
Logik in der Informatik
Vorlesung im Wintersemester

Prof. Dr. Nicole Schweikardt

Lehrstuhl Logik in der Informatik
Institut für Informatik

Humboldt-Universität zu Berlin

Große Teile dieses Skripts basieren auf den Unterlagen zu der von
Prof. Dr. Martin Grohe im Wintersemester 2011/12 an der HU Berlin

gehaltenen Vorlesung
”
Logik in der Informatik“

Inhaltsverzeichnis

1 Einleitung 5
1.1 Von der Bibel bis zu den Simpsons 5
1.2 Logik in der Informatik . 12
1.3 Lernziele, Semesterausblick und Literatur 17

2 Aussagenlogik 21
2.1 Syntax und Semantik . 21
2.2 Aussagenlogische Modellierung 47
2.3 Äquivalenz und Adäquatheit 52
2.4 Normalformen . 64
2.5 Der Endlichkeitssatz . 73
2.6 Resolution . 78
2.7 Erfüllbarkeitsalgorithmen . 90
2.8 Hornformeln . 97

3 Logik erster Stufe 105
3.1 Strukturen . 105
3.2 Terme der Logik erster Stufe 118
3.3 Syntax der Logik erster Stufe 120
3.4 Semantik der Logik erster Stufe 124
3.5 Beispiele für Formeln der Logik erster Stufe in verschiedenen

Anwendungsbereichen . 141
3.6 Logik und Datenbanken . 144

Version vom 16. Oktober 2023 Seite 3

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

3.7 Äquivalenz von Formeln der Logik erster Stufe 151
3.8 Ehrenfeucht-Fräıssé-Spiele . 154
3.9 Erfüllbarkeit, Allgemeingültigkeit und die Folgerungsbeziehung 173
3.10 Normalformen . 175

4 Grundlagen des automatischen Schließens 181
4.1 Kalküle und Ableitungen . 182
4.2 Ein Beweiskalkül für die Logik erster Stufe — der Vollständig-

keitssatz . 189
4.3 Der Endlichkeitssatz . 207
4.4 Die Grenzen der Berechenbarkeit 214
4.5 Der Satz von Herbrand . 225
4.6 Automatische Theorembeweiser 236

5 Logik-Programmierung 239
5.1 Einführung . 239
5.2 Syntax und deklarative Semantik von Logikprogrammen . . . 242
5.3 Operationelle Semantik . 257
5.4 Logik-Programmierung und Prolog 275

Literaturverzeichnis 279

Version vom 16. Oktober 2023 Seite 4

Kapitel 1

Einleitung

1.1 Von der Bibel bis zu den Simpsons

Folie 1

Logik

• altgriechisch
”
logos“: Vernunft

• die Lehre des vernünftigen Schlussfolgerns

• Teilgebiet u.a. der Disziplinen Philosophie, Mathematik und
Informatik

• zentrale Frage:

Wie kann man Aussagen miteinander verknüpfen, und auf
welche Weise kann man formal Schlüsse ziehen und
Beweise durchführen?

Folie 2

Das Lügnerparadoxon von Epimenides

Brief des Paulus an Titus 1:12-13:

Es hat einer von ihnen gesagt, ihr eigener Prophet:
Die Kreter sind immer Lügner, böse Tiere und faule Bäuche.

Version vom 16. Oktober 2023 Seite 5

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Angenommen, die Aussage des Propheten ist wahr.
Da der Prophet selbst Kreter ist, lügt er also immer (und ist ein böses
Tier und ein fauler Bauch). Dann hat er aber insbesondere in dem
Satz

”
Die Kreter sind immer Lügner, böse Tiere und faule Bäuche“

gelogen. D.h. die Aussage des Propheten ist nicht wahr.

Dies ist ein Widerspruch!

Angenommen, die Aussage des Propheten ist falsch.
Dann gibt es Kreter, die nicht immer Lügner, böse Tiere und faule
Bäuche sind. Dies stellt keinen Widerspruch dar.

Insgesamt wissen wir also, dass der Prophet in seiner obigen Aussage
nicht die Wahrheit gesagt hat.

Folie 3

Protagoras und sein Student Euthalus vor Gericht

Protagoras (490 – 420 v.Chr.)
Quelle: http://www.greatthoughtstreasury.com/author/protagoras

Euthalus studierte die Kunst der Argumentation beim Meister
Protagoras, um Anwalt zu werden.
Er vereinbart mit Protagoras, die Gebühren für den Unterricht
zu bezahlen, sobald er seinen ersten Prozess gewonnen hat.

Aber dann zögert Euthalus seine Anwaltstätigkeit immer weiter
hinaus, und schließlich beschließt Protagoras, seine Gebühren
einzuklagen.
Euthalus verteidigt sich selbst . . .

Folie 4

Protagoras denkt:
Wenn ich den Prozess gewinne, muss Euthalus gemäß
Gerichtsbeschluss zahlen.
Wenn ich den Prozess verliere, muss Euthalus gemäß unserer
Vereinbarung zahlen, da er dann seinen ersten Prozess gewonnen hat.

Version vom 16. Oktober 2023 Seite 6

http://www.greatthoughtstreasury.com/author/protagoras

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Euthalus denkt:
Wenn ich den Prozess gewinne, muss ich gemäß Gerichtsbeschluss
nicht zahlen.
Wenn ich den Prozess verliere, muss ich gemäß unserer Vereinbarung
nicht zahlen.

Folie 5

Achilles und die Schildkröte

Achilles und die Schildkröte laufen ein Wettrennen. Achilles
gewährt der Schildkröte einen Vorsprung. Zenon behauptet, dass
Achilles die Schildkröte niemals einholen kann.

Zenon von Elea (490 – 425 v.Chr.) Quelle: http:
//aefucr.blogspot.de/2008/04/resolucin-de-la-paradoja-de-zenn-de.html

Zenons Begründung: Zu dem Zeitpunkt, an dem Achilles den Startpunkt
der Schildkröte erreicht, ist die Schildkröte schon ein Stück weiter.
Etwas später erreicht Achilles diesen Punkt, aber die Schildkröte ist
schon etwas weiter. Wenn Achilles diesen Punkt erreicht, ist die
Schildkröte wieder etwas weiter. So kann Achilles zwar immer näher
an die Schildkröte herankommen, sie aber niemals einholen.

Folie 6

Auflösung durch die Infinitesimalrechnung:

Gottfried Wilhelm von Leibniz (1646 – 1716)
und Isaac Newton (1643 – 1727)

Quelle: http://www-history.mcs.st-and.ac.uk/PictDisplay/Leibniz.html
und Quelle: http://de.wikipedia.org/wiki/Isaac_Newton

Version vom 16. Oktober 2023 Seite 7

http://aefucr.blogspot.de/2008/04/resolucin-de-la-paradoja-de-zenn-de.html
http://aefucr.blogspot.de/2008/04/resolucin-de-la-paradoja-de-zenn-de.html
http://www-history.mcs.st-and.ac.uk/PictDisplay/Leibniz.html
http://de.wikipedia.org/wiki/Isaac_Newton

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Bemerkung. Aristoteles Auflösung dieses Paradoxons besteht darin, zu
postulieren, dass man Strecken nicht unendlich Teilen kann. Aber auch
ohne diese Annahme kann man das Paradoxon leicht mit Hilfe der
Infinitesimalrechnung auflösen, denn die immer kürzer werdenden Strecken
können insgesamt in beschränkter Zeit zurückgelegt werden.
Leibniz und Newton waren die Begründer der Infinitesimalrechnung.

Folie 7

Der Barbier von Sonnenthal

Im Städtchen Sonnenthal (in dem bekanntlich viele seltsame
Dinge passieren) wohnt ein Barbier, der genau diejenigen
männlichen Einwohner von Sonnenthal rasiert, die sich nicht
selbst rasieren.

Frage: Rasiert der Barbier sich selbst?

Angenommen, der Barbier rasiert sich selbst.
Da er ein männlicher Einwohner von Sonnenthal ist, der sich selbst
rasiert, wird er nicht vom Barbier rasiert. Aber er selbst ist der
Barbier. Dies ist ein Widerspruch!

Angenommen, der Barbier rasiert sich nicht selbst.
Da er in Sonnenthal wohnt und dort alle Einwohner rasiert, die sich
nicht selbst rasieren, muss er sich rasieren. Dies ist ein Widerspruch!

Die Anfänge der formalen Logik

Folie 8

Aristoteles’ Syllogismen

Die folgende Schlussweise ist aus rein formalen Gründen korrekt.

Annahme 1: Alle Menschen sind sterblich.
Annahme 2: Sokrates ist ein Mensch.

Folgerung: Also ist Sokrates sterblich.

Diese Art von Schluss und eine Reihe verwandter Schlussweisen nennt man
Syllogismen.

Version vom 16. Oktober 2023 Seite 8

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Annahme 1: Alle A sind B.
Annahme 2: C ist ein A.

Folgerung: Also ist C B.

Folie 9

Beispiele

Annahme 1: Alle Borg sind assimiliert worden.
Annahme 2: Seven of Nine ist eine Borg.

Folgerung: Also ist Seven of Nine assimiliert worden.

Annahme 1: Alle Substitutionschiffren sind
anfällig gegen Brute-Force-Angriffe.

Annahme 2: Der Julius-Cäsar-Chiffre ist ein Substitutionschiffre.

Folgerung: Also ist der Julius-Cäsar-Chiffre anfällig
gegen Brute-Force-Angriffe.

Folie 10

Aristoteles (384 - 322 v.Chr.)
Quelle: http://de.wikipedia.org/wiki/Aristoteles

Folie 11

Version vom 16. Oktober 2023 Seite 9

http://de.wikipedia.org/wiki/Aristoteles

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Ein komplizierterer formaler Schluss

Annahme 1: Es gibt keine Schweine, die fliegen können.
Annahme 2: Alle Schweine sind gefräßige Tiere.
Annahme 3: Es gibt Schweine.

Folgerung: Also gibt es gefräßige Tiere, die nicht fliegen können.

Die Form des Schlusses ist:

Annahme 1: Es gibt keine A, die B (sind).
Annahme 2: Alle A sind C.
Annahme 3: Es gibt A.

Folgerung: Also gibt es C, die nicht B (sind).

Folie 12

Charles Lutwidge Dodgson a.k.a. Lewis Carroll (1838 – 1898)
Quelle: http://en.wikiquote.org/wiki/Lewis_Carroll

“Contrariwise,” continued Tweedledee, “if it was so, it might be;
and if it were so, it would be; but as it isn’t, it ain’t.
That’s logic.”

aus: Alice in Wonderland

Folie 13

Nicht jeder formale Schluss ist korrekt

Annahme 1: Es gibt Vögel, die fliegen können.
Annahme 2: Es gibt keine fliegenden (Tiere),

die Klavier spielen können.

Folgerung: Also gibt es keine Vögel, die Klavier spielen können.

Version vom 16. Oktober 2023 Seite 10

http://en.wikiquote.org/wiki/Lewis_Carroll

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Kein korrekter Schluss, auch wenn in diesem Fall die Folgerung wahr ist.
Der folgende, offensichtlich falsche, Schluss hat dieselbe Form:

Annahme 1: Es gibt Menschen, die stumm sind.
Annahme 2: Es gibt keine stummen (Lebewesen),

die sprechen können.

Folgerung: Also gibt es keine Menschen, die sprechen können.

Folie 14

Aber wie merkt man es?

Man kann einen falschen Schluss entlarven, indem man einen formal
gleichen Schluss findet, der klar falsch ist.

Annahme 1: Erbeeren schmecken gut.
Annahme 2: Schlagsahne schmeckt gut.

Folgerung: Also schmecken Erdbeeren mit Schlagsahne gut.

Aber:

Annahme 1: Pizza schmeckt gut.
Annahme 2: Schlagsahne schmeckt gut.

Folgerung: Also schmeckt Pizza mit Schlagsahne gut.

Folie 15

Wasons Auswahlaufgabe (Wason’s selection task)1

Uns stehen vier Karten der folgenden Art zur Verfügung:
Auf jeder Karte steht auf der Vorderseite eine Ziffer zwischen 0 und 9. Die
Rückseite jeder Karte ist komplett rot oder komplett blau.
Wir sehen Folgendes:

1benannt nach Peter Cathcart Wason (1924–2003, Kognitiver Psychologe, London);
in Wasons ursprünglicher Version der Auswahlaufgabe handelt es sich um Karten, deren
Vorderseiten Buchstaben und deren Rückseiten Ziffern enthalten, und die Hypothese ist

”
Wenn auf der Vorderseite der Karte ein Vokal steht, dann steht auf der Rückseite eine
gerade Zahl“

Version vom 16. Oktober 2023 Seite 11

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Jemand hat folgende Hypothese aufgestellt:

Wenn auf der Vorderseite eine gerade Zahl steht,
dann ist die Rückseite rot.

Welche Karte(n) müssen Sie umdrehen, um zu überprüfen, ob die
Hypothese stimmt?

Folie 16

Und was sagen die Simpsons?

Quelle: http:

//en.wikipedia.org/

wiki/Simpson_family

Homer: Not a bear in sight. The Bear Patrol
must be working like a charm.

Lisa: That’s specious reasoning, Dad.
Homer: Thank you, dear.
Lisa: By your logic I could claim that

this rock keeps tigers away.
Homer: Oh, how does it work?
Lisa: It doesn’t work.
Homer: Uh-huh.
Lisa: It’s just a stupid rock.
Homer: Uh-huh.
Lisa: But I don’t see any tigers around,

do you?
(Pause)

Homer: Lisa, I want to buy your rock.

[Lisa refuses at first, then takes the exchange]

1.2 Logik in der Informatik

Folie 17

Die Rolle der Logik in der Informatik

Halpern, Harper, Immerman, Kolaitis, Vardi, Vianu (2001):

Version vom 16. Oktober 2023 Seite 12

http://en.wikipedia.org/wiki/Simpson_family
http://en.wikipedia.org/wiki/Simpson_family
http://en.wikipedia.org/wiki/Simpson_family

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Concepts and methods of logic occupy a central place in
computer science, insomuch that logic has been called
“the calculus of computer science”.

aus: On the unusual effectiveness of logic in computer science, Bulletin of
Symbolic Logic 7(2): 213-236 (2001)

Folie 18

Anwendungsbereiche der Logik in der Informatik

• Repräsentation von Wissen (z.B. im Bereich der künstlichen
Intelligenz) [siehe Kapitel 2 und 3]

• Grundlage für Datenbank-Anfragesprachen [siehe Kapitel 3]

• Bestandteil von Programmiersprachen
(z.B. um Bedingungen in IF-Anweisungen zu formulieren)

[siehe Kapitel 2]

• automatische Generierung von Beweisen
(so genannte Theorembeweiser) [siehe Kapitel 4]

• Verifikation von

– Schaltkreisen (Ziel: beweise, dass ein Schaltkreis bzw. Chip

”
richtig“ funktioniert)

– Programmen (Ziel: beweise, dass ein Programm gewisse
wünschenswerte Eigenschaften hat)

– Protokollen (Ziel: beweise, dass die Kommunikation zwischen
zwei

”
Agenten“, die nach einem gewissen Protokoll abläuft,

”
sicher“ ist — etwa gegen Abhören oder Manipulation durch
dritte; Anwendungsbeispiel: Internet-Banking)

• Logik-Programmierung [siehe folgende Folien und Kapitel 5]

Version vom 16. Oktober 2023 Seite 13

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Einführung in die Logik-Programmierung

Folie 19

”
Was“ statt

”
Wie“ am Beispiel von Tiramisu

Tiramisu — Deklarativ
Aus Eigelb, Mascarpone und in Likör und Kaffee getränkten Biskuits hergestellte
cremige Süßspeise

(aus: DUDEN, Fremdwörterbuch, 6. Auflage)

Tiramisu — Imperativ
1/4 l Milch mit 2 EL Kakao und 2 EL Zucker aufkochen. 1/4 l starken Kaffee
und 4 EL Amaretto dazugeben.

5 Eigelb mit 75 g Zucker weißschaumig rühren, dann 500 g Mascarpone
dazumischen.

ca 200 g Löffelbiskuit.

Eine Lage Löffelbiskuit in eine Auflaufform legen, mit der Flüssigkeit tränken
und mit der Creme überziehen. Dann wieder Löffelbiskuit darauflegen, mit der
restlichen Flüssigkeit tränken und mit der restlichen Creme überziehen.

Über Nacht im Kühlschrank durchziehen lassen und vor dem Servieren mit
Kakao bestäuben.

(aus: Gisela Schweikardt, handschriftliche Kochrezepte)

Folie 20

Der große Traum der Informatik

Imperative Vorgehensweise:
Beschreibung, wie das gewünschte Ergebnis erzeugt wird

”
Wie“

Deklarative Vorgehensweise:
Beschreibung der Eigenschaften des gewünschten Ergebnisses

”
Was“

Traum der Informatik:
Möglichst wenig

”
wie“, möglichst viel

”
was“

D.h.: Automatische Generierung eines Ergebnisses aus seiner Spezifikation

Realität:
Datenbanken: Deklarative Anfragesprache ist Industriestandard (SQL)

Software-Entwicklung: Generierungs-Tools

Version vom 16. Oktober 2023 Seite 14

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Programmiersprachen: Logik-Programmierung, insbes. Prolog

ABER: Imperativer Ansatz überwiegt in der Praxis

Folie 21

Logik-Programmierung

• Logik-Programmierung bezeichnet die Idee, Logik direkt als
Programmiersprache zu verwenden.

• Logik-Programmierung (in Sprachen wie Prolog) und die verwandte
funktionale Programmierung (in Sprachen wie LISP, ML, Haskell)
sind deklarativ,
im Gegensatz zur imperativen Programmierung (in Sprachen wie Java,
C, Perl).

• Die Idee der deklarativen Programmierung besteht darin, dem
Computer lediglich sein Wissen über das Anwendungsszenario und
sein Ziel mitzuteilen und dann die Lösung des Problems dem
Computer zu überlassen.

Bei der imperativen Programmierung hingegen gibt man dem
Computer die einzelnen Schritte zur Lösung des Problems vor.

Folie 22

Prolog

• Prolog

– ist die wichtigste logische Programmiersprache,

– geht zurück auf Kowalski und Colmerauer
(Anfang der 1970er Jahre, Marseilles),

– steht für (franz.) Programmation en logique.

– Mitte/Ende der 1970er Jahre: effiziente Prolog-Implementierung
durch den von Warren (in Edinburgh) entwickelten Prolog-10
Compiler.

• Aus Effizienzgründen werden in Prolog die abstrakten Ideen der
logischen Programmierung nicht in Reinform umgesetzt, Prolog hat
auch

”
nichtlogische“ Elemente.

Version vom 16. Oktober 2023 Seite 15

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

• Prolog ist eine voll entwickelte und mächtige Programmiersprache, die
vor allem für symbolische Berechnungsprobleme geeignet ist.

Folie 23

Anwendungen

Die wichtigsten Anwendungsgebiete sind die künstliche Intelligenz und die
Computerlinguistik.

Beispiele. Das Interface für natürliche Sprache

• in der International Space Station wurde von der NASA

• beim IBM Watson System, das in 2011 die Jeopardy! Man vs.
Machine Challenge gewonnen hat, wurde

in Prolog implementiert.

Mehr Informationen dazu finden sich z.B. unter
https://sicstus.sics.se/customers.html und
http://www.cs.nmsu.edu/ALP/2011/03/

natural-language-processing-with-prolog-in-the-ibm-watson-system/

Folie 24

Learn Prolog Now!

Im Rahmen der Übungsaufgaben zur Vorlesung werden wir jede Woche eins
der 12 Kapitel des Buchs

”
Learn Prolog Now!“ von Patrick Blackburn, Johan Bos und

Kristina Striegnitz (Kings College Publications, 2006)

. . . auch erhältlich als Online-Kurs unter
http://www.learnprolognow.org

durcharbeiten. Als Unterstützung dazu gibt es jede Woche eine 2-stündige
Prolog-Übung.

Am Ende des Semesters, in Kapitel 5, werden wir von Prolog abstrahieren
und uns die Grundprinzipien der Logik-Programmierung anschauen.

Version vom 16. Oktober 2023 Seite 16

https://sicstus.sics.se/customers.html
http://www.cs.nmsu.edu/ALP/2011/03/natural-language-processing-with-prolog-in-the-ibm-watson-system/
http://www.cs.nmsu.edu/ALP/2011/03/natural-language-processing-with-prolog-in-the-ibm-watson-system/
http://www.learnprolognow.org

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

1.3 Lernziele, Semesterausblick und Literatur

Folie 25

Lern- und Qualifikationsziele

Aus der Modulbeschreibung:

Studierende erlangen die Fähigkeit, Sachverhalte in geeigneten
formalen Systemen zu formalisieren und die grundlegenden
Begriffe und Ergebnisse der mathematischen Logik zu verstehen
und anzuwenden. Darüber hinaus erlernen sie anhand der
deklarativen Programmiersprache Prolog ein neues
Programmierparadigma.

Und was sagt Goethe dazu?

Mein teurer Freund, ich rat Euch drum
Zuerst Collegium Logicum.
Da wird der Geist Euch wohl dressiert,
In spanische Stiefeln eingeschnürt,
Daß er bedächtiger so fortan
Hinschleiche die Gedankenbahn,
Und nicht etwa, die Kreuz und Quer,
Irrlichteliere hin und her.

Mephistopheles in Faust

Folie 26

Semesterüberblick

1. Einleitung (dieses Kapitel)

2. Aussagenlogik
Syntax und Semantik, Normalformen, Modellierung,
Resolution, Erfüllbarkeitsalgorithmen

3. Logik erster Stufe
Syntax und Semantik, Normalformen, Modellierung,
Nichtausdrückbarkeit

4. Grundlagen des automatischen Schließens
Sequenzenkalkül, Vollständigkeits- und Endlichkeitssatz,
Grenzen der Berechenbarkeit, automatische Theorembeweiser

Version vom 16. Oktober 2023 Seite 17

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

5. Grundlagen der Logik-Programmierung
Syntax und deklarative Semantik von Logikprogrammen, Ableitungen
und Beweisbäume, operationelle Semantik, Unifikation

Folie 27

Literaturempfehlungen

Folgende Schriften werden zur Vertiefung des Vorlesungsstoffes empfohlen:

1. dieses Vorlesungsskript zur Veranstaltung Logik in der Informatik

2. die Lehrbücher [Sch00, Bur98, KK06] und das Buch [BBS06].

Als Ergänzung seien auch folgende Lehrbücher genannt:

• [EFT07] (Einführung in die mathematische Logik)

• [Ebb03] (Einführung in die Mengenlehre)

• [Lib04, FG98] (Bücher zum Thema Logik und Komplexität)

• [Cam98, vD04, HR04] (weiterführende Literatur im Bereich Logik
und automatisches Schließen)

• [SS94] (weiterführende Literatur zum Thema Logik-Programmierung
und Prolog)

Version vom 16. Oktober 2023 Seite 18

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Auflösung zu Wasons Auswahlaufgabe:
Die Karte mit der

”
4“ und die blaue Karte müssen umgedreht werden.

Begründung:

• Falls die Rückseite der Karte mit der
”
4“ nicht rot ist, so haben wir

ein Gegenbeispiel zur Hypothese gefunden und damit die Hypothese
widerlegt.

• Falls die Vorderseite der blauen Karte eine gerade Zahl enthält, haben
wir ein Gegenbeispiel zur Hypothese gefunden und damit die
Hypothese widerlegt.

• Die Karte mit der
”
7“ brauchen wir nicht umzudrehen, da die

Hypothese keine Aussage über die Rückseite von Karten mit
ungeraden Ziffern macht.

• Die rote Karte brauchen wir nicht umzudrehen, da die Hypothese
keine Aussage über die Vorderseite von Karten mit roter Rückseite
macht.

Version vom 16. Oktober 2023 Seite 19

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Version vom 16. Oktober 2023 Seite 20

Kapitel 2

Aussagenlogik

2.1 Syntax und Semantik

Folie 28

Aussagen

Die Frage
”
Was ist eigentlich ein Wort?“ ist analog der

”
Was ist eine

Schachfigur?“ Ludwig Wittgenstein, Philosophische Untersuchungen

• Aussagen (im Sinne der Aussagenlogik) sind sprachliche Gebilde, die
entweder wahr oder falsch sind.

• Aussagen können mit Junktoren wie nicht, und, oder oder wenn . . .
dann zu komplexeren Aussagen verknüpft werden.

• Aussagenlogik beschäftigt sich mit allgemeinen Prinzipien des
korrekten Argumentierens und Schließens mit Aussagen und
Kombinationen von Aussagen.

Folie 29

Version vom 16. Oktober 2023 Seite 21

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Ludwig Wittgenstein (1889 – 1951)
Quelle: http://en.wikipedia.org/wiki/Ludwig_Wittgenstein

Folie 30

Beispiel 2.1 (Geburtstagsfeier).
Fred möchte mit möglichst vielen seiner Freunde Anne, Bernd, Christine,
Dirk und Eva seinen Geburtstag feiern. Er weiß Folgendes:
Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf keinen
Fall kommen. Und Dirk wird auf keinen Fall kommen, wenn Bernd und Eva
beide zur Feier kommen. Aber Eva kommt allenfalls dann, wenn Christine
und Dirk kommen. Andererseits kommt Christine nur dann, wenn auch
Anne kommt. Anne wiederum wird nur dann kommen, wenn auch Bernd
oder Christine dabei sind.

Frage: Wie viele Freunde (und welche) werden im besten Fall zur Party
kommen?

Folie 31

Das Wissen, das in dem Text wiedergegeben ist, lässt sich in
”
atomare

Aussagen“ zerlegen, die mit Junktoren verknüpft werden können.
Die atomaren Aussagen, um die sich der Text dreht, kürzen wir
folgendermaßen ab:

A : Anne kommt zur Feier
B : Bernd kommt zur Feier
C : Christine kommt zur Feier
D : Dirk kommt zur Feier
E : Eva kommt zur Feier

Das im Text zusammengefasste Wissen lässt sich wie folgt repräsentieren.

Folie 32

Version vom 16. Oktober 2023 Seite 22

http://en.wikipedia.org/wiki/Ludwig_Wittgenstein

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

(1) Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf
keinen Fall kommen.

kurz: Wenn (B und A), dann nicht E kürzer: (B ∧ A)→ ¬E

(2) Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur
Feier kommen.

kurz: Wenn (B und E), dann nicht D kürzer: (B ∧ E)→ ¬D

(3) Eva kommt allenfalls dann, wenn Christine und Dirk kommen.

kurz: Wenn E, dann (C und D) kürzer: E → (C ∧D)

(4) Christine kommt nur dann, wenn auch Anne kommt.

kurz: Wenn C, dann A kürzer: C → A

(5) Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind.

kurz: Wenn A, dann (B oder C) kürzer: A→ (B ∨ C)

Folie 33

Fallstricke natürlichsprachlicher Aussagen

Die Verwendung der Wörter und, wenn . . . dann, oder, nicht in der
Alltagssprache entspricht nicht immer exakt unseren logischen Junktoren.

(1) Anne hat mit dem Kaffeetrinken aufgehört.

kurz: V und nicht G kürzer: V ∧ ¬G

(2) Anne hat nicht mit dem Kaffeetrinken aufgehört.

kurz: V und G kürzer: V ∧G

Ist (2) die Negation von (1)? In dem Fall, dass Anne noch nie Kaffee
getrunken hat, ist keine der beiden Aussagen wahr.

V : Anne war in der Vergangenheit Kaffeetrinkerin.
G : Anne ist zur Zeit Kaffeetrinkerin.

Zwei weitere Beispiele:

• Ich werde mir ein rotes oder ein blaues Fahrrad kaufen.

• Wenn Regen vorhergesagt ist, dann nehme ich einen Schirm mit.

Folie 34

Version vom 16. Oktober 2023 Seite 23

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Syntax und Semantik

Syntax: legt fest, welche Zeichenketten Formeln der Aussagenlogik sind

Semantik: legt fest, welche
”
Bedeutung“ einzelne Formeln haben

Dies ist analog zur Syntax und Semantik von Java-Programmen:

Die Syntax legt fest, welche Zeichenketten Java-Programme sind, während
die Semantik bestimmt, was das Programm tut.

Zur Verdeutlichung werden wir im Folgenden syntaktische Objekte oft in
orange darstellen, während wir semantische Aussagen in blau angeben.

Syntax der Aussagenlogik

Folie 35

Notationen

• Die Menge N der natürlichen Zahlen besteht aus allen nicht-negativen
ganzen Zahlen, d.h.

N := { 0, 1, 2, 3, . . . }.

• Für ein n ∈ N ist

[n] := {1, . . . , n} = { i ∈ N : 1 ⩽ i ⩽ n }.

Folie 36

Definition 2.2. Ein Aussagensymbol (oder eine Aussagenvariable, kurz:
Variable) hat die Form Ai für ein i ∈ N.
Die Menge aller Aussagensymbole bezeichnen wir mit AS, d.h.

AS = {Ai : i ∈ N} = {A0, A1, A2, A3, . . . }

Aussagenlogische Formeln sind Wörter, die über dem folgenden Alphabet
gebildet sind.

Definition 2.3. Das Alphabet der Aussagenlogik besteht aus

• den Aussagesymbolen in AS,

Version vom 16. Oktober 2023 Seite 24

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

• den Junktoren ¬, ∧, ∨, →,

• den booleschen Konstanten 0, 1,

• den Klammersymbolen (,).

Wir schreiben AAL, um das Alphabet der Aussagenlogik zu bezeichnen, d.h.

AAL := AS ∪ { ¬, ∧, ∨, →, 0, 1, (,) }

Bemerkung. Wir haben hier festgelegt, dass es abzählbar unendlich viele
Aussagensymbole gibt.

Zur Erinnerung:
Eine Menge M heißt abzählbar unendlich, wenn sie unendlich ist und ihre
Elemente sich in der Form m0,m1,m2, . . . aufzählen lassen. Formal heißt M
genau dann abzählbar unendlich, wenn es eine bijektive Abbildung von der
Menge N = {0, 1, 2, . . .} der natürlichen Zahlen auf die Menge M gibt. Eine
Menge M heißt abzählbar, wenn sie entweder endlich oder abzählbar
unendlich ist. Eine Menge M heißt überabzählbar, wenn sie nicht abzählbar
ist.

Beispiele. • Die Menge N ist abzählbar unendlich.

• Ist A eine abzählbare Menge, so ist die Menge A∗ aller endlichen
Wörter über dem Alphabet A abzählbar. Ist etwa A = {a0, a1, a2, . . .},
so können wir eine Aufzählung von A∗ wie folgt beginnen:

ε (das leere Wort)

a0,

a1, a0a0, a0a1, a1a0, a1a1,

a2, a0a2, a2a0, a1a2, a2a1, a2a2, a0a0a0, a0a0a1, a0a0a2, . . . , a2a2a2

a3, a0a3, . . . , a3a3a3a3,

. . .

• Die Menge R aller reellen Zahlen ist überabzählbar.

• Ist M eine unendliche Menge, so ist die Potenzmenge
P(M) := 2M := {N | N ⊆M} von M überabzählbar.

Version vom 16. Oktober 2023 Seite 25

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Bemerkung. Wir könnten die Aussagenlogik genausogut auf einer
überabzählbaren Menge von Aussagensymbolen aufbauen. Alles würde
genauso funktionieren, nur der Beweis des Endlichkeitssatzes (siehe
Kapitel 2.5) würde komplizierter werden. Für die Anwendungen in der
Informatik reicht allerdings i.d.R. eine abzählbar unendliche Menge.

Folie 37

Definition 2.4 (Syntax der Aussagenlogik).
Die Menge AL der aussagenlogischen Formeln (kurz: Formeln) ist die
folgendermaßen rekursiv definierte Teilmenge von A∗

AL:

Basisregeln: (zum Bilden der so genannten atomaren Formeln)

(B0) 0 ∈ AL

(B1) 1 ∈ AL

(BS) Für jedes Aussagensymbol Ai ∈ AS gilt: Ai ∈ AL

Rekursive Regeln:

(R1) Ist φ ∈ AL, so ist auch ¬φ ∈ AL (Negation)

(R2) Ist φ ∈ AL und ψ ∈ AL, so ist auch

• (φ ∧ ψ) ∈ AL (Konjunktion)

• (φ ∨ ψ) ∈ AL (Disjunktion)

• (φ→ ψ) ∈ AL (Implikation)

Folie 38

Beispiele

• (¬A0 ∨ (A0 → A1)) ∈ AL

• ¬ ((A0 ∧ 0)→ ¬A3) ∈ AL

• A1 ∨ A2 ∧ A3 ̸∈ AL

• (¬A1) ̸∈ AL

Folie 39

Version vom 16. Oktober 2023 Seite 26

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Griechische Buchstaben

In der Literatur werden Formeln einer Logik traditionell meistens mit
griechischen Buchstaben bezeichnet.

Hier eine Liste der gebräuchlichsten Buchstaben:

Buchstabe φ ψ χ θ bzw. ϑ λ µ ν τ κ

Aussprache phi psi chi theta lambda mü nü tau kappa

Buchstabe σ ρ ξ ζ α β γ δ ω

Aussprache sigma rho xi zeta alpha beta gamma delta omega

Buchstabe ε ι π ∆ Γ Σ Π Φ Ψ

Aussprache epsilon iota pi Delta Gamma Sigma Pi Phi Psi

Folie 40

Syntaxbäume

Die Struktur einer Formel lässt sich bequem in einem Syntaxbaum (englisch:
parse tree) darstellen.

Beispiel: Syntaxbaum der Formel (((A4 ∧ 1) ∨ ¬A5)→ (A5 ∧ ¬(A4 ∧ 1)))

Ausführlich:

(((A4 ∧ 1) ∨ ¬A5)→ (A5 ∧ ¬(A4 ∧ 1)))

((A4 ∧ 1) ∨ ¬A5)

(A4 ∧ 1)

A4 1

¬A5

A5

(A5 ∧ ¬(A4 ∧ 1))

A5 ¬(A4 ∧ 1)

(A4 ∧ 1)

A4 1

Kurzform:

→

∨

∧

A4 1

¬

A5

∧

A5 ¬

∧

A4 1

Folie 41

Subformeln und eindeutige Lesbarkeit

• Jede Formel hat genau einen Syntaxbaum. Diese Aussage ist als das
Lemma über die eindeutige Lesbarkeit aussagenlogischer Formeln
bekannt.

Version vom 16. Oktober 2023 Seite 27

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

• Die Formeln ψ, die im ausführlichen Syntaxbaum einer Formel φ als
Knotenbeschriftung vorkommen, nennen wir Subformeln (bzw.
Teilformeln) von φ.

• Eine Subformel ψ von φ kann an mehreren Knoten des Syntaxbaums
vorkommen. Wir sprechen dann von verschiedenen Vorkommen von ψ
in φ.

Semantik der Aussagenlogik

Folie 42

Vorüberlegung zur Semantik

• Eine aussagenlogische Formel wird erst zur Aussage, wenn wir alle in
ihr vorkommenden Aussagensymbole durch Aussagen ersetzen.

• Wir interessieren uns hier nicht so sehr für die tatsächlichen
Aussagen, sondern nur für ihren Wahrheitswert, also dafür, ob sie
wahr oder falsch sind.

• Um das festzustellen, reicht es, den Aussagensymbolen die
Wahrheitswerte der durch sie repräsentierten Aussagen zuzuordnen.

• Die Bedeutung einer Formel besteht also aus ihren Wahrheitswerten
unter allen möglichen Wahrheitswerten für die in der Formel
vorkommenden Aussagensymbole.

Folie 43

Interpretationen (d.h. Variablenbelegungen)

Wir repräsentieren die Wahrheitswerte wahr und falsch durch 1 und 0.

Definition 2.5. Eine aussagenlogische Interpretation (kurz: Interpretation
oder Belegung) ist eine Abbildung

I : AS→ {0, 1}.

D.h.: I
”
belegt“ jedes Aussagensymbol X ∈ AS mit einem der beiden

Wahrheitswerte 1 (für
”
wahr“) oder 0 (für

”
falsch“); und I(X) ist der

Wahrheitswert, mit dem das Aussagensymbol X belegt wird.

Folie 44

Version vom 16. Oktober 2023 Seite 28

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Semantik der Aussagenlogik

Definition 2.6. Zu jeder Formel φ ∈ AL und jeder Interpretation I
definieren wir einen Wahrheitswert JφKI rekursiv wie folgt:

Rekursionsanfang:

• J0KI := 0.

• J1KI := 1.

• Für alle X ∈ AS gilt: JXKI := I(X).

Rekursionsschritt:

• Ist φ ∈ AL, so ist J¬φKI :=

{
1 falls JφKI = 0,

0 sonst.

Folie 45

• Ist φ ∈ AL und ψ ∈ AL, so ist

– J(φ ∧ ψ)KI :=

{
1 falls JφKI = JψKI = 1,

0 sonst.

– J(φ ∨ ψ)KI :=

{
0 falls JφKI = JψKI = 0,

1 sonst.

– J(φ→ ψ)KI :=

{
0 falls JφKI = 1 und JψKI = 0,

1 sonst.

Folie 46

Intuitive Bedeutung der Semantik

Boolesche Konstanten: 1 und 0 bedeuten einfach
”
wahr“ und

”
falsch“.

Aussagensymbole: Die Aussagensymbole stehen für irgendwelche
Aussagen, von denen uns aber nur der Wahrheitswert interessiert.
Dieser wird durch die Interpretation festgelegt.

Negation: ¬φ bedeutet
”
nicht φ“.

Version vom 16. Oktober 2023 Seite 29

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Konjunktion: (φ ∧ ψ) bedeutet
”
φ und ψ“.

Disjunktion: (φ ∨ ψ) bedeutet
”
φ oder ψ“.

Implikation: (φ→ ψ) bedeutet
”
φ impliziert ψ“ (oder

”
wenn φ dann ψ“).

Folie 47

Rekursive Definitionen über Formeln

• Ähnlich wie Funktionen auf den natürlichen Zahlen, wie zum Beispiel
die Fakultätsfunktion oder die Fibonacci Folge, können wir
Funktionen auf den aussagenlogischen Formeln rekursiv definieren.

• Dabei gehen wir von den atomaren Formeln aus und definieren dann
den Funktionswert einer zusammengesetzten Formel aus den
Funktionswerten ihrer Bestandteile.

• Zur Rechtfertigung solcher Definitionen benötigt man die eindeutige
Lesbarkeit aussagenlogischer Formeln, die besagt, dass sich jede
Formel eindeutig in ihre Bestandteile zerlegen lässt.

• Wir haben auf diese Weise die Semantik definiert. Wir haben nämlich
für jede Interpretation I rekursiv eine Funktion J · KI : AL→ {0, 1}
definiert.

Folie 48

Schematisch sieht die rekursive Definition einer Funktion f : AL→M
(für eine beliebige Menge M) folgendermaßen aus:

Rekursionsanfang:

• Definiere f(0) und f(1).

• Definiere f(X) für alle X ∈ AS.

Rekursionsschritt:

• Definiere f(¬φ) aus f(φ).

• Definiere f((φ ∧ ψ)) aus f(φ) und f(ψ).

• Definiere f((φ ∨ ψ)) aus f(φ) und f(ψ).

Version vom 16. Oktober 2023 Seite 30

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

• Definiere f((φ→ ψ)) aus f(φ) und f(ψ).

Folie 49

Beispiel 2.7.
Betrachte die Formel φ :=

(
¬A0 ∨ (A5 → A1)

)
und die Interpretation I : AS→ {0, 1} mit

I(A0) = 1, I(A1) = 1, I(A5) = 0

und I(Y) = 0 für alle Y ∈ AS \ {A0, A1, A5}.
Der Wahrheitswert JφKI ist der Wert

JφKI Def. 2.6
=

{
0, falls J¬A0K

I = 0 und J(A5 → A1)K
I = 0

1, sonst

Def. 2.6
=

{
0, falls JA0K

I = 1 und
(
JA5K

I = 1 und JA1K
I = 0

)
1, sonst

Def. 2.6
=

{
0, falls I(A0) = 1 und I(A5) = 1 und I(A1) = 0

1, sonst

= 1 (denn gemäß obiger Wahl von I gilt I(A5) = 0).

Folie 50

Alternative Art, den Wert JφKI zu bestimmen

• Ersetze in φ jedes Aussagensymbol X durch seinen gemäß I
festgelegten Wahrheitswert, d.h. durch den Wert I(X), und rechne
dann den Wert des resultierenden booleschen Ausdrucks aus.

• Speziell für die Formel φ und die Interpretation I aus Beispiel 2.7
ergibt die Ersetzung der Aussagensymbole durch die gemäß I
festgelegten Wahrheitswerte den booleschen Ausdruck(

¬1 ∨ (0→ 1)
)
.

• Ausrechnen von ¬1 ergibt den Wert 0.

Ausrechnen von (0→ 1) ergibt den Wert 1.

• Insgesamt erhalten wir also (0∨ 1), was sich zum Wert 1 errechnet.

Somit erhalten wir, dass JφKI = 1 ist.

Folie 51

Version vom 16. Oktober 2023 Seite 31

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Die Modellbeziehung

Definition 2.8.

(a) Eine Interpretation I erfüllt eine Formel φ ∈ AL (wir schreiben:
I |= φ), wenn JφKI = 1.

Wir schreiben kurz I ̸|= φ um auszudrücken, dass I die Formel φ
nicht erfüllt (d.h., es gilt JφKI = 0).

(b) Eine Interpretation I erfüllt eine Formelmenge Φ ⊆ AL (wir schreiben:
I |= Φ), wenn I |= φ für alle φ ∈ Φ.

(c) Ein Modell einer Formel φ (bzw. einer Formelmenge Φ) ist eine
Interpretation I mit I |= φ (bzw. I |= Φ).

Folie 52

Das Koinzidenzlemma

• Offensichtlich hängt der Wert JφKI nur von den Werten I(X) der
Aussagensymbole X ∈ AS ab, die auch in φ vorkommen.

Diese Aussage ist als das Koinzidenzlemma der Aussagenlogik
bekannt.

• Um JφKI festzulegen, reicht es also, die Werte I(X) nur für diejenigen
Aussagensymbole X ∈ AS anzugeben, die in φ vorkommen.

Folie 53

Vereinbarungen zu Interpretationen

• Statt der vollen Interpretation I : AS→ {0, 1} geben wir in der Regel
nur endlich viele Werte I(X1), . . . , I(Xn) an und legen fest, dass
I(Y) := 0 für alle Y ∈ AS \ {X1, . . . , Xn}.

• In den Beispielen legen wir eine Interpretation oft durch eine
Wertetabelle fest. Beispielsweise beschreibt die Tabelle

X A0 A1 A5

I(X) 1 1 0

die Interpretation I mit I(A0) = I(A1) = 1 und I(A5) = 0 und
I(Y) = 0 für alle Y ∈ AS \ {A0, A1, A5}.

Version vom 16. Oktober 2023 Seite 32

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

• Wir schreiben φ(X1, . . . , Xn), um anzudeuten, dass in φ nur
Aussagensymbole aus der Menge {X1, . . . , Xn} vorkommen.

Für Wahrheitswerte b1, . . . , bn ∈ {0, 1} schreiben wir dann
φ[b1, . . . , bn] anstatt JφKI für eine (bzw. alle) Interpretationen I mit
I(Xi) = bi für alle i ∈ [n] := {1, . . . , n}.

Folie 54

Vereinbarungen

• Wir schreiben (φ↔ ψ) als Abkürzung für ((φ→ ψ) ∧ (ψ → φ)).

• Statt mit A0, A1, A2, . . . bezeichnen wir Aussagensymbole auch oft mit
A,B,C, . . . , X, Y, Z, . . . oder mit Varianten wie X ′, Y1,

• Die äußeren Klammern einer Formel lassen wir manchmal weg und
schreiben z.B. (X ∧ Y)→ Z an Stelle des (formal korrekten)
((X ∧ Y)→ Z).

• Bezüglich Klammerung vereinbaren wir, dass ¬ am stärksten bindet,
und dass ∧ und ∨ stärker binden als →.

Wir können also z.B. X ∧ ¬Y → Z ∨X schreiben und meinen
damit

((X ∧ ¬Y)→ (Z ∨X)).

Nicht schreiben können wir z.B. X ∧ Y ∨ Z (da wir nichts darüber
vereinbart haben, wie fehlende Klammern hier zu setzen sind).

Folie 55

• Wir schreiben
n∧
i=1

φi bzw. (φ1 ∧ . . . ∧ φn) an Stelle von

(· · · ((φ1 ∧ φ2) ∧ φ3) ∧ . . . ∧ φn)

und nutzen analoge Schreibweisen auch für
”
∨“ an Stelle von

”
∧“.

• Ist M eine endliche Menge aussagenlogischer Formeln, so schreiben
wir ∧

φ∈M

φ

Version vom 16. Oktober 2023 Seite 33

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

um die Formel (φ1 ∧ · · · ∧ φn) zu bezeichnen, wobei n = |M | die
Anzahl der Formeln in M ist und φ1, . . . , φn die Auflistung aller
Formeln in M in lexikographischer Reihenfolge ist. Formeln sind
hierbei Worte über dem Alphabet der Aussagenlogik, wobei die
einzelnen Symbole dieses Alphabets folgendermaßen aufsteigend
sortiert sind:

0, 1, ¬, ∧, ∨, →, (,), A0, A1, A2, A3,

Die analoge Schreibweise nutzen wir auch für
”
∨“ an Stelle von

”
∧“.

Folie 56

• Diese Schreibweisen werden wir manchmal auch kombinieren. Sind
zum Beispiel I = {i1, . . . , im} und J = {j1, . . . , jn} endliche Mengen
und ist für jedes i ∈ I und j ∈ J eine Formel φi,j gegeben, so
schreiben wir ∧

i∈I

∨
j∈J

φi,j

um die Formel (ψi1 ∧ · · · ∧ ψim) zu bezeichnen, wobei für jedes i ∈ I
die Formel ψi durch ψi := (φi,j1 ∨ · · · ∨ φi,jn) definiert ist.

Folie 57

Wahrheitstafeln

Für jede Formel φ(X1, . . . , Xn) kann man die Wahrheitswerte unter allen
möglichen Interpretationen in einer Wahrheitstafel darstellen. Für alle
(b1, . . . , bn) ∈ {0, 1}n enthält die Tafel eine Zeile mit den Werten
b1 · · · bn | φ[b1, . . . , bn].
Um die Wahrheitstafel für φ auszufüllen, ist es bequem, auch Spalten für
(alle oder einige) Subformeln von φ einzufügen.

Beispiel: Wahrheitstafel für φ(X, Y, Z) := ((X ∨ Y)→ (X ∧ Z)):
X Y Z (X ∨ Y) (X ∧ Z) φ

0 0 0 0 0 1
0 0 1 0 0 1
0 1 0 1 0 0
0 1 1 1 0 0
1 0 0 1 0 0
1 0 1 1 1 1
1 1 0 1 0 0
1 1 1 1 1 1

Version vom 16. Oktober 2023 Seite 34

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Die Reihenfolge der Zeilen ist dabei unerheblich. Wir vereinbaren
allerdings, die Zeilen stets so anzuordnen, dass die Werte b1 · · · bn ∈ {0, 1}n,
aufgefasst als Binärzahlen, in aufsteigender Reihenfolge aufgelistet werden.

Folie 58

Wahrheitstafeln für die Junktoren

Die Bedeutung der Junktoren kann man mittels ihrer Wahrheitstafeln
beschreiben:

X ¬X
0 1
1 0

X Y (X∧Y)

0 0 0
0 1 0
1 0 0
1 1 1

X Y (X∨Y)

0 0 0
0 1 1
1 0 1
1 1 1

X Y (X→Y)

0 0 1
0 1 1
1 0 0
1 1 1

Genauso kann man eine Wahrheitstafel für die Formel X↔Y , die ja eine
Abkürzung für (X → Y) ∧ (Y → X) ist, bestimmen:

X Y (X↔Y)

0 0 1
0 1 0
1 0 0
1 1 1

X↔Y bedeutet also
”
X genau dann wenn Y “.

Folie 59

Ein Logikrätsel

Beispiel 2.9. Auf der Insel Wafa leben zwei Stämme: Die Was, die immer
die Wahrheit sagen, und die Fas, die immer lügen. Ein Reisender besucht
die Insel und trifft auf drei Einwohner A, B, C, die ihm Folgendes erzählen:

• A sagt:

”
B und C sagen genau dann die Wahrheit, wenn C die Wahrheit

sagt.“

• B sagt:

”
Wenn A und C die Wahrheit sagen, dann ist es nicht der Fall, dass

A die Wahrheit sagt, wenn B und C die Wahrheit sagen.“

• C sagt:

”
B lügt genau dann, wenn A oder B die Wahrheit sagen.“

Version vom 16. Oktober 2023 Seite 35

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Frage: Welchen Stämmen gehören A, B und C an?

Folie 60

Aussagenlogische Modellierung

Aussagensymbole:

• WA steht für
”
A sagt die Wahrheit.“

• WB steht für
”
B sagt die Wahrheit.“

• WC steht für
”
C sagt die Wahrheit.“

Aussagen der drei Inselbewohner:

• φA := (WB ∧WC) ↔ WC

• φB := (WA ∧WC) → ¬
(
(WB ∧WC) → WA

)
• φC := ¬WB ↔ (WA ∨WB)

Wir suchen nach einer Interpretation, die die Formel

ψ := (WA ↔ φA) ∧ (WB ↔ φB) ∧ (WC ↔ φC)

erfüllt.

Folie 61

Lösung mittels Wahrheitstafel

WA WB WC φA φB φC WA ↔ φA WB ↔ φB WC ↔ φC ψ

0 0 0 1 1 0 0 0 1 0
0 0 1 0 1 0 1 0 0 0
0 1 0 1 1 0 0 1 1 0
0 1 1 1 1 0 0 1 0 0
1 0 0 1 1 1 1 0 0 0
1 0 1 0 0 1 0 1 1 0
1 1 0 1 1 0 1 1 1 1
1 1 1 1 0 0 1 0 0 0

Die Interpretation I mit I(WA) = 1, I(WB) = 1, I(WC) = 0 in Zeile 7 ist
die einzige, die die Formel ψ erfüllt.

Version vom 16. Oktober 2023 Seite 36

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Gemäß dieser Interpretation sind die Aussagen, die durch die Symbole WA

und WB repräsentiert werden, wahr, während die Aussage, die durch WC

repräsentiert wird, falsch ist.
Das heißt, die Personen A und B sagen die Wahrheit und sind somit Was,
und Person C lügt und ist daher ein Fa.

Folie 62

Computerlesbare Darstellung von Formeln

Wir betrachten das Alphabet ASCII aller ASCII-Symbole.

Die Menge ASASCII aller ASCII-Repräsentationen von Aussagensymbolen
besteht aus allen nicht-leeren Worten über dem Alphabet ASCII, deren
erstes Symbol ein Buchstabe ist, und bei dem alle weiteren Symbole
Buchstaben oder Ziffern sind.

Die Menge ALASCII aller ASCII-Repräsentationen von aussagenlogischen
Formeln ist die rekursiv wie folgt definierte Teilmenge von ASCII∗:

Basisregeln:

• 0 ∈ ALASCII, 1 ∈ ALASCII und w ∈ ALASCII für alle w ∈ ASASCII.

Rekursive Regeln:

• Ist φ ∈ ALASCII, so ist auch ~φ ∈ ALASCII. (Negation)

• Ist φ ∈ ALASCII und ψ ∈ ALASCII, so ist auch

– (φ /\ψ) ∈ ALASCII (Konjunktion)

– (φ \/ψ) ∈ ALASCII (Disjunktion)

– (φ ->ψ) ∈ ALASCII (Implikation)

– (φ <->ψ) ∈ ALASCII (Biimplikation).

Folie 63

Abstrakte vs. computerlesbare Syntax

Es ist offensichtlich, wie man Formeln aus AL in ihre entsprechende
ASCII-Repräsentation übersetzt und umgekehrt. Zum Beispiel ist(

(A0 ∧ 0)→ ¬A13

)
eine Formel in AL, deren ASCII-Repräsentation die folgende Zeichenkette
aus ALASCII ist:

Version vom 16. Oktober 2023 Seite 37

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

((A0 /\ 0) -> ~A13).

Wir werden meistens mit der
”
abstrakten Syntax“, d.h. mit der in

Definition 2.4 festgelegten Menge AL, arbeiten. Um aber Formeln in
Computer-Programme einzugeben, können wir die ASCII-Repräsentation
verwenden.

Folie 64

Demo: snippets of logic

• ein Formelchecker für die Aussagenlogik

• entwickelt von André Frochaux

• Funktionalitäten u.a.:

– Syntaxcheck für eingegebene Formeln

– Ausgabe eines Syntaxbaums

– Ausgabe einer Wahrheitstafel

• Zugänglich via

http://www.snippets-of-logic.net/index_AL.php?lang=de

Folie 65

Zurück zu Beispiel 2.1 (
”
Geburtstagsfeier“)

Das in Beispiel 2.1 aufgelistete Wissen kann durch folgende
aussagenlogische Formel repräsentiert werden:

φ :=
(
(B ∧ A)→ ¬E

)
∧

(
(B ∧ E)→ ¬D

)
∧(

E → (C ∧D)
)
∧ (C → A) ∧

(
A→ (B ∨ C)

)
Die Frage

”
Wie viele (und welche) Freunde werden im besten Fall zur

Party kommen?“

kann nun durch Lösen der folgenden Aufgabe beantwortet werden:

Finde eine Interpretation I für φ, so dass gilt:

Version vom 16. Oktober 2023 Seite 38

http://www.snippets-of-logic.net/index_AL.php?lang=de

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

• I |= φ (d.h., I ist ein Modell von φ) und

• |{X ∈ {A,B,C,D,E} : I(X) = 1}| ist so groß wie möglich.

Folie 66

Diese Frage können wir lösen, indem wir

(1) die Wahrheitstafel für φ ermitteln,

(2) alle Zeilen raussuchen, in denen in der mit
”
φ“ beschrifteten Spalte der

Wert 1 steht (das liefert uns genau die Modelle von φ) und

(3) aus diesen Zeilen all jene raussuchen, bei denen in den mit A, B, C, D,
E beschrifteten Spalten möglichst viele Einsen stehen. Jede dieser
Zeilen repräsentiert dann eine größtmögliche Konstellation von
gleichzeitigen Partybesuchern.

Prinzipiell führt diese Vorgehensweise zum Ziel.

Leider ist das Verfahren aber recht aufwändig, da die Wahrheitstafel, die
man dabei aufstellen muss, sehr groß wird: Sie hat 25 = 32 Zeilen.

Folie 67

Version vom 16. Oktober 2023 Seite 39

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

A B C D E E → (C ∧D) C → A (B ∧ E) → ¬D A→ (B ∨ C) (B ∧A) → ¬E φ

0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 1 0 1 1 1 1 0
0 0 0 1 0 1 1 1 1 1 1
0 0 0 1 1 0 1 1 1 1 0
0 0 1 0 0 1 0 1 1 1 0
0 0 1 0 1 0 0 1 1 1 0
0 0 1 1 0 1 0 1 1 1 0
0 0 1 1 1 1 0 1 1 1 0
0 1 0 0 0 1 1 1 1 1 1
0 1 0 0 1 0 1 1 1 1 0
0 1 0 1 0 1 1 1 1 1 1
0 1 0 1 1 0 1 0 1 1 0
0 1 1 0 0 1 0 1 1 1 0
0 1 1 0 1 0 0 1 1 1 0
0 1 1 1 0 1 0 1 1 1 0
0 1 1 1 1 1 0 0 1 1 0
1 0 0 0 0 1 1 1 0 1 0
1 0 0 0 1 0 1 1 0 1 0
1 0 0 1 0 1 1 1 0 1 0
1 0 0 1 1 0 1 1 0 1 0
1 0 1 0 0 1 1 1 1 1 1
1 0 1 0 1 0 1 1 1 1 0
1 0 1 1 0 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1 1
1 1 0 0 0 1 1 1 1 1 1
1 1 0 0 1 0 1 1 1 0 0
1 1 0 1 0 1 1 1 1 1 1
1 1 0 1 1 0 1 0 1 0 0
1 1 1 0 0 1 1 1 1 1 1
1 1 1 0 1 0 1 1 1 0 0
1 1 1 1 0 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 0 0

Folie 68
In der Wahrheitstafel sieht man:

• Es gibt kein Modell für φ, bei dem in den mit A bis E beschrifteten
Spalten insgesamt 5 Einsen stehen.

• Es gibt genau zwei Modelle für φ, bei denen in den mit A bis E
beschrifteten Spalten insgesamt 4 Einsen stehen, nämlich die beiden
Interpretationen I1 und I2 mit

I1(A) = I1(C) = I1(D) = I1(E) = 1 und I1(B) = 0

und

I2(A) = I2(B) = I2(C) = I2(D) = 1 und I2(E) = 0.

Die Antwort auf die Frage
”
Wie viele (und welche) Freunde werden

bestenfalls zur Party kommen?“ lautet also:

Bestenfalls werden 4 der 5 Freunde kommen, und dafür gibt es zwei
Möglichkeiten, nämlich

Version vom 16. Oktober 2023 Seite 40

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

(1) dass alle außer Bernd kommen, und

(2) dass alle außer Eva kommen.

Erfüllbarkeit, Allgemeingültigkeit und die Folgerungsbeziehung

Folie 69

Erfüllbarkeit

Definition 2.10.
Eine Formel φ ∈ AL heißt erfüllbar, wenn es eine Interpretation gibt, die φ
erfüllt.

Eine Formelmenge Φ heißt erfüllbar, wenn es eine Interpretation I gibt, die
Φ erfüllt (d.h. es gilt I |= φ für jedes φ ∈ Φ).

Eine Formel oder Formelmenge, die nicht erfüllbar ist, nennen wir
unerfüllbar.

Beobachtung 2.11.

(a) Eine aussagenlogische Formel ist genau dann erfüllbar, wenn in der
letzten Spalte ihrer Wahrheitstafel mindestens eine 1 steht.

(b) Eine endliche Formelmenge Φ = {φ1, . . . , φn} ist genau dann erfüllbar,
wenn die Formel

∧n
i=1 φi erfüllbar ist.

Beispiele:

• Die Formel X ist erfüllbar.

• Die Formel (X ∧ ¬X) ist unerfüllbar.

Folie 70

Allgemeingültigkeit

Definition 2.12. Eine Formel φ ∈ AL ist allgemeingültig, wenn jede
Interpretation I die Formel φ erfüllt.

Bemerkung. Allgemeingültige Formeln nennt man auch Tautologien.

Version vom 16. Oktober 2023 Seite 41

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Man schreibt auch |= φ um auszudrücken, dass φ allgemeingültig ist.

Beobachtung 2.13.
Eine aussagenlogische Formel ist genau dann allgemeingültig, wenn in der
letzten Spalte ihrer Wahrheitstafel nur 1en stehen.

Beispiel: Die Formel (X ∨ ¬X) ist allgemeingültig.

Folie 71

Beispiel 2.14. Die Formel (X ∨ Y) ∧ (¬X ∨ Y) ist

• erfüllbar, da z.B. die Interpretation I mit I(X) = 0 und I(Y) = 1 die
Formel erfüllt.

• nicht allgemeingültig, da z.B. die Interpretation I ′ mit I ′(X) = 0 und
I ′(Y) = 0 die Formel nicht erfüllt.

Folie 72

Die Folgerungsbeziehung

Definition 2.15. Eine Formel ψ ∈ AL folgt aus einer Formelmenge Φ ⊆ AL
(wir schreiben: Φ |= ψ), wenn für jede Interpretation I gilt: Wenn I die
Formelmenge Φ erfüllt, dann erfüllt I auch die Formel ψ.

Notation. Für zwei Formeln φ, ψ ∈ AL schreiben wir kurz φ |= ψ an Stelle
von {φ} |= ψ und sagen, dass die Formel ψ aus der Formel φ folgt.

Folie 73

Beispiel 2.16. Sei φ :=
(
(X ∨ Y) ∧ (¬X ∨ Y)

)
und

ψ :=
(
Y ∨ (¬X ∧ ¬Y)

)
.

Dann gilt φ |= ψ, aber es gilt nicht ψ |= φ (kurz: ψ ̸|= φ), denn:

X Y (X ∨ Y) (¬X ∨ Y) φ ψ
0 0 0 1 0 1
0 1 1 1 1 1
1 0 1 0 0 0
1 1 1 1 1 1

Version vom 16. Oktober 2023 Seite 42

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

In jeder Zeile der Wahrheitstafel, in der in der mit
”
φ“ beschrifteten Spalte

eine 1 steht, steht auch in der mit
”
ψ“ beschrifteten Spalte eine 1. Somit

gilt φ |= ψ.
Andererseits steht in Zeile 1 in der mit

”
ψ“ beschrifteten Spalte eine 1 und

in der mit
”
φ“ beschrifteten Spalte eine 0. Für die entsprechende

Interpretation I (mit I(X) = 0 und I(Y) = 0) gilt also JψKI = 1 und
JφKI = 0. Daher gilt ψ ̸|= φ.

Folie 74

Beispiel 2.17. Für alle Formeln φ, ψ ∈ AL gilt:

{φ, (φ→ ψ) } |= ψ.

Dies folgt unmittelbar aus der Definition der Semantik:
Sei I eine Interpretation mit I |= {φ, (φ→ ψ)}. Dann gilt:

(1) JφKI = 1 und

(2) J(φ→ ψ)KI = 1, d.h. es gilt JφKI = 0 oder JψKI = 1.

Da JφKI = 1 gemäß (1) gilt, folgt gemäß (2), dass JψKI = 1.

Bemerkung. Man kann die Folgerungsbeziehung {φ, (φ→ ψ)} |= ψ als
eine formale Schlussregel auffassen (ähnlich den Syllogismen in Kapitel 1):
Wenn φ und (φ→ ψ) gelten, so muss auch ψ gelten.
Diese Regel, die unter dem Namen Modus Ponens bekannt ist, ist von
grundlegender Bedeutung in der Logik.

Folie 75

Zusammenhänge

Lemma 2.18 (Allgemeingültigkeit, Unerfüllbarkeit und Folgerung).
Für jede Formel φ ∈ AL gilt:

(a) φ ist allgemeingültig ⇐⇒ ¬φ ist unerfüllbar ⇐⇒ 1 |= φ.

(b) φ ist unerfüllbar ⇐⇒ φ |= 0.

Beweis.

Version vom 16. Oktober 2023 Seite 43

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

(a) Zur Erinnerung: Wir schreiben kurz
”
|= φ“ um auszudrücken, dass die

Formel φ allgemeingültig ist. Es gilt:

|= φ ⇐⇒ für alle Interpretationen I gilt: I |= φ

⇐⇒ für alle Interpretationen I gilt: I ̸|= ¬φ
⇐⇒ ¬φ ist unerfüllbar.

Außerdem gilt:

1 |= φ ⇐⇒ für alle Interpretationen I mit I |= 1 gilt: I |= φ

⇐⇒ für alle Interpretationen I gilt: I |= φ

⇐⇒ φ ist allgemeingültig.

(b) Es gilt:

φ ist unerfüllbar

⇐⇒ für alle Interpretationen I gilt: I ̸|= φ

⇐⇒ für alle Interpretationen I mit I |= φ gilt: I |= 0

⇐⇒ φ |= 0.

Folie 76

Lemma 2.19 (Erfüllbarkeit und die Folgerungsbeziehung).
Für alle Formelmengen Φ ⊆ AL und für alle Formeln ψ ∈ AL gilt:

Φ |= ψ ⇐⇒ Φ ∪ {¬ψ} ist unerfüllbar.

