Logik in der Informatik

Vorlesung im Wintersemester

Prof. Dr. Nicole Schweikardt

Lehrstuhl Logik in der Informatik
Institut fir Informatik
Humboldt-Universitat zu Berlin

Grofle Teile dieses Skripts basieren auf den Unterlagen zu der von
Prof. Dr. Martin Grohe im Wintersemester 2011/12 an der HU Berlin
gehaltenen Vorlesung ,,Logik in der Informatik®






Inhaltsverzeichnis

1 Einleitung

1.1
1.2
1.3

Von der Bibel bis zu den Simpsons . . . . . .. .. ... ...
Logik in der Informatik . . . . . . ... ... ...
Lernziele, Semesterausblick und Literatur . . . . . . .. .. ..

2 Aussagenlogik

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

Syntax und Semantik . . . . .. ..o 0L
Aussagenlogische Modellierung . . . . . . ... ... ... ...
Aquivalenz und Adéquatheit . . . . . .. .. ... ... ...
Normalformen . . . . . . . . .. . ... .. ... ...
Der Endlichkeitssatz . . . . ... ... ... ... ... ...
Resolution . . . . . . . . . .. .
Erfiillbarkeitsalgorithmen . . . . . . . . . ... ... ... ...
Hornformeln . . . . . . . . . ... ..

3 Logik erster Stufe

3.1
3.2
3.3
3.4
3.5

3.6

Strukturen . . . . ... oL
Terme der Logik erster Stufe . . . . . . ... .. ... ... ..
Syntax der Logik erster Stufe . . . . ... .. ... ... ...
Semantik der Logik erster Stufe . . . . ... ... ... .. ..
Beispiele fiir Formeln der Logik erster Stufe in verschiedenen

Anwendungsbereichen . . . ... ... .0,
Logik und Datenbanken . . . . . . . .. ... ... .. .. ..

Version vom 16. Oktober 2023 Seite 3



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

3.7 Aquivalenz von Formeln der Logik erster Stufe . . . . . . . .. 151
3.8 Ehrenfeucht-Fraissé-Spiele . . . . . . .. ... ... ... ... 154
3.9 Erfiillbarkeit, Allgemeingiiltigkeit und die Folgerungsbeziehung 173
3.10 Normalformen . . . . . . . . .. ... L 175
4 Grundlagen des automatischen Schlie3ens 181
4.1 Kalkiile und Ableitungen . . . . . . . ... ... 182
4.2 Ein Beweiskalkiil fiir die Logik erster Stufe — der Vollsténdig-
keitssatz . . . . . ..o 189
4.3 Der Endlichkeitssatz . . . . ... .. ... ... ... ... 207
4.4 Die Grenzen der Berechenbarkeit . . .. ... ... ... ... 214
4.5 Der Satz von Herbrand . . . . . . ... ... ... ... .... 225
4.6 Automatische Theorembeweiser . . . . . . .. ... ... ... 236
5 Logik-Programmierung 239
5.1 Einftthrung . . . . . . ... oo 239
5.2 Syntax und deklarative Semantik von Logikprogrammen . . . 242
5.3 Operationelle Semantik . . . . . ... ... ... ... ..... 257
5.4 Logik-Programmierung und Prolog . . . . .. . ... ... .. 275
Literaturverzeichnis 279

Version vom 16. Oktober 2023 Seite 4



Kapitel 1

Einleitung

1.1 Von der Bibel bis zu den Simpsons

Folie 1
Logik

e altgriechisch ,logos“: Vernunft
e die Lehre des verniinftigen Schlussfolgerns

e Teilgebiet u.a. der Disziplinen Philosophie, Mathematik und
Informatik

e zentrale Frage:
Wie kann man Aussagen miteinander verknipfen, und auf

welche Weise kann man formal Schliisse ziehen und
Beweise durchfiihren?

Folie 2
Das Liignerparadoxon von Epimenides
Brief des Paulus an Titus 1:12-13:

Es hat einer von ihnen gesagt, thr eigener Prophet:
Die Kreter sind immer Liigner, bose Tiere und faule Bauche.

Version vom 16. Oktober 2023 Seite 5



Folie 3

Folie 4

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Angenommen, die Aussage des Propheten ist wahr.

Da der Prophet selbst Kreter ist, liigt er also immer (und ist ein boses
Tier und ein fauler Bauch). Dann hat er aber insbesondere in dem
Satz ,Die Kreter sind immer Liigner, bose Tiere und faule Bduche*
gelogen. D.h. die Aussage des Propheten ist nicht wahr.

Dies ist ein Widerspruch!

Angenommen, die Aussage des Propheten ist falsch.

Dann gibt es Kreter, die nicht immer Liigner, bose Tiere und faule
Béauche sind. Dies stellt keinen Widerspruch dar.

Insgesamt wissen wir also, dass der Prophet in seiner obigen Aussage
nicht die Wahrheit gesagt hat.

Protagoras und sein Student Euthalus vor Gericht

e - B Protagoras (490 — 420 v.Chr.)
Quelle: http: //www greatthoughtstreasury.com/author/protagoras

Euthalus studierte die Kunst der Argumentation beim Meister
Protagoras, um Anwalt zu werden.

Er vereinbart mit Protagoras, die Gebiihren fiir den Unterricht
zu bezahlen, sobald er seinen ersten Prozess gewonnen hat.

Aber dann zégert FEuthalus seine Anwaltstdtigkeit immer weiter
hinaus, und schlief$lich beschliefst Protagoras, seine Gebiihren
emnzuklagen.

Euthalus verteidigt sich selbst . . .

Protagoras denkt:

Wenn ich den Prozess gewinne, muss Euthalus geméafl
Gerichtsbeschluss zahlen.

Wenn ich den Prozess verliere, muss Euthalus geméaf unserer
Vereinbarung zahlen, da er dann seinen ersten Prozess gewonnen hat.

Version vom 16. Oktober 2023 Seite 6


http://www.greatthoughtstreasury.com/author/protagoras

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Euthalus denkt:
Wenn ich den Prozess gewinne, muss ich gem&fl Gerichtsbeschluss
nicht zahlen.
Wenn ich den Prozess verliere, muss ich geméfl unserer Vereinbarung
nicht zahlen.

Folie 5

Achilles und die Schildkrote

Achilles und die Schildkrite laufen ein Wettrennen. Achilles
gewdhrt der Schildkréte einen Vorsprung. Zenon behauptet, dass
Achilles die Schildkrite niemals einholen kann.

18 Zenon von Elea (490 — 425 v.Chr.) Quelle: http:
//aefucr.blogspot.de/2008/04/resolucin-de-la-paradoja-de-zenn-de.html

Zenons Begriindung: Zu dem Zeitpunkt, an dem Achilles den Startpunkt
der Schildkrote erreicht, ist die Schildkréte schon ein Stiick weiter.
Etwas spéter erreicht Achilles diesen Punkt, aber die Schildkrote ist
schon etwas weiter. Wenn Achilles diesen Punkt erreicht, ist die
Schildkrote wieder etwas weiter. So kann Achilles zwar immer néher
an die Schildkréte herankommen, sie aber niemals einholen.

Folie 6

Auflésung durch die Infinitesimalrechnung:

Gottfried Wilhelm von Leibniz (1646 — 1716)

und Isaac Newton (1643 — 1727)
Quelle: http://www-history.mcs.st-and.ac.uk/PictDisplay/Leibniz.html
und Quelle: http://de.wikipedia.org/wiki/Isaac_Newton

Version vom 16. Oktober 2023 Seite 7


http://aefucr.blogspot.de/2008/04/resolucin-de-la-paradoja-de-zenn-de.html
http://aefucr.blogspot.de/2008/04/resolucin-de-la-paradoja-de-zenn-de.html
http://www-history.mcs.st-and.ac.uk/PictDisplay/Leibniz.html
http://de.wikipedia.org/wiki/Isaac_Newton

Folie 7

Folie 8

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Bemerkung. Aristoteles Auflésung dieses Paradoxons besteht darin, zu
postulieren, dass man Strecken nicht unendlich Teilen kann. Aber auch
ohne diese Annahme kann man das Paradoxon leicht mit Hilfe der
Infinitesimalrechnung auflésen, denn die immer kiirzer werdenden Strecken
konnen insgesamt in beschrinkter Zeit zuriickgelegt werden.

Leibniz und Newton waren die Begriinder der Infinitesimalrechnung.

Der Barbier von Sonnenthal

Im Stadtchen Sonnenthal (in dem bekanntlich viele seltsame
Dinge passieren) wohnt ein Barbier, der genau diejenigen
mannlichen Einwohner von Sonnenthal rasiert, die sich nicht
selbst rasieren.

Frage: Rasiert der Barbier sich selbst?

Angenommen, der Barbier rasiert sich selbst.
Da er ein méannlicher Einwohner von Sonnenthal ist, der sich selbst
rasiert, wird er nicht vom Barbier rasiert. Aber er selbst ist der
Barbier. Dies ist ein Widerspruch!

Angenommen, der Barbier rasiert sich nicht selbst.
Da er in Sonnenthal wohnt und dort alle Einwohner rasiert, die sich
nicht selbst rasieren, muss er sich rasieren. Dies ist ein Widerspruch!

Die Anfinge der formalen Logik

Aristoteles’ Syllogismen

Die folgende Schlussweise ist aus rein formalen Griinden korrekt.

Annahme 1: Alle Menschen sind sterblich.
Annahme 2: Sokrates ist ein Mensch.

Folgerung: Also ist Sokrates sterblich.

Diese Art von Schluss und eine Reihe verwandter Schlussweisen nennt man
Syllogismen.

Version vom 16. Oktober 2023 Seite &8



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Annahme 1: Alle A sind B.
Annahme 2: C ist ein A.

Folgerung: Also ist C B.

Folie 9
Beispiele
Annahme 1: Alle Borg sind assimiliert worden.
Annahme 2: Seven of Nine ist eine Borg.
Folgerung: Also ist Seven of Nine assimiliert worden.
Annahme 1: Alle Substitutionschiffren sind
anfillig gegen Brute-Force-Angriffe.
Annahme 2: Der Julius-César-Chiffre ist ein Substitutionschiffre.
Folgerung: Also ist der Julius-César-Chiffre anfillig
gegen Brute-Force-Angriffe.
Folie 10
\ /A
Aristoteles (384 - 322 v.Chr.)
Quelle: http://de.wikipedia.org/wiki/Aristoteles
Folie 11

Version vom 16. Oktober 2023 Seite 9


http://de.wikipedia.org/wiki/Aristoteles

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Ein komplizierterer formaler Schluss

Annahme 1: Es gibt keine Schweine, die fliegen kénnen.
Annahme 2: Alle Schweine sind gefrafliige Tiere.
Annahme 3: Es gibt Schweine.

Folgerung: Also gibt es gefréiflige Tiere, die nicht fliegen kénnen.

Die Form des Schlusses ist:

Annahme 1: Es gibt keine A, die B (sind).
Annahme 2: Alle A sind C.
Annahme 3: Es gibt A.

Folgerung: Also gibt es C, die nicht B (sind).

Folie 12
Charles Lutwidge Dodgson a.k.a. Lewis Carroll (1838 — 1898)
Quelle: http://en.wikiquote.org/wiki/Lewis_Carroll

“Contrariwise,” continued Tweedledee, “if it was so, it might be;

and if it were so, it would be; but as it isn’t, it ain’t.

That’s logic.”

aus: Alice in Wonderland

Folie 13

Nicht jeder formale Schluss ist korrekt

Annahme 1: Es gibt Vogel, die fliegen kénnen.
Annahme 2: Es gibt keine fliegenden (Tiere),
die Klavier spielen koénnen.

Folgerung: Also gibt es keine Vogel, die Klavier spielen konnen.

Version vom 16. Oktober 2023 Seite 10


http://en.wikiquote.org/wiki/Lewis_Carroll

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Kein korrekter Schluss, auch wenn in diesem Fall die Folgerung wahr ist.
Der folgende, offensichtlich falsche, Schluss hat dieselbe Form:

Annahme 1: Es gibt Menschen, die stumm sind.
Annahme 2: Es gibt keine stummen (Lebewesen),
die sprechen konnen.

Folgerung: Also gibt es keine Menschen, die sprechen kénnen.

Folie 14

Aber wie merkt man es?

Man kann einen falschen Schluss entlarven, indem man einen formal
gleichen Schluss findet, der klar falsch ist.

Annahme 1: FErbeeren schmecken gut.
Annahme 2: Schlagsahne schmeckt gut.

Folgerung: Also schmecken Erdbeeren mit Schlagsahne gut.

Aber:

Annahme 1: Pizza schmeckt gut.
Annahme 2: Schlagsahne schmeckt gut.

Folgerung: Also schmeckt Pizza mit Schlagsahne gut.

Folie 15

Wasons Auswahlaufgabe (Wason’s selection task)’

Uns stehen vier Karten der folgenden Art zur Verfiigung:

Auf jeder Karte steht auf der Vorderseite eine Ziffer zwischen 0 und 9. Die
Riickseite jeder Karte ist komplett rot oder komplett blau.

Wir sehen Folgendes:

henannt nach Peter Cathcart Wason (1924-2003, Kognitiver Psychologe, London);
in Wasons urspriinglicher Version der Auswahlaufgabe handelt es sich um Karten, deren
Vorderseiten Buchstaben und deren Riickseiten Ziffern enthalten, und die Hypothese ist
, Wenn auf der Vorderseite der Karte ein Vokal steht, dann steht auf der Riickseite eine
gerade Zahl“

Version vom 16. Oktober 2023 Seite 11



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

7|4

Jemand hat folgende Hypothese aufgestellt:

Wenn auf der Vorderseite eine gerade Zahl steht,
dann ist die Riickseite rot.

Welche Karte(n) miissen Sie umdrehen, um zu iiberpriifen, ob die
Hypothese stimmt?

Folie 16
Und was sagen die Simpsons?
Homer: Not a bear in sight. The Bear Patrol
must be working like a charm.
Lisa: That’s specious reasoning, Dad.
Homer: Thank you, dear.
Lisa: By your logic I could claim that
this rock keeps tigers away.
Homer: Oh, how does it work?
Lisa: It doesn’t work.
Homer: Uh-huh.
Lisa: It’s just a stupid rock.
Quelle: http: Homer: Uh-huh.
//en.wikipedia.org/  [Lisq: But I don’t see any tigers around,
wiki/Simpson_family do you?
(Pause)
Homer: Lisa, I want to buy your rock.
[Lisa refuses at first, then takes the exchange]
1.2 Logik in der Informatik
Folie 17

Die Rolle der Logik in der Informatik
Halpern, Harper, Immerman, Kolaitis, Vardi, Vianu (2001):

Version vom 16. Oktober 2023 Seite 12


http://en.wikipedia.org/wiki/Simpson_family
http://en.wikipedia.org/wiki/Simpson_family
http://en.wikipedia.org/wiki/Simpson_family

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Concepts and methods of logic occupy a central place in
computer science, insomuch that logic has been called
“the calculus of computer science”.

aus: On the unusual effectiveness of logic in computer science, Bulletin of
Symbolic Logic 7(2): 213-236 (2001)

Folie 18

Anwendungsbereiche der Logik in der Informatik

e Reprisentation von Wissen (z.B. im Bereich der kiinstlichen
Intelligenz) [siehe Kapitel 2 und 3]

Grundlage fiir Datenbank-Anfragesprachen [siehe Kapitel 3]

Bestandteil von Programmiersprachen
(z.B. um Bedingungen in IF-Anweisungen zu formulieren)
[siehe Kapitel 2]

automatische Generierung von Beweisen
(so genannte Theorembeweiser) [siehe Kapitel /]

Verifikation von

— Schaltkreisen (Ziel: beweise, dass ein Schaltkreis bzw. Chip
,richtig® funktioniert)

— Programmen (Ziel: beweise, dass ein Programm gewisse
wiinschenswerte Eigenschaften hat)

— Protokollen (Ziel: beweise, dass die Kommunikation zwischen
zwei , Agenten®, die nach einem gewissen Protokoll ablduft,
,sicher® ist — etwa gegen Abhoren oder Manipulation durch
dritte; Anwendungsbeispiel: Internet-Banking)

e Logik-Programmierung [siehe folgende Folien und Kapitel 5]

Version vom 16. Oktober 2023 Seite 13



Folie 19

Folie 20

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Einfiihrung in die Logik-Programmierung

, Was* statt ,,Wie*“ am Beispiel von Tiramisu

Tiramisu — Deklarativ
Aus Eigelb, Mascarpone und in Likor und Kaffee getrankten Biskuits hergestellte
cremige Siiflspeise

(aus: DUDEN, Fremdwérterbuch, 6. Auflage)

Tiramisu — Imperativ
1/4 1 Milch mit 2 EL Kakao und 2 EL Zucker aufkochen. 1/4 1 starken Kaffee
und 4 EL Amaretto dazugeben.

5 Eigelb mit 75 g Zucker weiflschaumig rithren, dann 500 g Mascarpone
dazumischen.

ca 200 g Loffelbiskuit.

Eine Lage Loffelbiskuit in eine Auflaufform legen, mit der Fliissigkeit tranken
und mit der Creme iiberziehen. Dann wieder Loffelbiskuit darauflegen, mit der
restlichen Fliissigkeit trédnken und mit der restlichen Creme {iberziehen.

Uber Nacht im Kiihlschrank durchziehen lassen und vor dem Servieren mit
Kakao bestauben.

(aus: Gisela Schweikardt, handschriftliche Kochrezepte)

Der grofle Traum der Informatik

Imperative Vorgehensweise:
Beschreibung, wie das gewiinschte Ergebnis erzeugt wird ................ , Wie“

Deklarative Vorgehensweise:
Beschreibung der Eigenschaften des gewiinschten Ergebnisses ............ ,Was“

Traum der Informatik:
Moglichst wenig ,,wie“, moglichst viel ,, was“

D.h.: Automatische Generierung eines Ergebnisses aus seiner Spezifikation

Realitét:
Datenbanken: Deklarative Anfragesprache ist Industriestandard (SQL)

Software- Entwicklung: Generierungs-Tools

Version vom 16. Oktober 2023 Seite 14



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Programmiersprachen: Logik-Programmierung, insbes. Prolog

ABER: Imperativer Ansatz iiberwiegt in der Praxis

Folie 21
Logik-Programmierung
e Logik-Programmierung bezeichnet die Idee, Logik direkt als
Programmiersprache zu verwenden.
e Logik-Programmierung (in Sprachen wie Prolog) und die verwandte
funktionale Programmierung (in Sprachen wie LISP, ML, Haskell)
sind deklarativ,
im Gegensatz zur imperativen Programmierung (in Sprachen wie Java,
C, Perl).
e Die Idee der deklarativen Programmierung besteht darin, dem
Computer lediglich sein Wissen iiber das Anwendungsszenario und
sein Ziel mitzuteilen und dann die Losung des Problems dem
Computer zu iiberlassen.
Bei der imperativen Programmierung hingegen gibt man dem
Computer die einzelnen Schritte zur Losung des Problems vor.
Folie 22
Prolog
e Prolog

— ist die wichtigste logische Programmiersprache,

— geht zuriick auf Kowalski und Colmerauer
(Anfang der 1970er Jahre, Marseilles),

— steht fiir (franz.) Programmation en logique.

— Mitte/Ende der 1970er Jahre: effiziente Prolog-Implementierung
durch den von Warren (in Edinburgh) entwickelten Prolog-10
Compiler.

e Aus Effizienzgriinden werden in Prolog die abstrakten Ideen der
logischen Programmierung nicht in Reinform umgesetzt, Prolog hat
auch , nichtlogische“ Elemente.

Version vom 16. Oktober 2023 Seite 15



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

e Prolog ist eine voll entwickelte und méchtige Programmiersprache, die
vor allem fiir symbolische Berechnungsprobleme geeignet ist.

Folie 23

Anwendungen

Die wichtigsten Anwendungsgebiete sind die kiinstliche Intelligenz und die
Computerlinguistik.

Beispiele. Das Interface fiir natiirliche Sprache
e in der International Space Station wurde von der NASA

e beim IBM Watson System, das in 2011 die Jeopardy! Man vs.
Machine Challenge gewonnen hat, wurde

in Prolog implementiert.

Mehr Informationen dazu finden sich z.B. unter
https://sicstus.sics.se/customers.html und
http://www.cs.nmsu.edu/ALP/2011/03/
natural-language-processing-with-prolog-in-the-ibm-watson-system/

Folie 24

Learn Prolog Now!

Im Rahmen der Ubungsaufgaben zur Vorlesung werden wir jede Woche eins
der 12 Kapitel des Buchs

wLearn Prolog Now!“ von Patrick Blackburn, Johan Bos und
Kristina Striegnitz (Kings College Publications, 2006)

. auch erhaltlich als Online-Kurs unter
http://www.learnprolognow.org

durcharbeiten. Als Unterstiitzung dazu gibt es jede Woche eine 2-stiindige
Prolog-Ubunyg.

Am Ende des Semesters, in Kapitel 5, werden wir von Prolog abstrahieren
und uns die Grundprinzipien der Logik-Programmierung anschauen.

Version vom 16. Oktober 2023 Seite 16


https://sicstus.sics.se/customers.html
http://www.cs.nmsu.edu/ALP/2011/03/natural-language-processing-with-prolog-in-the-ibm-watson-system/
http://www.cs.nmsu.edu/ALP/2011/03/natural-language-processing-with-prolog-in-the-ibm-watson-system/
http://www.learnprolognow.org

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

1.3 Lernziele, Semesterausblick und Literatur

Folie 25
Lern- und Qualifikationsziele

Aus der Modulbeschreibung:

Studierende erlangen die Fahigkeit, Sachverhalte in geeigneten
formalen Systemen zu formalisieren und die grundlegenden
Begriffe und Ergebnisse der mathematischen Logik zu verstehen
und anzuwenden. Dariiber hinaus erlernen sie anhand der
deklarativen Programmiersprache Prolog ein neues
Programmierparadigma.

Und was sagt Goethe dazu?

Mein teurer Freund, ich rat Fuch drum
Zuerst Collegium Logicum.

Da wird der Geist Fuch wohl dressiert,
In spanische Stiefeln eingeschniirt,
Dafs er beddchtiger so fortan
Hinschleiche die Gedankenbahn,

Und nicht etwa, die Kreuz und Quer,
Irrlichteliere hin und her.

Mephistopheles in Faust
Folie 26

Semesteriiberblick

1. Einleitung (dieses Kapitel)

2. Aussagenlogik
Syntax und Semantik, Normalformen, Modellierung,
Resolution, Erfillbarkeitsalgorithmen

3. Logik erster Stufe
Syntax und Semantik, Normalformen, Modellierung,
Nichtausdriickbarkeit

4. Grundlagen des automatischen Schlielens
Sequenzenkalkiil, Vollstindigkeits- und Endlichkeitssatz,
Grenzen der Berechenbarkeit, automatische Theorembeweiser

Version vom 16. Oktober 2023 Seite 17



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

5. Grundlagen der Logik-Programmierung
Syntax und deklarative Semantik von Logikprogrammen, Ableitungen
und Beweisbdume, operationelle Semantik, Unifikation

Folie 27
Literaturempfehlungen
Folgende Schriften werden zur Vertiefung des Vorlesungsstoffes empfohlen:
1. dieses Vorlesungsskript zur Veranstaltung Logik in der Informatik
2. die Lehrbiicher [Sch00, Bur98, KK06] und das Buch [BBS06].

Als Ergénzung seien auch folgende Lehrbiicher genannt:

e [EFTO07] (Einfithrung in die mathematische Logik)

[Ebb03] (Einfithrung in die Mengenlehre)

[Lib04, FGI8] (Biicher zum Thema Logik und Komplexitét)

[Cam98, vD04, HR04] (weiterfithrende Literatur im Bereich Logik
und automatisches Schlieflen)

[SS94] (weiterfithrende Literatur zum Thema Logik-Programmierung
und Prolog)

Version vom 16. Oktober 2023 Seite 18



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Auflosung zu Wasons Auswahlaufgabe:
Die Karte mit der ,,4“ und die blaue Karte miissen umgedreht werden.
Begriindung:

e Falls die Riickseite der Karte mit der ,,4“ nicht rot ist, so haben wir
ein Gegenbeispiel zur Hypothese gefunden und damit die Hypothese
widerlegt.

e Falls die Vorderseite der blauen Karte eine gerade Zahl enthélt, haben
wir ein Gegenbeispiel zur Hypothese gefunden und damit die
Hypothese widerlegt.

e Die Karte mit der ,,7“ brauchen wir nicht umzudrehen, da die
Hypothese keine Aussage iiber die Riickseite von Karten mit
ungeraden Ziffern macht.

e Die rote Karte brauchen wir nicht umzudrehen, da die Hypothese
keine Aussage iiber die Vorderseite von Karten mit roter Riickseite
macht.

Version vom 16. Oktober 2023 Seite 19



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Version vom 16. Oktober 2023 Seite 20



Kap:itel 2

Aussagenlogik

2.1 Syntax und Semantik

Folie 28
Aussagen

Die Frage ,Was ist eigentlich ein Wort?“ ist analog der ,,Was ist eine
Schachfigur?“ Ludwig Wittgenstein, Philosophische Untersuchungen

e Aussagen (im Sinne der Aussagenlogik) sind sprachliche Gebilde, die
entweder wahr oder falsch sind.

e Aussagen konnen mit Junktoren wie nicht, und, oder oder wenn . ..
dann zu komplexeren Aussagen verkniipft werden.

o Aussagenlogik beschéftigt sich mit allgemeinen Prinzipien des
korrekten Argumentierens und Schlieens mit Aussagen und
Kombinationen von Aussagen.

Folie 29

Version vom 16. Oktober 2023 Seite 21



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

3

Ludwig Wittgenstein (1889 — 1951)
Quelle: http://en.wikipedia.org/wiki/Ludwig_Wittgenstein

Folie 30

Beispiel 2.1 (Geburtstagsfeier).

Fred mochte mit moglichst vielen seiner Freunde Anne, Bernd, Christine,
Dirk und Eva seinen Geburtstag feiern. Er weifl Folgendes:

Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf keinen
Fall kommen. Und Dirk wird auf keinen Fall kommen, wenn Bernd und Eva
beide zur Feier kommen. Aber Eva kommt allenfalls dann, wenn Christine
und Dirk kommen. Andererseits kommt Christine nur dann, wenn auch
Anne kommt. Anne wiederum wird nur dann kommen, wenn auch Bernd
oder Christine dabei sind.

Frage: Wie viele Freunde (und welche) werden im besten Fall zur Party
kommen?

Folie 31
Das Wissen, das in dem Text wiedergegeben ist, ldsst sich in ,atomare
Aussagen® zerlegen, die mit Junktoren verkniipft werden kénnen.
Die atomaren Aussagen, um die sich der Text dreht, kiirzen wir
folgendermaflen ab:

Anne kommt zur Feier
Bernd kommt zur Feier
Christine kommt zur Feier
Dirk kommt zur Feier
Eva kommt zur Feier

HT QW

Das im Text zusammengefasste Wissen ldsst sich wie folgt repréasentieren.

Folie 32

Version vom 16. Oktober 2023 Seite 22


http://en.wikipedia.org/wiki/Ludwig_Wittgenstein

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

(1) Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf
keinen Fall kommen.

kurz: Wenn (B und A), dann nicht E kiirzer: (BNA) — —FE

(2) Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur
Feier kommen.

kurz: Wenn (B und E), dann nicht D kiirzer: (B A E)— =D
(3) Eva kommt allenfalls dann, wenn Christine und Dirk kommen.
kurz: Wenn E, dann (C und D) kiirzer: E — (C' AN D)
(4) Christine kommt nur dann, wenn auch Anne kommt.
kurz: Wenn C, dann A kiirzer: C'— A
(5) Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind.
kurz: Wenn A, dann (B oder C') kiirzer: A — (BV C)
Folie 33

Fallstricke natiirlichsprachlicher Aussagen

Die Verwendung der Worter und, wenn ... dann, oder, nicht in der
Alltagssprache entspricht nicht immer exakt unseren logischen Junktoren.

