1)==-(4): Let L be regular and definable by a ¢ in +-inv-FO(<).
Goal: Show that L is closed under transfers. Proof by contradiction:

Situation: Fixed x,y,z,u,v € ¥* with |x| = |z| such that
Va, 821 (ux®xyz’v el and ux"yzz""v ¢ L).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 47

STRINGS

Proof of (1)==-(4): Let L be regular and definable by a ¢ in +-inv-FO(<).
Goal: Show that L is closed under transfers. Proof by contradiction:

Situation: Fixed x,y,z,u,v € ¥* with |x| = |z| such that
Va, 821 (ux®xyz’v el and ux"yzz""v ¢ L).

Idea: Consider the languages

Ly:={we uyvx(xz|zz)" : |Wix,|Wlz>r, |Wwx=1]r], |w|-=0]r]},

Lo:={we uyvx(xz|zz)" : |w|x,|wl:>r, |Wx=0]r], w-=1]r]}.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 47

STRINGS

Proof of (1)==-(4): Let L be regular and definable by a ¢ in +-inv-FO(<).
Goal: Show that L is closed under transfers. Proof by contradiction:

Situation: Fixed x,y,z,u,v € ¥* with |x| = |z| such that
Va, 821 (ux®xyz’v el and ux"yzz""v ¢ L).

Idea: Consider the languages

Ly:={we uyvx(xz|zz)" : |Wix,|Wlz>r, |Wwx=1]r], |w|-=0]r]},

Lo:={we uyvx(xz|zz)" : |w|x,|wl:>r, |Wx=0]r], w-=1]r]}.

Definition: A formula) separates L; from L, <=
VW1€L1:W1':’L/J and VWgELg:Wg[#Q/).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 47

STRINGS

Proof of (1)==-(4): Let L be regular and definable by a ¢ in +-inv-FO(<).
Goal: Show that L is closed under transfers. Proof by contradiction:

Situation: Fixed x,y,z,u,v € ¥* with |x| = |z| such that
Va, 821 (ux®xyz’v el and ux"yzz""v ¢ L).

Idea: Consider the languages
Ly:={we uyvx(xz|zz)" : |Wix,|Wlz>r, |Wwx=1]r], |w|-=0]r]},

Ly:={we uyvx(xz|zz)" : W, |Wlz=r, |Wwix=0]r], |wl:=1]r]}.

Definition: A formula + separates Ly from L, <=
VW1€L1:W1':’I/} and VWzELg:Wg%Q/).

Lemma 1: If Lis definable in +-inv-FO(<), then there is a FO(<, +)-formula that
separates L from L,.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

STRINGS

Proof of (1)==-(4): Let L be regular and definable by a ¢ in +-inv-FO(<).
Goal: Show that L is closed under transfers. Proof by contradiction:

Situation: Fixed x,y,z,u,v € ¥* with |x| = |z| such that
Va, 821 (ux®xyz’v el and ux"yzz""v ¢ L).

Idea: Consider the languages
Ly:={we uyvx(xz|zz)" : |Wix,|Wlz>r, |Wwx=1]r], |w|-=0]r]},

Ly:={we uyvx(xz|zz)" : W, |Wlz=r, |Wwix=0]r], |wl:=1]r]}.

Definition: A formula + separates Ly from L, <=
VW1€L1:W1':’I/} and VWzELg:ng&Q/).

Lemma 1: If Lis definable in +-inv-FO(<), then there is a FO(<, +)-formula that
separates L from L,.

Proof: Construct a FO(<, +) interpretation that, on w € uyv x (xz|zz)*, evaluates
 on the corrensponding string w’ of the form u (x)* y (z)* v.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 47

STRINGS

Proof of (1)==-(4): Let L be regular and definable by a ¢ in +-inv-FO(<).
Goal: Show that L is closed under transfers. Proof by contradiction:

Situation: Fixed x,y,z,u,v € ¥* with |x| = |z| such that
Va, 821 (ux®xyz’v el and ux"yzz""v ¢ L).

Idea: Consider the languages
Ly:={we uyvx(xz|zz)" : |Wix,|Wlz>r, |Wwx=1]r], |w|-=0]r]},

Ly:={we uyvx(xz|zz)" : W, |Wlz=r, |Wwix=0]r], |wl:=1]r]}.

Definition: A formula + separates Ly from L, <=
VW1€L1:W1':’I/} and VWzELg:ng&Q/).