Beweis.

”
=⇒“: Es gelte Φ |= ψ. Sei I eine beliebige Interpretation. Unser Ziel ist,

zu zeigen, dass I ̸|= Φ ∪ {¬ψ}.

Fall 1: I ̸|= Φ.
Dann gilt insbesondere, dass I ̸|= Φ ∪ {¬ψ}.

Fall 2: I |= Φ.
Wegen Φ |= ψ gilt dann I |= ψ.
Somit gilt: I ̸|= ¬ψ, und daher auch I ̸|= Φ ∪ {¬ψ}.

Version vom 16. Oktober 2023 Seite 44

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Damit gilt in jedem Fall, dass I ̸|= Φ ∪ {¬ψ}. Weil I beliebig gewählt
war, bedeutet dies, dass Φ ∪ {¬ψ} unerfüllbar ist.

”
⇐=“: Sei Φ ∪ {¬ψ} unerfüllbar. Unser Ziel ist, zu zeigen, dass Φ |= ψ.

Dazu sei I eine beliebige Interpretation mit I |= Φ. Wir müssen
zeigen, dass I |= ψ.
Da Φ ∪ {¬ψ} unerfüllbar ist, muss gelten: I ̸|= ¬ψ (denn sonst würde
I |= Φ ∪ {¬ψ} gelten). Somit gilt I |= ψ.

Folie 77

Lemma 2.20 (Allgemeingültigkeit und die Folgerungsbeziehung).

(a) Für jede Formel φ ∈ AL gilt:

φ ist allgemeingültig ⇐⇒ φ folgt aus der leeren Menge,

kurz:
|= φ ⇐⇒ ∅ |= φ.

(b) Für jede Formel ψ ∈ AL und jede endliche Formelmenge
Φ = {φ1, . . . , φn} ⊆ AL gilt:

Φ |= ψ ⇐⇒ (φ1 ∧ · · · ∧ φn)→ ψ ist allgemeingültig.

Beweis.

(a) Man beachte, dass für alle Interpretationen I und für alle Formeln
ψ ∈ ∅ gilt: I |= ψ. Daher gilt I |= ∅ für alle Interpretationen I. Somit
erhalten wir:

∅ |= φ ⇐⇒ für alle Interpretationen I mit I |= ∅ gilt: I |= φ

⇐⇒ für alle Interpretationen I gilt: I |= φ

⇐⇒ φ ist allgemeingültig, d.h. |= φ.

(b)
”
=⇒“: Es gelte Φ |= ψ. Sei I eine beliebige Interpretation. Unser Ziel

ist, zu zeigen, dass gilt: I |= (φ1 ∧ · · · ∧ φn)→ ψ.

Fall 1: I |= Φ, d.h. I |= (φ1 ∧ · · · ∧ φn).
Wegen Φ |= ψ gilt dann auch: I |= ψ.
Somit gilt auch: I |= (φ1 ∧ . . . ∧ φn)→ ψ.

Version vom 16. Oktober 2023 Seite 45

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Fall 2: I ̸|= Φ.
Dann gibt es ein i ∈ [n], so dass I ̸|= φi.
Insbesondere gilt daher: I ̸|= (φ1 ∧ · · · ∧ φn).
Also gilt: I |= (φ1 ∧ . . . ∧ φn)→ ψ.

”
⇐=“: Sei die Formel (φ1 ∧ . . . ∧ φn)→ ψ allgemeingültig. Wir

wollen zeigen, dass Φ |= ψ gilt.
Dazu sei I eine beliebige Interpretation mit I |= Φ. Ziel ist, zu
zeigen, dass I |= ψ.
Wegen I |= Φ gilt: I |= (φ1 ∧ . . . ∧ φn). Da die Formel
(φ1 ∧ . . . ∧ φn)→ ψ allgemeingültig ist, muss daher auch gelten:
I |= ψ.

Folie 78

Bemerkung 2.21.
Aus den beiden vorigen Lemmas erhält man leicht, dass für alle Formeln
φ, ψ ∈ AL gilt:

φ |= ψ ⇐⇒ (φ→ ψ) ist allgemeingültig ⇐⇒ (φ ∧ ¬ψ) ist unerfüllbar.

Beweis. Es sei Φ := {φ}. Gemäß Lemma 2.20 gilt:

Φ |= ψ ⇐⇒ (φ→ ψ) ist allgemeingültig.

Somit gilt: φ |= ψ ⇐⇒ (φ→ ψ) ist allgemeingültig.

Außerdem gilt gemäß Lemma 2.19:

Φ |= ψ ⇐⇒ Φ ∪ {¬ψ} ist unerfüllbar.

Somit gilt: φ |= ψ ⇐⇒ (φ ∧ ¬ψ) ist unerfüllbar.

Version vom 16. Oktober 2023 Seite 46

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

2.2 Aussagenlogische Modellierung

Beispiel 1: Sudoku

Folie 79

Sudoku

Folie 80

Aussagenlogisches Modell

Koordinaten der Felder:
Feld (i, j) ist das Feld in Zeile i und Spalte j.

Aussagensymbole:
Aussagensymbol Pi,j,k, für i, j, k ∈ [9], steht für die Aussage

”
Das Feld mit den Koordinaten (i, j) enthält die Zahl k.“

Interpretationen beschreiben also Beschriftungen des 9×9-Gitters.

Ziel:
Für jede Anfangsbeschriftung A eine Formelmenge ΦA, so dass für alle
Interpretationen I gilt:

I |= ΦA ⇐⇒ I beschreibt eine korrekte Lösung.

Folie 81

Wir beschreiben zunächst eine Formelmenge Φ = {φ1, . . . , φ5}, die die
Grundregeln des Spiels beschreibt.

Version vom 16. Oktober 2023 Seite 47

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Beschriftungen:
“Auf jedem Feld steht mindestens eine Zahl“:

φ1 :=
9∧

i,j=1

9∨
k=1

Pi,j,k.

“Auf jedem Feld steht höchstens eine Zahl“:

φ2 :=
9∧

i,j=1

9∧
k,ℓ=1
k ̸=ℓ

¬(Pi,j,k ∧ Pi,j,ℓ).

Folie 82

Zeilen:

”
Jede Zahl kommt in jeder Zeile vor“:

φ3 :=
9∧
i=1

9∧
k=1

9∨
j=1

Pi,j,k.

Spalten:

”
Jede Zahl kommt in jeder Spalte vor“:

φ4 :=
9∧
j=1

9∧
k=1

9∨
i=1

Pi,j.k.

Blöcke:

”
Jede Zahl kommt in jedem Block vor“:

φ5 :=
2∧

i,j=0

9∧
k=1

3∨
i′,j′=1

P3i+i′,3j+j′,k.

Folie 83

Anfangsbeschriftung:
Sei A die Anfangsbeschriftung. Wir setzen

ΦA := Φ ∪ { Pi,j,k : A beschriftet Feld (i, j) mit der Zahl k }.

Version vom 16. Oktober 2023 Seite 48

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Automatische Lösung von Sudokus:
Um ein Sudoku mit Anfangsbeschriftung A zu lösen, können wir nun
einfach die Formel ψA :=

∧
φ∈ΦA

φ bilden und die Wahrheitstafel zu dieser
Formel aufstellen. Falls die Wahrheitstafel zeigt, dass ψA kein Modell
besitzt, so ist das Sudoku nicht lösbar. Andernfalls können wir ein
beliebiges Modell I von ψA hernehmen und daran die Lösung des Sudokus
ablesen: Für jedes Feld (i, j) gibt es gemäß unserer Konstruktion der Formel
ψA genau eine Zahl k ∈ [9], so dass I(Pi,j,k) = 1 ist. Diese Zahl k können
wir in Feld (i, j) eintragen und erhalten damit eine Lösung des Sudokus.

Beispiel 2: Automatische Hardwareverifikation

Digitale Schaltkreise

• Digitale Signale werden beschrieben durch 0 (
”
aus“) und 1 (

”
ein“).

• Schaltelemente berechnen ein oder mehrere Ausgangssignale aus
einem oder mehreren Eingangssignalen. Das Ein-/Ausgabeverhalten
eines Schaltelements lässt sich durch Wahrheitstafeln beschreiben.

Beispiel:

A

E E

A

1 2

1 2

S

E1 E2 A1 A2

0 0 1 0
0 1 1 0
1 0 1 0
1 1 0 1

• Schaltkreise sind Kombinationen solcher Schaltelemente.

Beispiel:

S

S

S

E
1

E2

A1 A2 A3 A4

E1 E2 A1 A2 A3 A4

0 0 1 0 0 0
0 1 0 1 0 0
1 0 1 0 1 0
1 1 0 1 0 1

Formalisierung in der Aussagenlogik

Schaltelement:

Version vom 16. Oktober 2023 Seite 49

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

• Für jeden Ein- und Ausgang ein Aussagensymbol.

• Für jeden Ausgang eine Formel, die den Wert der Ausgangs in
Abhängigkeit von den Eingängen beschreibt.

Beispiel:

A

E E

A

1 2

1 2

S

E1 E2 A1 A2

0 0 1 0
0 1 1 0
1 0 1 0
1 1 0 1

Aussagensymbole:
P1, P2, Q1, Q2

Formeln:
Q1 ↔ ¬(P1 ∧ P2)
Q2 ↔ (P1 ∧ P2)

Schaltkreis:

• Für jeden Ein- und Ausgang ein Aussagensymbol,
sowie für jedes Schaltelement ein Sortiment von Aussagensymbolen.

• Formeln für die Schaltelemente und Formeln für die
”
Verdrahtung“.

Beispiel:

S

S

S

E
1

E2

A1 A2 A3 A4

E1 E2 A1 A2 A3 A4

0 0 1 0 0 0
0 1 0 1 0 0
1 0 1 0 1 0
1 1 0 1 0 1

Aussagensymbole:

P1, P2, Q1,Q2,Q3,Q4,

P u1 , P
u
2 , Qu1 , Q

u
2 ,

Pm1 , Pm2 , Qm1 , Qm2 ,

P o1 , P
o
2 , Qo1, Q

o
2.

Formeln:

Qu1 ↔ ¬(P u1 ∧ P u2),
Qu2 ↔ (P u1 ∧ P u2),

Qm1 ↔ ¬(Pm1 ∧ Pm2),

Qm2 ↔ (Pm1 ∧ Pm2),

Qo1 ↔ ¬(P o1 ∧ P o2),
Qo2 ↔ (P o1 ∧ P o2),

P u1 ↔ P1, P u2 ↔ P2,

Pm1 ↔ P1, Pm2 ↔ Qu1 ,

P o1 ↔ P2, P o2 ↔ Qm1 ,

Q1 ↔ Qo1, Q2 ↔ Qo2,

Q3 ↔ Qm2 , Q4 ↔ Qu2 .

Version vom 16. Oktober 2023 Seite 50

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Verifikation

Ziel:
Nachweis, dass der Schaltkreis eine gewisse Korrektheitsbedingung erfüllt.

Methode:

1. Beschreibe den Schaltkreis durch eine Menge Φ von Formeln.

2. Formuliere die Korrektheitsbedingung als Formel ψ.

3. Weise nach, dass ψ aus Φ folgt (bzw., dass Φ ∪ {¬ψ} unerfüllbar ist).

Bemerkung. Bei Bedarf kann die Korrektheitsbedingung insbesondere so
gewählt werden, dass sie das gewünschte Ein-/Ausgabeverhalten des
Schaltkreises vollständig spezifiziert.

Beispiele für Korrektheitsbedingungen

Schaltkreis:

S

S

S

E
1

E2

A1 A2 A3 A4

Einige Korrektheitsbedingungen:

• Bei jeder Eingabe ist mindestens eine Ausgabe 1:

Q1 ∨Q2 ∨Q3 ∨Q4.

• Bei keiner Eingabe sind mehr als zwei Ausgaben 1:

¬
∨

1⩽i<j<k⩽4

(Qi ∧Qj ∧Qk)

Vollständige Spezifikation des Ein-/Ausgabeverhaltens:(
¬P1 ∧ ¬P2 → Q1 ∧ ¬Q2 ∧ ¬Q3 ∧ ¬Q4

)
∧

(
¬P1 ∧ P2 → ¬Q1 ∧Q2 ∧ ¬Q3 ∧ ¬Q4

)
∧

(
P1 ∧ ¬P2 → Q1 ∧ ¬Q2 ∧Q3 ∧ ¬Q4

)
∧

(
P1 ∧ P2 → ¬Q1 ∧Q2 ∧ ¬Q3 ∧Q4

)
Version vom 16. Oktober 2023 Seite 51

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

2.3 Äquivalenz und Adäquatheit

Folie 84

Äquivalenz

Definition 2.22. Zwei Formeln φ, ψ ∈ AL sind äquivalent (wir schreiben
φ ≡ ψ), wenn sie von den selben Interpretationen erfüllt werden, d.h., wenn
für alle Interpretationen I gilt: I |= φ ⇐⇒ I |= ψ.

Zwei Formelmengen Φ,Ψ ⊆ AL sind äquivalent (wir schreiben Φ ≡ Ψ), wenn
sie von den selben Interpretationen erfüllt werden, d.h., wenn für alle
Interpretationen I gilt: I |= Φ ⇐⇒ I |= Ψ.

Beobachtung 2.23.

(a) Zwei Formeln φ, ψ ∈ AL sind genau dann äquivalent, wenn in den
letzten Spalten ihrer Wahrheitstafeln jeweils die gleichen Einträge
stehen.

(b) Für endliche Formelmengen Φ = {φ1, . . . , φm}, Ψ = {ψ1, . . . , ψn} ⊆ AL
gilt

Φ ≡ Ψ ⇐⇒
m∧
i=1

φi ≡
n∧
j=1

ψj.

Beispiel:
Für alle X, Y ∈ AS gilt: ¬(X ∨ Y) ≡ (¬X ∧ ¬Y) und X ≡ ¬¬X.

Folie 85

Äquivalenz und Allgemeingültigkeit

Lemma 2.24. (a) Für alle Formeln φ, ψ ∈ AL gilt:

φ ≡ ψ ⇐⇒ (φ↔ ψ) ist allgemeingültig.

(b) Für alle φ ∈ AL gilt:

φ ist allgemeingültig ⇐⇒ φ ≡ 1.

Beweis.

Version vom 16. Oktober 2023 Seite 52

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

(a)

φ ≡ ψ ⇐⇒ für alle Interpretationen I gilt:
(
I |= φ ⇐⇒ I |= ψ

)
⇐⇒ für alle Interpretationen I gilt: I |= (φ↔ ψ)

⇐⇒ |= (φ↔ ψ).

(b)

|= φ ⇐⇒ für alle Interpretationen I gilt: I |= φ

⇐⇒ für alle Interpretationen I gilt:
(
I |= φ ⇐⇒ I |= 1

)
⇐⇒ φ ≡ 1.

Folie 86

Fundamentale Äquivalenzen

Satz 2.25. Für alle Formeln φ, ψ, χ ∈ AL gelten die folgenden
Äquivalenzen:

(a) Idempotenz:
(φ ∧ φ) ≡ φ , (φ ∨ φ) ≡ φ.

(b) Kommutativität:

(φ ∧ ψ) ≡ (ψ ∧ φ) , (φ ∨ ψ) ≡ (ψ ∨ φ).

(c) Assoziativität:

((φ ∧ ψ) ∧ χ) ≡ (φ ∧ (ψ ∧ χ)) , ((φ ∨ ψ) ∨ χ) ≡ (φ ∨ (ψ ∨ χ)).

(d) Absorption:

(φ ∧ (φ ∨ ψ)) ≡ φ , (φ ∨ (φ ∧ ψ)) ≡ φ.

Folie 87

(e) Distributivität:

(φ∧(ψ∨χ)) ≡ ((φ∧ψ)∨(φ∧χ)) , (φ∨(ψ∧χ)) ≡ ((φ∨ψ)∧(φ∨χ)).

Version vom 16. Oktober 2023 Seite 53

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

(f) Doppelte Negation:
¬¬φ ≡ φ.

(g) De Morgansche Regeln:

¬(φ ∧ ψ) ≡ (¬φ ∨ ¬ψ) , ¬(φ ∨ ψ) ≡ (¬φ ∧ ¬ψ).

(h) Tertium Non Datur:

(φ ∧ ¬φ) ≡ 0 , (φ ∨ ¬φ) ≡ 1.

Folie 88

(i)

(φ ∧ 1) ≡ φ , (φ ∨ 0) ≡ φ ,

(φ ∧ 0) ≡ 0 , (φ ∨ 1) ≡ 1.

(j)
1 ≡ ¬0 , 0 ≡ ¬1.

(k) Elimination der Implikation:

(φ→ ψ) ≡ (¬φ ∨ ψ).

Folie 89

Beweis. Alle hier genannten Äquivalenzen können leicht mit Hilfe der
Wahrheisttafelmethode überprüft werden.
Zum Beispiel die erste de Morgansche Regel:

¬(φ ∧ ψ) ≡ (¬φ ∨ ¬ψ).

Wir berechnen dazu folgende Wahrheitstafeln:

φ ψ (φ ∧ ψ) ¬(φ ∧ ψ)
0 0 0 1
0 1 0 1
1 0 0 1
1 1 1 0

φ ψ ¬φ ¬ψ (¬φ ∨ ¬ψ)
0 0 1 1 1
0 1 1 0 1
1 0 0 1 1
1 1 0 0 0

Die letzten Spalten der beiden Wahrheitstafeln sind gleich, also sind die
Formeln äquivalent.

Rest: Übung.

Version vom 16. Oktober 2023 Seite 54

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Folie 90

Bemerkung. Durch schrittweises Anwenden der in Satz 2.25 aufgelisteten
Äquivalenzen kann man eine gegebene Formel in eine zu ihr äquivalente
Formel umformen.

Folie 91

Das Dualitätsprinzip

Definition 2.26. Sei φ ∈ AL eine Formel, in der keine Implikationen
vorkommt.
Die zu φ duale Formel ist die Formel φ̃ ∈ AL, die aus φ entsteht, indem
man überall 0 durch 1, 1 durch 0, ∧ durch ∨ und ∨ durch ∧ ersetzt.

Beispiel. Für φ := ((A1 ∧ 0) ∨ ¬(A2 ∨ 1)) ist φ̃ = ((A1 ∨ 1) ∧ ¬(A2 ∧ 0)).

Satz 2.27 (Dualitätssatz der Aussagenlogik).
Für alle Formeln φ, ψ ∈ AL, in denen keine Implikation vorkommt, gilt:

φ ≡ ψ ⇐⇒ φ̃ ≡ ψ̃.

Wir werden den Dualitätssatz per Induktion über den Aufbau von Formeln
beweisen.

Folie 92

Beweise per Induktion über den Aufbau von Formeln

• Ähnlich wie wir Aussagen über die natürlichen Zahlen durch
vollständige Induktion beweisen können, können wir Aussagen über
Formeln per Induktion über den Aufbau der Formeln beweisen.

• Im Induktionsanfang beweisen wir die Aussagen für die atomaren
Formeln, und im Induktionschritt schließen wir von den Bestandteilen
einer Formel auf die Formel selbst.

• Dieses Vorgehen ist z.B. dadurch gerechtfertigt, dass es sich auch als
vollständige Induktion über die Höhe des Syntaxbaumes auffassen
lässt.

Version vom 16. Oktober 2023 Seite 55

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Folie 93

Schematisch sieht der Beweis einer Aussage A(φ) für alle Formeln φ ∈ AL
wie folgt aus:

Induktionsanfang:

• Beweise A(0) und A(1).

• Beweise A(X) für alle X ∈ AS.

Induktionsschritt:

• Beweise A(¬φ) unter der Annahme, dass A(φ) gilt.

• Beweise A((φ ∧ ψ)) unter der Annahme, dass A(φ) und A(ψ) gelten.

• Beweise A((φ ∨ ψ)) unter der Annahme, dass A(φ) und A(ψ) gelten.

• Beweise A((φ→ ψ)) unter der Annahme, dass A(φ) und A(ψ) gelten.

Folie 94

Um den Dualitätssatz zu beweisen benötigen wir zunächst noch eine
Definition. Der Kern des Beweises steckt im darauf folgenden Lemma.

Definition 2.28. Sei I eine Interpretation. Die zu I duale Interpretation Ĩ
ist definiert durch Ĩ(X) := 1− I(X) für alle X ∈ AS.

D.h. für alle Aussagensymbole X gilt:

Ĩ(X) =

{
0 , falls I(X) = 1

1 , falls I(X) = 0

Lemma 2.29. Für alle Formeln φ ∈ AL, in denen keine Implikation
vorkommt, und alle Interpretationen I gilt:

I |= φ̃ ⇐⇒ Ĩ ̸|= φ.

Beweis von Lemma 2.29.
Sei I eine beliebige Interpretation.
Per Induktion über den Aufbau von Formeln zeigen wir, dass für jedes
φ ∈ AL, in dem keine Implikation vorkommt gilt:

Jφ̃KI = 1− JφKĨ .

Beachte: Dann gilt natürlich auch: I |= φ̃ ⇐⇒ Ĩ ̸|= φ.

Induktionsanfang:

Version vom 16. Oktober 2023 Seite 56

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

• Sei φ := 1. Dann ist φ̃ = 0. Zu zeigen: Jφ̃KI = 1− JφKĨ . Beweis:

Jφ̃KI = J0KI = 0 = 1− 1 = 1− J1KĨ = 1− JφKĨ .

• Sei φ := 0. Dann ist φ̃ = 1. Zu zeigen: Jφ̃KI = 1− JφKĨ . Beweis:

Jφ̃KI = J1KI = 1 = 1− 0 = 1− J0KĨ = 1− JφKĨ .

• Sei φ := X für ein X ∈ AS. Dann ist X̃ = X.
Zu zeigen: Jφ̃KI = 1− JφKĨ . Beweis:

Jφ̃KI = JXKI = I(X) = 1−Ĩ(X) = 1− JXKĨ = 1− JφKĨ .

Induktionsschritt:

• Negation:

Gemäß Induktionsannahme gilt: Jφ̃KI = 1− JφKĨ .

Wir wollen zeigen, dass auch gilt: J¬̃φKI = 1− J¬φKĨ .

Per Definition ist ¬̃φ = ¬φ̃. Damit gilt:

J¬̃φKI = J¬φ̃KI = 1− Jφ̃KI =
(IA)

1− (1− JφKĨ) = 1− J¬φKĨ .

• Konjunktion:

Gemäß Induktionsannahme gilt:

Jφ̃KI = 1− JφKĨ und Jψ̃KI = 1− JψKĨ .

Wir wollen zeigen, dass auch gilt: J ˜(φ ∧ ψ)KI = 1− J(φ ∧ ψ)KĨ .

Per Definition ist ˜(φ ∧ ψ) = (φ̃ ∨ ψ̃).
Folgende Wahrheitstafel, bei der die 4. und 5. Spalte auf der
Induktionsannahme beruht, zeigt, dass J(φ̃ ∨ ψ̃)KI = 1− J(φ ∧ ψ)KĨ .

Jφ̃KI Jψ̃KI J(φ̃ ∨ ψ̃)KI JφKĨ JψKĨ J(φ ∧ ψ)KĨ
0 0 0 1 1 1
0 1 1 1 0 0
1 0 1 0 1 0
1 1 1 0 0 0

Die 3. und 6. Spalte zeigt, dass J(φ̃ ∨ ψ̃)KI = 1− J(φ ∧ ψ)KĨ gilt.

Version vom 16. Oktober 2023 Seite 57

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

• Disjunktion:

Gemäß Induktionsannahme gilt:

Jφ̃KI = 1− JφKĨ und Jψ̃KI = 1− JψKĨ .

Wir wollen zeigen, dass auch gilt: J ˜(φ ∨ ψ)KI = 1− J(φ ∨ ψ)KĨ .

Per Definition ist ˜(φ ∨ ψ) = (φ̃∧ ψ̃). Folgende Wahrheitstafel, bei der
die 4. und 5. Spalte auf der Induktionsannahme beruht, zeigt, dass
J(φ̃ ∧ ψ̃)KI = 1− J(φ ∨ ψ)KĨ .

Jφ̃KI Jψ̃KI J(φ̃ ∧ ψ̃)KI JφKĨ JψKĨ J(φ ∨ ψ)KĨ
0 0 0 1 1 1
0 1 0 1 0 1
1 0 0 0 1 1
1 1 1 0 0 0

Die 3. und 6. Spalte zeigt, dass J(φ̃ ∧ ψ̃)KI = 1− J(φ ∨ ψ)KĨ gilt.

• Implikation:

Hier ist nichts zu zeigen, weil das Lemma nur über Formeln ohne
Implikation spricht.

Folie 95

Beweis von Satz 2.27.
Seien φ, ψ ∈ AL Formeln, in denen keine Implikation vorkommt.
Wir wollen zeigen, dass gilt: φ ≡ ψ ⇐⇒ φ̃ ≡ ψ̃.

”
=⇒“: Es gilt:1

φ ≡ ψ

=⇒ F.a. Interpretationen I gilt:
(
Ĩ |= φ ⇐⇒ Ĩ |= ψ

)
Lemma 2.29

=⇒ F.a. Interpretationen I gilt:
(
I ̸|= φ̃ ⇐⇒ I ̸|= ψ̃

)
=⇒ F.a. Interpretationen I gilt:

(
I |= φ̃ ⇐⇒ I |= ψ̃

)
=⇒ φ̃ ≡ ψ̃.

1Wir schreiben kurz
”
f.a.“ als Abkürzung für die Worte

”
für alle“

Version vom 16. Oktober 2023 Seite 58

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

”
⇐=“: Es gilt:

φ̃ ≡ ψ̃ =⇒ ˜̃φ ≡ ˜̃
ψ (andere Beweisrichtung)

=⇒ φ ≡ ψ (weil ˜̃φ = φ und
˜̃
ψ = ψ).

Folie 96

Funktionale Vollständigkeit der Aussagenlogik

Im Folgenden bezeichnen wir als Wahrheitstafel eine Tabelle mit n+1
Spalten und 2n Zeilen, die für jedes Tupel (b1, . . . , bn) ∈ {0, 1}n genau eine
Zeile enthält, deren erste n Einträge b1, . . . , bn sind.

Satz 2.30 (Funktionale Vollständigkeit der Aussagenlogik).
Zu jeder Wahrheitstafel gibt es eine Formel φ ∈ AL mit dieser
Wahrheitstafel.

Mathematisch präzise lässt sich dieser Satzes wie folgt formulieren:

Für alle n ∈ N gibt es zu jeder Funktion F : {0, 1}n → {0, 1} eine Formel
φ(A1, . . . , An) ∈ AL, so dass für alle (b1, . . . , bn) ∈ {0, 1}n gilt:

F (b1, . . . , bn) = 1 ⇐⇒ φ[b1, . . . , bn] = 1.

Definition 2.31. Funktionen F : {0, 1}n → {0, 1} (mit n ∈ N) nennt man
Boolesche Funktionen (der Stelligkeit n).

Bevor wir Satz 2.30 beweisen, betrachten wir zunächst ein Beispiel.

Folie 97

Beispiel 2.32. Betrachte die Wahrheitstafel T :

b1 b2 b3 F (b1, b2, b3)
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

Eine Formel φ(A1, A2, A3), so dass T die Wahrheitstafel für φ ist, kann man
folgendermaßen erzeugen:

Version vom 16. Oktober 2023 Seite 59

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

• Betrachte alle Zeilen von T , bei denen in der letzten Spalte eine
”
1“

steht.

• Für jede solche Zeile konstruiere eine Formel, die genau von der zu
der Zeile gehörenden Belegung von b1, b2, b3 erfüllt wird.

• Bilde die Disjunktion (d.h. die
”
Veroderung“) über all diese Formeln.

Dies liefert die gesuchte Formel φ.

Folie 98

In unserer Beispiel-Wahrheitstafel T gibt es genau 3 Zeilen, bei denen in
der letzten Spalte eine

”
1“ steht, nämlich die Zeilen

b1 b2 b3 F (b1, b2, b3) zur jeweiligen Zeile gehörende Formel:

0 0 0 1 (¬A1 ∧ ¬A2 ∧ ¬A3)
0 0 1 1 (¬A1 ∧ ¬A2 ∧ A3)
...

...
...

...
1 0 1 1 (A1 ∧ ¬A2 ∧ A3)
...

...
...

...

Insgesamt erhalten wir dadurch die zur Wahrheitstafel T passende Formel

φ = (¬A1 ∧ ¬A2 ∧ ¬A3) ∨ (¬A1 ∧ ¬A2 ∧ A3) ∨ (A1 ∧ ¬A2 ∧ A3).

Beweis von Satz 2.30.
Sei F : {0, 1}n → {0, 1}. Falls F (b̄) = 0 für alle b̄ ∈ {0, 1}n, so setzen wir
φ(A1, . . . , An) := 0.
Im Folgenden betrachten wir also nur noch den Fall, dass es mindestens ein
b̄ ∈ {0, 1}n mit F (b̄) = 1 gibt.
Für jedes i ∈ [n] sei

λi,1 := Ai und λi,0 := ¬Ai .

Für b̄ = (b1, . . . , bn) ∈ {0, 1}n sei

ψb̄ :=
(
λ1,b1 ∧ · · · ∧ λn,bn

)
Beispiel: Für n = 3 und b̄ = (0, 1, 0) ist ψ(0,1,0) = (¬A1 ∧ A2 ∧ ¬A3).

Dann gilt für alle c̄ = (c1, . . . , cn) ∈ {0, 1}n:

ψb̄[c̄] = 1 ⇐⇒ b̄ = c̄.

Version vom 16. Oktober 2023 Seite 60

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Nun sei
φ :=

∨
b̄∈{0,1}n

mit F (b̄)=1

ψb̄ .

Dann gilt für alle c̄ ∈ {0, 1}n:

φ[c̄] = 1

⇐⇒ Es gibt ein b̄ ∈ {0, 1}n mit F (b̄) = 1 und ψb̄[c̄] = 1

⇐⇒ Es gibt ein b̄ ∈ {0, 1}n mit F (b̄) = 1 und b̄ = c̄

⇐⇒ F (c̄) = 1.

Folie 99

Adäquatheit

Satz 2.30 besagt, dass die Aussagenlogik AL die größtmögliche
Ausdrucksstärke hat. Dafür reichen allerdings schon

”
kleinere“ Logiken, wie

wir im Folgenden sehen werden.

Definition 2.33. Sei τ ⊆ {0,1,¬,∧,∨,→}.

(a) AL(τ) sei das Fragment der Logik AL, das aus den Formeln besteht, in
denen nur Junktoren und Konstanten aus τ vorkommen.

(b) τ heißt adäquat, wenn jede Formel φ ∈ AL äquivalent zu einer Formel in
AL(τ) ist.

Beispiele 2.34.

(a) {¬,∧}, {¬,∨}, {0,→} sind adäquat.

(b) {∧,∨,→} ist nicht adäquat.

Beweis.

(a) Die Adäquatheit von {¬,∧} folgt leicht aus Satz 2.25 (h) (Tertium
Non Datur), (f) (doppelte Negation), (g) (De Morgan) und (k)
(Elimination der Implikation):

Version vom 16. Oktober 2023 Seite 61

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

• 0 ≡ (X ∧ ¬X) , für jedes X ∈ AS

• 1 ≡ (X ∨ ¬X) , für jedes X ∈ AS

• für alle Formeln φ, ψ gilt:

– (φ ∨ ψ) ≡ ¬(¬φ ∧ ¬ψ)
– (φ→ ψ) ≡ (¬φ ∨ ψ).

Die Adäquatheit von {¬,∨} folgt aus der Adäquatheit von {¬,∧}
und der Tatsache, dass für alle Formeln φ, ψ gilt:

(φ ∧ ψ) ≡ ¬(¬φ ∨ ¬ψ).

Die Adäquatheit von {0,→} folgt aus der Adäquatheit von {¬,∨}
und der Beobachtung, dass für alle Formeln φ, ψ gilt:

¬φ ≡ (φ→ 0) und (φ ∨ ψ) ≡ (¬φ→ ψ).

Details: Übung.

(b) {∧,∨,→} ist nicht adäquat, weil für alle Formeln
φ(X1, . . . , Xn) ∈ AL({∧,∨,→}) gilt: φ[1, . . . , 1] = 1 (dies kann man per
Induktion nach dem Formelaufbau leicht nachweisen; Details: Übung).

Folie 100

Andere Junktoren

• Die Auswahl der Junktoren ¬,∧,∨,→ (und ↔ als Abkürzung) für

”
unsere“ aussagenlogische Sprache richtet sich nach dem
umgangssprachlichen Gebrauch und den Erfordernissen des formalen
Schließens, ist aber in gewisser Weise willkürlich.

• Durch Festlegung ihrer Wahrheitstafeln können wir auch andere
Junktoren definieren und erhalten daraus andere aussagenlogische
Sprachen.

• Für jede Menge τ von so definierten Junktoren und den boolschen
Konstanten (die wir als

”
nullstellige“ Junktoren auffassen können) sei

AL(τ) die daraus gebildete aussagenlogische Sprache.

• Satz 2.30 besagt dann, dass jede Formel in AL(τ) zu einer Formel in
AL äquivalent ist. Gilt die Umkehrung ebenfalls, so bezeichnen wir τ
als adäquat.

Folie 101

Version vom 16. Oktober 2023 Seite 62

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Beispiele 1: Exklusives Oder

Der 2-stellige Junktor ⊕ sei definiert durch

φ ψ (φ⊕ ψ)
0 0 0
0 1 1
1 0 1
1 1 0

Intuitiv bedeutet (φ⊕ ψ)
”
entweder φ oder ψ“.

Man nennt ⊕ auch exklusives Oder.

Folie 102

Der dreistellige Mehrheitsjunktor

Der 3-stellige Junktor M sei definiert durch

φ ψ χ M(φ, ψ, χ)
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Intuitiv ist M(φ, ψ, χ) also genau dann wahr, wenn mindestens zwei (also
die Mehrheit) der Formeln φ, ψ, χ wahr sind.

Folie 103

NAND

Der folgende zweistellige Junktor ist bekannt als NAND-Gatter (not-and)
oder Sheffer-Strich:

φ ψ (φ |ψ)
0 0 1
0 1 1
1 0 1
1 1 0

Version vom 16. Oktober 2023 Seite 63

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Satz 2.35. { | } ist adäquat.

Beweis. Man kann sich leicht davon überzeugen, dass für alle Formeln φ, ψ
gilt:

¬φ ≡ (φ |φ) und (φ ∧ ψ) ≡ ¬(φ |ψ)

Details: Übung.

2.4 Normalformen

Folie 104

Vereinfachende Annahme

In diesem Abschnitt betrachten wir nur Formeln in AL({¬,∨,∧}).

Rechtfertigung
Die Annahme bedeutet keine wesentliche Einschränkung, weil die Menge
{¬,∨,∧} adäquat ist.

Folie 105

NNF

Definition 2.36. Eine Formel ist in Negationsnormalform (NNF), wenn sie
zu AL({¬,∧,∨}) gehört und Negationszeichen nur unmittelbar vor
Aussagensymbolen auftreten.

Satz 2.37. Jede aussagenlogische Formel ist äquivalent zu einer Formel in
NNF.

Beweis. Da AL({¬,∧,∨}) adäquat ist, genügt es, an Stelle von AL nur
AL({¬,∧,∨}) zu betrachten.

Per Induktion über den Aufbau definieren wir zu jedem φ ∈ AL({¬,∧,∨})
zwei Formeln φ′ und φ′′ in NNF, so dass gilt:

φ ≡ φ′ und ¬φ ≡ φ′′. (⋆)

Induktionsanfang:

Version vom 16. Oktober 2023 Seite 64

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Falls φ = X für ein X ∈ AS: Setze φ′ := X und φ′′ := ¬X.

Dann gilt (⋆) offensichtlicherweise.

Induktionsschritt:

Falls φ = ¬ψ für eine Formel ψ: Setze φ′ := ψ′′ und φ′′ := ψ′.

Dann folgt (⋆) unmittelbar aus der Induktionsannahme.

Falls φ = (ψ1 ∧ ψ2) für Formeln ψ1, ψ2:
Setze φ′ := (ψ′

1 ∧ ψ′
2) und φ′′ := (ψ′′

1 ∨ ψ′′
2).

Gemäß Induktionsannahme gilt ψ1 ≡ ψ′
1 und ψ2 ≡ ψ′

2, und daher
gilt auch φ ≡ φ′.

Außerdem gilt gemäß Induktionsannahme, dass ¬ψ1 ≡ ψ′′
1 und

¬ψ2 ≡ ψ′′
2 . Daher gilt auch:

¬φ ≡ (¬ψ1 ∨ ¬ψ2) (De Morgan)

≡ (ψ′′
1 ∨ ψ′′

2) (Induktionsannahme)

Also gilt (⋆).

Falls φ = (ψ1 ∨ ψ2) für Formeln ψ1, ψ2:
Setze φ′ := (ψ′

1 ∨ ψ′
2) und φ′′ := (ψ′′

1 ∧ ψ′′
2).

Ähnlich wie im Fall, dass φ = (ψ1 ∧ ψ2), lässt sich zeigen, dass
(⋆) gilt.

Die Formeln φ′ und φ′′ sind in NNF, weil Negationszeichen nur im
Induktionsanfang verwendet werden und dort unmittelbar vor einem
Aussagensymbol stehen.

Folie 106

Ein NNF-Algorithmus

Eingabe: Formel φ ∈ AL({¬,∧,∨}).

Ausgabe: Formel φ′ in NNF

Verfahren:

1. Wiederhole folgende Schritte:

2. Wenn φ in NNF ist, dann halte mit
Ausgabe φ.

Version vom 16. Oktober 2023 Seite 65

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

3. Ersetze eine Subformel von φ der Gestalt
¬(ψ1 ∧ ψ2) durch (¬ψ1 ∨ ¬ψ2)

oder eine Subformel der Gestalt
¬(ψ1 ∨ ψ2) durch (¬ψ1 ∧ ¬ψ2)

oder eine Subformel der Gestalt
¬¬ψ durch ψ.

Sei φ′ die resultierende Formel.

4. φ := φ′.

Folie 107

Korrektheit des NNF-Algorithmus

Satz 2.38. Für jede Eingabeformel φ ∈ AL({¬,∧,∨}) gibt der
NNF-Algorithmus nach endlich vielen Schritten eine zu φ äquivalente
Formel φ′ in NNF aus.

(hier ohne Beweis)

Bemerkung. Unter Verwendung geeigneter Datenstrukturen lässt sich der
NNF-Algorithmus mit linearer Laufzeit implementieren, d.h., Laufzeit O(n)
bei Eingabe einer Formel der Länge n.

Folie 108

Beispiel 2.39.

Das Ziel ist, die Formel
((
¬A0 ∧ ¬

(
(A0 ∨A1)→ A0

))
→ 0

)
in NNF zu bringen, d.h. eine zu ihr äquivalente Formel in NNF zu finden.

Lösung : Wir ersetzen zunächst die Konstanten 0 und 1 sowie alle
Implikationspfeile durch geeignete Formeln aus AL({¬,∧,∨}) und wenden
dann den NNF-Algorithmus an. Der Teil einer Formel, der als Nächstes

Version vom 16. Oktober 2023 Seite 66

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

ersetzt wird, ist im Folgenden jeweils unterstrichen.((
¬A0 ∧ ¬

(
(A0 ∨A1)→ A0

))
→ 0

)
≡

((
¬A0 ∧ ¬

(
(A0 ∨A1)→ A0

))
→ (A0 ∧ ¬A0)

)
≡

(
¬
(
¬A0 ∧ ¬

(
(A0 ∨A1) → A0

))
∨ (A0 ∧ ¬A0)

)
≡

(
¬
(
¬A0 ∧ ¬

(
¬(A0 ∨A1) ∨A0

))
∨ (A0 ∧ ¬A0)

)
≡

((
¬¬A0 ∨ ¬¬

(
¬(A0 ∨A1) ∨A0

))
∨ (A0 ∧ ¬A0)

)
≡

((
A0 ∨

(
¬(A0 ∨A1) ∨A0

))
∨ (A0 ∧ ¬A0)

)
≡

((
A0 ∨

(
(¬A0 ∧ ¬A1) ∨A0

))
∨ (A0 ∧ ¬A0)

)
.

Diese Formel ist offensichtlicherweise in NNF.

Folie 109

Klammern bei Konjunktionen und Disjunktionen

Weil ∧ assoziativ ist, können wir Formeln der Gestalt
∧n
i=1 φi etwas

großzügiger interpretieren. Von nun an stehe
∧n
i=1 φi für φ1 ∧ · · · ∧ φn

mit irgendeiner Klammerung.

Entsprechend verfahren wir mit Disjunktionen.

Beispiel. Die Formel
∧4
i=1 φi kann für jede der folgenden Formeln stehen:

(((φ1 ∧ φ2) ∧ φ3) ∧ φ4) ,

((φ1 ∧ (φ2 ∧ φ3)) ∧ φ4) ,

((φ1 ∧ φ2) ∧ (φ3 ∧ φ4)) ,

(φ1 ∧ ((φ2 ∧ φ3) ∧ φ4)) ,

(φ1 ∧ (φ2 ∧ (φ3 ∧ φ4))) .

Folie 110

Version vom 16. Oktober 2023 Seite 67

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

DNF und KNF

Definition 2.40.

(a) Ein Literal ist eine Formel der Gestalt X oder ¬X, wobei X ∈ AS.

Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von
einem negativen Literal.

(b) Eine Formel ist in disjunktiver Normalform (DNF), wenn sie eine
Disjunktion von Konjunktionen von Literalen ist, d.h., wenn sie die
Form

n∨
i=1

(mi∧
j=1

λi,j

)
hat, wobei n,m1, . . . ,mn ⩾ 1 sind und die λi,j für alle i ∈ [n] und
j ∈ [mi] Literale sind.

Die Subformeln κi :=
∧mi

j=1 λi,j, für i ∈ [n], nennen wir die
(konjunktiven) Klauseln der Formel.

Beispiele:

• (A1 ∧ ¬A2 ∧ A3) ∨ (¬A2 ∧ ¬A3) ∨ (A2 ∧ A1) ist in DNF

• A1 ∨ ¬A2 ∨ A3 ist in DNF (mit n = 3 und m1 = m2 = m3 = 1)

• A1 ∧ ¬A2 ∧ A3 ist in DNF (mit n = 1 und m1 = 3) und
gleichzeitig ist diese Formel eine konjunktive Klausel

Folie 111

(c) Eine Formel ist in konjunktiver Normalform (KNF), wenn sie eine
Konjunktion von Disjunktion von Literalen ist, d.h., wenn sie die Form

n∧
i=1

(mi∨
j=1

λi,j

)
hat, wobei n,m1, . . . ,mn ⩾ 1 sind und die λi,j für alle i ∈ [n] und
j ∈ [mi] Literale sind.

Die Subformeln κi :=
∨mi

j=1 λi,j, für i ∈ [n], nennen wir die
(disjunktiven) Klauseln der Formel.

Beispiele:

• (A1 ∨ ¬A2 ∨ A3) ∧ (¬A2 ∨ ¬A3) ∧ (A2 ∨ A1) ist in KNF

Version vom 16. Oktober 2023 Seite 68

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

• A1 ∨ ¬A2 ∨ A3 ist in KNF (mit n = 1 und m1 = 3) und
gleichzeitig ist diese Formel eine disjunktive Klausel

• A1 ∧ ¬A2 ∧ A3 ist in KNF (mit n = 3 und m1 = m2 = m3 = 1)

Folie 112

Normalformen spielen in vielen Anwendungsgebieten eine wichtige Rolle.
Beispielsweise geht man in der Schaltungstechnik (Hardware-Entwurf) oft
von DNF-Formeln aus, während bei der aussagenlogischen Modellbildung
oftmals KNF-Formeln auftreten, da sich eine Sammlung von einfach
strukturierten Aussagen sehr gut durch eine Konjunktion von Klauseln
ausdrücken lässt.

Folie 113

Satz 2.41. Jede aussagenlogische Formel ist äquivalent zu einer Formel in
DNF und zu einer Formel in KNF.

Beweis. Sei ψ eine Formel.

DNF: Falls ψ unerfüllbar ist, so ist ψ ≡ X ∧ ¬X (für jedes X ∈ AS). Die
Formel X ∧ ¬X ist sowohl in KNF als auch in DNF.

Falls ψ erfüllbar ist, so liefert der Beweis von Satz 2.30, angewendet
auf die Wahrheitstafel von ψ (bzw. die von ψ berechnete boolesche
Funktion), eine zu ψ äquivalente Formel in DNF (Details: Übung).

KNF: Sei ψ̃ die zu ψ duale Formel. Man beachte, dass
˜̃
ψ = ψ.

Sei φ eine zu ψ̃ äquivalente Formel in DNF (dass es eine solche
Formel gibt, haben wir gerade bereits gezeigt), und sei φ̃ die zu φ
duale Formel. Dann ist φ̃ offensichtlicherweise in KNF. Und da

ψ̃ ≡ φ

ist, gilt gemäß dem Dualitätssatz der Aussagenlogik (Satz 2.27), dass

˜̃
ψ ≡ φ̃.

Wegen
˜̃
ψ = ψ ist ψ also äquivalent zur KNF-Formel φ̃.

Version vom 16. Oktober 2023 Seite 69

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Folie 114

Bemerkung 2.42. Der Beweis von Satz 2.41 zeigt Folgendes:
Um für eine gegebene Formel ψ eine äquivalente Formel φ in

• DNF zu erzeugen, können wir die Wahrheitstafel für ψ aufstellen und
dann wie in Beispiel 2.32 vorgehen (bzw. φ := A1 ∧ ¬A1 setzen, falls
ψ unerfüllbar ist).

• KNF zu erzeugen, können wir wie folgt vorgehen:

(1) Stelle die Wahrheitstafel für ψ auf.

(2) Falls in der letzten Spalte nur
”
1“en stehen, setze φ := A1∨¬A1.

(3) Ansonsten gehe wie folgt vor:

– Betrachte alle Zeilen der Wahrheitstafel, bei denen in der
letzten Spalte eine

”
0“ steht.

– Für jede solche Zeile konstruiere die disjunktive Klausel, die
von allen Interpretationen außer der zur Zeile gehörenden
erfüllt wird.

Beispiel: Wenn die Zeile der Wahrheitstafel die Form

0 1 1 | 0

hat, so gehört dazu die disjunktive Klausel

A1 ∨ ¬A2 ∨ ¬A3.

– Bilde die Konjunktion all dieser disjunktiven Klauseln.
Dies liefert die gesuchte KNF-Formel φ.

Folie 115

Wenn eine Formel sehr viele verschiedene Aussagensymbole enthält, die zur
Formel gehörige Wahrheitstafel also sehr groß ist, ist das gerade
beschriebene Verfahren zur Umformung in DNF oder KNF sehr
zeitaufwändig. In solchen Fällen ist es ratsam, stattdessen zu versuchen, die
gewünschte Normalform durch Äquivalenzumformungen zu erzeugen.

Folie 116

Version vom 16. Oktober 2023 Seite 70

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Beispiel 2.43. Sei φ :=
((
¬A0 ∧ (A0 → A1)

)
∨ (A2 → A3)

)
.

Transformation von φ in NNF :((
¬A0∧(A0→ A1)

)
∨(A2→ A3)

)
≡

((
¬A0 ∧ (¬A0 ∨ A1)

)
∨ (¬A2 ∨ A3)

)
︸ ︷︷ ︸

=: φ′

.

Transformation in DNF:

Wir betrachten die NNF-Formel

φ′ =
((
¬A0 ∧ (¬A0 ∨ A1)

)
∨ (¬A2 ∨ A3)

)
.

und wenden die Distributivitätsregel (Satz 2.25(e)) auf die
unterstrichene Subformel von φ′ an. Dies liefert die Formel

φ′′ :=
((

(¬A0 ∧ ¬A0) ∨ (¬A0 ∧ A1)
)
∨ (¬A2 ∨ A3)

)
.

Diese Formel ist in DNF (die einzelnen konjunktiven Klauseln
sind jeweils unterstrichen).

Transformation in KNF:

Wir betrachten die NNF-Formel

φ′ =
((
¬A0 ∧ (¬A0 ∨ A1)

)
∨ (¬A2 ∨ A3)

)
.

und wenden die Distributivitätsregel (Satz 2.25(e)) auf den
unterstrichenen Teil der Formel φ′ an. Dies liefert die Formel

φ′′ :=
((
¬A0 ∨ (¬A2 ∨ A3)

)
∧ ((¬A0 ∨ A1) ∨ (¬A2 ∨ A3))

)
.

Dies ist eine KNF-Formel (die einzelnen disjunktiven Klauseln
sind jeweils unterstrichen).

Je nach Formel muss man ggf. die Distributivitätsregel mehrmals
anwenden, bis man eine Formel der gewünschten Normalform erhält.

Folie 117

Version vom 16. Oktober 2023 Seite 71

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Ein DNF-Algorithmus

Eingabe: Formel φ ∈ AL({¬,∧,∨}) in NNF.

Ausgabe: Formel φ′′ in DNF

Verfahren:

1. Wiederhole folgende Schritte:

2. Wenn φ in DNF ist, dann halte mit
Ausgabe φ.

3. Ersetze eine Subformel von φ der Gestalt
(ψ1 ∧ (ψ2 ∨ ψ3)) durch ((ψ1 ∧ ψ2) ∨ (ψ1 ∧ ψ3))

oder eine Subformel der Gestalt
((ψ1 ∨ ψ2) ∧ ψ3) durch ((ψ1 ∧ ψ3) ∨ (ψ2 ∧ ψ3)).

Sei φ′ die resultierende Formel.

4. φ := φ′.

Satz 2.44. Für jede Eingabeformel φ in NNF gibt der DNF-Algorithmus
nach endlich vielen Schritten eine zu φ äquivalente Formel φ′′ in DNF aus.

(hier ohne Beweis)

Analog kann man auch einen
”
KNF-Algorithmus“ angeben, der bei Eingabe

einer NNF-Formel eine äquivalente Formel in KNF erzeugt (Details:
Übung).

Folie 118

Eine kleine Formel mit großer DNF

Die Transformation einer Formel in eine äquivalente DNF- oder
KNF-Formel kann u.U. allerdings sehr lang dauern, da es einige Formeln
gibt, zu denen äquivalente DNF-Formeln zwangsläufig sehr groß sind. Dies
wird durch den folgenden Satz präzisiert.

Satz 2.45. Sei n ∈ N mit n ⩾ 1, seien X1, . . . , Xn und Y1, . . . , Yn genau 2n
verschiedene Aussagensymbole und sei

φn :=
n∧
i=1

(Xi ∨ ¬Yi) .

Jede zu φn äquivalente Formel in DNF hat mindestens 2n konjunktive
Klauseln.

Version vom 16. Oktober 2023 Seite 72

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Beweis: Übung

Korollar 2.46. Jeder Algorithmus, der bei Eingabe von beliebigen
aussagenlogischen Formeln dazu äquivalente Formeln in DNF erzeugt, hat
eine Laufzeit, die im worst-case exponentiell ist, d.h., 2Ω(n) bei Eingabe von
Formeln der Länge n.

2.5 Der Endlichkeitssatz

Folie 119

Der Endlichkeitssatz (auch bekannt als Kompaktheitssatz)

Um nachzuweisen, dass eine gegebene unendliche Formelmenge erfüllbar
ist, ist der folgende Satz sehr nützlich.

Satz 2.47 (Der Endlichkeitssatz der Aussagenlogik).

(a) Für jede Formelmenge Φ ⊆ AL gilt:

Φ ist erfüllbar ⇐⇒ Jede endliche Teilmenge von Φ ist erfüllbar.

(b) Für alle Φ ⊆ AL und ψ ∈ AL gilt:

Φ |= ψ ⇐⇒ Es gibt eine endliche Teilmenge Γ von Φ, so dass Γ |= ψ.

Beweis von (b) unter Verwendung von (a):
Es gilt

Φ |= ψ ⇐⇒ Φ ∪ {¬ψ} ist unerfüllbar (Lemma 2.19)

⇐⇒ es gibt eine endliche Teilmenge
Γ von Φ, so dass
Γ ∪ {¬ψ} unerfüllbar ist

(Endlichkeitssatz)

⇐⇒ es gibt eine endliche Teilmenge
Γ von Φ, so dass Γ |= ψ

(Lemma 2.19).

Version vom 16. Oktober 2023 Seite 73

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Beweis von Satz 2.47(a).
Die Richtung

”
=⇒“ ist offensichtlich, denn eine Interpretation, die Φ

erfüllt, erfüllt auch jede Teilmenge von Φ.

Für die Richtung
”
⇐=“ sei jede endliche Teilmenge von Φ erfüllbar.

Ziel ist, zu zeigen, dass es eine Interpretation gibt, die alle Formeln in Φ
erfüllt.
Zunächst definieren wir dazu rekursiv für alle i ∈ N eine Menge Ψi. Wir
starten mit Ψ0 := Φ und wählen für alle i ∈ N die Menge Ψi+1 wie folgt
(zur Erinnerung: AS = {A0, A1, A2, . . .}):

• Falls jede endliche Teilmenge von Ψi ∪ {Ai} erfüllbar ist, so setze
Ψi+1 := Ψi ∪ {Ai},

• ansonsten, falls jede endliche Teilmenge von Ψi ∪ {¬Ai} erfüllbar ist,
setze Ψi+1 := Ψi ∪ {¬Ai},

• ansonsten setze Ψi+1 := Ψi.

Sei weiterhin
Ψ :=

⋃
i∈N

Ψi.

Offensichtlicherweise gilt

Φ = Ψ0 ⊆ Ψ1 ⊆ Ψ2 ⊆ Ψ3 ⊆ · · · ⊆ Ψ.

Behauptung 1.
Für jedes i ∈ N gilt: Jede endliche Teilmenge von Ψi ist erfüllbar.

Beweis. Per Induktion nach i.

i = 0: Es gilt Ψ0 = Φ, und nach Voraussetzung ist jede endliche
Teilmenge von Φ erfüllbar.

i→ i+1: Falls Ψi+1 = Ψi, so ist gemäß Induktionsannahme jede
endliche Teilmenge von Ψi+1 erfüllbar. Ansonsten ist per Definition
von Ψi+1 jede endliche Teilmenge von Ψi+1 erfüllbar. Beh.1

Behauptung 2.
Jede endliche Teilmenge von Ψ ist erfüllbar.

Beweis. Jede endliche Teilmenge von Ψ ist in einem Ψi (für ein i ∈ N)
enthalten und daher gemäß Behauptung 1 erfüllbar. Beh.2

Version vom 16. Oktober 2023 Seite 74

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Behauptung 3.
Für jedes n ∈ N gilt: An ∈ Ψ oder ¬An ∈ Ψ (aber nicht beides, weil gemäß
Behauptung 2 jede endliche Teilmenge von Ψ erfüllbar ist).

Beweis. Angenommen, die Behauptung ist falsch. Dann gibt es ein n ∈ N,
so dass weder An noch ¬An zur Menge Ψ gehört.
Gemäß der Definition der Mengen Ψ und Ψi für i ∈ N gilt dann: An ̸∈ Ψn+1

und ¬An ̸∈ Ψn+1. Daher gibt es gemäß der Definition von Ψn+1 also
endliche Teilmengen Γ+ und Γ− von Ψn, so dass weder Γ+ ∪ {An} noch
Γ− ∪ {¬An} erfüllbar ist.
Weil Γ+ ∪ Γ− eine endliche Teilmenge von Ψn ist, ist Γ+ ∪ Γ− gemäß
Behauptung 1 erfüllbar. Sei also I ein Modell von Γ+ ∪Γ−. Falls I(An) = 1,
so gilt I |= Γ+ ∪ {An}. Falls I(An) = 0, so gilt I |= Γ− ∪ {¬An}. Also ist
doch eine der beiden Mengen erfüllbar. Widerspruch. Beh.3

Gemäß Behauptung 3 können wir nun eine Interpretation I : AS→ {0, 1}
definieren, indem wir für alle i ∈ N setzen:

I(Ai) :=

{
1 falls Ai ∈ Ψ,

0 falls ¬Ai ∈ Ψ.

Behauptung 4.

I |= Ψ.

Beweis. Angenommen, die Behauptung ist falsch. Dann gibt es eine Formel
ψ ∈ Ψ, so dass I ̸|= ψ. Wähle n ∈ N so, dass in ψ nur Aussagensymbole aus
{A0, A1, . . . , An} vorkommen. Für i ∈ {0, 1, . . . , n} sei φi := Ai falls Ai ∈ Ψ,
und φi := ¬Ai falls ¬Ai ∈ Ψ. Dann ist Γ := {ψ, φ0, φ1, . . . , φn} eine
endliche Teilmenge von Ψ und daher gemäß Behauptung 2 erfüllbar. Sei J
also ein Modell von Γ. Für jedes i ∈ {0, 1, . . . , n} gilt J |= φi, und daher
J (Ai) = I(Ai). Wegen J |= ψ folgt aus dem Koinzidenzlemma, dass
I |= ψ. Widerspruch. Beh.4

Gemäß Behauptung 4 ist I ein Modell von Ψ und wegen Φ ⊆ Ψ auch ein
Modell von Φ. Daher ist Φ erfüllbar.

Folie 120

Anwendung: Färbbarkeit

Definition:

Version vom 16. Oktober 2023 Seite 75

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

• Ein (ungerichteter) Graph G = (V,E) besteht aus einer nicht-leeren
Menge V und einer Menge E ⊆

{
{x, y} : x, y ∈ V, x ̸= y

}
. Die

Elemente in V werden Knoten und die Elemente in E werden
(ungerichtete) Kanten genannt. Zwei Knoten x, y ∈ V heißen
benachbart, wenn {x, y} ∈ E.

• Ein Subgraph eines Graphen G = (V,E) ist ein Graph H = (V ′, E ′)
mit V ′ ⊆ V und E ′ ⊆ E.

• Ein Graph G = (V,E) heißt endlich (bzw. unendlich), wenn seine
Knotenmenge V endlich (bzw. unendlich) ist.

Beispiel:

• G1 := (V1, E1) mit

V1 = {a, b, c, d} und E1 = {{a, b}, {b, c}, {c, d}, {a, c}}

ist ein Graph. Dieser Graph ist endlich. Die Knoten a und c sind
benachbart, die Knoten a und d sind nicht benachbart.

Graphen werden i.d.R. dadurch illustriert, dass man die einzelnen
Knoten als Punkte und die Kanten als Linien zwischen den Punkten
zeichnet.

Skizze:

• G2 := (V2, E2) mit V2 := N und

E2 := {{x, y} : x, y ∈ N⩾1, x ̸= y, es gibt ein z ∈ N⩾1 s.d. y = x·z}

ist ein Graph. Dieser Graph ist unendlich. Der Knoten 0 ist mit
keinem Knoten benachbart. Der Knoten 2 ist mit allen Knoten n ̸= 2
benachbart, für die gilt: n ̸= 0 und n ist eine gerade Zahl.

Definition 2.48. Sei k ∈ N mit k ⩾ 1.
Eine k-Färbung eines Graphen G = (V,E) ist eine Abbildung f : V → [k],
so dass für alle Kanten {v, w} ∈ E gilt: f(v) ̸= f(w).
G heißt k-färbbar, falls es eine k-Färbung von G gibt.

Version vom 16. Oktober 2023 Seite 76

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Beispiel:

• Der Graph G1 ist nicht 2-färbbar. Aber er ist 3-färbbar; beispielsweise
ist die Abbildung f : V1 → {1, 2, 3} mit f(a) = f(d) = 1, f(b) = 2 und
f(c) = 3 eine 3-Färbung von G1.

Skizze:

• Für alle k ∈ N⩾1 gilt: G2 ist nicht k-färbbar.

Beweis: Übung!

Satz 2.49. Sei k ∈ N mit k ⩾ 1.
Ein unendlicher Graph G mit Knotenmenge N ist genau dann k-färbbar,
wenn jeder endliche Subgraph von G k-färbbar ist.

Beweis. Sei k ∈ N mit k ⩾ 1 und sei G = (V,E) ein unendlicher Graph mit
Knotenmenge V = N.
Zum Beweis des Satzes bilden wir ein aussagenlogisches Modell und wenden
den Endlichkeitssatz an. Wir betrachten dazu

• Aussagensymbole Xv,i für alle v ∈ V und i ∈ [k], die besagen:

”
Knoten v erhält Farbe i.“

• für jeden Knoten v ∈ V eine Formel

φv :=
∨
i∈[k]

(
Xv,i ∧

∧
j∈[k]
j ̸=i

¬Xv,j

)
,

die besagt:
”
Knoten v erhält genau eine Farbe.“

• für jede Kante {v, w} ∈ E eine Formel

ψ{v,w} :=
k∧
i=1

¬(Xv,i ∧Xw,i),

die besagt:
”
Benachbarte Knoten erhalten verschiedene Farben.“

Version vom 16. Oktober 2023 Seite 77

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Für jeden Subgraphen H = (V ′, E ′) von G sei

ΦH := {φv : v ∈ V ′ } ∪ {ψ{v,w} : {v, w} ∈ E ′ }.

Man sieht leicht, dass gilt:

ΦH ist erfüllbar ⇐⇒ H ist k-färbbar. (2.1)

Falls H endlich ist, so ist auch ΦH endlich. Außerdem gibt es für jede
endliche Teilmenge Γ von ΦG einen endlichen Subgraphen H von G, so dass
Γ ⊆ ΦH . Daher gilt:

Jede endliche Teilmenge
von ΦG ist erfüllbar.

⇐⇒
Für jeden endlichen Sub-
graphen H von G ist ΦH

erfüllbar.

(2.2)

Insgesamt erhalten wir:

G ist k-färbar

⇐⇒ ΦG ist erfüllbar (2.1)

⇐⇒ jede endliche Teilmenge von ΦG

ist erfüllbar
(Endlichkeitssatz)

⇐⇒ für jeden endlichen Subgraphen
H von G ist ΦH erfüllbar

(2.2)

⇐⇒ jeder endliche Subgraph H von G
ist k-färbbar

(2.1).

2.6 Resolution

Folie 121

Um nachzuweisen, dass eine gegebene KNF-Formel unerfüllbar ist, ist das
im Folgenden vorgestellte Resolutionsverfahren nützlich.

Beispiel 2.50. Wir wollen nachweisen, dass die KNF-Formel

φ := (¬P ∨ ¬R) ∧ (P ∨ ¬R) ∧ (¬Q ∨ S) ∧ (Q ∨R ∨ T) ∧ ¬T ∧ (¬S ∨R)

unerfüllbar ist. Dazu können wir wie folgt argumentieren:

Angenommen, eine Interpretation I erfüllt φ.

• Dann gilt I |= ¬T .

• Aus I |= Q ∨R ∨ T und I |= ¬T folgt dann I |= Q ∨R.

Version vom 16. Oktober 2023 Seite 78

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

• Aus I |= Q ∨R und I |= ¬Q ∨ S folgt I |= R ∨ S.

• Aus I |= R ∨ S und I |= ¬S ∨R folgt I |= R.

• Aus I |= ¬P ∨ ¬R und I |= P ∨ ¬R folgt I |= ¬R.

Das ist ein Widerspruch. Somit ist φ nicht erfüllbar.

Folie 122

Umwandlung in kleine KNF-Formeln

Das Resolutionsverfahren, das wir im Folgenden vorstellen, funktioniert nur
für KNF-Formeln.

Wir wissen bereits:

• Zu jeder Formel φ gibt es eine äquivalente Formel in KNF.