(1) Anne hat mit dem Kaffeetrinken aufgehort.
kurz: 'V und nicht G kiirzer: V- N\ =G

(2) Anne hat nicht mit dem Kaffeetrinken aufgehort.
kurz: 'V und G kiirzer: VNG

Ist (2) die Negation von (1)? In dem Fall, dass Anne noch nie Kaffee
getrunken hat, ist keine der beiden Aussagen wahr.

V' Anne war in der Vergangenheit Kaffeetrinkerin.
G : Anne ist zur Zeit Kaffeetrinkerin.

Zwei weitere Beispiele:
e [ch werde mir ein rotes oder ein blaues Fahrrad kaufen.

e Wenn Regen vorhergesagt ist, dann nehme ich einen Schirm mit.

Folie 34

Version vom 16. Oktober 2023 Seite 23



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Syntax und Semantik
Syntax: legt fest, welche Zeichenketten Formeln der Aussagenlogik sind
Semantik: legt fest, welche ,,Bedeutung* einzelne Formeln haben

Dies ist analog zur Syntax und Semantik von Java-Programmen:

Die Syntax legt fest, welche Zeichenketten Java-Programme sind, wahrend
die Semantik bestimmt, was das Programm tut.

Zur Verdeutlichung werden wir im Folgenden syntaktische Objekte oft in
orange darstellen, wihrend wir semantische Aussagen in blau angeben.

Syntazx der Aussagenlogik

Folie 35

Notationen
e Die Menge N der natiirlichen Zahlen besteht aus allen nicht-negativen
ganzen Zahlen, d.h.
N:={01,2 3, ...}
e Fiir ein n € N ist
n] == {1,...,n} = {ieN:1<i<n}.
Folie 36

Definition 2.2. Ein Aussagensymbol (oder eine Aussagenvariable, kurz:
Variable) hat die Form A; fiir ein ¢ € N.
Die Menge aller Aussagensymbole bezeichnen wir mit AS, d.h.

AS = {A7 : /LGN} = {A(), Al, AQ, Ag, }

Aussagenlogische Formeln sind Worter, die iiber dem folgenden Alphabet
gebildet sind.

Definition 2.3. Das Alphabet der Aussagenlogik besteht aus

e den Aussagesymbolen in AS,

Version vom 16. Oktober 2023 Seite 24



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

e den Junktoren —, N\, V, —,
e den booleschen Konstanten 0, 1,
e den Klammersymbolen (, ).
Wir schreiben Aa, um das Alphabet der Aussagenlogik zu bezeichnen, d.h.

AAL = ASU{_‘7A7V7_>70717(7)}

Bemerkung. Wir haben hier festgelegt, dass es abzédhlbar unendlich viele
Aussagensymbole gibt.

Zur Erinnerung:

Eine Menge M heif3t abzdhlbar unendlich, wenn sie unendlich ist und ihre
Elemente sich in der Form mg, mq, ms, ... aufzihlen lassen. Formal heifit M
genau dann abzdihlbar unendlich, wenn es eine bijektive Abbildung von der
Menge N = {0, 1,2, ...} der natiirlichen Zahlen auf die Menge M gibt. Eine
Menge M heif3t abzdhlbar, wenn sie entweder endlich oder abzihlbar
unendlich ist. Eine Menge M heifit iberabzdihlbar, wenn sie nicht abzéhlbar
ist.

Beispiele. e Die Menge N ist abzéhlbar unendlich.

e st A eine abzéhlbare Menge, so ist die Menge A* aller endlichen
Worter iiber dem Alphabet A abzihlbar. Ist etwa A = {ag, a1, as, ...},
so kénnen wir eine Aufzéhlung von A* wie folgt beginnen:

e (das leere Wort)
ag,
ai, Gpao, Apay1, @109, 101,
as, Apdg, G20Gp, A1042, A201, AoA9, AnApdp, AgQogQy, AgApdg, . . . , 20209

as, apas, . . ., a3a3azas,

e Die Menge R aller reellen Zahlen ist iiberabzéahlbar.

e [st M eine unendliche Menge, so ist die Potenzmenge
P(M):=2" .= {N| N C M} von M iiberabzihlbar.

Version vom 16. Oktober 2023 Seite 25



Folie 37

Folie 38

Folie 39

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Bemerkung. Wir konnten die Aussagenlogik genausogut auf einer
iiberabzahlbaren Menge von Aussagensymbolen aufbauen. Alles wiirde
genauso funktionieren, nur der Beweis des Endlichkeitssatzes (siehe
Kapitel 2.5) wiirde komplizierter werden. Fiir die Anwendungen in der
Informatik reicht allerdings i.d.R. eine abzé&hlbar unendliche Menge.

Definition 2.4 (Syntax der Aussagenlogik).
Die Menge AL der aussagenlogischen Formeln (kurz: Formeln) ist die
folgendermaflen rekursiv definierte Teilmenge von Aj :

Basisregeln: (zum Bilden der so genannten atomaren Formeln)
(BO) 0 € AL
(B1) 1 € AL
(BS) Fiir jedes Aussagensymbol A; € AS gilt: A; € AL
Rekursive Regeln:
(R1) Ist ¢ € AL, so ist auch —p € AL (Negation)
(R2) Ist » € AL und ¢» € AL, so ist auch

o (pNY) € AL (Konjunktion)
o (V1) e AL (Disjunktion)
o (v — 1) € AL (Implikation)

Beispiele
o (mAV(4A)— A1) €AL
e ~((AgN0)— —A3) €AL
o AVANA; &AL
o (—A)) &AL

Version vom 16. Oktober 2023 Seite 26



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Griechische Buchstaben

In der Literatur werden Formeln einer Logik traditionell meistens mit
griechischen Buchstaben bezeichnet.

Hier eine Liste der gebrduchlichsten Buchstaben:

Buchstabe w‘w‘x‘ﬂbzw.ﬁ‘ A ‘,u‘y‘v" K
Aussprache | phi ‘ psi ‘ chi ‘ theta ‘ lambda ‘ mil ‘ nii ‘ tau ‘ kappa
Buchstabe o‘p‘f‘g"a‘ﬁ‘*y 1 w
Aussprache | sigma ‘ rho ‘ xi ‘ zeta ‘ alpha ‘ beta ‘ gamma ‘ delta ‘ omega
Buchstabe € ‘L‘W‘A r E‘H‘CI)‘\I/
Aussprache | epsilon ‘ iota ‘ pi ‘ Delta ‘ Gamma ‘ Sigma ‘ Pi ‘ Phi ‘ Psi
Folie 40
Syntaxbidume
Die Struktur einer Formel lasst sich bequem in einem Syntazbaum (englisch:
parse tree) darstellen.
Beispiel: Syntaxbaum der Formel (((A4 A1)V =As) — (A5 A (AL A 1))
Ausfiihrlich: Kurzform:
(A A1)V ~A5) — (45 A (A4 A1) |
(A4 A1)V =45) || (A5 A ~(A1 A 1)) |
[(Ann)] [245]  [45] [~(Aan D]
Folie 41

Subformeln und eindeutige Lesbarkeit

e Jede Formel hat genau einen Syntaxbaum. Diese Aussage ist als das
Lemma iber die eindeutige Lesbarkeit aussagenlogischer Formeln

bekannt.

Version vom 16. Oktober 2023 Seite 27



Folie 42

Folie 43

Folie 44

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

e Die Formeln ¢, die im ausfiihrlichen Syntaxbaum einer Formel ¢ als
Knotenbeschriftung vorkommen, nennen wir Subformeln (bzw.
Teilformeln) von .

e Eine Subformel 7 von ¢ kann an mehreren Knoten des Syntaxbaums
vorkommen. Wir sprechen dann von verschiedenen Vorkommen von v

in .

Semantik der Aussagenlogik

Voriiberlegung zur Semantik

e Eine aussagenlogische Formel wird erst zur Aussage, wenn wir alle in
ihr vorkommenden Aussagensymbole durch Aussagen ersetzen.

e Wir interessieren uns hier nicht so sehr fiir die tatséchlichen
Aussagen, sondern nur fiir ihren Wahrheitswert, also dafiir, ob sie
wahr oder falsch sind.

e Um das festzustellen, reicht es, den Aussagensymbolen die
Wahrheitswerte der durch sie repriasentierten Aussagen zuzuordnen.

e Die Bedeutung einer Formel besteht also aus thren Wahrheitswerten
unter allen mdéglichen Wahrheitswerten fir die in der Formel
vorkommenden Aussagensymbole.

Interpretationen (d.h. Variablenbelegungen)

Wir représentieren die Wahrheitswerte wahr und falsch durch 1 und 0.

Definition 2.5. Eine aussagenlogische Interpretation (kurz: Interpretation
oder Belegung) ist eine Abbildung

Z:AS —{0,1}.

D.h.: Z ,belegt” jedes Aussagensymbol X € AS mit einem der beiden
Wahrheitswerte 1 (fiir ,,wahr“) oder 0 (fiir ,falsch“); und Z(X) ist der
Wahrheitswert, mit dem das Aussagensymbol X belegt wird.

Version vom 16. Oktober 2023 Seite 28



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Semantik der Aussagenlogik

Definition 2.6. Zu jeder Formel ¢ € AL und jeder Interpretation 7
definieren wir einen Wahrheitswert []” rekursiv wie folgt:

Rekursionsanfang:
e [0]F :=0.
o [1]* :=1.

e Fiir alle X € AS gilt: [X]" := Z(X).

Rekursionsschritt:

1 falls [¢]" =0,

e Ist p € AL, so ist [[wo]]z = {O .
sonst.

e Ist o € AL und ¢) € AL, so ist

— [(e A := {1 falls [o]” = [v]* =1,

0 sonst.

— [(p V] := {0 falls []” = [v]" =0,

1 sonst.

~ [ =)=

0 falls [¢]" =1 und [¢]" =0,
1 sonst.

Intuitive Bedeutung der Semantik

Boolesche Konstanten: 1 und 0 bedeuten einfach ,,wahr” und ,, falsch.

Aussagensymbole: Die Aussagensymbole stehen fiir irgendwelche
Aussagen, von denen uns aber nur der Wahrheitswert interessiert.
Dieser wird durch die Interpretation festgelegt.

Negation: —¢ bedeutet , nicht p*.

Version vom 16. Oktober 2023 Seite 29

Folie 45

Folie 46



Folie 47

Folie 48

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Konjunktion: (¢ A ) bedeutet ¢ und .
Disjunktion: (¢ V 1) bedeutet ¢ oder 1“.

Implikation: (¢ — ) bedeutet @ impliziert 1)* (oder ,wenn ¢ dann ¥*).

Rekursive Definitionen iiber Formeln

e Ahnlich wie Funktionen auf den natiirlichen Zahlen, wie zum Beispiel
die Fakultédtsfunktion oder die Fibonacci Folge, konnen wir
Funktionen auf den aussagenlogischen Formeln rekursiv definieren.

e Dabei gehen wir von den atomaren Formeln aus und definieren dann
den Funktionswert einer zusammengesetzten Formel aus den
Funktionswerten ihrer Bestandteile.

e Zur Rechtfertigung solcher Definitionen benétigt man die eindeutige
Lesbarkeit aussagenlogischer Formeln, die besagt, dass sich jede
Formel eindeutig in ihre Bestandteile zerlegen lésst.

e Wir haben auf diese Weise die Semantik definiert. Wir haben némlich
fiir jede Interpretation Z rekursiv eine Funktion [ - | : AL — {0,1}
definiert.

Schematisch sieht die rekursive Definition einer Funktion f : AL — M
(fiir eine beliebige Menge M) folgendermafien aus:

Rekursionsanfang:

e Definiere f(0) und f(1).

e Definiere f(X) fiir alle X € AS.
Rekursionsschritt:

e Definiere f(—p) aus f(yp).

e Definiere f((p A 1)) aus f(p) und f(1)).

e Definiere f(( v ¢))) aus f(p) und f(1)).

Version vom 16. Oktober 2023 Seite 30



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

e Definiere f((p — 1)) aus f(¢) und f(v)).

Folie 49
Beispiel 2.7.
Betrachte die Formel ¢ = ( =4y V (45 — A;))
und die Interpretation Z : AS — {0, 1} mit
I(AO> = 17 I(*Al) = 17 I(A5) =0
und I(Y) =0 fiir alle Y € AS \ {Ao,Al,A5}.
Der Wahrheitswert [o]” ist der Wert
7 pet.26 |0, falls [=Ag]" = 0 und [(45 — A)]* =0
[l =" 1,
, sonst
z z z
pet. 2.6} 0, falls [Ao]” =1 und ([45]" = 1 und [A;]" = 0)
B 1, sonst
pet. 2.6 )0, falls Z(Ag) =1 und Z(As) = 1 und Z(A4;) = 0
B 1, sonst
= 1 (denn geméf obiger Wahl von Z gilt Z(As) = 0).
Folie 50
Alternative Art, den Wert [¢]” zu bestimmen
e Ersetze in ¢ jedes Aussagensymbol X durch seinen geméfl 7
festgelegten Wahrheitswert, d.h. durch den Wert Z(.X), und rechne
dann den Wert des resultierenden booleschen Ausdrucks aus.
e Speziell fiir die Formel ¢ und die Interpretation Z aus Beispiel 2.7
ergibt die Ersetzung der Aussagensymbole durch die geméafi 7
festgelegten Wahrheitswerte den booleschen Ausdruck
(-1 v (0—1)).
e Ausrechnen von —1 ergibt den Wert 0.
Ausrechnen von (0 — 1) ergibt den Wert 1.
e Insgesamt erhalten wir also (0V 1), was sich zum Wert 1 errechnet.
Somit erhalten wir, dass [¢]" =1 ist.
Folie 51

Version vom 16. Oktober 2023 Seite 31



Folie 52

Folie 53

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Die Modellbeziehung

Definition 2.8.

(a) Eine Interpretation Z erfiillt eine Formel ¢ € AL (wir schreiben:
T = ), wenn [g]" =1.
Wir schreiben kurz Z [~ ¢ um auszudriicken, dass Z die Formel ¢
nicht erfiillt (d.h., es gilt [¢]" = 0).

(b) Eine Interpretation Z erfiillt eine Formelmenge & C AL (wir schreiben:
7T = @), wenn T = o fiir alle ¢ € O.

(¢) Ein Modell einer Formel ¢ (bzw. einer Formelmenge ®) ist eine
Interpretation Z mit Z = ¢ (bzw. Z = ®).

Das Koinzidenzlemma

e Offensichtlich hingt der Wert [¢]” nur von den Werten Z(X) der
Aussagensymbole X € AS ab, die auch in ¢ vorkommen.

Diese Aussage ist als das Koinzidenzlemma der Aussagenlogik
bekannt.

e Um [[(p]]I festzulegen, reicht es also, die Werte Z(X) nur fiir diejenigen
Aussagensymbole X € AS anzugeben, die in ¢ vorkommen.

Vereinbarungen zu Interpretationen

e Statt der vollen Interpretation Z : AS — {0,1} geben wir in der Regel
nur endlich viele Werte Z(X),...,Z(X,) an und legen fest, dass
T(Y) := 0 fiir alle Y € AS\ {X1, ..., X,.}.

e In den Beispielen legen wir eine Interpretation oft durch eine
Wertetabelle fest. Beispielsweise beschreibt die Tabelle

X Ay A 4
I(X)|1 1 0

die Interpretation Z mit Z(Ag) = Z(A;) = 1 und Z(As) = 0 und
I(Y) =0 fir alle Y € AS \ {Ao, Al, A5}

Version vom 16. Oktober 2023 Seite 32



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

e Wir schreiben ¢(Xy,..., X, ), um anzudeuten, dass in ¢ nur

Aussagensymbole aus der Menge { X, ..., X, } vorkommen.

Fiir Wahrheitswerte by, ..., b, € {0, 1} schreiben wir dann
olby. ..., by] anstatt [o]” fiir eine (bzw. alle) Interpretationen Z mit
Z(X;) =0 fir alle i € [n] :={1,...,n}.

Folie 54

Vereinbarungen

e Wir schreiben (¢ <> 1)) als Abkiirzung fir ((¢ — ¥) A (¥ — ¢)).

e Statt mit Ay, Ay, As, ... bezeichnen wir Aussagensymbole auch oft mit
A, B,C,....,X,Y, Z, ... oder mit Varianten wie X', Y7,....

e Die dufleren Klammern einer Formel lassen wir manchmal weg und
schreiben z.B. (X AY) — Z an Stelle des (formal korrekten)
(XAY) = 2).

e Beziiglich Klammerung vereinbaren wir, dass — am stérksten bindet,
und dass A und V stdrker binden als —.

Wir konnen also z.B. X A=Y — ZV X schreiben und meinen
damit

(XAY)—= (ZVX)).

Nicht schreiben koénnen wir z.B. X AY V Z (da wir nichts dariiber
vereinbart haben, wie fehlende Klammern hier zu setzen sind).

Folie 55

n

e Wir schreiben /\ ;i bzw. (¢1 A ... A p,) an Stelle von
i=1

(- (1 Ap2) Nps) Ao A o)
und nutzen analoge Schreibweisen auch fiir ,, vV an Stelle von , A“.

e Ist M eine endliche Menge aussagenlogischer Formeln, so schreiben

WIr
N ¢

peM

Version vom 16. Oktober 2023 Seite 33



Folie 56

Folie 57

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

um die Formel (p1 A -+ A ¢,,) zu bezeichnen, wobei n = |M| die
Anzahl der Formeln in M ist und ¢y, ..., ¢, die Auflistung aller
Formeln in M in lexikographischer Reihenfolge ist. Formeln sind
hierbei Worte iiber dem Alphabet der Aussagenlogik, wobei die

einzelnen Symbole dieses Alphabets folgendermafien aufsteigend
sortiert sind:

07 ]-a ) /\7 \/7 —, (7 )7 A07 A17 A27 A37 e

Die analoge Schreibweise nutzen wir auch fiir ,vV* an Stelle von ,A“.

e Diese Schreibweisen werden wir manchmal auch kombinieren. Sind
zum Beispiel I = {iy,..., i, } und J = {ji, ..., jn} endliche Mengen
und ist fiir jedes ¢ € I und j € J eine Formel ¢; ; gegeben, so

schreiben wir
AV e

iel jeJ
um die Formel (¢;, A --- A1);,,) zu bezeichnen, wobei fiir jedes ¢ € I
die Formel ¢; durch ; := (¢;j, V-V ;;, ) definiert ist.

Wahrheitstafeln

Fiir jede Formel ¢(X;,..., X, ) kann man die Wahrheitswerte unter allen
moglichen Interpretationen in einer Wahrheitstafel darstellen. Fiir alle
(b1, ...,b,) € {0,1}" enthilt die Tafel eine Zeile mit den Werten

by -+ by | @by, ..., by

Um die Wahrheitstafel fiir ¢ auszufiillen, ist es bequem, auch Spalten fiir
(alle oder einige) Subformeln von ¢ einzufiigen.

Beispiel: Wahrheitstafel fir o(X,Y,7) = (X VY) = (X AN Z)):
XY Z|(XVY)|(XA2) ]
0 0 O 0 0 1
0 0 1 0 0 1
0 1 0 1 0 0
0 1 1 1 0 0
1 0 0 1 0 0
1 0 1 1 1 1
1 1 0 1 0 0
1 1 1 1 1 1

Version vom 16. Oktober 2023 Seite 34



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Die Reihenfolge der Zeilen ist dabei unerheblich. Wir vereinbaren
allerdings, die Zeilen stets so anzuordnen, dass die Werte by - - - b,, € {0, 1}",
aufgefasst als Bindrzahlen, in aufsteigender Reihenfolge aufgelistet werden.

Wahrheitstafeln fiir die Junktoren

Die Bedeutung der Junktoren kann man mittels ihrer Wahrheitstafeln
beschreiben:

X Y| (X\Y) X Y| (XVvY) X Y| (X~Y)
X|-X 0 0 0 0 0 0 0 0 1
0] 1 0 1 0 0 1 1 0 1 1
1] 0 1 0 0 1 0 1 1 0 0
11 1 11 1 11 1

Genauso kann man eine Wahrheitstafel fiir die Formel X<Y, die ja eine
Abkiirzung fir (X — Y)A (Y — X)) ist, bestimmen:

X Y| (X¢Y)
0 0 1
0 1 0
1 0 0
11 1

X <Y bedeutet also , X genau dann wenn Y*“.

Ein Logikritsel

Beispiel 2.9. Auf der Insel Wafa leben zwei Stamme: Die Was, die immer
die Wahrheit sagen, und die Fas, die immer liigen. Ein Reisender besucht

die Insel und trifft auf drei Einwohner A, B, C, die ihm Folgendes erzdhlen:

o A sagt:
B und C sagen genau dann die Wahrheit, wenn C die Wahrheit
sagt. “

e [3 sagt:
,Wenn A und C die Wahrheit sagen, dann ist es nicht der Fall, dass
A die Wahrheit sagt, wenn B und C die Wahrheit sagen. “

o (' sagt:
B liigt genau dann, wenn A oder B die Wahrheit sagen.“

Version vom 16. Oktober 2023 Seite 35

Folie 58

Folie 59



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Frage: Welchen Stdmmen gehéren A, B und C' an?

Folie 60

Aussagenlogische Modellierung

Aussagensymbole:
o W, steht fiir ,, A sagt die Wahrheit.“
e Wp steht fiir ,, B sagt die Wahrheit.“
o W steht fiir ,C sagt die Wahrheit.“
Aussagen der drei Inselbewohner:
o p1:= WpAWe) < We
o ppi= WaAWe) = ~((WpAWe) — Wa)
e oo := Wp < (WyuVWp)
Wir suchen nach einer Interpretation, die die Formel
o= (Wasroa) A (Ws < 9p) A (We < ¢c)
erfiillt.

Folie 61

Losung mittels Wahrheitstafel

Wa Wi We|va|ep|pc | Waroa | Wi < pp | We < oo | ¢
0 0 0 1 1 0 0 0 1 0
0 0 1 0 1 0 1 0 0 0
0 1 0 1 1 0 0 1 1 0
0 1 1 1 1 0 0 1 0 0
1 0 0 1 1 1 1 0 0 0
1 0 1 0 0 1 0 1 1 0
1 1 0 1 1 0 1 1 1 1
1 1 1 1 0 0 1 0 0 0

Die Interpretation Z mit Z(Wy4) = 1, Z(Wg) = 1, Z(W¢) = 0 in Zeile 7 ist
die einzige, die die Formel ¢ erfiillt.

Version vom 16. Oktober 2023 Seite 36



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Geméf dieser Interpretation sind die Aussagen, die durch die Symbole W4
und Wp représentiert werden, wahr, wiahrend die Aussage, die durch W¢
reprasentiert wird, falsch ist.

Das heifit, die Personen A und B sagen die Wahrheit und sind somit Was,
und Person C' liigt und ist daher ein Fa.

Computerlesbare Darstellung von Formeln

Wir betrachten das Alphabet ASCII aller ASCII-Symbole.

Die Menge ASjgscrr aller ASCII-Reprisentationen von Aussagensymbolen
besteht aus allen nicht-leeren Worten iiber dem Alphabet ASCII, deren
erstes Symbol ein Buchstabe ist, und bei dem alle weiteren Symbole
Buchstaben oder Ziffern sind.

Die Menge Al,scrr aller ASCII-Repréasentationen von aussagenlogischen
Formeln ist die rekursiv wie folgt definierte Teilmenge von ASCII*:

Basisregeln:

e 0 € Alsscrr, 1 € Alygerr und w € Alygerr fiir alle w € ASyserr.
Rekursive Regeln:

e Ist ¢ € Alscrr, so ist auch ~p € Alyscrr. (Negation)

o Ist ¢ € ALpscrr und ¥ € Alyserr, so ist auch

— (@/\¢) € ALpscrr  (Kongunktion)

— (e\/ ) € AlLpscrr  (Disjunktion)

— (p—>v) € ALpgerr  (Implikation)
(p<=>1) € Alpscrr  (Biimplikation).

Abstrakte vs. computerlesbare Syntax

Es ist offensichtlich, wie man Formeln aus AL in ihre entsprechende
ASCII-Repréasentation iibersetzt und umgekehrt. Zum Beispiel ist

((Ao A 0) = —Ay3)

eine Formel in AL, deren ASCII-Reprisentation die folgende Zeichenkette
aus AI—ASCII ist:

Version vom 16. Oktober 2023 Seite 37

Folie 62

Folie 63



Folie 64

Folie 65

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

( (AO/\NO) —> ~A13 ).

Wir werden meistens mit der ,abstrakten Syntax“, d.h. mit der in
Definition 2.4 festgelegten Menge AL, arbeiten. Um aber Formeln in
Computer-Programme einzugeben, kénnen wir die ASCII-Représentation
verwenden.

Demo: snippets of logic

ein Formelchecker fiir die Aussagenlogik

entwickelt von André Frochaux

Funktionalitaten u.a.:

— Syntaxcheck fiir eingegebene Formeln
— Ausgabe eines Syntaxbaums

— Ausgabe einer Wahrheitstafel

Zugénglich via

http://www.snippets-of-logic.net/index_AL.php?7lang=de

Zuriick zu Beispiel 2.1 (,,Geburtstagsfeier)

Das in Beispiel 2.1 aufgelistete Wissen kann durch folgende
aussagenlogische Formel reprasentiert werden:

¢ = ((BANA)—==E) A ((BAE)— D) A
(E—=(CAD)) A (C—A) AN (A= (BVQO))
Die Frage

,Wie viele (und welche) Freunde werden im besten Fall zur
Party kommen?“

kann nun durch Losen der folgenden Aufgabe beantwortet werden:

Finde eine Interpretation Z fiir ¢, so dass gilt:

Version vom 16. Oktober 2023 Seite 38


http://www.snippets-of-logic.net/index_AL.php?lang=de

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

e 7 E ¢ (dh., T istein Modell von ¢) und

e {Xe€{AB,C,D,E} : I(X) = 1}| ist so grol wie moglich.

Folie 66
Diese Frage konnen wir 16sen, indem wir

(1) die Wahrheitstafel fiir ¢ ermitteln,

(2) alle Zeilen raussuchen, in denen in der mit ,,p“ beschrifteten Spalte der
Wert 1 steht (das liefert uns genau die Modelle von ¢) und

(3) aus diesen Zeilen all jene raussuchen, bei denen in den mit A, B, C, D,
E beschrifteten Spalten moglichst viele Einsen stehen. Jede dieser
Zeilen reprasentiert dann eine grofitmogliche Konstellation von
gleichzeitigen Partybesuchern.

Prinzipiell fithrt diese Vorgehensweise zum Ziel.

Leider ist das Verfahren aber recht aufwéndig, da die Wahrheitstafel, die
man dabei aufstellen muss, sehr grofl wird: Sie hat 2% = 32 Zeilen.