Lemma 1: If Lis definable in +-inv-FO(<), then there is a FO(<, +)-formula that
separates L from L,.
Proof: Construct a FO(<, +) interpretation that, on w € uyv x (xz|zz)*, evaluates
 on the corrensponding string w’ of the form u (x)* y (z)* v.
Clearly, e wely = wel = w ey,

ewel, = wW¢gL = w o O

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 47

STRINGS

Proof of (1)==-(4): Let L be regular and definable by a ¢ in +-inv-FO(<).
Goal: Show that L is closed under transfers. Proof by contradiction:

Situation: Fixed x,y,z,u,v € ¥* with |x| = |z| such that
Va, 821 (ux®xyz’v el and ux"yzz""v ¢ L).

Idea: Consider the languages
Ly:={we uyvx(xz|zz)" : |Wix,|Wlz>r, |Wwx=1]r], |w|-=0]r]},

Ly:={we uyvx(xz|zz)" : W, |Wlz=r, |Wwix=0]r], |wl:=1]r]}.

Definition: A formula + separates Ly from L, <=
VW1€L1:W1':’I/} and VWzELg:Wg%Q/).

Lemma 1: If Lis definable in +-inv-FO(<), then there is a FO(<, +)-formula that
separates L from L,.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

STRINGS

Proof of (1)==-(4): Let L be regular and definable by a ¢ in +-inv-FO(<).
Goal: Show that L is closed under transfers. Proof by contradiction:

Situation: Fixed x,y,z,u,v € ¥* with |x| = |z| such that
Va, 821 (ux®xyz’v el and ux"yzz""v ¢ L).

Idea: Consider the languages
Ly:={we uyvx(xz|zz)" : |Wix,|Wlz>r, |Wwx=1]r], |w|-=0]r]},

Lo:={we uyvx(xz|zz)" : |w|x,|wl:>r, |Wx=0]r], w-=1]r]}.

Definition: A formula + separates Ly from L, <=
VW1€L1:W1':’I/} and VWzELg:ng’éQ/).

Lemma 1: If Lis definable in +-inv-FO(<), then there is a FO(<, +)-formula that
separates L from L,.

Lemma 2: No formula of FO(<, +) can separate L; from Lo.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

STRINGS

Proof of (1)==-(4): Let L be regular and definable by a ¢ in +-inv-FO(<).
Goal: Show that L is closed under transfers. Proof by contradiction:

Situation: Fixed x,y,z,u,v € ¥* with |x| = |z| such that
Va, 821 (ux®xyz’v el and ux"yzz""v ¢ L).

Idea: Consider the languages
Ly:={we uyvx(xz|zz)" : |Wix,|Wlz>r, |Wwx=1]r], |w|-=0]r]},

Lo:={we uyvx(xz|zz)" : |w|x,|wl:>r, |Wx=0]r], w-=1]r]}.

Definition: A formula + separates Ly from L, <=
VW1€L1:W1':’I/} and VWzELg:ng’éQ/).

Lemma 1: If Lis definable in +-inv-FO(<), then there is a FO(<, +)-formula that
separates L from L,.

Lemma 2: No formula of FO(<, +) can separate L; from Lo.
Proof idea: Use Ehrenfeucht-Fraissé games.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

STRINGS

Proof of (1)==-(4): Let L be regular and definable by a ¢ in +-inv-FO(<).
Goal: Show that L is closed under transfers. Proof by contradiction:

Situation: Fixed x,y,z,u,v € ¥* with |x| = |z| such that
Va, 821 (ux®xyz’v el and ux"yzz""v ¢ L).

Idea: Consider the languages

Ly:={we uyvx(xz|zz)" : |Wix,|Wlz>r, |Wwx=1]r], |w|-=0]r]},

Lo:={we uyvx(xz|zz)" : |w|x,|wl:>r, |Wx=0]r], w-=1]r]}.

Definition: A formula + separates Ly from L, <=
VW1€L1:W1':’I/} and VWzELg:ng’éQ/).

Lemma 1: If Lis definable in +-inv-FO(<), then there is a FO(<, +)-formula that
separates L from L,.

Lemma 2: No formula of FO(<, +) can separate L; from Lo.

CONTRADICTION. O

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 47

STRINGS

Regular languages definable in +-inv-FO(<)

Theorem:

(S., Segoufin, 2010)

Let L be a regular language. The following are equivalent:

(1) L is definable in +-inv-FO(<).

(2) L is definable in FOcag(<).

(3) L is a finite union of languages of the form SN Z?, where

e Sis

star-free regular (i.e., S is FO(<)-definable)

e Z = {w:|w|=imod q}.

(4) L is closed under transfers.