• Aber möglicherweise ist die kleinste zu φ äquivalente KNF-Formel
exponentiell groß in der Größe von φ.

Wenn es uns nur um die Frage geht, ob eine Formel φ (un)erfüllbar ist, ist
es aber auch gar nicht nötig, eine zu φ äquivalente KNF-Formel zu finden.
Es reicht, eine zu φ erfüllbarkeitsäquivalente KNF-Formel zu konstruieren.

Definition 2.51. Zwei Formeln φ und ψ heißen erfüllbarkeitsäquivalent,
falls gilt:

φ ist erfüllbar ⇐⇒ ψ ist erfüllbar.

Folie 123

Eine beliebige Formel in eine erfüllbarkeitsäquivalente KNF-Formel
umzuwandeln, ist in Linearzeit möglich.

Beispiel 2.52. Um die Formel

φ := (P → ¬Q) ∨ (¬ (P ∧Q) ∧ R)

in eine erfüllbarkeitsäquivalente KNF-Formel umzuformen, können wir wie
folgt vorgehen.

Version vom 16. Oktober 2023 Seite 79

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

1. Schritt: Wir listen alle Subformeln von φ auf, die keine Literale sind:

φ := (P → ¬Q)︸ ︷︷ ︸
ψ1

∨ (¬ (P ∧Q)︸ ︷︷ ︸
ψ4︸ ︷︷ ︸
ψ3

∧ R)

︸ ︷︷ ︸
ψ2

.

Für jede Subformel ψ von φ sei Xψ ein neues Aussagensymbol, das
die Aussage

”
die Subformel ψ ist wahr“ repräsentiert.

Wir wählen

φ′ := Xφ

∧
(
Xφ ↔

(
Xψ1 ∨Xψ2

))
(da φ = (ψ1 ∨ ψ2))

∧
(
Xψ1 ↔

(
P → ¬Q

))
(da ψ1 = (P → ¬Q))

∧
(
Xψ2 ↔

(
Xψ3 ∧R

))
(da ψ2 = (ψ3 ∧R))

∧
(
Xψ3 ↔ ¬Xψ4

)
(da ψ3 = ¬ψ4)

∧
(
Xψ4 ↔

(
P ∧Q

))
(da ψ4 = (P ∧Q))

Man sieht leicht, dass gilt:

φ ist erfüllbar ⇐⇒ φ′ ist erfüllbar.

2. Schritt: Die im 1. Schritt konstruierte Formel φ′ ist eine Konjunktion
von Teilformeln mit jeweils höchstens 3 Aussagensymbolen. Wir
wandeln jetzt jede dieser Teilformeln in eine äquivalente KNF-Formel
um und erhalten damit auch insgesamt eine zu φ′ äquivalente
KNF-Formel

φK := Xφ

∧
(
¬Xφ ∨Xψ1 ∨Xψ2

)
∧

(
Xφ ∨ ¬Xψ1

)
∧

(
Xφ ∨ ¬Xψ2

)
∧

(
¬Xψ1 ∨ ¬P ∨ ¬Q

)
∧

(
P ∨Xψ1

)
∧

(
Q ∨Xψ1

)
∧

(
¬Xψ2 ∨Xψ3

)
∧

(
¬Xψ2 ∨R

)
∧

(
¬Xψ3 ∨ ¬R ∨Xψ2

)
∧

(
¬Xψ3 ∨ ¬Xψ4

)
∧

(
Xψ4 ∨Xψ3

)
∧

(
¬Xψ4 ∨ P

)
∧

(
¬Xψ4 ∨Q

)
∧

(
¬P ∨ ¬Q ∨Xψ4

)
.

Da φK äquivalent zu φ′ und φ′ erfüllbarkeitsäquivalent zu φ ist, ist
insgesamt φK erfüllbarkeitsäquivalent zu φ.

Folie 124

Version vom 16. Oktober 2023 Seite 80

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Das Tseitin-Verfahren

Auf die gleiche Weise wie in Beispiel 2.52 können wir jede beliebige
aussagenlogische Formel in eine erfüllbarkeitsäquivalente KNF-Formel
umwandeln. Dieses Verfahren wird Tseitin-Verfahren genannt. Eine
Laufzeitanalyse zeigt, dass das Tseitin-Verfahren in Linearzeit durchgeführt
werden kann. Insgesamt erhalten wir so den folgenden Satz.

Satz 2.53. Zu jeder aussagenlogischen Formel φ gibt es eine
aussagenlogische Formel φK mit folgenden Eigenschaften:

(a) φK ist erfüllbarkeitsäquivalent zu φ.

(b) φK ist in 3-KNF, d.h., in KNF, wobei jede disjunktive Klausel aus
höchstens 3 Literalen besteht (wir sagen: die Klauseln haben Länge
⩽ 3).

(c) |φK | = O(|φ|).

Außerdem gibt es einen Algorithmus, der φK bei Eingabe von φ in
Linearzeit berechnet.

Beweis: Übung.

Notation. |φ| bezeichnet die Länge (bzw. Größe) einer aussagenlogischen
Formel φ, d.h. die Länge von φ aufgefasst als Wort über dem Alphabet AAL.

Folie 125

Repräsentation von KNF-Formeln

Für den Rest diese Abschnitts werden wir nur noch KNF-Formeln
betrachten, und wenn wir von Klauseln sprechen, meinen wir stets
disjunktive Klauseln, also Disjunktionen von Literalen.

Für das Resolutionsverfahren ist die folgende Repräsentation von Klauseln
und KNF-Formeln sehr hilfreich:

• Eine Klausel (λ1 ∨ · · · ∨ λℓ), die aus Literalen λ1, . . . , λℓ besteht,
identifizieren wir mit der Menge {λ1, . . . , λℓ} ihrer Literale.

Beispiel: Wir schreiben z.B. {A1,¬A2, A3} um die Klausel
(A1 ∨ ¬A2 ∨ A3) zu bezeichnen.

Version vom 16. Oktober 2023 Seite 81

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

D.h.: Ab jetzt sind disjunktive Klauseln für uns dasselbe wie endliche
Mengen von Literalen. Wenn wir von einer Klausel sprechen, meinen
wir eine endliche Menge von Literalen und identifizieren diese mit der
Formel, die aus der Disjunktion all dieser Literale besteht.

Spezialfall: Die leere Menge ∅ entspricht der unerfüllbaren Formel 0
(die wiederum der

”
Formel“ entspricht, die aus der Disjunktion aller

Literale aus ∅ besteht).

Folie 126

• Eine KNF-Formel φ =
m∧
i=1

γi, die aus (disjunktiven) Klauseln

γ1, . . . , γm besteht, identifizieren wir mit der Menge Γ := {γ1, . . . , γm}
ihrer Klauseln.

Offensichtlicherweise gilt für alle Interpretationen I:

I |= φ ⇐⇒ I |= Γ.

Beispiel: Die KNF-Formel φ = A1 ∧ (¬A2 ∨ A1) ∧ (A3 ∨ ¬A2 ∨ ¬A1)
repräsentieren wir durch die endliche Klauselmenge{

A1, (¬A2 ∨ A1), (A3 ∨ ¬A2 ∨ ¬A1)
}

bzw. durch {
{A1}, {¬A2, A1}, {A3,¬A2,¬A1}

}
”
Erfüllbarkeit von KNF-Formeln“ ist damit im Wesentlichen dasselbe
Problem wie

”
Erfüllbarkeit von endlichen Mengen von Klauseln“.

Folie 127

Resolution

Notation. Für ein Literal λ sei

λ̄ :=

{
¬X , falls λ von der Form X für ein X ∈ AS ist

X , falls λ von der Form ¬X für ein X ∈ AS ist.

Wir nennen λ auch das Negat von λ.

Version vom 16. Oktober 2023 Seite 82

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Definition 2.54 (Resolutionsregel).
Seien γ1, γ2 und δ endliche Mengen von Literalen (d.h. disjunktive
Klauseln). Dann ist δ eine Resolvente von γ1 und γ2, wenn es ein Literal λ
gibt, so dass gilt:

λ ∈ γ1, λ ∈ γ2 und δ =
(
γ1 \ {λ}

)
∪

(
γ2 \ {λ }

)
.

Graphische Darstellung:

δ

γ1 γ2

”
δ ist eine Resolvente von γ1 und γ2.“

Beispiele.

{P,¬T,¬Q,R}

{P,¬S,¬T} {¬Q,R, S,¬T}

∅

{P} {¬P}

Folie 128

Das Resolutionslemma

Notation. Ein Klausel ist eine endliche Menge von Literalen (eine solche
Klausel repräsentiert die Disjunktion der in ihr enthaltenen Literale).
Eine Klauselmenge ist eine (endliche oder unendliche) Menge von Klauseln.

Lemma 2.55 (Resolutionslemma). Sei Γ eine Klauselmenge, seien
γ1, γ2 ∈ Γ und sei δ eine Resolvente von γ1 und γ2. Dann sind die
Klauselmengen Γ und Γ ∪ {δ} äquivalent.

Beweis. Sei I eine beliebige Interpretation. Wir zeigen:

I |= Γ ⇐⇒ I |= Γ ∪ {δ}.

”
⇐=“: Trivial.

Version vom 16. Oktober 2023 Seite 83

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

”
=⇒“: Es gelte I |= Γ. Wir müssen zeigen, dass auch gilt: I |= δ.

Da δ eine Resolvente von γ1 und γ2 ist, gibt es ein Literal λ, so dass
δ =

(
γ1 \ {λ}

)
∪
(
γ2 \ {λ}

)
.

Fall 1: I |= λ.
Dann gilt: I ̸|= λ. Wegen I |= γ2, muss es ein Literal
µ ∈ γ2 \ {λ} ⊆ δ geben, so dass I |= µ. Also gilt I |= δ.

Fall 2: I ̸|= λ.
Wegen I |= γ1, muss es ein Literal µ ∈ γ1 \ {λ} ⊆ δ geben, so
dass I |= µ. Also gilt I |= δ.

In beiden Fällen gilt I |= δ. Insgesamt gilt also I |= Γ ∪ {δ}.

Folie 129

Resolutionsableitungen und -widerlegungen

Definition 2.56. Sei Γ eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel δ aus Γ ist ein Tupel (δ1, . . . , δℓ)
von Klauseln, so dass gilt: ℓ ⩾ 1, δℓ = δ, und für alle i ∈ [ℓ] ist

• δi ∈ Γ, oder

• es gibt j, k ∈ [i−1], so dass δi eine Resolvente von δj und δk ist.

(b) Eine Resolutionswiderlegung von Γ ist eine Resolutionsableitung der
leeren Klausel aus Γ.

Zur Erinnerung:
Eine Klausel δ ist genau dann eine Resolvente zweier Klauseln γ1 und γ2,
wenn es ein Literal λ gibt, so dass gilt:

λ ∈ γ1, λ ∈ γ2 und δ =
(
γ1 \ {λ}

)
∪

(
γ2 \ {λ }

)
.

Folie 130

Notation 2.57.

(a) Wir schreiben kurz Γ ⊢R δ um auszudrücken, dass es eine
Resolutionsableitung von δ aus Γ gibt.
Insbesondere bedeutet Γ ⊢R ∅, dass es eine Resolutionswiderlegung von
Γ gibt.

Version vom 16. Oktober 2023 Seite 84

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

(b) An Stelle von (δ1, . . . , δℓ) schreiben wir Resolutionsableitungen der
besseren Lesbarkeit halber oft zeilenweise, also

(1) δ1
(2) δ2
...

(ℓ) δℓ

und geben am Ende jeder Zeile eine kurze Begründung an.

Folie 131

Beispiel 2.58. Sei

Γ :=
{
{¬P,¬R} , {P,¬R} , {¬Q,S} , {Q,R, T} , {¬T} , {¬S,R} , {T,R}

}
Eine Resolutionswiderlegung von Γ ist:

(1) {¬T} (in Γ)

(2) {Q,R, T} (in Γ)

(3) {Q,R} (Resolvente von (1), (2))

(4) {¬Q,S} (in Γ)

(5) {S,R} (Resolvente von (3), (4))

(6) {¬S,R} (in Γ)

(7) {R} (Resolvente von (5), (6))

(8) {¬P,¬R} (in Γ)

(9) {P,¬R} (in Γ)

(10) {¬R} (Resolvente von (8), (9))

(11) ∅ (Resolvente von (7), (10))

Folie 132

Version vom 16. Oktober 2023 Seite 85

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Graphische Darstellung der Resolutionswiderlegung

∅

{R}

{S,R}

{Q,R}

{¬T} {Q,R, T}

{¬Q,S}

{¬S,R}

{¬R}

{¬P,¬R} {P,¬R}

Folie 133

Eine weitere Resolutionswiderlegung von Γ ist:

(1) {¬T} (in Γ)

(2) {T,R} (in Γ)

(3) {R} (Resolvente von (1), (2))

(4) {P,¬R} (in Γ)

(5) {P} (Resolvente von (3), (4))

(6) {¬P,¬R} (in Γ)

(7) {¬R} (Resolvente von (5), (6))

(8) ∅ (Resolvente von (7), (3))

Folie 134

Korrektheit und Vollständigkeit der Resolution

Satz 2.59. Für jede Klauselmenge Γ gilt:

Γ ⊢R ∅ ⇐⇒ Γ ist unerfüllbar.

D.h.: Eine Klauselmenge hat genau dann eine Resolutionswiderlegung,
wenn sie unerfüllbar ist.

Version vom 16. Oktober 2023 Seite 86

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Beweis. Sei Γ eine Klauselmenge. Wir müssen zeigen:

Γ hat eine Resolutionswiderlegung ⇐⇒ Γ ist unerfüllbar.

”
=⇒“ (

”
Korrektheit des Resolutionskalküls“):

Sei (γ1, . . . , γℓ) eine Resolutionswiderlegung von Γ. Dann ist γℓ = ∅. Sei
Γ0 := Γ und Γi := Γ ∪ {γ1, . . . , γi} für alle i ∈ [ℓ]. Per Induktion zeigen wir,
dass für alle i ∈ {0, . . . , ℓ} gilt: Γ ≡ Γi. Dann sind wir fertig, denn Γℓ ist
unerfüllbar, weil es die leere Klausel ∅ enthält.

i = 0: Trivial.

i→ i+1:
Falls γi+1 ∈ Γ, so gilt Γi+1 = Γi, und damit gilt trivialerweise
Γi+1 ≡ Γi.
Andernfalls gibt es j, k ∈ [i], so dass γi+1 eine Resolvente von γj und
γk ist. Wegen Γi+1 = Γi ∪ {γi+1} folgt aus dem Resolutionslemma,
dass Γi+1 ≡ Γi. Da gemäß Induktionsannahme Γ ≡ Γi ist, folgt
insgesamt, dass Γ ≡ Γi+1.

”
⇐=“ (

”
Vollständigkeit des Resolutionskalküls“):

Wir zeigen zunächst folgende Behauptung:

Behauptung 1: Sei n ∈ N, und sei Γ eine unerfüllbare Klauselmenge die
nur Aussagensymbole in {Ai : 0 ⩽ i < n} enthält.
Dann besitzt Γ eine Resolutionswiderlegung.

Beweis: Per Induktion nach n.

n = 0: Γ ist eine unerfüllbare Klauselmenge, die kein(e)
Aussagensymbol(e) enthält. Somit ist Γ = {∅}. Insbesondere ist
(∅) ist eine Resolutionswiderlegung von Γ.

Induktionsschritt: n→ n+1.
Sei Γ eine unerfüllbare Klauselmenge mit Aussagensymbolen in
{A0, . . . , An}.
Seien

Γ+ :=
{
γ \ {An} : γ ∈ Γ mit ¬An ̸∈ γ

}
,

Γ− :=
{
γ \ {¬An} : γ ∈ Γ mit An ̸∈ γ

}
.

Dann enthalten Γ+ und Γ− nur Aussagensymbole aus
{A0, . . . , An−1}.

Version vom 16. Oktober 2023 Seite 87

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Behauptung 2: Γ+ ist unerfüllbar.

Beweis: Angenommen, Γ+ ist erfüllbar.
Sei I+ ein Modell von Γ+, d.h. I+ |= Γ+.
Sei I die Interpretation mit I(An) := 0 und I(X) := I+(X)
für alle X ∈ AS \ {An}.
Gemäß Koinzidenzlemma gilt dann: I |= Γ+.
Aus der Definition von Γ+ folgt, dass für alle γ ∈ Γ mit
¬An ̸∈ γ gilt: I |= γ.
Wegen I(An) = 0 gilt außerdem für alle γ ∈ Γ mit ¬An ∈ γ,
dass I |= γ.
Somit gilt: I |= Γ. Das ist ein Widerspruch, denn Γ ist laut
Voraussetzung unerfüllbar. Beh.2

Behauptung 3: Γ− ist unerfüllbar.

Beweis: Analog zum Beweis von Behautung 2. Beh.3

Behauptung 4: Es gilt: Γ ⊢R ∅ oder Γ ⊢R {An}.
Beweis: Gemäß Behauptung 2 und der Induktionsannahme hat

Γ+ eine Resolutionswiderlegung, etwa (γ+1 , . . . , γ
+
ℓ). Per

Induktion nach i definieren wir für jedes i ∈ [ℓ] eine Klausel
γi wie folgt:

• Falls γ+i ∈ Γ+ ∩ Γ, so wähle γi := γ+i .
Klar: Dann ist γi ∈ Γ.

• Falls γ+i ∈ Γ+ \ Γ, so wähle γi := γ+i ∪ {An}.
Klar: Dann ist γi ∈ Γ.

• Ansonsten ist γ+i = (γ+j \ {λ}) ∪ (γ+k \ {λ̄}) für ein
Literal λ und Zahlen j, k ∈ [i− 1]. Wir wählen dann
γi := (γj \ {λ}) ∪ (γk \ {λ̄}).

Für jedes i ∈ [ℓ] gilt dann entweder γi = γ+i oder
γi = γ+i ∪ {An}. Außerdem ist (γ1, . . . , γℓ) eine
Resolutionsableitung von γℓ aus Γ. Weil γ+ℓ = ∅ ist, gilt
γℓ = ∅ oder γℓ = {An}. Beh.4

Behauptung 5: Es gilt: Γ ⊢R ∅ oder Γ ⊢R {¬An}.
Beweis: Analog zum Beweis von Behauptung 4 mit Γ− an Stelle

von Γ+. Beh.5

Aus den Behauptungen 4 und 5 folgt Γ ⊢R ∅, entweder direkt
oder durch einmaliges Anwenden der Resolutionsregel auf die
Klauseln {An} und {¬An}. Damit ist Behauptung 1
bewiesen. Beh.1

Version vom 16. Oktober 2023 Seite 88

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Sei nun Γ eine beliebige unerfüllbare Klauselmenge. Gemäß
Endlichkeitssatz (Satz 2.47) existiert eine endliche unerfüllbare
Teilmenge Γ′ von Γ. Wähle eine solche Menge Γ′. Dann gibt es ein
n ∈ N, so dass Γ′ nur Aussagensymbole aus {A0, . . . , An−1} enthält.
Dann folgt aus Behauptung 1, dass Γ′ ⊢R ∅, und daher auch
Γ ⊢R ∅.

Folie 135

Vorsicht

Beim Anwenden der Resolutionsregel (Definition 2.54) darf immer nur
ein Literal λ betrachtet werden.

Beispiel:

Betrachte die Klauselmenge Γ := {γ1, γ2} mit γ1 := {X, Y } und
γ2 := {¬X,¬Y } (wobei X und Y zwei verschiedene Ausagensymbole sind).

Offensichtlicherweise wird Γ von jeder Interpretation I mit I(X) = 1 und
I(Y) = 0 erfüllt. Gemäß Satz 2.59 gibt es also keine
Resolutionswiderlegung von Γ.

Gemäß der Resolutionsregel gibt es für γ1 und γ2 zwei verschiedene
Resolventen: Indem man die Resolutionsregel mit λ := X anwendet, erhält
man {Y,¬Y } als Resolvente von γ1 und γ2. Indem man die Resolutionsregel
mit λ := Y anwendet, erhält man {X,¬X} als Resolvente von γ1 und γ2.

Beachten Sie, dass die Resolutionsregel es nicht erlaubt, sie in einem
einzigen Schritt für zwei verschiedene Literale λ und λ′ anzuwenden. Und
das ist auch gut so, denn sonst könnte man aus γ1 := {X, Y } und
γ2 := {¬X,¬Y } für λ := {X} und λ′ := {Y } als Resolvente die Klausel

(γ1 \ {λ, λ′}) ∪ (γ2 \ {λ, λ′})

herleiten, d.h. die Klausel

({X, Y } \ {X, Y }) ∪ ({¬X,¬Y } \ {¬X,¬Y }),

also die leere Klausel. Dann hätten wir also eine
”
Resolutionswiderlegung“

von Γ, obwohl Γ erfüllbar ist. D.h. Satz 2.59 würde nicht gelten, und
Resolutionsableitungen wären nicht dazu geeignet, Klauselmengen auf
Erfüllbarkeit zu testen.

Folie 136

Version vom 16. Oktober 2023 Seite 89

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Der Satz von Haken

Für eine endliche Klauselmenge Γ sei die Größe von Γ die Zahl

||Γ|| :=
∑
γ∈Γ

|γ|,

wobei |γ| die Anzahl der Literale in γ bezeichnet.

Der folgende (schwer zu beweisende) Satz zeigt, dass es im Worst-Case
exponentiell lange dauern kann, eine Resolutionswiderlegung zu finden.

Satz 2.60 (Satz von Haken, 1985). Es gibt Konstanten c, d > 0 und
endliche Klauselmengen Γn für n ⩾ 1, so dass für alle n ∈ N mit n ⩾ 1 gilt:

1. ||Γn|| ⩽ nc,

2. Γn ist unerfüllbar, und

3. jede Resolutionswiderlegung von Γn hat Länge ⩾ 2dn.

(Hier ohne Beweis)

2.7 Erfüllbarkeitsalgorithmen

Folie 137

Das aussagenlogische Erfüllbarkeitsproblem

Wir betrachten im Folgenden Algorithmen für das

Aussagenlogische Erfüllbarkeitsproblem:

Eingabe: eine Formel φ ∈ AL
Ausgabe:

”
erfüllbar“, falls φ erfüllbar ist;

”
unerfüllbar“, sonst.

Notation. Im Folgenden bezeichnet n immer die Anzahl der in φ
vorkommenden verschiedenen Aussagensymbole, und m := |φ| bezeichnet
die Länge von φ (aufgefasst als Wort über dem Alphabet der
Aussagenlogik).

Folie 138

Version vom 16. Oktober 2023 Seite 90

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Varianten des Erfüllbarkeitsproblems

Berechnen einer erfüllenden Interpretation:
Zusätzlich soll bei erfüllbaren Formeln noch ein Modell berechnet werden,
d.h., ein Tupel (b1, . . . , bn) ∈ {0, 1}n, so dass φ[b1, . . . , bn] = 1.

Einschränkung auf KNF-Formeln:
Oft beschränkt man sich auf Eingabeformeln in KNF oder sogar 3-KNF.
Das ist keine wesentliche Einschränkung, weil sich mit Hilfe des
Tseitin-Verfahrens jede Formel in Linearzeit in eine
erfüllbarkeitsäquivalente Formel in 3-KNF transformieren lässt (Satz 2.53).
Das Erfüllbarkeitsproblem für Formeln in KNF bzw. 3-KNF bezeichnet
man mit SAT bzw. 3-SAT.

Folie 139

Komplexität des Erfüllbarkeitsproblems

Satz 2.61 (Satz von Cook und Levin, ≈1971).
Das aussagenlogische Erfüllbarkeitsproblem (und sogar die Einschränkung
3-SAT) ist NP-vollständig.

Die Komplexitätsklassen P und NP, der Begriff der NP-Vollständigkeit,
sowie ein Beweis des Satzes von Cook und Levin werden in der Vorlesung
Einführung in die Theoretische Informatik behandelt.

Bemerkung.

• Wenn also P ̸= NP ist (was allgemein vermutet wird), gibt es für das
aussagenlogische Erfüllbarkeitsproblem keinen
Polynomialzeitalgorithmus.

• Man vermutet sogar, dass es eine Konstante c > 1 gibt, so dass jeder
Algorithmus für 3-SAT eine worst-case Laufzeit von Ω(cn) hat.

Diese Vermutung ist unter dem Namen
”
Exponential Time

Hypothesis“ (ETH) bekannt.

• Der im Worst-Case beste derzeit bekannte Algorithmus für 3-SAT hat
eine Laufzeit von etwa O(1.4n).

Folie 140

Version vom 16. Oktober 2023 Seite 91

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Der Wahrheitstafelalgorithmus

Sind eine aussagenlogische Formel und eine Interpretation der in ihr
vorkommenden Aussagensymbole gegeben, so kann man die Formel

”
bottom-up“ entlang ihres Syntaxbaums auswerten. Dies führt zu
folgendem Lemma.

Lemma 2.62. Es gibt einen Linearzeitalgorithmus, der bei Eingabe einer
Formel φ(A1, . . . , An) ∈ AL und eines Tupels (b1, . . . , bn) ∈ {0, 1}n den Wert
φ[b1, . . . , bn] berechnet.

Beweis: Übung.

Der folgende Algorithmus löst das aussagenlogische Erfüllbarkeitsproblem.

Wahrheitstafelalgorithmus
Eingabe: eine Formel φ ∈ AL

1. Berechne die Wahrheitstafel für φ.

2. Falls in der letzten Spalte mindestens eine 1 auftaucht, gib
”
erfüllbar“

aus, sonst gib
”
unerfüllbar“ aus.

Laufzeit: O(m · 2n) (sogar im
”
Best-Case“)

Folie 141

Der Resolutionsalgorithmus

Der Resolutionsalgorithmus probiert einfach alle möglichen
Resolutionsableitungen durch und testet so, ob es eine
Resolutionswiderlegung gibt (d.h. die Klauselmenge unerfüllbar ist).

Resolutionsalgorithmus
Eingabe: eine endliche Klauselmenge Γ (entspricht einer KNF-Formel)

1. Wiederhole, bis keine neuen Klauseln mehr generiert werden:
Füge alle Resolventen aller Klauseln aus Γ zu Γ hinzu.

2. Falls ∅ ∈ Γ, gib
”
unerfüllbar“ aus, sonst gib

”
erfüllbar“ aus.

Laufzeit:
2O(n) (weil es bei n Aussagensymbolen 4n verschiedene Klauseln gibt).

Folie 142

Version vom 16. Oktober 2023 Seite 92

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Der Davis-Putnam-Logemann-Loveland Algorithmus

Der DPLL-Algorithmus ist ein in der Praxis sehr erfolgreicher Algorithmus,
der die Wahrheitstafelmethode mit Resolution kombiniert. Ähnlich wie bei
dem Wahrheitstafelalgorithmus durchsucht der DPLL-Algorithmus
systematisch den Raum aller möglichen Interpretationen und testet, ob
diese die gegebene Klauselmenge erfüllen. Resolution wird dabei dazu
verwendet, die Suche geschickt zu steuern und Dinge, die während der
Suche bereits über die Klauselmenge

”
gelernt“ wurden, weiterzuverwenden.

Der DPLL-Algorithmus ist die Basis moderner SAT-Solver, die
Klauselmengen, die aus Millionen von Klauseln und Hunderttausenden von
Aussagensymbolen bestehen, auf Erfüllbarkeit testen können.

Folie 143

DPLL-Algorithmus
Eingabe: eine endliche Klauselmenge Γ (entspricht einer KNF-Formel)

1. Vereinfache Γ. % Details dazu: siehe nächste Folie

2. Falls Γ = ∅, gib
”
erfüllbar“ aus.

3. Falls ∅ ∈ Γ, gib
”
unerfüllbar“ aus.

4. Wähle ein Literal λ.

5. % probiere aus, ob Γ ein Modell hat, bei dem das Literal λ erfüllt wird:
Löse rekursiv Γ ∪

{
{λ}

}
. Falls dies erfüllbar ist, gib

”
erfüllbar“ aus.

6. % probiere aus, ob Γ ein Modell hat, bei dem das Literal λ erfüllt wird:
Löse rekursiv Γ ∪

{
{λ}

}
. Falls dies erfüllbar ist, gib

”
erfüllbar“ aus.

Sonst gib
”
unerfüllbar“ aus.

Folie 144

Vereinfachungsheuristiken, die in Schritt 1. angewendet werden:

• Unit Propagation:
Für alle

”
Einerklauseln“ {λ} ∈ Γ (wobei λ ein Literal ist), bilde alle

Resolventen von {λ} mit anderen Klauseln und streiche anschließend
alle Klauseln, die λ enthalten. Wiederhole dies, so lange es
Einerklauseln gibt.

Präzise:

Version vom 16. Oktober 2023 Seite 93

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Für jede
”
Einerklausel“ {λ} ∈ Γ tue Folgendes:

1. Ersetze jede Klausel γ ∈ Γ durch die Klausel γ \ {λ}.
2. Entferne aus Γ jede Klausel, die das Literal λ enthält.

Wiederhole dies, so lange es in Γ Einerklauseln gibt.

• Pure Literal Rule:
Literale λ, deren Negat λ nirgendwo in der Klauselmenge auftaucht,
können auf 1 gesetzt werden. Alle Klauseln, die ein solches Literal
enthalten, sind dann wahr und können gestrichen werden.
Wiederhole dies, so lange es Literale gibt, deren Negat nirgendwo in
der Klauselmenge auftaucht.

• Streiche Klauseln, die Obermengen von anderen Klauseln sind (dies
ist allerdings ineffizient und wird in der Praxis zumeist weggelassen).

Man sieht leicht, dass das Anwenden dieser Vereinfachungsheuristiken die
Klauselmenge Γ in eine erfüllbarkeitsäquivalente Klauselmenge
transformiert. Hieraus folgt leicht, dass der DPLL-Algorithmus stets die
korrekte Antwort gibt (d.h., er terminiert immer, und er gibt genau dann

”
erfüllbar“ aus, wenn die eingegebene Klauselmenge Γ erfüllbar ist).

Laufzeit des DPLL-Algorithmus:
O(m · 2n) im Worst-Case; in der Praxis aber häufig sehr effizient.

Folie 145

Beispiel 2.63. Sei Γ :={
{X1,¬X5,¬X6, X7}, {¬X1, X2,¬X5}, {¬X1,¬X2,¬X3,¬X5,¬X6},
{X1, X2,¬X4, X7}, {¬X4,¬X6,¬X7}, {X3,¬X5, X7},
{X3,¬X4,¬X5}, {X5,¬X6}, {X5, X4,¬X8},
{X1, X3, X5, X6, X7}, {¬X7, X8}, {¬X6,¬X7,¬X8}

}
Ein Lauf des DPLL-Algorithmus:

(1) Keine Vereinfachung möglich. Γ ̸= ∅. ∅ ̸∈ Γ.
Wähle das Literal2 λ := X6 und wende den Algorithmus rekursiv auf
Γ ∪ {{X6}} an.

2Welches Literal genau gewählt wird, ist im Algorithmus nicht festgelegt. Wir wählen
ein beliebiges Literal aus, das in Γ vorkommt.

Version vom 16. Oktober 2023 Seite 94

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

(2) Unit Propagation mit {X6} liefert die Klauselmenge{
{X1,¬X5, X7}, {¬X1, X2,¬X5}, {¬X1,¬X2,¬X3,¬X5},
{X1, X2,¬X4, X7}, {¬X4,¬X7}, {X3,¬X5, X7},
{X3,¬X4,¬X5}, {X5}, {X5, X4,¬X8},

((((((((((((
{X1, X3, X5, X6, X7}, {¬X7, X8}, {¬X7,¬X8}, ���{X6}

}
(3) Unit Propagation mit {X5} liefert die Klauselmenge{

{X1, X7}, {¬X1, X2}, {¬X1,¬X2,¬X3},
{X1, X2,¬X4, X7}, {¬X4,¬X7}, {X3, X7},
{X3,¬X4}, �

���{X5},(((((((({X5, X4,¬X8},
{¬X7, X8}, {¬X7,¬X8}

}
(4) Pure Literal Rule mit ¬X4 liefert die Klauselmenge

Γ′ :=
{
{X1, X7}, {¬X1, X2}, {¬X1,¬X2,¬X3},

((((((((((
{X1, X2,¬X4, X7},((((((({¬X4,¬X7}, {X3, X7},

������{X3,¬X4},
{¬X7, X8}, {¬X7,¬X8}

}
(5) Keine weitere Vereinfachung von Γ′ möglich. Γ′ ̸= ∅. ∅ ̸∈ Γ′.

Wähle das Literal3 λ := X7 und wende den Algorithmus rekursiv auf
Γ′ ∪ {{X7}} an.

(6) Unit Propagation mit {X7} liefert die Klauselmenge{
������{X1, X7}, {¬X1, X2}, {¬X1,¬X2,¬X3},

������{X3, X7},
{X8}, {¬X8}, ���{X7}

}
(7) Unit Propagation mit {X8} liefert die Klauselmenge{

{¬X1, X2}, {¬X1,¬X2,¬X3},

����{X8}, ∅
}

Jetzt ist ∅ in der Klauselmenge enthalten — d.h. die Klauselmenge ist
nicht erfüllbar. Daher:

3Welches Literal genau gewählt wird, ist im Algorithmus nicht festgelegt. Wir wählen
ein beliebiges Literal aus, das in der Klauselmenge vorkommt.

Version vom 16. Oktober 2023 Seite 95

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

(8) Backtracking, zurück zu Schritt (5):
Wende den Algorithmus auf Γ′ ∪ {{¬X7}} an.

(9) Unit Propagation mit {¬X7} liefert die Klauselmenge{
{X1}, {¬X1, X2}, {¬X1,¬X2,¬X3},
{X3},

������{¬X7, X8},((((((({¬X7,¬X8},����{¬X7}
}
.

Danach führt Unit Propagation mit {X1} zu{
����{X1}, {X2}, {¬X2,¬X3},
{X3}

}
.

Dann führt Unit Propagation mit {X2} zu{
��

��{X2}, {¬X3}, {X3}
}
,

und Unit Propagation mit {¬X3} führt zu{
����{¬X3}, ∅

}
.

Jetzt ist ∅ in der Klauselmenge enthalten — d.h. die Klauselmenge ist
nicht erfüllbar. Daher:

(10) Backtracking, zurück zu Schritt (1):
Wende den Algorithmus auf Γ ∪ {{¬X6}} an.

(11) Unit Propagation mit {¬X6} liefert die Klauselmenge{
(((((((((((
{X1,¬X5,¬X6, X7}, {¬X1, X2,¬X5},

((((((((((((((((

{¬X1,¬X2,¬X3,¬X5,¬X6},
{X1, X2,¬X4, X7}, ((((((((((

{¬X4,¬X6,¬X7}, {X3,¬X5, X7},
{X3,¬X4,¬X5}, ������{X5,¬X6}, {X5, X4,¬X8},
{X1, X3, X5, X7}, {¬X7, X8}, ((((((((((

{¬X6,¬X7,¬X8}, ����{¬X6}
}

Etwas übersichtlicher aufgeschrieben, also die Klauselmenge{
{¬X1, X2,¬X5},
{X1, X2,¬X4, X7}, {X3,¬X5, X7},
{X3,¬X4,¬X5}, {X5, X4,¬X8},
{X1, X3, X5, X7}, {¬X7, X8}

}
Version vom 16. Oktober 2023 Seite 96

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

(12) Pure Literal Rule mit X2 und X3 liefert die Klauselmenge{
((((((((({¬X1, X2,¬X5},

((((((((((
{X1, X2,¬X4, X7},(((((((({X3,¬X5, X7},

((((((((({X3,¬X4,¬X5}, {X5, X4,¬X8},

((((((((((
{X1, X3, X5, X7}, {¬X7, X8}

}
,

etwas übersichtlicher aufgeschrieben also die Klauselmenge{
{X5, X4,¬X8}, {¬X7, X8}

}
.

(13) Pure Literal Rule mit X5 und ¬X7 liefert die Klauselmenge

Γ′′ :=
{
(((((((({X5, X4,¬X8},������{¬X7, X8}

}
,

d.h. Γ′′ ist die leere Klauselmenge ∅.

(14) Also wird
”
erfüllbar“ ausgegeben.

2.8 Hornformeln
Folie 146

Hornklauseln und Hornformeln

Hornformeln sind spezielle aussagenlogische Formeln, die die Basis der
logischen Programmierung bilden, und für die das Erfüllbarkeitsproblem
effizient gelöst werden kann.

Definition 2.64. Eine Hornklausel ist eine disjunktive Klausel, in der
höchstens ein positives Literal vorkommt.
Eine Hornformel ist eine Konjunktion endlich vieler Hornklauseln.

Beispiele.

• {¬X,¬Y,¬Z} (bzw. ¬X ∨ ¬Y ∨ ¬Z) ist eine Hornklausel.

• {¬X,¬Y, Z} (bzw. ¬X ∨ ¬Y ∨ Z) ist eine Hornklausel.

• {¬X, Y, Z} (bzw. ¬X ∨ Y ∨ Z) ist keine Hornklausel.

• {X} (bzw. X) ist eine Hornklausel.

• ∅ ist eine Hornklausel.

• (X ∨ ¬Y) ∧ (¬Z ∨ ¬X ∨ ¬Y) ∧ Y ist eine Hornformel.

Folie 147

Version vom 16. Oktober 2023 Seite 97

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Hornklauseln als Implikationen

• Eine Hornklausel der Form {¬X1, . . . ,¬Xn−1, Xn} (bzw.
¬X1 ∨ · · · ∨ ¬Xn−1 ∨Xn) ist äquivalent zur Formel

(X1 ∧ · · · ∧Xn−1)→ Xn.

Solche Klauseln werden auch
”
Regeln“ (oder

”
Prozedurklauseln“)

genannt.

• Eine Hornklausel der Form {¬X1, . . . ,¬Xn−1} ist äquivalent zur
Formel

(X1 ∧ . . . ∧Xn−1)→ 0.

Solche Klauseln werden auch
”
Zielklauseln“ (oder

”
Frageklauseln“)

genannt.

• Eine Hornklausel der Form {X1} ist äquivalent zur Formel

1→ X1.

Solche Klauseln werden auch
”
Tatsachenklausel“ genannt.

• Die leere (Horn-)Klausel ∅ ist unerfüllbar und daher äquivalent zur
Formel

1→ 0.

Folie 148

Der Streichungsalgorithmus

Der folgende Algorithmus löst das Erfüllbarkeitsproblem für Hornformeln in
Polynomialzeit.
Wir geben zunächst den Algorithmus an, betrachten dann Beispielläufe
davon, analysieren die Laufzeit und zeigen danach, dass der Algorithmus
korrekt ist, d.h. stets die richtige Antwort gibt.

Folie 149

Streichungsalgorithmus
Eingabe: eine endliche Menge Γ von Hornklauseln

1. Wiederhole:

2. Falls ∅ ∈ Γ, so halte mit Ausgabe
”
unerfüllbar“.

Version vom 16. Oktober 2023 Seite 98

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

3. Falls Γ keine Tatsachenklausel (d.h. Klausel {X} mit X ∈ AS)
enthält, so halte mit Ausgabe

”
erfüllbar“.

% Γ wird erfüllt, indem jedes Aussagensymbol mit 0 belegt wird

4. Wähle eine Tatsachenklausel {X} ∈ Γ.
% Idee: Um Γ zu erfüllen, muss X mit dem Wert 1 belegt werden

5. Streiche ¬X aus allen Klauseln δ ∈ Γ, die das Literal ¬X
enthalten.
% Wenn X den Wert 1 hat, trägt ¬X nichts zum Erfüllen einer Klausel bei

6. Streiche aus Γ alle Klauseln δ ∈ Γ, die das Literal X enthalten
(d.h. entferne aus Γ alle δ ∈ Γ, für die gilt: X ∈ δ).
% Wenn X den Wert 1 hat, sind solche Klauseln erfüllt

Folie 150

Beispiele 2.65. Wir wenden den Streichungsalgorithmus auf die beiden
folgenden Mengen von Hornklauseln an.

(a) Γa :=
{
S → 0, (P ∧Q)→ R, (S ∧R)→ 0, (U ∧ T ∧Q)→ P,

(U ∧ T)→ Q, 1→ U, 1→ T
}

(b) Γb :=
{
(Q ∧ P)→ T, (U ∧ T ∧Q)→ R, (U ∧ T)→ Q,

1→ U, R→ 0, 1→ T
}

(a): Beispiel-Lauf des Streichungsalgorithmus bei Eingabe von Γa:

Beachte, dass Γa der folgenden Klauselmenge entspricht:

Γ =
{
{¬S}, {¬P,¬Q,R}, {¬S,¬R}, {¬U,¬T,¬Q,P},
{¬U,¬T,Q}, {U}, {T}

}
1. Schleifendurchlauf:
∅ ̸∈ Γ. Wähle {U} ∈ Γ, streiche ¬U aus allen Klauseln in Γ, und streiche
alle Klauseln, die U enthalten:

Γ =
{
{¬S}, {¬P,¬Q,R}, {¬S,¬R}, {���¬U, ¬T,¬Q,P},
{���¬U, ¬T,Q}, ���HHH{U}, {T}

}
,

d.h.

Γ =
{
{¬S}, {¬P,¬Q,R}, {¬S,¬R}, {¬T,¬Q,P},
{¬T,Q}, {T}

}
.

Version vom 16. Oktober 2023 Seite 99

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

2. Schleifendurchlauf:
∅ ̸∈ Γ. Wähle {T} ∈ Γ, streiche ¬T aus allen Klauseln in Γ, und streiche
alle Klauseln, die T enthalten:

Γ =
{
{¬S}, {¬P,¬Q,R}, {¬S,¬R}, {���¬T, ¬Q,P},
{���¬T, Q}, �

��HHH{T}
}
,

d.h.
Γ =

{
{¬S}, {¬P,¬Q,R}, {¬S,¬R}, {¬Q,P},
{Q}

}
.

3. Schleifendurchlauf:
∅ ̸∈ Γ. Wähle {Q} ∈ Γ, streiche ¬Q aus allen Klauseln in Γ, und streiche
alle Klauseln, die Q enthalten:

Γ =
{
{¬S}, {¬P,���¬Q, R}, {¬S,¬R}, {���¬Q, P},

���HHH{Q}
}
,

d.h.
Γ =

{
{¬S}, {¬P,R}, {¬S,¬R}, {P}

}
.

4. Schleifendurchlauf:
∅ ̸∈ Γ. Wähle {P} ∈ Γ, streiche ¬P aus allen Klauseln in Γ, und streiche
alle Klauseln, die P enthalten:

Γ =
{
{¬S}, {���¬P, R}, {¬S,¬R}, �

��H
HH{P}

}
,

d.h.
Γ =

{
{¬S}, {R}, {¬S,¬R}

}
.

5. Schleifendurchlauf:
∅ ̸∈ Γ. Wähle {R} ∈ Γ, streiche ¬R aus allen Klauseln in Γ, und streiche
alle Klauseln, die R enthalten:

Γ =
{
{¬S}, ���HHH{R}, {¬S,��¬R }

}
d.h.

Γ =
{
{¬S}, {¬S}

}
6. Schleifendurchlauf:
∅ ̸∈ Γ. Γ enthält keine Tatsachenklausel.
D.h.: Halte mit Ausgabe

”
erfüllbar“.

(b) Beispiel-Lauf des Streichungsalgorithmus bei Eingabe von Γb:

Version vom 16. Oktober 2023 Seite 100

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Beachte, dass Γb der folgenden Klauselmenge entspricht:

Γ =
{
{¬Q,¬P, T}, {¬U,¬T,¬Q, R}, {¬U,¬T, Q},
{U}, {¬R}, {T}

}
1. Schleifendurchlauf:
∅ ̸∈ Γ. Wähle {U} ∈ Γ, streiche ¬U aus allen Klauseln in Γ, und streiche
alle Klauseln, die U enthalten:

Γ =
{
{¬Q,¬P, T}, {���¬U, ¬T,¬Q, R}, {���¬U, ¬T, Q},

���HHH{U}, {¬R}, {T}
}
,

d.h.

Γ =
{
{¬Q,¬P, T}, {¬T,¬Q, R}, {¬T, Q}, {¬R}, {T}

}
.

2. Schleifendurchlauf:
∅ ̸∈ Γ. Wähle {T} ∈ Γ, streiche ¬T aus allen Klauseln in Γ, und streiche
alle Klauseln, die T enthalten:

Γ =
{
((((((((hhhhhhhh{¬Q,¬P, T}, {���¬T, ¬Q, R}, {���¬T, Q}, {¬R}, �

��HHH{T}
}
,

d.h.
Γ =

{
{¬Q, R}, {Q}, {¬R}

}
.

3. Schleifendurchlauf:
∅ ̸∈ Γ. Wähle {Q} ∈ Γ, streiche ¬Q aus allen Klauseln in Γ, und streiche
alle Klauseln, die Q enthalten:

Γ =
{
{���¬Q, R}, �

��HHH{Q}, {¬R}
}
,

d.h.
Γ =

{
{R}, {¬R}

}
.

4. Schleifendurchlauf:
∅ ̸∈ Γ. Wähle {R} ∈ Γ, streiche ¬R aus allen Klauseln in Γ, und streiche
alle Klauseln, die R enthalten:

Γ =
{
�

��HHH{R}, {��¬R }
}
,

d.h.
Γ =

{
∅
}
.

5. Schleifendurchlauf:
∅ ∈ Γ. D.h.: Halte mit Ausgabe

”
unerfüllbar“.

Folie 151

Version vom 16. Oktober 2023 Seite 101

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Laufzeit des Streichungsalgorithmus

Man sieht leicht, dass in jedem Schleifendurchlauf die Anzahl der Klauseln
in Γ kleiner wird. Daher terminiert der Algorithmus nach maximal
m Schleifendurchläufen, wobei m die Anzahl der Klauseln in der
Eingabemenge Γ ist.

In jedem einzelnen Schleifendurchlauf betrachtet der Algorithmus alle
Klauseln der aktuellen Klauselmenge und führt dabei O(n) Schritte durch,
wobei n = ||Γ|| die Größe der Klauselmenge ist.

Insgesamt terminiert der Streichungsalgorithmus also nach O(m·n)
Schritten, d.h. in Zeit polynomiell in der Größe von Γ.

Insgesamt erhalten wir also folgenden Satz:

Satz 2.66. Die Laufzeit des Streichungsalgorithmus ist O(m·n), wobei
m = |Γ| die Anzahl der Hornklauseln in der eingegebenen Menge Γ und
n = ||Γ|| die Größe von Γ ist.

Bemerkung. Eine Variante des Streichungsalgorithmus läuft sogar in
Linearzeit, d.h. in Zeit O(n).

Um nachzuweisen, dass der Streichungsalgorithmus stets die korrekte
Antwort gibt, nutzen wir das folgende Lemma.

Folie 152

Der Streichungsalgorithmus und Resolution

Lemma 2.67. Sei Γ0 eine endliche Menge von Hornklauseln und δ eine
Klausel, die zu irgendeinem Zeitpunkt während des Laufs des
Streichungsalgorithmus bei Eingabe Γ0 in der vom Algorithmus
gespeicherten Menge Γ liegt. Dann gilt: Γ0 ⊢R δ.

Beweis.
Wir betrachten einen Lauf des Streichungsalgorithmus bei Eingabe Γ0. Sei ℓ
die Anzahl der Durchläufe der Schleife, die der Algorithmus durchführt. Für
jedes i ∈ {1, . . . , ℓ} sei Γi die Menge Γ am Ende des i-ten Durchlaufs der
Schleife. Per Induktion nach i zeigen wir, dass für alle i ∈ {0, . . . , ℓ} gilt:

Für jedes δ ∈ Γi ist Γ0 ⊢R δ.

Version vom 16. Oktober 2023 Seite 102

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Induktionsanfang: i = 0:
Offensichtlicherweise gilt für alle δ ∈ Γ0, dass Γ0 ⊢R δ.

Induktionsschritt: i→ i+1: Sei δ ∈ Γi+1.
Falls δ ∈ Γi, so gilt Γ0 ⊢R δ gemäß Induktionsannahme.
Falls δ ̸∈ Γi, so wird δ beim i+1-ten Schleifendurchlauf in Zeile 5 neu
erzeugt. Also gibt es ein Aussagensymbol X mit {X} ∈ Γi und eine Klausel
δ′ ∈ Γi, so dass ¬X ∈ δ′ und δ = δ′ \ {¬X}. Dann ist δ eine Resolvente von
δ′ und {X}. Gemäß Induktionsannahme gilt Γ0 ⊢R δ′ und Γ0 ⊢R {X}. Also
gilt auch Γ0 ⊢R δ.

Folie 153

Korrektheit des Streichungsalgorithmus

Satz 2.68. Der Streichungsalgorithmus ist korrekt.
Das heißt, bei Eingabe einer endlichen Menge Γ0 von Hornklauseln hält der
Algorithmus mit Ausgabe

”
erfüllbar“, falls Γ0 erfüllbar ist, und mit Ausgabe

”
nicht erfüllbar“, falls Γ0 unerfüllbar ist.

Beweis.
Wir betrachten einen Lauf des Streichungsalgorithmus bei Eingabe Γ0.
Sei ℓ die Anzahl der Durchläufe der Schleife, die der Algorithmus
durchführt. Für i ∈ {1, . . . , ℓ} sei Γi die Menge Γ am Ende des i-ten
Durchlaufs der Schleife. Für jedes i mit 1 ⩽ i < ℓ sei Xi das
Aussagensymbol, so dass im i-ten Durchlauf in Zeile 4 die Tatsachenklausel
{Xi} ∈ Γi−1 ausgewählt wird.

Fall 1: Der Algorithmus hält beim ℓ-ten Durchlauf der Schleife in Zeile 2.
Dann gilt ∅ ∈ Γℓ−1 und daher gilt nach Lemma 2.67, dass Γ0 ⊢R ∅. Also
besitzt Γ0 eine Resolutionswiderlegung und ist daher gemäß Satz 2.59
unerfüllbar.

Fall 2: Der Algorithmus hält beim ℓ-ten Durchlauf der Schleife in Zeile 3.
Dann enthält jede Klausel von Γℓ−1 mindestens ein negatives Literal (denn
Γ0 ist laut Voraussetzung eine Menge von Hornklauseln, und der
Algorithmus geht so vor, dass auch jedes Γi eine Menge von Hornklauseln
ist). Also erfüllt die

”
Nullinterpretation“ I0 mit I0(Y) := 0 für alle Y ∈ AS

die Klauselmenge Γℓ−1. Wir definieren die Interpretation I durch

I(X1) = I(X2) = · · · = I(Xℓ−1) = 1 , und

I(Z) = 0 für alle Z ∈ AS \ {X1, . . . , Xℓ−1}.

Version vom 16. Oktober 2023 Seite 103

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Per Induktion nach i zeigen wir, dass für alle i ∈ {ℓ−1, ℓ−2, . . . , 0} gilt:

I |= Γi.

Für i = 0 erhalten wir dann, dass I |= Γ0; insbesondere ist Γ0 also erfüllbar.

Induktionsanfang: i = ℓ−1: Wir wissen, dass I0 |= Γℓ−1. Außerdem
kommt gemäß der Konstruktion des Streichungsalgorithmus in Γℓ−1

keins der Symbole X1, . . . , Xℓ−1 vor. Auf allen anderen
Aussagensymbolen stimmen I und I0 überein. Gemäß
Koinzidenzlemma gilt also I |= Γℓ−1.

Induktionsschritt: i→ i−1: Gemäß Induktionsannahme gilt I |= Γi.
Ziel ist, zu zeigen, dass auch gilt: I |= Γi−1. Sei dazu δ eine beliebige
Klausel aus Γi−1.

Fall 1: δ ∈ Γi.

Dann gilt I |= δ gemäß Induktionsannahme.

Fall 2: δ ∈ Γi−1 \ Γi.
Fall 2.1: δ ist im i-ten Schleifendurchlauf gemäß Zeile 5

modifiziert worden, d.h. δ = δ′ ∪ {¬Xi} für ein δ′ ∈ Γi.
Gemäß Induktionsannahme gilt I |= δ′, und daher gilt auch
I |= δ.

Fall 2.2: δ ist im i-ten Schleifendurchlauf gemäß Zeile 6 aus der
Klauselmenge entfernt worden, d.h. Xi ∈ δ.
Wegen I(Xi) = 1 gilt dann I |= δ.

Version vom 16. Oktober 2023 Seite 104

Kapitel 3

Logik erster Stufe

3.1 Strukturen

Folie 154

Strukturen

Wir führen einen allgemeinen Strukturbegriff ein, der es uns erlaubt:

• mathematische Strukturen wie Gruppen, Körper, Vektorräume,
Graphen, etc.

• und die gängigen Modelle der Informatik wie Transitionssysteme,
endliche Automaten, relationale Datenbanken, Schaltkreise, etc.

zu beschreiben.

Folie 155

Signaturen

Definition 3.1. Eine Signatur (auch Vokabular oder Symbolmenge) ist eine
Menge σ von Relations-, Funktions- und/oder Konstantensymbolen.

Jedes Relationsymbol R ∈ σ und jedes Funktionssymbol f ∈ σ hat eine
Stelligkeit (bzw. Arität, engl. arity)

ar(R) ∈ N \ {0} bzw. ar(f) ∈ N \ {0}.

Folie 156

Version vom 16. Oktober 2023 Seite 105

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Notation

• In diesem Kapitel bezeichnet der griechische Buchstabe σ (in Worten:
sigma) immer eine Signatur.

• Für Relationssymbole verwenden wir normalerweise Großbuchstaben
wie R,P,Q,E, für Funktionsymbole verwenden wir meistens
Kleinbuchstaben wie f, g, h und für Konstantensymbole
Kleinbuchstaben wie c, d.

• Gelegentlich verwenden wir als Relations- und Funktionssymbole auch
Zeichen wie ⩽ (2-stelliges Relationssymbol) und +, · (2-stellige
Funktionssymbole), und wir verwenden 0, 1 als Konstantensymbole.

• Die Stelligkeit eines Relations- oder Funktionssymbols deuten wir
häufig an, indem wir sie mit Schrägstrich hinter das Symbol schreiben.

Beispiel. Die Notation R/2 deutet an, dass R ein 2-stelliges
Relationssymbol ist.

Folie 157

Strukturen

Definition 3.2. Eine σ-Struktur A besteht aus folgenden Komponenten:

• einer nicht-leeren Menge A, dem Universum von A (auch: Träger,
engl. universe, domain),

• für jedes Relationssymbol R ∈ σ und für k := ar(R) gibt es eine
k-stellige Relation RA ⊆ Ak,

• für jedes Funktionssymbol f ∈ σ und für k := ar(f) gibt es eine
k-stellige Funktion fA : Ak → A, und

• für jedes Konstantensymbol c ∈ σ gibt es ein Element cA ∈ A.

Folie 158

Notation.

Version vom 16. Oktober 2023 Seite 106

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

• Wir beschreiben σ-Strukturen oft in Tupelschreibweise:
A =

(
A, (SA)S∈σ

)
.

Falls σ = {S1, . . . , Sk} endlich ist, schreiben wir auch
A =

(
A, SA

1 , . . . , S
A
k

)
.

• Wir bezeichnen σ-Strukturen meistens mit
”
kalligraphischen“

Buchstaben wie A,B, C,W , Das Universum der Strukturen
bezeichnen wir dann durch die entsprechenden lateinischen
Großbuchstaben, also A,B,C,W,

Folie 159

Mengen

Für die leere Signatur σ := ∅ bestehen σ-Strukturen nur aus ihrem
Universum, sind also einfach (nicht-leere) Mengen.

Folie 160

Graphen

In diesem Kapitel bezeichnet E immer ein zweistelliges Relationssymbol.

• Ein gerichteter Graph (kurz: Digraph) G = (V G, EG) mit
Knotenmenge V G und Kantenmenge EG ist eine {E}-Struktur. Das
Universum ist die Knotenmenge V G.

• Einen ungerichteten Graphen G = (V G, EG) mit Knotenmenge V G und
Kantenmenge EG ⊆ {e ⊆ V G : |e| = 2} repräsentieren wir durch eine
{E}-Struktur A = (A,EA) mit Universum A = V G und Relation
EA = {(u, v) : {u, v} ∈ EG}. Insbesondere ist EA symmetrisch und
irreflexiv im Sinne der folgenden Definition.

Folie 161

Eigenschaften zweistelliger Relationen

Definition 3.3. Sei A = (A,RA), wobei RA eine zweistellige Relation über
der Menge A ist (d.h. (A,RA) ist ein gerichteter Graph).

(a) RA heißt reflexiv, wenn für alle a ∈ A gilt: (a, a) ∈ RA.

RA heißt irreflexiv, wenn für alle a ∈ A gilt: (a, a) ̸∈ RA.

Version vom 16. Oktober 2023 Seite 107

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

(b) RA heißt symmetrisch, wenn für alle a, b ∈ A gilt:

Wenn (a, b) ∈ RA, dann ist auch (b, a) ∈ RA.

RA heißt antisymmetrisch, wenn für alle a, b ∈ A mit a ̸= b gilt:

Wenn (a, b) ∈ RA, dann (b, a) ̸∈ RA.

(c) RA heißt transitiv, wenn für alle a, b, c ∈ A gilt:

Wenn (a, b) ∈ RA und (b, c) ∈ RA, dann auch (a, c) ∈ RA.

(d) RA heißt konnex, wenn für alle a, b ∈ A gilt:

(a, b) ∈ RA oder (b, a) ∈ RA oder a = b.

Folie 162

Äquivalenzrelationen

Eine Äquivalenzrelation auf einer Menge A ist eine 2-stellige Relation über
A, die reflexiv, transitiv und symmetrisch ist.

Beispiele.

(a) Gleichheit: Für jede Menge M ist
{(m,m) : m ∈M} eine Äquivalenzrelation auf M .

(b) Gleichmächtigkeit: Für jede endliche Menge M und deren Potenzmenge
P(M) = {N : N ⊆M} gilt:
{(A,B) : A,B ⊆M, |A| = |B|} ist eine Äquivalenzrelation auf P(M).

(c) Logische Äquivalenz: Die Relation
{ (φ, ψ) : φ, ψ ∈ AL, φ ≡ ψ } ist eine Äquivalenzrelation auf der
Menge AL aller aussagenlogischen Formeln.

Folie 163

Version vom 16. Oktober 2023 Seite 108

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Ordnungen

In diesem Kapitel bezeichnet ⩽ sei immer ein zweistelliges Relationssymbol.
Für ⩽ verwenden wir Infixschreibweise, d.h., wir schreiben x ⩽A y statt
(x, y) ∈ ⩽A.

(a) Eine Präordnung ist eine {⩽}-Struktur A = (A,⩽A), bei der ⩽A

reflexiv und transitiv ist.

(b) Eine partielle Ordnung (oder Halbordnung) ist eine Präordnung A, bei
der ⩽A antisymmetrisch ist.

(c) Eine lineare (oder totale) Ordnung ist eine partielle Ordnung A, bei der
⩽A konnex ist.

Beispiele.

(a) Die
”
kleiner-gleich“ Relation auf N (oder Z oder R) ist eine lineare

Ordnung; die
”
größer-gleich“ auch.

(b) Für jede Menge M ist die Teilmengenrelation ⊆ eine partielle Ordnung
auf der Potenzmenge P(M); aber keine lineare Ordnung, sofern M
mindestens zwei Elemente besitzt (denn wenn a, b zwei verschiedene
Elemente in M sind, gilt: {a} ̸⊆ {b} und {b} ̸⊆ {a} und {a} ≠ {b}, und
daher ist die Teilmengenrelation nicht konnex). Dasselbe gilt für die
Obermengenrelation ⊇.

(c) Die Folgerungsrelation für aussagenlogische Formeln:
{(φ, ψ) : φ, ψ ∈ AL, φ |= ψ} ist eine Präordnung auf der Menge AL,
aber keine partielle Ordnung (denn beispielsweise gilt für φ := 1 und
ψ := ¬0, dass φ |= ψ und ψ |= φ und φ ̸= ψ, und daher ist die
Folgerungsrelation nicht antisymmetrisch).

Folie 164

Arithmetische Strukturen

+ und · seien immer zweistellige Funktionssymbole, für die wir
Infixschreibweise verwenden. 0 und 1 seien Konstantensymbole.

• Der Körper der reellen Zahlen ist die {+, ·, 0, 1}-Struktur AR, so dass
AR := R, +AR und ·AR sind die normale Addition bzw. Multiplikation
auf R, und 0AR := 0, 1AR := 1.

Version vom 16. Oktober 2023 Seite 109

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

• Der Ring der ganzen Zahlen ist die {+, ·, 0, 1}-Struktur AZ, so dass
AZ := Z, +AZ und ·AZ sind die normale Addition bzw. Multiplikation
auf Z, und 0AZ := 0, 1AZ := 1.

• Das Standardmodell der Arithmetik ist die {+, ·,⩽, 0, 1}-Struktur AN,
so dass AN := N ist; die Funktionen +AN und ·AN und die Relation
⩽AN sind die normale Addition, Multiplikation bzw. Ordnung auf N,
und 0AN := 0, 1AN := 1.

• Der zweielementige Körper ist die {+, ·, 0, 1}-Struktur F2 mit
Universum F2 := {0, 1}, den Funktionen +F2 und ·F2 der Addition
bzw. Multiplikation modulo 2, und 0F2 := 0, 1F2 := 1.

Folie 165

Wörter als Strukturen

Sei Σ ein endliches, nicht-leeres Alphabet. Für jedes a ∈ Σ sei Pa ein
einstelliges Relationssymbol, und es sei

σΣ := {⩽} ∪ {Pa : a ∈ Σ}.

Für jedes nicht-leere Wort w := w1 · · ·wn ∈ Σ∗ mit w1, . . . , wn ∈ Σ sei Aw
die σΣ-Struktur

• mit Universum Aw := [n], für die gilt:

• ⩽Aw ist die natürliche lineare Ordnung auf [n],
d.h., ⩽Aw= { (i, j) : i, j ∈ N, 1 ⩽ i ⩽ j ⩽ n },

• Für jedes a ∈ Σ ist PAw
a := {i ∈ [n] : wi = a}.

Beispiel. Sei Σ := {a, b, c}.
Für w := abacaba ist Aw die folgende σΣ-Struktur:

• Aw = {1, 2, 3, 4, 5, 6, 7}

• ⩽Aw = { (i, j) : i, j ∈ N, 1 ⩽ i ⩽ j ⩽ 7 }

• PAw
a = {1, 3, 5, 7}, PAw

b = {2, 6}, PAw
c = {4}.

Folie 166

Version vom 16. Oktober 2023 Seite 110

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Wortstrukturen

Eine Wortstruktur über Σ ist eine σΣ-Struktur A für die gilt:

• das Universum A von A ist endlich,

• (A,⩽A) ist eine lineare Ordnung,

• für jedes i ∈ A gibt es genau ein a ∈ Σ, so dass i ∈ PA
a .

Beispiel 3.4. Sei Σ := {a, b, c}. Die σΣ-Struktur B mit

• Universum B = {♢,♡,♠,♣},

• linearer Ordnung ⩽B, die besagt, dass ♢ < ♡ < ♠ < ♣ ist, d.h.

⩽B = {(♢,♢), (♢,♡), (♢,♠), (♢,♣), (♡,♡), (♡,♠), (♡,♣), (♠,♠), (♠,♣), (♣,♣)},

• PB
a = {♢, ♣}

• PB
b = {♡, ♠},

• PB
c = ∅,

ist eine Wortstruktur, die das Wort w = abba repräsentiert.