Folie 67

Version vom 16. Oktober 2023 Seite 39



Folie 68

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

| E5(CAD) | C—»A| (BAE)—-D | A»(BVC) | (BAA) = —E

[ay
[ury

JEG NN U I N i N S R R =R =R =E=] = == = E=R=R=R=T === S
HFRE R RS, RE S F 00000000 RRKHRERKHREKRHHOOOOOOOO | W
HHHRFHROOOORRERHRFHOOOORRRERPROODOORRRHROOOO|Q
—F_OoOO0ORFROORHROORROORHOORROORROORROO|T
—orro—~rOoOROHROROROROHRORORORORORORORO| M
HFEERERRRRRPRERERRRPROOOORF

1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0

FRF O OFROFRRFRERPOFRORORFRHOFROFRORREFRLORORO
e il e i e i e e i e e N e i e e B e B e B S S S S i o i e B e B e B SN CR Y

OHOFROROFHEFEPPEPOFHROOODOOOOOORHROHOOOOORKEOR|S

In der Wahrheitstafel sieht man:

e Es gibt kein Modell fiir ¢, bei dem in den mit A bis E beschrifteten
Spalten insgesamt 5 Einsen stehen.

e Es gibt genau zwei Modelle fiir ¢, bei denen in den mit A bis £
beschrifteten Spalten insgesamt 4 Einsen stehen, ndmlich die beiden
Interpretationen Z; und Z, mit

und

Die Antwort auf die Frage , Wie viele (und welche) Freunde werden
bestenfalls zur Party kommen?“ lautet also:

Bestenfalls werden 4 der 5 Freunde kommen, und dafiir gibt es zwei
Moglichkeiten, ndmlich

Version vom 16. Oktober 2023 Seite 40



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

(1) dass alle auler Bernd kommen, und

(2) dass alle aufler Eva kommen.

Erfillbarkeit, Allgemeingiiltigkeit und die Folgerungsbeziehung

Folie 69
Erfiillbarkeit

Definition 2.10.
Eine Formel ¢ € AL heif$t erfillbar, wenn es eine Interpretation gibt, die ¢
erfiillt.

Eine Formelmenge ® heif3t erfillbar, wenn es eine Interpretation Z gibt, die
O erfiillt (d.h. es gilt Z = ¢ fiir jedes p € P).

Eine Formel oder Formelmenge, die nicht erfiillbar ist, nennen wir
unerfillbar.

Beobachtung 2.11.

(a) Eine aussagenlogische Formel ist genau dann erfillbar, wenn in der
letzten Spalte ihrer Wahrheitstafel mindestens eine 1 steht.

(b) FEine endliche Formelmenge ® = {1,...,¢,} ist genau dann erfillbar,
wenn die Formel N._, ¢; erfillbar ist.

Beispiele:
e Die Formel X ist erfiillbar.

e Die Formel (X A—X) ist unerfiillbar.

Folie 70
Allgemeingiiltigkeit

Definition 2.12. Eine Formel ¢ € AL ist allgemeingiiltig, wenn jede
Interpretation Z die Formel ¢ erfiillt.

Bemerkung. Allgemeingiiltige Formeln nennt man auch Tautologien.

Version vom 16. Oktober 2023 Seite 41



Folie 71

Folie 72

Folie 73

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Man schreibt auch = ¢ um auszudriicken, dass ¢ allgemeingiiltig ist.

Beobachtung 2.13.
Eine aussagenlogische Formel ist genau dann allgemeingiiltig, wenn in der
letzten Spalte threr Wahrheitstafel nur len stehen.

Beispiel: Die Formel (X V —X) ist allgemeingiiltig.

Beispiel 2.14. Die Formel (X VY)A (=X VY) ist

e erfillbar, da z.B. die Interpretation Z mit Z(X) = 0 und Z(Y') = 1 die
Formel erfillt.

e nicht allgemeingiltig, da z.B. die Interpretation Z' mit Z'(X) = 0 und
Z'(Y) = 0 die Formel nicht erfiillt.

Die Folgerungsbeziehung

Definition 2.15. Eine Formel ¢/ € AL folgt aus einer Formelmenge & C AL
(wir schreiben: ® |= 1), wenn fiir jede Interpretation Z gilt: Wenn Z die
Formelmenge ® erfiillt, dann erfiillt Z auch die Formel .

Notation. Fiir zwei Formeln ¢, € AL schreiben wir kurz ¢ |= 1 an Stelle
von {p} = 1 und sagen, dass die Formel ¢ aus der Formel ¢ folgt.

Beispiel 2.16. Sei ¢ := (X VY)A (=X VY)) und
Y= (Y V(=X A-Y)).
Dann gilt ¢ = 1), aber es gilt nicht ¥ | ¢ (kurz: ¢ = @), denn:

X Y|(XVY)| (=XVY)]|p|v
0 0 0 1 01
0 1 1 1 1)1
1 0 1 0 00
11 1 1 1)1

Version vom 16. Oktober 2023 Seite 42



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

In jeder Zeile der Wahrheitstafel, in der in der mit ,,o“ beschrifteten Spalte
eine 1 steht, steht auch in der mit ,,30* beschrifteten Spalte eine 1. Somit

gilt p = 9.

Andererseits steht in Zeile 1 in der mit ,,3“ beschrifteten Spalte eine 1 und
in der mit ,;“ beschrifteten Spalte eine 0. Fiir die entsprechende
Interpretation Z (mit Z(X) = 0 und Z(Y") = 0) gilt also [¢]" = 1 und

[¢]” = 0. Daher gilt ¢ b~ ¢.

Folie 74

Beispiel 2.17. Fiir alle Formeln ¢, € AL gilt:

{e, (=)} E o

Dies folgt unmittelbar aus der Definition der Semantik:
Sei Z eine Interpretation mit Z = {¢, (¢ — v¥)}. Dann gilt:

(1) [¢]" =1 und

2) [(p = )" =1, dh. esgilt [¢]" =0 oder [¢]" = 1.
Da []" = 1 gemiB (1) gilt, folgt gemiB (2), dass [¢]" = 1.

Bemerkung. Man kann die Folgerungsbezichung {p, (¢ — )} E ¢ als
eine formale Schlussregel auffassen (dhnlich den Syllogismen in Kapitel 1):
Wenn ¢ und (¢ — 1) gelten, so muss auch 1) gelten.

Diese Regel, die unter dem Namen Modus Ponens bekannt ist, ist von
grundlegender Bedeutung in der Logik.

Folie 75

Zusammenhinge

Lemma 2.18 (Allgemeingiiltigkeit, Unerfiillbarkeit und Folgerung).
Fiir jede Formel ¢ € AL gilt:

(a) ¢ ist allgemeingiiltiy <= - ist unerfillbar <= 1 .

(b) ¢ ist unerfillbar <= ¢ 0.

Bewess.

Version vom 16. Oktober 2023 Seite 43



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

(a) Zur Erinnerung: Wir schreiben kurz ,, = ¢ um auszudriicken, dass die
Formel ¢ allgemeingiiltig ist. Es gilt:

E ¢ <= fir alle Interpretationen Z gilt: Z | ¢
<= fir alle Interpretationen Z gilt: Z [~ -
<= — ist unerfiillbar.

Auflerdem gilt:

1E ¢ <= fir alle Interpretationen Z mit Z =1 gilt: Z | ¢
<= fir alle Interpretationen Z gilt: Z = ¢
<= ¢ ist allgemeingiiltig.

(b) Es gilt:

@ ist unerfiillbar
<= fiir alle Interpretationen Z gilt: Z [~ ¢
<= fiir alle Interpretationen Z mit Z |= ¢ gilt: Z}=0
— pEo0.

Folie 76

Lemma 2.19 (Erfiillbarkeit und die Folgerungsbeziehung).
Fiir alle Formelmengen ® C AL und fiir alle Formeln ¢ € AL gilt:

Oy <  dU{w} st unerfillbar.

Beweis.

,—“ Es gelte ® |= 1. Sei T eine beliebige Interpretation. Unser Ziel ist,
zu zeigen, dass Z £~ & U {—v}.

Fall 1: T i ®.
Dann gilt insbesondere, dass Z = ® U {—)}.

Fall 2: T |= ©.
Wegen ¢ = 1) gilt dann Z = 1.
Somit gilt: Z = =), und daher auch Z = & U {—¢)}.

Version vom 16. Oktober 2023 Seite 44



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Damit gilt in jedem Fall, dass Z £ ® U {—¢}. Weil Z beliebig gewihlt
war, bedeutet dies, dass ® U {—#} unerfillbar ist.

<= Sei ® U {1} unerfillbar. Unser Ziel ist, zu zeigen, dass ® = 1.
Dazu sei Z eine beliebige Interpretation mit Z = ®. Wir miissen
zeigen, dass Z |= 1.

Da & U {—)} unerfiillbar ist, muss gelten: Z [~ —¢) (denn sonst wiirde
Z = U {1} gelten). Somit gilt Z |= 1.

O

Folie 77

Lemma 2.20 (Allgemeingiiltigkeit und die Folgerungsbeziehung).
(a) Fir jede Formel ¢ € AL gilt:
@ ist allgemeingiilli <= ¢ folgt aus der leeren Menge,

kurz:

Fe <= OFo

(b) Fiir jede Formel 1) € AL und jede endliche Formelmenge

=Y <= (p1 A Apn) = st allgemeingiiltig.

Beweis.

(a) Man beachte, dass fiir alle Interpretationen Z und fiir alle Formeln
Y € 0 gilt: Z |= . Daher gilt Z = ( fiir alle Interpretationen Z. Somit
erhalten wir:

) =¢ <= fir alle Interpretationen Z mit Z = 0 gilt: Z = ¢
<= fiir alle Interpretationen Z gilt: Z |= ¢
< ¢ ist allgemeingiiltig, d.h. [ ¢.

(b) ,=—“: Es gelte ® |= 1. Sei Z eine beliebige Interpretation. Unser Ziel
ist, zu zeigen, dass gilt: Z = (o1 A+ A p,) — 1.
Fall 1: TE®,dh. ZTE(p1 A App).
Wegen ¢ = 1) gilt dann auch: Z = 1.
Somit gilt auch: Z |= (o1 A ... A ) — 2.

Version vom 16. Oktober 2023 Seite 45



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Fall 2: T £ ®.
Dann gibt es ein ¢ € [n], so dass Z = ¢;.
Insbesondere gilt daher: Z & (o1 A -+ A n).
Also gilt: Z = (p1 A ... A wy) — 2.

<= Sei die Formel (p1 A...A¢,) — ¢ allgemeingiiltig. Wir
wollen zeigen, dass ® = 1 gilt.
Dazu sei Z eine beliebige Interpretation mit Z = ®. Ziel ist, zu
zeigen, dass Z = 1.
Wegen Z |= @ gilt: Z = (p1 A ... A y). Da die Formel
(p1 A ... Agy) — ¢ allgemeingiiltig ist, muss daher auch gelten:

T k= 4.

Folie 78

Bemerkung 2.21.
Aus den beiden vorigen Lemmas erhélt man leicht, dass fiir alle Formeln
v, € AL gilt:

v E1Y <<= (¢ — 1) ist allgemeingiiltig <= (¢ A =) ist unerfiillbar.
Beweis. Es sei ® := {p}. Gemaf Lemma 2.20 gilt:
b=y < (¢ — 1) ist allgemeingiiltig.

Somit gilt: ¢ Ev¥ <= (¢ — 1) ist allgemeingiiltig.

Auflerdem gilt geméf Lemma 2.19:
=y <— PU{} ist unerfiillbar.

Somit gilt: ¢ E1¥ <= (p A ) ist unerfiillbar.

Version vom 16. Oktober 2023 Seite 46



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

2.2 Aussagenlogische Modellierung
Beuspiel 1: Sudoku

Folie 79
Sudoku
3 5/3(ale|7[8)9|1]|2
1/9]|5 6|7]2|1]|9|5]|3|4a|s
9|8 6 1|9|s|3|alz]s5]|s6]|7
8 6 85|97 |6|1]a|2]|3
4 3 1 4|2|6fs|s|3|7]|9]1
2 711(3]|9|2(4]|8(|5]|6
6 218 9|le|1|s|z|7]|2|8|4
4111]9 5 2|e|7|a|1|9]6|3]|5
7 3|4 |5|2)8e|6)1l(7]9
Folie 80
Aussagenlogisches Modell
Koordinaten der Felder:
Feld (i,7) ist das Feld in Zeile ¢ und Spalte j.
Aussagensymbole:
Aussagensymbol P, ;, fiiri,j,k € [9], steht fiir die Aussage
,Das Feld mit den Koordinaten (7, j) enthélt die Zahl k.«
Interpretationen beschreiben also Beschriftungen des 9x9-Gitters.
Ziel:
Fiir jede Anfangsbeschriftung A eine Formelmenge ® 4, so dass fiir alle
Interpretationen Z gilt:
ITE®4 <= T beschreibt eine korrekte Losung.
Folie 81

Wir beschreiben zunéchst eine Formelmenge ® = {¢1,..., 5}, die die
Grundregeln des Spiels beschreibt.

Version vom 16. Oktober 2023 Seite 47



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Beschriftungen:
“Auf jedem Feld steht mindestens eine Zahl“:

9 9
AV Pk
ij=1 k=1

“Auf jedem Feld steht hochstens eine Zahl*:

9

9
/\ /\ ij:/\-PZJZ)
k=

ij=1
k E

Folie 82
Zeilen:
,Jede Zahl kommt in jeder Zeile vor*:
9 9 9
AN NV Pk
i=1 k=1 j=1
Spalten:
»Jede Zahl kommt in jeder Spalte vor*:
9 9
A NV P
j=1 k=1 i=1
Blocke:
,Jede Zahl kommt in jedem Block vor®:
2 9 3
/\ /\ \/ P3i+i’,3j+j’7k-
ij=0 k=1 i/ j'=1
Folie 83

Anfangsbeschriftung:
Sei A die Anfangsbeschriftung. Wir setzen

Oy = O U { P, i : Abeschriftet Feld (¢, j) mit der Zahl & }.

Version vom 16. Oktober 2023 Seite 48



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Automatische Losung von Sudokus:

Um ein Sudoku mit Anfangsbeschriftung A zu losen, konnen wir nun
einfach die Formel ¢4 := A 4, ¢ bilden und die Wahrheitstafel zu dieser
Formel aufstellen. Falls die Wahrheitstafel zeigt, dass 14 kein Modell
besitzt, so ist das Sudoku nicht l6sbar. Andernfalls kénnen wir ein
beliebiges Modell Z von 14 hernehmen und daran die Losung des Sudokus
ablesen: Fiir jedes Feld (i, j) gibt es gemé&fl unserer Konstruktion der Formel
14 genau eine Zahl k € [9], so dass Z(P; ;) = 1 ist. Diese Zahl k konnen
wir in Feld (¢, j) eintragen und erhalten damit eine Losung des Sudokus.

Beispiel 2: Automatische Hardwareverifikation
Digitale Schaltkreise

e Digitale Signale werden beschrieben durch 0 (,aus“) und 1 (,,ein®).

e Schaltelemente berechnen ein oder mehrere Ausgangssignale aus
einem oder mehreren Eingangssignalen. Das Ein-/Ausgabeverhalten
eines Schaltelements lédsst sich durch Wahrheitstafeln beschreiben.

Beispiel:

1

™)

By E |

jen)
OH»—A»—!&
DﬁOOO::b

BEIS
= =0 O
_ o

E, E

e Schaltkreise sind Kombinationen solcher Schaltelemente.

Beisprel:
AAr As Ay
E, By | Ay Ay A3 Ay
0 0 1 0 0 0
0 1 0 1 0 0
1 0 1 0 1 0
1 1 0 1 0 1

Formalisierung in der Aussagenlogik
Schaltelement:

Version vom 16. Oktober 2023 Seite 49



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

e Fiir jeden Ein- und Ausgang ein Aussagensymbol.

e Fiir jeden Ausgang eine Formel, die den Wert der Ausgangs in
Abhéngigkeit von den Eingéngen beschreibt.

Beispiel:
Aussagensymbole:
E, Ey | A A
A A2 01 02 ‘ 11 02 P1> p2> Ql? QZ
0 1 1 0
S 1 ol 1 o Formeln:
E E 1 1|0 1 Q1< ~(PL A P)
QQ <~ (Pl N PQ)
Schaltkreis:

e Fiir jeden Ein- und Ausgang ein Aussagensymbol,
sowie fiir jedes Schaltelement ein Sortiment von Aussagensymbolen.

e Formeln fiir die Schaltelemente und Formeln fiir die ,,Verdrahtung*.

Beispiel:
Aussagensymbole:

Py, Py, Qu, Q2, Q3, Qu,

P, By, QF, Q3

P B, QF Q3

Py, Py, Q1 Q5.
Formeln:

QY < ~(P' A Py),
Qs < (P A PY),

E1 EQ‘A] A2 A3 A4
SO B QT & ~(P" A PY),
1 0o]l1 o 1 o0 Q3 < (P" A PR,
1 10 1 0 1

QY < ~(PY A Fy),
Q5 < (PY A Fy),

Pi“(—)Pl, PQU’(—)PQ,
P" < P, P < QY
PP < P, P§ < QT
Q1+ Qf, Q2+ Q3,
Q3 < QF', Q4 < Q3.

Version vom 16. Oktober 2023 Seite 50



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Verifikation
Ziel:
Nachweis, dass der Schaltkreis eine gewisse Korrektheitsbedingung erfiillt.

Methode:

1. Beschreibe den Schaltkreis durch eine Menge ® von Formeln.
2. Formuliere die Korrektheitsbedingung als Formel .
3. Weise nach, dass ¢ aus ® folgt (bzw., dass ® U {—¢} unerfiillbar ist).

Bemerkung. Bei Bedarf kann die Korrektheitsbedingung insbesondere so
gewihlt werden, dass sie das gewiinschte Ein-/Ausgabeverhalten des
Schaltkreises vollstandig spezifiziert.

Beispiele fiir Korrektheitsbedingungen

Schaltkreis:

AjAy Az Ay

Einige Korrektheitsbedingungen:

e Bei jeder Eingabe ist mindestens eine Ausgabe 1:
@1V Q2VQ3V Qs
e Bei keiner Eingabe sind mehr als zwei Ausgaben 1:

=V (@AQiAQ

1<i<j<k<4

Vollstindige Spezifikation des Ein-/Ausgabeverhaltens:
(=PLA=P = QiA—Q2AN—Q3AN—Qy)

A (~PIAP = =QiAQaA—Q3A—Qy )
AN (PPA=P, = QiA—-QaAQsA—Qy )
A (PIAP, = ~QiAQ:A-QsAQy)

Version vom 16. Oktober 2023 Seite 51



Folie 84

Folie 85

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

2.3 Aquivalenz und Adiquatheit

Aquivalenz

Definition 2.22. Zwei Formeln ¢, € AL sind dquivalent (wir schreiben
¢ = 1), wenn sie von den selben Interpretationen erfiillt werden, d.h., wenn
fiir alle Interpretationen Z gilt: 7 |= ¢ <= 7 |=1.

Zwei Formelmengen ®, ¥ C AL sind dquivalent (wir schreiben & = V), wenn
sie von den selben Interpretationen erfiillt werden, d.h., wenn fiir alle
Interpretationen Z gilt: ZT =& «— 7} V.

Beobachtung 2.23.

(a) Zwei Formeln ¢, € AL sind genau dann dquivalent, wenn in den
letzten Spalten ihrer Wahrheitstafeln jeweils die gleichen Fintrdge
stehen.

(b) Fir endliche Formelmengen ® = {o1,...,0m}, ¥ ={¢1,...,¢¥,} CAL
gilt

=0 = Ng= Av
i=1 j=1

Beispiel:
Fiir alle X, Y € AS gilt: =(XVY) = (=X A=Y) und X = ——X.

Aquivalenz und Allgemeingiiltigkeit
Lemma 2.24. (a) Fir alle Formeln ¢, € AL gilt:

=19 — (p <> 1)) st allgemeingiiltig.

(b) Fiir alle ¢ € AL gilt:

Il
=

@ ist allgemeingiiltig —

AS)

Beweis.

Version vom 16. Oktober 2023 Seite 52



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

(a)
p =1 <= fiir alle Interpretationen Z gilt: (I EFe <— Tk w)
<= fiir alle Interpretationen Z gilt: Z = (¢ <> )
= F(ped)
(b)

E ¢ <= fiir alle Interpretationen Z gilt: Z | ¢
<= fiir alle Interpretationen Z gilt: (I EFy <<= TE 1)

— po=1
O
Folic 86
Fundamentale Aquivalenzen
Satz 2.25. Fir alle Formeln ¢, 1, x € AL gelten die folgenden
Aquivalenzen:
(a) Idempotenz:
(PAp) =9, (eVe) = o
(b) Kommutativitit:
(eAy) = (Wag),  (eVY) = (PVe)
(¢c) Assoziativitiit:
((eAg)Ax) = (AWAX) . (V) Vx) = (eV (VX))
(d) Absorption:
(eA(eVY) = ¢,  (pV(eAY) = ¢
Folic 87
(e) Distributivitit:
(en(@vx)) = (pA)V(eAX)),  (eV(YAX)) = ((eVE)A(eVX)).

Version vom 16. Oktober 2023 Seite 53



Folie 88

Folie 89

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

(f) Doppelte Negation:
Y = Q.

(g) De Morgansche Regeln:

(e AY) = (mpV ),  lpVy) = (me Ay,
(h) Tertium Non Datur:
(pA=p) =0, (pV—p) = 1.
(i)
(PAL) =, (pVO0) = o,
(pA0) = 0, (pV1) =1
§))
1 = -0, 0 = —1.

(k) Elimination der Implikation:
(p=9) = (mp V).

Beweis. Alle hier genannten Aquivalenzen kénnen leicht mit Hilfe der
Wahrheisttafelmethode iiberpriift werden.
Zum Beispiel die erste de Morgansche Regel:

~(eAg) = (V).
Wir berechnen dazu folgende Wahrheitstafeln:

e V] (eAY) | a(pAY) o ||| (e V)
0 0 0 1 0 0 1 | 1 1
0 1 0 1 0 1|10 1
10 0 1 1 0/ 0]1 1
11 1 0 1 11010 0

Die letzten Spalten der beiden Wahrheitstafeln sind gleich, also sind die
Formeln &quivalent.

Rest: Ubung.

Version vom 16. Oktober 2023 Seite b4



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Folie 90

Bemerkung. Durch schrittweises Anwenden der in Satz 2.25 aufgelisteten
Aquivalenzen kann man eine gegebene Formel in eine zu ihr dquivalente
Formel umformen.

Folie 91
Das Dualitétsprinzip

Definition 2.26. Sei ¢ € AL eine Formel, in der keine Implikationen
vorkommt.

Die zu ¢ duale Formel ist die Formel ¢ € AL, die aus ¢ entsteht, indem
man iiberall 0 durch 1, 1 durch 0, A durch V und V durch A ersetzt.

Beispiel. Fir o := ((A; A0)V =(AyV 1)) ist o = ((A; V1) A—(Ay A0)).

Satz 2.27 (Dualitidtssatz der Aussagenlogik).
Fiir alle Formeln p,v € AL, in denen keine Implikation vorkommdt, gilt:

o =Y = o = Y.

Wir werden den Dualitétssatz per Induktion iiber den Aufbau von Formeln

beweisen.
Folie 92

Beweise per Induktion iiber den Aufbau von Formeln

e Ahnlich wie wir Aussagen iiber die natiirlichen Zahlen durch
vollstdndige Induktion beweisen kénnen, konnen wir Aussagen iiber
Formeln per Induktion tber den Aufbau der Formeln beweisen.

e Im Induktionsanfang beweisen wir die Aussagen fiir die atomaren
Formeln, und im Induktionschritt schlieen wir von den Bestandteilen
einer Formel auf die Formel selbst.

e Dieses Vorgehen ist z.B. dadurch gerechtfertigt, dass es sich auch als
vollstdndige Induktion iiber die Hohe des Syntaxbaumes auffassen
lésst.

Version vom 16. Oktober 2023 Seite 55



Folie 93

Folie 94

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Schematisch sieht der Beweis einer Aussage A(yp) fiir alle Formeln ¢ € AL
wie folgt aus:

Induktionsanfang:
e Beweise A(0) und A(1).
e Beweise A(X) fiir alle X € AS.

Induktionsschritt:

Beweise A(—y) unter der Annahme, dass A(p) gilt.

Beweise A((¢ A ) unter der Annahme, dass A(p) und A(¢)) gelten.

(
Beweise A((¢ V ¢)) unter der Annahme, dass A(p) und A(¢)) gelten.
(

Beweise A((¢ — 1)) unter der Annahme, dass A(p) und A(v) gelten.

Um den Dualitétssatz zu beweisen benotigen wir zunéchst noch eine
Definition. Der Kern des Beweises steckt im darauf folgenden Lemma.

Definition 2.28. Sei Z eine Interpretation. Die zu Z duale Interpretation 7
ist definiert durch Z(X) := 1 — Z(X) fiir alle X € AS.

D.h. fiir alle Aussagensymbole X gilt:
~ 0, falls Z(X) =1
I(X) =
1, fallsZ(X) =0

Lemma 2.29. Fiir alle Formeln ¢ € AL, in denen keine Implikation
vorkommt, und alle Interpretationen L gilt:

IEG < IKe

Beweis von Lemma 2.29.

Sei Z eine beliebige Interpretation.

Per Induktion iiber den Aufbau von Formeln zeigen wir, dass fiir jedes
¢ € AL, in dem keine Implikation vorkommt gilt:

[21F = 1-[el"
Beachte: Dann gilt natiirlich auch: 7 = § <= T £ ¢.

Induktionsanfang:

Version vom 16. Oktober 2023 Seite 56



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

e Sei ¢ :=1. Dann ist ¢ = 0. Zu zeigen: [¢]F = 1— [[90]]%- Beweis:
[EF = [of =0=1-1=1-[1]F = 1-[g%

e Sei ¢ := 0. Dann ist ¢ = 1. Zu zeigen: [p]* = 1— [[(p]]f‘ Beweis:
EIF = NF =1 =1-0=1-[0]% = 1—[¢]"

e Sei p := X fiir ein X € AS. Dann ist X =X.
Zu zeigen: [@]F = 1 — [¢]*. Beweis:

[ = XTI = 7)) = 1-I(X) = 1-[XFF = 1-[4"
Induktionsschritt:
e Negation:
Gemif Induktionsannahme gilt: [3]* = 1— [¢]%.
Wir wollen zeigen, dass auch gilt: [5¢])% = 1 — [~¢]%.
Per Definition ist —p = —@. Damit gilt:

[F9) = [-9) = 1-[3F 5 1-0-[4F) = 1-[-¢]"

o Konjunktion:

GeméB Induktionsannahme gilt:

[P =1-[¢]* und [¢]F =1-[¥]%

Wir wollen zeigen, dass auch gilt: [[(m)]]I =1—[(eA w)]]f.
Per Definition ist (m) — (BVY).

Folgende Wahrheitstafel, bei der die 4. und 5. Spalte auf der B
Induktionsannahme beruht, zeigt, dass [(@ V)] = 1—[(¢ A¥)]*.

27 W1 | 1@V Ol || el W] | Lo A )]*
0 0 0 1 1

S O O

0 1
1 0
1 1

—_ = =

1 0
0 1
0 0

Die 3. und 6. Spalte zeigt, dass [(ZV )] =1 — [(p A¥)]E gilt.

Version vom 16. Oktober 2023 Seite 57



Folie 95

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

o Disjunktion:

Geméf Induktionsannahme gilt:

[ =1—[¢]* wnd [J]F =1-[¢]%.

P

Wir wollen zeigen, dass auch gilt: [(o V¢)]F = 1—[(pV¥)]%.

Per Definition ist (¢ V) = (p A ). Folgende Wahrheitstafel, bei der

die 4. und 5. Spalte auf der Induktionsannahme beruht, zeigt, dass

(@AY =1—=[(eV]*"

12 2 A ) el 2 W (AR D)
0 0 0 11 1
0 1 0 10 1
10 0 0 1 1
11 1 0 0 0

Die 3. und 6. Spalte zeigt, dass [(ZA )] =1 — [(p V)]E gilt.

o Implikation:

Hier ist nichts zu zeigen, weil das Lemma nur iiber Formeln ohne
Implikation spricht.