NICOLE SCHWEIKARDT

A TUTORIAL ON ORDER-INVARIANT LOGICS

48

STRINGS

Regular languages definable in +-inv-FO(<)

Theorem: (S., Segoufin, 2010)
Let L be a regular language. The following are equivalent:

(1) L is definable in +-inv-FO(<).

(2) L is definable in FOcag(<).

(3) L is a finite union of languages of the form SN Z?, where

o S is star-free regular (i.e., S is FO(<)-definable)
e Z = {w:|w|=imod q}.

(4) L is closed under transfers.

Question: What happens if the linear order < on the string is not available?

We first consider the case where only the successor relation “succ’ is available.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 48

STRINGS

Regular languages definable in +-inv-FO(succ)

Theorem:

(S., Segoufin, 2010)

Let L be a regular language. The following are equivalent:

(1) L is definable in +-inv-FO(succ).
(2) L is definable in FOcqq(succ).
(3) L is a finite union of languages of the form T N Z?, where

e Tis

locally threshold testable (i.e., T is FO(succ)-definable)

e Z7 = {w:|w|=imod g}.

(4) L is closed under transfers and under swaps.

Proof method:

Definition: Li

Similar as for the previous theorem.

s closed under swaps <=

forall e, f,x,y,z€ X* suchthat e, f areidempotent we have

exfyezf = ezfyexf

Observation: Given an automaton for a regular language L, it is decidable whether
L is closed under transfers and under swaps.

NICOLE SCHWEIKARDT

A TUTORIAL ON ORDER-INVARIANT LOGICS

49

STRINGS

Regular languages definable in +-inv-FO(succ)

Theorem: (S., Segoufin, 2010)
Let L be a regular language. The following are equivalent:

(1) L is definable in +--inv-FO(succ).

(2) L is definable in FOcaq(succ).

(3) L is a finite union of languages of the form T N Z?, where

o T is locally threshold testable (i.e., T is FO(succ)-definable)
e Z = {w:|w|=imod q}.

(4) L is closed under transfers and under swaps.

By combining this with the poly-logarithmic-locality of Arb-invariant FO, we obtain:

Theorem: (Anderson, Melkebeek, S., Segoufin, 2011)

Let L be a regular language. Then,
L is definable in Arb-invariant FO(succ) iff L is definable in FOcag(succ).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

49

STRINGS

Regular languages definable in +-inv-FO(succ)

Theorem: (S., Segoufin, 2010)
Let L be a regular language. The following are equivalent:

(1) L is definable in +-inv-FO(succ).

(2) L is definable in FOcqq(succ).

(3) L is a finite union of languages of the form T N Z?, where

o T is locally threshold testable (i.e., T is FO(succ)-definable)
e Z7 = {w:|w|=imod g}.

(4) L is closed under transfers and under swaps.

The result extends from words to trees:

Theorem: (Harwath, S., 2012)
Let L be a regular tree language. The following are equivalent:

(1) L is definable in +-inv-FO(Sy, Sz).
(2) L is definable in FOcqar4(St, S2).
(3) L is closed under transfers and swaps.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

49

STRINGS

Regular languages definable in +-inv-FO(=)

Theorem: (S., Segoufin, 2010)
Let L be a regular language. The following are equivalent:

(1) L is definable in +-inv-FO(=).

(2) L is definable in FOcarg(=).

(3) L is commutative, closed under transfers and under swaps.

Definition: Lis commutative <«
VvmeN Vay,...,an€X Vpermutationswof {1,...,m} :

at@---am € L <= armare) - am € L

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 50

STRINGS

An open question

Open Question:
Are all languages definable in addition-invariant FO regular?

Known: (S., Segoufin, 2010)
» Arb-invariant FO can define non-regular languages, e.g.,
L={we {1} : |w|is a prime number }.
» Every deterministic context-free language definable in addition-invariant FO is
regular.
» Every commutative language definable in addition-invariant FO is regular.

» Every bounded language definable in addition-invariant FO is regular.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 51

STRINGS

Bounded languages

Definition: (Ginsburg & Spanier, 1964)
L C X*isbounded <=
JkeN and kstrings wy,...,wx € £* suchthat L C wyws - wy.
Theorem: (S., Segoufin, 2010)

Every bounded language definable in +-inv-FO(<) is regular.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 52

STRINGS

Bounded languages
(Ginsburg & Spanier, 1964)

Definition:
L C X*isbounded <=
JkeN and kstrings wy,...,wx € £* suchthat L C wyws - wy.
Theorem: (S., Segoufin, 2010)

Every bounded language definable in +-inv-FO(<) is regular.