Folie 167

Relationale Datenbanken

• Relationale Datenbanken bestehen aus endlich vielen endlichen
Tabellen.

• Jede solche Tabelle lässt sich als Relation auffassen, die Zeilen der
Tabelle entsprechen dabei den Tupeln in der Relation.

• Eine relationale Datenbank entspricht dann einer endlichen Struktur,
deren Universum aus allen potentiellen Einträgen in einzelnen Zellen
der Tabellen besteht, und die für jede Tabelle in der Datenbank eine
Relation enthält.

Folie 168

Version vom 16. Oktober 2023 Seite 111

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Beispiel: Eine Kinodatenbank

Kino
Name Adresse Stadtteil Telefonnummer
Babylon Dresdner Str. 126 Kreuzberg 030 61 60 96 93
Casablanca Friedenstr. 12-13 Adlershof 030 67 75 75 2
Filmtheater am Friedrichshain Bötzowstr. 1-5 Prenzlauer Berg 030 42 84 51 88
Kino International Karl-Marx-Allee 33 Mitte 030 24 75 60 11
Moviemento Kotbusser Damm 22 Kreuzberg 030 692 47 85
Urania An der Urania 17 Schöneberg 030 21 89 09 1

Film
Name Regisseur Schauspieler
Alien Ridley Scott Sigourney Weaver
Blade Runner Ridley Scott Harrison Ford
Blade Runner Ridley Scott Sean Young
Brazil Terry Gilliam Jonathan Pryce
Brazil Terry Gilliam Kim Greist
Casablanca Michael Curtiz Humphrey Bogart
Casablanca Michael Curtiz Ingrid Bergmann
Gravity Alfonso Cuaron Sandra Bullock
Gravity Alfonso Cuaron George Clooney
Monuments Men George Clooney George Clooney
Monuments Men George Clooney Matt Damon
Resident Evil Paul Anderson Milla Jovovich
Terminator James Cameron Arnold Schwarzenegger
Terminator James Cameron Linda Hamilton
Terminator James Cameron Michael Biehn

· · · · · · · · ·

Folie 169
Programm
Kino Film Zeit
Babylon Casablanca 17:30
Babylon Gravity 20:15
Casablanca Blade Runner 15:30
Casablanca Alien 18:15
Casablanca Blade Runner 20:30
Casablanca Resident Evil 20:30
Filmtheater am Friedrichshain Resident Evil 20:00
Filmtheater am Friedrichshain Resident Evil 21:30
Filmtheater am Friedrichshain Resident Evil 23:00
Kino International Casablanca 18:00
Kino International Brazil 20:00
Kino International Brazil 22:00
Moviemento Gravity 17:00
Moviemento Gravity 19:30
Moviemento Alien 22:00
Urania Monuments Men 17:00
Urania Monuments Men 20:00

Folie 170

Die Kinodatenbank als Struktur

Signatur: σKINO := { RKino/4, RFilm/3, RProg/3 } ∪ { ‘c’ : c ∈ ASCII∗ }

Version vom 16. Oktober 2023 Seite 112

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Die Kinodatenbank wird dargestellt als σKINO-Struktur D.
Universum:

D := ASCII∗ ⊇ { Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93,

Casablanca, . . . , 20:00}.

Relationen:

RD
Kino :=

{
(Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93),

(Casablanca, Friedenstr. 12-13, Adlershof, 030 67 75 75 2),

(Filmtheater am Friedrichshain, Bötzowstr. 1-5, Prenzlauer Berg, 030 42 84 51 88),

(Kino International, Karl-Marx-Allee 33, Mitte, 030 24 75 60 11),

(Moviemento, Kotbusser Damm 22, Kreuzberg, 030 692 47 85),

(Urania, An der Urania 17, Schöneberg, 030 21 89 09 1)
}

RD
Film :=

{
(Alien, Ridley Scott, Sigourney Weaver),

(Blade Runner, Ridley Scott, Harrison Ford), . . .
}

RD
Prog :=

{
(Babylon, Casablanca, 17:30),

(Babylon, Gravity, 20:15), . . .
}
.

Konstanten: ‘c’D := c, für jedes c ∈ ASCII∗.

D.h.: jedes Konstantensymbol wird durch den zwischen den Hochkommas

stehenden Text interpretiert.

Folie 171

Redukte und Expansionen

Definition 3.5. Seien σ und τ Signaturen mit σ ⊆ τ .

(a) Das σ-Redukt einer τ -Struktur B ist die σ-Struktur B|σ mit B|σ := B
und SB|σ := SB für jedes S ∈ σ.
D.h.: Ist B =

(
B, (SB)S∈τ

)
, so ist B|σ =

(
B, (SB)S∈σ

)
.

(b) Eine τ -Struktur B ist eine τ -Expansion einer σ-Struktur A, wenn
A = B|σ.

Beispiel. Das {+, 0}-Redukt des Standardmodells der Arithmetik ist die
Struktur

AN|{+,0} = (N,+AN , 0AN),

wobei +AN die natürliche Addition auf N und 0AN die natürliche Zahl 0 ist.

Man bezeichnet diese Struktur als das Standardmodell der Presburger
Arithmetik.

Folie 172

Version vom 16. Oktober 2023 Seite 113

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Prinzipielle Gleichheit von Strukturen

Frage: Wann sind zwei σ-Strukturen A und B
”
prinzipiell gleich“?

Antwort: Wenn B aus A entsteht, indem man die Elemente des Universums
von A umbenennt.

Dies wird in der folgenden Definition präzisiert.

Folie 173

Isomorphismen

Definition 3.6. Seien A und B σ-Strukturen. Ein Isomorphismus von A
nach B ist eine Abbildung π : A→ B mit folgenden Eigenschaften:

1. π ist bijektiv.

2. Für alle k ∈ N \ {0}, alle k-stelligen Relationssymbole R ∈ σ und alle
k-Tupel (a1, . . . , ak) ∈ Ak gilt:

(a1, . . . , ak) ∈ RA ⇐⇒
(
π(a1), . . . , π(ak)

)
∈ RB.

3. Für alle Konstantensymbole c ∈ σ gilt:

π
(
cA

)
= cB.

4. Für alle k ∈ N \ {0}, alle k-stelligen Funktionssymbole f ∈ σ und alle
k-Tupel (a1, . . . , ak) ∈ Ak gilt:

π
(
fA(a1, . . . , ak)

)
= fB(π(a1), . . . , π(ak)).

Folie 174

Isomorphie

Notation. Seien A und B σ-Strukturen. Wir schreiben π : A ∼= B, um
anzudeuten, dass π ein Isomorphismus von A nach B ist.

Definition 3.7. Zwei σ-Strukturen A und B heißen isomorph (wir
schreiben: A ∼= B), wenn es einen Isomorphismus von A nach B gibt.

Version vom 16. Oktober 2023 Seite 114

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Folie 175

Beispiele 3.8.

(a) Seien A,B nicht-leere Mengen. Dann sind die ∅-Strukturen A := (A)
und B := (B) genau dann isomorph, wenn A und B gleichmächtig sind
(d.h. es gibt eine Bijektion von A nach B).

Folie 176

(b) Seien A = (A,EA) und B = (B,EB) die beiden folgenden Digraphen:

Dann ist π : A→ B mit

i 1 2 3 4 5 6 7 8
π(i) a b c d h g f e

ein Isomorphismus von A nach B.

Folie 177

(c) Sei A = (A,⩽A) mit A = {1, 2, 3, 4} und

⩽A = { (i, j) : i, j ∈ N, 1 ⩽ i ⩽ j ⩽ 4 },

und sei B = (B,⩽A) mit B = {♢,♡,♠,♣}, wobei ⩽B wie in
Beispiel 3.4 definiert ist. Skizze:

Version vom 16. Oktober 2023 Seite 115

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Dann ist π : A→ B mit

i 1 2 3 4
π(i) ♢ ♡ ♠ ♣

ein Isomorphismus von A nach B.

Allgemein gilt: Sind A und B endliche Mengen mit |A| = |B|, und sind
⩽A und ⩽B lineare Ordnungen auf A und B, so ist die Abbildung
π : A→ B, die das (bzgl. ⩽A) kleinste Element in A auf das (bzgl. ⩽B)
kleinste Element in B abbildet, und allgemein für jedes i ∈ {1, . . . , |A|}
das (bzgl. ⩽A) i-kleinste Element in A auf das (bzgl. ⩽B) i-kleinste
Element in B abbildet, ein Isomorphismus von A := (A,⩽A) nach
B := (B,⩽B).

Folie 178

(d) Sind ⩽N und ⩽Z die natürlichen linearen Ordnungen auf N und Z, so
sind die {⩽}-Strukturen N := (N,⩽N) und Z := (Z,⩽Z)
nicht isomorph (kurz: N ̸∼= Z).

Beweis: Angenommen, π : N→ Z ist ein Isomorphismus von N nach
Z. Sei z := π(0). In Z gibt es ein Element z′ ∈ Z mit z′ < z (z.B.
z′ = z − 1). Da π surjektiv ist, muss es ein n′ ∈ N geben, so dass
π(n′) = z′. Wegen z′ ̸= z muss n′ ̸= 0 gelten (da π injektiv ist). Somit
gilt:

0 ⩽N n′ aber z ̸⩽Z z′.

Also ist π kein Isomorphismus von N nach Z. Widerspruch!

Folie 179

(e) Sei σ := {f, c}, wobei f ein 2-stelliges Funktionssymbol und c ein
Konstantensymbol ist. Sei A := (A, fA, cA), wobei gilt:

• A := N ist die Menge aller natürlichen Zahlen,

• fA := +AN ist die natürliche Addition auf N,
• cA := 0 ist die natürliche Zahl 0

und sei B := (B, fB, cB), wobei

• B := {2n : n ∈ N} ist die Menge aller Zweierpotenzen,

Version vom 16. Oktober 2023 Seite 116

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

• fB : B ×B → B ist die Funktion mit

fB(b1, b2) := b1 · b2, für alle b1, b2 ∈ B

• cB := 1 = 20 ∈ B.

Dann gilt: A ∼= B, und die Abbildung π : A→ B mit π(n) := 2n für
alle n ∈ N ist ein Isomorphismus von A nach B, denn:

1. π ist eine bijektive Abbildung von A nach B.

2. Für das Konstantensymbol c ∈ σ gilt:

π(cA) = π(0) = 20 = cB.

3. Für das Funktionssymbol f ∈ σ und für alle (a1, a2) ∈ A2

gilt:

π(fA(a1, a2)) = π(a1 + a2) = 2a1+a2

und

fB(π(a1), π(a2)) = fB(2a1 , 2a2) = 2a1 · 2a2 = 2a1+a2 ,

also π(fA(a1, a2)) = fB(π(a1), π(a2)).

Somit ist π ein Isomorphismus von A nach B.

Folie 180

Isomorphie ist eine Äquivalenzrelation

Lemma 3.9. Isomorphie ist eine Äquivalenzrelation auf der Klasse aller
σ-Strukturen. D.h.: Für alle σ-Strukturen A,B, C gilt:

1. A ∼= A (Reflexivität),

2. A ∼= B =⇒ B ∼= A (Symmetrie),

3. A ∼= B und B ∼= C =⇒ A ∼= C (Transitivität).

Beweis: Übung.

Version vom 16. Oktober 2023 Seite 117

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

3.2 Terme der Logik erster Stufe

Folie 181

Individuenvariablen

Definition 3.10. Eine Individuenvariable (auch: Variable erster Stufe;
kurz: Variable) hat die Form vi für ein i ∈ N.

Die Menge aller Variablen bezeichnen wir mit VAR, d.h.

VAR = {v0, v1, v2, v3, . . . } = {vi : i ∈ N}.

Folie 182

Terme der Logik erster Stufe

Definition 3.11.

(a) Für eine Signatur σ sei Aσ-Terme das Alphabet, das aus allen Elementen
in VAR, allen Konstanten- und Funktionssymbolen in σ, den Klammern
(,) und dem Komma , besteht.

(b) Die Menge Tσ aller σ-Terme ist die wie folgt rekursiv definierte
Teilmenge von Aσ-Terme

∗:

Basisregeln:

• Für jedes Konstantensymbol c ∈ σ ist c ∈ Tσ.

• Für jede Variable x ∈ VAR ist x ∈ Tσ.

Rekursive Regel:

• Für jedes Funktionssymbol f ∈ σ und für k := ar(f) gilt:

Sind t1 ∈ Tσ, . . . , tk ∈ Tσ, so ist auch f(t1, . . . , tk) ∈ Tσ.

(c) Die Menge aller Terme der Logik der ersten Stufe ist T :=
⋃

σ Signatur

Tσ.

Folie 183

Version vom 16. Oktober 2023 Seite 118

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Beispiele

Sei σ := { f/2, c }.
Folgende Worte sind σ-Terme:

c, v4, f(c, c), f(c, f(c, v0)) .

Folgende Worte sind keine σ-Terme:

0, f(0, c), f(v0, c, v1), fA(2, 3) .

Folie 184

Belegungen und Interpretationen

Definition 3.12. Sei σ eine Signatur.

(a) Eine Belegung in einer σ-Struktur A ist eine Abbildung β : VAR→ A.

D.h.: β ordnet jeder Variablen x ∈ VAR ein Element β(x) aus dem
Universum von A zu.

(b) Eine σ-Interpretation ist ein Paar

I = (A, β) ,

bestehend aus einer σ-Struktur A und einer Belegung β in A.

Folie 185

Die Auswertung von Termen in Interpretationen

Wir wollen Terme nun in Interpretationen
”
auswerten“.

Die Auswertung von Term t in einer Interpretation I = (A, β) soll
dasjenige Element aus A liefern, das man erhält, wenn man

• die in t vorkommenden Variablen gemäß der Belegung β interpretiert,

• die in t vorkommenden Konstantensymbole c gemäß ihrer
Interpretation cA in A belegt,

• die in t vorkommenden Funktionssymbole f gemäß ihrer
Interpretation fA in A belegt

und dann nach und nach den resultierenden Term ausrechnet.

Dies wird in der folgenden Definition präzisiert.

Folie 186

Version vom 16. Oktober 2023 Seite 119

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Semantik von σ-Termen

Definition 3.13. Sei σ eine Signatur.
Rekursiv über den Aufbau von Tσ definieren wir eine Funktion J·K·, die
jedem σ-Term t und jeder σ-Interpretation I = (A, β) einen Wert JtKI ∈ A
zuordnet:

• Für alle x ∈ VAR ist JxKI := β(x).

• Für alle Konstantensymbole c ∈ σ ist JcKI := cA.

• Für alle Funktionssymbole f ∈ σ, für k := ar(f), und
für alle σ-Terme t1, . . . , tk ∈ Tσ gilt:

J f(t1, . . . , tk) KI := fA (
Jt1K

I , . . . , JtkK
I).

Folie 187

Beispiel

Sei σ = { f/2, c }, und sei A = (A, fA, cA) die σ-Struktur mit A = N,
fA = +AN (die Addition auf den natürlichen Zahlen) und cA = 0 (die
natürliche Zahl 0).

Sei β : VAR→ A eine Belegung mit β(v1) = 1 und β(v2) = 7,
und sei I := (A, β).
Sei t der σ-Term f(v2, f(v1, c)). Dann gilt:

JtKI = fA
(
β(v2), f

A (
β(v1), c

A))
= fA

(
7, fA(1, 0))

=
(
7 +

(
1 + 0

))
= 8.

3.3 Syntax der Logik erster Stufe

Folie 188

Vergleich zwischen Aussagenlogik und Logik erster Stufe

Die Logik erster Stufe übernimmt, verändert und erweitert die Syntax der
Aussagenlogik.

Version vom 16. Oktober 2023 Seite 120

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

• Was gleich bleibt:

– Die Junktoren ¬, ∧, ∨, → werden übernommen.

• Was sich verändert:

– Variablen stehen nicht mehr für
”
wahre“ oder

”
falsche“ Ausagen,

sondern für Elemente im Universum einer σ-Struktur.

– Variablen sind keine atomaren Formeln mehr.

• Was neu hinzukommt:

– Es gibt Quantoren ∃ und ∀ (für
”
es existiert“ und

”
für alle“).

– Es gibt Symbole für Elemente aus der Signatur σ.

– Es können σ-Terme benutzt werden, um Elemente im Universum
einer σ-Struktur zu bezeichnen.

Folie 189

Das Alphabet der Logik erster Stufe

Definition 3.14. Sei σ eine Signatur.
Das Alphabet AFO[σ] der Logik erster Stufe über σ besteht aus

• allen Symbolen in Aσ-Terme,

• allen Symbolen in σ,

• den Quantoren ∃ (Existenzquantor) und ∀ (Allquantor),

• dem Gleichheitssymbol =,

• den Junktoren ¬,∧,∨,→.

D.h.:

AFO[σ] = VAR ∪ σ ∪ {∃,∀} ∪ {=} ∪ {¬,∧,∨,→} ∪ {(,)} ∪ {,}.

Folie 190

Version vom 16. Oktober 2023 Seite 121

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Syntax der Logik erster Stufe

Definition 3.15. Sei σ eine Signatur.
Die Menge FO[σ] aller Formeln der Logik erster Stufe über der Signatur σ
(kurz: FO[σ]-Formeln;

”
FO“ steht für die englische Bezeichnung der Logik

erster Stufe: first-order logic) ist die folgendermaßen rekursiv definierte
Teilmenge von A∗

FO[σ]:

Basisregeln:

• Für alle σ-Terme t1 und t2 in Tσ gilt:

t1 = t2 ∈ FO[σ].

• Für jedes Relationssymbol R ∈ σ, für k := ar(R) und für alle σ-Terme
t1, . . . , tk in Tσ gilt:

R(t1, . . . , tk) ∈ FO[σ].

FO[σ]-Formeln der Form t1 = t2 oder R(t1, . . . , tk) heißen
atomare σ-Formeln.

Folie 191

Rekursive Regeln:

• Ist φ ∈ FO[σ], so ist auch ¬φ ∈ FO[σ].

• Ist φ ∈ FO[σ] und ψ ∈ FO[σ], so ist auch

– (φ ∧ ψ) ∈ FO[σ],

– (φ ∨ ψ) ∈ FO[σ],

– (φ→ ψ) ∈ FO[σ].

• Ist φ ∈ FO[σ] und x ∈ VAR, so ist auch

– ∃xφ ∈ FO[σ],

– ∀xφ ∈ FO[σ].

Folie 192

Beispiel 3.16. Sei σ = { f/2, c }.
Folgende Worte aus A∗

FO[σ] sind FO[σ]-Formeln:

Version vom 16. Oktober 2023 Seite 122

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

• f(v0, v1) = c (atomare σ-Formel)

• ∀v2 f(v2, c) = v2

• ¬∃v3
(
f(v3, v3) = v3 ∧ ¬ v3=c

)
Folgende Worte sind keine FO[σ]-Formeln:

•
(
f(v0, v1) = c

)
•

(
∃v2 f(v2, c) = v2

)
• f(f(c, c), v1) (ist ein σ-Term, aber keine FO[σ]-Formel)

• ∃c f(v0, c) = v0

Folie 193

Beispiel 3.17. Sei σ = {E/2}.
Folgendes ist eine FO[σ]-Formel:

∀v0 ∀v1
((
E(v0, v1) ∧ E(v1, v0)

)
→ v0 = v1

)
Intuition zur Semantik:
In einem gerichteten Graphen A = (A,EA) sagt diese Formel Folgendes aus:

”
Für alle Knoten a0 ∈ A und

für alle Knoten a1 ∈ A gilt:
falls (a0, a1) ∈ EA und (a1, a0) ∈ EA, so ist a0 = a1.“

Die Formel sagt in einem Digraph A = (A,EA) also aus, dass die
Kantenrelation EA antisymmetrisch ist.

Folie 194

Notation

• Statt mit v0, v1, v2, . . . bezeichnen wir Variablen oft auch mit
x, y, z, . . . oder mit Varianten wie x′, y1, y2,

• Ähnlich wie bei der Aussagenlogik schreiben wir (φ↔ ψ) als
Abkürzung für die Formel

(
(φ→ ψ) ∧ (ψ → φ)

)
.

• Die Menge aller Formeln der Logik der ersten Stufe ist

FO :=
⋃

σ Signatur

FO[σ].

Version vom 16. Oktober 2023 Seite 123

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

3.4 Semantik der Logik erster Stufe

Folie 195

Bevor wir die Semantik der Logik erster Stufe formal definieren, betrachten
wir zunächst einige Beispiele, um ein intuitives Verständnis der Semantik
der Logik erster Stufe zu erlangen.

Beispiele zur Semantik der Logik erster Stufe

Folie 196

Gerichtete Graphen

Beispiel 3.18. Sei σ = {E/2}.
(a) Die FO[σ]-Formel

φ := ∀x∀y
(
E(x, y)→ E(y, x)

)
besagt:

”
Für alle Knoten x und für alle Knoten y gilt: Falls es eine
Kante von x nach y gibt, so gibt es auch eine Kante von y
nach x.“

Für jeden Digraphen A = (A,EA) gilt daher:

A erfüllt φ ⇐⇒ EA ist symmetrisch.

Umgangssprachlich sagen wir auch:
”
Die Formel φ sagt in einem

Digraphen A aus, dass dessen Kantenrelation symmetrisch ist.“

Folie 197

(b) Die folgende FO[σ]-Formel drückt aus, dass es von Knoten x zu Knoten
y einen Weg der Länge 3 gibt:

φ(x, y) := ∃z1 ∃z2
((
E(x, z1) ∧ E(z1, z2)

)
∧ E(z2, y)

)
.

(c) Die FO[σ]-Formel

∀x ∀y ∃z1 ∃z2
((
E(x, z1) ∧ E(z1, z2)

)
∧ E(z2, y)

)
sagt in einem Digraph A aus, dass es zwischen je 2 Knoten einen Weg
der Länge 3 gibt.

Folie 198

Version vom 16. Oktober 2023 Seite 124

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Verwandtschaftsbeziehungen

Um Verwandtschaftsbeziehungen zu modellieren, können wir eine Signatur
σ nutzen, die aus den folgenden Symbolen besteht:

• 1-stellige Funktionssymbole Vater, Mutter

(Bedeutung: x=Mutter(y) besagt:
”
x ist die Mutter von y“.)

• 2-stellige Relationssymbole Geschwister, Vorfahr

(Bedeutung: Geschwister(x, y) besagt, dass x und y Geschwister sind;
Vorfahr(x, y) besagt, dass x ein Vorfahr von y ist.)

Generelles Wissen über Verwandtschaftsbeziehungen lässt sich durch
Formeln der Logik erster Stufe repräsentieren, z.B.:

•
”
Personen mit gleichem Vater und gleicher Mutter sind Geschwister“:

∀x∀y
(((

Vater(x)=Vater(y) ∧ Mutter(x)=Mutter(y)
)
∧ ¬x=y

)
→ Geschwister(x, y)

)
Folie 199

•
”
Eltern sind gerade die unmittelbaren Vorfahren“:

∀x∀y
((
x=Vater(y) ∨ x=Mutter(y)

)
↔

(
Vorfahr(x, y) ∧ ¬∃z

(
Vorfahr(x, z) ∧ Vorfahr(z, y)

)))
•
”
Die Relation Vorfahr ist transitiv“:

∀x∀y∀z
((

Vorfahr(x, y) ∧ Vorfahr(y, z)
)
→ Vorfahr(x, z)

)

• Die folgende Formel φ(x, y) besagt
”
x ist Tante oder Onkel von y“:

φ(x, y) := ∃z
(
Geschwister(x, z) ∧

(
z=Mutter(y) ∨ z=Vater(y)

))
Folie 200

• Die folgende Formel ψ(x) besagt
”
x ist Vater von genau 2 Kindern“:

ψ(x) := ∃y1∃y2
(((

x=Vater(y1) ∧ x=Vater(y2)
)
∧ ¬ y1=y2

)
∧ ∀z

(
x=Vater(z) →

(
z=y1 ∨ z=y2

)))

Version vom 16. Oktober 2023 Seite 125

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Formale Definition der Semantik der Logik erster Stufe

Folie 201

Um die formale Definition der Semantik der Logik erster Stufe angeben zu
können, benötigen wir noch folgende Begriffe:

Folie 202

Notation

• Ist β eine Belegung in einer σ-Struktur A, ist x ∈ VAR und ist a ∈ A,
so sei

β a
x

die Belegung mit β a
x
(x) = a und β a

x
(y) = β(y) für alle

y ∈ VAR \ {x}.

• Ist I = (A, β) eine σ-Interpretation, ist x ∈ VAR und ist a ∈ A, so sei

I a
x

:= (A, β a
x
).

Folie 203

Semantik der Logik erster Stufe

Definition 3.19. Sei σ eine Signatur.
Rekursiv über den Aufbau von FO[σ] definieren wir eine Funktion J·K·, die
jeder FO[σ]-Formel φ und jeder σ-Interpretation I = (A, β) einen
Wahrheitswert (kurz: Wert) JφKI ∈ {0, 1} zuordnet:

Rekursionsanfang:

• Für alle σ-Terme t1 und t2 in Tσ gilt:

Jt1=t2K
I :=

{
1, falls Jt1K

I = Jt2K
I

0, sonst.

• Für jedes Relationssymbol R ∈ σ, für k := ar(R) und für alle σ-Terme
t1, . . . , tk ∈ Tσ gilt:

JR(t1, . . . , tk)K
I :=

{
1, falls

(
Jt1K

I , . . . , JtkK
I) ∈ RA

0, sonst.

Version vom 16. Oktober 2023 Seite 126

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Folie 204

Rekursionsschritt:

• Ist φ ∈ FO[σ] und ist x ∈ VAR, so ist

J∃xφKI :=

{
1, falls es (mind.) ein a ∈ A gibt, so dass JφKI

a
x = 1

0, sonst

J∀xφKI :=

{
1, falls für jedes a ∈ A gilt: JφKI

a
x = 1

0, sonst

Folie 205

• Die Semantik der Junktoren ¬, ∧, ∨, → ist wie in der Aussagenlogik
definiert, d.h. für alle φ ∈ FO[σ] und ψ ∈ FO[σ] gilt:

J¬φKI :=

{
1, falls JφKI = 0

0, sonst

J(φ ∧ ψ)KI :=

{
1, falls JφKI = 1 und JψKI = 1

0, sonst

J(φ ∨ ψ)KI :=

{
0, falls JφKI = 0 und JψKI = 0

1, sonst

J(φ→ ψ)KI :=

{
0, falls JφKI = 1 und JψKI = 0

1, sonst

Folie 206

Beispiel 3.20. Sei σ = {E/2}. Betrachte die FO[σ]-Formel

φ := ∀x∀y
(
E(x, y)→ E(y, x)

)
Version vom 16. Oktober 2023 Seite 127

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Für jede σ-Interpretation I = (A, β) gilt:

JφKI = 1 ⇐⇒ für alle a ∈ A gilt: J∀y(E(x, y)→ E(y, x))KI
a
x = 1

⇐⇒ für alle a ∈ A gilt: für alle b ∈ A gilt:

J(E(x, y)→ E(y, x))KI
a
x

b
y = 1

⇐⇒ für alle a ∈ A und alle b ∈ A gilt:

Falls JE(x, y)KI
a
x

b
y = 1, so JE(y, x)KI

a
x

b
y = 1

⇐⇒ für alle a ∈ A und alle b ∈ B gilt:
Falls (a, b) ∈ EA, so (b, a) ∈ EA

⇐⇒ EA ist symmetrisch

Folie 207

Die Modellbeziehung

Definition 3.21. Sei σ eine Signatur.

(a) Eine σ-Interpretation I erfüllt eine Formel φ ∈ FO[σ] (wir schreiben:
I |= φ), wenn JφKI = 1.

(b) Eine σ-Interpretation I erfüllt eine Formelmenge Φ ⊆ FO[σ] (wir
schreiben: I |= Φ), wenn I |= φ für alle φ ∈ Φ gilt.

(c) Ein Modell einer Formel φ (bzw. einer Formelmenge Φ) ist eine
Interpretation I mit I |= φ (bzw. I |= Φ).

Folie 208

Konventionen

• Terme bezeichnen wir mit t, s und Varianten s′, t1, t2,

• Formeln bezeichnen wir mit φ, ψ, χ und Varianten ψ′, φ1, φ2,

• Formelmengen bezeichnen wir mit Φ,Ψ und Varianten Ψ′,Φ1,Φ2,

Folie 209

Version vom 16. Oktober 2023 Seite 128

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Subformeln, Subterme und Syntaxbäume

• Eine Formel ψ ist Subformel einer Formel φ, wenn ψ als Teilwort in φ
vorkommt (insbes. ist jede Formel eine Subformel von sich selbst).

Beispiel: ψ := E(v0, v1) ist Subformel der Formel ∃v0∀v1E(v0, v1)

• Ein Term s ist Subterm eines Terms t, wenn s als Teilwort in t
vorkommt (insbes. ist jeder Term ein Subterm von sich selbst).

Beispiel: f(c, c) ist Subterm des Terms f(v0, f(c, c)).

• Sei ξ ∈ T ∪ FO, d.h. ξ ist ein Term oder eine Formel der Logik erster
Stufe.

– Ähnlich wie bei aussagenlogischen Formeln können wir einen
Syntaxbaum für ξ definieren.

– Das Lemma über die eindeutige Lesbarkeit von Termen und
Formeln besagt, dass jeder Term und jede Formel genau einen
Syntaxbaum hat.

– Die Subterme von ξ (falls ξ ∈ T) bzw. Subformeln von ξ (falls
ξ ∈ FO) sind dann alle Terme bzw. Formeln, die im Syntaxbaum
vorkommen.

Beispiel:

Version vom 16. Oktober 2023 Seite 129

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Das Isomorphielemma

Folie 210

Das Isomorphielemma besagt, dass isomorphe Objekte (Strukturen bzw.
Interpretationen) dieselben Formeln der Logik erster Stufe erfüllen.

Um diese Aussage präzise formulieren zu können, benötigen wir die
folgende Notation.

Folie 211

Isomorphismen, Belegungen und Interpretationen

Definition 3.22. Sei σ eine Signatur, seien A,B isomorphe σ-Strukturen
und sei π ein Isomorphismus von A nach B (kurz: π : A ∼= B).

(a) Für jede Belegung β in A sei πβ die Belegung in B, so dass für alle
x ∈ VAR gilt:

πβ (x) = π
(
β(x)

)
.

(b) Für eine Interpretation I = (A, β) schreiben wir πI für die
Interpretation

πI := (B, πβ).

Aus dieser Definition folgt direkt:

Lemma 3.23. Sei σ eine Signatur, seien A,B isomorphe σ-Strukturen, sei
π : A ∼= B, sei β eine Belegung in A und sei I := (A, β).
Für jedes x ∈ VAR, für jedes a ∈ A, für I ′ := I a

x
und für b := π(a) gilt:

πI ′ = (πI) b
x
.

Beweis. Sei β′ := β a
x
. Somit ist I ′ = (A, β′) und daher πI ′ = (B, πβ′).

Andererseits ist (πI) b
x
= (B, (πβ) b

x
). Wir müssen also zeigen, dass

πβ′ = (πβ) b
x
. D.h., wir müssen für jede Variable z ∈ VAR zeigen, dass gilt:

(πβ′)(z) =
(
(πβ) b

x

)
(z).

Wir betrachten zunächst die Variable z := x. Es gilt:

•
(
(πβ) b

x

)
(x) = b.

• (πβ′)(x) = π
(
β′(x)

)
= π

(
β a
x
(x)

)
= π(a) = b.

Version vom 16. Oktober 2023 Seite 130

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Somit ist (πβ′)(x) =
(
(πβ) b

x

)
(x).

Betrachte nun eine beliebige Variable z ̸= x. Es gilt:

•
(
(πβ) b

x

)
(z) = (πβ)(z) = π

(
β(z)

)
.

• (πβ′)(z) = π
(
β′(z)

)
= π

(
β a
x
(z)

)
= π

(
β(z)

)
.

Somit ist (πβ′)(z) =
(
(πβ) b

x

)
(z) für alle z ∈ VAR \ {x}.

Folie 212

Das Isomorphielemma

Satz 3.24 (Das Isomorphielemma der Logik erster Stufe).
Sei σ eine Signatur, seien A,B isomorphe σ-Strukturen und sei π : A ∼= B.
Für jede Belegung β in A und die σ-Interpretation I := (A, β) gilt:

(a) Für jeden σ-Term t ∈ Tσ ist JtKπI = π
(
JtKI

)
.

(b) Für jede FO[σ]-Formel φ gilt: πI |= φ ⇐⇒ I |= φ.

Wir werden das Isomorphielemma per Induktion über den Aufbau von
Termen und Formeln beweisen. Hierzu zunächst ein kurzer Überblick
darüber, wie solche Induktionsbeweise prinzipiell aufgebaut sind.

Folie 213

Beweise per Induktion über den Aufbau von Termen und Formeln

• Ähnlich wie Aussagen über die aussagenlogischen Formeln können wir
Aussagen über Terme und Formeln der Logik der erster Stufe per
Induktion über den Aufbau von Tσ bzw. FO[σ] beweisen.

• Im Induktionsanfang beweisen wir die Aussagen für die gemäß
Basisregeln definierten Terme bzw. Formeln. Im Induktionschritt
schließen wir von den Subtermen bzw. Subformeln auf den Term bzw.
die Formel selbst.

• Wie bei der Aussagenlogik ist dieses Vorgehen gerechtfertigt, weil es
sich auch als vollständige Induktion über die Höhe des Syntaxbaums
auffassen lässt.

Folie 214

Version vom 16. Oktober 2023 Seite 131

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Beweise per Induktion über den Aufbau von Termen

Schematisch sieht der Beweis einer Aussage A(t) für alle Terme t ∈ Tσ wie
folgt aus:

Induktionsanfang:

• Beweise, dass für alle Konstantensymbole c ∈ σ die Aussage A(c) gilt.

• Beweise, dass für alle Variablen x ∈ VAR die Aussage A(x) gilt.

Induktionsschritt:

• Betrachte jedes Funktionssymbol f ∈ σ, sei k := ar(f), und seien
t1, . . . , tk beliebige σ-Terme. Beweise, dass A

(
f(t1, . . . , tk)

)
gilt, und

verwende dazu die Induktionsannahme, dass A(ti) für jedes i ∈ [k] gilt.

Mit dieser Vorgehensweise beweisen wir nun Teil (a) des Isomorphielemmas.

Beweis von Teil (a) von Satz 3.24 (Isomorphielemma).
Per Induktion über den Aufbau von Termen. Die Aussage A(t), die wir für
alle Terme t ∈ Tσ beweisen wollen, besagt: JtKπI = π

(
JtKI

)
.

Induktionsanfang:

• Sei c ∈ σ ein Konstantensymbol. Behauptung: JcKπI = π
(
JcKI

)
.

Beweis: Es gilt JcKπI = cB = π(cA) = π
(
JcKI

)
.

• Sei x ∈ VAR. Behauptung: JxKπI = π
(
JxKI

)
.

Beweis: Es gilt JxKπI = (πβ)(x) = π
(
β(x)

)
= π

(
JxKI

)
.

Induktionsschritt:

• Sei f ∈ σ ein Funktionssymbol, sei k := ar(f), seien t1, . . . , tk
beliebige σ-Terme.

Induktionsannahme: Für jedes i ∈ [k] gilt: π
(
JtiK

I) = JtiK
πI .

Behauptung: Es gilt: Jf(t1, . . . , tk)K
πI = π

(
Jf(t1, . . . , tk)K

I).
Version vom 16. Oktober 2023 Seite 132

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Beweis: Es gilt

Jf(t1, . . . , tk)K
πI Semantik

= fB(Jt1K
πI , . . . , JtkK

πI)
Ind.ann.
= fB(π(Jt1KI), . . . ,π(JtkKI))

π:A∼=B
= π

(
fA(Jt1K

I , . . . , JtkK
I)
)

Semantik
= π

(
Jf(t1, . . . , tk)K

I).
Dies beendet den Beweis von Teil (a) von Satz 3.24.

Folie 215

Teil (b) des Isomorphielemmas beweisen wir per Induktion über den Aufbau
von Formeln. Prinzipiell sind solche Induktionsbeweise wie folgt aufgebaut.

Folie 216

Beweise per Induktion über den Aufbau von Formeln

Schematisch sieht der Beweis einer Aussage A(φ) für alle FO[σ]-Formeln φ
wie folgt aus:

Induktionsanfang:

• Beweise, dass für alle σ-Terme t1, t2 ∈ Tσ die Aussage A(t1=t2) gilt.

• Beweise, dass für alle Relationssymbole R ∈ σ, für k := ar(R) und für
alle σ-Terme t1, . . . , tk ∈ Tσ die Aussage A

(
R(t1, . . . , tk)

)
gilt

Folie 217

Induktionsschritt:
Seien φ und ψ beliebige FO[σ]-Formeln. Die Induktionsannahme besagt,
dass die Aussagen A(φ) und A(ψ) gelten.
Im Induktionsschritt muss dann gezeigt werden, dass

• für jede Variable x ∈ VAR die Aussage A(∃xφ) gilt,

• für jede Variable x ∈ VAR die Aussage A(∀xφ) gilt,

• die Aussage A(¬φ) gilt,

• die Aussage A
(
(φ ∧ ψ)

)
gilt,

• die Aussage A
(
(φ ∨ ψ)

)
gilt,

Version vom 16. Oktober 2023 Seite 133

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

• die Aussage A
(
(φ→ ψ)

)
gilt.

Mit dieser Vorgehensweise beweisen wir nun Teil (b) des
Isomorphielemmas.

Beweis von Teil (b) von Satz 3.24 (Isomorphielemma).
Per Induktion über den Aufbau von Formeln. Die Aussage A(φ), die wir für
alle FO[σ]-Formeln φ beweisen wollen, besagt Folgendes:

Für jede Belegung β in A und für I := (A, β) gilt:
πI |= φ ⇐⇒ I |= φ.

Induktionsanfang:

• Seien t1, t2 ∈ Tσ zwei σ-Terme.

Behauptung: Für jede Belegung β in A und für I := (A, β) gilt:
πI |= t1=t2 ⇐⇒ I |= t1=t2.

Beweis: Sei β eine beliebige Belegung in A und sei I := (A, β).
Gemäß Teil (a) des Isomorphielemmas gilt für jedes i ∈ {1, 2}, dass
JtiK

πI = π
(
JtiK

I). Somit gilt:

πI |= t1=t2
Semantik⇐⇒ Jt1K

πI = Jt2K
πI

(a)⇐⇒ π
(
Jt1K

I) = π
(
Jt2K

I)
π bijektiv⇐⇒ Jt1K

I = Jt2K
I

Semantik⇐⇒ I |= t1=t2.

• Sei R ∈ σ ein Relationssymbol, sei k = ar(R) und seien
t1, . . . , tk ∈ Tσ.

Behauptung: Für jede Belegung β in A und für I := (A, β) gilt:
πI |= R(t1, . . . , tk) ⇐⇒ I |= R(t1, . . . , tk).

Beweis: Sei β eine beliebige Belegung in A und sei I := (A, β).
Gemäß Teil (a) des Isomorphielemmas gilt für jedes i ∈ [k], dass
JtiK

πI = π
(
JtiK

I). Somit gilt:

πI |= R(t1, . . . , tk)
Semantik⇐⇒

(
Jt1K

πI , . . . , JtkK
πI) ∈ RB

(a)⇐⇒
(
π
(
Jt1K

I), . . . , π(JtkKI)) ∈ RB

π:A∼=B⇐⇒
(
Jt1K

I , . . . , JtkK
I) ∈ RA

Semantik⇐⇒ I |= R(t1, . . . , tk).

Version vom 16. Oktober 2023 Seite 134

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Induktionsschritt:
Seien φ und ψ beliebige FO[σ]-Formeln.

Induktionsannahme: Für jede Belegung β′ in A, für I ′ := (A, β′) und
für jede Formel χ ∈ {φ, ψ} gilt: πI ′ |= χ ⇐⇒ I ′ |= χ.

• Behauptung 1: Für jede Variable x ∈ VAR, für jede Belegung β in
A und für I := (A, β) gilt: πI |= ∃xφ ⇐⇒ I |= ∃xφ.

Beweis: Sei x ∈ VAR eine beliebige Variable, und sei β eine beliebige
Belegung in A.

Wir nutzen, dass gemäß Lemma 3.23 für jedes a ∈ A, die Belegung
β′ := β a

x
, die Interpretation I ′ = I a

x
= (A, β′) und den Wert b := π(a)

gilt: πI ′ = (πI) b
x
.

Gemäß Induktionsannahme gilt: πI ′ |= φ ⇐⇒ I ′ |= φ.

Somit gilt für alle a ∈ A und für b := π(a), dass

(πI) b
x
|= φ ⇐⇒ I a

x
|= φ. (3.1)

Es folgt:

I |= ∃xφ Semantik⇐⇒ es gibt (mind.) ein a ∈ A, so dass I a
x
|= φ

(3.1) mit b=π(a)⇐⇒ es gibt (mind.) ein a ∈ A, so dass (πI)π(a)
x
|= φ

π bijektiv⇐⇒ es gibt (mind.) ein b ∈ B, so dass (πI) b
x
|= φ

Semantik⇐⇒ πI |= ∃xφ.

• Behauptung 2: Für jede Variable x ∈ VAR, für jede Belegung β in
A und für I := (A, β) gilt: πI |= ∀xφ ⇐⇒ I |= ∀xφ.

Beweis: Der Beweis folgt analog zum Beweis der Behauptung 1:
Sei x ∈ VAR eine beliebige Variable, und sei β eine beliebige Belegung
in A. Dann gilt:

I |= ∀xφ Semantik⇐⇒ für jedes a ∈ A gilt: I a
x
|= φ

(3.1) mit b=π(a)⇐⇒ für jedes a ∈ A gilt: (πI)π(a)
x
|= φ

π bijektiv⇐⇒ für jedes b ∈ B gilt: (πI) b
x
|= φ

Semantik⇐⇒ πI |= ∀xφ.

Version vom 16. Oktober 2023 Seite 135

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

• Behauptung 3: Für jede Belegung β in A und für I := (A, β) gilt:
πI |= ¬φ ⇐⇒ I |= ¬φ.

Beweis: Die Behauptung folgt direkt aus der Induktionsannahme und
der Definition der Semantik von

”
¬“.

• Behauptung 4: Für jede Belegung β in A, für I := (A, β) und für
jedes ∗ ∈ {∧,∨,→} gilt: πI |= (φ ∗ ψ) ⇐⇒ I |= (φ ∗ ψ).

Beweis: Die Behauptung folgt direkt aus der Induktionsannahme und
der Definition der Semantik von

”
∧“,

”
∨“ und

”
→“.

Dies beendet den Beweis von Teil (b) von Satz 3.24.

Das Koinzidenzlemma

Folie 218

Ähnlich wie für die Aussagenlogik gilt auch für die Logik erster Stufe ein
Koinzidenzlemma, das besagt, dass der Wert JtKI eines Terms t bzw. der
Wert JφKI einer Formel φ nur abhängt von

• denjenigen Bestandteilen von A, die explizit in t bzw. φ vorkommen,
und

• den Belegungen β(x) derjenigen Variablen x, die in t vorkommen bzw.
die in φ vorkommen und nicht im Wirkungsbereich eines Quantors
stehen.

Um diese Aussage präzise zu formulieren, sind folgende Begriffe nützlich.

Folie 219

Definition 3.25.

(a) Ist ξ ein Term oder eine Formel der Logik erster Stufe, so schreiben wir

• σ(ξ), um die Menge aller Relations-, Funktions- und
Konstantensymbole zu bezeichnen, die in ξ vorkommen,

• var(ξ), um die Menge aller in ξ vorkommenden Variablen zu
bezeichnen.

Version vom 16. Oktober 2023 Seite 136

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

(b) Ist φ eine Formel und x eine Variable, so heißt jedes Vorkommen von x
in einer Subformel von φ, die von der Form ∃xψ oder ∀xψ ist,
gebunden. Jedes andere Vorkommen von x in φ heißt frei.

Beispiel:

φ :=
(
f(v0, c)=v3 ∧ ∃v0 f(v0, v1)=c

)
Das erste Vorkommen von v0 in φ ist frei, das zweite und dritte
Vorkommen von v0 in φ ist gebunden. Die Vorkommen von v1 und v3 in
φ sind frei.

Folie 220

Freie Variablen

Definition 3.26. Die Menge frei(φ) aller freien Variablen einer Formel φ
besteht aus allen Variablen, die mindestens ein freies Vorkommen in φ
haben.

Die Menge frei(φ) lässt sich rekursiv über den Aufbau von Formeln wie
folgt definieren:

frei(R(t1, . . . , tk)) := var(t1) ∪ · · · ∪ var(tk)

frei(t1=t2) := var(t1) ∪ var(t2)

frei(¬φ) := frei(φ)

frei((φ ∗ ψ)) := frei(φ) ∪ frei(ψ) für alle ∗ ∈ {∧,∨,→}
frei(∃xφ) := frei(∀xφ) := frei(φ) \ {x}.

Beispiele:

• frei(f(v0, c)=v3) = {v0, v3}

• frei(∃v0 f(v0, v1)=c) = {v1}

• frei(
(
f(v0, c)=v3 ∧ ∃v0 f(v0, v1)=c

)
) = {v0, v3, v1}

Folie 221

Version vom 16. Oktober 2023 Seite 137

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Das Koinzidenzlemma

Satz 3.27 (Koinzidenzlemma für Terme).
Sei I1 = (A1, β1) eine σ1-Interpretation und sei I2 = (A2, β2) eine
σ2-Interpretation, wobei σ1 und σ2 Signaturen seien.
Sei t ∈ T ein Term mit σ(t) ⊆ σ1 ∩ σ2, so dass gilt:

1. A1|σ(t) = A2|σ(t)
(d.h., die σ(t)-Redukte von A1 und A2 sind identisch), und

2. β1(x) = β2(x), für alle x ∈ var(t).

Dann gilt: JtKI1 = JtKI2.

Beweis: Per Induktion über den Aufbau von Termen. Details: Übung.

Satz 3.28 (Koinzidenzlemma für FO-Formeln).
Sei I1 = (A1, β1) eine σ1-Interpretation und sei I2 = (A2, β2) eine
σ2-Interpretation, wobei σ1 und σ2 Signaturen seien.
Sei φ ∈ FO eine Formel der Logik erster Stufe mit σ(φ) ⊆ σ1 ∩ σ2, so dass
gilt:

1. A1|σ(φ) = A2|σ(φ), und

2. β1(x) = β2(x), für alle x ∈ frei(φ).

Dann gilt: I1 |= φ ⇐⇒ I2 |= φ.

Beweis: Per Induktion über den Aufbau von Formeln. Details: Übung.

Folie 222

Notation für Terme

• Für einen Term t ∈ Tσ schreiben wir t(x1, . . . , xn), um anzudeuten,
dass var(t) ⊆ {x1, . . . , xn}.

• Sei A eine σ-Struktur und seien a1, . . . , an ∈ A Elemente des
Universums von A.
Auf Grund des Koinzidenzlemmas gilt

JtK(A,β) = JtK(A,β
′)

Version vom 16. Oktober 2023 Seite 138

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

für alle Belegungen β, β′ : VAR→ A, so dass β(xi) = ai = β′(xi) für
alle i ∈ [n] gilt. Wir schreiben oft

tA[a1, . . . , an],

um das Element JtK(A,β) zu bezeichnen.

• Für Terme t ∈ Tσ, in denen keine Variable vorkommt, d.h. var(t) = ∅
(so genannte Grundterme), schreiben wir einfach tA.

Folie 223

Notation für Formeln

• Für eine FO[σ]-Formel φ schreiben wir φ(x1, . . . , xn), um anzudeuten,
dass frei(φ) ⊆ {x1, . . . , xn}.

• Ist A eine σ-Struktur und sind a1, . . . , an ∈ A, so schreiben wir

A |= φ[a1, . . . , an]

wenn (A, β) |= φ für eine Belegung β : VAR→ A mit β(xi) = ai für
alle i ∈ [n] gilt. Auf Grund des Koinzidenzlemmas gilt dann auch für
alle Belegungen β′ : VAR→ A mit β′(xi) = ai für alle i ∈ [n], dass
(A, β′) |= φ.

Sätze der Logik erster Stufe

Folie 224

Definition 3.29. Sei σ eine Signatur.

(a) Ein FO[σ]-Satz (kurz: Satz) ist eine FO[σ]-Formel φ mit frei(φ) = ∅.

(b) Wir schreiben Sσ, um die Menge aller FO[σ]-Sätze zu bezeichnen und
setzen

S :=
⋃

σ Signatur

Sσ.

(c) Für einen FO[σ]-Satz φ und eine σ-Struktur A schreiben wir A |= φ,
um auszudrücken, dass (A, β) |= φ für eine (und gemäß
Koinzidenzlemma daher für jede) Belegung β in A gilt.

Version vom 16. Oktober 2023 Seite 139

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

(d) Für eine Menge Φ ⊆ Sσ von FO[σ]-Sätzen schreiben wir A |= Φ, falls
A |= φ für jedes φ ∈ Φ gilt.

Als direkte Folgerung aus dem Isomorphielemma erhalten wir, dass für
isomorphe σ-Strukturen A und B und für alle FO[σ]-Sätze φ gilt:

A |= φ ⇐⇒ B |= φ.

Folie 225

Modellklassen und Definierbarkeit

Definition 3.30. Sei σ eine Signatur und sei Φ ⊆ Sσ (d.h. Φ ist eine
Menge von FO[σ]-Sätzen).

(a) Die Modellklasse von Φ ist die Klasse MODσ(Φ) aller σ-Strukturen A
für die gilt: A |= Φ.

(b) Für eine Klasse C von σ-Strukturen sagen wir

Φ definiert (oder axiomatisiert) C,

falls C = MODσ(Φ).

(c) Für einen FO[σ]-Satz φ setzen wir MODσ(φ) := MODσ({φ}) und
sagen, dass φ die Klasse C := MODσ(φ) definiert (bzw. axiomatisiert).

Als direkte Folgerung aus dem Isomorphielemma erhalten wir:

Korollar 3.31. Für jede Signatur σ und jedes Φ ⊆ Sσ ist MODσ(Φ) unter
Isomorphie abgeschlossen. D.h. für isomorphe σ-Strukturen A und B gilt:

A ∈ MODσ(Φ) ⇐⇒ B ∈ MODσ(Φ).

Beweis: klar.

Version vom 16. Oktober 2023 Seite 140

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

3.5 Beispiele für Formeln der Logik erster Stufe in
verschiedenen Anwendungsbereichen

Folie 226

Notation

• Ab jetzt verwenden wir für die Logik erster Stufe ähnliche
Klammerkonventionen wie bei der Aussagenlogik.

• Für gewisse zweistellige Funktionssymbole wie +, · und zweistellige
Relationssymbole wie ⩽ verwenden wir Infix- statt Präfixnotation.
Dabei setzen wir auf natürliche Weise Klammern, um die eindeutige
Lesbarkeit zu gewährleisten.

• Wir schreiben x < y als Abkürzung für die Formel(
x ⩽ y ∧ ¬x=y

)
.

Folie 227

Ordnungen

Beispiel 3.32. Wir betrachten Strukturen und Formeln über der Signatur
σ := {⩽}.
Zur Erinnerung: Eine σ-Struktur A = (A,⩽A) ist eine lineare Ordnung,
falls gilt:

(1) ⩽A ist reflexiv,

• d.h. für alle a ∈ A gilt: a ⩽A a

• d.h. A |= φrefl, wobei

φrefl := ∀x x ⩽ x

(2) ⩽A ist transitiv,

• d.h. für alle a, b, c ∈ A gilt: Wenn a ⩽A b und b ⩽A c, dann auch
a ⩽A c

• d.h. A |= φtrans, wobei

φtrans := ∀x∀y∀z
((
x ⩽ y ∧ y ⩽ z

)
→ x ⩽ z

)
Folie 228

Version vom 16. Oktober 2023 Seite 141

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

(3) ⩽A ist antisymmetrisch,

• d.h. für alle a, b ∈ A mit a ̸= b gilt: Wenn a ⩽A b, dann b ̸⩽A a

• d.h. A |= φantisym, wobei

φantisym := ∀x∀y
(
¬x = y →

(
x ⩽ y → ¬ y ⩽ x

))
(4) ⩽A ist konnex,

• d.h. für alle a, b ∈ A gilt: a ⩽A b oder b ⩽A a oder a = b

• d.h. A |= φkonnex, wobei

φkonnex := ∀x∀y
(
x ⩽ y ∨ y ⩽ x ∨ x = y

)
Insgesamt gilt für jede {⩽}-Struktur A = (A,⩽A):
A = (A,⩽A) ist eine lineare Ordnung ⇐⇒ A |= φlin.Ord, wobei

φlin.Ord := φrefl ∧ φantisym ∧ φtrans ∧ φkonnex

Der FO[σ]-Satz φlin.Ord definiert (bzw. axiomatisiert) also die Klasse aller
linearen Ordnungen.

Folie 229

Arithmetik

Beispiel 3.33. Wir betrachten Formeln über der Signatur
σ := {+, ·,⩽, 0, 1} und ihre Bedeutung im Standardmodell AN der
Arithmetik.

• Gesucht: Eine FO[σ]-Formel φ−(x, y, z), die besagt
”
x− y = z“.

Präzise: Für alle a, b, c ∈ N soll gelten:

AN |= φ−[a, b, c] ⇐⇒ a− b = c.

Lösung:
φ−(x, y, z) := x = z + y

• Gesucht: Eine FO[σ]-Formel φ | (x, y), die besagt
”
x teilt y“.

Präzise: Für alle a, b ∈ N soll gelten:

AN |= φ | [a, b] ⇐⇒ es gibt ein c ∈ N, so dass a · c = b.

Lösung:
φ | (x, y) := ∃z x · z = y

Version vom 16. Oktober 2023 Seite 142

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Folie 230

• Gesucht: Eine FO[σ]-Formel φ≡(x, y, z), die besagt
”
x ≡ y (mod z)“.

Präzise: Für alle a, b, c ∈ N soll gelten:

AN |= φ≡[a, b, c] ⇐⇒ a ≡ b (mod c) d.h. c
∣∣ |a− b|

Lösung:

φ≡(x, y, z) := ∃w
((
φ−(x, y, w) ∨ φ−(y, x, w)

)︸ ︷︷ ︸
”
w = |x− y|“

∧ φ | (z, w)︸ ︷︷ ︸
”
z |w“

)

Folie 231

• Gesucht: Eine FO[σ]-Formel φprim(x), die besagt
”
x ist eine

Primzahl“.

Präzise: Für alle a ∈ N soll gelten:

AN |= φprim[a] ⇐⇒ a ist eine Primzahl

d.h. a ⩾ 2 und a ist nur durch sich selbst und
durch 1 teilbar.

Lösung:

φprim(x) := 1 + 1 ⩽ x︸ ︷︷ ︸
”
x ⩾ 2“

∧ ∀z
(
φ | (z, x)︸ ︷︷ ︸
”
z | x“

→
(
z = x ∨ z = 1

))

• Gesucht: Ein FO[σ]-Satz φ∞, der in AN besagt

”
Es gibt unendlich viele Primzahlen“.

Lösung:

φ∞ := ∀y ∃x
(
y ⩽ x ∧ φprim(x)

)
In AN besagt dieser Satz, dass es für jede natürliche Zahl b eine
natürliche Zahl a ⩾ b gibt, die eine Primzahl ist.

Folie 232

Version vom 16. Oktober 2023 Seite 143

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Worte

Beispiel 3.34. Wir betrachten das Alphabet Σ := {a, b} und die Signatur
σΣ = {⩽, Pa, Pb}.
Zur Erinnerung: Wir repräsentieren ein nicht-leeres Wort w ∈ Σ∗ durch die
σΣ-Struktur Aw, deren Universum aus der Menge {1, . . . , |w|} aller
Positionen in w besteht, und bei der PAw

a (bzw. PAw
b) aus allen Positionen

besteht, an denen der Buchstabe a (bzw. b) steht.

Gesucht: Ein FO[σΣ]-Satz φ, so dass für jedes nicht-leere Wort w ∈ Σ∗ gilt:

Aw |= φ ⇐⇒ w ist von der Form a∗b∗.

Lösung: Wir konstruieren eine Formel φ, die besagt, dass es eine Position
x gibt, so dass alle Positionen links von x den Buchstaben a tragen und alle
Positionen rechts von x den Buchstaben b tragen. Dies wird durch
folgenden FO[σΣ]-Satz realisiert:

φ := ∃x ∀y
((
y < x→ Pa(y)

)
∧

(
x < y → Pb(y)

))
Wie bereits vereinbart, schreiben wir hier

”
x < y“ als Abkürzung für die

Formel (x ⩽ y ∧ ¬x = y).

3.6 Logik und Datenbanken

Folie 233

Datenbanken

Zur Erinnerung: Wir repräsentieren eine Kinodatenbank, die
Informationen über Kinos, Filme und das aktuelle Programm enthält,
durch eine Struktur über der Signatur σKINO :=

{ RKino/4, RFilm/3, RProg/3 } ∪ { ‘c’ : c ∈ ASCII∗ }

und können so z.B. die folgende Kinodatenbank als σKINO-Struktur D
auffassen, deren Universum D aus der Menge aller Worte über dem
ASCII-Alphabet besteht.

Folie 234

Version vom 16. Oktober 2023 Seite 144

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Beispiel: Eine Kinodatenbank

Kino
Name Adresse Stadtteil Telefonnummer
Babylon Dresdner Str. 126 Kreuzberg 030 61 60 96 93
Casablanca Friedenstr. 12-13 Adlershof 030 67 75 75 2
Filmtheater am Friedrichshain Bötzowstr. 1-5 Prenzlauer Berg 030 42 84 51 88
Kino International Karl-Marx-Allee 33 Mitte 030 24 75 60 11
Moviemento Kotbusser Damm 22 Kreuzberg 030 692 47 85
Urania An der Urania 17 Schöneberg 030 21 89 09 1

Film
Name Regisseur Schauspieler
Alien Ridley Scott Sigourney Weaver
Blade Runner Ridley Scott Harrison Ford
Blade Runner Ridley Scott Sean Young
Brazil Terry Gilliam Jonathan Pryce
Brazil Terry Gilliam Kim Greist
Casablanca Michael Curtiz Humphrey Bogart
Casablanca Michael Curtiz Ingrid Bergmann
Gravity Alfonso Cuaron Sandra Bullock
Gravity Alfonso Cuaron George Clooney
Monuments Men George Clooney George Clooney
Monuments Men George Clooney Matt Damon
Resident Evil Paul Anderson Milla Jovovich
Terminator James Cameron Arnold Schwarzenegger
Terminator James Cameron Linda Hamilton
Terminator James Cameron Michael Biehn

· · · · · · · · ·

Folie 235
Programm
Kino Film Zeit
Babylon Casablanca 17:30
Babylon Gravity 20:15
Casablanca Blade Runner 15:30
Casablanca Alien 18:15
Casablanca Blade Runner 20:30
Casablanca Resident Evil 20:30
Filmtheater am Friedrichshain Resident Evil 20:00
Filmtheater am Friedrichshain Resident Evil 21:30
Filmtheater am Friedrichshain Resident Evil 23:00
Kino International Casablanca 18:00
Kino International Brazil 20:00
Kino International Brazil 22:00
Moviemento Gravity 17:00
Moviemento Gravity 19:30
Moviemento Alien 22:00
Urania Monuments Men 17:00
Urania Monuments Men 20:00

Folie 236

Die Kinodatenbank als Struktur

Signatur: σKINO := { RKino/4, RFilm/3, RProg/3 } ∪ { ‘c’ : c ∈ ASCII∗ }

Version vom 16. Oktober 2023 Seite 145

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Die Kinodatenbank wird dargestellt als σKINO-Struktur D.
Universum:

D := ASCII∗ ⊇ { Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93,

Casablanca, . . . , 20:00}.

Relationen:

RD
Kino :=

{
(Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93),

(Casablanca, Friedenstr. 12-13, Adlershof, 030 67 75 75 2),

(Filmtheater am Friedrichshain, Bötzowstr. 1-5, Prenzlauer Berg, 030 42 84 51 88),

(Kino International, Karl-Marx-Allee 33, Mitte, 030 24 75 60 11),

(Moviemento, Kotbusser Damm 22, Kreuzberg, 030 692 47 85),

(Urania, An der Urania 17, Schöneberg, 030 21 89 09 1)
}

RD
Film :=

{
(Alien, Ridley Scott, Sigourney Weaver),

(Blade Runner, Ridley Scott, Harrison Ford), . . .
}

RD
Prog :=

{
(Babylon, Casablanca, 17:30),

(Babylon, Gravity, 20:15), . . .
}
.

Konstanten: ‘c’D := c, für jedes c ∈ ASCII∗.

D.h.: jedes Konstantensymbol wird durch den zwischen den Hochkommas

stehenden Text interpretiert.

Folie 237

Beispiel 3.35. (a) Die Anfrage

”
Gib die Titel aller Filme aus, die um 22:00 Uhr beginnen.“

lässt sich durch folgende FO[σKINO]-Formel φ1(xT) beschreiben:

φ1(xT) := ∃xK RProg(xK , xT , ‘22:00’)

(b) Die Anfrage

”
Gib die Titel aller Filme aus, in denen George Clooney

mitspielt oder Regie führt“

lässt sich durch folgende FO[σKINO]-Formel beschreiben: φ2(xT) :=

∃xR RFilm(xT , xR, ‘George Clooney’) ∨ ∃xS RFilm(xT , ‘George Clooney’, xS)

Version vom 16. Oktober 2023 Seite 146

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Folie 238

(c) Die Anfrage

”
Gib Name und Stadtteil aller Kinos aus, in denen ein Film

läuft, in dem George Clooney mitspielt oder Regie führt“

lässt sich durch folgende FO[σKINO]-Formel beschreiben:
φ3(xK , xSt) :=

∃xA ∃xTel RKino(xK , xA, xSt, xTel) ∧

∃xT ∃xZ
(
RProg(xK , xT , xZ) ∧(

∃xR RFilm(xT , xR, ‘George Clooney’) ∨ ∃xS RFilm(xT , ‘George Clooney’, xS)
))

Die erste Zeile der Formel stellt sicher, dass xK ein Kino und xS dessen
Stadtteil ist; die Zeilen 2 und 3 stellen sicher, dass im Kino xK ein Film
läuft, in dem George Clooney mitspielt oder Regie führt.

Folie 239

Eine andere Sichtweise auf die Semantik

• Anstatt Wahrheitswerte in Interpretationen definieren Formeln der
Logik der ersten Stufe auch Relationen in Strukturen.

• Junktoren und Quantoren entsprechen dann algebraischen Operatoren
auf Relationen.

• Diese Sichtweise ist insbesondere in der Datenbanktheorie wichtig und
bildet die Grundlage effizienter Algorithmen zur Auswertung von
Datenbankanfragen.

Folie 240

Definition 3.36. Sei σ eine Signatur, sei φ(x1, . . . , xn) eine FO[σ]-Formel
und sei A eine σ-Struktur.
Die von φ(x1, . . . , xn) in A definierte n-stellige Relation ist

Jφ(x1, . . . , xn)K
A := { (a1, . . . , an) ∈ An : A |= φ[a1, . . . , an] }.

Vorsicht: Die Relation Jφ(x1, . . . , xn)K
A hängt nicht nur von der Formel φ

ab, sondern auch von dem Tupel (x1, . . . , xn) ∈ VARn.