Beweis von Satz 2.27.
Seien , v € AL Formeln, in denen keine Implikation vorkommt.
Wir wollen zeigen, dass gilt: ¢ =9 <= ¢ =1).

=% Es gilt:!

p=1
=>  F.a. Interpretationen Z gilt: (f o «— Tk ¥)

Lemma, 2.29 -
—>

F.a. Interpretationen Z gilt: (Z £ ¢ <= T (£ 1)

—>  F.a. Interpretationen Z gilt: (Z =9 < T )

== P =1P.

"'Wir schreiben kurz ,f.a.“ als Abkiirzung fiir die Worte ,,fiir alle®

Version vom 16. Oktober 2023 Seite 58



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

=" Es gilt:

p =19 = @ =1  (andere Beweisrichtung)
—

= ¢ (weil 3=¢ und ¥ = ).

A
|

Folie 96
Funktionale Vollstindigkeit der Aussagenlogik

Im Folgenden bezeichnen wir als Wahrheitstafel eine Tabelle mit n+1
Spalten und 2" Zeilen, die fiir jedes Tupel (by,...,b,) € {0,1}™ genau eine
Zeile enthalt, deren erste n Eintrage by,...,0b, sind.

Satz 2.30 (Funktionale Vollsténdigkeit der Aussagenlogik).
Zu jeder Wahrheitstafel gibt es eine Formel o € AL mit dieser
Wahrheitstafel.

Mathematisch prézise lasst sich dieser Satzes wie folgt formulieren:

Fiir alle n € N gibt es zu jeder Funktion F': {0,1}" — {0,1} eine Formel
©(Ay, ..., A,) € AL, so dass fir alle (by, ..., b,) € {0,1}" gilt:

F(bl,,bn)zl <~ @[bl,,bn]zl

Definition 2.31. Funktionen F': {0,1}" — {0,1} (mit n» € N) nennt man
Boolesche Funktionen (der Stelligkeit n).

Bevor wir Satz 2.30 beweisen, betrachten wir zunéchst ein Beispiel.

Folie 97
Beispiel 2.32. Betrachte die Wahrheitstafel 7"

F(b17 b27 b3)
1

=
iy

=
[\

S
w

=0 OO0
__ O O = = OO
_— O =R Ok OO
SO OO O

Eine Formel ¢(A;, Ay, A3), so dass T die Wahrheitstafel fiir ¢ ist, kann man
folgendermaflen erzeugen:

Version vom 16. Oktober 2023 Seite 59



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

e Betrachte alle Zeilen von T', bei denen in der letzten Spalte eine 1%
steht.

e Fiir jede solche Zeile konstruiere eine Formel, die genau von der zu
der Zeile gehérenden Belegung von by, by, b3 erfiillt wird.

e Bilde die Disjunktion (d.h. die ,, Veroderung*) iiber all diese Formeln.
Dies liefert die gesuchte Formel .

Folie 98
In unserer Beispiel-Wahrheitstafel T" gibt es genau 3 Zeilen, bei denen in

der letzten Spalte eine ,,1“ steht, ndmlich die Zeilen

by by bs ‘ F(by, by, b3) zur jeweiligen Zeile gehorende Formel:

0 0 1 1 (mA; A=Ay N A3)
1 0 1 1 (AL A—Ay AN Az)

Insgesamt erhalten wir dadurch die zur Wahrheitstafel T' passende Formel

Y = (_'Al VAN _|A2 N _\Ag) V (_|A1 A _|A2 A Ag) V (Al A _|A2 A Ag)

Beweis von Satz 2.30.

Sei F: {0,1}" — {0,1}. Falls F(b) = 0 fiir alle b € {0, 1}, so setzen wir
o(Aq,..., A,) =0.

Im Folgenden betrachten wir also nur noch den Fall, dass es mindestens ein
b€ {0,1}" mit F(b) =1 gibt.

Fiir jedes i € [n] sei

)\i,l = Az und )\LO = _'Ai~
Fiir b= (by,...,b,) € {0,1}" sei
Yy = (A A A, )

Beispiel: Fiir n =3 und b = (0,1,0) ist Yo,1,0 = (DAL A Ay A —A3).
Dann gilt fiir alle ¢ = (cq,...,¢,) € {0,1}™

Ylel =1 = b=c¢

Version vom 16. Oktober 2023 Seite 60



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Nun sei

v =\ .

be{0,1}"

mit F(b)=1
Dann gilt fiir alle ¢ € {0, 1}™:
pld =1
<= Es gibt ein b € {0,1}" mit F(b) =1 und [c] =1
1 und b=¢

<= Es gibt ein b € {0,1}" mit F(b)

< F(¢c)=1.

Folie 99
Adiaquatheit

Satz 2.30 besagt, dass die Aussagenlogik AL die grofftmogliche
Ausdrucksstarke hat. Dafiir reichen allerdings schon , kleinere* Logiken, wie
wir im Folgenden sehen werden.

Definition 2.33. Sei 7 C {0,1,—, A, V, —}.

(a) AL(7) sei das Fragment der Logik AL, das aus den Formeln besteht, in
denen nur Junktoren und Konstanten aus 7 vorkommen.

(b) 7 heifit addquat, wenn jede Formel ¢ € AL dquivalent zu einer Formel in
AL(T) ist.

Beispiele 2.34.
(a) {—=,A}, {—=,Vv}, {0,—} sind adédquat.

(b) {A,V,—} ist nicht addquat.

Bewess.

(a) Die Addquatheit von {—, A} folgt leicht aus Satz 2.25 (h) (Tertium
Non Datur), (f) (doppelte Negation), (g) (De Morgan) und (k)
(Elimination der Implikation):

Version vom 16. Oktober 2023 Seite 61



Folie 100

Folie 101

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

e 0 = (XA-X), furjedes X € AS
e 1 = (XV-X), fiirjedes X € AS
e fiir alle Formeln ¢, gilt:

— (pVE) = (A )

= (p=9) = (b V).

Die Adédquatheit von {—,V} folgt aus der Addquatheit von {—, A}
und der Tatsache, dass fiir alle Formeln ¢, ¢ gilt:

(P AY) = =(-p V).

Die Adédquatheit von {0,—} folgt aus der Addquatheit von {—,V}
und der Beobachtung, dass fiir alle Formeln ¢, ¢ gilt:

o = (p—0) und (VYY) = (g =)
Details: Ubung.

(b) {A,V,—} ist nicht addquat, weil fiir alle Formeln
e(Xi,..., X)) € ALH{A, V, = }) gilt: ¢[1,...,1] =1 (dies kann man per
Induktion nach dem Formelaufbau leicht nachweisen; Details: Ubung).

[]

Andere Junktoren

e Die Auswahl der Junktoren =, A, V, — (und <> als Abkiirzung) fiir
yunsere aussagenlogische Sprache richtet sich nach dem
umgangssprachlichen Gebrauch und den Erfordernissen des formalen
Schlieflens, ist aber in gewisser Weise willkiirlich.

e Durch Festlegung ihrer Wahrheitstafeln konnen wir auch andere
Junktoren definieren und erhalten daraus andere aussagenlogische
Sprachen.

e Fiir jede Menge 7 von so definierten Junktoren und den boolschen
Konstanten (die wir als ,nullstellige* Junktoren auffassen konnen) sei
AL(7) die daraus gebildete aussagenlogische Sprache.

e Satz 2.30 besagt dann, dass jede Formel in AL(7) zu einer Formel in
AL &dquivalent ist. Gilt die Umkehrung ebenfalls, so bezeichnen wir 7
als addquat.

Version vom 16. Oktober 2023 Seite 62



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Beispiele 1: Exklusives Oder

Der 2-stellige Junktor & sei definiert durch

¢ Y| (pD)
0 0 0
0 1 1
1 0 1
11 0

Intuitiv bedeutet (¢ ® 1) , entweder ¢ oder V.
Man nennt @ auch ezklusives Oder.

Folie 102
Der dreistellige Mehrheitsjunktor
Der 3-stellige Junktor M sei definiert durch
¢ Y x| M(p,v¥,x)
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
Intuitiv ist M (¢, ¥, x) also genau dann wahr, wenn mindestens zwei (also
die Mehrheit) der Formeln ¢, v, y wahr sind.
Folie 103

NAND

Der folgende zweistellige Junktor ist bekannt als NAND-Gatter (not-and)
oder Sheffer-Strich:

(plv)
1

— - O OIS
—_ O = O

1
1
0

Version vom 16. Oktober 2023 Seite 63



Folie 104

Folie 105

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Satz 2.35. {|} ist addquat.

Beweis. Man kann sich leicht davon iiberzeugen, dass fiir alle Formeln ¢, ¥
gilt:

e = (ply) wd  (pAY) = =(e]Y)
Details: Ubung. O

2.4 Normalformen

Vereinfachende Annahme

In diesem Abschnitt betrachten wir nur Formeln in AL({—, V, A}).

Rechtfertigung
Die Annahme bedeutet keine wesentliche Einschriankung, weil die Menge
{—, VvV, A} adédquat ist.

NNF

Definition 2.36. Eine Formel ist in Negationsnormalform (NNF), wenn sie
zu AL({—, A, V}) gehort und Negationszeichen nur unmittelbar vor
Aussagensymbolen auftreten.

Satz 2.37. Jede aussagenlogische Formel ist dquivalent zu einer Formel in
NNF.

Beweis. Da AL({—, A, V}) adéquat ist, geniigt es, an Stelle von AL nur
AL({—, A, V}) zu betrachten.

Per Induktion {iber den Aufbau definieren wir zu jedem ¢ € AL({—, A, V})
zwei Formeln ¢’ und ¢” in NNF, so dass gilt:

"

po=¢ und -p=" (%)

Induktionsanfang:

Version vom 16. Oktober 2023 Seite 64



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Falls ¢ = X fiir ein X € AS: Setze ¢’ :=X und ¢" :=-X.
Dann gilt (x) offensichtlicherweise.

Induktionsschritt:

Falls ¢ = = fiir eine Formel ¢: Setze ¢' := 4" und ¢" =)'
Dann folgt () unmittelbar aus der Induktionsannahme.

Falls o = (1 ANbo)  fiir Formeln 11,1
Setze ¢ := (Y AY,) und ¢" = (Y] VYY).
Geméf Induktionsannahme gilt ¢y = 9} und 1y = ¢4, und daher
gilt auch ¢ = ¢'.
AuBerdem gilt geméfl Induktionsannahme, dass —; = v¢] und
—hy = 5. Daher gilt auch:

—p = (=1 V —thg) (De Morgan)
= (Y] Vi) (Induktionsannahme)

Also gilt (%).

Falls @ = (1 Vo)  fiir Formeln 1y,1s:
Setze ¢’ = (1 V¢y) und @ = (P A3).
Ahnlich wie im Fall, dass ¢ = (1 A 1)), lisst sich zeigen, dass
(%) gilt.

Die Formeln ¢’ und ¢” sind in NNF, weil Negationszeichen nur im
Induktionsanfang verwendet werden und dort unmittelbar vor einem
Aussagensymbol stehen. O

Folie 106
Ein NNF-Algorithmus
Eingabe: Formel ¢ € AL({—, A, V}).
Ausgabe: Formel ¢’ in NNF

Verfahren:

1. Wiederhole folgende Schritte:

2. Wenn ¢ in NNF ist, dann halte mit
Ausgabe .

Version vom 16. Oktober 2023 Seite 65



Folie 107

Folie 108

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

3. Ersetze eine Subformel von ¢ der Gestalt

= (1 A hg) durch (=9 V =)

oder eine Subformel der Gestalt

(11 V 1bp) durch (=i A —y)

oder eine Subformel der Gestalt
== durch .

Sei ¢ die resultierende Formel.

4. p:=¢.

Korrektheit des NNF-Algorithmus

Satz 2.38. Fiir jede Eingabeformel ¢ € AL({—, A, V}) gibt der
NNF-Algorithmus nach endlich vielen Schritten eine zu ¢ dquivalente
Formel ¢’ in NNF aus.

(hier ohne Beweis)

Bemerkung. Unter Verwendung geeigneter Datenstrukturen lésst sich der
NNF-Algorithmus mit linearer Laufzeit implementieren, d.h., Laufzeit O(n)
bei Eingabe einer Formel der Lénge n.

Beispiel 2.39.
Das Ziel ist, die Formel <<ﬂA0 A=((Ag V Ar) — Ao)) — O)

in NNF zu bringen, d.h. eine zu ihr dquivalente Formel in NNF zu finden.
Losung: Wir ersetzen zunéchst die Konstanten 0 und 1 sowie alle

Implikationspfeile durch geeignete Formeln aus AL({—, A, V}) und wenden
dann den NNF-Algorithmus an. Der Teil einer Formel, der als Néachstes

Version vom 16. Oktober 2023 Seite 66



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

ersetzt wird, ist im Folgenden jeweils unterstrichen.

((ﬂAO A=((AoV Ay) — AO)) = Q)
(=40 A= ((A0 v A1) = Ag) ) = (A9 A=Ay))

)
)

=2 Ag Voo (—(Ag V Ay) Vv Ao)) V (4o A ﬁAo))

—Ag A= ((Ag V A1) = Ao)) (Ag A —Ao)

(
(-
= (=(~40 A ~(~(40 v A1)V Ag) ) v (Ao A Ay
(
(

AV (:(Ao V Al) V A0)> V (AO A —\A0)>

((Ao V ((~Ag A=Ay v AO)) V (Ao A ﬁA0)>.

Diese Formel ist offensichtlicherweise in NNF.

Folie 109
Klammern bei Konjunktionen und Disjunktionen

Weil A assoziativ ist, kénnen wir Formeln der Gestalt A, ¢; etwas
grofiziigiger interpretieren. Von nun an stehe A, ¢; fir o1 A--- A,
mit irgendeiner Klammerung.

Entsprechend verfahren wir mit Disjunktionen.

Beispiel. Die Formel /\f:1 ©; kann fiir jede der folgenden Formeln stehen:

(((1 A @2) Aps) Apa)
((p1 A (02 A ps)) Apa)
(o1 Ap2) A (o3 Apa))
(1 A ((2 A p3) Apa))
( )

©1 A (02 A (03 A @a))

Folie 110

Version vom 16. Oktober 2023 Seite 67



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

DNF und KNF

Definition 2.40.

(a) Ein Literal ist eine Formel der Gestalt X oder =X, wobei X € AS.

Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von
einem negativen Literal.

(b) Eine Formel ist in disjunktiver Normalform (DNF), wenn sie eine
Disjunktion von Konjunktionen von Literalen ist, d.h., wenn sie die

Form . s
V(A
i=1 = j=1

hat, wobei n,my,...,m, > 1 sind und die \; ; fiir alle ¢ € [n| und
J € [m;] Literale sind.

Die Subformeln x; := A, Ai;, fiir i € [n], nennen wir die
(konjunktiven) Klauseln der Formel.

Beispiele:
® (Al VAN _‘A2 N Ag) V (_|A2 VAN _|A3) V (A2 A Al) ist in DNF

o AV —-AyV Az ist in DNF (mit n =3 und my = my = mg = 1)

o Ay A=Ay AN Az ist in DNF (mit n =1 und m; = 3) und
gleichzeitig ist diese Formel eine konjunktive Klausel

Folie 111

(c) Eine Formel ist in konjunktiver Normalform (KNF'), wenn sie eine
Konjunktion von Disjunktion von Literalen ist, d.h., wenn sie die Form

A(VA)
i=1 = j=1

hat, wobei n,ms,...,m, > 1 sind und die \; ; fiir alle i € [n] und
j € [m;] Literale sind.

Die Subformeln #; := \/J; Aij, fiir i € [n], nennen wir die
(disjunktiven) Klauseln der Formel.

Beispiele:
[ (Al vV _\A2 V Ag) A (_\AQ V _\A3) A\ (AQ V Al) ist in KNF

Version vom 16. Oktober 2023 Seite 68



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

e AV —-AyV Az ist in KNF (mit n = 1 und my = 3) und
gleichzeitig ist diese Formel eine disjunktive Klausel

o A A=Ay A As ist in KNF (mit n = 3 und m; = mg =mg = 1)

Folie 112
Normalformen spielen in vielen Anwendungsgebieten eine wichtige Rolle.

Beispielsweise geht man in der Schaltungstechnik (Hardware-Entwurf) oft
von DNF-Formeln aus, wihrend bei der aussagenlogischen Modellbildung
oftmals KNF-Formeln auftreten, da sich eine Sammlung von einfach
strukturierten Aussagen sehr gut durch eine Konjunktion von Klauseln
ausdriicken l&sst.

Folie 113

Satz 2.41. Jede aussagenlogische Formel ist dquivalent zu einer Formel in
DNF und zu einer Formel in KNF.

Beweis. Sei 1 eine Formel.

DNF: Falls ¢ unerfiillbar ist, so ist ¢ = X A =X (fir jedes X € AS). Die
Formel X A —X ist sowohl in KNF als auch in DNF.

Falls ¢ erfiillbar ist, so liefert der Beweis von Satz 2.30, angewendet
auf die Wahrheitstafel von ¢ (bzw. die von 1 berechnete boolesche
Funktion), eine zu v dquivalente Formel in DNF (Details: Ubung).

KNF: Sei {ﬁv die zu ¢ duale Formel. Man beachte, dass {/; = ).

Sei ¢ eine zu @Z aquivalente Formel in DNF' (dass es eine solche
Formel gibt, haben wir gerade bereits gezeigt), und sei ¢ die zu ¢
duale Formel. Dann ist ¢ offensichtlicherweise in KNF. Und da

Y=g

ist, gilt gemédB dem Dualitétssatz der Aussagenlogik (Satz 2.27), dass

Wegen 1; = 1) ist ¢ also dquivalent zur KNF-Formel ¢.

Version vom 16. Oktober 2023 Seite 69



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Folie 114
Bemerkung 2.42. Der Beweis von Satz 2.41 zeigt Folgendes:
Um fiir eine gegebene Formel ¢ eine dquivalente Formel ¢ in
e DNF zu erzeugen, konnen wir die Wahrheitstafel fiir ¢ aufstellen und
dann wie in Beispiel 2.32 vorgehen (bzw. ¢ := A; A =A; setzen, falls
¢ unerfiillbar ist).
e KNF zu erzeugen, kénnen wir wie folgt vorgehen:
(1) Stelle die Wahrheitstafel fiir ¢ auf.
(2) Falls in der letzten Spalte nur ,,1“en stehen, setze ¢ := Ay VA;.
(3) Ansonsten gehe wie folgt vor:

— Betrachte alle Zeilen der Wahrheitstafel, bei denen in der
letzten Spalte eine ,,0“ steht.

— Fiir jede solche Zeile konstruiere die disjunktive Klausel, die
von allen Interpretationen aufler der zur Zeile gehérenden
erfiillt wird.

Beispiel: Wenn die Zeile der Wahrheitstafel die Form
011]0
hat, so gehort dazu die disjunktive Klausel
Al V ﬂAQ V ﬁAg.
— Bilde die Konjunktion all dieser disjunktiven Klauseln.
Dies liefert die gesuchte KNF-Formel .
Folie 115
Wenn eine Formel sehr viele verschiedene Aussagensymbole enthilt, die zur
Formel gehorige Wahrheitstafel also sehr grof} ist, ist das gerade
beschriebene Verfahren zur Umformung in DNF oder KNF sehr
zeitaufwindig. In solchen Féllen ist es ratsam, stattdessen zu versuchen, die
gewiinschte Normalform durch Aquivalenzumformungen zu erzeugen.
Folie 116

Version vom 16. Oktober 2023 Seite 70



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Beispiel 2.43. Sei Q= <<_\A0 AN (AO — A1)> V (AQ — Ag))

Transformation von ¢ in NNF":

(407 (Ao = AN)V(As = A5)) = (240 A (Ap V A1) V (242 v Ag) ).

[\

~~
/

Transformation in DNF:

Wir betrachten die NNF-Formel

o = ((cA A AV A)) V (~Ar v Ay)).

und wenden die Distributivitétsregel (Satz 2.25(e)) auf die
unterstrichene Subformel von ¢ an. Dies liefert die Formel

o = (((ﬂAOAﬂAO)v(ﬂAOAAl))v(ﬂAQ\/&)).

Diese Formel ist in DNF (die einzelnen konjunktiven Klauseln
sind jeweils unterstrichen).

Transformation in KNF:

Wir betrachten die NNF-Formel
QDI = <<_‘A0 N (_\A() V Al)) M (_|A2 V A3)>

und wenden die Distributivitétsregel (Satz 2.25(e)) auf den
unterstrichenen Teil der Formel ¢’ an. Dies liefert die Formel

/!

o= ((ﬁAO V (743 V A3)) A ((=Ag V Ap) V (= Ay V A3))>.

Dies ist eine KNF-Formel (die einzelnen disjunktiven Klauseln
sind jeweils unterstrichen).

Je nach Formel muss man ggf. die Distributivitédtsregel mehrmals
anwenden, bis man eine Formel der gewiinschten Normalform erhélt.

Folie 117

Version vom 16. Oktober 2023 Seite 71



Folie 118

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Ein DNF-Algorithmus

Eingabe: Formel ¢ € AL({—, A, V}) in NNF.
Ausgabe: Formel ¢” in DNF

Verfahren:

1. Wiederhole folgende Schritte:

2. Wenn ¢ in DNF ist, dann halte mit
Ausgabe .

3. Ersetze eine Subformel von ¢ der Gestalt

(1 A (P2 V 4bg)) durch ((¢1 Abg) V (Y1 Aahs))

oder eine Subformel der Gestalt

((¥1 Vab2) Atbz) durch (1 A tbz) V (2 A 93)).

Sei ¢ die resultierende Formel.
4. 0=

Satz 2.44. Fir jede Eingabeformel ¢ in NNF gibt der DNF-Algorithmus
nach endlich vielen Schritten eine zu ¢ dquivalente Formel " in DNF aus.

(hier ohne Beweis)

Analog kann man auch einen ,, KNF-Algorithmus“ angeben, der bei Eingabe
einer NNF-Formel eine dquivalente Formel in KNF erzeugt (Details:
Ubung).

Eine kleine Formel mit grofler DNF

Die Transformation einer Formel in eine dquivalente DNF- oder
KNF-Formel kann u.U. allerdings sehr lang dauern, da es einige Formeln
gibt, zu denen dquivalente DNF-Formeln zwangsldufig sehr grofl sind. Dies
wird durch den folgenden Satz prézisiert.

Satz 2.45. Sein € N mitn > 1, seiten Xq,..., X, und Yy,...,Y, genau 2n
verschiedene Aussagensymbole und sei

/n\X\/ﬂY

Jede zu @, dquivalente Formel in DNF hat mindestens 2" konjunktive
Klauseln.

Version vom 16. Oktober 2023 Seite 72



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Beweis: Ubung

Korollar 2.46. Jeder Algorithmus, der bei Eingabe von beliebigen
aussagenlogischen Formeln dazu dquivalente Formeln in DNF' erzeugt, hat
eine Laufzeit, die im worst-case exponentiell ist, d.h., 2™ bei Eingabe von
Formeln der Lénge n.

2.5 Der Endlichkeitssatz

Folie 119
Der Endlichkeitssatz (auch bekannt als Kompaktheitssatz)

Um nachzuweisen, dass eine gegebene unendliche Formelmenge erfiillbar
ist, ist der folgende Satz sehr niitzlich.

Satz 2.47 (Der Endlichkeitssatz der Aussagenlogik).

(a) Fliir jede Formelmenge ® C AL gilt:
O ist erfillbar <= Jede endliche Teilmenge von ® ist erfillbar.
(b) Fiir alle ® C AL und ¢ € AL gilt:

d =1y <= FEs gibt eine endliche Teilmenge T von ®, so dass T |= .

Beweis von (b) unter Verwendung von (a):
Es gilt

¢ =1 < DU {1} ist unerfillbar (Lemma 2.19)

<= es gibt eine endliche Teilmenge (Endlichkeitssatz)

I' von @, so dass
I'U {—%} unerfiillbar ist

<= es gibt eine endliche Teilmenge (Lemma 2.19).
[ von @, so dass I' =1

Version vom 16. Oktober 2023 Seite 73



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Beweis von Satz 2.47(a).
Die Richtung ,,=—* ist offensichtlich, denn eine Interpretation, die ®
erfiillt, erfiillt auch jede Teilmenge von ®.

Fiir die Richtung ,,<=" sei jede endliche Teilmenge von & erfiillbar.
Ziel ist, zu zeigen, dass es eine Interpretation gibt, die alle Formeln in ®
erfiillt.

Zunéchst definieren wir dazu rekursiv fiir alle ¢ € N eine Menge ¥,;. Wir
starten mit ¥y := ® und wéhlen fiir alle : € N die Menge W;,; wie folgt
(zur Erinnerung: AS = {Ay, A1, As,...}):

e Falls jede endliche Teilmenge von ¥; U {A;} erfiillbar ist, so setze
Ui =W U {A},

e ansonsten, falls jede endliche Teilmenge von W; U {—A;} erfiillbar ist,
setze \Iflqu = \Ilz U {ﬁAi},

e ansonsten setze W;, := ;.

Sei weiterhin

Offensichtlicherweise gilt

¢ =V, C ¥ C Uy C U3 C .- C VW

Behauptung 1.
Fiir jedes i € N gilt: Jede endliche Teilmenge von W; ist erfiillbar.

Beweis. Per Induktion nach <.

1 =0: Es gilt ¥g = ®, und nach Voraussetzung ist jede endliche
Teilmenge von @ erfiillbar.

i — i+1: Falls ¥, ; = U, so ist geméfB Induktionsannahme jede
endliche Teilmenge von W, erfiillbar. Ansonsten ist per Definition
von V¥, jede endliche Teilmenge von W, erfiillbar. Ogen. 1

Behauptung 2.
Jede endliche Teilmenge von V ist erfiillbar.

Beweis. Jede endliche Teilmenge von W ist in einem W, (fiir ein i € N)
enthalten und daher geméfi Behauptung 1 erfiillbar. OBen.2

Version vom 16. Oktober 2023 Seite 74



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Behauptung 3.
Fiir jedes n € N gilt: A, € ¥ oder —A,, € ¥ (aber nicht beides, weil gemaf
Behauptung 2 jede endliche Teilmenge von ¥ erfiillbar ist).

Beweis. Angenommen, die Behauptung ist falsch. Dann gibt es ein n € N,
so dass weder A,, noch = A,, zur Menge ¥ gehort.

Gemiéf der Definition der Mengen ¥ und ¥, fiir 7 € N gilt dann: A, &€ ¥, 4
und —A,, € ¥, ;. Daher gibt es geméfl der Definition von ¥, also
endliche Teilmengen I'y und I'_ von W,,, so dass weder I'y U {4, } noch
I'_U{-A,} erfiillbar ist.

Weil I';, UT'_ eine endliche Teilmenge von W, ist, ist 'y UT'_ gemé&f
Behauptung 1 erfiillbar. Sei also Z ein Modell von I'y UT'_. Falls Z(4,,) = 1,
sogilt Z =T, U{A,}. Falls Z(A,) =0, so gilt Z = T'_ U {=A,}. Also ist
doch eine der beiden Mengen erfiillbar. Widerspruch. OBen.s

GeméB Behauptung 3 kénnen wir nun eine Interpretation Z : AS — {0, 1}
definieren, indem wir fiir alle i € N setzen:

I(A) L 1 falls AiE\I’,
Y10 falls —A; € 0.

Behauptung 4.
TEV.