Proof method:
e Identify wiws .- wy with N via (xi,...,x) € N* = w w? . wr.
Thus: LCwiws---w;y = S(L)CNK

o Note that S(L) is semi-linear, since L is definable in +-inv-FO(<).

e Reason about semi-linear sets ...

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 52

STRINGS

Bounded languages
(Ginsburg & Spanier, 1964)

Definition:
L C X*isbounded <=
JkeN and kstrings wy,...,wx € £* suchthat L C wyws - wy.
Theorem: (S., Segoufin, 2010)

Every bounded language definable in +-inv-FO(<) is regular.

Proof method:
e Identify wiws .- wy with N via (xi,...,x) € N* = w w? . wr.
Thus: LCwiws---w;y = S(L)CNK

o Note that S(L) is semi-linear, since L is definable in +-inv-FO(<).

e Reason about semi-linear sets ...

Corollary:

Every commutative language definable in +-inv-FO(<) is regular.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 52

STRINGS

Characterization of colored sets definable in +-inv-FO

Definition: A colored finite set is a finite relational structure over a finite signature
that contains only unary relation symbols.

Theorem: (S., Segoufin, 2010)

Over the class of colored finite sets, +-inv-FO(=) and FOcaq(=) have the same
expressive power.

Proof:

e Every +-inv-FO(=) sentence over colored sets defines a
commutative language.

e Every commutative language definable in +-inv-FO(<) is regular.

e Every regular language definable in +-inv-FO(=) is definable in FOca4(=).
O

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 53

STRINGS

Characterization of colored sets definable in +-inv-FO

Definition: A colored finite set is a finite relational structure over a finite signature
that contains only unary relation symbols.

Theorem: (S., Segoufin, 2010)

Over the class of colored finite sets, +-inv-FO(=) and FOcaq(=) have the same
expressive power.

Note: FOcaq(=) is a logic (with a decidable syntax); +-inv-FO(=) is not.
More precisely: The following problem is undecidable:

Input: a FO(<, +, C)-sentence ¢ (C a unary relation symbol)
Question: Is ¢ addition-invariant on all finite { C}-structures ?

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS

Final Remarks

NICOLE SCHWEIKARDT

Overview

A TUTORIAL ON ORDER-INVARIANT LOGICS

FINAL REMARKS

54

FINAL REMARKS

Gaifman-locality
If (VF(a),a) = (NVF(b),b) then (a€ q(G) < be q(G)).

Known:

> Queries definable in order-invariant FO are Gaifman-local with respect to a
constant locality radius. (Grohe, Schwentick '98)

» Queries definable in Arb-invariant FO are Gaifman-local with respect to a
poly-logarithmic locality radius. (Anderson, Melkebeek, S., Segoufin ’11)

Open Question:

» How about addition-invariant FO:
is it Gaifman-local with respect to a constant locality radius?

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 55

FINAL REMARKS

Hanf-locality

A graph property p is Hanf-local w.r.t. locality radius r, if
any two graphs having the same r-neighbourhood types with the same multiplicities,
are not distinguished by p.

Known:

» Properties of graphs definable in FO are Hanf-local w.r.t. a constant locality
radius. (Fagin, Stockmeyer, Vardi '95)

» Properties of strings or trees definable by order-invariant FO are Hanf-local w.r.t.
a constant locality radius. (Benedikt, Segoufin '09)

» Properties of strings definable by Arb-invariant FO are Hanf-local w.r.t. a
poly-logarithmic locality radius. (Anderson, van Melkebeek, S., Segoufin 11)

> Properties of strings definable by Arb-invariant FO+MODp, for odd prime
powers p, are Hanf-local w.r.t. a poly-logarithmic locality radius.
For even p, they aren't. (Harwath, S.’13)

Open Question:
» Which of these results generalise from strings to arbitrary finite graphs?

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 56

FINAL REMARKS

Decidable Characterisations

Open Question:
Are there decidable characterisations of

» order-invariant FO?
» addition-invariant FO?
> (4, x)-invariant FO?

Known:

» On finite strings and trees: order-invariant FO = FO. (Benedikt, Segoufin '10)

» On finite coloured sets: addition-invariant FO = FO enriched by “cardinality
modulo” quantifiers. (S., Segoufin '10)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER-INVARIANT LOGICS 57

NICOLE SCHWEIKARDT

Thank You!

A TUTORIAL ON ORDER-INVARIANT LOGICS

FINAL REMARKS

58

	Introduction
	Invariant logics
	Undecidability
	Expressiveness
	Locality Results
	Order-invariant logics on strings
	Final Remarks