Version vom 16. Oktober 2023 Seite 147

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Beispiel 3.37. Die FO[σKINO]-Formeln φ2(xT) und φ3(xK , xSt) aus
Beispiel 3.35 definieren in unserer Beispiel-Datenbank D die Relationen

Jφ2(xT)K
D =

{
(Gravity) ,
(Monuments Men)

}
und

Jφ3(xK , xSt)K
D =

{
(Babylon, Kreuzberg) ,
(Moviemento, Kreuzberg) ,
(Urania, Schöneberg)

}
Folie 241

Ändern der Variablen

Lemma 3.38. Sei σ eine Signatur, sei A eine σ-Struktur und sei
φ(x1, . . . , xn) ∈ FO[σ].

(a) Für jede Permutation1 π von [n] ist

q
φ(xπ(1), . . . , xπ(n))

yA
=

{
(aπ(1), . . . , aπ(n)) :

(a1, . . . , an) ∈ Jφ(x1, . . . , xn)K
A }

.

(b) Für jede Variable y ∈ VAR \ {x1, . . . , xn} ist

Jφ(x1, . . . , xn, y)K
A = Jφ(x1, . . . , xn)K

A × A.

(c) Falls xn ̸∈ frei(φ), so ist

Jφ(x1, . . . , xn−1)K
A =

{
(a1, . . . , an−1) :

es gibt (mind.) ein a ∈ A so dass (a1, . . . , an−1, a) ∈ Jφ(x1, . . . , xn)K
A }

.

Beweis. (a) ist trivial. (b), (c) folgen direkt aus dem Koinzidenzlemma.

Folie 242

1Eine Permutation einer Menge M ist eine bijektive Abbildung von M nach M .

Version vom 16. Oktober 2023 Seite 148

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Rekursive Beschreibung von Jφ(x1, . . . , xn)K
A

Beobachtung 3.39. Ist σ eine Signatur und A eine σ-Struktur, so können
wir für FO[σ]-Formeln φ und Variablentupel (x1, . . . , xn) mit
frei(φ) ⊆ {x1, . . . , xn} die Relation Jφ(x1, . . . , xn)K

A ⊆ An rekursiv wie folgt
beschreiben:

• Falls φ von der Form t1 = t2 für σ-Terme t1, t2 ist, so ist

Jφ(x1, . . . , xn)K
A =

{
(a1, . . . , an) ∈ An :

tA1 [a1, . . . , an] = tA2 [a1, . . . , an]
}

Zur Erinnerung: Für einen σ-Term t(x1, . . . , xn) schreiben wir

tA[a1, . . . , an] um das Element JtK(A,β) ∈ A zu bezeichnen, wobei β
eine Belegung mit β(xi) = ai, für alle i ∈ [n], ist.

• Falls φ von der Form R(t1, . . . , tk) für ein R ∈ σ, für k := ar(R) und
für σ-Terme t1, . . . , tk ist, so ist

Jφ(x1, . . . , xn)K
A =

{
(a1, . . . , an) ∈ An :(
tA1 [a1, . . . , an], . . . , t

A
k [a1, . . . , an]

)
∈ RA }

Folie 243

• Falls φ von der Form ¬ψ ist, so ist

Jφ(x1, . . . , xn)K
A = An \ Jψ(x1, . . . , xn)K

A

• Falls φ von der Form (ψ1 ∧ ψ2) ist, so ist

Jφ(x1, . . . , xn)K
A = Jψ1(x1, . . . , xn)K

A ∩ Jψ2(x1, . . . , xn)K
A

• Falls φ von der Form (ψ1 ∨ ψ2) ist, so ist

Jφ(x1, . . . , xn)K
A = Jψ1(x1, . . . , xn)K

A ∪ Jψ2(x1, . . . , xn)K
A

• Falls φ von der Form (ψ1 → ψ2) ist, so ist

Jφ(x1, . . . , xn)K
A = J¬ψ1(x1, . . . , xn)K

A ∪ Jψ2(x1, . . . , xn)K
A

Folie 244

Version vom 16. Oktober 2023 Seite 149

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

• Falls φ von der Form ∃y ψ ist, so ist

Jφ(x1, . . . , xn)K
A =

{
(a1, . . . , an) ∈ An : es gibt (mind.) ein

b ∈ A mit (a1, . . . , an, b) ∈ Jψ(x1, . . . , xn, y)K
A }

Somit ist Jφ(x1, . . . , xn)K
A die Projektion von Jψ(x1, . . . , xn, y)K

A auf
die ersten n Stellen.

• Falls φ von der Form ∀y ψ ist, so ist

Jφ(x1, . . . , xn)K
A =

{
(a1, . . . , an) ∈ An :

für jedes b ∈ A ist (a1, . . . , an, b) ∈ Jψ(x1, . . . , xn, y)K
A }

Folie 245

Das Auswertungsproblem für FO

Eingabe: Eine endliche Signatur σ,
eine σ-Struktur A, deren Universum A endlich ist,
eine FO[σ]-Formel φ,
eine Zahl n ∈ N und
ein Variablentupel (x1, . . . , xn) ∈ VARn, so dass frei(φ) ⊆
{x1, . . . , xn} ist.

Aufgabe: Berechne Jφ(x1, . . . , xn)K
A.

Beobachtung 3.39 führt unmittelbar zu einem rekursiven Algorithmus, der
das Auswertungsproblem für FO löst.
Eine Laufzeitanalyse zeigt, dass Folgendes gilt:

Folie 246

Satz 3.40. Es gibt einen Algorithmus, der das Auswertungsproblem für FO
bei Eingabe einer Signatur σ, eine σ-Struktur A, einer FO[σ]-Formel φ,
einer Zahl n und eines Variablentupels (x1, . . . , xn) mit
frei(φ) ⊆ {x1, . . . , xn} in Zeit

O (||φ|| + ||A|| + ||φ||·w·||A||w)

löst, wobei gilt:

• ||φ|| ist die Länge von φ, aufgefasst als Wort über dem Alphabet AFO[σ]

Version vom 16. Oktober 2023 Seite 150

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

• w ist die maximale Anzahl freier Variablen in Subformeln von φ —
die so genannte Breite (engl.: width) von φ

• ||A|| ist ein Maß für die Größe einer geeigneten Repräsentation von A
als Eingabe für einen Algorithmus; präzise:

||A|| := |σ| + |A| +
∑
R∈σ

|RA|·ar(R) +
∑
f∈σ

|A|ar(f)·(ar(f)+1)

(Hier ohne Beweis)

3.7 Äquivalenz von Formeln der Logik erster Stufe

Folie 247

Äquivalenz

Definition 3.41. Sei σ eine Signatur.

(a) Zwei FO[σ]-Formeln φ und ψ heißen äquivalent (kurz: φ ≡ ψ), wenn für
jede σ-Interpretation I gilt:

I |= φ ⇐⇒ I |= ψ.

(b) Zwei Formelmengen Φ,Ψ ⊆ FO[σ] heißen äquivalent (kurz: Φ ≡ Ψ),
wenn für jede σ-Interpretation I gilt:2

I |= Φ ⇐⇒ I |= Ψ.

Folie 248

Beispiel 3.42.
Welche der folgenden Formeln sind äquivalent, welche nicht?

• φ1 := ∃y E(x, y)

• φ2 := ∃z E(x, z)

• φ3 := ∃z E(y, z)

Anwort:

2Zur Erinnerung: I |= Φ bedeutet, dass I |= φ für jede Formel φ ∈ Φ gilt.

Version vom 16. Oktober 2023 Seite 151

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

(1) φ1 ≡ φ2, denn für jede {E}-Struktur A und jede Belegung
β : VAR→ A gilt für I := (A, β) Folgendes: I |= φ1 ⇐⇒ es gibt ein
Element a ∈ A, so dass es in EA eine Kante von β(x) zu a gibt (d.h.(
β(x), a

)
∈ EA) ⇐⇒ I |= φ2.

(2) φ2 ̸≡ φ3, denn betrachte die {E}-Interpretation I = (A, β) mit
A = {1, 2}, EA = {(1, 2)}, β(x) = 1, β(y) = 2 und β(v) = 1 für alle
v ∈ VAR \ {x, y}.
Für dieses I gilt: I |= φ2, denn es gibt in A einen Knoten, zu dem von
β(x) = 1 aus eine Kante führt — nämlich den Knoten 2. Andererseits
gilt: I ̸|= φ3, denn es gibt in A keinen Knoten, zu dem von β(y) = 2
aus eine Kante führt.

(3) Aus (1) und (2) und der Transitivität der Relation
”
≡“ folgt, dass

φ1 ̸≡ φ3.

Folie 249

Aussagenlogische Äquivalenzen

Lemma 3.43. Ersetzt man in äquivalenten aussagenlogischen Formeln alle
Aussagenymbole durch FO[σ]-Formeln, so erhält man äquivalente
FO[σ]-Formeln.

Beispiel. Aus der aussagenlogische Äquivalenz (X → Y) ≡ ¬X ∨ Y folgt,
dass

(φ→ ψ) ≡ ¬φ ∨ ψ

für alle FO[σ]-Formeln φ und ψ gilt.

Beweis von Lemma 3.43:
Seien α, α′ ∈ AL zwei aussagenlogische Formeln.
Seien X1, . . . , Xn die Aussagensymbole, die in α oder α′ vorkommen.
Seien φ1, . . . , φn ∈ FO[σ].
Seien α(φ1, . . . , φn) bzw. α

′(φ1, . . . , φn) die FO[σ]-Formeln, die aus α bzw.
α′ entstehen, indem man jedes Vorkommen einer aussagenlogischen
Variablen Xi (für i ∈ [n]) durch die FO[σ]-Formel φi ersetzt.
Sei I eine beliebige σ-Interpretation. Wir müssen zeigen, dass gilt:

I |= α(φ1, . . . , φn) ⇐⇒ I |= α′(φ1, . . . , φn).

Sei Ĩ eine aussagenlogische Interpretation mit Ĩ(Xi) = JφiK
I jedes i ∈ [n].

Version vom 16. Oktober 2023 Seite 152

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Per Induktion nach dem Aufbau von α lässt sich leicht zeigen (Details:
Übung), dass Folgendes gilt:

I |= α(φ1, . . . , φn) ⇐⇒ Ĩ |= α.

Analog erhält man auch, dass gilt:

I |= α′(φ1, . . . , φn) ⇐⇒ Ĩ |= α′.

Laut Voraussetzung sind α und α′ äquivalente aussagenlogische Formeln.
Daher gilt:

Ĩ |= α ⇐⇒ Ĩ |= α′.

Somit gilt auch:

I |= α(φ1, . . . , φn) ⇐⇒ I |= α′(φ1, . . . , φn).

Insgesamt erhalten wir, dass α(φ1, . . . , φn) und α
′(φ1, . . . , φn) äquivalente

FO[σ]-Formeln sind.

Folie 250

Quantoren und Negation

Man sieht leicht, dass Folgendes gilt:

Lemma 3.44. Für alle FO[σ]-Formeln φ und alle Variablen x ∈ VAR gilt:

¬∃xφ ≡ ∀x ¬φ und ¬∀xφ ≡ ∃x ¬φ.

Beweis: Folgt direkt aus der Definition der Semantik (Details: Übung).

Folie 251

Das Ersetzungslemma

Lemma 3.45. Sei σ eine beliebige Signatur und sei φ eine FO[σ]-Formel.
Ist φ′ eine FO[σ]-Formel, die aus φ entsteht, indem man eine Subformel ψ
von φ durch eine zu ψ äquivalente FO[σ]-Formel ψ′ ersetzt, so ist φ ≡ φ′.

Beweis: Übung.

Satz 3.46. Jede FO[σ]-Formel ist äquivalent zu einer FO[σ]-Formel, in der

Version vom 16. Oktober 2023 Seite 153

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

(a) keiner der Junktoren {∧,→} vorkommt

(d.h., es kommen nur die Junktoren ¬,∨ und die Quantoren ∃, ∀ vor).

(b) nur Existenzquantoren und die Junktoren ¬,∨ vorkommen.

(c) nur Existenzquantoren und die Junktoren ¬,∧ vorkommen.

(d) nur Allquantoren und die Junktoren ¬,∨ vorkommen.

(e) nur Allquantoren und die Junktoren ¬,∧ vorkommen.

Daher genügt es, bei Beweisen per Induktion über den Aufbau von Formeln
von nun an im Induktionsschritt i.d.R. nur noch die Fälle für ∃, ¬, ∨ zu
betrachten.

Beweis von Satz 3.46:
Aus Lemma 3.43 folgt, dass

”
∧“ und

”
→“ mit Hilfe von

”
∨“ und

”
¬“

ausgedrückt werden können. Somit gilt (a).
Aus Lemma 3.44 folgt, dass

”
∀“ mit Hilfe von

”
∃“ und

”
¬“ ausgedrückt

werden. Daher gilt (b).
Da

”
∨“ mit Hilfe von

”
∧“ und

”
¬“ ausgedrückt werden kann, gilt auch (c).

Außerdem folgt aus Lemma 3.44, dass
”
∃“ mit Hilfe von

”
∀“ und

”
¬“

ausgedrückt werden kann. Aus (b) und (c) folgt daher (d) und (e).

3.8 Ehrenfeucht-Fräıssé-Spiele

Folie 252

In diesem Abschnitt werden Ehrenfeucht-Fräıssé-Spiele (kurz: EF-Spiele)
eingeführt. Diese liefern ein Werkzeug, mit dessen Hilfe man zeigen kann,
dass bestimmte Anfragen oder Klassen von Strukturen nicht in Logik erster
Stufe definiert werden können.

Der Einfachheit halber betrachten wir hier nur Signaturen, die keine
Funktionssymbole und keine Konstantensymbole enthalten. Solche
Signaturen werden im Folgenden relationale Signaturen genannt.

Außerdem werden wir im Folgenden bei zwei gegebenen Strukturen A und
B immer o.B.d.A. annehmen, dass ihre Universen disjunkt sind, d.h.
A ∩B = ∅.

Folie 253

Version vom 16. Oktober 2023 Seite 154

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Das m-Runden EF-Spiel

Sei σ eine relationale Signatur und seien A,B zwei σ-Strukturen.
Für k ∈ N seien a := a1, . . . , ak ∈ A und b := b1, . . . , bk ∈ B Folgen der
Länge k von Elementen aus A bzw. B.
Sei m ∈ N.
Das m-Runden EF-Spiel auf (A, a) und (B, b) (bzw. auf A und B, falls
k = 0 ist) wird gemäß folgender Spielregeln gespielt:

Folie 254

Spielregeln des m-Runden EF-Spiels auf (A, a) und (B, b)

• Es gibt 2 Spieler, genannt Spoiler (kurz: Sp) und Duplicator (kurz:
Dupl).

• Das Spielbrett besteht aus (A, a) und (B, b).

• Eine Partie des Spiels besteht aus m Runden.

In jeder Runde i ∈ {1, . . . ,m} geschieht Folgendes:

1. Zunächst wählt Spoiler entweder ein Element in A, das im
Folgenden mit ak+i bezeichnet wird, oder er wählt ein Element
in B, das im Folgenden mit bk+i bezeichnet wird.

Beachte: Insbes. kann Spoiler in jeder Runde neu entscheiden, in welcher

der beiden Strukturen er ein Element wählen möchte.

2. Danach antwortet Duplicator mit einem Element aus dem
Universum der anderen Struktur, d.h. er wählt ein bk+i ∈ B, falls
Spoiler ein ak+i ∈ A gewählt hat, bzw. ein Element ak+i ∈ A,
falls Spoiler ein bk+i ∈ B gewählt hat.

Nach Runde m ist die Partie beendet und der Gewinner wird wie
folgt ermittelt:

Folie 255

Gewinnbedingung

Duplicator hat gewonnen, falls die beiden folgenden Bedingungen erfüllt
sind.

(1) Für alle j, j′ ∈ {1, . . . , k+m} gilt: aj = aj′ ⇐⇒ bj = bj′ .

Version vom 16. Oktober 2023 Seite 155

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

(2) Die Abbildung π : {a1, . . . , ak+m} → {b1, . . . , bk+m} mit

π(aj) := bj , für jedes j ∈ {1, . . . , k+m}

ist ein partieller Isomorphismus von A nach B (siehe Definition 3.47).

Spoiler hat gewonnen, falls mindestens eine der beiden obigen Bedingungen
verletzt ist.

Definition 3.47 (partieller Isomorphismus).
Sei σ eine relationale Signatur, seien A,B zwei σ-Strukturenund sei X ⊆ A.
Eine Abbildung π : X → B heißt partieller Isomorphismus von A nach B,
falls gilt:

(1) π ist injektiv und

(2) für jedes R ∈ σ, für r := ar(R) und für alle (x1, . . . , xr) ∈ Xr gilt:(
x1, . . . , xr

)
∈ RA ⇐⇒

(
π(x1), . . . , π(xr)

)
∈ RB.

Folie 256

Beispiel 3.48. Sei σ := {E/2 } und sei k := 0.
In den folgenden Darstellungen von Graphen repräsentiert jede ungerichtete
Kante zwischen Knoten x und y die beiden gerichteten Kanten (x, y) und
(y, x).

(a) Betrachte die folgenden beiden Graphen A,B.

A : B :

Spoiler gewinnt das 2-Runden EF-Spiel auf A und B, indem er
folgendermaßen spielt:

• Runde 1: Wähle denjenigen Knoten a1 in A, der mit allen anderen
Knoten durch eine Kante verbunden ist.

• Runde 2: Wähle einen Knoten b2 in B, der nicht zum Knoten b1
benachbart ist.

Version vom 16. Oktober 2023 Seite 156

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Folie 257

(b) Betrachte die beiden folgenden Graphen A,B.

A : B :

Duplicator gewinnt das 2-Runden EF-Spiel auf A und B, denn in
beiden Graphen gibt es zu jedem Knoten sowohl einen Nachbarn, als
auch einen Nicht-Nachbarn.

(c) Spoiler gewinnt das 3-Runden EF-Spiel auf den Graphen A und B aus
(b), indem er in den ersten 3 Runden 3 verschiedene nicht benachbarte
Knoten in A wählt.

Folie 258

Die Ziele von Spoiler und Duplicator

Die Gewinnbedingung im EF-Spiel ist so gewählt, dass die Ziele von Spoiler
und Duplicator anschaulich folgendermaßen beschrieben werden können:

• Spoilers Ziel ist es, zu zeigen, dass die beiden Strukturen (A, a) und
(B, b) verschieden sind.

• Duplicators Ziel ist es, einen etwaigen Unterschied zwischen den
beiden Strukturen zu vertuschen.

Folie 259

Gewinnstrategien

Eine Strategie für einen der beiden Spieler im m-Runden EF-Spiel auf
(A, a) und (B, b) ist eine Vorschrift, die ihm sagt, welchen Zug er als
Nächstes machen soll. Formal:

Version vom 16. Oktober 2023 Seite 157

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

• Eine Strategie für Spoiler ist eine Abbildung

fSp :
m−1⋃
i=0

(A×B)i −→ A ∪B.

Sind ak+1, . . . , ak+i ∈ A und bk+1, . . . , bk+i ∈ B die in den ersten i
Runden gewählten Elemente, so gibt

fSp(ak+1, bk+1, . . . , ak+i, bk+i)

an, welches Element Spoiler in der (i+1)-ten Runde wählen soll.

Folie 260

• Eine Strategie für Duplicator ist eine Abbildung

fDupl :
m−1⋃
i=0

(A×B)i × (A ∪B) −→ B ∪ A,

so dass für alle i ∈ {0, . . . ,m−1}, alle ak+1, . . . , ak+i ∈ A, alle
bk+1, . . . , bk+i ∈ B und alle ck+i+1 ∈ A ∪B gilt:

ck+i+1 ∈ A ⇐⇒ fDupl(ak+1, bk+1, . . . , ak+i, bk+i, ck+i+1) ∈ B.

Sind ak+1, . . . , ak+i ∈ A und bk+1, . . . , bk+i ∈ B die in den ersten
i Runden und ist ck+i+1 ∈ A ∪B das von Spoiler in Runde i+1
gewählte Element, so gibt

fDupl(ak+1, bk+1, . . . , ak+i, bk+i, ck+i+1)

an, welches Element Duplicator in der (i+1)-ten Runde wählen soll.

• Eine Gewinnstrategie ist eine Strategie für einen der beiden Spieler,
mit der er jede Partie des m-Runden EF-Spiels auf (A, a) und (B, b)
gewinnt.

Folie 261

Version vom 16. Oktober 2023 Seite 158

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Der Satz von Ehrenfeucht

Sei σ eine relationale Signatur, seien A,B zwei σ-Strukturen, sei m ∈ N, sei
k ∈ N, sei a = a1, . . . , ak ∈ A und b = b1, . . . , bk ∈ B.

Der Satz von Ehrenfeucht besagt, dass die beiden folgenden Aussagen
äquivalent sind:

(1) Duplicator hat eine Gewinnstrategie im m-Runden EF-Spiel auf (A, a)
und (B, b).

(2) Für jede FO[σ]-Formel φ(x1, . . . , xk) der Quantorentiefe ⩽ m gilt:

A |= φ[a1, . . . , ak] ⇐⇒ B |= φ[b1, . . . , bk].

Anschaulich bedeutet dies, dass (A, a) und (B, b) aus Perspektive von
FO[σ]-Formeln der Quantorentiefe ⩽ m

”
gleich“ aussehen, d.h. dass

(A, a) und (B, b) von solchen Formeln nicht unterschieden werden
können.

Die Quantorentiefe einer Formel φ ist dabei die maximale Anzahl von
ineinander geschachtelten Quantoren, die in φ vorkommen:

Folie 262

Definition 3.49. Die Quantorentiefe (bzw. der Quantorenrang, engl.:
quantifier rank) qr(φ) einer FO[σ]-Formel φ ist rekursiv wie folgt definiert:

• Ist φ atomar, so ist qr(φ) := 0.

• Ist φ von der Form ¬ψ, so ist qr(φ) := qr(ψ).

• Ist φ von der Form (ψ1 ∗ ψ2) mit ∗ ∈ {∧,∨,→}, so ist
qr(φ) := max{qr(ψ1), qr(ψ2)}.

• Ist φ von der Form ∃xψ oder ∀xψ, so ist qr(φ) := qr(ψ) + 1.

Beispiele:

• qr
(
∃x∀y

(
x=y ∨ E(x, y)

))
= 2.

• qr
(
∃x

(
E(x, x) ∨ ∀y ¬E(x, y)

))
= 2.

• qr
((
∃xE(x, x) ∨ ∀y ¬E(x, y)

))
= 1.

Version vom 16. Oktober 2023 Seite 159

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Bemerkung 3.50. Gemäß Satz 3.46 ist jede FO[σ]-Formel φ äquivalent zu
einer FO[σ]-Formel φ′, in der nur Existenzquantoren und die Junktoren
¬,∨ vorkommen (d.h.: in φ′ kommt keins der Symbole ∀,∧,→ vor).

Man sieht leicht, dass φ′ sogar so gewählt werden kann, dass gilt:
qr(φ′) = qr(φ) und frei(φ′) = frei(φ).

Folie 263

Wir beweisen hier nur die Richtung
”
(1) =⇒ (2)“ des Satzes von

Ehrenfeucht, deren Kontraposition in folgendem Satz formuliert wird.

Satz 3.51 (Satz von Ehrenfeucht, einfache Version).
Sei σ eine relationale Signatur und seien A,B zwei σ-Strukturen, sei
m ∈ N, sei k ∈ N, sei a = a1, . . . , ak ∈ A und sei b = b1, . . . , bk ∈ B.
Falls es eine FO[σ]-Formel φ(x1, . . . , xk) mit frei(φ) ⊆ {x1, . . . , xk} und
qr(φ) ⩽ m gibt, so dass

A |= φ[a1, . . . , ak] und B ̸|= φ[b1, . . . , bk] ,

so hat Spoiler eine Gewinnstrategie im m-Runden EF-Spiel auf (A, a) und
(B, b).

Folie 264

Beweisidee

Zunächst illustrieren wir die Beweisidee an einem Beispiel. Betrachte dazu
die Formel

φ := ∃x1 ∀x2
(
x1=x2 ∨ E(x1, x2)

)
und die beiden Graphen A,B aus Beispiel 3.48(a).

A : B :

Es gilt: A |= φ und B ̸|= φ, d.h. B |= ¬φ.

Klar:
¬φ ≡ ∀x1 ∃x2

(
¬x1=x2 ∧ ¬E(x1, x2)

)
.

Also gilt:

Version vom 16. Oktober 2023 Seite 160

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

A |= ∃x1 ∀x2
(
x1=x2 ∨ E(x1, x2)

)
(3.2)

und
B |= ∀x1 ∃x2

(
¬x1=x2 ∧ ¬E(x1, x2)

)
(3.3)

Eine Gewinnstrategie für Spoiler im 2-Runden EF-Spiel auf A und B lässt
sich daran direkt ablesen — Spoiler gewinnt, indem er wie folgt

”
die Formel

φ ausspielt“:

Wegen (3.2) kann Spoiler in Runde 1 ein a1 ∈ A wählen, so dass gilt:

A |=
(
∀x2

(
x1=x2 ∨ E(x1, x2)

))
[a1] (3.4)

Dieses a1 ist gerade der Knoten
”
in der Mitte“ des Graphen A, d.h. der

Knoten, der Kanten zu allen anderen Knoten von A besitzt.

Wegen (3.3) gilt dann für jedes Element b1 ∈ B, mit dem Duplicator in
Runde 1 antworten könnte, dass

B |=
(
∃x2

(
¬x1=x2 ∧ ¬E(x1, x2)

))
[b1] (3.5)

In Runde 2 kann Spoiler daher ein Element b2 ∈ B auswählen, für das gilt:

B |=
(
¬x1=x2 ∧ ¬E(x1, x2)

)
[b1, b2] (3.6)

Wegen (3.4) gilt für jedes Element a2 ∈ A, mit dem Duplicator in Runde 2
antworten könnte, dass

A |=
(
x1=x2 ∨ E(x1, x2)

)
[a1, a2] (3.7)

Am Ende der Partie wissen wir gemäß (3.7) und (3.6) also, dass Folgendes
gilt:(

a1 = a2 oder (a1, a2) ∈ EA
)

und
(
b1 ̸= b2 und (b1, b2) ̸∈ EB

)
Falls a1 = a2 ist, so ist Teil (1) der Gewinnbedingung für Duplicator
verletzt; falls (a1, a2) ∈ EA ist, so ist Teil (2) der Gewinnbedingung für
Duplicator verletzt. Also gewinnt Spoiler jede Partie des 2-Runden
EF-Spiels auf A und B.
Somit hat Spoiler eine Gewinnstrategie im 2-Runden EF-Spiel auf A und B.

Folie 265

Version vom 16. Oktober 2023 Seite 161

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Beweis von Satz 3.51:

Wir führen den Beweis per Induktion über den Aufbau von Formeln.
Es seien eine relationale Signatur σ und zwei σ-Strukturen A und B
gegeben. Die Aussage A(φ), die wir für alle FO[σ]-Formeln φ beweisen
wollen, besagt Folgendes:

Für alle m, k ∈ N, alle a = a1, . . . , ak ∈ A und alle
b = b1, . . . , bk ∈ B gilt:

Falls qr(φ) ⩽ m und | frei(φ)| ⩽ k und

A |= φ[a1, . . . , ak] ⇐⇒ B ̸|= φ[b1, . . . , bk] ,

so hat Spoiler eine Gewinnstrategie im m-Runden EF-Spiel auf
(A, a) und (B, b).

Um A(φ) für eine gegebene Formel φ zu beweisen, seien im Folgenden
m, k ∈ N, a = a1, . . . , ak ∈ A und b = b1, . . . , bk ∈ B beliebig gewählt.
Es genügt, den Fall zu betrachten, in dem gilt:

(∗): m ⩾ qr(φ), k ⩾ | frei(φ)| und A |= φ[a] ⇐⇒ B ̸|= φ[b] ,

denn andernfalls muss gemäß der Formulierung von A(φ) nichts gezeigt
werden.

Ziel ist, zu zeigen, dass Spoiler eine Gewinnstrategie im m-Runden
EF-Spiel auf (A, a) und (B, b) hat.

Induktionsanfang: Sei φ atomar. Da σ eine relationale Signatur ist, sind
Variablen die einzigen σ-Terme, d.h.: Tσ = VAR. Somit ist jede atomare
σ-Formel von einer der beiden im Folgenden betrachteten Formen.

• φ ist von der Form xi1 = xi2 , mit i1, i2 ∈ {1, . . . , k}
Wegen (∗) gilt dann insbesondere:

ai1 = ai2 ⇐⇒ bi1 ̸= bi2 .

Somit ist Duplicators Gewinnbedingung (1) verletzt, und Spoiler
gewinnt jede Partie des m-Runden EF-Spiels auf (A, a) und (B, b).

• φ ist von der Form R(xi1 , . . . , xir), wobei R ∈ σ, r := ar(R) und
i1, . . . , ir ∈ {1, . . . , k}.

Version vom 16. Oktober 2023 Seite 162

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Wegen (∗) gilt dann insbesondere:

(ai1 , . . . , air) ∈ RA ⇐⇒ (bi1 , . . . , bir) ̸∈ RB.

Somit ist Duplicators Gewinnbedingung (2) verletzt, und Spoiler
gewinnt jede Partie des m-Runden EF-Spiels auf (A, a) und (B, b).

Induktionsschritt: Sei φ eine beliebige nicht-atomare FO[σ]-Formel. Gemäß
Bemerkung 3.50 genügt es, im Folgenden die Fälle zu betrachten, in denen
φ von einer der folgenden Formen ist: ∃y ψ, ¬ψ, (ψ1 ∨ ψ2).

• Fall 1: φ ist von der Form ∃y ψ.
Gemäß Induktionsannahme gilt A(ψ).
Unser Ziel ist, zu zeigen, dass Spoiler eine Gewinnstrategie im
m-Runden EF-Spiel auf (A, a) und (B, b) hat.
Gemäß (∗) gilt: m ⩾ qr(φ), k ⩾ | frei(φ)|, A |= φ[a] ⇐⇒ B ̸|= φ[b].

Fall 1.1: A |= φ[a] und B ̸|= φ[b].

Da φ von der Form ∃xψ ist, gilt also:

A |=
(
∃xψ

)
[a] und B |=

(
∀x¬ψ

)
[b]

Somit gibt es ein ak+1 ∈ A, so dass gilt: A |= ψ[a, ak+1].

Und für jedes bk+1 ∈ B gilt: B |= ¬ψ[b, bk+1].

Spoiler kann daher in Runde 1 ein ak+1 ∈ A mit A |= ψ[a, ak+1]
wählen. Für jedes bk+1 ∈ B, mit dem Duplicator in Runde 1 antworten
kann, gilt: B |= ¬ψ[b, bk+1].

Es gilt:

– qr(ψ) = qr(φ)− 1 ⩽ m−1 =: m′,

– | frei(ψ)| ⩽ | frei(φ)|+ 1 ⩽ k+1 =: k′, und

– für a′ := a1, . . . , ak, ak+1 und b
′
:= b1, . . . , bk, bk+1 gilt:

A |= ψ[a′] und B ̸|= ψ[b
′
].

Da A(ψ) gemäß Induktionsannahme gilt, hat Spoiler daher eine

Gewinnstrategie im m′-Runden EF-Spiel auf (A, a′) und (B, b′).
Für das m-Runden EF-Spiel auf (A, a) und (B, b) erhält Spoiler daher
eine Gewinnstrategie, indem er in Runde 1 ein ak+1 ∈ A wählt, so dass
gilt: A |= ψ[a, ak+1].

Version vom 16. Oktober 2023 Seite 163

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Für jedes bk+1 ∈ B, mit dem Duplicator in Runde 1 antworten kann,
spielt Spoiler die restlichen m′ = m−1 Runden dann gemäß seiner
Gewinnstrategie im (m−1)-Runden EF-Spiel auf (A, a, ak+1) und
(B, b, bk+1).

Fall 1.2: B |= φ[b] und A ̸|= φ[a].

Da φ von der Form ∃xψ ist, gilt also:

B |=
(
∃xψ

)
[b] und A |=

(
∀x¬ψ

)
[a]

Somit gibt es ein bk+1 ∈ B, so dass gilt: B |= ψ[b, bk+1].

Und für jedes ak+1 ∈ A gilt: A |= ¬ψ[a, ak+1].

Spoiler kann daher in Runde 1 ein bk+1 ∈ B mit B |= ψ[b, bk+1]
wählen. Für jedes ak+1 ∈ A, mit dem Duplicator in Runde 1 antworten
kann, gilt: A |= ¬ψ[a, ak+1].

Genau wie in Fall 1.1 hat Spoiler gemäß Induktionsannahme eine
Gewinnstrategie im (m−1)-Runden EF-Spiel auf (A, a, ak+1) und
(B, b, bk+1).

Insgesamt liefert dies eine Gewinnstrategie für Spoiler im m-Runden
EF-Spiel auf (A, a) und (B, b).

• Fall 2: φ ist von der Form ¬ψ.
Gemäß Induktionsannahme gilt A(ψ).
Gemäß (∗) gilt: m ⩾ qr(φ), k ⩾ | frei(φ)|, A |= φ[a] ⇐⇒ B ̸|= φ[b].

Da φ von der Form ¬ψ ist, gilt:
qr(ψ) = qr(φ), frei(ψ) = frei(φ), A ̸|= ψ[a] ⇐⇒ B |= ψ[b].

Da A(ψ) gemäß Induktionsannahme gilt, hat Spoiler also eine
Gewinnstrategie im m-Runden EF-Spiel auf (A, a) und (B, b).

• Fall 3: φ ist von der Form (ψ1 ∨ ψ2).

Gemäß Induktionsannahme gilt A(ψ1) und A(ψ2).

Gemäß (∗) gilt: m ⩾ qr(φ), k ⩾ | frei(φ)|, A |= φ[a] ⇐⇒ B ̸|= φ[b].

Da φ von der Form (ψ1 ∨ ψ2) ist, sieht man leicht, dass es ein i ∈ {1, 2}
geben muss, so dass gilt:

A |= ψi[a] ⇐⇒ B ̸|= ψi[b]

Version vom 16. Oktober 2023 Seite 164

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Außerdem gilt: qr(ψi) ⩽ qr(φ) ⩽ m, und | frei(ψi)| ⩽ | frei(φ)| ⩽ k.

Da A(ψi) gemäß Induktionsannahme gilt, hat Spoiler also eine
Gewinnstrategie im m-Runden EF-Spiel auf (A, a) und (B, b).

Dies beendet den Beweis von Satz 3.51.
Folie 266

Folgerung aus dem Satz von Ehrenfeucht

Notation 3.52. Eine Klasse C von σ-Strukturen heißt FO-definierbar, falls
es einen FO[σ]-Satz φ gibt, der C definiert.

Zur Erinnerung:
Für einen FO[σ]-Satz φ und eine Klasse C von σ-Strukturen sagen wir

”
φ

definiert C“, falls für jede σ-Struktur A gilt: A ∈ C ⇐⇒ A |= φ.

Um für eine gegebene Klasse C von σ-Strukturen zu zeigen, dass sie nicht
FO-definierbar ist, können wir das folgende Korollar nutzen, das wir als eine
einfache Folgerung aus Satz 3.51 erhalten.

Korollar 3.53.
Sei σ eine relationale Signatur und sei C eine Klasse von σ-Strukturen.
Falls es für jedes m ⩾ 1 zwei σ-Strukturen Am und Bm gibt, so dass gilt:

1. Am ∈ C und

2. Bm ̸∈ C und

3. Duplicator hat eine Gewinnstrategie im m-Runden EF-Spiel auf Am
und Bm,

dann ist C nicht FO-definierbar.

Beweis.
Für jedes m ⩾ 1 seien Am und Bm zwei σ-Strukturen, so dass 1.–3. gilt.
Wir führen einen Beweis durch Widerspruch und nehmen an, dass C doch
FO-definierbar ist. D.h. es gibt einen FO[σ]-Satz φ, der C definiert. Somit
gilt für jede σ-Struktur C:

C |= φ ⇐⇒ C ∈ C. (3.8)

Betrachte die Strukturen Am und Bm für ein m mit m ⩾ qr(φ).
Laut Voraussetzung wissen wir, dass 1.–3. gilt.

Version vom 16. Oktober 2023 Seite 165

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Wegen Am ∈ C und Bm ̸∈ C gilt gemäß (3.8), dass

Am |= φ und Bm ̸|= φ.

Gemäß Satz 3.51 (Satz von Ehrenfeucht, einfache Version) hat Spoiler also
eine Gewinnstrategie im m-Runden EF-Spiel auf Am und Bm.
Dies ist ein Widerspruch zu 3., da gemäß 3. Duplicator eine
Gewinnstrategie im m-Runden EF-Spiel auf Am und Bm hat.

Folie 267

Lineare Ordnungen gerader Kardinalität

Wir werden nun Korollar 3.53 anwenden, um folgenden Satz zu zeigen.

Satz 3.54. Die Klasse EVEN⩽, die aus allen linearen Ordnungen
A = (A,⩽A) gerader Kardinalität besteht (d.h., A ist endlich und |A| ist
durch 2 teilbar), ist nicht FO-definierbar.

Um diesen Satz zu beweisen, genügt es gemäß Korollar 3.53, für jede
Rundenzahl m ⩾ 1 eine lineare Ordnung Am gerader Kardinalität und eine
lineare Ordnung Bm ungerader Kardinalität anzugeben, für die wir zeigen
können, dass Duplicator eine Gewinnstrategie im m-Runden EF-Spiel auf
Am und Bm hat.

Folie 268

Als Vorbereitung dazu betrachten wir zunächst ein Beispiel.

Beispiel 3.55.
Betrachte die linearen Ordnungen A = (A,⩽A) und B = (B,⩽B) mit
A = {1, . . . , 8} und B = {1, . . . , 9}, wobei ⩽A und ⩽B die natürlichen
linearen Ordnungen auf A und B sind.
Seien außerdem k := 2 und a := a1, a2 und b := b1, b2 mit a1 = b1 = 1 und
a2 = 8 und b2 = 9 vorgegeben.

Frage: Was ist die größte Zahl m, so dass Duplicator eine Gewinnstrategie
im m-Runden EF-Spiel auf (A, a) und (B, b) hat?

Antwort: Duplicator hat eine Gewinnstrategie im 2-Runden EF-Spiel auf
(A, a) und (B, b); Spoiler hat eine Gewinnstrategie im 3-Runden EF-Spiel
auf (A, a) und (B, b).

Folie 269

Die Gewinnstrategie für Duplicator lässt sich zu folgendem Resultat
verallgemeinern.

Version vom 16. Oktober 2023 Seite 166

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Lemma 3.56. Seien A und B endliche3 lineare Ordnungen, sei k := 2, und
sei a := a1, a2 und b := b1, b2, wobei a1, b1 die kleinsten und a2, b2 die
größten Elemente in A und B bezüglich ⩽A und ⩽B sind.

Für jedes m ⩾ 1 gilt: Falls |A|, |B| > 2m oder |A| = |B|, so hat Duplicator
eine Gewinnstrategie im m-Runden EF-Spiel auf (A, a) und (B, b).

Beweis.
Falls |A| = |B|, so sind A und B isomorph (beachte dazu: laut
Voraussetzung sind A und B endlich). Sei π : A ∼= B ein Isomorphismus von
A nach B. Duplicator gewinnt das m-Runden EF-Spiel auf (A, a) und
(B, b), indem er in jeder Runde i ∈ {1, . . . ,m} einfach Spoilers Zug

”
kopiert“, d.h. er wählt π(ak+i)

(
bzw. π−1(bk+i)

)
, wenn Spoiler in Runde i

ein Element ak+i ∈ A (bzw. bk+i ∈ B) wählt.

Im Folgenden betrachten wir den Fall, dass |A| > 2m und |B| > 2m.
Für jedes C ∈ {A,B} betrachte die Distanzfunktion Dist : C × C → N mit

Dist(c, c′) :=
∣∣{d ∈ C : c <C d ⩽C c′ oder c′ <C d ⩽C c}

∣∣
für alle c, c′ ∈ C.

Folie 270

Wir zeigen nun, dass Duplicator so spielen kann, dass für jedes
i ∈ {0, 1, . . . ,m} die folgende Invariante (∗)i erfüllt ist:

(∗)i: Sind a2+1, . . . , a2+i und b2+1, . . . , b2+i die in den Runden 1, . . . , i
gewählten Elemente in A und B, so gilt für alle j, j′ ∈ {1, . . . , 2+i}:

1. aj ⩽A aj′ ⇐⇒ bj ⩽B bj′ und

2. Dist(aj, aj′) = Dist(bj, bj′) oder Dist(aj, aj′),Dist(bj, bj′) ⩾ 2m−i.

Der Beweis folgt per Induktion nach i.

Induktionsanfang: i=0
Die Bedingung (∗)0 ist erfüllt, denn laut Voraussetzung gilt:

Dist(a1, a2) = |A|−1 ⩾ 2m und Dist(b1, b2) = |B|−1 ⩾ 2m.

Induktionsschritt: i→ i+1
Gemäß Induktionsannahme sind bereits i Runden gespielt und die
Bedingung (∗)i ist nach der i-ten Runde erfüllt.

3d.h., die Universen von A und B sind endlich

Version vom 16. Oktober 2023 Seite 167

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Fall 1: Spoiler wählt in der (i+1)-ten Runde ein Element a2+i+1 in A.
Falls a2+i+1 = aj für ein j ∈ {1, . . . , 2+i}, so antwortet Duplicator mit
b2+i+1 := bj und bewirkt damit, dass die Bedingung (∗)i+1 erfüllt ist.
Ansonsten gibt es Indizes j, j′ ∈ {1, . . . , 2+i}, so dass gilt:

• aj <
A a2+i+1 <

A aj′ und

• für alle j′′ ∈ {1, . . . , 2+i} gilt: aj′′ ⩽A aj oder aj′ ⩽A aj′′ .

Da (∗)i gemäß Induktionsannahme erfüllt ist, gilt:

(1.) Dist(aj, aj′) = Dist(bj, bj′) oder

(2.) Dist(aj, aj′),Dist(bj, bj′) ⩾ 2m−i.

Im Fall (1.) gibt es ein Element b2+i+1 in B, so dass bj <
B b2+i+1 <

B bj′ und
Dist(bj, b2+i+1) = Dist(aj, a2+i+1) und Dist(b2+i+1, bj′) = Dist(a2+i+1, aj′).
Man kann sich leicht davon überzeugen, dass die Bedingung (∗)i+1 erfüllt
ist, wenn Duplicator in der (i+1)-ten Runde dieses b2+i+1 wählt.

Im Fall (2.) muss es mindestens ein Element c ∈ B geben, so dass

bj <
B c <B bj′ und Dist(bj, c) ⩾ 2m−i

2
= 2m−(i+1) und

Dist(c, bj′) ⩾ 2m−i

2
= 2m−(i+1).

• Falls Dist(aj, a2+i+1) ⩾ 2m−(i+1) und Dist(a2+i+1, aj′) ⩾ 2m−(i+1), so
wählt Duplicator in der (i+1)-ten Runde b2+i+1 := c.

• Falls Dist(aj, a2+i+1) < 2m−(i+1), so wählt Duplicator das b2+i+1 >
B bj

mit Dist(bj, b2+i+1) = Dist(aj, a2+i+1).

• Falls Dist(a2+i+1, aj′) < 2m−(i+1), so wählt Duplicator das
b2+i+1 <

B bj′ mit Dist(b2+i+1, bj′) = Dist(a2+i+1, aj′).

Man kann leicht nachprüfen, dass in jedem der 3 Fälle die Bedingung (∗)i+1

erfüllt ist.

Fall 2: Spoiler wählt in der (i+1)-ten Runde ein Element b2+i+1 in B.
Duplicators Antwort a2+i+1 in A wird analog zu Fall 1 ermittelt.

Damit sind wir fertig mit dem Induktionsschritt.
Wir haben also bewiesen, dass Duplicator, so spielen kann, dass für jedes
i ∈ {0, 1, . . . ,m} die Bedingung (∗)i erfüllt ist.
Insbesondere ist nach Runde m die Bedingung (∗)m erfüllt und Duplicator
hat daher die Partie gewonnen.

Version vom 16. Oktober 2023 Seite 168

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Folie 271

Satz 3.54 folgt nun direkt aus Korollar 3.53 und Lemma 3.56.

Beweis von Satz 3.54.
Um nachzuweisen, dass die Klasse EVEN⩽ nicht FO-definierbar ist, genügt
es laut Korollar 3.53, für jede Zahl m ⩾ 1 eine endliche lineare Ordnung Am
gerader Kardinalität und eine endliche lineare Ordnung Bm ungerader
Kardinalität zu finden, so dass Duplicator eine Gewinnstrategie im
m-Runden EF-Spiel auf Am und Bm besitzt.
Wir wählen für Am die natürliche lineare Ordnung mit Universum
Am := {1, . . . , 2m+2}, und für Bm die natürliche lineare Ordnung mit
Universum Bm := {1, . . . , 2m+1}.
Gemäß Lemma 3.56 hat Duplicator eine Gewinnstrategie im m-Runden
EF-Spiel auf (Am, a) und (Bm, b), wobei a = a1, a2 und b = b1, b2 jeweils aus
dem kleinsten und dem größten Element der beiden linearen Ordnungen
bestehen.
Offensichtlicherweise ist diese Gewinnstrategie auch eine Gewinnstrategie
für Duplicator im m-Runden EF-Spiel auf Am und Bm.

Folie 272

Bemerkung 3.57.
Der obige Beweis zeigt nicht nur, dass die Klasse EVEN⩽

nicht FO-definierbar ist, sondern sogar die folgende stärkere Aussage:

Für jedes n ∈ N gilt: Es gibt keinen FO[{⩽}]-Satz ψ, so dass für
jede endliche lineare Ordnung B mit |B| ⩾ n gilt:
B |= ψ ⇐⇒ |B| ist gerade.

Beweis. Durch Widerspruch.
Sei n ∈ N beliebig gewählt. Angenommen, es gibt einen FO[{⩽}]-Satz ψ, so
dass für jede endliche lineare Ordnung B mit |B| ⩾ n gilt:
B |= ψ ⇐⇒ |B| ist gerade.
Dann sei m := qr(ψ). Wähle ein ℓ ∈ N mit ℓ ⩾ m und 2ℓ ⩾ n. Sei A eine
lineare Ordnung auf genau 2ℓ+1 Elementen und sei B eine lineare Ordnung
auf genau 2ℓ+2 Elementen.
Da |A| ⩾ n und gerade ist, gilt: A |= ψ.
Da |B| ⩾ n und ungerade ist, gilt: B ̸|= ψ.
Gemäß Satz 3.51 hat Spoiler eine Gewinnstrategie im m-Runden EF-Spiel
auf A und B. Aber aus Lemma 3.56 folgt, dass Duplicator eine
Gewinnstrategie im m-Runden EF-Spiel auf A und B hat. Widerspruch!

Folie 273

Version vom 16. Oktober 2023 Seite 169

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Graph-Zusammenhang und Erreichbarkeit sind
nicht FO-definierbar

Wir können die Aussage von Bemerkung 3.57 nutzen, um Folgendes zu
zeigen.

Satz 3.58. Sei σ := {E/2}.

(a)
”
Graph-Zusammenhang ist nicht FO-definierbar.“

D.h.: Es gibt keinen FO[σ]-Satz φConn, so dass für jeden endlichen
ungerichteten Graphen G = (V G, EG) und die zugehörige4 σ-Struktur
A = (A,EA) gilt: A |= φConn ⇐⇒ G ist zusammenhängend.

(b)
”
Erreichbarkeit ist nicht FO-definierbar.“

D.h.: Es gibt keine FO[σ]-Formel φReach(x, y), so dass für alle endlichen
gerichteten Graphen A = (A,EA) und alle Knoten a, b ∈ A gilt:
A |= φReach[a, b] ⇐⇒ es gibt in A einen Weg von Knoten a zu
Knoten b.

Beweis.
(a): Wir führen einen Beweis durch Widerspruch und nutzen
Bemerkung 3.57.
Angenommen, φConn ist ein FO[σ]-Satz, so dass für jeden endlichen
ungerichteten Graphen G und die zugehörige σ-Struktur A gilt:

A |= φConn ⇐⇒ G ist zusammenhängend. (3.9)

Idee: Nutze den Satz φConn, um einen FO[{⩽}]-Satz ψ zu konstruieren, so
dass für jede endliche lineare Ordnung B = (B,⩽B) mit |B| ⩾ 2 gilt:

B |= ψ ⇐⇒ |B| ist gerade.

Von Bemerkung 3.57 wissen wir, dass es einen solchen Satz ψ nicht geben
kann.

Um den Satz ψ zu konstruieren, ordnen wir jeder endlichen linearen
Ordnung B = (B,⩽B) mit B = {b1, . . . , bn} und b1 <

B b2 <
B · · · <B bn

für n := |B| ⩾ 2 den Graphen GB mit Knotenmenge B zu, dessen
Kantenmenge aus genau den Kanten zwischen bi und bi+2, für alle i ⩽ n−2,
und einer zusätzlichen Kante zwischen b1 und bn besteht.

4d.h. A = V G und EA = {(u, v) : {u, v} ∈ EG}

Version vom 16. Oktober 2023 Seite 170

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Man sieht leicht, dass Folgendes gilt:

GB ist zusammenhängend ⇐⇒ |B| ist gerade. (3.10)

Sei nun ξE(x, y) eine FO[{⩽}]-Formel, die besagt:

•
”
y = x+2“ oder

”
x = y+2“ oder

•
”
x ist das kleinste und y ist das größte Element bzgl. ⩽“ oder

•
”
x ist das größte und y ist das kleinste Element bzgl. ⩽“.

Klar: Eine solche FO[{⩽}]-Formel ξE(x, y) lässt sich leicht formulieren
(Details: Übung).

Ausgewertet in einer linearen Ordnung B
”
simuliert“ die Formel ξE(x, y)

gewissermaßen die Kantenrelation des Graphen GB.
Sei nun ψ der FO[{⩽}]-Satz, der aus dem FO[{E}]-Satz φConn entsteht,
indem jedes Atom der Form E(z1, z2) durch die FO[{⩽}]-Formel ξE(z1, z2)
ersetzt wird.
Der Satz ψ ist also gerade so konstruiert, dass beim Auswerten von ψ in B
die Auswertung von φConn in der zu GB gehörenden σ-Struktur A simuliert
wird. Es gilt also für jede endliche lineare Ordnung B mit |B| ⩾ 2, den
ungerichteten endlichen Graphen GB und die zugehörige σ-Struktur A:

B |= ψ ⇐⇒ A |= φConn

(3.9)⇐⇒ GB ist zusammenhängend

(3.10)⇐⇒ |B| ist gerade.

Aber dies ist ein Widerspruch zu Bemerkung 3.57.

Version vom 16. Oktober 2023 Seite 171

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Somit muss unsere Annahme, dass der Satz φConn existiert, falsch gewesen
sein. Dies beendet den Beweis von (a).

Folie 274

(b) folgt direkt aus (a), denn:
Angenommen φReach(x, y) wäre eine FO[σ]-Formel, so dass für alle
gerichteten Graphen A = (A,EA) und alle Knoten a, b ∈ A gilt:
A |= φReach[a, b] ⇐⇒ es gibt in A einen Weg von Knoten a zu Knoten b.
Dann ist

φConn := ∀x∀y φReach(x, y)

ein FO[σ]-Satz, der in einem gerichteten Graphen A genau dann erfüllt ist,
wenn A stark zusammenhängend ist.
Insbesondere gilt dann für jeden ungerichteten Graphen G und die zu G
gehörende σ-Struktur A: A |= φConn ⇐⇒ G ist zusammenhängend.
Dies ist ein Widerspruch zu (a).

Folie 275

Logische Reduktionen

Bemerkung 3.59.
Die im Beweis von Satz 3.58 benutzte Vorgehensweise ist unter dem Begriff
logische Reduktion (oder Transduktionen) bekannt.

Im Beweis von Teil (b) wurde gezeigt: Falls es eine FO[{E}]-Formel gibt,
die ausdrückt, dass Knoten y von Knoten x aus erreichbar ist, dann gibt es
auch eine FO[{E}]-Formel, die Graph-Zusammenhang definiert.

Somit wurde das Problem, einen FO[{E}]-Satz zu finden, der
Graph-Zusammenhang definiert, auf das Problem reduziert, eine
FO[{E}]-Formel zu finden, die ausdrückt, dass Knoten y von Knoten x aus
erreichbar ist.

Folie 276

Im Beweis von Teil (a) wurde das Problem, einen FO[{⩽}]-Satz zu finden,
der ausdrückt, dass eine endliche lineare Ordnung eine gerade Kardinalität
besitzt, auf das Problem reduziert, einen FO[{E}]-Satz zu finden, der
Graph-Zusammenhang definiert.

D.h. es wurde gezeigt: Falls Graph-Zusammenhang FO-definierbar ist, so
ist auch die Aussage

”
eine endliche lineare Ordnung besitzt eine gerade

Kardinalität“ FO-definierbar.

Version vom 16. Oktober 2023 Seite 172

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Dies wurde dadurch erreicht, dass man innerhalb einer linearen Ordnung
einen geeigneten Graphen

”
simuliert“ (bzw. “interpretiert“), indem man die

Kantenrelation des Graphen durch eine FO[{⩽}]-Formel beschreibt.

Generell ist diese Methode der logischen Reduktionen oft nützlich, um
bereits bekannte Nicht-Definierbarkeits-Resultate auf neue
Nicht-Definierbarkeits-Resultate zu übertragen.

3.9 Erfüllbarkeit, Allgemeingültigkeit und die
Folgerungsbeziehung

Folie 277

Die im Folgenden eingeführten Begriffe der Erfüllbarkeit,
Allgemeingültigkeit und der Folgerungsbeziehung sind für die Logik erster
Stufe ähnlich definiert wie für die Aussagenlogik.

Im Folgenden sei σ stets eine beliebige Signatur.

Folie 278

Erfüllbarkeit und Allgemeingültigkeit

Definition 3.60. Eine FO[σ]-Formel φ (bzw. eine Formelmenge Φ ⊆ FO[σ])
heißt erfüllbar, wenn es eine σ-Interpretation gibt, die φ (bzw. Φ) erfüllt.

Eine Formel oder Formelmenge, die nicht erfüllbar ist, nennen wir
unerfüllbar.

Definition 3.61. Eine FO[σ]-Formel φ heißt allgemeingültig, wenn jede
σ-Interpretation die Formel φ erfüllt.

Wir schreiben kurz |= φ um auszudrücken, dass φ allgemeingültig ist.

Offensichtlicherweise gilt für alle FO[σ]-Formeln φ:

φ ist allgemeingültig ⇐⇒ ¬φ ist unerfüllbar.

Folie 279

Version vom 16. Oktober 2023 Seite 173

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Verum (⊤) und Falsum (⊥)

Beispiele:

• Die FO[σ]-Formel ∀v0 v0=v0 ist allgemeingültig.

• Die FO[σ]-Formel ∃v0 ¬ v0=v0 ist unerfüllbar.

Notation 3.62.
Wir schreiben ⊤ (in Worten: Verum), um die allgemeingültige FO-Formel
∀v0 v0=v0 zu bezeichnen.

Wir schreiben ⊥ (in Worten: Falsum), um die unerfüllbare FO-Formel
∃v0 ¬ v0=v0 zu bezeichnen.

Folie 280

Die Folgerungsbeziehung

Definition 3.63. Eine FO[σ]-Formel ψ folgt aus einer Formelmenge
Φ ⊆ FO[σ] (wir schreiben: Φ |= ψ), wenn für jede σ-Interpretation I gilt:
Falls I |= Φ, so gilt auch I |= ψ.

Notation. Für zwei FO[σ]-Formeln φ, ψ schreiben wir kurz φ |= ψ an
Stelle von {φ} |= ψ und sagen, dass die Formel ψ aus der Formel φ folgt.

Folie 281

Zusammenhänge

Es bestehen ähnliche Zusammenhänge wie bei der Aussagenlogik:

Lemma 3.64 (Allgemeingültigkeit, Unerfüllbarkeit und Folgerung).
Für jede FO[σ]-Formel φ gilt:

(a) φ ist allgemeingültig ⇐⇒ φ ≡ ⊤ ⇐⇒ ⊤ |= φ.

(b) φ ist unerfüllbar ⇐⇒ φ ≡ ⊥ ⇐⇒ φ |= ⊥.

(c) |= φ ⇐⇒ ∅ |= φ.

D.h.: φ ist allgemeingültig ⇐⇒ φ folgt aus der leeren Menge.

Version vom 16. Oktober 2023 Seite 174

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Lemma 3.65 (Erfüllbarkeit und die Folgerungsbeziehung).

(a) Für alle Formelmengen Φ ⊆ FO[σ] und alle FO[σ]-Formeln ψ gilt:

Φ |= ψ ⇐⇒ Φ ∪ {¬ψ} ist unerfüllbar.

(b) Für alle FO[σ]-Formeln φ, ψ gilt: φ ≡ ψ ⇐⇒ |= (φ↔ ψ).

Beweis der beiden Lemmas: Analog zu den Beweisen der entsprechenden
Resultate in der Aussagenlogik. Details: Übung.

3.10 Normalformen

Folie 282

Negationsnormalform

Die Negationsnormalform für Formeln der Logik erster Stufe ist ähnlich
definiert wie die Negationsnormalform der Aussagenlogik.

Definition 3.66. Sei σ eine beliebige Signatur.
Eine FO[σ]-Formel φ ist in Negationsnormalform (kurz: NNF), wenn
Negationszeichen in φ nur unmittelbar vor atomaren Subformeln auftreten
und φ den Junktor

”
→“ nicht enthält.

Satz 3.67. Jede FO[σ]-Formel φ ist äquivalent zu einer Formel in NNF.

Beweis. Gemäß Satz 3.46 können wir o.B.d.A. annehmen, dass φ den
Junktor

”
→“ nicht enthält.

Ähnlich wie für die Aussagenlogik definieren wir per Induktion über den
Aufbau zu jeder FO[σ]-Formel φ zwei FO[σ]-Formeln φ′ und φ′′ in NNF, so
dass gilt: φ ≡ φ′ und ¬φ ≡ φ′′.
Details: Übung.

Folie 283

Version vom 16. Oktober 2023 Seite 175

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Pränexe Normalform

Definition 3.68. Sei σ eine beliebige Signatur.

(a) Eine FO[σ]-Formel heißt quantorenfrei, falls in ihr keins der Symbole
∃,∀ vorkommt.

Die Menge aller quantorenfreien FO[σ]-Formeln bezeichnen wir mit
QFσ.

(b) Eine FO[σ]-Formel φ ist in pränexer Normalform (bzw.
Pränex-Normalform, kurz: PNF), wenn sie von der Form

Q1x1 · · ·Qnxn χ

ist, wobei n ⩾ 0, Q1, . . . , Qn ∈ {∃,∀}, x1, . . . , xn ∈ VAR und
χ ∈ QFσ.

Q1x1 · · ·Qnxn wird Quantoren-Präfix von φ genannt;

χ heißt Kern (bzw. Matrix) von φ.

Satz 3.69. Jede FO[σ]-Formel φ ist äquivalent zu einer FO[σ]-Formel φ′ in
pränexer Normalform mit frei(φ′) = frei(φ).

Folie 284

Bevor wir Satz 3.69 beweisen, betrachten wir zunächst ein Beispiel.

Beispiel 3.70. Sei

φ(y) := ∀x ¬
(
∃y E(x, y) → ∃xE(x, y)

)
.

Umformung in eine äquvivalente Formel in Pränex-Normalform:

φ ≡ ∀x ¬
(
¬∃y E(x, y) ∨ ∃xE(x, y)

)
Elimination von “→ ”

≡ ∀x ¬
(
∀y ¬E(x, y) ∨ ∃xE(x, y)

)
¬∃y ψ ≡ ∀y ¬ψ

≡ ∀x ¬
(
∀z1 ¬E(x, z1) ∨ ∃z2E(z2, y)

)
Umbenennung von

gebundenen Variablen

≡ ∀x ¬ ∀z1 ∃z2
(
¬E(x, z1) ∨ E(z2, y)

)
Zusammenlegung der Disjunktion

≡ ∀x ∃z1 ∀z2 ¬
(
¬E(x, z1) ∨ E(z2, y)

)
Negation

Diese Formel ist in PNF.
Folie 285

Version vom 16. Oktober 2023 Seite 176

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Beweis von Satz 3.69:

Wir zeigen zunächst drei Lemmas und schließen danach den Beweis ab.

Lemma 3.71.
Sei ψ := Q1x1 · · ·Qnxn χ, wobei n ⩾ 0, Q1, . . . , Qn ∈ {∃, ∀} und
χ ∈ FO[σ]. Für jedes Q ∈ {∃,∀} sei

Q̃ :=

{
∀ falls Q = ∃ ,
∃ falls Q = ∀ .

Dann gilt: ¬ψ ≡ Q̃1x1 · · · Q̃nxn ¬χ.

Beweis. Einfaches Nachrechnen per Induktion nach n unter Verwendung
der Tatsache, dass ¬∃xφ ≡ ∀x¬φ und ¬∀xφ ≡ ∃x¬φ
(Lemma 3.44). Details: Übung.

Folie 286

Lemma 3.72. Für alle FO[σ]-Formeln φ und ψ und für alle Variablen
x ∈ VAR \ frei(φ) gilt:(

φ ∧ ∃xψ
)
≡ ∃x

(
φ ∧ ψ

)
,

(
φ ∧ ∀xψ

)
≡ ∀x

(
φ ∧ ψ

)
,(

φ ∨ ∃xψ
)
≡ ∃x

(
φ ∨ ψ

)
,

(
φ ∨ ∀xψ

)
≡ ∀x

(
φ ∨ ψ

)
.

Beweis. Die Beweise aller vier Äquivalenzen sind ähnlich. Wir beweisen
hier nur die erste: (

φ ∧ ∃xψ
)
≡ ∃x

(
φ ∧ ψ

)
. (3.11)

”
=⇒“: Sei I = (A, β) eine beliebige σ-Interpretation mit I |=

(
φ ∧ ∃xψ

)
.

Dann gilt: I |= φ und I |= ∃xψ. Insbesondere gibt es ein a ∈ A, so
dass I a

x
|= ψ.

Wegen I |= φ und x ̸∈ frei(φ) folgt aus dem Koinzidenzlemma, dass
auch I a

x
|= φ.

Somit gilt: I a
x
|=

(
φ ∧ ψ

)
, und daher gilt: I |= ∃x

(
φ ∧ ψ

)
.

Version vom 16. Oktober 2023 Seite 177

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

”
⇐=“: Sei I = (A, β) eine beliebige σ-Interpretation mit I |= ∃x

(
φ ∧ ψ

)
.

Somit gibt es ein a ∈ A, so dass I a
x
|=

(
φ ∧ ψ

)
.

Insbesondere gilt: I a
x
|= φ. Wegen x ̸∈ frei(φ) folgt gemäß

Koinzidenzlemma, dass I |= φ.

Außerdem gilt wegen I a
x
|= ψ, dass I |= ∃xψ.

Insgesamt gilt also: I |=
(
φ ∧ ∃xψ

)
.

Dies beendet den Beweis von (3.11). Die anderen drei im Lemma genannten
Äquivalenzen können auf analoge Art bewiesen werden. Details: Übung.

Folie 287

Lemma 3.73. Seien

ψ1 := Q1x1 · · ·Qℓxℓ χ1 und ψ2 := Q′
1y1 · · ·Q′

mym χ2 ,

wobei ℓ,m ⩾ 0, Q1, . . . , Qℓ, Q
′
1, . . . , Q

′
m ∈ {∃,∀},

x1, . . . , xℓ, y1, . . . , ym ∈ VAR, χ1, χ2 ∈ FO[σ].