Beweis. Angenommen, die Behauptung ist falsch. Dann gibt es eine Formel
1 € WU, so dass Z [~ ¢. Wihle n € N so, dass in ¢ nur Aussagensymbole aus
{Ap, Ay, ..., Ay} vorkommen. Fiir : € {0,1,...,n} sei p; :== A, falls A; € U,
und ¢; := —A; falls = A; € V. Dann ist I' := {¢, o, ¢1,...,on} eine
endliche Teilmenge von ¥ und daher geméfl Behauptung 2 erfiillbar. Sei J
also ein Modell von I'. Fiir jedes i € {0,1,...,n} gilt J = ¢;, und daher
J(A;) =Z(A;). Wegen J = ¢ folgt aus dem Koinzidenzlemma, dass

7 | . Widerspruch. Open.y
Geméif Behauptung 4 ist Z ein Modell von ¥ und wegen & C ¥ auch ein
Modell von ®. Daher ist ® erfiillbar. O
Folie 120

Anwendung: Farbbarkeit
Definition:

Version vom 16. Oktober 2023 Seite 75



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

e Ein (ungerichteter) Graph G = (V, E) besteht aus einer nicht-leeren
Menge V und einer Menge E C {{z,y} : 2,y € V, z #y}. Die
Elemente in V' werden Knoten und die Elemente in £ werden
(ungerichtete) Kanten genannt. Zwei Knoten z,y € V' heiflen
benachbart, wenn {z,y} € E.

e Ein Subgraph eines Graphen G = (V| E) ist ein Graph H = (V' E')
mit V' CV und E' C E.

e Ein Graph G = (V, E) heifit endlich (bzw. unendlich), wenn seine
Knotenmenge V' endlich (bzw. unendlich) ist.

Beispiel:
o G :=(V, Ey) mit
Vi={a,b,c,d} und E;={{a,b},{b,c} {c,d} {a,c}}
ist ein Graph. Dieser Graph ist endlich. Die Knoten a und ¢ sind

benachbart, die Knoten a und d sind nicht benachbart.

Graphen werden i.d.R. dadurch illustriert, dass man die einzelnen
Knoten als Punkte und die Kanten als Linien zwischen den Punkten
zeichnet.

Skizze: a E b
& c

(] G2 = (‘/Q,EQ) mit ‘/2 = N und
Ey :={{x,y} : z,y € Noy, £y, esgibt ein z € Ny; s.d. y = z-2}

ist ein Graph. Dieser Graph ist unendlich. Der Knoten 0 ist mit
keinem Knoten benachbart. Der Knoten 2 ist mit allen Knoten n # 2
benachbart, fiir die gilt: n # 0 und n ist eine gerade Zahl.

Definition 2.48. Sei k € N mit k > 1.

Eine k-Fdirbung eines Graphen G = (V| E) ist eine Abbildung f : V — [k,
so dass fiir alle Kanten {v,w} € F gilt: f(v) # f(w).

G heifit k-farbbar, falls es eine k-Farbung von G gibt.

Version vom 16. Oktober 2023 Seite 76



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Beispiel:

e Der Graph G ist nicht 2-fiarbbar. Aber er ist 3-fiarbbar; beispielsweise
ist die Abbildung f : Vi — {1,2,3} mit f(a) = f(d) =1, f(b) =2 und
f(c) = 3 eine 3-Férbung von Gj.

Skizze: a b 0 %A
D22
& c 0 23

o Fiir alle & € Ny gilt: G, ist nicht k-farbbar.
Beweis: Ubung!

Satz 2.49. Set ke Nmitk > 1.
FEin unendlicher Graph G mit Knotenmenge N st genau dann k-farbbar,
wenn jeder endliche Subgraph von G k-firbbar ist.

Beweis. Sei k € Nmit k> 1 und sei G = (V, E) ein unendlicher Graph mit
Knotenmenge V' = N.

Zum Beweis des Satzes bilden wir ein aussagenlogisches Modell und wenden
den Endlichkeitssatz an. Wir betrachten dazu

e Aussagensymbole X, ; fiir alle v € V und ¢ € [k], die besagen:
,Knoten v erhélt Farbe 7.

e fiir jeden Knoten v € V' eine Formel

Py = \/ (Xv,i A /\_‘Xv,j))

i€[k] j_ei&]
JF

die besagt: ,, Knoten v erhélt genau eine Farbe.
e fiir jede Kante {v,w} € E eine Formel

k
2b{v,w} = /\ _'(Xv,i A Xw,i)a

=1

die besagt: ,,Benachbarte Knoten erhalten verschiedene Farben.*

Version vom 16. Oktober 2023 Seite 77



Folie 121

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Fiir jeden Subgraphen H = (V’, E’) von G sei
Py = {p, :veV'} U {Ypuwy  {v,w}eE}
Man sieht leicht, dass gilt:
Oy ist erfiillbar <= H ist k-farbbar. (2.1)

Falls H endlich ist, so ist auch ®y endlich. Aulerdem gibt es fiir jede
endliche Teilmenge I" von @ einen endlichen Subgraphen H von G, so dass
I' C &y. Daher gilt:

Fiir jeden endlichen Sub-

liche Teil
Jede endliche Teilmenge graphen H von G ist @y  (2.2)

von @ ist erfillbar.

erfiillbar.
Insgesamt erhalten wir:

G ist k-farbar

< &g ist erfiillbar (2.1)

<= jede endliche Teilmenge von ®q (Endlichkeitssatz)
ist erfiillbar

<= fiir jeden endlichen Subgraphen (2.2)
H von G ist ®g erfiillbar

<= jeder endliche Subgraph H von G (2.1).

ist k-farbbar

2.6 Resolution

Um nachzuweisen, dass eine gegebene KNF-Formel unerfillbar ist, ist das
im Folgenden vorgestellte Resolutionsverfahren niitzlich.

Beispiel 2.50. Wir wollen nachweisen, dass die KNF-Formel
@:=(PV-R)A(PV-R)A(-QVS)A(QVRVT)A-T A (~SVR)

unerfillbar ist. Dazu kénnen wir wie folgt argumentieren:

Angenommen, eine Interpretation Z erfiillt ¢.
e Dann gilt Z = —T.
e Aus TEQVRVT und 7= —T folgt dann 7 |=Q V R.

Version vom 16. Oktober 2023 Seite 78



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

e Aus TEQVR und ZTE=-QV S folgt ZTE=RVS.
e Aus ZERVS und ZTE-SVR folgt 7} R.

e Aus ZEE—-PV-R und Z | PV -R folgt Tk —-R.
Das ist ein Widerspruch. Somit ist ¢ nicht erfiillbar.

Folie 122

Umwandlung in kleine KNF-Formeln

Das Resolutionsverfahren, das wir im Folgenden vorstellen, funktioniert nur
fiir KNF-Formeln.

Wir wissen bereits:
e 7u jeder Formel ¢ gibt es eine dquivalente Formel in KNF'.

e Aber moglicherweise ist die kleinste zu ¢ dquivalente KNF-Formel
exponentiell grof} in der Grofle von .

Wenn es uns nur um die Frage geht, ob eine Formel ¢ (un)erfillbar ist, ist
es aber auch gar nicht notig, eine zu ¢ dquivalente KNF-Formel zu finden.

Es reicht, eine zu ¢ erfillbarkeitsiquivalente KNF-Formel zu konstruieren.

Definition 2.51. Zwei Formeln ¢ und v heilen erfillbarkeitsiquivalent,
falls gilt:

@ ist erfiillbar <= 4 ist erfiillbar.

Folie 123
Eine beliebige Formel in eine erfillbarkeitsiquivalente KNF-Formel

umzuwandeln, ist in Linearzeit mdoglich.
Beispiel 2.52. Um die Formel
p = (P=-Q) VvV (~(PANQ) AN R)

in eine erfiillbarkeitsdquivalente KNF-Formel umzuformen, konnen wir wie
folgt vorgehen.

Version vom 16. Oktober 2023 Seite 79



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

1. Schritt: Wir listen alle Subformeln von ¢ auf, die keine Literale sind:

o= (P=-Q)V (~(PAQ) AR).
—r S——
1 wdh;
R—

Fiir jede Subformel ¢ von ¢ sei Xy, ein neues Aussagensymbol, das
die Aussage ,die Subformel 1 ist wahr® reprasentiert.

Wir wahlen
o= X,
N (X o (X, VX)) (da o = (¥ V¢))
AN ( Xy & (P—=-Q)) (da ¥ = (P — =Q))
A (Xy, & (Xyy AR)) (da 1y = (13 A R))
A (X¢3 A _'Xw) (da g = _‘7704)
N (X o (PAQ)) (da 4= (PAQ))

Man sieht leicht, dass gilt:

@ ist erfiillbar <= ¢ ist erfiillbar.

2. Schritt: Die im 1. Schritt konstruierte Formel ¢’ ist eine Konjunktion
von Teilformeln mit jeweils hochstens 3 Aussagensymbolen. Wir
wandeln jetzt jede dieser Teilformeln in eine dquivalente KNF-Formel
um und erhalten damit auch insgesamt eine zu ¢’ dquivalente
KNF-Formel

Vg = X,
AN (X V Xy VXy,) A (XpVaXy) A (XyV—Xy,)
AN (mXy, VPV =Q) A (PVXy) A (QVXy,)
AN (X V Xy) A (nXy, VR) A (Xy, VRV Xy,)
A (X Vo Xy) A (X, vV Xy
AN (mXp, VP) A (= Xy, VQ) A (2P V-QV Xy,).

Da ¢k dquivalent zu ¢’ und ¢’ erfiillbarkeitsaquivalent zu ¢ ist, ist
insgesamt @y erfiillbarkeitsdquivalent zu .

Folie 124

Version vom 16. Oktober 2023 Seite 80



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Das Tseitin-Verfahren

Auf die gleiche Weise wie in Beispiel 2.52 kénnen wir jede beliebige
aussagenlogische Formel in eine erfiillbarkeitsdquivalente KNF-Formel
umwandeln. Dieses Verfahren wird Tseitin- Verfahren genannt. Eine
Laufzeitanalyse zeigt, dass das Tseitin-Verfahren in Linearzeit durchgefiihrt
werden kann. Insgesamt erhalten wir so den folgenden Satz.

Satz 2.53. Zu jeder aussagenlogischen Formel ¢ gibt es eine
aussagenlogische Formel o mit folgenden Eigenschaften:

(a) gk ist erfillbarkeitsiquivalent zu .

(b) vk ist in 3-KNF, d.h., in KNF, wobei jede disjunktive Klausel aus
hochstens 3 Literalen besteht (wir sagen: die Klauseln haben Ldnge
< 3).

(¢) lex| = O(lel).

Auferdem gibt es einen Algorithmus, der ¢ bei Eingabe von ¢ in
Linearzeit berechnet.

Beweis: Ubung.

Notation. |p| bezeichnet die Ldnge (bzw. Grifle) einer aussagenlogischen
Formel ¢, d.h. die Lange von ¢ aufgefasst als Wort {iber dem Alphabet Ay, .

Folie 125

Reprisentation von KNF-Formeln

Fiir den Rest diese Abschnitts werden wir nur noch KNF-Formeln
betrachten, und wenn wir von Klauseln sprechen, meinen wir stets
disjunktive Klauseln, also Disjunktionen von Literalen.

Fiir das Resolutionsverfahren ist die folgende Repréisentation von Klauseln
und KNF-Formeln sehr hilfreich:

e Eine Klausel (A1 V ---V Ay), die aus Literalen Ay, ..., A\; besteht,
identifizieren wir mit der Menge { Ay, ..., A/} ihrer Literale.

Beispiel: Wir schreiben z.B. {A;, = Ay, A3} um die Klausel
(A1 V —As V A3) zu bezeichnen.

Version vom 16. Oktober 2023 Seite 81



Folie 126

Folie 127

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

D.h.: Ab jetzt sind disjunktive Klauseln fiir uns dasselbe wie endliche
Mengen von Literalen. Wenn wir von einer Klausel sprechen, meinen
wir eine endliche Menge von Literalen und identifizieren diese mit der
Formel, die aus der Disjunktion all dieser Literale besteht.

Spezialfall: Die leere Menge () entspricht der unerfiillbaren Formel 0
(die wiederum der ,,Formel* entspricht, die aus der Disjunktion aller
Literale aus () besteht).

Eine KNF-Formel ¢ = /\ i, die aus (disjunktiven) Klauseln
i=1
Y1y -« -, Ym besteht, identifizieren wir mit der Menge I' := {v1,...,Vm}
ihrer Klauseln.
Offensichtlicherweise gilt fiir alle Interpretationen Z:

IkE¢ < IkET.

Beispiel: Die KNF-Formel ¢ = A; A (A3 V Ay) A (A3 V —Ay VvV —A;)
reprasentieren wir durch die endliche Klauselmenge

{ A, (mA3V Ay, (A43V-AyV-4y) )
bzw. durch

{{A}, {~42, A}, {As,~4y, A1} )

,Erfillbarkeit von KNF-Formeln® ist damit im Wesentlichen dasselbe
Problem wie ,, Erfiillbarkeit von endlichen Mengen von Klauseln®.

Resolution

Notation. Fiir ein Literal \ sei

5 —-X, falls A von der Form X fiir ein X € AS ist
o X, falls XA von der Form —X fiir ein X € AS ist.

Wir nennen A auch das Negat von .

Version vom 16. Oktober 2023 Seite 82



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Definition 2.54 (Resolutionsregel).

Seien 71, 72 und ¢ endliche Mengen von Literalen (d.h. disjunktive
Klauseln). Dann ist ¢ eine Resolvente von y; und 75, wenn es ein Literal A
gibt, so dass gilt:

A€, AEm und 0= (71\{>\}) U (72\{X})~

Graphische Darstellung:

%\/

,0 ist eine Resolvente von v, und 7.

Beispiele.
{P,=5,-T} {-Q,R,S T} {ry {-P}
NS \/
{P,-T,-Q, Rk} 0

Folie 128
Das Resolutionslemma

Notation. Ein Klausel ist eine endliche Menge von Literalen (eine solche
Klausel reprisentiert die Disjunktion der in ihr enthaltenen Literale).
Eine Klauselmenge ist eine (endliche oder unendliche) Menge von Klauseln.

Lemma 2.55 (Resolutionslemma). Sei I' eine Klauselmenge, seien
Y1,%v € I und sei § eine Resolvente von v und 5. Dann sind die
Klauselmengen I' und I' U {6} dquivalent.

Beweis. Sei I eine beliebige Interpretation. Wir zeigen:
IETI <« ZIETU{d}.
=" Trivial.

Version vom 16. Oktober 2023 Seite 83



Folie 129

Folie 130

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

,—“: Es gelte Z = T'. Wir miissen zeigen, dass auch gilt: Z = §.
Da ¢ eine Resolvente von ~; und =, ist, gibt es ein Literal A, so dass

5= (m\ YU (e \ (1)),

Fal 1: TN
Dann gilt: 7 [# . Wegen Z = 7,, muss es ein Literal
p € v \ {\} C 0 geben, so dass Z = p. Also gilt Z | 4.

Fall 2: T 1 \.
Wegen 7 |= 71, muss es ein Literal g € 71 \ {A\} C § geben, so
dass Z |= p. Also gilt Z | 0.

In beiden Fillen gilt Z = 6. Insgesamt gilt also Z =T U {d}.

[
Resolutionsableitungen und -widerlegungen
Definition 2.56. Sei I' eine Klauselmenge.
(a) Eine Resolutionsableitung einer Klausel § aus I" ist ein Tupel (0q,. .., d,)

von Klauseln, so dass gilt: ¢ > 1, ¢, =, und fiir alle i € [¢] ist

e ); €', oder

e es gibt j,k € [i—1], so dass ¢; eine Resolvente von 0, und Jj, ist.

(b) Eine Resolutionswiderlegung von I' ist eine Resolutionsableitung der
leeren Klausel aus I'.

Zur Erinnerung:
Eine Klausel ¢ ist genau dann eine Resolvente zweier Klauseln v; und s,
wenn es ein Literal \ gibt, so dass gilt:

A€, AEm und o= (m\{A}) U (2\{1}).

Notation 2.57.

(a) Wir schreiben kurz I' F § um auszudriicken, dass es eine
Resolutionsableitung von ¢ aus I' gibt.

Insbesondere bedeutet ' Fx (), dass es eine Resolutionswiderlegung von
[' gibt.

Version vom 16. Oktober 2023 Seite 84



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

(b) An Stelle von (dy,...,d,) schreiben wir Resolutionsableitungen der
besseren Lesbarkeit halber oft zeilenweise, also

und geben am Ende jeder Zeile eine kurze Begriindung an.

Folie 131

Beispiel 2.58. Sei

= {{_'Pv_'R}7 {Pv_'R}v {_'Q’S}’ {Q7R7T}’ {_'T}7 {_'S7R}’ {T7R}}

Eine Resolutionswiderlegung von I' ist:

(1) {-T1% (in )
(2) {Q,RT} (inl)
(3) {Q,R} (Resolvente von (1), (2))
4) {-Q,5} (inD)
(5) {S,R} (Resolvente von (3), (4))
6) {-S,R}  (inD)
(7) {R} (Resolvente von (5), (6))
(8) {=P,—R} (inI)
9) {P,-R}  (inI)
(10) {—=R} (Resolvente von (8), (9))
(11) 0 (Resolvente von (7), (10))

Folie 132

Version vom 16. Oktober 2023 Seite 85



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Graphische Darstellung der Resolutionswiderlegung

{-=T} {Q.RT}
N/
{Q, R} {=Q,S}

N/

{S,R} {=S,R} {-P,-R} {P —-R}

N/ N/

{R} {-R}
\ @ /
e Eine weitere Resolutionswiderlegung von I ist:
(1) {=T} (in I')
(2) AT, R} (in T')
(3) {R} (Resolvente von (1), (2))
4) {P,-R}  (inT)
(5) {P} (Resolvente von (3), (4))
(6) {-P,-R} (inT)
(7) {-R} (Resolvente von (5), (6))
8) 0 (Resolvente von (7), (3) )

Korrektheit und Vollstindigkeit der Resolution

Satz 2.59. Fiir jede Klauselmenge I gilt:
F'tr 0 <= T ist unerfillbar.

D.h.: Eine Klauselmenge hat genau dann eine Resolutionswiderlegung,
wenn sie unerfillbar ist.

Version vom 16. Oktober 2023 Seite 86



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Beweis. Sei I' eine Klauselmenge. Wir miissen zeigen:

I' hat eine Resolutionswiderlegung = [ ist unerfiillbar.

»—" (,Korrektheit des Resolutionskalkiils“):

Sei (71, .. .,7) eine Resolutionswiderlegung von I'. Dann ist v, = (). Sei
To:=Tund I'; ;=T U {,...,7} fiir alle ¢ € [¢]. Per Induktion zeigen wir,
dass fiir alle ¢ € {0, ..., ¢} gilt: I' = I';. Dann sind wir fertig, denn I'; ist
unerfiillbar, weil es die leere Klausel () enthélt.

3= 0: Trivial.

t— i+1:
Falls 7,41 € ', so gilt I';1; = T';, und damit gilt trivialerweise
=1,
Andernfalls gibt es j,k € [i], so dass 7,41 eine Resolvente von ~,; und
i ist. Wegen I';11 = T'; U {711} folgt aus dem Resolutionslemma,
dass I';;1 = I';. Da geméafl Induktionsannahme I' = T; ist, folgt
insgesamt, dass I' = I';44.

»<=" (,,Vollstéandigkeit des Resolutionskalkiils“):
Wir zeigen zunéchst folgende Behauptung:

Behauptung 1: Sei n € N, und sei I' eine unerfiillbare Klauselmenge die
nur Aussagensymbole in {A4; : 0 <1 < n} enthilt.
Dann besitzt I' eine Resolutionswiderlegung.

Beweis: Per Induktion nach n.

n = 0: I ist eine unerfiillbare Klauselmenge, die kein(e)
Aussagensymbol(e) enthélt. Somit ist I' = {()}. Insbesondere ist
(@) ist eine Resolutionswiderlegung von T

Induktionsschritt: n — n+1.
Sei I' eine unerfiillbare Klauselmenge mit Aussagensymbolen in

{Ao, ..., A,).

Seien

Iyo= {7\ {4} : yeTmit -4, ¢},

.= {9\ {-4,} : yelmit A, €~}.
Dann enthalten I'; und I'_ nur Aussagensymbole aus
{Ag, ..., Ap_1}

Version vom 16. Oktober 2023 Seite 87



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Behauptung 2: I'; ist unerfiillbar.

Beweis: Angenommen, ', ist erfiillbar.
Sei Z, ein Modell von 'y, d.h. Z, = T';.
Sei Z die Interpretation mit Z(A,) := 0 und Z(X) := Z, (X)
fir alle X € AS\ {A,}.
GemiB Koinzidenzlemma gilt dann: Z =T, .
Aus der Definition von I'; folgt, dass fiir alle v € I mit
—A, &y gilt: T .
Wegen Z(A,,) = 0 gilt auBlerdem fiir alle v € [' mit = A,, € v,

dass Z = .
Somit gilt: Z |=T'. Das ist ein Widerspruch, denn T ist laut
Voraussetzung unerfiillbar. Ogen.2

Behauptung 3: T'_ ist unerfiillbar.

Beweis: Analog zum Beweis von Behautung 2. OBen.s

Behauptung 4: Es gilt: TFr( oder T'Fr {A,}.

Beweis: Geméf Behauptung 2 und der Induktionsannahme hat
', eine Resolutionswiderlegung, etwa (v;,...,7,). Per
Induktion nach ¢ definieren wir fiir jedes ¢ € [¢] eine Klausel
~; wie folgt:

e Falls v;- € ', NT, so wihle v, := ;.
Klar: Dann ist v; € T
e Falls ;" € ', \ T, so withle v; := ~;t U {4,}.
Klar: Dann ist v; € I
e Ansonsten ist ;" = (77 \ {A}) U () \ {A}) fiir ein
Literal A und Zahlen j, k € [i — 1]. Wir wihlen dann
Y= (1 \A{AD U (e N {AD).
Fiir jedes 7 € [{] gilt dann entweder v; = ;" oder
v =~ U{A,}. AuBerdem ist (v1,...,v) eine
Resolutionsableitung von v, aus I'. Weil 7, = 0 ist, gilt
Yo = Q) oder Ye = {An} DBeh,4

Behauptung 5: Es gilt: T'Fr (0 oder T kg {=A,}.

Beweis: Analog zum Beweis von Behauptung 4 mit I'_ an Stelle
von I',. UBen.s

Aus den Behauptungen 4 und 5 folgt I' Fx 0, entweder direkt
oder durch einmaliges Anwenden der Resolutionsregel auf die
Klauseln {4, } und {—A, }. Damit ist Behauptung 1

bewiesen. OBen. 1

Version vom 16. Oktober 2023 Seite 88



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Sei nun I' eine beliebige unerfiillbare Klauselmenge. Gemaf
Endlichkeitssatz (Satz 2.47) existiert eine endliche unerfiillbare
Teilmenge I'" von I'. Wahle eine solche Menge I. Dann gibt es ein

n € N, so dass IV nur Aussagensymbole aus {Ao, ..., A,_1} enthélt.
Dann folgt aus Behauptung 1, dass IV 5 (), und daher auch

I'Fgr0. O

Folie 135

Vorsicht

Beim Anwenden der Resolutionsregel (Definition 2.54) darf immer nur
ein Literal A betrachtet werden.

Beisprel:

Betrachte die Klauselmenge I' :== {71,72} mit 73 :={X, Y} und
72 :={=X, Y} (wobei X und Y zwei verschiedene Ausagensymbole sind).

Offensichtlicherweise wird I' von jeder Interpretation Z mit Z(X) = 1 und
Z(Y) = 0 erfiillt. GeméB Satz 2.59 gibt es also keine
Resolutionswiderlegung von I'.

Geméf der Resolutionsregel gibt es fiir 7, und 7, zwei verschiedene
Resolventen: Indem man die Resolutionsregel mit A := X anwendet, erhélt
man {Y, =Y} als Resolvente von 77 und 7. Indem man die Resolutionsregel
mit A :=Y anwendet, erhdlt man {X,-X} als Resolvente von ; und .

Beachten Sie, dass die Resolutionsregel es nicht erlaubt, sie in einem
einzigen Schritt fiir zwei verschiedene Literale A und A anzuwenden. Und
das ist auch gut so, denn sonst konnte man aus v, := {X, Y} und

7o = {=X, Y} fiir A:={X} und N := {Y} als Resolvente die Klausel

MAAND U (e N AV
herleiten, d.h. die Klausel
(X YI\{X, Y} U (=X, =Y\ {-X, =Y},

also die leere Klausel. Dann hétten wir also eine ,,Resolutionswiderlegung®
von I', obwohl I erfiillbar ist. D.h. Satz 2.59 wiirde nicht gelten, und
Resolutionsableitungen wiren nicht dazu geeignet, Klauselmengen auf

Erfillbarkeit zu testen.
Folie 136

Version vom 16. Oktober 2023 Seite 89



Folie 137

Folie 138

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Der Satz von Haken

Fiir eine endliche Klauselmenge I' sei die Griffe von I' die Zahl

T = >l

~yel

wobei |y| die Anzahl der Literale in v bezeichnet.

Der folgende (schwer zu beweisende) Satz zeigt, dass es im Worst-Case
exponentiell lange dauern kann, eine Resolutionswiderlegung zu finden.

Satz 2.60 (Satz von Haken, 1985). Es gibt Konstanten ¢,d > 0 und
endliche Klauselmengen 'y, fiir n > 1, so dass fiir allen € N mit n > 1 gilt:

1. |Ty] < nS,
2. T, ist unerfillbar, und
3. jede Resolutionswiderlegung von 'y, hat Linge 2> 2dn.

(Hier ohne Beweis)

2.7 Erfiillbarkeitsalgorithmen

Das aussagenlogische Erfiillbarkeitsproblem

Wir betrachten im Folgenden Algorithmen fiir das

Aussagenlogische Erfiillbarkeitsproblem:

FEingabe: eine Formel ¢ € AL
Ausgabe: erfiillbar®, falls ¢ erfiillbar ist;
,unerfiillbar“, sonst.

Notation. Im Folgenden bezeichnet n immer die Anzahl der in ¢
vorkommenden verschiedenen Aussagensymbole, und m := |¢| bezeichnet
die Lénge von ¢ (aufgefasst als Wort iiber dem Alphabet der
Aussagenlogik).

Version vom 16. Oktober 2023 Seite 90



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Varianten des Erfiillbarkeitsproblems

Berechnen einer erfiillenden Interpretation:
Zusétzlich soll bei erfiillbaren Formeln noch ein Modell berechnet werden,
d.h., ein Tupel (by,...,b,) € {0,1}", so dass p[by,...,b,] = 1.

Einschrinkung auf KNF-Formeln:

Oft beschrankt man sich auf Eingabeformeln in KNF oder sogar 3-KNF.
Das ist keine wesentliche Einschrinkung, weil sich mit Hilfe des
Tseitin-Verfahrens jede Formel in Linearzeit in eine
erfiillbarkeitséquivalente Formel in 3-KNF transformieren lésst (Satz 2.53).
Das Erfiillbarkeitsproblem fiir Formeln in KNF bzw. 3-KNF bezeichnet
man mit SAT bzw. 3-SAT.

Folie 139
Komplexitit des Erfiillbarkeitsproblems
Satz 2.61 (Satz von Cook und Levin, ~1971).
Das aussagenlogische Erfillbarkeitsproblem (und sogar die Einschrinkung
3-SAT) ist NP-vollstindig.
Die Komplexitétsklassen P und NP, der Begriff der NP-Vollstandigkeit,
sowie ein Beweis des Satzes von Cook und Levin werden in der Vorlesung
FEinfiihrung in die Theoretische Informatik behandelt.
Bemerkung.
e Wenn also P # NP ist (was allgemein vermutet wird), gibt es fiir das
aussagenlogische Erfiillbarkeitsproblem keinen
Polynomialzeitalgorithmus.
e Man vermutet sogar, dass es eine Konstante ¢ > 1 gibt, so dass jeder
Algorithmus fiir 3-SAT eine worst-case Laufzeit von €(c") hat.
Diese Vermutung ist unter dem Namen ,Ezponential Time
Hypothesis“ (ETH) bekannt.
e Der im Worst-Case beste derzeit bekannte Algorithmus fiir 3-SAT hat
eine Laufzeit von etwa O(1.4").
Folie 140

Version vom 16. Oktober 2023 Seite 91



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Der Wahrheitstafelalgorithmus

Sind eine aussagenlogische Formel und eine Interpretation der in ihr
vorkommenden Aussagensymbole gegeben, so kann man die Formel
,bottom-up“ entlang ihres Syntaxbaums auswerten. Dies fithrt zu
folgendem Lemma.

Lemma 2.62. Es gibt einen Linearzeitalgorithmus, der bei Eingabe einer
Formel p(Ay, ..., An) € AL und eines Tupels (b, ...,b,) € {0,1}" den Wert
©lby, ..., by berechnet.

Beweis: Ubung.
Der folgende Algorithmus 16st das aussagenlogische Erfiillbarkeitsproblem.

Wahrheitstafelalgorithmus
FEingabe: eine Formel ¢ € AL

1. Berechne die Wahrheitstafel fiir ¢.

2. Falls in der letzten Spalte mindestens eine 1 auftaucht, gib , erfiillbar
aus, sonst gib ,,unerfiillbar* aus.

Laufzeit: O(m -2") (sogar im , Best-Case®)

Folie 141
Der Resolutionsalgorithmus
Der Resolutionsalgorithmus probiert einfach alle méglichen
Resolutionsableitungen durch und testet so, ob es eine
Resolutionswiderlegung gibt (d.h. die Klauselmenge unerfiillbar ist).
Resolutionsalgorithmus
Fingabe: eine endliche Klauselmenge I' (entspricht einer KNF-Formel)
1. Wiederhole, bis keine neuen Klauseln mehr generiert werden:
Fiige alle Resolventen aller Klauseln aus I' zu I' hinzu.
2. Falls () € I, gib ,,unerfiillbar® aus, sonst gib ,erfiillbar® aus.
Laufzeit:
20" (weil es bei n Aussagensymbolen 4" verschiedene Klauseln gibt).
Folie 142

Version vom 16. Oktober 2023 Seite 92



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Der Davis-Putnam-Logemann-Loveland Algorithmus

Der DPLL-Algorithmus ist ein in der Praxis sehr erfolgreicher Algorithmus,
der die Wahrheitstafelmethode mit Resolution kombiniert. Ahnlich wie bei
dem Wahrheitstafelalgorithmus durchsucht der DPLL-Algorithmus
systematisch den Raum aller moglichen Interpretationen und testet, ob
diese die gegebene Klauselmenge erfiillen. Resolution wird dabei dazu
verwendet, die Suche geschickt zu steuern und Dinge, die wiahrend der
Suche bereits iiber die Klauselmenge , gelernt* wurden, weiterzuverwenden.
Der DPLL-Algorithmus ist die Basis moderner SAT-Solver, die
Klauselmengen, die aus Millionen von Klauseln und Hunderttausenden von
Aussagensymbolen bestehen, auf Erfiillbarkeit testen konnen.

DPLL-Algorithmus
Fingabe: eine endliche Klauselmenge I' (entspricht einer KNF-Formel)

1. Vereinfache T'. % Details dazu: siehe nichste Folie
2. Falls ' = (0, gib ,erfiillbar“ aus.

3. Falls @ € T, gib ,,unerfiillbar“ aus.

4. Wahle ein Literal \.

5. % probiere aus, ob I" ein Modell hat, bei dem das Literal \ erfiillt wird:
Lose rekursiv I' U {{)\}} Falls dies erfiillbar ist, gib ,erfiillbar® aus.

6. % probiere aus, ob I' ein Modell hat, bei dem das Literal X erfiillt wird:
Lose rekursiv I' U {{)\}} Falls dies erfiillbar ist, gib ,erfiillbar® aus.
Sonst gib ,, unerfiillbar® aus.

Vereinfachungsheuristiken, die in Schritt 1. angewendet werden:

e Unit Propagation:
Fiir alle ,,Einerklauseln® {\} € I (wobei A ein Literal ist), bilde alle
Resolventen von {A} mit anderen Klauseln und streiche anschlieend
alle Klauseln, die A\ enthalten. Wiederhole dies, so lange es
Einerklauseln gibt.

Prazise:

Version vom 16. Oktober 2023 Seite 93

Folie 143

Folie 144



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Fiir jede ,,Einerklausel* {A} € I" tue Folgendes:
1. Ersetze jede Klausel v € I' durch die Klausel v\ {\}.
2. Entferne aus I' jede Klausel, die das Literal A enthélt.
Wiederhole dies, so lange es in I' Einerklauseln gibt.

e Pure Literal Rule:
Literale A, deren Negat A nirgendwo in der Klauselmenge auftaucht,
konnen auf 1 gesetzt werden. Alle Klauseln, die ein solches Literal
enthalten, sind dann wahr und kénnen gestrichen werden.
Wiederhole dies, so lange es Literale gibt, deren Negat nirgendwo in
der Klauselmenge auftaucht.

e Streiche Klauseln, die Obermengen von anderen Klauseln sind (dies
ist allerdings ineffizient und wird in der Praxis zumeist weggelassen).

Man sieht leicht, dass das Anwenden dieser Vereinfachungsheuristiken die
Klauselmenge I' in eine erfiillbarkeitséiquivalente Klauselmenge
transformiert. Hieraus folgt leicht, dass der DPLL-Algorithmus stets die
korrekte Antwort gibt (d.h., er terminiert immer, und er gibt genau dann
werfiilllbar aus, wenn die eingegebene Klauselmenge I' erfiillbar ist).

Laufzeit des DPLL-Algorithmus:
O(m - 2") im Worst-Case; in der Praxis aber hiufig sehr effizient.

Folie 145
Beispiel 2.63. Sei ' :=
{{Xla_'Xf)?_'XGvX?}a {_'X17X27_'X5}7 {_'le_'X27_'X3J_'X57_'X6}7
{X17X27_‘X47X7}7 {_‘X4>_'X67_‘X7}7 {X37_‘X57X7}7

{X3a_'X47_'X5}7 {X57_'X6}7 {X5aX4a_'X8}a
{XlaX3aX5aX6aX7}; {_'X77X8}7 {_'X67_‘X7;_'X8}}

Ein Lauf des DPLL-Algorithmus:

(1) Keine Vereinfachung moglich. T'# 0. () £ T.
Wihle das Literal®> X := X und wende den Algorithmus rekursiv auf
Fu{{Xs}} an.

2Welches Literal genau gewihlt wird, ist im Algorithmus nicht festgelegt. Wir wiihlen
ein beliebiges Literal aus, das in I' vorkommt.

Version vom 16. Oktober 2023 Seite 94



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

(2) Unit Propagation mit {X4} liefert die Klauselmenge

{ {le_‘X57X7}7 {_'X15X27_‘X5}7 {_‘X17_'X27_‘X37_‘X5}7
{X17X27_'X47X7}7 {_'X47_‘X7}a {X37_'X57X7}7
{X37_'X47_'X5}7 {X5}7 {X57X47_'X8}7

W{ﬁ)ﬁ,){s}a {—~X7,~Xs}, {X%T }

(3) Unit Propagation mit {X;5} liefert die Klauselmenge
{ {X17 X7}7 {_'X17 X2}7 {_'X17 _'X27 _'X3}7
{X17 X27 ﬁ)(4a X7}a {_‘X47 _'X7}7 {X?n X7}7

{Xs, - Xa}, {X67, (X5 20—XGF,

{-=X7, X5}, {-X7, Xz} }

(4) Pure Literal Rule mit =X, liefert die Klauselmenge
I:= { {X1, X7}, {=X1,Xa}, {=X1,~X2, 2 X5},

WM { X5, X7},
{ X —X1},

{(—X7, X5}, {-X7,~Xs} }

(5) Keine weitere Vereinfachung von IV moglich. TV # 0. 0 £ T7.
Wiihle das Literal? X := X; und wende den Algorithmus rekursiv auf
IMu{{X7}} an.

(6) Unit Propagation mit {X7} liefert die Klauselmenge

{ X257 (X0, X0}, (X0, X0, — X5
{Xs:X7T,
{X8}a {_'X8}7 %}

(7) Unit Propagation mit {Xg} liefert die Klauselmenge
{ {_'Xh X2}7 {_'le ﬁX?a _'X3}7

{xF, 0}

Jetzt ist () in der Klauselmenge enthalten — d.h. die Klauselmenge ist
nicht erfiillbar. Daher:

3Welches Literal genau gewihlt wird, ist im Algorithmus nicht festgelegt. Wir withlen
ein beliebiges Literal aus, das in der Klauselmenge vorkommt.

Version vom 16. Oktober 2023 Seite 95



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

(8) Backtracking, zuriick zu Schritt (5):
Wende den Algorithmus auf IV U {{—=X7}} an.

(9) Unit Propagation mit {—X;} liefert die Klauselmenge

{{Xl}> {_'leXQ}v {ﬁle_‘X2>_‘X3}>
{X3})
{=2XnXsT, (o X—XGT, =57 )

Danach fithrt Unit Propagation mit {X;} zu
{ % {X2}7 {_'X27 _'X3}7
{xa} }.

Dann fiihrt Unit Propagation mit {X5} zu

{ LT {~Xa}, (X} ),

und Unit Propagation mit {—X3} fiihrt zu

{8 0}

Jetzt ist () in der Klauselmenge enthalten — d.h. die Klauselmenge ist
nicht erfiillbar. Daher:

(10) Backtracking, zuriick zu Schritt (1):
Wende den Algorithmus auf I' U {{—Xs}} an.

(11) Unit Propagation mit {—Xg} liefert die Klauselmenge

{ {X0m X5 X, (X0, X, X, {20 2K =¥ Ko,
(X1, X0, X0, X}, {2 Xy =X5=X7), { X5, X5, X7},
{X3, X4, X5}, {Xs—Xe], {X5, X4, X5},
{X1, X3, X5, X7}, {=X7, Xs}, {-Xe=X7=Xz}, {=%cF }

Etwas iibersichtlicher aufgeschrieben, also die Klauselmenge

{ {=X1, Xo, = X5},
{X1, Xo, = X4, X7}, { X5, X5, X7},
{X3,~ X4, X5}, { X5, Xa,~ X5},
{X1, X5, X5, X7}, {—X7, Xs} |

Version vom 16. Oktober 2023 Seite 96



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

(12) Pure Literal Rule mit X5 und X3 liefert die Klauselmenge

{ (- X0 Xr=XG),
{X 4, 7}7W

X ) 7{X57X47_'X8}7

(X0, X5 X7}, {2 X7, Xs}

etwas iibersichtlicher aufgeschrieben also die Klauselmenge

{ {Xs5, Xu, 2 X3}, {X7, X5} }.

(13) Pure Literal Rule mit X5 und —X7 liefert die Klauselmenge

I = { (X XS], (=X T ),

d.h. T ist die leere Klauselmenge ().

(14) Also wird ,erfiillbar ausgegeben.

2.8 Hornformeln
Folie 146
Hornklauseln und Hornformeln

Hornformeln sind spezielle aussagenlogische Formeln, die die Basis der
logischen Programmierung bilden, und fiir die das Erfiillbarkeitsproblem
effizient gelost werden kann.

Definition 2.64. Eine Hornklausel ist eine disjunktive Klausel, in der
hochstens ein positives Literal vorkommt.
Eine Hornformel ist eine Konjunktion endlich vieler Hornklauseln.

Beispiele.
o {=X 7Y, =7} (bzw. =X VY V —Z) ist eine Hornklausel.

{—=X,-Y,Z} (bzw. =X VY V Z) ist eine Hornklausel.

{-X,Y,Z} (bzw. =X VY V Z) ist keine Hornklausel.

{X} (bzw. X) ist eine Hornklausel.

(0 ist eine Hornklausel.

(XVY)A(=ZV-=XV-Y)AY ist eine Hornformel.
Folie 147

Version vom 16. Oktober 2023 Seite 97



Folie 148

Folie 149

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Hornklauseln als Implikationen

e Eine Hornklausel der Form {—X1,...,=X,_1, X,,} (bzw.
X7 V.- VaX, 1V X,) ist dquivalent zur Formel

(XP A A Xno1) = X

Solche Klauseln werden auch , Regeln® (oder ,Prozedurklauseln®)
genannt.

e Eine Hornklausel der Form {—X3,..., =X, 1} ist d4quivalent zur

Formel
(XiAN...ANX,—1) — 0.

Solche Klauseln werden auch , Zielklauseln“ (oder ,Frageklauseln®)
genannt.

e Eine Hornklausel der Form {X;} ist dquivalent zur Formel
1— X;.
Solche Klauseln werden auch , Tatsachenklausel“ genannt.

e Die leere (Horn-)Klausel ) ist unerfiillbar und daher dquivalent zur
Formel
1-0.

Der Streichungsalgorithmus

Der folgende Algorithmus 16st das Erfiillbarkeitsproblem fiir Hornformeln in
Polynomialzeit.

Wir geben zunéchst den Algorithmus an, betrachten dann Beispielldufe
davon, analysieren die Laufzeit und zeigen danach, dass der Algorithmus
korrekt ist, d.h. stets die richtige Antwort gibt.

Streichungsalgorithmus
Eingabe: eine endliche Menge I' von Hornklauseln

1. Wiederhole:

2. Falls ) € I, so halte mit Ausgabe ,,unerfiillbar.

Version vom 16. Oktober 2023 Seite 98



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

3. Falls T" keine Tatsachenklausel (d.h. Klausel {X} mit X € AS)
enthélt, so halte mit Ausgabe , erfiillbar.
% T' wird erfiillt, indem jedes Aussagensymbol mit 0 belegt wird

4. Wihle eine Tatsachenklausel {X} € I.
% Idee: Um T zu erfiillen, muss X mit dem Wert 1 belegt werden

D. Streiche =X aus allen Klauseln 6 € I', die das Literal =X
enthalten.
% Wenn X den Wert 1 hat, tragt =X nichts zum Erfiillen einer Klausel bei

6. Streiche aus I' alle Klauseln 0 € I', die das Literal X enthalten
(d.h. entferne aus I' alle § € I, fiir die gilt: X € §).
% Wenn X den Wert 1 hat, sind solche Klauseln erfiillt

Folie 150

Beispiele 2.65. Wir wenden den Streichungsalgorithmus auf die beiden
folgenden Mengen von Hornklauseln an.

(a) Toi= {S—=0, (PANQ)—R, (SAR)—0, (UNTAQ)— P,
(UAT)—=Q, 1=-U, 1T}

(b) Ty:= {(QAP)=T, (UNTAQ)—R, (UNT)—Q,
1-U R—0, 1T}

(a): Beispiel-Lauf des Streichungsalgorithmus bei Eingabe von I';:
Beachte, dass I', der folgenden Klauselmenge entspricht:
I = { {_‘S}a {_'P> —Q, R}7 {ﬁSa ﬁR}» {ﬁUa -7, _'Q>P}7
{_'Uv _'T7Q}v {U}7 {T} }
1. Schleifendurchlauf:
() ¢ T. Wihle {U} €T, streiche =U aus allen Klauseln in T', und streiche
alle Klauseln, die U enthalten:
I = { {_'S}v {_'P7 _'QvR}7 {_'Su _‘R}7 {;‘Hj =T, _'Q7P}7
{%_‘TyQ}a M? {T} }7

d.h.

I = {{_‘5}7 {_‘P7_‘Q7R}7 {_‘57_‘R}7 {_‘T>_'Q7P}7
{_'T7Q}7 {T} }

Version vom 16. Oktober 2023 Seite 99



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

2. Schleifendurchlauf:
() ¢ T'. Wihle {T} € T, streiche =T aus allen Klauseln in T", und streiche
alle Klauseln, die T" enthalten:

I' = { {_'5}7 {_‘Pv _'Q,R}, {_'57_'R}7 {?Z_'Qap}a
{>77 Q) H ),

d.h.
I = {{=S}, {-P,-Q,R}, {=S,-R}, {-Q.P},

{Q} }.

3. Schleifendurchlauf:
() ¢ T. Wahle {Q} € T, streiche =@ aus allen Klauseln in I', und streiche
alle Klauseln, die ) enthalten:

I = { {_'S}’ {_'P>?@a/ R}> {ﬁS’ _‘R}> {?@j P}7

d.h.
I = {{—\S}, {—\P,R}, {—\S,—\R}, {P} }
4. Schleifendurchlauf:

() ¢ T'. Wahle {P} € T, streiche =P aus allen Klauseln in I', und streiche
alle Klauseln, die P enthalten:

r = {{—“S'}’ {;\HR}, {_‘Sa_‘R}a %}’

d.h.
I' = {{_'S}a {R}’ {_'Sv_‘R} }
5. Schleifendurchlauf:

() ¢ T'. Wihle {R} € T, streiche =R aus allen Klauseln in I, und streiche
alle Klauseln, die R enthalten:

I = {{-S}, IR {~S~R}}

d.h.
r = {{=5}, {-5}}
6. Schleifendurchlauf:

() ¢ T. T enthilt keine Tatsachenklausel.
D.h.: Halte mit Ausgabe ,erfiillbar®.

(b) Beispiel-Lauf des Streichungsalgorithmus bei Eingabe von I'y:

Version vom 16. Oktober 2023 Seite 100



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Beachte, dass I'y der folgenden Klauselmenge entspricht:
F = { {_|Q7 _|P7 T}J {_|U7 _|T7 _|Q7 R}? {_|U7 _|T7 Q}?
{U}, {-R}, {T}}

1. Schleifendurchlauf:
() ¢ T'. Wahle {U} €T, streiche =U aus allen Klauseln in I', und streiche
alle Klauseln, die U enthalten:

' = { {ﬁQ, —|P, T}, {;‘K _‘T7 _‘Qa R}> {% -7, Q}>
M {_'R}’ {T} }’

d.h.

= {{-Q-P T} {-T.,-Q, R}, {-T.Q}, {-R}, {T}}.

2. Schleifendurchlauf:
() ¢ T'. Wahle {T'} € T, streiche =T aus allen Klauseln in I', und streiche
alle Klauseln, die T" enthalten:

I = {{E0=—ETL {>% -Q R}, {57/ Q}, {-R}, &},
d.h.

I = { {_'Q7 R}> {Q}7 {_'R} }

3. Schleifendurchlauf:
0 ¢ T. Wihle {Q} € T, streiche =@ aus allen Klauseln in ', und streiche
alle Klauseln, die () enthalten:

I = {{>& R}, 1K {-R}}

d.h.
' = {{R}, {-R} }
4. Schleifendurchlauf:

() ¢ T'. Wihle {R} € T, streiche =R aus allen Klauseln in I, und streiche
alle Klauseln, die R enthalten:

r = {18 {~f}},

d.h.

r= {0}
5. Schleifendurchlauf:
() € T'. D.h.: Halte mit Ausgabe ,,unerfiillbar®.

Version vom 16. Oktober 2023 Seite 101

Folie 151



Folie 152

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Laufzeit des Streichungsalgorithmus

Man sieht leicht, dass in jedem Schleifendurchlauf die Anzahl der Klauseln
in I' kleiner wird. Daher terminiert der Algorithmus nach maximal

m Schleifendurchlaufen, wobei m die Anzahl der Klauseln in der
Eingabemenge I ist.

In jedem einzelnen Schleifendurchlauf betrachtet der Algorithmus alle
Klauseln der aktuellen Klauselmenge und fithrt dabei O(n) Schritte durch,
wobei n = |I'| die Grofie der Klauselmenge ist.

Insgesamt terminiert der Streichungsalgorithmus also nach O(m-n)
Schritten, d.h. in Zeit polynomiell in der Gréfle von T

Insgesamt erhalten wir also folgenden Satz:

Satz 2.66. Die Laufzeit des Streichungsalgorithmus ist O(m-n), wobei
m = |I'| die Anzahl der Hornklauseln in der eingegebenen Menge I' und
n = |I'| die Grifie von T ist.

Bemerkung. Eine Variante des Streichungsalgorithmus lduft sogar in
Linearzeit, d.h. in Zeit O(n).

Um nachzuweisen, dass der Streichungsalgorithmus stets die korrekte
Antwort gibt, nutzen wir das folgende Lemma.

Der Streichungsalgorithmus und Resolution

Lemma 2.67. Sei I'y eine endliche Menge von Hornklauseln und § eine
Klausel, die zu irgendeinem Zeitpunkt wdahrend des Laufs des
Streichungsalgorithmus bei Fingabe Iy in der vom Algorithmus
gespeicherten Menge T liegt. Dann gilt: To g d.

Beweis.

Wir betrachten einen Lauf des Streichungsalgorithmus bei Eingabe T'g. Sei ¢
die Anzahl der Durchléaufe der Schleife, die der Algorithmus durchfiihrt. Fiir
jedes i € {1,...,¢} sei I'; die Menge I' am Ende des i-ten Durchlaufs der
Schleife. Per Induktion nach i zeigen wir, dass fiir alle i € {0, ..., ¢} gilt:

Fiir jedes 6 € I'; ist I'g kg 4.

Version vom 16. Oktober 2023 Seite 102



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Induktionsanfang: 1 = 0:
Offensichtlicherweise gilt fiir alle 6 € 'y, dass 'y Fr 9.

Induktionsschritt: 1 — i+1: Sei 6 € I';41.

Falls 6 € T';, so gilt I'g Fg 6 geméaf Induktionsannahme.

Falls 6 ¢ I';, so wird d beim i+1-ten Schleifendurchlauf in Zeile 5 neu
erzeugt. Also gibt es ein Aussagensymbol X mit {X} € T'; und eine Klausel
0" €Ty, so dass - X € 6’ und 0 = ¢\ {—=X}. Dann ist § eine Resolvente von
0’ und {X}. Geméf Induktionsannahme gilt I'g g ¢’ und I'y Fg {X}. Also
gilt auch I'g Fg 6. H

Folie 153

Korrektheit des Streichungsalgorithmus

Satz 2.68. Der Streichungsalgorithmus ist korrekt.

Das heifit, bei Eingabe einer endlichen Menge I'y von Hornklauseln hdlt der
Algorithmus mit Ausgabe ,erfillbar®, falls Ty erfillbar ist, und mit Ausgabe
wnicht erfillbar®, falls I'g unerfillbar ist.

Bewezs.

Wir betrachten einen Lauf des Streichungsalgorithmus bei Eingabe I'.

Sei ¢ die Anzahl der Durchldufe der Schleife, die der Algorithmus
durchfithrt. Fir ¢ € {1,...,¢} sei I'; die Menge I' am Ende des i-ten
Durchlaufs der Schleife. Fiir jedes ¢ mit 1 < i < £ sei X; das
Aussagensymbol, so dass im ¢-ten Durchlauf in Zeile 4 die Tatsachenklausel
{X;} € I';_1 ausgewahlt wird.

Fall 1: Der Algorithmus hélt beim ¢-ten Durchlauf der Schleife in Zeile 2.
Dann gilt () € I'y_; und daher gilt nach Lemma 2.67, dass 'y -5 (). Also
besitzt I'g eine Resolutionswiderlegung und ist daher geméfl Satz 2.59
unerfiillbar.

Fall 2: Der Algorithmus hélt beim ¢-ten Durchlauf der Schleife in Zeile 3.
Dann enthélt jede Klausel von I'y_; mindestens ein negatives Literal (denn
[y ist laut Voraussetzung eine Menge von Hornklauseln, und der
Algorithmus geht so vor, dass auch jedes I'; eine Menge von Hornklauseln
ist). Also erfiillt die ,Nullinterpretation® Zy mit Zy(Y') := 0 fiir alle Y € AS
die Klauselmenge I'y_;. Wir definieren die Interpretation Z durch

I(Xy) =1(Xs) = -  =Z(Xy) =1, und
Z(Z) =0 furalle Z e AS\{Xy,...,Xo1}.

Version vom 16. Oktober 2023 Seite 103



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Per Induktion nach i zeigen wir, dass fiir alle i € {{—1,¢-2,...,0} gilt:
T E T
Fiir ¢ = 0 erhalten wir dann, dass Z |= I'y; insbesondere ist Iy also erfiillbar.

Induktionsanfang: i = (—1: Wir wissen, dass Zy = I',_;. Auerdem
kommt geméfl der Konstruktion des Streichungsalgorithmus in I';_;
keins der Symbole X, ..., X, 1 vor. Auf allen anderen
Aussagensymbolen stimmen Z und Z; iiberein. Geméf
Koinzidenzlemma gilt also Z = T'y_;.

Induktionsschritt: i — i—1: Gemé&f Induktionsannahme gilt Z = T;.
Ziel ist, zu zeigen, dass auch gilt: Z = T";_;. Sei dazu ¢ eine beliebige
Klausel aus I';_;.

Dann gilt Z |= 0 geméf Induktionsannahme.

Fall 2.1: ¢ ist im i-ten Schleifendurchlauf gemaf Zeile 5
modifiziert worden, d.h. § = ¢’ U {=X;} fur ein ¢’ € I';.
GeméiB Induktionsannahme gilt Z = ¢’, und daher gilt auch
7T Eo.

Fall 2.2: ¢ ist im i-ten Schleifendurchlauf geméafl Zeile 6 aus der

Klauselmenge entfernt worden, d.h. X; € 6.
Wegen Z(X;) = 1 gilt dann 7 = 6.

Version vom 16. Oktober 2023 Seite 104



Kapzitel 3

Logik erster Stufe

3.1 Strukturen

Folie 154
Strukturen

Wir fiithren einen allgemeinen Strukturbegriff ein, der es uns erlaubt:

e mathematische Strukturen wie Gruppen, Kérper, Vektorraume,
Graphen, etc.

e und die gingigen Modelle der Informatik wie Transitionssysteme,
endliche Automaten, relationale Datenbanken, Schaltkreise, etc.

zu beschreiben.

Folie 155
Signaturen

Definition 3.1. Eine Signatur (auch Vokabular oder Symbolmenge) ist eine
Menge o von Relations-, Funktions- und/oder Konstantensymbolen.

Jedes Relationsymbol R € o und jedes Funktionssymbol f € ¢ hat eine
Stelligkeit (bzw. Aritdt, engl. arity)

ar(R) € N\ {0} bzw. ar(f) € N\ {0}.

Folie 156

Version vom 16. Oktober 2023 Seite 105



Folie 157

Folie 158

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Notation

e In diesem Kapitel bezeichnet der griechische Buchstabe o (in Worten:

sigma) immer eine Signatur.

Fiir Relationssymbole verwenden wir normalerweise Groflbuchstaben
wie R, P,Q, F, fiir Funktionsymbole verwenden wir meistens
Kleinbuchstaben wie f, g, h und fiir Konstantensymbole
Kleinbuchstaben wie ¢, d.

Gelegentlich verwenden wir als Relations- und Funktionssymbole auch
Zeichen wie < (2-stelliges Relationssymbol) und +, - (2-stellige
Funktionssymbole), und wir verwenden 0, 1 als Konstantensymbole.

Die Stelligkeit eines Relations- oder Funktionssymbols deuten wir
héufig an, indem wir sie mit Schrégstrich hinter das Symbol schreiben.

Beispiel. Die Notation R/2 deutet an, dass R ein 2-stelliges
Relationssymbol ist.