Es gelte: {x1, . . . , xℓ} ∩ frei(ψ2) = ∅ und {y1, . . . , ym} ∩ frei(χ1) = ∅.
Dann gilt für ∗ ∈ {∧,∨}, dass(

ψ1 ∗ ψ2

)
≡ Q1x1 · · ·Qℓxℓ Q

′
1y1 · · ·Q′

mym
(
χ1 ∗ χ2

)
.

Beweis. Zwei Induktionen über ℓ bzw. m unter Verwendung von
Lemma 3.72:
Per Induktion nach ℓ folgt unter Verwendung von Lemma 3.72, dass(

ψ2 ∗ Q1x1 · · ·Qℓxℓ χ1

)
≡ Q1x1 · · ·Qℓxℓ

(
ψ2 ∗ χ1

)
.

Die Kommutativität von ∗ ∈ {∧,∨} liefert daher:(
ψ1 ∗ ψ2

)
≡ Q1x1 · · ·Qℓxℓ

(
χ1 ∗ ψ2

)
. (3.12)

Andererseits folgt per Induktion nach m unter Verwendung von
Lemma 3.72, dass(

χ1 ∗ Q′
1y1 · · ·Q′

mym χ2

)
≡ Q′

1y1 · · ·Q′
mym

(
χ1 ∗ χ2

)
. (3.13)

Die Kombination von (3.12) und (3.13) liefert also:(
ψ1 ∗ ψ2

)
≡ Q1x1 · · ·Qℓxℓ Q

′
1y1 · · ·Q′

mym
(
χ1 ∗ χ2

)
.

Folie 288

Version vom 16. Oktober 2023 Seite 178

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Abschluss des Beweises von Satz 3.69:

Sei φ eine FO[σ]-Formel. Gemäß Satz 3.46 können wir o.B.d.A. annehmen,
dass φ den Junktor

”
→“ nicht enthält.

Per Induktion über den Aufbau von φ zeigen wir, dass es eine zu φ
äquivalente Formel φ′ in PNF gibt mit frei(φ′) = frei(φ).

Induktionsanfang: Atomare Formeln sind quantorenfrei und daher
insbesondere in PNF.

Induktionsschritt:

Fall 1: φ ist von der Form Qx ψ mit Q ∈ {∃,∀}, x ∈ VAR, ψ ∈ FO[σ]:
Gemäß Induktionsannahme gibt es eine zu ψ äquivalente Formel ψ′ in PNF
mit frei(ψ′) = frei(ψ).
Offensichtlich ist φ′ := Qxψ′ die gesuchte PNF-Formel mit φ′ ≡ φ.
Es gilt: frei(φ′) = frei(φ).

Fall 2: φ ist von der Form ¬ψ mit ψ ∈ FO[σ].
Gemäß Induktionsannahme gibt es eine zu ψ äquivalente Formel ψ′ in PNF
mit frei(ψ′) = frei(ψ).
Klar: φ ≡ ¬ψ′.
Wir nutzen Lemma 3.71 und erhalten die zu ¬ψ′ äquivalente Formel φ′ in
PNF. Es gilt: frei(φ′) = frei(φ).

Fall 3: φ ist von der Form
(
ψ1 ∗ ψ2

)
mit ∗ ∈ {∧,∨} und ψ1, ψ2 ∈ FO[σ].

Gemäß Induktionsannahme gibt es Formeln ψ′
1, ψ

′
2 in PNF, so dass für jedes

i ∈ {1, 2} gilt: ψ′
i ≡ ψi und frei(ψ′

i) = frei(ψi).
Klar: φ ≡

(
ψ′
1 ∗ ψ′

2

)
.

Sei Q1x1 · · ·Qℓxℓ χ1 die Form von ψ′
1 (mit χ1 quantorenfrei) und sei

Q′
1y1 · · ·Q′

mym χ2 die Form von ψ′
2 (mit χ2 quantorenfrei).

Wir können o.B.d.A. annehmen, dass {x1, . . . , xℓ} ∩ frei(ψ2) = ∅ und
{y1, . . . , ym} ∩ frei(χ1) = ∅ (dies können wir durch konsistentes
Umbenennen der in ψ′

1 bzw. ψ′
2 gebundenen Variablen x1, . . . , xℓ, y1, . . . , ym

erreichen).
Lemma 3.73 liefert uns dann die gesuchte zu

(
ψ′
1 ∗ ψ′

2

)
äquivalente Formel

φ′ in PNF. Es gilt: frei(φ′) = frei(φ).

Dies beendet den Beweis von Satz 3.69.

Version vom 16. Oktober 2023 Seite 179

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Version vom 16. Oktober 2023 Seite 180

Kapitel 4

Grundlagen des automatischen
Schließens

Folie 289

Ziel: Automatisches Schließen

• In typischen Anwendungen der Logik beschreibt man mit Hilfe einer
Formelmenge das Wissen über ein Anwendungsszenario und will aus
diesem Wissen dann, möglichst automatisch, Folgerungen ziehen.

• In diesem Kapitel werden wir untersuchen, inwieweit sich für die
Logik erster Stufe das Folgern automatiseren lässt.

• Wir werden einen syntaktischen Beweisbegriff einführen, der genau
dem semantischen Folgerungsbegriff entspricht (Vollständigkeitssatz).

• Dadurch werden wir einen Algorithmus erhalten, der nach und nach
alle allgemeingültigen Sätze der Logik erster Stufe aufzählt.

• Andererseits werden wir zeigen, dass es keinen Algorithmus gibt, der
bei Eingabe eines beliebigen Satzes der Logik erster Stufe entscheidet,
ob der Satz allgemeingültig ist.

• Als Folgerung aus dem Vollständigkeitssatz werden wir auch den
Endlichkeitssatz für die Logik erster Stufe erhalten.

Version vom 16. Oktober 2023 Seite 181

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

4.1 Kalküle und Ableitungen

Folie 290

Ableitungsregeln und Kalküle

Definition 4.1. Sei M eine beliebige Menge.

(a) Eine Ableitungsregel über M (kurz: Regel) hat die Form

a1 · · · an
b

wobei n ⩾ 0 und a1, . . . , an, b ∈M .

Wir bezeichnen a1, . . . , an als die Voraussetzungen der Regel und b als
die Konsequenz.

Ableitungsregeln ohne Voraussetzungen (also mit n = 0) bezeichnen wir
als Axiome.

(b) Ein Kalkül über M ist eine Menge von Ableitungsregeln über M .

Folie 291

Ableitungen

Definition 4.2.
Sei K ein Kalkül über einer Menge M , sei V ⊆M und sei a ∈M .

(a) Eine Ableitung von a aus V in K ist eine endliche Folge
(a1, . . . , aℓ) ∈M ℓ, so dass ℓ ⩾ 1, aℓ = a und für alle i ∈ {1, . . . , ℓ}
gilt:1

• ai ∈ V oder

•
ai

ist ein Axiom in K oder

• es gibt in K eine Ableitungsregel

b1 · · · bn
ai

so dass b1, . . . , bn ∈ {a1, . . . , ai−1}.
1Die Menge V kann hierbei als Menge von

”
Voraussetzungen“ betrachtet werden, und

der Kalkül legt fest, welche Axiome gelten und welche Schlussweisen zulässig sind.

Version vom 16. Oktober 2023 Seite 182

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Der besseren Lesbarkeit halber schreiben wir in konkreten Beispielen
Ableitungen der Form (a1, . . . , aℓ) oft zeilenweise, also

(1) a1
(2) a2
...

(ℓ) aℓ

und geben am Ende jeder Zeile eine kurze Begründung an.

Folie 292

(b) Ein Element a ∈M ist aus V in K ableitbar, wenn es eine Ableitung
von a aus V in K gibt.

(c) Wir schreiben ablK(V), um die Menge aller aus V in K ableitbaren
Elemente zu bezeichnen.

(d) Für V = ∅ nutzen wir folgende Notationen:

Eine Ableitung von a in K ist eine Ableitung von a aus ∅ in K.

Ein Element a ∈M heißt ableitbar aus K, falls es eine Ableitung von a
in K gibt.

Die Menge aller in K ableitbaren Elemente bezeichnen wir mit ablK,
d.h.: ablK := ablK(∅).

Folie 293

Wir werden Kalküle nutzen, um auf elegante Art rekursive Definitionen
bestimmter Mengen anzugeben:

Um eine bestimmte Teilmenge A einer Menge M rekursiv zu definieren,
genügt es, einen Kalkül K über M anzugeben, für den gilt: ablK = A.

Folie 294

Version vom 16. Oktober 2023 Seite 183

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Beispiel: Mengen natürlicher Zahlen

Beispiel 4.3.
Sei K der Kalkül über M := N mit folgenden Ableitungsregeln:

• Axiom:
1

• Weitere Regeln:
n

2n
, für jedes n ∈ N.

Fragen:

• Was ist ablK ?

• Was ist ablK(V) für V := {3} ?

Antworten:

• ablK ist die Menge aller Zweierpotenzen, d.h. ablK = {2i : i ∈ N}.

• ablK({3}) = {2i : i ∈ N} ∪ {2i · 3 : i ∈ N}

Folie 295

Beispiel: Aussagenlogik

Beispiel 4.4.
Sei Σ := AAL das Alphabet der Aussagenlogik, d.h.

Σ = AS ∪ { ¬, ∧, ∨, →, 0, 1, (,) } ,

wobei AS = {Ai : i ∈ N} die Menge aller Aussagensymbole ist.

Gesucht: Ein Kalkül K über M := Σ∗, aus dem genau die syntaktisch
korrekten aussagenlogischen Formeln ableitbar sind, d.h. ablK = AL.

Lösung: K besteht aus folgenden Ableitungsregeln:

• Axiome:
0

,
1

,
X

, für jedes Aussagensymbol X ∈ AS.

• Weitere Regeln: Für jedes φ ∈ Σ∗ und jedes ψ ∈ Σ∗ die Regeln

φ

¬φ
,

φ ψ

(φ ∧ ψ)
,

φ ψ

(φ ∨ ψ)
,

φ ψ

(φ→ ψ)

Dann gilt: ablK = AL.
Folie 296

Version vom 16. Oktober 2023 Seite 184

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Beispiel: Resolution

Die Kalkül-Schreibweise lässt sich auch dazu nutzen, eine elegante
Darstellung der in Kapitel 2.6 eingeführten Resolutionswiderlegungen zu
anzugeben.

Zur Erinnerung:

• Eine Klausel ist eine endliche Menge von Literalen.

Ein Literal ist eine aussagenlogische Formel der Form X oder ¬X,
wobei X ∈ AS.

• Wir haben in Satz 2.59 gezeigt, dass für jede Menge Γ von Klauseln
gilt:

Γ ist unerfüllbar ⇐⇒ Γ ⊢R ∅.
Hierbei ist ∅ die leere Klausel.

”
Γ ⊢R ∅“ bedeutet, dass es eine Resolutionswiderlegung von Γ gibt.

Zur Erinnerung hier die Definition des Begriffs der
Resolutionswiderlegungen:

Folie 297

Resolutionsableitungen und -widerlegungen

Definition 2.56. Sei Γ eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel δ aus Γ ist ein Tupel (δ1, . . . , δℓ)
von Klauseln, so dass gilt: ℓ ⩾ 1, δℓ = δ, und für alle i ∈ [ℓ] ist

• δi ∈ Γ, oder

• es gibt j, k ∈ [i−1], so dass δi eine Resolvente von δj und δk ist.

(b) Eine Resolutionswiderlegung von Γ ist eine Resolutionsableitung der
leeren Klausel aus Γ.

Zur Erinnerung:
Eine Klausel δ ist genau dann eine Resolvente zweier Klauseln γ1 und γ2,
wenn es ein Literal λ gibt, so dass gilt:

λ ∈ γ1, λ ∈ γ2 und δ =
(
γ1 \ {λ}

)
∪

(
γ2 \ {λ }

)
.

Folie 298

Version vom 16. Oktober 2023 Seite 185

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Der Resolutionskalkül der Aussagenlogik

Gesucht: Ein Kalkül KR über der Menge aller Klauseln, so dass für jede
Klauselmenge Γ und jede Klausel δ gilt:

δ ∈ ablKR
(Γ) ⇐⇒ Γ ⊢R δ

d.h.: δ ist genau dann aus Γ in KR ableitbar, wenn es eine
Resolutionsableitung von δ aus Γ gibt.

Lösung: KR besteht aus folgenden Ableitungsregeln:

Für alle Klauseln γ1 und γ2, für jedes Literal λ, so dass λ ∈ γ1 und
λ ∈ γ2, und für die Klausel δ := (γ1 \ {λ}) ∪ (γ2 \ {λ}) enthält KR
die Ableitungsregel

γ1 γ2
δ

Dann entsprechen Ableitungen in KR aus einer Klauselmenge Γ gerade den
Resolutionsableitungen aus Γ, und somit gilt: ablK(Γ) = {δ : Γ ⊢R δ}.
Insbesondere gibt es genau dann eine Resolutionswiderlegung von Γ, wenn
ablR(Γ) die leere Klausel enthält.

Folie 299

Der Kalkül KR wird Resolutionskalkül der Aussagenlogik genannt.

Folie 300

Kalküle und abgeschlossene Mengen

Definition 4.5. Sei K ein Kalkül über einer Menge M .
Eine Menge A ⊆M heißt abgeschlossen unter K, wenn für jede
Ableitungsregel

a1 · · · an
b

in K gilt: Falls a1, . . . , an ∈ A, so ist auch b ∈ A.

Satz 4.6. Sei K ein Kalkül über einer Menge M und sei V ⊆M .
Dann ist ablK(V) die bzgl.

”
⊆“ kleinste unter K abgeschlossene Menge, die

V enthält. D.h. es gilt:

(a) V ⊆ ablK(V).

(b) ablK(V) ist abgeschlossen unter K.

Version vom 16. Oktober 2023 Seite 186

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

(c) Für jede Menge A mit V ⊆ A ⊆M gilt:
Falls A abgeschlossen ist unter K, so ist ablK(V) ⊆ A.

(d) ablK(V) =
⋂

V⊆A⊆M,

A abgeschlossen unter K

A .

Beweis.

(a) Für jedes v ∈ V ist (v) eine Ableitung von v aus V in K. Somit ist
V ⊆ ablK(V).

(b) Sei
a1 · · · an

b

eine Ableitungsregel in K, so dass a1, . . . , an ∈ ablK(V). Wir müssen
zeigen, dass dann gilt: b ∈ ablK(V). D.h. wir müssen eine Ableitung
von b aus V in K finden.

Laut Voraussetzung gilt für jedes i ∈ [n]:
ai ∈ ablK(V), d.h. es gibt eine Ableitung(

ai1, . . . , a
i
ℓi

)
von ai aus V in K. Insbesondere gilt: ai = aiℓi .

Dann ist (
a11, . . . , a

1
ℓ1
, a21, . . . , a

2
ℓ2
, . . . , an1 , . . . , a

n
ℓn , b

)
eine Ableitung von b aus V in K. Somit gilt: b ∈ ablK(V).

(c) Sei A eine Menge mit V ⊆ A ⊆M , die abgeschlossen ist unter K. Wir
müssen zeigen, dass gilt: ablK(V) ⊆ A.

Sei dazu a ein beliebiges Element in ablK(V), und sei (a1, . . . , aℓ) eine
Ableitung von a aus V in K. Wir wollen zeigen, dass gilt: a ∈ A.
Wir zeigen per Induktion nach i, dass für jedes i ∈ [n] gilt: ai ∈ A.
Wegen a = aℓ gilt dann insbesondere, dass a ∈ A.

Induktionsanfang i = 1:

Da (a1, . . . , aℓ) eine Ableitung von a aus V in K ist, gilt insbesondere:
a1 ∈ V oder

a1
ist ein Axiom in K.

Im ersten Fall ist a1 ∈ A wegen a1 ∈ V ⊆ A.

Version vom 16. Oktober 2023 Seite 187

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Im zweiten Fall ist a1 ∈ A, da A laut Voraussetzung unter K
abgeschlossen ist.

Induktionsschritt i−1→ i:

Die Induktionsannahme besagt, dass für jedes j ⩽ i−1 gilt: aj ∈ A.
Wir müssen im Induktionsschritt zeigen, dass auch gilt: ai ∈ A.
Da (a1, . . . , aℓ) eine Ableitung von a aus V in K ist, gilt insbesondere:
ai ∈ V oder

ai
ist ein Axiom in K oder es gibt in K eine

Ableitungsregel b1 ··· bn
ai

so dass b1, . . . , bn ∈ {a1, . . . , ai−1} ist.
In den ersten beiden Fällen folgt

”
ai ∈ A“ genauso wie im

Induktionsanfang
”
a1 ∈ A“ folgt.

Im dritten Fall liefert die Induktionsannahme, dass gilt: b1, . . . , bn ∈ A.
Da außerdem A laut Voraussetzung unter K abgeschlossen ist, folgt:
ai ∈ A.

(d)
”
⊆“ folgt direkt aus (c).

”
⊇“ folgt direkt aus (a) und (b), da für die Menge A := ablK(V) gemäß
(a) und (b) gilt: V ⊆ A ⊆M und A ist abgeschlossen unter K.
Somit ist ablK(V) eine der Mengen A, aus denen der Durchschnitt
gebildet wird. Daher gilt:⋂

V⊆A⊆M,

A abgeschlossen unter K

A ⊆ ablK(V) .

Folie 301

Induktionsprinzip für die ableitbaren Elemente eines Kalküls

Sei K ein Kalkül über einer Menge M und sei V ⊆M . Um zu zeigen, dass
eine bestimmte Aussage A(a) für alle aus V in K ableitbaren Elemente a
gilt, können wir das Induktionsprinzip nutzen und einfach Folgendes zeigen:

(1) Die Aussage A(a) gilt für jedes a ∈ V , und

(2) für jede Ableitungsregel
a1 · · · an

b

in K gilt: Falls A(ai) für jedes i ∈ [n] gilt, so gilt auch A(b).

Version vom 16. Oktober 2023 Seite 188

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Daraus folgt laut dem nächsten Lemma dann, dass A(a) für jedes
a ∈ ablK(V) gilt.

Lemma 4.7. Sei K ein Kalkül über einer Menge M und sei V ⊆M . Falls

(1) eine Aussage A(a) für jedes a ∈ V gilt und

(2) für jede Ableitungsregel
a1 · · · an

b

in K gilt: falls A(ai) für jedes i ∈ [n] gilt, so gilt auch A(b),

dann gilt die Aussage A(a) für jedes a ∈ ablK(V).

Folie 302

Beweis. Es seien (1) und (2) erfüllt.
Betrachte die Menge

A := { a ∈M : die Aussage A(a) gilt } .

Wegen (1) ist V ⊆ A.
Wegen (2) ist A abgeschlossen unter K.
Aus Satz 4.6 folgt daher: ablK(V) ⊆ A.
Somit gilt die Aussage A(a) für jedes a ∈ ablK(V).

4.2 Ein Beweiskalkül für die Logik erster Stufe — der
Vollständigkeitssatz

Folie 303

Notation

• In diesem Kapitel sei σ eine beliebige fest gewählte Signatur.

• Der Einfachheit halber werden wir o.B.d.A. in diesem Kapitel nur
FO[σ]-Formeln betrachten, in denen das Symbol

”
→“ nicht

vorkommt.

• t, u, t1, t2, t
′, u′, u′′, . . . bezeichnen immer σ-Terme.

• φ, ψ, χ, . . . bezeichnen immer FO[σ]-Formeln.

Version vom 16. Oktober 2023 Seite 189

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

• Φ,Ψ,Φ1,Φ2,Ψ
′, . . . bezeichnen immer Mengen von FO[σ]-Formeln.

• Γ,∆,Γ′,∆1,∆2, . . . bezeichnen immer endliche Mengen von
FO[σ]-Formeln.

• Für Φ ⊆ FO[σ] ist frei(Φ) :=
⋃
φ∈Φ

frei(φ).

Manchmal schreiben wir auch frei(Φ, φ) an Stelle von frei(Φ ∪ {φ}).

• Ist M eine Menge, so schreiben wir L ⊆e M , um auszudrücken, dass
L eine endliche Teilmenge von M ist.

Folie 304

Sequenzen

Definition 4.8.

(a) Eine Sequenz ist ein Ausdruck der Form

Γ ⊢ ψ

wobei ψ ∈ FO[σ] und Γ ⊆e FO[σ] (d.h., Γ ist eine endliche Menge von
FO[σ]-Formeln).

Wir bezeichnen Γ als das Antezedens und ψ als das Sukzedens der
Sequenz Γ ⊢ ψ.

(b) Wir schreiben MS um die Menge aller Sequenzen zu bezeichnen, d.h.:

MS := { Γ ⊢ ψ : Γ ⊆e FO[σ], ψ ∈ FO[σ] }.

Folie 305

Korrektheit einer Sequenz

Definition 4.9. Eine Sequenz Γ ⊢ ψ heißt korrekt, falls gilt: Γ |=ψ.

Zur Erinnerung: Γ |=ψ bedeutet:
Für jede σ-Interpretation I gilt: Falls I |=Γ, so auch I |=ψ.

Beispiel:
Welche der folgenden Sequenzen sind korrekt für alle φ, ψ ∈ FO[σ] und alle
x, y ∈ VAR; welche sind nicht korrekt?

Version vom 16. Oktober 2023 Seite 190

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

(1) { (¬φ ∨ ψ) , φ } ⊢ ψ

(2) ∅ ⊢ (φ ∨ ¬φ)

(3) { ∃x ∀y φ } ⊢ ∀y ∃x φ

(4) { ∀y ∃x x=y } ⊢ ∃x∀y x=y

Antwort:
Die ersten drei Sequenzen sind korrekt; die vierte ist nicht korrekt.

Folie 306

Ziel

Wir wollen im Folgenden einen Kalkül K über MS angeben, so dass gilt:

(1) K ist korrekt, d.h. jede in K ableitbare Sequenz ist korrekt.

(2) K ist vollständig, d.h. jede korrekte Sequenz ist in K ableitbar.

(3) K ist effektiv, d.h. es gibt einen Algorithmus, der nach und nach genau
die aus K ableitbaren Sequenzen aufzählt.

Dies liefert dann insbesondere einen Algorithmus, der nach und nach alle
allgemeingültigen FO[σ]-Formeln aufzählt: Dazu lasse den gemäß (3)
existierenden Algorithmus laufen, und immer wenn dieser eine Sequenz der
Form Γ ⊢ ψ mit Γ = ∅ ausgeben will, gib ψ aus.
Wegen (1) ist die Sequenz dann korrekt, d.h. es gilt ∅ |= ψ, und daher ist ψ
allgemeingültig.
Wegen (2) werden tatsächlich alle allgemeingültigen FO[σ]-Formeln
aufgezählt.

Bemerkung. Einen Kalkül K über MS zu finden, der die Bedingungen (1)
und (2) erfüllt, ist nicht schwer. Wir könnten dafür z.B. einfach den Kalkül
nehmen, der aus allen Axiomen der Form

Γ ⊢ ψ

besteht, für die gilt: Γ ⊆e FO[σ], ψ ∈ FO[σ] und Γ |= ψ.

Dieser Kalkül ist offensichtlicherweise korrekt und vollständig, d.h. er erfüllt
die Bedingungen (1) und (2).

Version vom 16. Oktober 2023 Seite 191

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Die Bedingung (3) ist hier allerdings problematisch. Wir müssten dazu
einen Algorithmus haben, der bei Eingabe einer beliebigen endlichen Menge
Γ ⊆e FO[σ] und einer beliebigen FO[σ]-Formel ψ entscheidet, ob die
Sequenz Γ ⊢ ψ korrekt ist, d.h. ob gilt: Γ |= ψ.

Tatsächlich ist dieses Problem unentscheidbar, da (wie wir am Ende des
Kapitels sehen werden) sogar bereits das

Allgemeingültigkeitsproblem

Eingabe: eine beliebige Formel φ der Logik erster Stufe

Frage: Ist φ allgemeingültig?

unentscheidbar ist.

Folie 307

Notationen für Sequenzen

Wir schreiben kurz

• Γ, φ ⊢ ψ , um die Sequenz Γ ∪ {φ} ⊢ ψ zu bezeichnen.

• φ1, . . . , φn ⊢ ψ , um die Sequenz {φ1, . . . , φn} ⊢ ψ zu bezeichnen.

• ⊢ ψ , um die Sequenz ∅ ⊢ ψ zu bezeichnen.

Folie 308

Sequenzenregeln

Eine Sequenzenregel ist eine Ableitungsregel über MS.

Sequenzenregeln der Form
a1 · · · an

b
schreiben wir meistens zeilenweise, als

a1
...
an
b

wobei jedes ai eine Sequenz der Form Γi ⊢ ψi ist,
und b eine Sequenz der Form ∆ ⊢ φ ist.

Folie 309

Version vom 16. Oktober 2023 Seite 192

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Definition 4.10. Eine Sequenzenregel

Γ1 ⊢ ψ1
...

Γn ⊢ ψn
∆ ⊢ φ

heißt korrekt, wenn Folgendes gilt: Sind die Sequenzen Γi ⊢ ψi für alle
i ∈ {1, . . . , n} korrekt, so ist auch die Sequenz ∆ ⊢ φ korrekt.

Aus dem Induktionsprinzip für Kalküle (Lemma 4.7) folgt direkt:

Lemma 4.11.
Ein Kalkül K über MS ist korrekt, falls jede Sequenzenregel in K korrekt ist.

Wir werden nun eine Reihe von korrekten Sequenzenregeln
zusammentragen, die alle zusammen dann den von uns gesuchten korrekten,
vollständigen und effektiven Kalkül über MS bilden werden.

Folie 310

Grundregeln:

Für alle Γ,Γ′ ⊆e FO[σ] und alle φ ∈ FO[σ] betrachten wir die folgenden
Sequenzenregeln:

• Voraussetzungsregel (V):

Γ, φ ⊢ φ

• Erweiterungsregel (E):

Γ ⊢ φ
Γ′ ⊢ φ falls Γ ⊆ Γ′

Lemma 4.12. Jede der Grundregeln (V) bzw. (E) ist korrekt.

Version vom 16. Oktober 2023 Seite 193

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Beweis. Die Voraussetzungsregel

(V):
Γ, φ ⊢ φ

ist korrekt, denn offensichtlicherweise gilt: Γ ∪ {φ} |= φ.

Die Erweiterungsregel

(E):
Γ ⊢ φ
Γ′ ⊢ φ falls Γ ⊆ Γ′

ist korrekt, denn:
Sei Γ ⊢ φ korrekt. Dann gilt: Γ |= φ. Für Γ′ ⊇ Γ gilt dann
offensichtlicherweise auch: Γ′ |= φ.

Folie 311

Ausagenlogische Regeln:

Für alle Γ ⊆e FO[σ] und alle φ, ψ, χ ∈ FO[σ] betrachten wir die folgenden
Sequenzenregeln:

• Fallunterscheidungsregel (FU):

Γ, ψ ⊢ φ
Γ,¬ψ ⊢ φ
Γ ⊢ φ

• Widerspruchsregel (W):

Γ ⊢ ψ
Γ ⊢ ¬ψ
Γ ⊢ φ

(für alle φ ∈ FO[σ])

Folie 312

• ∧-Einführung im Antezedens (∧A1), (∧A2):

Γ, φ ⊢ χ
Γ, (φ ∧ ψ) ⊢ χ

Γ, ψ ⊢ χ
Γ, (φ ∧ ψ) ⊢ χ

Version vom 16. Oktober 2023 Seite 194

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

• ∧-Einführung im Sukzedens (∧S):

Γ ⊢ φ
Γ ⊢ ψ
Γ ⊢ (φ ∧ ψ)

• ∨-Einführung im Antezedens (∨A):

Γ, φ ⊢ χ
Γ, ψ ⊢ χ
Γ, (φ ∨ ψ) ⊢ χ

• ∨-Einführung im Sukzedens (∨S1), (∨S2):

Γ ⊢ φ
Γ ⊢ (φ ∨ ψ)

Γ ⊢ ψ
Γ ⊢ (φ ∨ ψ)

Folie 313

Lemma 4.13. Jede der aussagenlogischen Regeln (FU), (W), (∧A1),
(∧A2), (∧S), (∨A), (∨S1), (∨S2) ist korrekt.

Beweis. • Die Fallunterscheidungsregel

(FU):
Γ, ψ ⊢ φ
Γ,¬ψ ⊢ φ
Γ ⊢ φ

ist korrekt, denn: Seien die beiden Sequenzen Γ, ψ ⊢ φ und
Γ,¬ψ ⊢ φ korrekt. Dann gilt für jede σ-Interpretation I mit
I |= Γ ∪ {ψ} oder I |= Γ ∪ {¬ψ}, dass I |= φ.

Wir müssen zeigen, dass die Sequenz Γ ⊢ φ korrekt ist.

Sei dazu I eine beliebige σ-Interpretation mit I |= Γ.

Klar: Entweder gilt I |= ψ, oder es gilt I |= ¬ψ.
Im ersten Fall gilt: I |= Γ∪ {ψ}, und daher folgt aus der Korrektheit
der Sequenz Γ, ψ ⊢ φ, dass I |= φ.

Im zweiten Fall gilt: I |= Γ ∪ {¬ψ}, und daher folgt aus der
Korrektheit der Sequenz Γ,¬ψ ⊢ φ, dass I |= φ.

Somit gilt in jedem Fall, dass I |= φ.

Also gilt: Γ |= φ, und daher ist die Sequenz Γ ⊢ φ korrekt.

Version vom 16. Oktober 2023 Seite 195

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

• Die Widerspruchsregel

(W):
Γ ⊢ ψ
Γ ⊢ ¬ψ
Γ ⊢ φ

(für alle φ ∈ FO[σ])

ist korrekt, denn: Seien die beiden Sequenzen Γ ⊢ ψ und Γ ⊢ ¬ψ
korrekt. Dann gilt für jede σ-Interpretation I mit I |= Γ, dass
I |= ψ und I |= ¬ψ, d.h.: I |= (ψ ∧ ¬ψ). Ein solches I gibt es
nicht. Somit ist Γ unerfüllbar. Daher gilt für jede FO[σ]-Formel φ,
dass Γ |= φ, und daher ist die Sequenz Γ ⊢ φ korrekt.

• Die Regel zur ∧-Einführung im Antezendens

(∧A1):
Γ, φ ⊢ χ
Γ, (φ ∧ ψ) ⊢ χ

ist korrekt, denn: Sei die Sequenz Γ, φ ⊢ χ korrekt.

Wir müssen zeigen, dass auch die Sequenz Γ, (φ ∧ ψ) ⊢ χ korrekt ist.

Sei dazu I eine beliebige σ-Interpretation mit I |= Γ ∪ {(φ ∧ ψ)}.
Insbesondere gilt dann: I |= Γ und I |= φ, d.h. es gilt:
I |= Γ∪ {φ}. Aus der Korrektheit der Sequenz Γ, φ ⊢ χ folgt, dass
I |= χ.

Somit gilt: Γ ∪ {(φ ∧ ψ)} |= χ, und daher ist die Sequenz
Γ, (φ ∧ ψ) ⊢ χ korrekt.

• Die Korrektheit der restlichen Regeln (∧A2), (∧S), (∨A), (∨S1),
(∨S2) kann auf ähnliche Art gezeigt werden. Details: Übung.

Folie 314

Substitutionen

Um weitere wichtige Sequenzenregeln einführen zu können, benötigen wir
eine Möglichkeit, für eine Variable x ∈ VAR und einen σ-Term t ∈ Tσ eine
FO[σ]-Formel φ so zu einer FO[σ]-Formel φ t

x
abzuändern, dass gilt:

Die Formel φ t
x

sagt über den Term t dasselbe aus, wie
die Formel φ über die Variable x.

Version vom 16. Oktober 2023 Seite 196

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Präzise: Es soll für jede σ-Interpretation I gelten:

I |= φ t
x

⇐⇒ I t
x
|= φ. (4.1)

Dabei ist die σ-Interpretation I t
x

für I = (A, β) wie folgt definiert:

I t
x
:= (A, β a

x
), für a := JtKI .

Außerdem soll gelten:

φx
x

= φ. (4.2)

Folie 315

Um zu gewährleisten, dass (4.1) und (4.2) gilt, wählen wir zu gegebenem φ,
t und x die Formel φ t

x
wie folgt:

• Falls t = x, so setze φ t
x
:= φ. Andernfalls gehe wie folgt vor:

• Sei y1, . . . , yℓ eine Liste aller Variablen aus var(t) ∪ {x}, die
gebundene Vorkommen in φ besitzen.

• Sei z1, . . . , zℓ eine Liste von Variablen ̸= x, die nicht in φ oder t
vorkommen.

• Sei φ′ die Formel, die aus φ entsteht, indem für jedes i ∈ {1, . . . , ℓ}
jedes gebundene Vorkommen der Variablen yi ersetzt wird durch die
Variable zi.

• Sei φ t
x
die Formel, die aus φ′ entsteht, indem jedes Vorkommen der

Variablen x durch den Term t ersetzt wird.

Man kann zeigen:

Lemma 4.14 (Substitutionslemma). Für jede FO[σ]-Formel φ, jeden
σ-Term t, jede Variable x ∈ VAR und jede σ-Interpretation I gilt:

I |= φ t
x

⇐⇒ I t
x
|= φ.

Beweis. Übung.

Wir können nun weitere wichtige Sequenzenregeln formulieren:

Folie 316

Version vom 16. Oktober 2023 Seite 197

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Quantorenregeln:

Für alle Γ ⊆e FO[σ], alle φ, ψ ∈ FO[σ], alle x, y ∈ VAR und alle t ∈ Tσ
betrachten wir die folgenden Sequenzenregeln:

• ∀-Einführung im Antezedens (∀A):

Γ, φ t
x
⊢ ψ

Γ,∀xφ ⊢ ψ

• ∀-Einführung im Sukzedens (∀S):

Γ ⊢ φ y
x

Γ ⊢ ∀xφ falls y ̸∈ frei(Γ,∀xφ)

• ∃-Einführung im Antezedens (∃A):

Γ, φ y
x
⊢ ψ

Γ,∃xφ ⊢ ψ falls y ̸∈ frei(Γ, ∃xφ, ψ)

• ∃-Einführung im Sukzedens (∃S):

Γ ⊢ φ t
x

Γ ⊢ ∃xφ

Folie 317

Lemma 4.15.
Jede der Quantorenregeln (∀A), (∀S), (∃A), (∃S) ist korrekt.

Beweis. • Die Regel zur ∀-Einführung im Antezedens

(∀A): Γ, φ t
x
⊢ ψ

Γ,∀xφ ⊢ ψ

ist korrekt, denn: Sei die Sequenz Γ, φ t
x
⊢ ψ korrekt.

Wir müssen zeigen, dass die Sequenz Γ,∀xφ ⊢ ψ korrekt ist.

Sei dazu I eine beliebige σ-Interpretation mit I |= Γ ∪ {∀xφ}.
Insbesondere gilt dann: I |= Γ, und I a

x
|= φ für a := JtKI .

Somit gilt: I t
x
|= φ.

Version vom 16. Oktober 2023 Seite 198

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Das Substitutionslemma (Lemma 4.14) liefert: I |= φ t
x
.

Also gilt: I |= Γ und I |= φ t
x
.

Die Korrektheit der Sequenz Γ, φ t
x
⊢ ψ liefert: I |= ψ.

Somit ist die Sequenz Γ,∀xφ ⊢ ψ korrekt.

• Die Regel zur ∀-Einführung im Sukzedens

(∀S): Γ ⊢ φ y
x

Γ ⊢ ∀xφ falls y ̸∈ frei(Γ,∀xφ)

ist korrekt, denn:

Sei y ̸∈ frei(Γ, ∀xφ), und sei die Sequenz Γ ⊢ φ y
x

korrekt.

Wir müssen zeigen, dass die Sequenz Γ ⊢ ∀xφ korrekt ist.

Sei dazu I = (A, β) eine beliebige σ-Interpretation mit I |= Γ.

Wegen y ̸∈ frei(Γ) gilt laut Koinzidenzlemma für alle a ∈ A, dass
I a
y
|= Γ. Die Korrektheit der Sequenz Γ ⊢ φ y

x
liefert, dass I a

y
|= φ y

x
.

Dies gilt für alle a ∈ A. Somit gilt: I |= ∀y φ y
x
.

Wegen y ̸∈ frei(∀xφ) gilt für jede σ-Interpretation J :

J |= ∀y φ y
x

⇐⇒ J |= ∀xφ.

Aus I |= ∀y φ y
x

folgt also: I |= ∀xφ.
Somit ist die Sequenz Γ ⊢ ∀xφ korrekt.

• Die Korrektheit der restlichen Regeln (∃A) und (∃S) kann auf
ähnliche Art gezeigt werden. Details: Übung.

Folie 318

Gleichheitsregeln:

Für alle Γ ⊆e FO[σ], alle φ ∈ FO[σ], alle x ∈ VAR und alle t, u ∈ Tσ
betrachten wir die folgenden Sequenzenregeln:

• Reflexivität der Gleichheit (G):

Γ ⊢ t=t

Version vom 16. Oktober 2023 Seite 199

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

• Substitutionsregel (S):

Γ ⊢ φ t
x

Γ, t=u ⊢ φu
x

Lemma 4.16. Jede der Gleichheitsregeln (G) bzw. (S) ist korrekt.

Beweis. • Die Regel zur Reflexivität der Gleichheitsregel

(G):
Γ ⊢ t=t

ist korrekt, denn: Die Formel t=t ist offensichtlicherweise
allgemeingültig. Daher gilt für alle Formelmengen Γ, dass Γ |= t=t.
Somit ist die Sequenz Γ ⊢ t=t korrekt.

• Die Substitutionsregel

(S):
Γ ⊢ φ t

x

Γ, t=u ⊢ φu
x

ist korrekt, denn: Sei die Sequenz Γ ⊢ φ t
x

korrekt.

Wir müssen zeigen, dass die Sequenz Γ, t=u ⊢ φu
x

korrekt ist.

Sei dazu I eine beliebige σ-Interpretation mit I |= Γ ∪ {t=u}.
D.h. es gilt: I |= Γ und JtKI = JuKI .

Wegen I |= Γ folgt aus der Korrektheit der Sequenz Γ ⊢ φ t
x
, dass

I |= φ t
x
.

Das Substitutionslemma liefert für a := JtKI , dass I a
x
|= φ.

Wegen a = JtKI = JuKI gilt auch: I u
x
|= φ.

Das Substitutionslemma liefert: I |= φu
x
.

Somit ist die Sequenz Γ, t=u ⊢ φu
x

korrekt.

Folie 319

Version vom 16. Oktober 2023 Seite 200

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Der Sequenzenkalkül KS für die Logik erster Stufe

Definition 4.17.
Der Sequenzenkalkül KS ist der Kalkül über der Menge MS aller Sequenzen,
der für alle Γ,Γ′ ⊆e FO[σ], alle φ, ψ, χ ∈ FO[σ], alle t, u ∈ Tσ und alle
x, y ∈ VAR aus

• den Grundregeln (V), (E),

• den aussagenlogischen Regeln

(FU), (W), (∧A1), (∧A2), (∧S), (∨A), (∨S1), (∨S2),

• den Quantorenregeln (∀A), (∀S), (∃A), (∃S)

• und den Gleichheitsregeln (G), (S)

besteht.

Aus der Korrektheit der Regeln des Sequenzenkalküls (Lemmas 4.12, 4.13,
4.15, 4.16) folgt mit Lemma 4.11:

Satz 4.18. Der Sequenzenkalkül KS ist korrekt,
d.h. jede in KS ableitbare Sequenz ist korrekt.

Folie 320

Außerdem sieht man anhand der Definition der einzelnen Regeln leicht, dass
es einen Algorithmus gibt, der bei Eingabe einer Zahl ℓ ⩾ 1 und einer Folge
(a1, . . . , aℓ) ∈M ℓ

S entscheidet, ob (a1, . . . , aℓ) eine Ableitung in KS ist.

Für abzählbare Signaturen σ kann man außerdem einen Algorithmus
angeben, der nach und nach alle Folgen in {(a1, . . . , aℓ) ∈M ℓ

S : ℓ ⩾ 1}
ausgibt.

Beides zusammen liefert für abzählbare Signaturen σ, dass der
Sequenzenkalkül KS effektiv ist.
Details: Übung.

Unser nächstes Ziel ist, zu zeigen, dass der Sequenzenkalkül KS auch
vollständig ist, d.h. dass es für jede korrekte Sequenz eine Ableitung in KS
gibt.

Dazu betrachten wir zunächst einige Beispiele für Ableitungen im
Sequenzenkalkül KS.

Folie 321

Version vom 16. Oktober 2023 Seite 201

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Darstellung von Ableitungen

Am Anfang des Kapitels haben wir bereits vereinbart, dass wir ähnlich wie
bei Resolutionsableitungen auch allgemein für einen Kalkül K über einer
Menge M Ableitungen (a1, . . . , aℓ) der besseren Lesbarkeit halber oft
zeilenweise schreiben, also

(1) a1
(2) a2
...

(ℓ) aℓ

und am Ende jeder Zeile eine kurze Begründung angeben.

Im Folgenden betrachten wir einige Beispiele für Ableitungen im
Sequenzenkalkül KS.

Folie 322

Beispiele 4.19.

(a) Für jedes Γ ⊆e FO[σ] und jedes φ ∈ FO[σ] ist die Sequenz
Γ ⊢ (φ ∨ ¬φ) ableitbar in KS:

Γ, φ ⊢ φ (V)(1)

Γ, φ ⊢ (φ ∨ ¬φ) (∨S1) auf (1) angewendet(2)

Γ,¬φ ⊢ ¬φ (V)(3)

Γ,¬φ ⊢ (φ ∨ ¬φ) (∨S2) auf (3) angewendet(4)

Γ ⊢ (φ ∨ ¬φ) (FU) auf (2), (4) angewendet.(5)

(b) Die Sequenz R
(
f(x)

)
, ∀x x=f(x) ⊢ R

(
f
(
f(x)

))
ist ableitbar in KS:

R
(
f(x)

)
⊢ R

(
f(x)

)
(V)(1)

R
(
f(x)

)
, x=f(x) ⊢ R

(
f
(
f(x)

))
(S) auf (1) mit

t:=x, u:=f(x)
(2)

R
(
f(x)

)
,∀x x=f(x) ⊢ R

(
f
(
f(x)

))
(∀A) auf (2) mit

t:=x.
(3)

Version vom 16. Oktober 2023 Seite 202

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

(c) Für alle Terme t, u ∈ Tσ ist die Sequenz t=u ⊢ u=t ableitbar in KS:

⊢ t=t (G)(1)

t=u ⊢ u=t (S) auf (1) mit φ := x=t(2)

(d) Für jedes φ ∈ FO[σ] ist die Sequenz ∃z∀v φ ⊢ ∀v∃z φ ableitbar in KS:

φ ⊢ φ (V)(1)

φ ⊢ ∃z φ (∃S) auf (1) mit t := z(2)

∀v φ ⊢ ∃z φ (∀A) auf (2) mit t := v(3)

∀v φ ⊢ ∀v∃z φ (∀S) auf (3) mit x := v(4)

∃z∀v φ ⊢ ∀v∃z φ (∃A) auf (4) mit y := z(5)

Folie 323

Beweisbarkeit: Φ ⊢KS
φ

Definition 4.20. Sei Φ ⊆ FO[σ] und sei φ ∈ FO[σ].
Die Formel φ heißt beweisbar aus Φ (kurz: Φ ⊢KS

φ), wenn es ein Γ ⊆e Φ
gibt, so dass die Sequenz Γ ⊢ φ in KS ableitbar ist.

Ein Beweis von φ aus Φ ist eine Ableitung einer Sequenz Γ ⊢ φ in KS,
wobei Γ ⊆e Φ ist.

Notation. An Stelle von ∅ ⊢KS
φ schreiben wir auch kurz: ⊢KS

φ.

Aus der Korrektheit des Sequenzenkalküls KS (Satz 4.18) folgt:

Korollar 4.21.
Für jede FO[σ]-Formel φ und für jede Formelmenge Φ ⊆ FO[σ] gilt:

Φ ⊢KS
φ =⇒ Φ |= φ.

Beweis.
Es gelte Φ ⊢KS

φ. Somit gibt es ein Γ ⊆e Φ, so dass die Sequenz Γ ⊢ φ in
KS ableitbar ist.
Gemäß Satz 4.18 ist die Sequenz Γ ⊢ φ korrekt, d.h. es gilt: Γ |= φ.
Wegen Γ ⊆ Φ gilt daher auch: Φ |= φ.

Folie 324

Version vom 16. Oktober 2023 Seite 203

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Widerspruchsfreiheit

In der Mathematik nennen wir eine Menge von Aussagen widerspruchsvoll,
falls sich daraus ein Widerspruch (d.h. eine bestimmte Aussage und deren
Negat) herleiten lässt.
Wenn wir unter

”
herleiten“ einen Beweis im Sequenzenkalkül KS verstehen,

ergibt sich folgender Begriff:

Definition 4.22. Sei Φ ⊆ FO[σ].

(a) Φ heißt widerspruchsvoll, falls es eine FO[σ]-Formel φ gibt, so dass
Φ ⊢KS

φ und Φ ⊢KS
¬φ.

(b) Φ heißt widerspruchsfrei, falls Φ nicht widerspruchsvoll ist.

Aus der Korrektheit des Sequenzenkalküls folgt, dass erfüllbare
Formelmengen widerspruchsfrei sind:

Korollar 4.23. Für alle Φ ⊆ FO[σ] gilt:

Φ erfüllbar =⇒ Φ widerspruchsfrei.

Beweis.
Sei Φ erfüllbar. Dann gibt es eine σ-Interpretation I mit I |= Φ.
Angenommen, Φ ist nicht widerspruchsfrei. Somit ist Φ widerspruchsvoll,
d.h. es gibt eine FO[σ]-Formel φ, so dass

Φ ⊢KS
φ und Φ ⊢KS

¬φ.

Korollar 4.21 liefert:

Φ |= φ und Φ |= ¬φ.

Wegen I |= Φ gilt also:

I |= φ und I |= ¬φ.

Dies ist ein Widerspruch!

Folie 325

Version vom 16. Oktober 2023 Seite 204

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Eigenschaften widerspruchsvoller Mengen

Lemma 4.24.
Für jede Formelmenge Φ ⊆ FO[σ] sind folgende Aussagen äquivalent:

(a) Φ ist widerspruchsvoll.

(b) Für jede FO[σ]-Formel ψ gilt: Φ ⊢KS
ψ.

Beweis von Lemma 4.24.

”
(b) =⇒ (a)“: Trivial.

”
(a) =⇒ (b)“:

Gemäß Voraussetzung ist Φ widerspruchsvoll.
D.h. es gibt ein φ ∈ FO[σ], so dass Φ ⊢KS

φ und Φ ⊢KS
¬φ.

Somit gibt es Γ1,Γ2 ⊆e Φ, so dass die Sequenzen Γ1 ⊢ φ und Γ2 ⊢ ¬φ in
KS ableitbar sind.
Dann ist für jede beliebige FO[σ]-Formel ψ auch Folgendes in KS ableitbar:

Γ1 ⊢ φ(1)

Γ2 ⊢ ¬φ(2)

Γ1 ∪ Γ2 ⊢ φ Erweiterungsregel (E) auf (1)(3)

Γ1 ∪ Γ2 ⊢ ¬φ Erweiterungsregel (E) auf (2)(4)

Γ1 ∪ Γ2 ⊢ ψ Widerspruchsregel (W) auf (3), (4)(5)

Somit gilt Φ ⊢KS
ψ für jedes beliebige ψ ∈ FO[σ].

Folie 326

Der Vollständigkeitssatz

Satz 4.25. Für alle Signaturen σ, alle Formelmengen Φ ⊆ FO[σ] und alle
Formeln φ ∈ FO[σ] gilt:

(1) Φ ⊢KS
φ ⇐⇒ Φ |= φ.

(2) Φ ist widerspruchsfrei ⇐⇒ Φ ist erfüllbar.

Die Richtung
”
=⇒“ von (1) und die Richung

”
⇐=“ von (2) haben wir

bereits in Korollar 4.21 und Korollar 4.23 bewiesen.

Die Richtung
”
=⇒“ von (2) wird von dem folgenden, schwer zu

beweisenden Erfüllbarkeitslemma bereitgestellt:

Version vom 16. Oktober 2023 Seite 205

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Lemma 4.26 (Erfüllbarkeitslemma).
Jede widerspruchsfreie Menge Φ ⊆ FO[σ] ist erfüllbar.

Folie 327

Beweis des Vollständigkeitssatzes unter Verwendung des
Erfüllbarkeitslemmas:

Unter Verwendung des Erfüllbarkeitslemmas (Lemma 4.26) erhalten wir
zusammen mit Korollar 4.23, dass Teil (2) des Vollständigkeitssatzes
korrekt ist. D.h. für jede Formelmenge Φ ⊆ FO[σ] gilt:

(2) Φ ist widerspruchsfrei ⇐⇒ Φ ist erfüllbar.

Die Richtung
”
=⇒“ von (1) haben wir bereits in Korollar 4.21 gezeigt.

Die Richtung
”
⇐=“ von Teil (1) des Vollständigkeitssatzes lässt sich wie

folgt beweisen:

Es seien Φ ⊆ FO[σ] und φ ∈ FO[σ], so dass gilt: Φ |= φ.
Wir wollen zeigen, dass gilt: Φ ⊢KS

φ.

Fall 1: Φ ∪ {¬φ} ist widerspruchsfrei.
Gemäß Erüllbarkeitslemma ist Φ ∪ {¬φ} erfüllbar. D.h. es gibt eine
σ-Interpretation I, so dass I |= Φ ∪ {¬φ}.
Somit gilt: I |= Φ und I ̸|= φ.
Aber gemäß Voraussetzung gilt: Φ |= φ. Dies ist ein Widerspruch!
Somit kann der Fall, dass Φ ∪ {¬φ} widerspruchsfrei ist, nicht eintreten.

Fall 2: Φ ∪ {¬φ} ist nicht widerspruchsfrei.
Somit ist Φ ∪ {¬φ} widerspruchsvoll.
Gemäß Lemma 4.24 gilt dann für jede FO[σ]-Formel ψ, dass

Φ ∪ {¬φ} ⊢KS
ψ.

Insbesondere gilt also für die Formel ψ := φ, dass

Φ ∪ {¬φ} ⊢KS
φ.

Andererseits erhält man aus der Voraussetzungsregel (V), dass

Φ ∪ {φ} ⊢KS
φ.

Die Fallunterscheidungsregel (FU) liefert:

Φ ⊢KS
φ.

Dies beendet den Beweis des Vollständigkeitssatzes.
Folie 328

Version vom 16. Oktober 2023 Seite 206

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Zum Beweis des Erfüllbarkeitslemmas:

Zur Erinnerung: Das Erfüllbarkeitslemma besagt:

Jede widerspruchsfreie Formelmenge Φ ⊆ FO[σ] ist erfüllbar.

Beweisidee:
Konstruiere eine σ-Interpretation IΦ = (A, β), so dass gilt:

• Das Universum A von A ist die Menge Tσ aller σ-Terme.

• Für jeden σ-Term t gilt: JtKI = t.

• Für jedes Relationssymbol R ∈ σ, für k := ar(R), und für alle
σ-Terme t1, . . . , tk gilt:

(t1, . . . , tk) ∈ RA ⇐⇒ Φ ⊢KS
R(t1, . . . , tk)

Diese Interpretation IΦ wird Terminterpretation von Φ genannt.
Gemäß Definition erfüllt IΦ alle atomaren Formeln der Form R(t1, . . . , tk)
in Φ.
Im Allgemeinen gilt jedoch noch nicht IΦ |= Φ (betrachte dazu
beispielsweise die Formelmenge Φ := {v0=v1}, die offensichtlicherweise
erfüllbar ist, für die aber gilt: IΦ ̸|= Φ).
Aber nach einigen anspruchsvollen Modifikationen von IΦ erhält man eine
Interpretation I ′Φ mit I ′Φ |= Φ.
Details finden sich im Buch

”
Einführung in die mathematische Logik“ von

Ebbinghaus, Flum und Thomas.

4.3 Der Endlichkeitssatz

Folie 329

Zur Erinnerung:

Wir haben bereits den Endlichkeitssatz der Aussagenlogik kennen gelernt,
der besagt, dass Folgendes für jede Menge Φ ⊆ AL und jede Formel ψ ∈ AL
gilt:

(1) Φ ist erfüllbar ⇐⇒ Jede endliche Teilmenge von Φ ist erfüllbar.

(2) Φ |= ψ ⇐⇒ Es gibt eine endliche Teilmenge Γ von Φ, so dass Γ |= ψ.

Version vom 16. Oktober 2023 Seite 207

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Der Endlichkeitssatz gilt auch für die Logik erster Stufe, d.h. die Aussagen
(1) und (2) gelten auch für alle Mengen Φ ⊆ FO[σ] und alle ψ ∈ FO[σ].

Zum Beweis der Endlichkeitssatzes der Logik erster Stufe nutzen wir den
Vollständigkeitssatz sowie das folgende Lemma.

Folie 330

Das syntaktische Endlichkeitslemma

Lemma 4.27. Für jede Signatur σ und jede Formelmenge Φ ⊆ FO[σ] gilt:

Φ ist widerspruchsfrei ⇐⇒ Jede endliche Teilmenge von Φ ist
widerspruchsfrei.

Beweis.

Sei σ eine Signatur und sei Φ ⊆ FO[σ]. Um das Lemma zu beweisen, genügt
es offensichtlicherweise, zu zeigen, dass Folgendes gilt:

Φ ist widerspruchsvoll ⇐⇒ Es gibt eine endliche Teilmenge
von Φ, die widerspruchsvoll ist.

Diese Aussage folgt direkt aus der Definition des Begriffs

”
widerspruchsvoll“, denn:

Φ ist widerspruchsvoll

Definition 4.22⇐⇒ es gibt ein φ ∈ FO[σ], so dass Φ ⊢KS
φ und Φ ⊢KS

¬φ
Definition 4.20⇐⇒ es gibt ein φ ∈ FO[σ] und Mengen Γ1,Γ2 ⊆e Φ, so

dass die Sequenzen Γ1 ⊢ φ und Γ2 ⊢ ¬φ in KS
ableitbar sind

Erw.regel (E)⇐⇒ es gibt ein φ ∈ FO[σ] und ein Γ ⊆e Φ, so dass die
Sequenzen Γ ⊢ φ und Γ ⊢ ¬φ in KS ableitbar sind

⇐⇒ es gibt ein φ ∈ FO[σ] und ein Γ ⊆e Φ, so dass
Γ ⊢KS

φ und Γ ⊢KS
¬φ

⇐⇒ es gibt ein Γ ⊆e Φ, das widerspruchsvoll ist.

Version vom 16. Oktober 2023 Seite 208

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Alternativ lässt sich Lemma 4.27 auch durch Widerspruch beweisen:

”
=⇒“: Gemäß Voraussetzung sei Φ widerspruchsfrei.
Sei Γ eine beliebige endliche Teilmenge von Φ.
Angenommen, Γ ist widerspruchsvoll. Dann gibt es eine FO[σ]-Formel φ, so
dass gilt: Γ ⊢KS

φ und Γ ⊢KS
¬φ.

Wegen Γ ⊆ Φ gilt dann auch: Φ ⊢KS
φ und Φ ⊢KS

¬φ. Somit ist Φ
widerspruchsvoll. Widerspruch!

”
⇐=“: Gemäß Voraussetzung sei jede endliche Teilmenge von Φ
widerspruchsfrei. Angenommen, Φ ist widerspruchsvoll.
Dann gibt es eine FO[σ]-Formel φ, so dass gilt: Φ ⊢KS

φ und Φ ⊢KS
¬φ.

Gemäß Definition 4.20 gibt es dann endliche Teilmengen Γ1 und Γ2 von Φ,
so dass die Sequenzen Γ1 ⊢ φ und Γ2 ⊢ ¬φ im Sequenzenkalkül KS
ableitbar sind.
Gemäß der Erweiterungsregel (E) sind dann für Γ := Γ1 ∪ Γ2 auch die
Sequenzen Γ ⊢ φ und Γ ⊢ ¬φ in KS ableitbar.
Somit gilt: Γ ⊢KS

φ und Γ ⊢KS
¬φ. Aber dies bedeutet, dass die Menge

Γ, die ja eine endliche Teilmenge von Φ ist, widerspruchsvoll ist.
Widerspruch!

Folie 331

Der Endlichkeitssatz (auch bekannt als Kompaktheitssatz)

Satz 4.28. Für jede Signatur σ, jede Formelmenge Φ ⊆ FO[σ] und jede
Formel ψ ∈ FO[σ] gilt:

(1) Φ ist erfüllbar ⇐⇒ Jede endliche Teilmenge von Φ ist erfüllbar.

(2) Φ |= ψ ⇐⇒ Es gibt eine endliche Teilmenge Γ von Φ, so dass Γ |= ψ.

Beachte: Die Aussage des Endlichkeitssatzes ist nur für unendliche
Formelmengen Φ interessant (für endliche Mengen Φ ist sie trivial).

Beweis. Zu (1): Es gilt:

Φ ist erfüllbar
Vollständigkeitssatz⇐⇒ Φ ist widerspruchsfrei

Lemma 4.27⇐⇒ jede endliche Teilmenge Γ von Φ ist
widerspruchsfrei

Vollständigkeitssatz⇐⇒ jede endliche Teilmenge Γ von Φ ist
erfüllbar.

Zu (2): Es gilt:

Version vom 16. Oktober 2023 Seite 209

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Φ |= ψ
Vollständigkeitssatz⇐⇒ Φ ⊢KS

ψ
Definition 4.20⇐⇒ es gibt eine endliche Teilmenge Γ

von Φ, so dass Γ ⊢KS
ψ

Vollständigkeitssatz⇐⇒ es gibt eine endliche Teilmenge Γ
von Φ, so dass Γ |= ψ.

Folie 332

Erststufige Axiomatisierbarkeit

Definition 4.29.
Eine Klasse C von σ-Strukturen heißt erststufig axiomatisierbar, falls es eine
Menge Φ von FO[σ]-Sätzen gibt, so dass gilt: C = MODσ(Φ).

Zur Erinnerung:
MODσ(Φ) ist die Klasse aller σ-Strukturen A, für die gilt: A |= Φ.

Definition 4.30. Die Mächtigkeit einer σ-Struktur ist die Mächtigkeit ihres
Universums.
Eine σ-Struktur heißt endlich, unendlich, abzählbar2, bzw. überabzählbar,
wenn ihr Universum die entsprechende Mächtigkeit besitzt.

Beispiel 4.31.
Die Klasse aller unendlichen σ-Strukturen ist erststufig axiomatisierbar.

Beweis. Für jedes n ∈ N mit n ⩾ 1 betrachte die FO[σ]-Formel

φn := ∃x1 · · · ∃xn
∧

1⩽i<j⩽n

¬xi=xj.

Offensichtlicherweise gilt für jedes n ⩾ 1 und für jede σ-Struktur A:

A |= φn ⇐⇒ |A| ⩾ n.

Somit gilt für Φ := {φn : n ∈ N, n ⩾ 1} und für jede σ-Struktur A:

A |= Φ ⇐⇒ |A| = ∞.

Also wird die Klasse aller unendlichen Strukturen durch die Formelmenge Φ
erststufig axiomatisiert.

2Wir bezeichnen eine MengeM als abzählbar, wenn sie entweder endlich ist oder dieselbe
Mächtigkeit wie N besitzt. Somit ist M genau dann abzählbar, wenn es eine injektve
Abbildung von M nach N gibt.

Version vom 16. Oktober 2023 Seite 210

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Wir können den Endlichkeitssatz anwenden, um zu zeigen, dass bestimmte
Klassen von Strukturen nicht erststufig axiomatisierbar sind.
Im Folgenden betrachten wir dazu zwei Beispiele: die
Nicht-Axiomatisierbarkeit der

”
Endlichkeit“ von Strukturen und die

Nicht-Axiomatisierbarkeit von
”
Graph-Zusammenhang“.

Folie 333

Nicht-Axiomatisierbarkeit der
”
Endlichkeit“ von Strukturen

Lemma 4.32. Sei Φ eine Menge von FO[σ]-Sätzen. Falls Φ beliebig große
endliche Modelle besitzt (d.h. für jedes n ∈ N gibt es eine endliche
σ-Struktur A mit |A| ⩾ n und A |= Φ), so besitzt Φ ein unendliches Modell.

Beweis. Für n ⩾ 1 sei φn die Formel aus dem Beweis von Beispiel 4.31, die
besagt, dass das Universum mindestens n verschiedene Elemente enthält.
Sei

Φ′ := Φ ∪ {φn : n ⩾ 1}.

Dann ist jede endliche Teilmenge von Φ′ erfüllbar, da gemäß Voraussetzung
Φ beliebig große endliche Modelle besitzt. Gemäß Endlichkeitssatz ist auch
Φ′ erfüllbar. D.h. es gibt eine σ-Struktur A mit A |= Φ′.
Somit gilt: A |= Φ und A |= φn für jedes n ⩾ 1. Insbesondere ist also
|A| ⩾ n für jedes n ∈ N. Somit ist A ein unendliches Modell von Φ.

Satz 4.33.
Die Klasse aller endlichen σ-Strukturen ist nicht erststufig axiomatisierbar.

Beweis. Durch Widerspruch:
Angenommen, Φ ist eine Menge von FO[σ]-Sätzen, die die Klasse aller
endlichen σ-Strukturen erststufig axiomatisiert. Dann hat Φ beliebig große
endliche Modelle. Gemäß Lemma 4.32 besitzt Φ dann auch ein unendliches
Modell. Widerspruch!

Korollar 4.34. Es gibt keine endliche Menge von FO[σ]-Sätzen, die die
Klasse aller unendlichen σ-Strukturen erststufig axiomatisiert.

Beweis. Durch Widerspruch:
Angenommen, Φ = {ψ1, . . . , ψm} ist eine endliche Menge von
FO[σ]-Sätzen, die die Klasse aller unendlichen σ-Strukturen erststufig
axiomatisiert.

Version vom 16. Oktober 2023 Seite 211

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Dann gilt für die FO[σ]-Formel

φ := ¬
(
ψ1 ∧ · · · ∧ ψm

)
und für jede σ-Struktur A:

A |= φ ⇐⇒ A ist endlich.

Somit ist {φ} eine Menge von FO[σ]-Sätzen, die die Klasse aller endlichen
σ-Strukturen erststufig axiomatisiert. Widerspruch zu Satz 4.33.

Folie 334

Nicht-Axiomatisierbarkeit von
”
Graph-Zusammenhang“

Satz 4.35. Die Klasse aller zusammenhängenden Graphen ist nicht
erststufig axiomatisierbar.

Beweis. Sei σ := {E} mit ar(E) = 2 die Signatur für Graphen.
Für jede Zahl n ∈ N sei ψn(x, y) eine FO[σ]-Formel, die besagt, dass es
keinen Weg der Länge n von Knoten x zu Knoten y gibt. D.h. es sei

ψ0(x, y) := ¬x=y

und, für n ∈ N mit n ⩾ 1, sei

ψn(x, y) := ¬∃z0 ∃z1 · · · ∃zn
(
z0=x ∧ zn=y ∧

n∧
i=1

E(zi−1, zi)
)
.