Strukturen

Definition 3.2. Eine o-Struktur A besteht aus folgenden Komponenten:

e ciner nicht-leeren Menge A, dem Universum von A (auch: Trager,
engl. universe, domain),

e fiir jedes Relationssymbol R € ¢ und fiir k := ar(R) gibt es eine
k-stellige Relation R4 C A,

e fiir jedes Funktionssymbol f € o und fiir k£ := ar(f) gibt es eine
k-stellige Funktion f4: A* — A, und

e fiir jedes Konstantensymbol ¢ € o gibt es ein Element ¢* € A.

Notation.

Version vom 16. Oktober 2023 Seite 106



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

e Wir beschreiben o-Strukturen oft in Tupelschreibweise:
A= (A, (5se0)-
Falls o = {51, ..., Sk} endlich ist, schreiben wir auch
A= (A, SA. SR,

e Wir bezeichnen o-Strukturen meistens mit ,, kalligraphischen*
Buchstaben wie A, B,C, W, .... Das Universum der Strukturen
bezeichnen wir dann durch die entsprechenden lateinischen

Grofibuchstaben, also A, B,C, W, ....

Mengen

Fiir die leere Signatur o := () bestehen o-Strukturen nur aus ihrem
Universum, sind also einfach (nicht-leere) Mengen.

Graphen

In diesem Kapitel bezeichnet E immer ein zweistelliges Relationssymbol.

e Ein gerichteter Graph (kurz: Digraph) G = (V9, E9) mit
Knotenmenge V9 und Kantenmenge EY ist eine { E}-Struktur. Das
Universum ist die Knotenmenge V9.

e Einen ungerichteten Graphen G = (V9, E9) mit Knotenmenge V9 und
Kantenmenge £9 C {e C VY : |e| = 2} repriisentieren wir durch eine
{E}-Struktur A = (A, E4) mit Universum A = V9 und Relation
EA = {(u,v) : {u,v} € E9}. Insbesondere ist EA symmetrisch und
irreflexiv im Sinne der folgenden Definition.

Eigenschaften zweistelliger Relationen

Definition 3.3. Sei A = (A4, R*), wobei R4 eine zweistellige Relation iiber
der Menge A ist (d.h. (A, R?) ist ein gerichteter Graph).

(a) R4 heiit reflexiv, wenn fiir alle a € A gilt: (a,a) € RA.
R4 heift irreflexiv, wenn fiir alle a € A gilt: (a,a) € R*.

Version vom 16. Oktober 2023 Seite 107

Folie 159

Folie 160

Folie 161



Folie 162

Folie 163

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

(b) RA heifit symmetrisch, wenn fiir alle a,b € A gilt:
Wenn (a,b) € RA, dann ist auch (b,a) € RA.
RA heift antisymmetrisch, wenn fiir alle a,b € A mit a # b gilt:
Wenn (a,b) € RA, dann (b, a) € R4
(c) RA heifit transitiv, wenn fiir alle a,b,c € A gilt:
Wenn (a,b) € R4 und (b, ¢) € R4, dann auch (a,c) € RA.

(d) RA heifit konnex, wenn fiir alle a,b € A gilt:

(a,b) € R* oder (b,a) € R* oder a=b.

Aquivalenzrelationen

Eine Aquivalenzrelation auf einer Menge A ist eine 2-stellige Relation iiber
A, die reflexiv, transitiv und symmetrisch ist.

Beispiele.

(a) Gleichheit: Fiir jede Menge M ist
{(m,m) : m € M} eine Aquivalenzrelation auf M.

(b) Gleichmdchtigkeit: Fiir jede endliche Menge M und deren Potenzmenge
P(M)={N : NC M} gilt: )
{(A,B) : A,BC M, |A| = |B|} ist eine Aquivalenzrelation auf P(M).

(¢) Logische Aquivalenz: Die Relation

{(p,) : @, € AL, ¢ =1} ist eine Aquivalenzrelation auf der
Menge AL aller aussagenlogischen Formeln.

Version vom 16. Oktober 2023 Seite 108



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Ordnungen

In diesem Kapitel bezeichnet < sei immer ein zweistelliges Relationssymbol.
Fiir < verwenden wir Infixschreibweise, d.h., wir schreiben x <4 y statt
(z,y) € <A

(a) Eine Priordnung ist eine {<}-Struktur A = (A, <*), bei der <4
reflexiv und transitiv ist.

(b) Eine partielle Ordnung (oder Halbordnung) ist eine Priordnung A, bei
der <4 antisymmetrisch ist.

(c) Eine lineare (oder totale) Ordnung ist eine partielle Ordnung A, bei der
<A konnex ist.

Beispiele.

(a) Die ,kleiner-gleich“ Relation auf N (oder Z oder R) ist eine lineare
Ordnung; die ,griffer-gleich“ auch.

(b) Fiir jede Menge M ist die Teilmengenrelation C eine partielle Ordnung
auf der Potenzmenge P(M); aber keine lineare Ordnung, sofern M
mindestens zwei Elemente besitzt (denn wenn a, b zwei verschiedene
Elemente in M sind, gilt: {a} Z {b} und {b} € {a} und {a} # {b}, und
daher ist die Teilmengenrelation nicht konnex). Dasselbe gilt fiir die
Obermengenrelation 2.

(c) Die Folgerungsrelation fiir aussagenlogische Formeln:
{(¢,¥) : v, € AL, ¢ [= 1} ist eine Praordnung auf der Menge AL,
aber keine partielle Ordnung (denn beispielsweise gilt fiir ¢ := 1 und
Y := =0, dass ¢ = ¢ und ¥ = ¢ und ¢ # 9, und daher ist die
Folgerungsrelation nicht antisymmetrisch).

Folie 164

Arithmetische Strukturen

+ und - seien immer zweistellige Funktionssymbole, fiir die wir
Infixschreibweise verwenden. 0 und 1 seien Konstantensymbole.

e Der Korper der reellen Zahlen ist die {+, -, 0, 1}-Struktur Ag, so dass
Ap =R, 4% und “* sind die normale Addition bzw. Multiplikation
auf R, und 0% := 0, 14 := 1.

Version vom 16. Oktober 2023 Seite 109



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

e Der Ring der ganzen Zahlen ist die {+,-,0, 1}-Struktur Az, so dass
Ay =7, +*2 und ** sind die normale Addition bzw. Multiplikation
auf Z, und 04 := 0, 142 .= 1.

e Das Standardmodell der Arithmetik ist die {+, -, <, 0, 1}-Struktur Ay,
so dass Ay := N ist; die Funktionen +¥ und -*¥ und die Relation
<A sind die normale Addition, Multiplikation bzw. Ordnung auf N,
und 0% =0, 14 =1,

e Der zweielementige Korper ist die {+, -, 0, 1}-Struktur F, mit
Universum F := {0, 1}, den Funktionen +72 und -*2 der Addition
bzw. Multiplikation modulo 2, und 072 := 0, 172 := 1.

Folie 165

Worter als Strukturen

Sei X ein endliches, nicht-leeres Alphabet. Fiir jedes a € ¥ sei P, ein
einstelliges Relationssymbol, und es sei

oy = {<}U{P,:a€X}.

Fiir jedes nicht-leere Wort w := wy - - - w,, € ¥* mit wy,...,w, € X sei A,
die ox-Struktur

e mit Universum A, := [n], fir die gilt:

e <Av ist die natiirliche lineare Ordnung auf [n],
dh, <Av={(i,7) : i,jeN, 1<i<j<n},

e Fiir jedes a € X ist PAv := {i € [n] : w; = a}.

Beispiel. Sei ¥ := {a,b, c}.
Fiir w := abacaba ist A, die folgende ox-Struktur:

o A, =1{1,2,3,4,5,6,7}
o <M= {(i,j) +i,jeN 1<i<j<T}

onw:{1,37577}7 PbAw:{276}? PcAw:{4}'

Folie 166

Version vom 16. Oktober 2023 Seite 110



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Wortstrukturen

Eine Wortstruktur tiber 3 ist eine ox-Struktur A fiir die gilt:
e das Universum A von A ist endlich,
o (A, <A ist eine lineare Ordnung,

o fiir jedes i € A gibt es genau ein a € X, so dass i € PA.

Beispiel 3.4. Sei ¥ := {a, b, c}. Die og-Struktur B mit
e Universum B = {{, 0, 4, &},
linearer Ordnung <5, die besagt, dass & < Q < & < & ist, d.h.
<= {(0,0), (0,9), (0, 8), (O, %), (V,9), (V. M), (T, ), (M, 4), (A, &), (&, &)},

o« PE= {0, &}
o PE={0, &},
° Pf:@7

ist eine Wortstruktur, die das Wort w = abba reprisentiert.

Folie 167
Relationale Datenbanken

o Relationale Datenbanken bestehen aus endlich vielen endlichen
Tabellen.

e Jede solche Tabelle lisst sich als Relation auffassen, die Zeilen der
Tabelle entsprechen dabei den Tupeln in der Relation.

e Eine relationale Datenbank entspricht dann einer endlichen Struktur,
deren Universum aus allen potentiellen Eintréigen in einzelnen Zellen
der Tabellen besteht, und die fiir jede Tabelle in der Datenbank eine
Relation enthélt.

Folie 168

Version vom 16. Oktober 2023 Seite 111



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Beispiel: Eine Kinodatenbank

Blade Runner
Blade Runner

Monuments Men
Monuments Men
Resident Evil

Ridley Scott
Ridley Scott

Brazil Terry Gilliam
Brazil Terry Gilliam
Casablanca Michael Curtiz
Casablanca Michael Curtiz
Gravity Alfonso Cuaron
Gravity Alfonso Cuaron

George Clooney
George Clooney
Paul Anderson

Kino

Name Adresse Stadtteil Telefonnummer
Babylon Dresdner Str. 126 Kreuzberg 030 61 60 96 93
Casablanca Friedenstr. 12-13 Adlershof 030 67 75 75 2
Filmtheater am Friedrichshain | Boétzowstr. 1-5 Prenzlauer Berg | 030 42 84 51 88
Kino International Karl-Marx-Allee 33 Mitte 030 24 75 60 11
Moviemento Kotbusser Damm 22 | Kreuzberg 030 692 47 85
Urania An der Urania 17 Schoneberg 030 21 89 09 1
Film

Name Regisseur Schauspieler

Alien Ridley Scott Sigourney Weaver

Harrison Ford
Sean Young
Jonathan Pryce
Kim Greist
Humphrey Bogart
Ingrid Bergmann
Sandra Bullock
George Clooney
George Clooney
Matt Damon
Milla Jovovich

Terminator James Cameron | Arnold Schwarzenegger
Terminator James Cameron | Linda Hamilton
Terminator James Cameron | Michael Biehn
Folie 169
Programm
Kino Film Zeit
Babylon Casablanca 17:30
Babylon Gravity 20:15
Casablanca Blade Runner 15:30
Casablanca Alien 18:15
Casablanca Blade Runner 20:30
Casablanca Resident Evil 20:30
Filmtheater am Friedrichshain | Resident Evil 20:00
Filmtheater am Friedrichshain | Resident Evil 21:30
Filmtheater am Friedrichshain | Resident Evil 23:00
Kino International Casablanca 18:00
Kino International Brazil 20:00
Kino International Brazil 22:00
Moviemento Gravity 17:00
Moviemento Gravity 19:30
Moviemento Alien 22:00
Urania Monuments Men | 17:00
Urania Monuments Men | 20:00
Folie 170

Die Kinodatenbank als Struktur

Signatur:

Version vom 16. Oktober 2023

okiNo = { Rkino/4, Rrim/3, Rprog/3} U {‘¢

Seite 112

¢ € ASCIT* }



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Die Kinodatenbank wird dargestellt als oxno-Struktur D.

Universum:

D := ASCII* DO { Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93,
Casablanca, ..., 20:00}.

Relationen:

RE. . { (Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93),

(Casablanca, Friedenstr. 12-13, Adlershof, 030 67 75 75 2),

(Filmtheater am Friedrichshain, Botzowstr. 1-5, Prenzlauer Berg, 030 42 84 51 88),
(Kino International, Karl-Marx-Allee 33, Mitte, 030 24 75 60 11),

(Moviemento, Kotbusser Damm 22, Kreuzberg, 030 692 47 85),

(Urania, An der Urania 17, Schéneberg, 030 21 89 09 1) }

(

(

(

(

D o
RFilm T

{ Alien, Ridley Scott, Sigourney Weaver),
Blade Runner, Ridley Scott, Harrison Ford), ... }
Rgmg { (Babylon, Casablanca, 17:30),
Babylon, Gravity, 20:15), ... }
Konstanten: ‘¢ := ¢, fiir jedes ¢ € ASCIT*.

D.h.: jedes Konstantensymbol wird durch den zwischen den Hochkommas
stehenden Text interpretiert.

Folie 171
Redukte und Expansionen
Definition 3.5. Seien ¢ und 7 Signaturen mit ¢ C 7.
(a) Das o-Redukt einer T-Struktur B ist die o-Struktur B|, mit B|, := B
und SBle := S5 fiir jedes S € 0.
Dh.: Ist B= (B, (S®)ser), soist Bl, = (B, (5%)ses).
(b) Eine 7-Struktur B ist eine 7-Ezxpansion einer o-Struktur A, wenn
A= B|,.
Beispiel. Das {+,0}-Redukt des Standardmodells der Arithmetik ist die
Struktur
Anlgror = (N4, 04),
wobei +% die natiirliche Addition auf N und 0¥ die natiirliche Zahl 0 ist.
Man bezeichnet diese Struktur als das Standardmodell der Presburger
Arithmetik.
Folie 172

Version vom 16. Oktober 2023 Seite 113



Folie 173

Folie 174

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Prinzipielle Gleichheit von Strukturen

Frage: Wann sind zwei o-Strukturen A und B , prinzipiell gleich“?

Antwort: Wenn B aus A entsteht, indem man die Elemente des Universums
von A umbenennt.

Dies wird in der folgenden Definition prézisiert.

Isomorphismen

Definition 3.6. Seien A und B o-Strukturen. Ein Isomorphismus von A
nach B ist eine Abbildung 7 : A — B mit folgenden Eigenschaften:

1. 7 ist bijektiv.

2. Fur alle k € N\ {0}, alle k-stelligen Relationssymbole R € ¢ und alle
k-Tupel (ay,...,a;) € A* gilt:

(a1,...,ax) € R <= (m(ar),...,m(ar)) € R
3. Fiir alle Konstantensymbole ¢ € o gilt:
ot = &

4. Fiir alle k € N'\ {0}, alle k-stelligen Funktionssymbole f € ¢ und alle
k-Tupel (ai,...,a;) € A* gilt:

m(fAar, ... a)) = fP(m(ar),... . w(ap)).

Isomorphie

Notation. Seien A und B o-Strukturen. Wir schreiben 7 : A = B, um
anzudeuten, dass 7 ein Isomorphismus von A nach B ist.

Definition 3.7. Zwei o-Strukturen A und B heiflen isomorph (wir
schreiben: A = B), wenn es einen Isomorphismus von A nach B gibt.

Version vom 16. Oktober 2023 Seite 114



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Folie 175
Beispiele 3.8.
(a) Seien A, B nicht-leere Mengen. Dann sind die ()-Strukturen A := (A)
und B := (B) genau dann isomorph, wenn A und B gleichméchtig sind
(d.h. es gibt eine Bijektion von A nach B).
Folie 176
(b) Seien A = (A, E4) und B = (B, E®) die beiden folgenden Digraphen:
2 2
by 3
¢ l ¥
N
A= (aET)
Dann ist 7 : A — B mit
i|1]2]3]4]5]6]7|8
wlaloleclalnlolrTe
ein Isomorphismus von A nach B.
Folie 177

(c) Sei A= (A,<*) mit A=1{1,2,3,4} und
<= {(h4) s i jEN, 1<i<) <4},

und sei B = (B,<?) mit B={{,0, 4, &}, wobei <P wie in
Beispiel 3.4 definiert ist. Skizze:

Version vom 16. Oktober 2023 Seite 115



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Dann ist 7 : A — B mit

il[1]2]3]4
@) [ OO ] &

ein Isomorphismus von A nach B.

Allgemein gilt: Sind A und B endliche Mengen mit |A| = |B|, und sind
<A und <® lineare Ordnungen auf A und B, so ist die Abbildung

7 : A — B, die das (bzgl. <*) kleinste Element in A auf das (bzgl. <5)
kleinste Element in B abbildet, und allgemein fiir jedes i € {1,...,|A|}
das (bzgl. <) i-kleinste Element in A auf das (bzgl. <®) i-kleinste
Element in B abbildet, ein Isomorphismus von A := (A, <*) nach

B:= (B, <5).

Folie 178

(d) Sind <M und <% die natiirlichen linearen Ordnungen auf N und Z, so
sind die {<}-Strukturen N := (N, <) und Z := (Z,<%)
nicht isomorph (kurz: N % Z).

Beweis: Angenommen, 7 : N — Z ist ein Isomorphismus von N nach
Z. Sei z :=7(0). In Z gibt es ein Element 2’ € Z mit 2’ < z (z.B.
2 =z —1). Da 7 surjektiv ist, muss es ein n’ € N geben, so dass
m(n') = 2'. Wegen 2’ # z muss n’ # 0 gelten (da 7 injektiv ist). Somit
gilt:

0<Nn/ aber 2z KL 2.

Also ist 7 kein Isomorphismus von N nach Z. Widerspruch!

Folie 179

(e) Sei o :={f,c}, wobei f ein 2-stelliges Funktionssymbol und ¢ ein
Konstantensymbol ist. Sei A := (A, f4,¢*), wobei gilt:

e A:=N ist die Menge aller natiirlichen Zahlen,
o fA:= +Av ist die natiirliche Addition auf N,
o ¢ :=0 ist die natiirliche Zahl 0

und sei B := (B, f&,cP), wobei

e B:={2" : n e N} ist die Menge aller Zweierpotenzen,

Version vom 16. Oktober 2023 Seite 116



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

o f85:Bx B — B ist die Funktion mit
fB(b1,by) = by by, fiir alle by,b, € B
o F:=1=20¢B.

Dann gilt: A = B, und die Abbildung 7 : A — B mit 7(n) := 2" fiir
alle n € N ist ein Isomorphismus von A nach B, denn:

1. 7 ist eine bijektive Abbildung von A nach B.
2. Fiir das Konstantensymbol ¢ € o gilt:

3. Fiir das Funktionssymbol f € o und fiir alle (a;,ay) € A?
gilt:
m(fA(a1,a2)) = m(ay 4 ag) = 20+

und
fB(W(CLl),ﬂ'(CLQ)) — f5(2a172a2) — 9m ,9a2 _ 2(114_&2’

also w(fA(ar,a2)) = fB(n(ar), m(as)).

Somit ist m ein Isomorphismus von A nach B.

Isomorphie ist eine Aquivalenzrelation

Lemma 3.9. Isomorphie ist eine Aquivalenzrelation auf der Klasse aller
o-Strukturen. D.h.: Fiir alle o-Strukturen A, B,C gilt:

1. A= A (Reflexivitat),
2. A=B = B=A (Symmetrie),
3 A=ZBund B=2C —= A=C (Transitivitdit).

Beweis: Ubung.

Version vom 16. Oktober 2023 Seite 117

Folie 180



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

3.2 Terme der Logik erster Stufe

Folie 181
Individuenvariablen
Definition 3.10. Eine Individuenvariable (auch: Variable erster Stufe;
kurz: Variable) hat die Form v, fiir ein ¢ € N.
Die Menge aller Variablen bezeichnen wir mit VAR, d.h.
VAR = {wg, vy, vo, v3, ...} = {u; : i€ N}
Folie 182
Terme der Logik erster Stufe
Definition 3.11.
(a) Fiir eine Signatur o sei Ay 7erme das Alphabet, das aus allen Elementen
in VAR, allen Konstanten- und Funktionssymbolen in o, den Klammern
(, ) und dem Komma , besteht.
(b) Die Menge T, aller o-Terme ist die wie folgt rekursiv definierte
Teilmenge von A, Terme
Basisregeln:
e Fiir jedes Konstantensymbol ¢ € o ist ¢ € T,.
e Fiir jede Variable x € VAR ist = € T,.
Rekursive Regel:
e Fiir jedes Funktionssymbol [ € ¢ und fir k := ar(f) gilt:
Sind t; € T,, ..., 1 € Ty, soistauch f(ty,...,tx) € T,.
(c) Die Menge aller Terme der Logik der ersten Stufeist T := U T,.
o Signatur
Folie 183

Version vom 16. Oktober 2023 Seite 118



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Beispiele

Sei o:={f/2, c}.
Folgende Worte sind o-Terme:

, vy, fle,e),  fle fle,v)) .

Folgende Worte sind keine o-Terme:

0, f(0,¢), flvg,c,vr), fA2,3).

C

Folie 184
Belegungen und Interpretationen
Definition 3.12. Sei o eine Signatur.
(a) Eine Belegung in einer o-Struktur A ist eine Abbildung f: VAR — A.
D.h.: B ordnet jeder Variablen = € VAR ein Element 3(z) aus dem
Universum von A zu.
(b) Eine o-Interpretation ist ein Paar
= (APB),
bestehend aus einer o-Struktur A und einer Belegung 3 in A.
Folie 185
Die Auswertung von Termen in Interpretationen
Wir wollen Terme nun in Interpretationen ,auswerten®.
Die Auswertung von Term ¢ in einer Interpretation Z = (A, ) soll
dasjenige Element aus A liefern, das man erhélt, wenn man
e die in £ vorkommenden Variablen geméfl der Belegung 3 interpretiert,
e die in ¢ vorkommenden Konstantensymbole ¢ geméf ihrer
Interpretation ¢ in A belegt,
e die in t vorkommenden Funktionssymbole [ geméfl ihrer
Interpretation f* in A belegt
und dann nach und nach den resultierenden Term ausrechnet.
Dies wird in der folgenden Definition prézisiert.
Folie 186

Version vom 16. Oktober 2023 Seite 119



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Semantik von o-Termen

Definition 3.13. Sei ¢ eine Signatur.
Rekursiv itber den Aufbau von T, definieren wir eine Funktion [-]", die
jedem o-Term ¢ und jeder o-Interpretation Z = (A, 3) einen Wert [t]" € A
zuordnet:

e Fiir alle 2 € VAR ist [2]" := f(x).

e Fiir alle Konstantensymbole ¢ € ¢ ist [¢]” := ¢

e Fiir alle Funktionssymbole [ € o, fiir k := ar(f), und
fiir alle o-Terme ¢, ..., 1, € T, gilt:

Lt t) T = A, []F)-

Folie 187
Beispiel
Sei o ={f/2, ¢}, und sei A= (A, fA c*) die o-Struktur mit A = N,
fA =44 (die Addition auf den natiirlichen Zahlen) und c¢* = 0 (die
natiirliche Zahl 0).
Sei f:VAR — A eine Belegung mit §(v;) =1 und S(vy) =7,
und sei 7 := (A, ).
Sei t der o-Term f(vs, f(vy,¢)). Dann gilt:
[ = FA(Ble), £ (B, )
_ A (7 f““ 1,0 )
— (7+(1+0))
= &
3.3 Syntax der Logik erster Stufe
Folie 188

Vergleich zwischen Aussagenlogik und Logik erster Stufe

Die Logik erster Stufe iibernimmt, verdndert und erweitert die Syntax der
Aussagenlogik.

Version vom 16. Oktober 2023 Seite 120



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

e Was gleich bleibt:
— Die Junktoren —, A, V, — werden iibernommen.
e Was sich verédndert:

— Variablen stehen nicht mehr fiir ,,wahre“ oder ,,falsche“ Ausagen,
sondern fiir Elemente im Universum einer o-Struktur.

— Variablen sind keine atomaren Formeln mehr.
e Was neu hinzukommt:

— Es gibt Quantoren 3 und V (fiir ,es existiert und ,fiir alle®).
— Es gibt Symbole fiir Elemente aus der Signatur o.

— Es kénnen o-Terme benutzt werden, um Elemente im Universum
einer o-Struktur zu bezeichnen.

Das Alphabet der Logik erster Stufe

Definition 3.14. Sei ¢ eine Signatur.
Das Alphabet Aoy der Logik erster Stufe iiber o besteht aus

e allen Symbolen in A, Terme,

e allen Symbolen in o,

e den Quantoren 7 (Existenzquantor) und V (Allquantor),
e dem Gleichheitssymbol =,

e den Junktoren —, A\, V,—.

D.h.:

Arop] = VAR U o U {3V} U {=} U {~.A,V,=} U {()} U {}

Version vom 16. Oktober 2023 Seite 121

Folie 189

Folie 190



Folie 191

Folie 192

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Syntax der Logik erster Stufe

Definition 3.15. Sei ¢ eine Signatur.

Die Menge FO[o] aller Formeln der Logik erster Stufe tiber der Signatur o
(kurz: FO[o]-Formeln; ,FO* steht fiir die englische Bezeichnung der Logik
erster Stufe: first-order logic) ist die folgendermaflen rekursiv definierte
Teilmenge von A;O[J]:

Basisregeln:

e Fiir alle o-Terme 7, und 7, in T, gilt:
t1 =1y € FO [O']
e Fiir jedes Relationssymbol 1 € o, fiir k := ar(R) und fiir alle o-Terme

tiyo.oy b in T, gilt:

R(fl, R 1tk) < FO[O’]

FO[o]-Formeln der Form ¢; = {5 oder R(t1,...,t;) heiflen
atomare o-Formeln.

Rekursive Regeln:
e Ist p € FO[o], so ist auch —p € FO[o].
e Ist ¢ € FO[o] und ¢ € FO[o], so ist auch

— (pAY) € FOla],
- (pVv) € FO[d],
— (¢ —1) € FOla].

e Ist ¢ € FO[o] und = € VAR, so ist auch

dre € FO[o],
— Vryp € FOlo].

Beispiel 3.16. Sei 0 ={f/2, c}.
Folgende Worte aus Afq, sind FO[o]-Formeln:

Version vom 16. Oktober 2023 Seite 122



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

e f(uvg,v1) =c (atomare o-Formel)
o Vs flunc) = 03
o vy (flvs,v3) =v3 A —wuz=c)
Folgende Worte sind keine FO[o]-Formeln:
* (f(“m v1) = ()
o (Fua f(v2,0) = v2)
e f(f(c,c),vy) (ist ein o-Term, aber keine FO[o]-Formel)

e e f(vo,c) =

Folie 193
Beispiel 3.17. Sei 0 = {E/2}.
Folgendes ist eine FO[o]-Formel:
Yo Yoy ((E(’U(), v1) N E(vy, "Uo)) — Vg = "Ul)
Intuition zur Semantik:
In einem gerichteten Graphen A = (A, E4) sagt diese Formel Folgendes aus:
,Fiir alle Knoten ag € A und
fiir alle Knoten a; € A gilt:
falls (ag, a;) € B4 und (ay,ap) € B4, so ist ag = a;.*
Die Formel sagt in einem Digraph A = (4, EA) also aus, dass die
Kantenrelation F4 antisymmetrisch ist.
Folie 194
Notation
e Statt mit vy, v(, vs,... bezeichnen wir Variablen oft auch mit
2,1, 2,... oder mit Varianten wie 2/, y1, 1o, .. ..

e Ahnlich wie bei der Aussagenlogik schreiben wir (¢ < 1)) als
Abkiirzung fiir die Formel ((p — ¢) A (¢ — ¢)).

e Die Menge aller Formeln der Logik der ersten Stufe ist
FO = U FO[o].

o Signatur

Version vom 16. Oktober 2023 Seite 123



Folie 195

Folie 196

Folie 197

Folie 198

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

3.4 Semantik der Logik erster Stufe

Bevor wir die Semantik der Logik erster Stufe formal definieren, betrachten
wir zunéchst einige Beispiele, um ein intuitives Verstdndnis der Semantik
der Logik erster Stufe zu erlangen.