Offensichtlicherweise gilt für alle gerichteten Graphen A und alle Knoten
a, b ∈ A:

A |= ψn[a, b] ⇐⇒ es gibt in A keinen Weg der Länge n von a nach b.

Sei
Ψ := {ψn : n ∈ N}.

Dann gilt für jeden gerichteten Graphen A, für jede Belegung β : VAR→ A
und für die Knoten a := β(x) und b := β(y):

(A, β) |= Ψ ⇐⇒ es gibt in A keinen Weg von a nach b.

Version vom 16. Oktober 2023 Seite 212

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Angenommen, Φ ist eine Menge von FO[σ]-Sätzen die die Klasse aller
zusammenhängenden Graphen erststufig axiomatisiert. D.h. für jeden
ungerichteten Graphen G und den zu G gehörenden3 gerichteten Graphen A
gilt:

G ist zusammenhängend ⇐⇒ A |= Φ.

Gemäß Definition ist ein ungerichteter Graph G genau dann
zusammenhängend, wenn es für jedes Paar (a, b) von Knoten von G eine
Zahl n ∈ N gibt, so dass es in G einen Weg der Länge n von Knoten a zu
Knoten b gibt. Daher ist

Φ′ := Φ ∪ Ψ

eine unerfüllbare Menge von FO[σ]-Formeln.
Im Folgenden zeigen wir, dass jede endliche Teilmenge Γ von Φ′ erfüllbar
ist. Laut Endlichkeitssatz muss daher auch Φ′ erfüllbar sein. Widerspruch!

Sei also Γ eine beliebige endliche Teilmenge von Φ′. Unser Ziel ist, zu
zeigen, dass Γ erfüllbar ist.
Da Γ endlich ist, gibt es ein m ∈ N, so dass für jedes n ∈ N mit n > m gilt:
ψn ̸∈ Γ (falls Γ∩Ψ = ∅ ist, so können wir m := 0 wählen; ansonsten können
wir m := max{n ∈ N : ψn ∈ Γ} wählen). Sei G ein Graph, der aus einer
ungerichteten Kette von m+2 Knoten besteht.

Skizze:

0 1 2 m m+1
G:

D.h.: G ist der Graph mit Knotenmenge {0, . . . ,m+1} und Kantenmenge{
{i−1, i} : 1 ⩽ i ⩽ m+1

}
.

Dann gilt für die zu G gehörende σ-Struktur A:

1. A |= Φ, da G zusammenhängend ist, und

2. für die Endknoten a := 0 und b := m+1 der Kette gilt:
Es gibt in A keinen Weg der Länge ⩽ m von Knoten a zu Knoten b.
Somit gilt für jedes n ⩽ m, dass A |= ψn[a, b].

Gemäß der Wahl von m gilt daher für die Belegung β mit β(x) := a und
β(y) := b, dass (A, β) |= Γ. Somit ist Γ erfüllbar.

Folie 335

3d.h. für G = (V G , EG) ist A die σ-Struktur mit Universum A := V G und mit
Kantenmenge EA := {(u, v) : {u, v} ∈ EG}

Version vom 16. Oktober 2023 Seite 213

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Der Satz von Löwenheim und Skolem

Unter Verwendung von Teilergebnissen, die beim (in dieser Vorlesung nicht
im Detail behandelten) Beweis des Erfüllbarkeitslemmas anfallen, erhält
man das folgende Resultat.

Satz 4.36 (Der Satz von Löwenheim und Skolem).
Sei σ eine abzählbare Signatur. Dann hat jede erfüllbare Formelmenge
Φ ⊆ FO[σ] ein höchstens abzählbares Modell.

(Hier ohne Beweis)

Als direkte Folgerung aus dem Satz von Löwenheim und Skolem erhalten
wir:

Korollar 4.37. Sei σ eine abzählbare Signatur.
Dann ist die Klasse aller überabzählbaren σ-Strukturen nicht erststufig
axiomatisierbar.

Beweis. Angenommen, Φ ist eine Menge von FO[σ]-Sätzen, die die Klasse
aller überabzählbaren σ-Strukturen erststufig axiomatisiert.
Gemäß Satz von Löwenheim und Skolem besitzt Φ ein höchstens
abzählbares Modell. Widerspruch!

4.4 Die Grenzen der Berechenbarkeit

Folie 336

Zur Erinnerung:
Einige Begriffe zum Thema (Un)Entscheidbarkeit

Entscheidungsprobleme sind Probleme, die mit
”
ja“ oder

”
nein“

beantwortet werden können. Genauer:

• Sei M eine abzählbar unendliche Menge, zum Beispiel

– die Menge Σ∗ aller Worte über einem endlichen Alphabet Σ,
oder

– die Menge aller Graphen, deren Knotenmenge eine endliche
Teilmenge der natürlichen Zahlen ist.

• Das Entscheidungsproblem für eine Menge L ⊆M ist das folgende
Berechnungsproblem:

Version vom 16. Oktober 2023 Seite 214

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Das Entscheidungsproblem für L ⊆M

Eingabe: Ein Element m ∈M .

Frage: Ist m ∈ L ?

Folie 337

Beispiele für Entscheidungsprobleme

• Graphzusammenhang ist das Entscheidungsproblem für L ⊆M , wobei

M die Menge aller ungerichteten Graphen ist, deren Knotenmenge
eine endliche Teilmenge von N ist und

L die Menge aller zusammenhängenden Graphen aus M ist.

• Das Halteproblem ist das Entscheidungsproblem für L ⊆M , wobei

M die Menge aller Worte w#x mit w, x ∈ {0, 1}∗ ist und

L die Menge aller Worte w#x ist, so dass w eine deterministische
Turingmaschine beschreibt, die bei Eingabe x nach endlich vielen
Schritten anhält.

Folie 338

Entscheidungsprobleme für die Logik erster Stufe

Allgemeingültigkeitsproblem für FO[σ]

Eingabe: Eine FO[σ]-Formel φ

Frage: Ist φ allgemeingültig?

Formal:

M ist die Menge aller Worte über dem Alphabet AFO[σ] und

L ist die Menge {φ ∈ FO[σ] : φ ist allgemeingültig}

Erfüllbarkeitsproblem für FO[σ]

Eingabe: FO[σ]-Formel φ

Frage: Ist φ erfüllbar?

Unerfüllbarkeitsproblem für FO[σ]

Eingabe: FO[σ]-Formel φ

Frage: Ist φ unerfüllbar?

Version vom 16. Oktober 2023 Seite 215

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Folgerungsproblem für FO[σ]

Eingabe: Zwei FO[σ]-Formeln φ, ψ

Frage: Gilt φ |= ψ ?

Folie 339

Entscheidbarkeit und Semi-Entscheidbarkeit

Definition 4.38. Sei M eine abzählbar unendliche Menge.

(a) Eine Menge L ⊆M heißt entscheidbar, falls es einen Algorithmus gibt,
der bei Eingabe eines m ∈M nach endlich vielen Schritten anhält und

•
”
ja“ ausgibt, falls m ∈ L

•
”
nein“ ausgibt, falls m ̸∈ L.

(b) L ⊆M heißt semi-entscheidbar, falls es einen Algorithmus gibt, der bei
Eingabe eines m ∈M

• nach endlich vielen Schritten anhält und
”
ja“ ausgibt, falls m ∈ L

• nie anhält, falls m ̸∈ L.

Beispiele:

• Graphzusammenhang ist entscheidbar (z.B. durch Tiefen- oder
Breitensuche).

• Das Halteproblem ist semi-entscheidbar (bei Eingabe von w#x
konstruiere die von w repräsentierte deterministische Turingmaschine
und lasse diese mit Eingabe x laufen).
Ist es auch entscheidbar? Nein! — Das Halteproblem ist das
Paradebeispiel eines nicht entscheidbaren Problems.

Folie 340

Version vom 16. Oktober 2023 Seite 216

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Einfache Beobachtungen

• Jede entscheidbare Menge L ⊆M ist auch semi-entscheidbar (anstatt

”
nein“ auszugeben und anzuhalten, gehen wir einfach in eine
Endlosschleife)

• Für jede entscheidbare Menge L ⊆M ist auch die Menge
L := (M \ L) ⊆M entscheidbar (vertausche einfach die Antworten

”
ja“ und

”
nein“)

• Wenn sowohl L ⊆M als auch L := (M \ L) ⊆M semi-entscheidbar
sind, dann ist L ⊆M sogar entscheidbar.

Beweis: Wir nutzen Algorithmen A und B, die L ⊆M bzw. L ⊆M
semi-entscheiden und bauen daraus einen Algorithmus C, der L ⊆M
entscheidet. Bei Eingabe von m ∈M geht C wie folgt vor:

Für i = 1, 2, 3, . . . tue Folgendes:

Führe den i-ten Berechnungsschritt von A bei Eingabe m aus.
Falls A in diesem Schritt anhält, so gib

”
ja“ aus und halte an.

Führe den i-ten Berechnungsschritt von B bei Eingabe m aus.
Falls B in diesem Schritt anhält, so gib

”
nein“ aus und halte an.

Man sieht leicht, dass C nach endlich vielen Schritten anhält und
”
ja“

(bzw.
”
nein“) ausgibt, falls m ∈ L (bzw. m ̸∈ L) ist.

Folie 341

Semi-Entscheidbarkeit einiger Logik-Probleme

Satz 4.39. Sei σ eine höchstens abzählbare Signatur.
Jedes der folgenden Probleme ist semi-enscheidbar:

(a) das Allgemeingültigkeitsproblem für FO[σ],

(b) das Unerfüllbarkeitsproblem für FO[σ],

(c) das Folgerungsproblem für FO[σ].

Beweis.

Version vom 16. Oktober 2023 Seite 217

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

(a) Für jede FO[σ]-Formel φ gilt gemäß dem Vollständigkeitssatz:

φ ist allgemeingültig

⇐⇒ ∅ |= φ

⇐⇒ die Sequenz ∅ ⊢ φ ist korrekt

⇐⇒ die Sequenz ∅ ⊢ φ ist im Sequenzenkalkül KS ableitbar.

Da der Sequenzenkalkül KS effektiv ist, gibt es einen Algorithmus S,
der nach und nach alle aus KS ableitbaren Sequenzen ausgibt.

Wir nutzen diesen Algorithmus, um einen
Semi-Entscheidungs-Algorithmus für das Allgemeingültigkeitsproblem
für FO[σ] zu erhalten: Bei Eingabe einer FO[σ]-Formel φ starten wir S.
Jedesmal, wenn S eine Sequenz ausgibt, überprüft A, ob dies die
Sequenz ∅ ⊢ φ ist. Falls ja, hält A an und gibt

”
ja“ aus.

Offensichtlicherweise gilt für jede FO[σ]-Formel φ:
Falls φ allgemeingültig ist, so wird A bei Eingabe φ nach endlich vielen
Schritten mit Ausgabe

”
ja“ anhalten (da S nach endlich vielen

Schritten die (korrekte) Sequenz
”
∅ ⊢ φ“ ausgeben wird).

Falls φ nicht allgemeingültig ist, wird A bei Eingabe φ nie anhalten (da
die Sequenz

”
∅ ⊢ φ“ nicht korrekt ist und daher nie von S ausgegeben

wird).

(b) Für jede FO[σ]-Formel ψ gilt:

φ ist unerfüllbar ⇐⇒ ¬φ ist allgemeingültig.

Wir können daher den Semi-Entscheidungs-Algorithmus A aus (a)
nutzen, um einen Semi-Entscheidungs-Algorithmus U für das
Unerfüllbarkeitsproblem für FO[σ] zu erhalten: Bei Eingabe einer
FO[σ]-Formel φ setzen ψ := ¬φ und starten Algorithmus A mit
Eingabe ψ. Falls A anhält und

”
ja“ ausgibt, hält auch U an und gibt

”
ja“ aus.

Man sieht leicht, dass für jede Formel φ gilt: Bei Eingabe φ wird U

• nach endlich vielen Schritten anhalten und
”
ja“ ausgeben, falls die

Formel ¬φ allgemeingültig, und somit φ unerfüllbar ist,

• nie anhalten, falls die Formel ¬φ nicht allgemeingültig, und somit
φ erfüllbar ist.

(c) Für alle FO[σ]-Formeln φ und ψ gilt:

Version vom 16. Oktober 2023 Seite 218

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

φ |= ψ ⇐⇒ die Formel (¬φ ∨ ψ) ist allgemeingültig.

Wir können daher den Semi-Entscheidungs-Algorithmus A aus (a)
nutzen, um einen Semi-Entscheidungs-Algorithmus F für das
Folgerungsproblem zu erhalten: Bei Eingabe zweier FO[σ]-Formeln φ
und ψ konstruiert F die Formel χ := (¬φ ∨ ψ), startet dann
Algorithmus A mit Eingabe χ und hält mit Ausgabe

”
ja“ an, falls A

mit Ausgabe
”
ja“ anhält.

Man sieht leicht, dass für alle Formeln φ, ψ gilt:
Bei Eingabe von φ und ψ wird F

• nach endlich vielen Schritten anhalten und
”
ja“ ausgeben, falls die

Formel (¬φ ∨ ψ) allgemeingültig ist, und somit
”
φ |= ψ“ gilt

• nie anhalten, falls die Formel (¬φ ∨ ψ) nicht allgemeingültig ist,
und somit

”
φ |= ψ“ nicht gilt.

Folie 342

Unentscheidbarkeit einiger Logik-Probleme

Unser nächstes Ziel ist, zu zeigen, dass für bestimmte Signaturen σ gilt:

• Das Allgemeingültigkeitsproblem für FO[σ],

• das Unerfüllbarkeitsproblem für FO[σ],

• das Erfüllbarkeitsproblem für FO[σ] und

• das Folgerungsproblem für FO[σ]

ist nicht entscheidbar.

Wir werden dazu wie folgt vorgehen:

1. Wir nutzen das bekannte Resultat, das besagt, dass das Postsche
Korrespondenzproblem unentscheidbar ist.

2. Wir zeigen, wie das Postsche Korrespondenzproblem unter
Zuhilfenahme eines Entscheidungs-Algorithmus für das
Allgemeingültigkeitsproblem für FO[σ] (für eine geeignete Signatur σ)
gelöst werden könnte.

Dadurch erhalten wir, dass das Allgemeingültigkeitsproblem für FO[σ]
unentscheidbar ist.

Version vom 16. Oktober 2023 Seite 219

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

3. Die Unentscheidbarkeit des Unerfüllbarkeitsproblems, des
Erfüllbarkeitsproblems und des Folgerungsproblems für FO[σ] folgen
dann leicht aus der Unentscheidbarkeit des
Allgemeingültigkeitsproblems für FO[σ].

Folie 343

Das Postsche Korrespondenzproblem

Das Postsche Korrespondenzproblem (PKP)

Eingabe: Eine Zahl k ⩾ 1 und k Paare (x1, y1), (x2, y2), . . . , (xk, yk)
mit x1, y1, . . . , xk, yk ∈ {0, 1}∗.

Frage: Gibt es ein n ⩾ 1 und Indizes i1, . . . , in ∈ {1, . . . , k}, so
dass gilt: xi1xi2 · · · xin = yi1yi2 · · · yin ?

Beispiel:

Das PKP mit Eingabe k = 3 und

(x1, y1) = (1, 111), (x2, y2) = (10111, 10), (x3, y3) = (10, 0).

hat eine Lösung mit n = 4 und i1 = 2, i2 = 1, i3 = 1, i4 = 3, denn:

x2 x1 x1 x3 = 10111 1 1 10

y2 y1 y1 y3 = 10 111 111 0.

Bekannt:

• Das PKP ist semi-entscheidbar.

(Dies sieht man leicht.)

• Das PKP ist nicht entscheidbar.

(Dies wurde in der Veranstaltung
”
Einführung in die Theoretische

Informatik“ bewiesen.)

Folie 344

Version vom 16. Oktober 2023 Seite 220

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Die Unentscheidbarkeit der Logik erster Stufe

Satz 4.40. Sei σ := {R, f0, f1, c}, wobei c ein Konstantensymbol, R ein
2-stelliges Relationssymbol und f0, f1 zwei 1-stellige Funktionssymbole sind.

Das Allgemeingültigkeitsproblem für FO[σ] ist nicht entscheidbar.

Beweis: Auf Grund der Unentscheidbarkeit des PKP reicht es, eine
Reduktion vom PKP zum Allgemeingültigkeitsproblem für FO[σ]
anzugeben. D.h. wir zeigen, dass bei Eingabe eines Tupels
I =

(
k, (x1, y1), . . . , (xk, yk)

)
, das eine Eingabe für’s PKP repräsentiert,

eine FO[σ]-Formel φI konstruiert werden kann, die genau dann
allgemeingültig ist, wenn I eine

”
ja“-Instanz für’s PKP ist (d.h. es gibt

n ⩾ 1 und i1, . . . , in ∈ [k], so dass xi1 · · ·xin = yi1 · · · yin).
Wenn das Allgemeingültigkeitsproblem für FO[σ] entscheidbar wäre, wäre
daher auch das PKP entscheidbar.

Zur Konstruktion der Formel φI gehen wir in mehreren Schritten vor.

Folie 345

Schritt 1: Für jede Eingabe I =
(
k, (x1, y1), . . . , (xk, yk)

)
für das PKP

definiere eine σ-Struktur AI , so dass gilt:

AI |= ∃z R(z, z) ⇐⇒ I ist eine
”
ja“-Instanz für’s PKP, d.h.

es gibt n ⩾ 1 und i1, . . . , in ∈ [k], so
dass xi1 · · ·xin = yi1 · · · yin .

Dazu wählen wir AI wie folgt:

• Universum AI := {0, 1}∗

• cAI := ε (leeres Wort)

• für jedes w ∈ {0, 1}∗ gilt: fAI
0 (w) := w0 und fAI

1 (w) := w1

• RAI :=
{
(xi1 · · ·xin , yi1 · · · yin) : n ⩾ 1, i1, . . . , in ∈ [k] }

Offensichtlicherweise gilt:

AI |= ∃z R(z, z) ⇐⇒ I ist eine
”
ja“-Instanz für’s PKP.

Folie 346

Schritt 2: Konstruiere FO[σ]-Formeln ψStart
I und ψSchritt

I , die AI hinreichend
genau beschreiben.

Version vom 16. Oktober 2023 Seite 221

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Die Formel ψStart
I soll besagen, dass die Relation RAI die Tupel (xj, yj) für

alle j ∈ [k] enthält.
Die Formel ψSchritt

I soll besagen, dass die Relation RAI abgeschlossen ist
unter Konkatenation mit (xj, yj); d.h.: Ist (u, v) ∈ RAI und j ∈ [k], so ist
auch (uxj, vyj) ∈ RAI .
Um dies durch FO[σ]-Formeln zu formulieren, nutzen wir folgende
Schreibweisen:

Für ein Wort w = w1 · · ·wℓ ∈ {0, 1}ℓ und einen σ-Term t schreiben wir

fw(t) ,

um den σ-Term
fwℓ

(
· · · fw2

(
fw1(t)

))
zu bezeichnen. Analog bezeichnen wir für eine σ-Struktur B mit fB

w die
Funktion von B nach B, so dass für jedes b ∈ B gilt:

fB
w (b) = fB

wℓ

(
· · · fB

w2

(
fB
w1
(b)

))
.

Beachte, dass dies gerade so definiert ist, dass für die Struktur AI und für
alle Worte u ∈ {0, 1}∗ und alle nicht-leeren w ∈ {0, 1}∗ gilt:

fAI
w (u) = uw .

Unter Nutzung dieser Notationen setzen wir

ψStart
I :=

k∧
j=1

R
(
fxj(c), fyj(c)

)
ψSchritt
I := ∀u∀v

(
R(u, v) →

k∧
j=1

R
(
fxj(u), fyj(v)

))
Beachte: AI |=

(
ψStart
I ∧ ψSchritt

I

)
, da die Relation RAI alle Tupel (xj, yj)

für j ∈ [k] enthält und da für alle Tupel (u, v) ∈ RAI gilt, dass auch
(uxj, vyj) ∈ RAI ist, für jedes j ∈ [k].

Folie 347

Schritt 3: Setze φI :=
((

ψStart
I ∧ ψSchritt

I

)
→ ∃z R(z, z)

)
Klar: Es gibt einen Algorithmus, der bei Eingabe von I die Formel φI
konstruiert.

Behauptung 1:

Version vom 16. Oktober 2023 Seite 222

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

φI ist allgemeingültig ⇐⇒ I ist eine
”
ja“-Instanz für’s PKP.

Beweis:

”
=⇒“: Sei φI allgemeingültig. Dann gilt insbesondere AI |= φI . Gemäß
Schritt 2 und Schritt 1 ist I dann eine

”
ja“-Instanz für’s PKP.

”
⇐=“: Sei I eine

”
ja“-Instanz für’s PKP. Dann gibt es ein Wort

û ∈ {0, 1}∗, so dass (û, û) ∈ RAI .

Wir müssen zeigen, dass φI allgemeingültig ist. Sei dazu B eine beliebige
σ-Struktur. Zu zeigen: B |= φI .

Fall 1: B ̸|=
(
ψStart
I ∧ ψSchritt

I

)
.

Dann gilt gemäß Konstruktion von φI , dass B |= φI .

Fall 2: B |=
(
ψStart
I ∧ ψSchritt

I

)
.

Wir müssen zeigen, dass dann auch gilt: B |= ∃z R(z, z). D.h. wir müssen
ein b̂ ∈ B finden, so dass gilt: (b̂, b̂) ∈ RB.
Ein solches b̂ ∈ B finden wir, indem wir b̂ := h(û) setzen, wobei
h : {0, 1}∗ → B wie folgt definiert ist:

h(ε) := cB, und für alle u ∈ {0, 1}∗ gilt:

h(u0) := fB
0

(
h(u)

)
,

h(u1) := fB
1

(
h(u)

)
.

Per Induktion nach der Länge von w sieht man leicht, dass für alle
u ∈ {0, 1}∗ und alle nicht-leeren w ∈ {0, 1}∗ gilt:

h(uw) = fB
w

(
h(u)

)
und h(w) = fB

w

(
h(ε)

)
= fB

w

(
cB
)
.

Wegen (û, û) ∈ RAI folgt daher aus der nächsten Behauptung, dass
(b̂, b̂) ∈ RB, und damit ist der Beweis dann beendet.

Behauptung 2: Für alle (u, v) ∈ RAI gilt:
(
h(u), h(v)

)
∈ RB.

Beweis: Per Induktion nach n zeigen wir, dass für alle n ⩾ 1 und alle
i1, . . . , in ∈ [k] gilt:

(
h(xi1 · · ·xin), h(yi1 · · · yin)

)
∈ RB.

Induktionsanfang n = 1: Wegen B |= ψStart
I gilt insbes. für j := i1, dass

B |= R
(
fxi1 (c), fyi1 (c)

)
.

Somit gilt:
(
h(xi1), h(yi1)

)
=

(
fB
xi1

(cB), fB
yi1

(cB)
)
∈ RB.

Dies beendet den Induktionsanfang.

Version vom 16. Oktober 2023 Seite 223

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Induktionsschritt n→ n+1: Gemäß Induktionsannahme gilt für
u := xi1 · · ·xin und v := yi1 · · · yin , dass

(
h(u), h(v)

)
∈ RB.

Für j := in+1 müssen wir zeigen, dass auch gilt:
(
h(uxj), h(vyj)

)
∈ RB.

Wegen B |= ψSchritt
I und

(
h(u), h(v)

)
∈ RB gilt gemäß der Konstrukton

von ψSchritt
I , dass(

h(uxj), h(vxj)
)

=
(
fB
xj

(
h(u)

)
, fB

yj

(
h(v)

))
∈ RB.

Dies beendet den Induktionsschritt und daher auch den Beweis von
Behauptung 2, den Beweis von Behauptung 1 und insgesamt den Beweis
von Satz 4.40.

Folie 348

Aus Satz 4.39, Satz 4.40 und den bekannten Zusammenhängen zwischen
semi-entscheidbaren und entscheidbaren Problemen, sowie den
Korrespondenzen zwischen Allgemeingültigkeit, (Un)Erfüllbarkeit und
logischer Folgerung, erhält man leicht:

Korollar 4.41. Sei σ die Signatur aus Satz 4.40. Dann gilt:

(a) Das Allgemeingültigkeitsproblem für FO[σ] ist semi-entscheidbar aber
nicht entscheidbar.

(b) Das Folgerungsproblem für FO[σ] ist semi-entscheidbar
aber nicht entscheidbar.

(c) Das Unerfüllbarkeitsproblem für FO[σ] ist
semi-entscheidbar aber nicht entscheidbar.

(d) Das Erfüllbarkeitsproblem für FO[σ] ist
nicht semi-entscheidbar.

Beweis: Übung.

Folie 349

Bemerkung 4.42. Man kann zeigen, dass

(1) Korollar 4.41 für jede Signatur σ gilt, die mindestens ein
Relationssymbol der Stelligkeit ⩾ 2 enthält

(2) für Signaturen σ, die ausschließlich aus Konstantensymbolen und
Relationssymbolen der Stelligkeit 1 bestehen, jedes der in Korollar 4.41
betrachteten Probleme entscheidbar ist.

(Hier ohne Beweis)

Version vom 16. Oktober 2023 Seite 224

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

4.5 Der Satz von Herbrand

Folie 350

• Im letzten Abschnitt haben wir gesehen, dass es keinen Algorithmus
gibt, der das Erfüllbarkeitsproblem und das
Allgemeingültigkeitsproblem der Logik erster Stufe löst und stets
terminiert.

• Trotzdem möchte man für verschiedene Anwendungsbereiche
Verfahren haben, die das Erfüllbarkeits- oder das
Allgemeingültigkeitsproblem der Logik erster Stufe

”
so gut wie

möglich“ lösen.

• Einen Ansatz für die Entwicklung solcher, in der Praxis nutzbarer,
Verfahren liefert die Herbrand-Theorie, die nach dem französischen
Logiker Jacques Herbrand (1908–1931) benannt ist.

• Ziel dieses Abschnitts ist, den Satz von Herbrand vorzustellen, der das
Allgemeingültigkeits- bzw. das Erfüllbarkeitsproblem der Logik erster
Stufe auf das entsprechende Problem der Aussagenlogik zurückführt.

Folie 351

Notationen

• In diesem Abschnitt bezeichnet σ stets eine endliche oder abzählbare
Signatur, die mindestens ein Konstantensymbol enthält.

• Die Menge aller quantorenfreien FO[σ]-Formeln bezeichnen wir mit
QFσ.

• Ein Grundterm über σ ist ein variablenfreier σ-Term, d.h., ein
σ-Term, der keine Variable enthält.
Die Menge aller Grundterme über σ bezeichnen wir mit GTσ.

Beispiele:

(a) Sei σ := { c, f/1, g/2, R/2 }.

Grundterme über σ sind dann z.B.

c, f(c), g(c, c), f(f(c)), f(g(c, c)), g(c, f(c)), g(f(c), c), . . .

Version vom 16. Oktober 2023 Seite 225

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

(b) Sei σ := { c, R/2 }.
Dann ist c der einzige Grundterm über σ. D.h.

GTσ = { c }.

Folie 352

Herbrandstrukturen

Definition 4.43. Sei σ eine Signatur, die mindestens ein
Konstantensymbol enthält.
Eine σ-Herbrandstruktur ist eine σ-Struktur A mit folgenden Eigenschaften:

• Das Universum A von A ist genau die Menge GTσ aller Grundterme
über σ (d.h. aller variablenfreien σ-Terme).

• Für jedes Konstantensymbol c ∈ σ ist cA = c.

• Für jedes Funktionssymbol f ∈ σ, für k := ar(f), und für alle
variablenfreien σ-Terme t1, . . . , tk ∈ A ist

fA(t1, . . . , tk) = f(t1, . . . , tk).

Beachte: Alle σ-Herbrandstrukturen haben dasselbe Universum und
dieselbe Interpretation der Konstanten- und Funktionssymbole.
Lediglich die Interpretation der Relationssymbole kann in
σ-Herbrandstrukturen frei gewählt werden.
Zur Angabe einer konkreten σ-Herbrandstruktur A genügt es also, die
Interpretation der Relationssymbole anzugeben, d.h. für jedes
Relationssymbol R ∈ σ die Relation RA anzugeben.

Folie 353

Beispiel

Sei σ := { c, R/2 }.
Frage: Wie sehen σ-Herbrandstrukturen aus?

Antwort: Für jede σ-Herbrandstruktur A gilt:

• Universum: A = { c }

• cA = c

Version vom 16. Oktober 2023 Seite 226

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

• RA ⊆ {c}2, d.h.

RA = ∅ oder RA = { (c, c) }.

Somit gibt es genau 2 verschiedene σ-Herbrandstrukturen.

Folie 354

Bemerkung 4.44. Sei A eine σ-Herbrandstruktur.
Man sieht leicht, dass Folgendes gilt:

• Für jeden variablenfreien σ-Term t (d.h. für jedes t ∈ GTσ = A) gilt:

JtKA = t .

• Für jede quantorenfreie FO[σ]-Formel ψ gilt:
Ist var(ψ) ⊆ {x1, . . . , xn} und sind t1, . . . , tn ∈ GTσ, so gilt:

A |= ψ[t1, . . . , tn] ⇐⇒ A |= ψ t1,...,tn
x1,...,xn

Dabei ist ψ t1,...,tn
x1,...,xn

die Formel, die aus ψ entsteht, indem für jedes

i ∈ [n] jedes Vorkommen von xi ersetzt wird durch den Grundterm ti.

Folie 355

Herbrand-Modelle und gleichheitsfreie Formeln in Skolemform

Definition 4.45.

(a) Ein Herbrand-Modell eines FO[σ]-Satzes φ ist eine σ-Herbrandstruktur,
die φ erfüllt.

(b) Eine FO[σ]-Formel φ heißt gleichheitsfrei, falls das Symbol
”
=“ nicht in

φ vorkommt.

(c) Eine FO[σ]-Formel ist in Skolemform (auch: Skolem-Normalform), falls
sie von der Form

∀x1 · · · ∀xn ψ

ist, wobei gilt: n ⩾ 0, x1, . . . , xn sind paarweise verschiedene
Variablen, und ψ ist eine quantorenfreie FO[σ]-Formel.

Version vom 16. Oktober 2023 Seite 227

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Satz 4.46.
Sei σ eine Signatur, die mindestens ein Konstantensymbol besitzt.

Für jeden gleichheitsfreien FO[σ]-Satz φ in Skolemform gilt:

φ ist erfüllbar ⇐⇒ φ besitzt ein Herbrand-Modell.

Beweis.
Die Richtung

”
⇐=“ ist offensichtlich.

Für den Beweis der Richtung
”
=⇒“ sei B eine σ-Struktur mit B |= φ. Wir

definieren im Folgenden eine σ-Herbrandstruktur A und zeigen dann, dass
gilt: A |= φ.

Wir definieren die σ-Herbrandstruktur A wie folgt: Für jedes
Relationssymbol R ∈ σ, für k := ar(R) und für alle t1, . . . , tk ∈ GTσ = A
setze

(t1, . . . , tk) ∈ RA ⇐⇒ B |= R(t1, . . . , tk) .

Per Induktion über den Aufbau von Formeln erhält man leicht (Details:
Übung), dass für alle n ∈ N, für alle gleichheitsfreien quantorenfreien
FO[σ]-Formeln ψ mit var(ψ) ⊆ {x1, . . . , xn} und für alle t1, . . . , tn ∈ GTσ
gilt:

A |= ψ t1,...,tn
x1,...,xn

⇐⇒ B |= ψ t1,...,tn
x1,...,xn

(4.3)

Laut Voraussetzung gilt B |= φ, und φ ist von der Form ∀x1 · · · ∀xn ψ,
wobei ψ eine gleichheitsfreie, quantorenfreie FO[σ]-Formel ist.

Wegen B |= ∀x1 · · · ∀xn ψ gilt insbes. für alle Grundterme t1, . . . , tn ∈ GTσ,
dass

B |= ψ
[
Jt1K

B , . . . , JtnK
B] ,

und somit gilt auch:

B |= ψ t1,...,tn
x1,...,xn

für alle t1, . . . , tn ∈ GTσ.

Aus (4.3) folgt, dass

A |= ψ t1,...,tn
x1,...,xn

für alle t1, . . . , tn ∈ GTσ = A gilt.

Somit gilt: A |= ∀x1 · · · ∀xn ψ. Also ist A ein Herbrand-Modell von φ.

Folie 356

Version vom 16. Oktober 2023 Seite 228

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Die Herbrand-Expansion eines Satzes in Skolemform

Definition 4.47. Sei φ ein gleichheitsfreier FO[σ]-Satz in Skolemform, d.h.
φ ist von der Form ∀x1 · · · ∀xn ψ, wobei ψ quantorenfrei und
gleichheitsfrei ist.
Die Herbrand-Expansion von φ ist die Formelmenge

HE(φ) :=
{
ψ t1,...,tn

x1,...,xn
: t1, . . . , tn ∈ GTσ

}
D.h.: Jede Formel in HE(φ) entsteht, indem in der quantorenfreien Formel
ψ jede Variable xi ersetzt wird durch einen Grundterm ti.

Beispiel 4.48. Sei σ = { c, f/1, g/2, R/3 } und sei

φ := ∀x∀y ∀z R
(
x, f(y), g(z, x)

)
Dann gehören z.B. die folgenden Formeln zur Herbrand-Expansion HE(φ):

• R(c, f(c), g(c, c))
(dies erhält man, indem jede der Variablen x, y, z durch den
Grundterm c ersetzt wird)

• R(f(c), f(c), g(c, f(c)))
(dies erhält man, indem x durch den Grundterm f(c) und jede der
Variablen y, z durch den Grundterm c ersetzt wird)

• R(g(c, c), f(f(c)), g(c, g(c, c)))
(dies erhält man, indem Variable x durch den Grundterm g(c, c),
Variable y durch den Grundterm f(c) und Variable z durch den
Grundterm c ersetzt wird)

Folie 357

Die aussagenlogische Version der Herbrand-Expansion

Für jeden gleichheitsfreien FO[σ]-Satz φ in Skolemform gilt:

Jede Formel ξ ∈ HE(φ) ist quantorenfrei, gleichheitsfrei und variablenfrei,
und jede atomare Subformel von ξ ist von der Form R(t1, . . . , tk), wobei
R ∈ σ, k = ar(R) und t1, . . . , tk ∈ GTσ.

Für jede solche atomare Formel stellen wir ein Aussagensymbol
XR(t1,...,tk) ∈ AS bereit.

Version vom 16. Oktober 2023 Seite 229

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Für jedes ξ ∈ HE(φ) sei al(ξ) die aussagenlogische Formel, die aus ξ
entsteht, indem jede atomare Subformel der Form R(t1, . . . , tk) ersetzt wird
durch das Aussagensymbol XR(t1,...,tk).

Die aussagenlogische Version der Herbrand-Expansion von φ ist die Menge

AHE(φ) :=
{
al(ξ) : ξ ∈ HE(φ)

}
.

Folie 358

Der Satz von Herbrand

Satz 4.49 (Satz von Gödel-Herbrand-Skolem).
Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält.
Für jeden gleichheitsfreien FO[σ]-Satz φ in Skolemform gilt: φ ist erfüllbar
⇐⇒ die aussagenlogische Formelmenge AHE(φ) ist erfüllbar.

Beweis. Sei φ von der Form ∀x1 · · · ∀xn ψ, wobei ψ quantorenfrei und
gleichheitsfrei ist. Es gilt:

φ ist erfüllbar
Satz 4.46⇐⇒ φ besitzt ein Herbrand-Modell

⇐⇒ es gibt eine σ-Herbrandstruktur A mit A |= ∀x1 · · · ∀xn ψ

Für jede σ-Herbrandstruktur A gilt:

A |= ∀x1 · · · ∀xn ψ
A=GTσ⇐⇒ für alle t1, . . . , tn ∈ GTσ gilt: A |= ψ t1,...,tn

x1,...,xn
Def. HE(φ)⇐⇒ A |= HE(φ)

⇐⇒ JA |= AHE(φ),

wobei JA die aussagenlogische Interpretation ist, so dass für jedes R ∈ σ,
für k := ar(R), für alle Grundterme t1, . . . , tk ∈ GTσ und für das
zugehörige Aussagensymol XR(t1,...,tk) gilt:

JA
(
XR(t1,...,tk)

)
:=

{
1 falls A |= R(t1, . . . , tk)

0 sonst

Insbesondere folgt, dass gilt:

φ erfüllbar =⇒ AHE(φ) erfüllbar.

Version vom 16. Oktober 2023 Seite 230

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Umgekehrt sei für jede aussagenlogische Interpretation J die zu J
gehörende σ-Herbrandstruktur AJ definiert via

RAJ :=
{
(t1, . . . , tk) : t1, . . . , tk ∈ GTσ und J

(
XR(t1,...,tk)

)
= 1

}
,

für jedes R ∈ σ und für k = ar(R).
Man sieht leicht, dass für jede aussagenlogische Interpretation J und jedes
ξ ∈ HE(φ) gilt:

J |= al(ξ) ⇐⇒ AJ |= ξ.

Somit gilt auch:

J |= AHE(φ) ⇐⇒ AJ |= HE(φ) ⇐⇒ AJ |= φ.

Insbesondere gilt also:

AHE(φ) erfüllbar =⇒ φ erfüllbar.

Dies beendet den Beweis von Satz 4.49.

In Verbindung mit dem Endlichkeitssatz der Aussagenlogik erhalten wir:

Satz 4.50 (Satz von Herbrand).
Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält. Sei ψ
eine gleichheitsfreie und quantorenfreie FO[σ]-Formel und sei
{x1, . . . , xn} = frei(ψ).
Dann gilt für die FO[σ]-Sätze φ := ∀x1 · · · ∀xn ψ und φ′ := ∃x1 · · · ∃xn ψ :

(a) φ ist erfüllbar ⇐⇒ jede endliche Teilmenge von AHE(φ) ist
erfüllbar.

(b) φ ist unerfüllbar ⇐⇒ es gibt eine endliche Teilmenge von AHE(φ),
die unerfüllbar ist.

(c) φ′ ist allgemeingültig ⇐⇒ es gibt eine Zahl m ∈ N und Grundterme
ti,1, . . . , ti,n für alle i ∈ [m], so dass die folgende Formel allgemeingültig
ist:

m∨
i=1

ψ
ti,1,...,ti,n
x1,...,xn

Version vom 16. Oktober 2023 Seite 231

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Beweis.
Aussage (a) folgt direkt aus dem Satz von Gödel-Herbrand-Skolem und
dem Endlichkeitssatz der Aussagenlogik.
Aussage (b) folgt direkt aus (a).
Aussage (c) lässt sich aus (b) wie folgt herleiten:
Offensichtlichwerweise gilt:

φ′ ist allgemeingültig ⇐⇒ ¬φ′ ist unerfüllbar.

Außerdem ist

¬φ′ = ¬∃x1 · · · ∃xn ψ ≡ ∀x1 · · · ∀xn ¬ψ.

Gemäß (b) ist ¬φ′ genau dann unerfüllbar, wenn es eine endliche
Teilmenge Γ von AHE(∀x1 · · · ∀xn¬ψ) gibt, die unerfüllbar ist.

Gemäß der Definition der Herbrand-Expansion einer Formel ist jede
endliche Teilmenge Γ von AHE(∀x1 · · · ∀xn¬ψ) von der Form{

al
(
¬ψ ti,1,...,ti,n

x1,...,xn

)
: i ∈ {1, . . . ,m}

}
,

wobei m ∈ N und ti,1, . . . , ti,n ∈ GTσ für jedes i ∈ [m] ist.
Eine solche Formelmenge ist genau dann unerfüllbar, wenn die
aussagenlogische Formel

m∧
i=1

al
(
¬ψ ti,1,...,ti,n

x1,...,xn

)
unerfüllbar ist.
Dies wiederum ist genau dann der Fall, wenn der quantorenfreie und
gleichheitsfreie FO[σ]-Satz

m∧
i=1

¬ψ ti,1,...,ti,n
x1,...,xn

unerfüllbar ist.
Und dies gilt genau dann, wenn der FO[σ]-Satz

m∨
i=1

ψ
ti,1,...,ti,n
x1,...,xn

allgemeingültig ist.
Dies beendet den Beweis von (c).

Folie 359

Version vom 16. Oktober 2023 Seite 232

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Anwendung des Satzes von Herbrand

Um nachzuweisen, dass ein gleichheitsfreier FO[σ]-Satz φ in Skolemform
unerfüllbar ist, kann man auf Grund des Satzes von Herbrand wie folgt
vorgehen:

Für i = 1, 2, 3, . . . tue Folgendes:

(1) Sei ξi die i-te Formel in AHE(φ)

(2) Teste, ob die aussagenlogische Formel (ξ1 ∧ · · · ∧ ξi)
unerfüllbar ist.

(3) Falls ja, halte an mit Ausgabe
”
φ ist unerfüllbar“

Man sieht leicht, dass dies ein Semi-Entscheidungsverfahren ist, das eine
gegebene Formel φ auf Unerfüllbarkeit testet.

Durch die Einschränkung auf gleichheitsfreie FO[σ]-Sätze in Skolemform
scheint dieses Verfahren auf den ersten Blick nur sehr eingeschränkt
anwendbar zu sein.

Im Folgenden zeigen wir jedoch, dass jede FO[σ]-Formel in eine zu ihr
erfüllbarkeitsäquivalente Formel der richtigen Form transformiert werden
kann.

Folie 360

Definition 4.51. Seien σ1, σ2 Signaturen und φi eine FO[σi]-Formel, für
jedes i ∈ {1, 2}.
Die Formel φ2 heißt erfüllbarkeitsäquivalent zu φ1, falls gilt:

φ2 ist erfüllbar ⇐⇒ φ1 ist erfüllbar.

Satz 4.52 (Skolemisierung). Zu jeder Signatur σ gibt es eine Signatur σ̂,
so dass jede FO[σ]-Formel φ in einen zu φ erfüllbarkeitsäquivalenten
gleichheitsfreien FO[σ̂]-Satz φ̂ in Skolemform transformiert werden kann.

Bevor wir den Satz beweisen, betrachten wir zunächst ein Beispiel.

Beispiel 4.53. Die Formel ∀x ∃y ∀z ∃u R(x, y, z, u) ist
erfüllbarkeitsäquivalent zum folgenden gleichheitsfreien Satz in Skolemform:

∀x∀z R
(
x, f(x), z, g(x, z)

)
Version vom 16. Oktober 2023 Seite 233

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Beweis von Satz 4.52:
Wir gehen in mehreren Schritten vor.

Schritt 1: Elimination von freien Variablen
Sei {x1, . . . , xn} = frei(φ), seien c1, . . . , cn paarweise verschiedene
Konstantensymbole, die nicht in σ liegen.

Sei σ1 := σ ∪ {c1, . . . , cn}, und sei φ1 der FO[σ1]-Satz, der aus φ entsteht,
indem jedes freie Vorkommen der Variable xi (für i ∈ [n]) ersetzt wird
durch die Konstante ci. Offensichtlicherweise gilt:

φ1 ist erfüllbar ⇐⇒ φ ist erfüllbar.

Schritt 2: Elimination des Gleichheitszeichens
Sei σ2 := σ1 ∪ {G}, wobei G ein 2-stelliges Relationssymbol ist, das nicht
in σ1 vorkommt.

Falls φ1 kein Gleichheitszeichen enthält, so setze φ2 := φ1 und beende
Schritt 2. Ansonsten gehe wie folgt vor.

Sei φG die Formel, die aus φ1 entsteht, indem jede atomare Subformel der
Form t1=t2 (für σ-Terme t1, t2) ersetzt wird durch die Formel G(t1, t2).

Sei χÄq ein FO[{G}]-Satz, der besagt, dass G eine Äquivalenzrelation ist,
d.h.:

χÄq := ∀x G(x, x) ∧
∀x ∀y

(
G(x, y)→ G(y, x)

)
∧

∀x∀y ∀z
((
G(x, y) ∧G(y, z)

)
→ G(x, z)

)
.

Für jedes Funktionssymbol f ∈ σ und für k := ar(f) sei χf der folgende
FO[{f,G}]-Satz, der besagt, dass G

”
verträglich“ ist mit f .

χf := ∀x1 · · · ∀xk ∀y1 · · · ∀yk
(k∧

i=1

G(xi, yi) →

G
(
f(x1, . . . , xk), f(y1, . . . , yk)

))
.

Für jedes Relationssymbol R ∈ σ und für k := ar(R) sei χR der folgende
FO[{R,G}]-Satz, der besagt, dass G

”
verträglich“ ist mit R.

χR := ∀x1 · · · ∀xk ∀y1 · · · ∀yk
(

(k∧
i=1

G(xi, yi) ∧ R(x1, . . . , xk)
)
→ R(y1, . . . , yk)

)
.

Version vom 16. Oktober 2023 Seite 234

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Sei nun
φ2 := φG ∧ χÄq ∧

∧
f∈σ(φ1)

χf ∧
∧

R∈σ(φ1)

χR .

Offensichtlicherweise ist φ2 ein gleichheitsfreier FO[σ2]-Satz.

Behauptung: φ2 ist genau dann erfüllbar, wenn φ1 erfüllbar ist.

Beweisidee:
Die Richtung

”
⇐=“ ist trivial.

Für den Beweis der Richtung
”
=⇒“ sei A ein Modell von φ2. Wir bauen

daraus wie folgt ein Modell B für φ1:
Die Elemente des Universums von B sind genau die Äquivalenzklassen von
Elementen des Universums von A bezüglich der Äquivalenzrelation GA.
Wir schreiben [a], um die Äquivalenzklasse von a ∈ A bzgl. GA zu
bezeichnen, d.h.

[a] := { a′ ∈ A : (a, a′) ∈ GA }.

Wir setzen
B := { [a] : a ∈ A }.

Für jedes Funktionssymbol f ∈ σ, für k := ar(f) und für alle a1, . . . , ak ∈ A
setzen wir

fB ([a1], . . . , [ak]) := [fA(a1, . . . , ak)].

Wegen A |= χf ist dies wohldefiniert.
Für jedes Relationssymbol R ∈ σ und für k := ar(R) setzen wir

RB := {
(
[a1], . . . , [ak]

)
: (a1, . . . , ak) ∈ RA }.

Wegen A |= χR gilt dann für alle a′1, . . . a
′
k ∈ A:(

[a′1], . . . , [a
′
k]
)
∈ RB ⇐⇒

(
a′1, . . . , a

′
k

)
∈ RA.

Aus A |= φG kann man nun folgern (Details: Übung), dass gilt: B |= φ2.
Dies beendet den Beweis der Behauptung.

Schritt 3: Erzeugen der Formel in Skolemform
Wir bringen nun den gleichheitsfreien FO[σ2]-Satz φ2 in
Pränex-Normalform und erhalten dadurch einen zu φ2 äquivalenten
gleichheitsfreien FO[σ2]-Satz der Form

Q1x1 · · ·Qnxn ψ ,

wobei gilt: ψ ist quantorenfrei und gleichheitsfrei, n ⩾ 0,
Q1, . . . , Qn ∈ {∃,∀}, und o.B.d.A. sind die Variablen x1, . . . , xn paarweise

Version vom 16. Oktober 2023 Seite 235

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

verschieden und es gilt Q1 = ∀ (falls letzteres nicht der Fall ist, ersetzen
wir φ′

2 durch die Formel ∀z φ′
2, wobei z ∈ VAR \ {x1, . . . , xn}).

Falls Q1 = · · · = Qn = ∀ ist, so sind wir fertig. Andernfalls sei i ⩾ 1
minimal, so dass Qi+1 = ∃. Dann ist φ′

2 von der Form

∀x1 · · · ∀xi ∃xi+1 ξ

für ξ := Qi+2xi+2 · · ·Qnxn ψ.
Sei f ein i-stelliges Funktionssymbol, das nicht zu σ2 gehört. Sei ξ′ die
Formel, die aus ξ entsteht, indem jedes Vorkommen der Variablen xi+1

ersetzt wird durch den Term f(x1, . . . , xi), sei σ3,1 := σ2 ∪ {f} und sei

φ3,1 := ∀x1 · · · ∀xi ξ′

Behauptung: φ3,1 ist genau dann erfüllbar, wenn φ2 erüllbar ist.

Beweis: Übung.

Falls φ3,1 keinen Existenzquantor enthält, sind wir fertig und setzen
σ̂ := σ3,1 und φ̂ := φ3,1.
Ansonsten verfahren wir mit φ3,1 genauso wie mit φ′

2, um den ersten in φ3,1

vorkommenden Existenzquantor zu eliminieren. Nach weniger als n
Iterationen erhalten wir einen zu φ′

2 erfüllbarkeitsäquivalenten,
gleichheitsfreien Satz in Skolemform. Dies beendet den Beweis von
Satz 4.52.

4.6 Automatische Theorembeweiser
Folie 361

Einfaches Verfahren (ohne Unifikation)

Seien φ und ψ zwei FO[σ]-Formeln.

Ziel: Automatischer Beweis, dass φ |= ψ gilt.

Dazu reicht es, zu zeigen, dass die Formel (φ ∧ ¬ψ) unerfüllbar ist.

Verfahren:

1. Erzeuge einen zu (φ ∧ ¬ψ) erfüllbarkeitsäquivalenten gleichheitsfreien
FO[σ̂]-Satz χ in Skolemform (über der erweiterten Signatur σ̂).

Nutze dazu das im Beweis von Satz 4.52 vorgestellte Verfahren.

2. Verwende das auf Seite 233 beschriebene
Semi-Entscheidungsverfahren, um zu herauszufinden, ob χ unerfüllbar
ist.

Version vom 16. Oktober 2023 Seite 236

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Folie 362

Beispiel 4.54.
Sei σ := {R/1, c, f/1},

φ := R(c) ∧ ∀x ∃y
(
(R(x)→ R(f(f(y)))) ∨R(f(x))

)
ψ := ∃xR(f(f(x))).

Dann ist (φ ∧ ¬ψ) =

R(c) ∧ ∀x ∃y
(
(R(x)→ R(f(f(y)))) ∨R(f(x))

)
∧ ¬∃xR(f(f(x)))

ein gleichheitsfreier Satz. Eine Umformung in Pränex-Normalform liefert
den dazu äquivalenten Satz

∀x ∃y
(
R(c) ∧

(
¬R(x) ∨ R(f(f(y))) ∨ R(f(x))

)
∧ ¬R(f(f(x)))

)
.

Wir erweitern die Signatur um ein 1-stelliges Funktionssymbol g und
erhalten den dazu erfüllbarkeitsäquivalenten gleichheitsfreien Satz in
Skolemform χ =

∀x
(
R(c) ∧

(
¬R(x) ∨ R(f(f(g(x)))) ∨ R(f(x))

)
∧ ¬R(f(f(x)))

)
über der Signatur σ̂ = {R, c, f, g}.

Folie 363

Für jeden Grundterm t ∈ GTσ̂ enthält die aussagenlogische Variante
AHE(χ) der Herbrand-Expansion von χ die aussagenlogische Formel

ξt := XR(c) ∧
(
¬XR(t) ∨ XR(f(f(g(t)))) ∨ XR(f(t))

)
∧ ¬XR(f(f(t))).

Wir zählen die Grundterme in GTσ̂ in der folgenden Reihenfolge auf

t1 = c, t2 = f(c), t3 = g(c), t4 = f(f(c)), t5 = g(f(c)), . . .

und zählen die Formeln in AHE(χ) in derselben Reihenfolge auf, also

ξ1 = ξt1 , ξ2 = ξt2 , ξ3 = ξt3 , . . .

Bei dem auf Seite 233 beschriebenen Verfahren wird dann beispielsweise im
Schleifendurchlauf für i = 5 getestet, ob die aussagenlogische Formel(

ξ1 ∧ ξ2 ∧ ξ3 ∧ ξ4 ∧ ξ5
)

Version vom 16. Oktober 2023 Seite 237

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

unerfüllbar ist. Dazu können wir beispielsweise das in Kapitel 2.6
behandelte Resolutionsverfahren oder den in Kapitel 2.7 behandelten
DPLL-Algorithmus anwenden.

Folie 364

In unserem Beispiel entspricht die Formel
(
ξ1 ∧ · · · ∧ ξ5) der Klauselmenge

Γ :=

{ XR(c) } ,

{ ¬XR(c) , XR(f(f(g(c)))) , XR(f(c)) } , { ¬XR(f(f(c))) } ,

{ ¬XR(f(c)) , XR(f(f(g(f(c))))) , XR(f(f(c))) } , { ¬XR(f(f(f(c)))) } ,

{ ¬XR(g(c)) , XR(f(f(g(g(c))))) , XR(f(g(c))) } , { ¬XR(f(f(g(c)))) }
{ ¬XR(f(f(c))) , XR(f(f(g(f(f(c)))))) , XR(f(f(f(c)))) } , { ¬XR(f(f(f(f(c))))) }

{ ¬XR(g(f(c))) , XR(f(f(g(g(f(c)))))) , XR(f(g(f(c)))) } , { ¬XR(f(f(g(f(c))))) }
}

Wir konstruieren eine Resolutionswiderlegung für Γ:

(1)
{
XR(c)

}
in Γ

(2)
{
¬XR(c) , XR(f(f(g(c)))) , XR(f(c))

}
in Γ

(3)
{
XR(f(f(g(c)))) , XR(f(c))

}
Resolvente aus 1,2

(4)
{
¬XR(f(f(g(c))))

}
in Γ

(5)
{
XR(f(c))

}
Resolvente aus 3,4

(6)
{
¬XR(f(c)) , XR(f(f(g(f(c))))) , XR(f(f(c)))

}
in Γ

(7)
{
XR(f(f(g(f(c))))) , XR(f(f(c)))

}
Resolvente aus 5,6

(8)
{
¬XR(f(f(c)))

}
in Γ

(9)
{
XR(f(f(g(f(c)))))

}
Resolvente aus 7,8

(10)
{
¬XR(f(f(g(f(c)))))

}
in Γ

(11) ∅ Resolvente aus 9,10

Folie 365
Somit ist Γ unerfüllbar (gemäß Satz 2.59). Das auf Seite 233 angegebene
Verfahren hält daher (spätestens) im Schleifendurchlauf für i = 5 mit der
Ausgabe

”
χ ist unerfüllbar“ an. Da χ erfüllbarkeitsäquivalent zur Formel

(φ ∧ ¬ψ) ist, wissen wir also, dass φ |= ψ gilt.
Dies beendet Beispiel 4.54.

Version vom 16. Oktober 2023 Seite 238

Kapitel 5

Logik-Programmierung

5.1 Einführung

Folie 366

Logik-Programmierung

Logik-Programmierung bezeichnet die Idee, Logik direkt als
Programmiersprache zu verwenden.

Logik-Programmierung (in Sprachen wie Prolog) und die verwandte
funktionale Programmierung (in Sprachen wie LISP, ML, Haskell) sind
deklarativ,
im Gegensatz zur imperativen Programmierung (in Sprachen wie Java, C,
Perl).

Die Idee der deklarativen Programmierung besteht darin, dem Computer
lediglich sein Wissen über das Anwendungsszenario und sein Ziel
mitzuteilen und dann die Lösung des Problems dem Computer zu
überlassen.
Bei der imperativen Programmierung hingegen gibt man dem Computer die
einzelnen Schritte zur Lösung des Problems vor.

Folie 367

Prolog

• ist die wichtigste logische Programmiersprache,

• geht zurück auf Kowalski und Colmerauer
(Anfang der 1970er Jahre, Marseilles),

Version vom 16. Oktober 2023 Seite 239

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

• steht für (franz.) Programmation en logique.

• Mitte/Ende der 1970er Jahre: effiziente Prolog-Implementierung durch
den von Warren (in Edinburgh) entwickelten Prolog-10 Compiler.

Prolog ist eine voll entwickelte und mächtige Programmiersprache, die vor
allem für symbolische Berechnungsprobleme geeignet ist.

Aus Effizienzgründen werden in Prolog die abstrakten Ideen der logischen
Programmierung nicht in Reinform umgesetzt, Prolog hat auch

”
nichtlogische“ Elemente.

Folie 368

Dieses Kapitel

• setzt voraus, dass Sie bereits Grundkenntnisse der
Programmiersprache Prolog besitzen, die beispielsweise im Buch

”
Learn Prolog Now!“ von P. Blackburn, J. Bos und K. Striegnitz
vermittelt werden, und die während des Semesters bereits im
Übungsbetrieb behandelt wurden.

• gibt eine Einführung in die Grundlagen der Logik-Programmierung —
keine Einführung in die Programmiersprache Prolog!

Auf einige der Hauptunterschiede zwischen allgemeiner
Logik-Programmierung und Prolog werden wir im Laufe dieses Kapitels
eingehen.

Alle in diesem Kapitel enthaltenen Beispiele von Logikprogrammen sind
voll lauffähige Prologprogramme, aber in einigen Fällen unterscheidet sich
die Semantik des Programms im Sinne der Logik-Programmierung von der
Semantik des Programms im Sinne von Prolog.

Folie 369

Zunächst zwei Beispiele für Logikprogramme

Beispiel 5.1. Ein Logikprogramm zur Repräsentation natürlicher Zahlen in
Unärdarstellung und der zugehörigen Arithmetik und der Kleiner-Relation.

Version vom 16. Oktober 2023 Seite 240

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Programm: unat.pl

unat(null).

unat(s(X)) :- unat(X).

plus(null, Y, Y).

plus(s(X), Y, s(Z)) :- plus(X, Y, Z).

minus(X, Y, Z) :- plus(Y, Z, X).

mal(null, Y, null).

mal(s(X), Y, Z) :- mal(X, Y, Z1), plus(Z1, Y, Z).

less(null, s(_)).

less(s(X), s(Y)) :- less(X, Y).

Folie 370

Beispiel 5.2. Ein Programm, das Daten über Familienstammbäume des
Buchs

”
Vom Winde verweht“ von Margaret Mitchell (1936) enthält.

Programm: vomWindeVerweht.pl

mutter(solange, ellen).

mutter(katie, gerald).

mutter(ellen, scarlett). mutter(ellen, suellen). mutter(ellen, carreen).

mutter(scarlett, wade). mutter(scarlett, ella). mutter(scarlett, bonnie).

mutter(melanie, beau).

vater(pierre, ellen).

vater(gerald, scarlett). vater(gerald, suellen). vater(gerald, carreen).

vater(charles, wade).

vater(frank, ella).

vater(rhett, bonnie).

vater(john, ashley). vater(john, india).

vater(ashley, beau).

weiblich(solange). weiblich(ellen). weiblich(katie).

weiblich(scarlett). weiblich(suellen). weiblich(carreen).

weiblich(ella). weiblich(bonnie). weiblich(melanie).

weiblich(india).

Version vom 16. Oktober 2023 Seite 241

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

maennlich(gerald). maennlich(wade). maennlich(beau).

maennlich(pierre). maennlich(charles). maennlich(frank).

maennlich(rhett). maennlich(john). maennlich(ashley).

elternteil(X,Y) :- vater(X,Y).

elternteil(X,Y) :- mutter(X,Y).

grossmutter(X,Z) :- mutter(X,Y), elternteil(Y,Z).

grossvater(X,Z) :- vater(X,Y), elternteil(Y,Z).

schwester(X,Y) :-

elternteil(Z,X), elternteil(Z,Y), weiblich(X), X \== Y.

bruder(X,Y) :-

elternteil(Z,X), elternteil(Z,Y), maennlich(X), X \== Y.

tante(X,Y) :- elternteil(Z,Y), schwester(X,Z).

onkel(X,Y) :- elternteil(Z,Y), bruder(X,Z).

vorfahre(X,Y) :- elternteil(X,Y).

vorfahre(X,Y) :- elternteil(X,Z), vorfahre(Z,Y).

nachkomme(X,Y) :- vorfahre(Y,X).

5.2 Syntax und deklarative Semantik von
Logikprogrammen

Folie 371

Logikprogramme

Logikprogramme sind
”
Wissensbasen“, bestehend aus einer endlichen Menge

von Fakten und Regeln.

Eine Berechnung eines Logikprogramms besteht aus der Ableitung der
Konsequenzen, die aus den Fakten und den Regeln des Programms
hergeleitet werden können.

Man führt ein Programm aus, indem man Anfragen an die Wissensbasis
stellt.

Fakten beschreiben Relationen zwischen Objekten.

Version vom 16. Oktober 2023 Seite 242

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Beispiele: vater(gerald,scarlett), maennlich(rhett), party,
plus(s(null),s(s(null)),s(s(s(null)))).

Relationen haben eine Stelligkeit k ⩾ 0.
Nullstellige Relationen sind einfach Aussagen (z.B. besagt

”
party“, dass

die Party stattfindet).

Eine Anfrage ist eine durch Kommas getrennte Liste von Fakten; gefragt
wird, ob diese Fakten in der Wissenbasis gelten, d.h., ob sie aus der
Wissensbasis ableitbar sind.

Beispiele: Die Anfrage ?- schwester(scarlett, suellen) fragt, ob
Scarlett eine Schwester von Suellen ist.
Die Anfrage ?- mutter(scarlett, X), vater(ashley, X) fragt, ob
Scarlett und Ashley ein gemeinsames Kind haben.

Folie 372

Die Rolle der Terme

Terme sind in Logikprogrammen die universelle Datenstruktur.

Je nach Kontext spielen sie die Rolle von Fakten
oder von Objekten, über die die Fakten sprechen.

Die einfachste Art von Termen in Logikprogrammen sind die im Folgenden
definierten Konstanten und Variablen.

Folie 373

Atome, Zahlen, Konstanten und Variablen der
Logik-Programmierung

Definition 5.3.

(a) Atome sind die Grundbausteine von Logikprogrammen. Sie werden
bezeichnet durch Zeichenketten, die keins der Symbole

”
(“ und

”
)“

enthalten und die mit einem Kleinbuchstaben beginnen oder in
einfachen Hochkommata stehen. Atome repräsentieren Individuen.

Beispiele: scarlett, ’Scarlett’, logikInDerInformatik

(b) Zahlen in Logikprogrammen sind entweder ganze Zahlen oder reelle
Zahlen in Gleitkommadarstellung.

Beispiele: 42, 1.2e-3

Version vom 16. Oktober 2023 Seite 243

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

(c) Konstanten der Logik-Programmierung sind Atome oder Zahlen.

Folie 374

Definition 5.4. Variablen der Logik-Programmierung werden durch
Zeichenketten bezeichnet, die mit einem Großbuchstaben oder einem
Unterstrich beginnen und keins der Symbole

”
(“ und

”
)“ enthalten.

Eine Variable repräsentiert in einem Logikprogramm (ähnlich wie in der
Logik erster Stufe) ein nicht-spezifiziertes Individuum.

Man beachte den Gegensatz zur imperativen Programmierung, bei der eine
Variable für eine

”
Speicherzelle“ steht, in der Werte gespeichert und

verändert werden können.

Beispiele: X, Mutter, mutter, RUD26

Folie 375

Terme der Logik-Programmierung

Definition 5.5.

(a) Ein einfacher Term der Logik-Programmierung ist eine Konstante oder
eine Variable (d.h., ein Atom, eine Zahl oder eine Variable der
Logik-Programmierung).

(b) Die Menge TLP der Terme der Logik-Programmierung ist rekursiv wie
folgt definiert:

(1) Jeder einfache Term ist ein Term.

(2) Ist f ein Atom, ist k ∈ N mit k ⩾ 1 und sind t1, . . . , tk ∈ TLP

Terme, so ist

f(t1,...,tk)

ein Term in TLP.

(c) Terme in TLP, die keine einfachen Terme sind, heißen zusammengesetzte
Terme der Logik-Programmierung.

In einem zusammengesetzten Term der Form f(t1,...,tk) spielt das Atom
f die Rolle eines k-stelligen Funktors, den wir mit f/k bezeichnen.

Spezialfall k = 0: Jedes Atom g wird als ein 0-stelliger Funktor betrachtet,
der mit g/0 bezeichnet wird, und der ein (einfacher) Term ist.

Version vom 16. Oktober 2023 Seite 244

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Folie 376

Beispiele: party, vater(gerald,scarlett), s(s(s(null))),

vorlesung(name(logikInDerInformatik),

zeit(Mi,9,11),

ort(gebaeude(RUD26),raum(0110))).

Folie 377

Gleichheit von Termen

Zwei Terme t und t′ der Logik-Programmierung werden nur dann als gleich
bezeichnet, wenn sie syntaktisch, d.h. als Zeichenketten betrachtet,
identisch sind.

Beispiel:
Die beiden Terme plus(null,X,X) und plus(null,Y,Y) sind nicht
gleich.

Folie 378

Substitutionen

Notation. Für eine partielle Funktion f schreiben wir Def(f) und Bild(f)
um den Definitionsbereich und den Bildbereich von f zu bezeichnen.
D.h. Def(f) ist die Menge aller Objekte x, für die der Wert f(x) definiert
ist, und Bild(f) = {f(x) : x ∈ Def(f)}.

Definition 5.6.
Eine Substitution ist eine partielle Abbildung von der Menge der Variablen
auf die Menge der Terme.

Eine Substitution für eine Menge V von Variablen der
Logik-Programmierung ist eine Substitution S mit Def(S) ⊆ V .

Beispiel:

S :=
{
X 7→ c, Y 7→ f(X,g(c)), Z 7→ Y

}
bezeichnet die Substitution mit Definitionsbereich Def(S) = {X, Y, Z}, für
die gilt: S(X) = c, S(Y) = f(X,g(c)), S(Z) = Y.

Folie 379

Version vom 16. Oktober 2023 Seite 245

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Anwendung von Substitutionen

Durch Anwenden einer Substitution S auf einen Term t ∈ TLP erhalten wir
den Term tS ∈ TLP, der aus t durch simultanes Ersetzen jeder Variablen
X ∈ Def(S) durch den Term S(X) entsteht.

Beispiel: Sei
t := h(f(X,X), Y, f(Y,g(Z)))

und
S :=

{
X 7→ c, Y 7→ f(X,g(c)), Z 7→ Y

}
.

Dann ist

tS = h(f(c,c), f(X,g(c)), f(f(X,g(c)), g(Y))).

Definition 5.7.
Ein Term t′ ist eine Instanz eines Terms t, wenn es eine Substitution S gibt,
so dass t′ = tS.

Folie 380

Grundterme

Definition 5.8.
Ein Grundterm der Logik-Programmierung ist ein Term, der keine
Variable(n) enthält.

Eine Grundinstanz eines Terms t ∈ TLP ist eine Instanz von t, die ein
Grundterm ist.

Eine Grundinstanz eines Terms t entsteht also, indem jede in t
vorkommende Variable durch einen Grundterm ersetzt wird.

Beispiele: h(c,c,f(c)) und h(f(f(c,c),g(d)),d,f(g(g(c)))) sind
Grundinstanzen des Terms h(X,Y,f(Z)).

Bemerkung. Grundterme sind wichtig, weil sie in dem Modell, das dem
Logikprogramm zu Grunde liegt, eine unmittelbare Bedeutung haben.
Variablen hingegen haben keine direkte Bedeutung, sondern sind nur
Platzhalter für Objekte.

Folie 381

Version vom 16. Oktober 2023 Seite 246

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Fakten der Logik-Programmierung

Definition 5.9.
Ein Faktum der Logik-Programmierung ist ein Atom oder ein
zusammengesetzter Term der Logik-Programmierung.

Fakten beschreiben Tatsachen bzw. Relationen zwischen Objekten.

Beispiele: Das Faktum party beschreibt, dass eine Party stattfindet.
Das Faktum unat(s(s(null))) beschreibt, dass der Term s(s(null)) die
Unärdarstellung einer natürlichen Zahl ist.
Das Faktum mutter(scarlett, bonnie) beschreibt, dass Scarlett die
Mutter von Bonnie ist.

Fakten dürfen auch Variablen enthalten. Eine Variable in einem Faktum
bedeutet, dass die entsprechende Aussage für alle Objekte, durch die die
Variable ersetzt werden kann, gilt.
Beispiel: plus(null,Y,Y)

Folie 382

Regeln

Definition 5.10.
Eine Regel der Logik-Programmierung besteht aus

• einem Faktum (dem so genannten Kopf der Regel),

• gefolgt von :-

(in der Literatur wird an Stelle von
”
:-“ oft auch

”
←“ geschrieben)

und

• einer durch Kommas getrennten Liste von Fakten (dem so genannten
Rumpf der Regel).

Wir interpretieren die Regel als Implikation:

Wenn alle Fakten im Rumpf gelten, dann gilt auch das Faktum im Kopf.

Beispiele:

minus(X,Y,Z) :- plus(Y,Z,X)

grossmutter(X,Z) :- mutter(X,Y), elternteil(Y,Z)

Folie 383

Version vom 16. Oktober 2023 Seite 247

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Logikprogramme

Definition 5.11.
Ein Logikprogramm ist eine endliche Menge von Fakten und Regeln der
Logik-Programmierung.

Es ist oft bequem, Fakten als spezielle Regeln mit leerem Rumpf
aufzufassen. Dann besteht ein Logikprogramm nur aus Regeln.

In konkreten Beispielen stellen wir Logikprogramme meistens als Liste der
in ihnen enthaltenen Fakten und Regeln dar, wobei das Ende jedes Eintrags
dieser Liste durch einen Punkt markiert wird.

Beispiele: Das Programm unat.pl aus Beispiel 5.1 ist ein Logikprogramm
im Sinne von Definition 5.11. Das Programm vomWindeVerweht.pl aus
Beispiel 5.2 nicht, da dort Ungleichheitsprädikate der Form X \== Y

vorkommen, die gemäß Definition 5.10 nicht im Rumpf von Regeln
vorkommen können, da sie keine Fakten gemäß Definition 5.9 sind.

Folie 384

Ableitungen aus Logikprogrammen

Definition 5.12.
Eine Ableitung aus einem Logikprogramm Π ist ein Tupel (t1, . . . , tℓ) von
Termen, so dass ℓ ∈ N mit ℓ ⩾ 1 ist und für jedes i ∈ [ℓ] (mindestens) eine
der beiden folgenden Aussagen zutrifft:

• ti ist eine Instanz eines Faktums in Π.

• Es gibt eine Regel
φ :- ψ1, . . . , ψm

in Π, eine Substitution S und Indizes i1, . . . , im ∈ {1, . . . , i−1}, so
dass gilt: ti = φS und tij = ψjS für jedes j ∈ [m].

Eine Ableitung eines Terms t aus Π ist eine Ableitung (t1, . . . , tℓ) aus Π mit
tℓ = t.

Ein Term t ist ableitbar aus Π, wenn es eine Ableitung von t aus Π gibt.

Folie 385

Die im Kapitel über Automatisches Schließen eingeführte
Kalkül-Schreibweise lässt sich dazu nutzen, eine elegante Darstellung des
Begriffs der Ableitungen aus Logikprogrammen anzugeben.

Folie 386

Version vom 16. Oktober 2023 Seite 248

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Verwendung der Kalkül-Schreibweise für Ableitungen in
Logikprogrammen

Sei Π ein Logikprogramm.

Gesucht: Ein Kalkül KΠ über der Menge TLP, so dass ablKΠ
genau die

Menge aller aus Π ableitbaren Terme ist.

Lösung: KΠ besteht aus folgenden Ableitungsregeln:

• Axiome: Für jedes Faktum φ in Π (d.h., jede Regel in Π, die keinen
Rumpf besitzt) und jede Substitution S ist

φS

ein Axiom in KΠ.

• Weitere Regeln: Für jede Regel φ :- ψ1, . . . , ψm in Π und für jede
Substitution S ist

ψ1S · · · ψmS
φS

eine Ableitungsregel in KΠ.

Dann ist ablKΠ
genau die Menge aller aus Π ableitbaren Terme.

Folie 387

Darstellung von Ableitungen

• An Stelle von (t1, . . . , tℓ) schreiben wir Ableitungen der besseren
Lesbarkeit halber oft zeilenweise, also

(1) t1
(2) t2
...

(ℓ) tℓ

und geben am Ende jeder Zeile eine kurze Begründung an.

• Ableitungen werden oft auch als Bäume dargestellt; man bezeichnet
diese als Beweisbäume.

Folie 388

Version vom 16. Oktober 2023 Seite 249

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Beispiel

Betrachte das Programm vomWindeVerweht1.pl

Programm: vomWindeVerweht1.pl

mutter(solange, ellen).

mutter(katie, gerald).

mutter(ellen, scarlett). mutter(ellen, suellen). mutter(ellen, carreen).

mutter(scarlett, wade). mutter(scarlett, ella). mutter(scarlett, bonnie).

mutter(melanie, beau).

vater(pierre, ellen).

vater(gerald, scarlett). vater(gerald, suellen). vater(gerald, carreen).

vater(charles, wade).

vater(frank, ella).

vater(rhett, bonnie).

vater(john, ashley). vater(john, india).

vater(ashley, beau).

weiblich(solange). weiblich(ellen). weiblich(katie).

weiblich(scarlett). weiblich(suellen). weiblich(carreen).

weiblich(ella). weiblich(bonnie). weiblich(melanie).

weiblich(india).

maennlich(gerald). maennlich(wade). maennlich(beau).

maennlich(pierre). maennlich(charles). maennlich(frank).

maennlich(rhett). maennlich(john). maennlich(ashley).

elternteil(X,Y) :- vater(X,Y).

elternteil(X,Y) :- mutter(X,Y).

schwester(X,Y) :-

elternteil(Z,X), elternteil(Z,Y), weiblich(X), ungleich(X,Y).

tante(X,Y) :- elternteil(Z,Y), schwester(X,Z).

ungleich(suellen, scarlett). ungleich(scarlett, suellen).

ungleich(carreen, scarlett). ungleich(scarlett, carreen).

ungleich(suellen, carreen). ungleich(carreen, suellen).

Folie 389

Version vom 16. Oktober 2023 Seite 250

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Beispiel 5.13. Ableitung von tante(suellen,bonnie) aus dem
Programm vomWindeVerweht1.pl:

(1) mutter(ellen,scarlett) Faktum in Zeile 3

(2) elternteil(ellen,scarlett) Regel in Zeile 25 und (1)

(3) mutter(ellen,suellen) Faktum in Zeile 3

(4) elternteil(ellen,suellen) Regel in Zeile 25 und (3)

(5) ungleich(suellen,scarlett) Regel in Zeile 32

(6) weiblich(suellen) Faktum in Zeile 16

(7) schwester(suellen,scarlett) Regel in Zeile 27 und (4),(2),(6),(5)

(8) mutter(scarlett,bonnie) Faktum in Zeile 4

(9) elternteil(scarlett,bonnie) Regel in Zeile 25 und (8)

(10) tante(suellen,bonnie) Regel in Zeile 27 und (9),(7)

Zugehöriger Beweisbaum:

tante(suellen,bonnie)

elternteil(scarlett,bonnie)

mutter(scarlett,bonnie)

schwester(suellen,scarlett)

elternteil(ellen,suellen)

mutter(ellen,suellen)

elternteil(ellen,scarlett)

mutter(ellen,scarlett)

weiblich(suellen)

ungleich(suellen,scarlett)

Folie 390

Beweisbäume

Definition 5.14. Sei Π ein Logikprogramm und sei t ein Term.
Ein Beweisbaum für t aus Π ist ein endlicher Baum, dessen Knoten mit
Termen beschriftet sind, so dass gilt:

• die Wurzel ist mit dem
”
Ziel“ t beschriftet,

Version vom 16. Oktober 2023 Seite 251

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

• jedes Blatt ist mit einer Instanz eines Faktums in Π beschriftet, und

• für jeden inneren Knoten u und dessen Kinder v1, . . . , vm gilt:

Es gibt eine Regel
φ :- ψ1, . . . , ψm

in Π und eine Substitution S, so dass für die Beschriftung tu von u
und die Beschriftungen tv1 , . . . , tvm der Knoten v1, . . . , vm gilt:

tu = φS, tv1 = ψ1S, tv2 = ψ2S, . . . , tvm = ψmS.

Man sieht leicht, dass es genau dann einen Beweisbaum für t aus Π gibt,
wenn t aus Π ableitbar ist (Details: Übung).

Folie 391

Deklarative Semantik von Logikprogrammen

Definition 5.15. Sei Π ein Logikprogramm.
Die Bedeutung von Π ist die Menge B(Π) aller Grundterme, die aus Π
ableitbar sind.

Beispiel 5.16. Sei Π das folgende Logikprogramm unat1.pl.

Programm: unat1.pl

unat(null).

unat(s(X)) :- unat(X).

less(null, s(X)) :- unat(X).

less(s(X), s(Y)) :- less(X, Y).

Die Bedeutung von Π ist die Menge B(Π), und diese enthält u.a. die Terme

unat(null),
unat(s(null)),
unat(s(s(null))),
unat(s(s(s(null)))), . . .

und die Terme

less(null, s(null),
less(null, s(s(null)),
less(null, s(s(s(null))),
less(null, s(s(s(s(null)))), . . .

Version vom 16. Oktober 2023 Seite 252

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

und die Terme

less(s(null), s(s(null))),
less(s(null), s(s(s(null)))),
less(s(null), s(s(s(s(null))))),
less(s(null), s(s(s(s(s(null)))))), . . .

Insgesamt ist

B(Π) = { unat(si(null)) : i ∈ N } ∪
{ less(si(null), sj(null)) : i, j ∈ N mit i < j },

wobei wir s0(null) schreiben, um den Term null zu bezeichnen, und für
jedes i ∈ N⩾1 bezeichnet si(null) den Term s(si−1(null)).

Folie 392

Beispiel: Wege in Digraphen (d.h., gerichteten Graphen)

Wir repräsentieren einen gerichteten Graphen G durch die Auflistung
node(v) für alle Knoten v von G und edge(v,w) für alle Kanten (v,w) von
G.

Ziel: path(X,Y) soll besagen, dass es in G einen Weg von Knoten X zu
Knoten Y gibt.

Lösung:

path(X,X).

path(X,Y) :- edge(X,Z), path(Z,Y).

Im folgenden Programm digraph.pl ist dies zusammen mit einem
Beispiel-Graphen gegeben.

Programm: digraph.pl

node(a). node(b). node(c). node(d).

node(e). node(f). node(g). node(h).

node(i). node(j).

edge(a,j).

edge(c,e).

edge(d,e).

edge(e,f).

Version vom 16. Oktober 2023 Seite 253

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

edge(f,g).

edge(g,h). edge(g,j).

edge(h,g). edge(h,i).

edge(i,a). edge(i,b). edge(i,j).

edge(j,b). edge(j,c). edge(j,d). edge(j,f).

path(X,X).

path(X,Y) :- edge(X,Z), path(Z,Y).

Folie 393

Der in digraph.pl angegebene Graph sieht wie folgt aus:

Ein Beweisbaum für path(a,g) aus digraph.pl:

Version vom 16. Oktober 2023 Seite 254

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Folie 394

Ein Beweisbaum für path(h,a) aus digraph.pl:

Folie 395

Und was tut Prolog bei Eingabe von

?- consult(digraph).

?- path(a,g).

und bei Eingabe von

?- path(h,a).

?

Auf die Frage, ob path(a,g) gilt, antwortet Prolog mit
”
true“.

Auf die Frage, ob path(h,a) gilt, antwortet Prolog mit
”
ERROR: Out of

local stack“.

Folie 396

Was passiert hier?

Die Details zur Berechnung, die Prolog hier durchführt, können wir mit uns
mit

?- trace.

?- path(h,a).

anschauen.

Dies zeigt, dass die Prolog-Suche nach einem Beweisbaum im Kreis

Version vom 16. Oktober 2023 Seite 255

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

stecken bleibt.

Folie 397

Unterschied zwischen Theorie und Praxis

In der Theorie funktioniert die Pfadsuche aus digraph.pl für alle endlichen
gerichteten Graphen.

In der Praxis funktioniert sie aber nur für azyklische Graphen.

Die operationelle Semantik von Prolog entspricht also nicht genau der
deklarativen Semantik von Logikprogrammen!

Folie 398

Anfragen an Logikprogramme

Definition 5.17.
Eine Anfrage der Logik-Progammierung besteht aus den Symbolen ?-

gefolgt von einem Faktum oder aus einer durch Kommas getrennten Liste
von Fakten der Logik-Programmierung.

Die Antwort auf eine Anfrage α der Form

?- α1, . . . , αn

an ein Logikprogramm Π ist definiert als die Menge JαKΠ aller
Substitutionen S für die in α vorkommenden Variablen, so dass gilt:
α1S, . . . , αnS sind Grundterme, die aus Π ableitbar sind.

Hier repräsentiert die leere Menge ∅ die Antwort
”
falsch“.

Folie 399

Beachte: Eine Variable X in einer Anfrage fragt also nach einem bzw. allen
Objekten, die die Anfrage erfüllen.

Beispiel 5.18. Betrachte die Anfrage

?- vater(gerald,X), mutter(ellen,X)

Version vom 16. Oktober 2023 Seite 256

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

angewendet auf das Logikprogramm vomWindeVerweht1.pl.

Die Antwort auf diese Anfrage besteht aus den drei Substitutionen

S1 := { X 7→ scarlett },
S2 := { X 7→ suellen },
S3 := { X 7→ carreen }.

Beispiele von Anfragen an das Logikprogramm unat.pl:

?- plus(s(null),s(s(null)),X).

?- plus(X,Y,s(s(s(null)))).

5.3 Operationelle Semantik

Folie 400

Deklarative vs. Operationelle Semantik

• Die in Definition 5.15 festgelegte deklarative Semantik von
Logikprogrammen beruht auf einer logischen Interpretation von
Programmen (Regeln als Implikationen) und logischer Deduktion.

• Jetzt werden wir dieser deklarativen Semantik eine operationelle
Semantik gegenüberstellen, indem wir einen Algorithmus angeben, der
Programme ausführt (auf einem abstrakten, nichtdeterministischen
Maschinenmodell).

Dadurch legen wir ebenfalls die Antworten auf die Anfragen fest und
weisen somit Programmen eine Bedeutung zu.

• Wir werden sehen, dass die deklarative Bedeutung von
Logikprogrammen mit der operationellen übereinstimmt.

Folie 401

Semantik von Programmiersprachen im Allgemeinen

Generell unterscheidet man zwischen zwei Wegen, die Semantik von
Programmiersprachen zu definieren:

Version vom 16. Oktober 2023 Seite 257

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

• Die deklarative oder denotationelle Semantik ordnet Programmen
Objekte in abstrakten mathematischen Räumen zu, in der Regel
partielle Funktionen, oder im Fall von Logikprogrammen Mengen von
Grundtermen.

Zur Erinnerung: Die Bedeutung B(Π) eines Logikprogramms Π ist
gemäß Definition 5.15 die die Menge aller Grundterme, die aus Π
ableitbar sind.

• Die operationelle Semantik legt fest, wie Programme auf abstrakten
Maschinenmodellen ausgeführt werden.

Folie 402

Notation

• LP := die Menge aller Logikprogramme

• ALP := die Menge aller Atome der Logik-Programmierung

VLP := die Menge aller Variablen der Logik-Programmierung

KLP := die Menge aller Konstanten der Logik-Programmierung

TLP := die Menge aller Terme der Logik-Programmierung

FLP := die Menge aller Anfragen der Logik-Programmierung

RLP := die Menge aller Regeln der Logik-Programmierung

• Für jedes ξ aus TLP ∪ FLP ∪ RLP ∪ LP bezeichnet Var(ξ) die Menge
aller Variablen, die in ξ vorkommen.

Beispiel: Ist ρ die Regel path(X,Y) :- edge(X,Z), path(Z,Y),
dann ist Var(ρ) = {X, Y, Z}.

• Ist S eine Substitution und α ∈ FLP eine Anfrage der Form
?- α1, . . . , αm ist, so bezeichnet αS die Anfrage ?- α1S, . . . , αmS.

Entsprechend definieren wir für jede Regel ρ ∈ RLP die Regel ρS.

Folie 403

Version vom 16. Oktober 2023 Seite 258

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Mehr über Substitutionen

• Zur Erinnerung: Eine Substitution ist eine partielle Abbildung S von
VLP nach TLP. Den Definitionsbereich von S bezeichnen wir mit
Def(S), den Bildbereich mit Bild(S).

• Die Verkettung zweier Substitutionen S und T ist die Substitution ST
mit Def(ST) = Def(S) ∪Def(T) und X(ST) := (XS)T für alle
X ∈ Def(ST).

• Die Einschränkung einer Substitution S auf eine Menge V von
Variablen ist die Substitution S|V mit Def(S|V) = Def(S) ∩ V und
XS|V := XS für alle X ∈ Def(S) ∩ V .

• Die leere Substitution bezeichnen wir mit I. Es gilt:

– tI = t für alle Terme t ∈ TLP, und

– IS = SI = S für alle Substitutionen S.

Folie 404

Beispiel 5.19. Für die Substitutionen

S := { X 7→ good(c,Y), Y 7→ rainy(d) },
T := { Y 7→ sunny(d), Z 7→ humid(e) }.

gilt:

ST = { X 7→ good(c,sunny(d)), Y 7→ rainy(d), Z 7→ humid(e) }
TS = { X 7→ good(c,Y), Y 7→ sunny(d), Z 7→ humid(e) }.

Folie 405

Umbennungen

• Eine Umbenennung ist eine injektive partielle Abbildung von VLP

nach VLP.

Wegen VLP ⊆ TLP, sind Umbenennungen spezielle Substitutionen.

• Eine Umbenennung für eine Menge V von Variablen ist eine
Umbennung U mit Def(U) = V .

Version vom 16. Oktober 2023 Seite 259

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

• Ist U eine Umbennung, so bezeichnet U−1 ihre Umkehrung.

Beispiel: U := {X 7→ Y, Y 7→ Z} ist eine Umbenennung für {X, Y}.
U−1 = {Y 7→ X, Z 7→ Y} ist die Umkehrung von U .

Folie 406

Ein einfacher Interpreter für Logikprogramme

Algorithmus Antwort(Π, α)

% Eingabe: Programm Π ∈ LP, Anfrage ?-α ∈ FLP mit α = α1, . . . , αm

% Ausgabe: eine Substitution S für Var(α) oder das Wort
”
gescheitert“.

1. Wähle ein i ∈ [m] % αi ist das nächste ”
Ziel“

2. Wähle eine Regel ρ aus Π. Sei φ :- ψ1, . . . , ψn die Form von ρ.
% Fakten fassen wir als Regeln ohne Rumpf auf

3. Sei U eine Umbennung für Var(ρ), so dass Var(ρU) ∩ Var(α) = ∅.

4. Wähle eine Substitution T , so dass αiT = φUT . Wenn dies nicht
möglich ist, gib

”
gescheitert“ aus und halte an.

5. Wenn m = 1 und n = 0, gib T |Var(α) aus und halte an.

6. Setze α′ := α1T, . . . , αi−1T, ψ1UT, . . . , ψnUT, αi+1T, . . . , αmT .

7. Setze T ′ := Antwort(Π, α′)

8. Wenn T ′ eine Substitution ist, gib (TT ′)|Var(α) aus und halte an.

9. Gib
”
gescheitert“ aus und halte an.

Folie 407

Zum Nichtdeterminismus des Interpreters

• Das Programm Antwort ist nichtdeterministisch. Wir sprechen von
verschiedenen Läufen des Programms, die durch die Auswahlen in den
Zeilen 1–4 bestimmt sind.

• Ein Lauf heißt akzeptierend, wenn die Ausgabe eine Substitution ist.

Version vom 16. Oktober 2023 Seite 260

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

• Von den nichtdeterministischen Auswahlschritten in den Zeilen 1–4 ist
die Wahl der Substitution in Zeile 4 am problematischsten, weil hier
ein Element einer unendlichen Menge ausgewählt wird, und weil nicht
klar ist, wie man so ein Element überhaupt finden kann.

• Die Wahl der Umbennung in Zeile 3 hingegen ist unwesentlich. Jede
Umbennung U , für die Var(ρU) ∩ Var(α) = ∅ gilt, führt zum gleichen
Ergebnis, und es ist leicht, eine solche Umbennung zu finden.

Folie 408

Korrektheit und Vollständigkeit des Interpreters

Satz 5.20. Seien Π ∈ LP ein Logikprogramm, sei ?-α ∈ FLP eine Anfrage
mit α = α1, . . . , αm, und sei S eine Substitution für Var(α). Dann sind
folgende Aussagen äquivalent:

(a) Die Terme α1S, . . . , αmS sind aus Π ableitbar.

(b) Es gibt einen Lauf von Antwort(Π, α), der S ausgibt.

Die Richtung
”
(b) =⇒ (a)“ wird Korrektheit des Interpreters genannt; die

Richtung
”
(a) =⇒ (b)“ Vollständigkeit.

Für den Spezialfall, dass m = 1 und α ein Grundterm ist, erhalten wir das
folgende Korollar.

Korollar 5.21.
Sei Π ∈ LP ein Programm und sei α ein Grundterm. Dann gilt:
α ∈ B(Π) ⇐⇒ es gibt einen akzeptierenden Lauf von Antwort(Π, α).

Beweis von Satz 5.20.

(a) =⇒ (b): Wir nutzen folgende Sprechweise:

Eine Ableitung der Länge ℓ von αS aus Π ist eine Ableitung
(t1, . . . , tℓ) aus Π, so dass es für jedes i ∈ [m] ein j ∈ [ℓ] mit
tj = αiS gibt.

Version vom 16. Oktober 2023 Seite 261

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Wir führen den Beweis, indem wir per Induktion nach ℓ beweisen, dass für
jedes ℓ ∈ N mit ℓ ⩾ 1, für jedes α ∈ FLP und jede Substitution S für α gilt:
Falls es eine Ableitung (t1, . . . , tℓ) von αS aus Π gibt, dann gibt es einen
Lauf von Antwort(Π, α), der S ausgibt.

Induktionsanfang ℓ = 1:
Sei (t1) eine Ableitung von αS aus Π. Daher ist t1 = α1S, und es gilt
αjS = α1S für alle j ∈ [m]. Da (t1) = (α1S) eine Ableitung von α1S
aus Π ist, muss α1S eine Instanz eines Faktums aus Π sein. Sei φ
solch ein Faktum und sei S ′ eine Substitution mit Def(S ′) = Var(φ),
so dass φS ′ = α1S.

Sei U eine Umbennung für Var(φ), so dass

Var(φU) ∩
(
Var(α1)︸ ︷︷ ︸
=Def(S)

∪ Var(α1S)
)

= ∅, (5.1)

und sei S ′′ die Substitution mit Def(S ′′) = Var(φU) und
XS ′′ = XU−1S ′ für alle X ∈ Var(φU).

Insbesondere gilt:

φUS ′′ = φS ′ = α1S. (5.2)

Setze nun
T := SS ′′. (5.3)

Dann gilt φUT = α1S, denn:

• φUS = φU , da wegen (5.1) gilt: Var(φU) ∩Def(S) = ∅.

• φUT = φUSS ′′ = φUS ′′ (5.2)
= α1S.

Außerdem gilt: T |Var(α1) = S (und daher insbes. α1T = α1S), denn:

• T = SS ′′. Somit gilt für alle X ∈ Var(α1) = Def(S), dass
XT = XSS ′′, wobei XS ∈ Var(α1S).

• Gemäß (5.1) sind Var(α1S) und Var(φU) = Def(S ′′) disjunkt.
Daher ist XT = XS für alle X ∈ Def(S).

Insgesamt folgt also: Der Lauf von Antwort(Π, α), in dem

• in Zeile 1 die Zahl 1 ∈ [m],

• in Zeile 2 das Faktum φ,

• in Zeile 3 die Umbennung U und

Version vom 16. Oktober 2023 Seite 262

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

• in Zeile 4 die Substitution T

gewählt wird,

• hält in Zeile 5 mit Ausgabe S an.

Dies beendet den Induktionsanfang.

Induktionsschritt ℓ→ ℓ+1:
Sei (t1, . . . , tℓ+1) eine Ableitung von αS aus Π. Falls tℓ+1 ̸= αi für alle
i ∈ [m], so ist auch (t1, . . . , tℓ) eine Ableitung von αS aus Π, und
gemäß Induktionsannahme gibt es einen Lauf von Antwort(Π, α),
der S ausgibt.

Wir müssen im Folgenden also nur noch den Fall betrachten, dass
tℓ+1 = αiS für ein i ∈ [m] ist. Seien

• ρ := φ :- ψ1, . . . , ψn eine Regel von Π,

• S ′ eine Substitution für φ so dass φS ′ = αiS, und

• j1, . . . , jn ∈ [ℓ], so dass für jedes k ∈ [n] gilt: ψkS
′ = tjk .

Sei U eine Umbennung für Var(ρ), so dass

Var(ρU) ∩
(
Var(α)︸ ︷︷ ︸
=Def(S)

∪ Var(αS)
)

= ∅, (5.4)

und sei S ′′ die Substitution mit Def(S ′′) = Var(ρU) und
XS ′′ = XU−1S ′ für alle X ∈ Var(ρU). Insbesondere gilt:

φUS ′′ = φS ′ = αiS, (5.5)

und für alle k ∈ [n] gilt:

ψkUS
′′ = ψkS

′ = tjk . (5.6)

Setze nun
T := SS ′′.

Dann gilt φUT = αiS, denn:

• φUS = φU , da wegen (5.4) gilt: Var(φU) ∩Def(S) = ∅.

• φUT = φUSS ′′ = φUS ′′ (5.5)
= αiS.

Analog erhalten wir, dass ψkUT = tjk für alle k ∈ [n], denn

Version vom 16. Oktober 2023 Seite 263

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

• ψkUS = ψkU , da wegen (5.4) gilt: Var(ψkU) ∩Def(S) = ∅.

• ψkUT = ψkUSS
′′ = ψkUS

′′ (5.6)
= tjk .

Außerdem gilt: T |Var(α) = S (und daher insbes. αjT = αjS für alle
j ∈ [m]), denn:

• T = SS ′′. Somit gilt für alle X ∈ Var(α) = Def(S), dass
XT = XSS ′′, wobei XS ∈ Var(αS).

• Gemäß (5.4) sind Var(αS) und Var(φU) = Def(S ′′) disjunkt.
Daher ist XT = XS für alle X ∈ Def(S).

Betrachten wir den Lauf von Antwort(Π, α), in dem in Zeile 1 die
Zahl i ∈ [m], in Zeile 2 die Regel ρ, in Zeile 3 die Umbennung U und
in Zeile 4 die Substitution T gewählt wird. Dann ist in Zeile 6

α′ = α1T, . . . , αi−1T, ψ1UT, . . . , ψnUT, αi+1T, . . . , αmT

= α1S, . . . , αi−1S, tj1 , . . . , tjn , αi+1S, . . . , αmS.

Also ist (t1, . . . , tℓ) eine Ableitung von α′ aus Π. Gemäß
Induktionsannahme (für α′ und I an Stelle von α und S) existiert ein
Lauf von Antwort(Π, α′) mit Ausgabe T ′ := I (zur Erinnerung: I
bezeichnet die Substitution mit XI = X für alle Variablen X). Somit
gibt es einen Lauf von Antwort(Π, α) mit Ausgabe
(TT ′)|Var(α) = (TI)|Var(α) = T |Var(α) = S.

(b) =⇒ (a): Wir führen den Beweis per Induktion nach der Rekursionstiefe
t des Laufs von Antwort(Π, α) mit Ausgabe S.

Induktionsanfang t = 0:
Wir betrachten einen Lauf von Antwort(Π, α) mit Ausgabe S der
Rekursionstiefe 0, also ohne rekursiven Aufruf von Antwort. Dieser
Lauf muss in Zeile 5 anhalten. Es gilt also m = 1, und es gibt ein
Faktum φ in Π, eine Substitution T , und eine Umbennung U für
Var(φ) mit Var(φU) ∩ Var(α1) = ∅, so dass α1T = φUT und
T |Var(α1) = S. Dann ist α1S = α1T = φUT eine Substitutionsinstanz
von φ. Somit ist (α1S) eine Ableitung von α1S aus Π.

Induktionsschritt t→ t+1:
Wir betrachten einen Lauf von Antwort(Π, α) mit Ausgabe S der
Rekursionstiefe t+1. Seien

(1) i ∈ [m],

Version vom 16. Oktober 2023 Seite 264

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

(2) ρ = φ :- ψ1, . . . , ψn,

(3) U ,

(4) T

die Auswahlen in den Zeilen 1–4. Dann gilt αiT = φUT . Weil t+1 > 0
ist, hält der Lauf nicht in Zeile 5, sondern in Zeile 8.

Sei α′ wie in Zeile 6 definiert, d.h.

α′ = α1T, . . . , αi−1T, ψ1UT, . . . , ψnUT, αi+1T, . . . , αmT.

Seien m′ := m−1+n und α′
1, . . . , α

′
m′ ∈ TLP, so dass

α′ = α′
1, . . . , α

′
m′ .

Sei T ′ die Substitution, die der rekursive Aufruf von Antwort(Π, α′)
in Zeile 7 ausgibt. Dann gilt S = (TT ′)|Var(α).
Nach Induktionsannahme existiert für jedes j ∈ [m′] eine Ableitung
von α′

jT
′ aus Π. Sei (tj1, . . . , t

j
ℓj
) eine solche Ableitung. Dann gilt:

• Für jedes j ∈ {1, . . . , i−1} ist (tj1, . . . , t
j
ℓj
) eine Ableitung von

α′
jT

′ = αjTT
′ = αjS aus Π.

• Für jedes j ∈ {i+1, . . . ,m} ist (tn+j1 , . . . , tn+jℓn+j
) eine Ableitung

von α′
n+jT

′ = αjTT
′ = αjS aus Π.

• Für jedes k ∈ [n] ist (ti−1+k
1 , . . . , ti−1+k

ℓi−1+k
) eine Ableitung von

α′
i−1+kT

′ = ψkUTT
′ aus Π. Somit ist((

ti−1+k
1 , . . . , ti−1+k

ℓi−1+k

)
k=1,..,n

, φUTT ′
)

eine Ableitung von φUTT ′ = αiTT
′ = αiS aus Π.

Also sind α1S, . . . , αmS ableitbar aus Π.

Folie 409

Nächstes Ziel: Auflösen des Nichtdeterminismus in Zeile 4

Als ein Hauptproblem des nichtdeterministischen Interpreters Antwort
haben wir die Wahl der Substitution T in Zeile 4 identifiziert.

Mit Hilfe der im Folgenden vorgestellten Unifikatoren können die richtigen
Substitutionen auf deterministische Art gefunden werden.

Folie 410

Version vom 16. Oktober 2023 Seite 265

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Unifikation

Definition 5.22. Seien t, s ∈ TLP Terme der Logik-Programmierung.

(a) Ein Unifikator für t und s ist eine Substitution S, so dass tS = sS.

(b) t und s sind unifizierbar, wenn es einen Unifikator für t und s gibt.

Beispiel 5.23.
t := mal(s(X), Y, s(Z)) und s := mal(s(s(null)), Y, Y) sind
unifizierbar.
Ein Unifikator ist

S :=
{
X 7→ s(null), Y 7→ s(Z)

}
.

Die entstehende gemeinsame Instanz ist
tS = mal(s(s(null)), s(Z), s(Z)) = sS.

Ein weiterer Unifikator für t und s ist

S ′ :=
{
X 7→ s(null), Y 7→ s(null), Z 7→ null

}
.

Die entstehende gemeinsame Instanz ist
tS ′ = mal(s(s(null)), s(null), s(null)) = sS ′.

Beispiele.

(a) t := f(X,g(Y,Z)) und s := f(h(Z),W) sind unifizierbar.

Ein Unifikator ist beispielsweise

S1 :=
{
X 7→ h(Z), W 7→ g(Y,Z) }.

Die entstehende gemeinsame Instanz ist

tS1 = f(h(Z),g(Y,Z)) = sS1.

Ein Beispiel für einen weiteren Unifikator für t und s ist

S2 :=
{
X 7→ h(f(c,d)), Y 7→ c, Z 7→ f(c,d), W 7→ g(c,f(c,d)) }.

Die entstehende gemeinsame Instanz ist

tS2 = f(h(f(c,d)),g(c,f(c,d))) = sS2.

Version vom 16. Oktober 2023 Seite 266

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

(b) t := f(X,Y) und s := g(X,Y) sind nicht unifizierbar.

(c) t := f(X,Y) und s := f(X) sind nicht unifizierbar.

(d) t := f(c,X) und s := f(d,X) sind nicht unifizierbar.

(e) t := X und s := f(X,X) sind nicht unifizierbar.

(f) t := X und s := f(Y,Y) sind unifizierbar.
Ein Unifikator ist z.B. { X 7→ f(Y,Y) }.
Ein weiterer Unifikator ist { X 7→ f(g(c,c),g(c,c)), Y 7→ g(c,c) }.

Folie 411

Eine Ordnung auf den Substitutionen

Definition 5.24.
Zwei Substitutionen S und T sind äquivalent (kurz: S ≡ T), wenn für alle
Variablen X ∈ VLP gilt: XS = XT .

Beobachtung:
S und T sind genau dann äquivalent, wenn XS = XT für alle
X ∈ Def(S) ∩Def(T) und XS = X für alle X ∈ Def(S) \Def(T) und XT = X

für alle X ∈ Def(T) \Def(S).

Definition 5.25.
Seien S und T Substitutionen. S ist allgemeiner als T (wir schreiben
S ≦ T), wenn es eine Substitution S ′ gibt, so dass SS ′ ≡ T .

Beobachtung:
I ist eine allgemeinste Substitution, d.h. für jede Substitution T gilt
I ≦ T .

Folie 412

Allgemeinste Unifikatoren
(kurz: mgu, für

”
most general unifier“)

Definition 5.26.
Seien t, s ∈ TLP. Ein allgemeinster Unifikator für t und s ist ein Unifikator
S für t und s, so dass gilt: S ≦ T für alle Unifikatoren T für t und s.

Das folgende Lemma besagt, dass allgemeinste Unifikatoren bis auf
Umbenennung von Variablen eindeutig sind.

Version vom 16. Oktober 2023 Seite 267

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Lemma 5.27.
Seien t, s ∈ TLP, und seien S, T allgemeinste Unifikatoren für t und s.
Dann gibt es eine Umbennenung U , so dass SU ≡ T .

Beweis. Es gilt S ≦ T und T ≦ S. Daher gibt es Substitutionen S ′, T ′, so
dass SS ′ ≡ T und TT ′ ≡ S. Es gilt:

S(S ′T ′) ≡ (SS ′)T ′ ≡ TT ′ ≡ S. (5.7)

Für alle X ∈ VLP \Def(S) gilt XS = X; und wegen S(S ′T ′) ≡ S gilt
XS ′T ′ = XS = X. Daher muss insbesondere XS ′ ∈ VLP sein.

Außerdem gilt für alle X ∈ Def(S), dass XSS ′T ′ = XS, und daher muss für
alle Variablen Y ∈ Var(XS) gelten: YS ′T ′ = Y. Daher muss insbesondere
YS ′ ∈ VLP sein.

Insgesamt gilt also für alle Variablen Z ∈
(
VLP \Def(S)

)
∪B, für

B :=
⋃

X∈Def(S)

Var(XS),

dass ZS ′ ∈ VLP und ZS ′T ′ = Z. Somit ist

U := S ′|D mit D :=
(
VLP \Def(S)

)
∪B

eine Umbenennung (d.h. eine injektive partielle Abbildung von VLP nach
VLP).
Wegen SS ′ ≡ T gilt außerdem für alle X ∈ VLP:

XT = X(SS ′) = (XS)S ′ = (XS)U = X(SU).

Somit ist T ≡ SU .

Folie 413

Ein Unifikationsalgorithmus

Algorithmus MGU(t, s)

% Eingabe: zwei Terme t, s ∈ TLP.

% Ausgabe: eine Substitution S oder die Worte
”
nicht unifizierbar“

1. Wenn t = s, dann gib I aus und halte an.

2. Wenn t = X ∈ VLP

Version vom 16. Oktober 2023 Seite 268

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

3. Wenn X ∈ Var(s), dann gib
”
nicht unifizierbar“ aus und halte an.

4. Gib {X 7→ s} aus und halte an.

5. Wenn s = X ∈ VLP

6. Wenn X ∈ Var(t) dann gib
”
nicht unifizierbar“ aus und halte an.

7. Gib {X 7→ t} aus und halte an.

8. Wenn t = f(t1, . . . , tk) und s = f(s1, . . . , sk)
für ein Atom f ∈ ALP und eine Stelligkeit k ∈ N mit k ⩾ 1

9. Setze S1 := I.

10. Für i = 1, . . . , k tue Folgendes:

11. Setze Ti := MGU(tiSi, siSi).

12. Wenn Ti = ”
nicht unifizierbar“ dann gib

”
nicht unifizierbar“

aus und halte an.

13. Setze Si+1 := SiTi.

14. Gib Sk+1 aus und halte an.

15. Gib
”
nicht unifizierbar“ aus und halte an.

Folie 414

Korrektheit des Unifikationsalgorithmus

Satz 5.28. Für alle Terme t, s ∈ TLP gilt:

(a) Sind t und s unifizierbar, so gibt MGU(t, s) einen allgemeinsten
Unifikator für t und s aus.

(b) Sind t und s nicht unifizierbar, so gibt MGU(t, s) die Worte
”
nicht

unifizierbar“ aus.

(Hier ohne Beweis)

Korollar 5.29. Sind zwei Terme unifizierbar, so gibt es für diese Terme
einen allgemeinsten Unifikator.

Folie 415

Beispiele 5.30.

Version vom 16. Oktober 2023 Seite 269

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

(a) Ein allgemeinster Unifikator für

t := g(f(X,Y),f(V,W)) und s := g(V,f(Z,g(X,Y)))

ist

S := { V 7→ f(X,Y), Z 7→ f(X,Y), W 7→ g(X,Y) }
= { V 7→ f(X,Y) } { Z 7→ f(X,Y) } { W 7→ g(X,Y) },

und es gilt tS = sS = g(f(X,Y),f(f(X,Y),g(X,Y))).

(b) g(f(X,Y),Y) und g(c,Y) sind nicht unifizierbar.

(c) Seien n ⩾ 1 und seien X0, . . . , Xn ∈ VLP paarweise verschieden. Sei

tn := f(X1,X2...,Xn)

sn := f(g(X0,X0),g(X1,X1),...,g(Xn−1,Xn−1)) .

Dann sind tn und sn unifizierbar durch einen allgemeinsten Unifikator
S, für den gilt:

S(X1) = g(X0,X0)

S(X2) = g(S(X1),S(X1))
= g(g(X0,X0),g(X0,X0))

S(X3) = g(S(X2),S(X2))
= g(g(g(X0,X0),g(X0,X0)),g(g(X0,X0),g(X0,X0)))

usw.

Es gilt: Für jeden Unifikator T für tn und sn ist der Term T (Xn)
exponentiell groß in n, und jede gemeinsame Instanz von tn und sn ist
exponentiell lang in n.

Folie 416

Auflösen des Nichtdeterminismus in Zeile 4

Wir können nun den Nichtdeterminismus in Zeile 4 unseres einfachen
Interpreters für Logikprogramme, Antwort(Π, α), auflösen, indem wir als
Substitution T einen allgemeinsten Unifikator von αi und φU wählen, und
zwar den allgemeinsten Unifikator, der vom Algorithmus MGU(αi, φU)
ausgegeben wird.

Dadurch erhalten wir den folgenden Algorithmus UAntwort(Π, α).

Folie 417

Version vom 16. Oktober 2023 Seite 270

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Interpreter für Logikprogramme mit allgemeinsten Unifikatoren

Algorithmus UAntwort(Π, α)

% Eingabe: Programm Π ∈ LP, Anfrage ?-α ∈ FLP mit α = α1, . . . , αm

% Ausgabe: eine Substitution S̃ für Var(α) oder das Wort
”
gescheitert“.

1. Wähle ein i ∈ [m] % αi ist das nächste ”
Ziel“

2. Wähle eine Regel ρ aus Π. Sei φ :- ψ1, . . . , ψn die Form von ρ.
% Fakten fassen wir als Regeln ohne Rumpf auf

3. Sei U eine Umbennung für Var(ρ), so dass Var(ρU) ∩ Var(α) = ∅.

4. Setze T̃ := MGU(αi, φU)
% T̃ soll ein allgemeinster Unifikator von αi und φU sein

5. Wenn T̃ =
”
nicht unifizierbar“, gib

”
gescheitert“ aus und halte an.

6. Wenn m = 1 und n = 0, gib T̃ |Var(α) aus und halte an.

7. Setze α̃′ := α1T̃ , . . . , αi−1T̃ , ψ1UT̃ , . . . , ψnUT̃ , αi+1T̃ , . . . , αmT̃ .

8. Setze T̃ ′ := UAntwort(Π, α̃′)

9. Wenn T̃ ′ eine Substitution ist, gib (T̃ T̃ ′)|Var(α) aus und halte an.

10. Gib
”
gescheitert“ aus und halte an.

Folie 418

Korrektheit und Vollständigkeit des Interpreters

Satz 5.31. Sei Π ∈ LP ein Logikprogramm, sei ?- α ∈ FLP eine Anfrage
mit α = α1, . . . , αm, und sei S eine Substitution für Var(α). Dann sind
folgende Aussagen äquivalent:

(a) Die Terme α1S, . . . , αmS sind aus Π ableitbar.

(b) Es gibt einen Lauf von UAntwort(Π, α), der eine Substitution S̃ für
Var(α) mit S̃ ≦ S ausgibt.

Korollar 5.32.
Sei Π ∈ LP ein Logikprogramm und sei α ein Grundterm. Dann gilt:
α ∈ B(Π) ⇐⇒ es gibt einen akzeptierenden Lauf von UAntwort(Π, α).

Version vom 16. Oktober 2023 Seite 271

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Für den Beweis der Richtung
”
(a) =⇒ (b)“ von Satz 5.31 verwenden wir:

Lemma 5.33. Sei Π ∈ LP und sei ?- α ∈ FLP mit α = α1, . . . , αm ∈ FLP,
und sei S ′ eine Substitution für α. Dann gibt es zu jedem Lauf von
Antwort(Π, αS ′), der eine Substitution S ausgibt, einen Lauf von
UAntwort(Π, α), der eine Substitution S̃ mit S̃ ≦ S ′S ausgibt.

Beweis von Satz 5.31 unter Verwendung von Lemma 5.33.

(a) =⇒ (b):
Seien α1S, . . . , αmS aus Π ableitbar. Dann gibt es gemäß Satz 5.20 einen
Lauf L von Antwort(Π, α), der S ausgibt. Gemäß Lemma 5.33 (für
S ′ := I) gibt es dann auch einen Lauf L̃ von UAntwort(Π, α), der eine
Substitution S̃ ≦ S ausgibt.

(b) =⇒ (a):
Sei L̃ ein Lauf von UAntwort(Π, α), der eine Substitution S̃ für α mit
S̃ ≦ S ausgibt. Gemäß der Konstruktion der Algorithmen UAntwort und
Antwort gibt es dann auch einen Lauf von Antwort(Π, α), der S̃
ausgibt. Aus Satz 5.20 folgt, dass die Terme α1S̃, . . . , αmS̃ aus Π ableitbar
sind.
Für jedes i ∈ [m] sei (ti1, . . . , t

i
ℓi
) eine Ableitung von αiS̃ aus Π.

Wegen S̃ ≦ S gibt es eine Substitution S ′, so dass S̃S ′ ≡ S. Dann ist
(ti1S

′, . . . , tiℓiS
′) eine Ableitung von αiS̃S

′ = αiS aus Π.

Beweis von Lemma 5.33.
Sei L ein Lauf von Antwort(Π, αS ′), der S ausgibt. Wir zeigen per
Induktion nach der Rekursionstiefe t von L, dass es einen Lauf L̃ von
UAntwort(Π, α) gibt, der eine Substitution S̃ mit S̃ ≦ S ′S ausgibt.

Induktionsanfang t = 0:
Der Lauf L muss in Zeile 5 akzeptieren. Es gilt also m = 1, und es
gibt ein Faktum φ in Π, eine Substitution T , und eine Umbennung U
für Var(φ) mit Var(φU) ∩ Var(α1S

′) = ∅, so dass α1S
′T = φUT und

T |Var(α1S′) = S. O.B.d.A. können wir zusätzlich annehmen, dass
Var(φU) ∩Def(S ′) = ∅ (sonst verwenden wir eine andere
Umbenennung und modifizieren T entsprechend). Dann gilt
φUS ′ = φU , und somit ist S ′T ein Unifikator von α1 und φU .

Version vom 16. Oktober 2023 Seite 272

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Sei T̃ der von MGU(α1, φU) berechnete allgemeinste Unifikator für
α1 und φU . Dann gilt T̃ ≦ S ′T . Also gilt auch
T̃ |Var(α) ≦ (S ′T)|Var(α) = S ′S.

Sei nun L̃ der Lauf von UAntwort(Π, α), der in Zeile 1 die Zahl 1,
in Zeile 2 das Faktum φ und in Zeile 3 die Umbennenung U wählt.
Dann wird in Zeile 4 der allgemeinste Unifikator T̃ berechnet und in
Zeile 6 die Substitution S̃ := T̃ |Var(α) ausgegeben. Wir wissen bereits,

dass S̃ ≦ S ′S ist.

Induktionsschritt t→ t+1:
Der Lauf L muss in Zeile 8 akzeptieren. Seien i, ρ, U, T die in L in den
Zeilen 1–4 getroffenen Auswahlen. O.B.d.A. nehmen wir wieder an,
dass Var(ρU) ∩Def(S ′) = ∅. Dann gilt ρU = ρUS ′ und
αiS

′T = φUT = φUS ′T . Somit ist S ′T ein Unifikator für αi und φU .

Sei T̃ der von MGU(αi, φU) berechnete allgemeinste Unifikator für αi
und φU . Dann gilt T̃ ≦ S ′T . Seien

α′ := α1S
′T, . . . , αi−1S

′T, ψ1UT, . . . , ψnUT, αi+1S
′T, . . . , αmS

′T,

α̃′ := α1T̃ , . . . , αi−1T̃ , ψ1UT̃ , . . . , ψnUT̃ , αi+1T̃ , . . . , αmT̃ .

Wegen T̃ ≦ S ′T gibt es eine Substitution S1, so dass

T̃ S1 ≡ S ′T. (5.8)

Dann gilt α′ = α̃′S1.

Weil der Lauf L in Zeile 8 akzeptiert, gibt es einen akzeptierenden
Lauf L′ von Antwort(Π, α′) der Rekursionstiefe t, der eine
Substitution T ′ ausgibt. Der Lauf L gibt in Zeile 8 die Substitution

S = (TT ′)|Var(αS′) (5.9)

aus.

Gemäß Induktionsannahme (für α̃′, S1, T
′ an Stelle von α, S ′, S und

wegen α′ = α̃′S1) gibt es einen Lauf L̃′ von UAntwort(Π, α̃′), der
eine Substitution T̃ ′ mit T̃ ′ ≦ S1T

′ ausgibt. Sei S2 eine Substitution
mit

T̃ ′S2 ≡ S1T
′. (5.10)

Sei L̃ der Lauf von UAntwort(Π, α), der in den Zeilen 1–3 die Zahl
i ∈ [m], die Regel ρ und die Umbennung U wählt. Dann wird in den

Version vom 16. Oktober 2023 Seite 273

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Zeilen 4 und 7 der allgemeinste Unifikator T̃ und die Anfrage α̃′

berechnet. Durchführen des Laufs L̃′ liefert dann in Zeile 8 die
Substitution T̃ ′. In Zeile 9 wird dann die Substitution

S̃ := (T̃ T̃ ′)|Var(α) (5.11)

ausgegeben.

Es bleibt noch zu zeigen, dass S̃ ≦ S ′S ist.
Eingeschränkt auf Var(αS ′) bzw. Var(α) wissen wir, dass gilt:

S ′S
(5.9)
≡ S ′(TT ′) = (S ′T)T ′

(5.8)
≡ (T̃ S1)T

′ = T̃ (S1T
′)

(5.10)
≡ T̃ (T̃ ′S2) = (T̃ T̃ ′)S2

(5.11)
≡ S̃S2.

Somit ist S̃ ≦ S ′S.

Folie 419

Bemerkungen

• Indem wir das nichtdeterministische Auswählen einer Substitution im
Algorithmus Antwort im Algorithmus UAntwort durch das
deterministische Berechnen eines allgemeinsten Unifikators ersetzt
haben, sind wir einen entscheidenden Schritt in Richtung

”
praktische

Ausführbarkeit“ gegangen.

• Es bleiben aber immer noch die nichtdeterministischen
Auswahlschritte eines Ziels in Zeile 1 und einer Regel in Zeile 2. Diese
müssen bei einer praktischen Implementierung durch eine
systematische Suche durch alle Möglichkeiten ersetzt werden.

(Die Wahl der Umbennenung in Zeile 3 unproblematisch.)

• Verschiedene logische Programmiersprachen unterscheiden sich in den
verwendeten Suchstrategien.

• Prolog verwendet Tiefensuche.

Version vom 16. Oktober 2023 Seite 274

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

5.4 Logik-Programmierung und Prolog

Folie 420

Reines Prolog

Reines Prolog ist das Fragment der Programmiersprache Prolog, dessen
Programme gerade die Logikprogramme in LP sind.
Insbesondere enthält reines Prolog keine speziellen Prolog-Operatoren wie
Cut

”
!“, arithmetische Prädikate oder Ein-/Ausgabe-Prädikate (d.h.

Prädikate mit Seiteneffekten).

Die Semantik von reinem Prolog stimmt nicht mit der deklarativen
Semantik der Logik-Programmierung überein.
Die erste vom Prolog-Interpreter ausgegebene Antwort wird gemäß dem
folgenden Interpreter PErsteAntwort ermittelt.

Folie 421

Ein Prolog-Interpreter

Algorithmus PErsteAntwort(Π, α)

% Eingabe: Programm Π ∈ LP, Anfrage ?- α ∈ FLP mit α = α1, . . . , αm

% Ausgabe: eine Substitution S für Var(α) oder das Wort
”
false“

1. Betrachte alle Regeln ρ in Π in der Reihenfolge ihres Vorkommens in
Π und tue Folgendes: % Fakten fassen wir als Regeln ohne Rumpf auf

2. Sei φ :- ψ1, . . . , ψn die Form von ρ

3. Sei U eine Umbennung für Var(ρ), so dass Var(ρU) ∩ Var(α) = ∅

4. Setze T := MGU(α1, φU)

5. Wenn T eine Substitution ist

6. Wenn m = 1 und n = 0, gib T |Var(α) aus und halte an

7. Setze α′ := ψ1UT, . . . , ψnUT, α2T, . . . , αmT

8. Setze T ′ := PErsteAntwort(Π, α′)

9. Wenn T ′ eine Substitution ist, gib (TT ′)|Var(α) aus und halte an

10. Gib
”
false“ aus und halte an

Folie 422

Version vom 16. Oktober 2023 Seite 275

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Vergleich zur deklarativen Semantik

PErsteAntwort(Π, α) gibt höchstens eine Substitution aus, kann u.U.
aber auch in eine Endlosschleife gelangen und nicht terminieren.

Der folgende Satz besagt, dass im Falle der Terminierung die ausgegebene
Antwort korrekt ist.

Satz 5.34. Sei Π ∈ LP ein Logikprogramm und sei ?- α ∈ FLP mit
α = α1, . . . , αm eine Anfrage. Dann gilt:

(a) Wenn PErsteAntwort(Π, α) eine Substitution S ausgibt, dann sind
die Terme α1S, . . . , αmS aus Π ableitbar.

(b) Wenn PErsteAntwort(Π, α) das Wort
”
false“ ausgibt, dann gibt es

keine Substitution S, so dass die Terme α1S, . . . , αmS aus Π ableitbar
sind.

(Hier ohne Beweis)

Folie 423

Terminierung

Intuitiv besagt Satz 5.34, dass im Falle der Terminierung die vom
Prolog-Interpreter bei Eingabe eines Logikprogramms Π und einer Anfrage
?- α gegebene erste Antwort korrekt ist.

Möglicherweise hält der Prolog-Interpreter aber gar nicht an, obwohl es laut
Definition der deklarativen Semantik korrekte Antworten gibt.

Es ist Aufgabe des Programmierers, dies zu verhindern!

Typische Probleme dabei sind Dummheit und linksrekursive Regeln.

Beispiel: vorfahre(X,Y) :- vorfahre(X,Z), elternteil(Z,Y)

Folie 424

Unterschied zwischen Theorie und Praxis

Beispiel 5.35.
Die folgenden Logikprogramme myplus1.pl, myplus2.pl, myplus3.pl
haben die gleiche Bedeutung hinsichtlich der deklarativen Semantik im
folgenden Sinne:

Version vom 16. Oktober 2023 Seite 276

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Aus allen drei Programmen können genau dieselben Grundterme der Form
myplus(...) abgeleitet werden.

Alle drei Programme erzeugen jedoch unterschiedliche Ausgaben in Prolog.

Folie 425

Programm: myplus1.pl

myplus(X,Y,Z) :- myplus(Y,X,Z).

myplus(0,X,X).

myplus(1,1,2). myplus(1,2,3). myplus(1,3,4).

myplus(2,2,4). myplus(2,3,5).

myplus(3,3,6).

Programm: myplus2.pl

myplus(0,X,X).

myplus(1,1,2). myplus(1,2,3). myplus(1,3,4).

myplus(2,2,4). myplus(2,3,5).

myplus(3,3,6).

myplus(X,Y,Z) :- myplus(Y,X,Z).

Programm: myplus3.pl

myplusH(0,X,X).

myplusH(1,1,2). myplusH(1,2,3). myplusH(1,3,4).

myplusH(2,2,4). myplusH(2,3,5).

myplusH(3,3,6).

myplus(X,Y,Z) :- myplusH(X,Y,Z).

myplus(X,Y,Z) :- myplusH(Y,X,Z).

Folie 426

Aus Sicht des Prolog-Interpreters (und des Interpreters PErsteAntwort)
ist das Programm myplus1.pl idiotisch und liefert auf keine Anfrage der
Form

”
myplus(...)“ eine Antwort, da die Auswertung des Programms

stets mit der ersten Regel in eine Endlosschleife gerät.

Das Programm myplus2.pl ist besser, hält aber auch bei
”
falschen“

Anfragen wie z.B.
”
myplus(1,1,3)“ nicht an, da die Auswertung des

Programms dann mit der letzten Regel in eine Endlosschleife gerät.

Das Programm myplus3.pl leistet das, was es soll.

Folie 427

Version vom 16. Oktober 2023 Seite 277

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

Beweisbäume vs. Suchbäume

Beweisbäume
sind in Definition 5.14 definiert. Ein Beweisbaum ist eine graphische
Darstellung einer Ableitung eines Terms t ∈ TLP aus einem Logikprogramm
Π ∈ LP.

Somit stellt ein Beweisbaum eine einzelne Ableitung dar. Diese entspricht
einem erfolgreichen Lauf unseres nichtdeterministischen Interpreters
Antwort.

Suchbäume
stellen die vollständige Suche des Prolog-Interpreters bei Eingabe eines
Logikprogramms Π und einer Anfrage ?- α dar. Insbesondere enthält der
Suchbaum Informationen über alle erfolgreichen Läufe des
nichtdeterministischen Interpreters Antwort.

Folie 428

Unifikation in Prolog

In Prolog testet der Ausdruck t = s nicht, ob die Terme t und s gleich
sind, sondern ob sie unifizierbar sind.

Der in den meisten Prologimplementierungen verwendete
Unifikationsalgorithmus testet aus Effizienzgründen bei der Unifikation
einer Variablen X mit einem Term t nicht, ob X in t vorkommt.

Diesen Test bezeichnet man als Occurs-Check, er findet in den Zeilen 3 und
6 unseres Unifikationsalgorithmus MGU statt.

In Prolog ist es eine Aufgabe des Programmierers, sicherzustellen, dass
niemals eine Variable mit einem Term unifiziert wird, der diese Variable
enthält.

Version vom 16. Oktober 2023 Seite 278

Literaturverzeichnis

[BBS06] Patrick Blackburn, Johan Bos, and Kristina Striegnitz. Learn
PROLOG Now! Kings College Publications, 2006. Online Version:
http://www.learnprolognow.org/.

[Bur98] S. Burris. Logic for Mathematics and Computer Science. Prentice
Hall, 1998.

[Cam98] P. J. Cameron. Sets, Logic and Categories. Springer, 1998.

[Ebb03] Heinz-Dieter Ebbinghaus. Einführung in die Mengenlehre.
Spektrum Akademischer Verlag, 2003. 4. Auflage.

[EFT07] Heinz-Dieter Ebbinghaus, Jörg Flum, and Wolfgang Thomas.
Einführung in die Mathematische Logik. Spektrum Akademischer
Verlag, 2007. 5. Auflage.

[FG98] Jörg Flum and Martin Grohe. Parameterized Complexity Theory.
Springer, 1998.

[HR04] M. Huth and M. Ryan. Logic in Computer Science — Modelling
and Reasoning About Systems. Cambridge University Press, 2004.

[KK06] M. Kreuzer and S. Kühling. Logik für Informatiker. Pearson, 2006.

[Lib04] Leonid Libkin. Elements of Finite Model Theory. Springer, 2004.

Version vom 16. Oktober 2023 Seite 279

http://www.learnprolognow.org/

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik

[Sch00] Uwe Schöning. Logik für Informatiker. Spektrum Akademischer
Verlag, 2000. 5. Auflage.

[SS94] Ehud Shapiro and Leon Sterling. The Art of PROLOG: Advanced
Programming Techniques. MIT Press, 1994. 2. Auflage.

[vD04] D. van Dalen. Logic and Structure. Springer, 2004.

Version vom 16. Oktober 2023 Seite 280

	Einleitung
	Von der Bibel bis zu den Simpsons
	Logik in der Informatik
	Lernziele, Semesterausblick und Literatur

	Aussagenlogik
	Syntax und Semantik
	Aussagenlogische Modellierung
	Äquivalenz und Adäquatheit
	Normalformen
	Der Endlichkeitssatz
	Resolution
	Erfüllbarkeitsalgorithmen
	Hornformeln

	Logik erster Stufe
	Strukturen
	Terme der Logik erster Stufe
	Syntax der Logik erster Stufe
	Semantik der Logik erster Stufe
	Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen
	Logik und Datenbanken
	Äquivalenz von Formeln der Logik erster Stufe
	Ehrenfeucht-Fraïssé-Spiele
	Erfüllbarkeit, Allgemeingültigkeit und die Folgerungsbeziehung
	Normalformen

	Grundlagen des automatischen Schließens
	Kalküle und Ableitungen
	Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz
	Der Endlichkeitssatz
	Die Grenzen der Berechenbarkeit
	Der Satz von Herbrand
	Automatische Theorembeweiser

	Logik-Programmierung
	Einführung
	Syntax und deklarative Semantik von Logikprogrammen
	Operationelle Semantik
	Logik-Programmierung und Prolog

	Literaturverzeichnis