Beispiele zur Semantik der Logik erster Stufe

Gerichtete Graphen

Beispiel 3.18. Sei 0 = {E/2}.

(a)

Die FO[o]-Formel
p = V:L'Vy(E(:L', y) — E(y,:r;))
besagt:

,Fiir alle Knoten x und fiir alle Knoten y gilt: Falls es eine
Kante von x nach y gibt, so gibt es auch eine Kante von y
nach z.“

Fiir jeden Digraphen A = (A, E4) gilt daher:
Aerfiilllt ¢ <=  E* ist symmetrisch.

Umgangssprachlich sagen wir auch: ,,Die Formel ¢ sagt in einem
Digraphen A aus, dass dessen Kantenrelation symmetrisch ist.“

Die folgende FO[o]-Formel driickt aus, dass es von Knoten = zu Knoten
y einen Weg der Lénge 3 gibt:

oz, y) = dzdz <(E(:1;,zl) A E(z1,22)) A E(zg,y)>.
Die FO[o]-Formel
VaVy Jz1 329 ((E(:z;./zl) A E(z1,2)) A E(zz./y))

sagt in einem Digraph A aus, dass es zwischen je 2 Knoten einen Weg
der Lange 3 gibt.

Version vom 16. Oktober 2023 Seite 124



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Verwandtschaftsbeziehungen

Um Verwandtschaftsbeziehungen zu modellieren, kénnen wir eine Signatur
o nutzen, die aus den folgenden Symbolen besteht:

e 1-stellige Funktionssymbole Vater, Mutter
(Bedeutung: xz=Mutter(y) besagt: ,z ist die Mutter von y*“.)

e 2-stellige Relationssymbole Geschwister, Vorfahr

(Bedeutung: Geschwister(z,y) besagt, dass x und y Geschwister sind;
Vorfahr(z,y) besagt, dass x ein Vorfahr von y ist.)

Generelles Wissen iiber Verwandtschaftsbeziehungen lésst sich durch
Formeln der Logik erster Stufe reprasentieren, z.B.:

e Personen mit gleichem Vater und gleicher Mutter sind Geschwister*:
VaVy < (( Vater(x)=Vater(y) A Mutter(z)=Mutter(y)) A —a=y)
—  Geschwister(z,y) )

Folie 199
e _Eltern sind gerade die unmittelbaren Vorfahren*:
VaVy ((lf: Vater(y) V x:Mutter(y))
< (Vorfahr(z,y) N =3z (Vorfahr(z,z) A Vorfahr(z, g))))
e Die Relation Vorfahr ist transitiv:
VaVyVz <(V07;)‘ah7'(w,y) A Vorfahr(y, z)) — Vm;}‘ahr(:l:,z))
e Die folgende Formel ¢(x,y) besagt ,,x ist Tante oder Onkel von y*:
olr,y) = 3z (Geschwister(z, z) A (ZzMutter(y) V oz— Vater(y)))
Folie 200

e Die folgende Formel 1(z) besagt ,,x ist Vater von genau 2 Kindern*:

Y(x) == Jy Ty <((1’: Vater(y,) N z= Vater(yg)) A ﬁylzyg)
A Vz (z=Vater(z) = (2=y V z:yg)))

Version vom 16. Oktober 2023 Seite 125



Folie 201

Folie 202

Folie 203

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Formale Definition der Semantik der Logik erster Stufe

Um die formale Definition der Semantik der Logik erster Stufe angeben zu
kénnen, bendtigen wir noch folgende Begriffe:

Notation

e Ist [ eine Belegung in einer o-Struktur A, ist € VAR und ist a € A,
So sei

Az
die Belegung mit 3%(z) =a und B%(y) = B(y) fiir alle
y € VAR {z}.

o Ist Z = (A, [5) eine o-Interpretation, ist + € VAR und ist a € A, so sei

7% = (.A,ﬁ%)

Semantik der Logik erster Stufe

Definition 3.19. Sei o eine Signatur.

Rekursiv iiber den Aufbau von FO[o] definieren wir eine Funktion [-]’, die
jeder FO[o]-Formel ¢ und jeder o-Interpretation Z = (A, ) einen
Wahrheitswert (kurz: Wert) [¢]" € {0,1} zuordnet:

Rekursionsanfang:

e Fiir alle o-Terme 7, und 7, in T, gilt:

[[tlth]]I — { 1, falls [[f,l]]zz [[tQ]]I

0, sonst.

e Fiir jedes Relationssymbol 1 € o, fiir k := ar(R) und fiir alle o-Terme
ooty €T, gilt:

1, falls ([t.]%,....[t]") € RA

0, sonst.

[R(ty, ..., t)] := {

Version vom 16. Oktober 2023 Seite 126



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Folie 204
Rekursionsschritt:
e Ist ¢ € FO[o] und ist = € VAR, so ist
e 1, falls es (mind.) ein a € A gibt, so dass [¢]* =
T =
v 0, sonst
v ]]I 1, falls fiir jedes a € A gilt: [[ap]]z;l =1
ro]” =
v 0, sonst
Folie 205
e Die Semantik der Junktoren —, A, VV, — ist wie in der Aussagenlogik
definiert, d.h. fiur alle ¢ € FO[o] und ¢» € FO[o] gilt:
olf = 1, falls [¢]" =0
4 o 0, sonst
1, falls [¢]" =1 und [¢]" =1
o ADF = ’
[(o A)] { 0. somst
I 0, falls [¢]" =0 und [¢]" =0
o NV Y =
Lt )] { 1, sonst
oz 0, falls [¢]" =1 und [¢]" =0
o — =
1 2 { 1, sonst
Folie 206

Beispiel 3.20. Sei 0 = {E/2}. Betrachte die FO[o]-Formel
@ = VaVy (E(:I;,y) — E(y,:z;))

Version vom 16. Oktober 2023 Seite 127



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Fiir jede o-Interpretation Z = (A, 3) gilt:

a
T

[¢]" =1 <« firalleac Agilt: [Vy(E(z,y) — E(y,z))]"*
<= fiir alle a € A gilt: fiir alle b € A gilt:
[(E.y) — E(y, )5 =1
<= fiir alle a € A und alle b € A gilt:
Falls [[E(:lgy)]]I%% =1, so [[E(ZU,:I:)]]I% =1

<= fiir alle a € A und alle b € B gilt:
Falls (a,b) € B4, so (b,a) € B4

=1

<= FE“ ist symmetrisch

Folie 207
Die Modellbeziehung
Definition 3.21. Sei ¢ eine Signatur.
(a) Eine o-Interpretation Z erfiillt eine Formel ¢ € FO[o] (wir schreiben:
T |= ), wenn [o]" = 1.
(b) Eine o-Interpretation Z erfillt eine Formelmenge ® C FO[o] (wir
schreiben: Z |= @), wenn 7 |= ¢ fiir alle p € ® gilt.
(¢) Ein Modell einer Formel ¢ (bzw. einer Formelmenge ®) ist eine
Interpretation Z mit Z |= ¢ (bzw. Z = ®).
Folie 208
Konventionen
e Terme bezeichnen wir mit ¢, s und Varianten s',t1,%,....
e Formeln bezeichnen wir mit , 1), v und Varianten /', o1, ©o, .. ..
e Formelmengen bezeichnen wir mit ®, V und Varianten V', &, &5, .. ..
Folie 209

Version vom 16. Oktober 2023 Seite 128



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Subformeln, Subterme und Syntaxbidume

e Eine Formel v ist Subformel einer Formel ¢, wenn v als Teilwort in ¢
vorkommt (insbes. ist jede Formel eine Subformel von sich selbst).

Beispiel: 1) := E(vg,vy) ist Subformel der Formel JvoYuv; E(vg,v1)

e Ein Term s ist Subterm eines Terms ¢, wenn s als Teilwort in ¢
vorkommt (insbes. ist jeder Term ein Subterm von sich selbst).

Beispiel: f(c,c) ist Subterm des Terms f(vy, f(c,c)).

e Sei £ € TUFO, d.h. € ist ein Term oder eine Formel der Logik erster
Stufe.

— Ahnlich wie bei aussagenlogischen Formeln kénnen wir einen
Syntaxbaum fiir & definieren.

— Das Lemma iiber die eindeutige Lesbarkeit von Termen und
Formeln besagt, dass jeder Term und jede Formel genau einen
Syntaxbaum hat.

— Die Subterme von £ (falls € € T) bzw. Subformeln von £ (falls
¢ € FO) sind dann alle Terme bzw. Formeln, die im Syntaxbaum
vorkommen.

Beispiel:

Syrberbommn dic
Te,fw\ Ferm&
K( (gck\m\u\ | R((Q k&(mw\\» ﬂ’ivo‘v‘\a (E(wa\\rb N UD:UA)

(1)
K7
@ & & @ o)
G © (V)

(=)

Version vom 16. Oktober 2023 Seite 129



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Das Isomorphielemma

Folie 210
Das Isomorphielemma besagt, dass isomorphe Objekte (Strukturen bzw.
Interpretationen) dieselben Formeln der Logik erster Stufe erfiillen.
Um diese Aussage prézise formulieren zu kénnen, benétigen wir die
folgende Notation.

Folie 211

Isomorphismen, Belegungen und Interpretationen

Definition 3.22. Sei ¢ eine Signatur, seien A, B isomorphe o-Strukturen
und sei 7 ein Isomorphismus von A nach B (kurz: 7 : A = B).

(a) Fiir jede Belegung 3 in A sei 73 die Belegung in B, so dass fiir alle
r € VAR gilt:
Br) = m(B)).

(b) Fiir eine Interpretation Z = (A, ) schreiben wir 77 fiir die

Interpretation
L = (B,7np).

Aus dieser Definition folgt direkt:

Lemma 3.23. Sei o eine Signatur, seien A, B isomorphe o-Strukturen, sei
m: A= B, sei  eine Belegung in A und sei T := (A, [3).
Fiir jedes x € VAR, fiir jedes a € A, fiir T' := 1% und fiir b := w(a) gilt:

T = (zI)L.

Beweis. Sei ' := 2. Somit ist Z' = (A, #') und daher 77" = (B, 7 /).
Andererseits ist (7Z)2 = (B, (78)2). Wir miissen also zeigen, dass
wf = (Wﬂ)g D.h., wir miissen fiir jede Variable z € VAR zeigen, dass gilt:

(mB)(z) = ((xB)2)(2).
Wir betrachten zunéchst die Variable z := x. Es gilt:
o (®B)2)(x) = b.
o (18)(z) = 7(F'(x)) = 7(85(x) = 7(a) = b.

Version vom 16. Oktober 2023 Seite 130



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Somit ist (nf)(x) = ((76)%)(x).
Betrachte nun eine beliebige Variable » # . Es gilt:
o (mB)3)(2) = (7h)(2) = 7T(ﬁ(»Z))-
o (m8)(2) = m(B'(2)) = 7(BL(z)) = 7(B(2)).
Somit ist (r8)(z) = ((7B)L)(2) fir alle z € VAR {x}. O

Folie 212

Das Isomorphielemma

Satz 3.24 (Das Isomorphielemma der Logik erster Stufe).
Sei o eine Signatur, seien A, B isomorphe o-Strukturen und sei 7 : A = B.
Fiir jede Belegung (5 in A und die o-Interpretation T := (A, 3) gilt:

(a) Fiir jeden o-Term t € T, ist [t]™ = W([[t]]z).
(b) Fir jede FO[o]-Formel ¢ gilt: 71 ¢ <= T = .
Wir werden das Isomorphielemma per Induktion iiber den Aufbau von

Termen und Formeln beweisen. Hierzu zunichst ein kurzer Uberblick
dariiber, wie solche Induktionsbeweise prinzipiell aufgebaut sind.

Folie 213

Beweise per Induktion iiber den Aufbau von Termen und Formeln

e Ahnlich wie Aussagen iiber die aussagenlogischen Formeln kénnen wir
Aussagen iiber Terme und Formeln der Logik der erster Stufe per
Induktion iber den Aufbau von T, bzw. FO[o] beweisen.

e Im Induktionsanfang beweisen wir die Aussagen fiir die geméafl
Basisregeln definierten Terme bzw. Formeln. Im Induktionschritt
schlieen wir von den Subtermen bzw. Subformeln auf den Term bzw.
die Formel selbst.

e Wie bei der Aussagenlogik ist dieses Vorgehen gerechtfertigt, weil es
sich auch als vollsténdige Induktion iiber die Héhe des Syntaxbaums
auffassen lésst.

Folie 214

Version vom 16. Oktober 2023 Seite 131



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Beweise per Induktion iiber den Aufbau von Termen

Schematisch sieht der Beweis einer Aussage A(t) fiir alle Terme ¢ € T, wie
folgt aus:

Induktionsanfang:
e Beweise, dass fiir alle Konstantensymbole ¢ € o die Aussage A(c) gilt.

e Beweise, dass fiir alle Variablen © € VAR die Aussage A(z) gilt.

Induktionsschritt:

e Betrachte jedes Funktionssymbol f € o, sei k := ar(f), und seien
t1,...,1; beliebige o-Terme. Beweise, dass A(f(tl, o ,tk,)) gilt, und
verwende dazu die Induktionsannahme, dass A(t;) fir jedes i € [k] gilt.

Mit dieser Vorgehensweise beweisen wir nun Teil (a) des Isomorphielemmas.

Beweis von Teil (a) von Satz 3.2/ (Isomorphielemma).
Per Induktion iber den Aufbau von Termen. Die Aussage A(t), die wir fiir
alle Terme ¢ € T, beweisen wollen, besagt: [{]™ = W([tﬂz).

Induktionsanfang:
e Sei ¢ € o ein Konstantensymbol. Behauptung: [c]™ = W([[(THI).
Beweis: Es gilt [c] = & = n(cA) = W([[C]]I).
e Sei v € VAR. Behauptung: [+]™ =7 ([«]").
Beweis: Bs gilt [ = (n8)(x) = n(8(x) = ([T,
Induktionsschritt:

e Sei f € o ein Funktionssymbol, sei k := ar(f), seien t,..., 1,
beliebige o-Terme.

Induktionsannahme: Fiir jedes ¢ € [k] gilt: W([[ti]]z) = [t]™.

Behauptung: Es gilt: [f(t1,....00)]" =7 ([f(tr, ... t0)]7).

Version vom 16. Oktober 2023 Seite 132



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Beweis: FEs gilt

[t 52 B ] ™)
me2 B (r([0]5), - ([
mEE r (FA(I] ,..-,ﬂtkﬂz))
Semantik o (Lf (t1, - t0)]F).

Dies beendet den Beweis von Teil (a) von Satz 3.24. O
Folie 215
Teil (b) des Isomorphielemmas beweisen wir per Induktion iiber den Aufbau
von Formeln. Prinzipiell sind solche Induktionsbeweise wie folgt aufgebaut.
Folie 216
Beweise per Induktion iiber den Aufbau von Formeln
Schematisch sieht der Beweis einer Aussage A(p) fiir alle FO[o]-Formeln ¢
wie folgt aus:
Induktionsanfang:
e Beweise, dass fiir alle o-Terme ¢, 1, € T, die Aussage A(t1=t,) gilt.
e Beweise, dass fiir alle Relationssymbole R € o, fiir k := ar(R) und fiir
alle o-Terme t,...,t, € T, die Aussage A(R(tl, o jk,)) gilt
Folie 217

Induktionsschritt:

Seien  und 1 beliebige FO[o]-Formeln. Die Induktionsannahme besagt,
dass die Aussagen A(yp) und A(¢)) gelten.

Im Induktionsschritt muss dann gezeigt werden, dass

e fiir jede Variable © € VAR die Aussage A(Jx ) gilt,

e fiir jede Variable x € VAR die Aussage A(Vz p) gilt,

die Aussage A(—y) gilt,

die Aussage A(@ A L)) gilt,

die Aussage A((¢ V) gilt,

Version vom 16. Oktober 2023 Seite 133



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

e die Aussage A((p — 1)) gilt.

Mit dieser Vorgehensweise beweisen wir nun Teil (b) des
[somorphielemmas.

Beweis von Teil (b) von Satz 3.2 (Isomorphielemma).
Per Induktion iiber den Aufbau von Formeln. Die Aussage A(y), die wir fiir
alle FO[o]-Formeln ¢ beweisen wollen, besagt Folgendes:

Fiir jede Belegung 3 in A und fiir 7 := (A, /5) gilt:
TLEe <= Ik

Induktionsanfang:

e Seien tq,15 € T, zwei o-Terme.

Behauptung: Fiir jede Belegung [ in A und fiir Z := (A, ) gilt:
A ): tlztg ~— T ): tlztg.

Beweis: Sei [ eine beliebige Belegung in A und sei Z := (A, [3).
Geméf Teil (a) des Isomorphielemmas gilt fiir jedes i € {1,2}, dass
[t]™ == ([t,]7). Somit gilt:

Semantik s b
wL = ti=t, e [0]7 =[t]™”

L (1) = = ([51)
TEY 0] =[]
S T 4 =t,.
e Sei I? € o ein Relationssymbol, sei k = ar(R) und seien

ti,..., 1 € T,.

Behauptung: Fiir jede Belegung /5 in A und fiir Z := (A4, f) gilt:
7L R(ty,...,ty) <= ZFE R(t,...,tx).
Beweis: Sei [ eine beliebige Belegung in A4 und sei Z := (A, ).

GemaB Teil (a ) des Isomorphielemmas gilt fiir jedes ¢ € [k], dass
[t =7 ([t,]"). Somit gilt:

aT e Rty,... )  CEEE (6] [6]™) € RP
& (21", m([617) € B
([l ) € RA
Sgaik T R(ty,... )

Version vom 16. Oktober 2023 Seite 134



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Induktionsschritt:
Seien ¢ und 1 beliebige FO[o]-Formeln.

Induktionsannahme: Fiir jede Belegung 5" in A, fiir 7/ := (A, /) und
fiir jede Formel y € {p, ¥} gilt: 77" =y <— T' | y.

e Behauptung 1: Fiir jede Variable x € VAR, fiir jede Belegung /3 in
Aund fiir 7 := (A, ) gilt: 77 = Jrp <— T} Jre.
Beweis: Sei x € VAR eine beliebige Variable, und sei 3 eine beliebige
Belegung in A.

Wir nutzen, dass gemafl Lemma 3.23 fiir jedes a € A, die Belegung

B = 3%, die Interpretation 7' = 72 = (A, ') und den Wert b := 7(a)
gilt: 7' = (xZ)L.

Gemif Induktionsannahme gilt: 77" = ¢ <= I’ = p.

Somit gilt fiir alle a € A und fir b := 7(a), dass

(D k¢ = Itk (31)
Es folgt:
ZkE3Jxe Seganik es gibt (mind.) ein a € A, so dass 7% |= ¢
@1) ?Lb;ﬂa) es gibt (mind.) ein a € A, so dass (WI)@ E e
™ Rk es gibt (mind.) ein b € B, so dass (7Z)% = ¢

Semantik
= T = Jx .

e Behauptung 2: Fiir jede Variable = € VAR, fiir jede Belegung /3 in
Aund fir 7 := (A, §) gilt: 77 EVre <= T gEVre.

Beweis: Der Beweis folgt analog zum Beweis der Behauptung 1:
Sei = € VAR eine beliebige Variable, und sei [ eine beliebige Belegung
in A. Dann gilt:

IEVre

Semantik

fiir jedes a € A gilt: 72 |=

(N

H&/

LT gy jedes a € A gilt: (WI)@ |

Py fiir jedes b € B gilt: (77)% = ¢

Semantik
= 7L =V .

Version vom 16. Oktober 2023 Seite 135



Folie 218

Folie 219

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

e Behauptung 3: Fiir jede Belegung 3 in A und fiir Z := (A, ) gilt:
L=y <= T .

Beweis: Die Behauptung folgt direkt aus der Induktionsannahme und
der Definition der Semantik von ,,—“.

e Behauptung 4: Fiir jede Belegung 3 in A, fiir 7 := (A, 5) und fiir
jedes x € {\,V, =} gilt: 77 = (px1)) <= TE (p*x1).

Beweis: Die Behauptung folgt direkt aus der Induktionsannahme und
der Definition der Semantik von ,A“, ,V* und ,,—“.

Dies beendet den Beweis von Teil (b) von Satz 3.24. O

Das Koinzidenzlemma

Ahnlich wie fiir die Aussagenlogik gilt auch fiir die Logik erster Stufe ein
Koinzidenzlemma, das besagt, dass der Wert [(]” eines Terms ¢ bzw. der
Wert [[gp]]I einer Formel ¢ nur abhéngt von

e denjenigen Bestandteilen von A, die explizit in ¢ bzw. ¢ vorkommen,
und

e den Belegungen 3(x) derjenigen Variablen z, die in ¢ vorkommen bzw.
die in ¢ vorkommen und nicht im Wirkungsbereich eines Quantors
stehen.

Um diese Aussage prézise zu formulieren, sind folgende Begriffe niitzlich.

Definition 3.25.
(a) Ist £ ein Term oder eine Formel der Logik erster Stufe, so schreiben wir

e o(£), um die Menge aller Relations-, Funktions- und
Konstantensymbole zu bezeichnen, die in £ vorkommen,

e var(¢), um die Menge aller in ¢ vorkommenden Variablen zu
bezeichnen.

Version vom 16. Oktober 2023 Seite 136



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

(b) Ist ¢ eine Formel und = eine Variable, so heifit jedes Vorkommen von «
in einer Subformel von ¢, die von der Form dx1) oder V1) ist,
gebunden. Jedes andere Vorkommen von x in ¢ heifit fre:.

Beispiel:
Q= (f(/l/'(),(i):'b'g A g f(’uo,/ul):c)

Das erste Vorkommen von v, in ¢ ist frei, das zweite und dritte
Vorkommen von v, in ¢ ist gebunden. Die Vorkommen von v; und v3 in
v sind frei.

Folie 220
Freie Variablen
Definition 3.26. Die Menge frei(y) aller freien Variablen einer Formel ¢
besteht aus allen Variablen, die mindestens ein freies Vorkommen in ¢
haben.
Die Menge frei(y) ldsst sich rekursiv iiber den Aufbau von Formeln wie
folgt definieren:
frei(R(ty, ..., 1)) = wvar(t;)U---Uvar(t)
frei(t,=ty) = wvar(t;) U var(ty)
frei(—y) = frei(y)
frei((p x¢0)) = frei(y) Ufrei(y)) fiir alle « € {A,V, —}
frei(dr ) = frei(Vey) = frei(p) \ {z}.
Beispiele:
o frei(f(vg, c)=v3) = {vo,vs3}
o frei(Juy f(vg,v1)=c) = {v1}
° frei(( f(vo, c)=v3 A Fug f(vo, ’ul):c)) = {vo, v3, 01}
Folie 221

Version vom 16. Oktober 2023 Seite 137



Folie 222

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Das Koinzidenzlemma

Satz 3.27 (Koinzidenzlemma fiir Terme).

Sei I, = (Ay, 51) eine oy-Interpretation und sei Iy = (As, 52) eine
oo-Interpretation, wobei o1 und oo Signaturen seien.

Seit € T ein Term mit o(t) C oy Noa, so dass gilt:

1. Al|o‘(t) = A2‘cr(t)
(d.h., die o(t)-Redukte von Ay und Ay sind identisch), und

2. Bi(x) = Paolx), fir alle x € var(t).
Dann gilt: [t]" = [t]".

Beweis: Per Induktion iiber den Aufbau von Termen. Details: Ubung. [

Satz 3.28 (Koinzidenzlemma fiir FO-Formeln).

Sei I, = (Ay, 1) eine o1-Interpretation und sei I, = (As, o) eine
oo-Interpretation, wobei o1 und oo Signaturen seien.

Sei ¢ € FO eine Formel der Logik erster Stufe mit o(p) C o1 N o9, so dass
qilt:

1. .Al|cr(g0) = A2|a(ap); und
2. Pi(x) = Palx), fir alle x € frei(yp).
Dann gilt: T, | p <= I, E ¢.

Beweis: Per Induktion iiber den Aufbau von Formeln. Details: Ubung. [

Notation fiir Terme

e Fiir einen Term ¢ € T, schreiben wir ¢(z,...,z,), um anzudeuten,
dass var(t) C {xq,...,2,}.

e Sei A eine o-Struktur und seien aq,...,a, € A Elemente des
Universums von A.

Auf Grund des Koinzidenzlemmas gilt

[t] (AB) _ [] (A,8")

Version vom 16. Oktober 2023 Seite 138



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

fiir alle Belegungen 3, ' : VAR — A, so dass ((z;) = a; = /() fiir
alle i € [n] gilt. Wir schreiben oft

tAay, ..., a,l,

[ zu bezeichnen.

um das Element [[¢

e Fiir Terme ¢ € T,, in denen keine Variable vorkommt, d.h. var(t) = ()
(so genannte Grundterme), schreiben wir einfach 4.

Folie 223
Notation fiir Formeln
e Fiir eine FO[o]-Formel ¢ schreiben wir ¢(xq, ..., z,), um anzudeuten,
dass frei(¢) C {z1,...,2,}.
e Ist A eine o-Struktur und sind aq,...,a, € A, so schreiben wir
A ): p[alw s 7an]
wenn (A, ) = ¢ fiir eine Belegung J : VAR — A mit §(z;) = a; fiir
alle 7 € [n] gilt. Auf Grund des Koinzidenzlemmas gilt dann auch fiir
alle Belegungen (' : VAR — A mit f'(x;) = q; fiir alle ¢ € [n], dass
(A B) = .
Sétze der Logik erster Stufe
Folie 224

Definition 3.29. Sei ¢ eine Signatur.
(a) Ein FO[o]-Satz (kurz: Satz) ist eine FO[o]-Formel ¢ mit frei(¢) = 0.

(b) Wir schreiben S,, um die Menge aller FO[o]-Sétze zu bezeichnen und

setzen
S = U S,.

o Signatur

(¢) Fiir einen FO[o]-Satz ¢ und eine o-Struktur A schreiben wir A = ¢,
um auszudriicken, dass (A, 3) = ¢ fiir eine (und gemé&s
Koinzidenzlemma daher fiir jede) Belegung /5 in A gilt.

Version vom 16. Oktober 2023 Seite 139



Folie 225

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

(d) Fiir eine Menge @ C S, von FO[o]-Sitzen schreiben wir A = @, falls
A | o fiir jedes p € O gilt.

Als direkte Folgerung aus dem Isomorphielemma erhalten wir, dass fiir
isomorphe o-Strukturen A und B und fiir alle FO[o]-Sétze ¢ gilt:

AEFE¢ < BEey.

Modellklassen und Definierbarkeit

Definition 3.30. Sei o eine Signatur und sei ® C S, (d.h. ® ist eine
Menge von FO[o]-Sitzen).

(a) Die Modellklasse von @ ist die Klasse MOD,(®) aller o-Strukturen A
fir die gilt: A = ©.

(b) Fiir eine Klasse € von o-Strukturen sagen wir
O definiert (oder aziomatisiert) €,

falls € = MOD, ().
(c) Fir einen FO[o]-Satz ¢ setzen wir MOD,(¢) := MOD, ({¢}) und
sagen, dass ¢ die Klasse € := MOD,(¢) definiert (bzw. axiomatisiert).

Als direkte Folgerung aus dem Isomorphielemma erhalten wir:

Korollar 3.31. Fir jede Signatur o und jedes ® C S, ist MOD, (®) unter
Isomorphie abgeschlossen. D.h. fiir isomorphe o-Strukturen A und B gilt:

A€ MOD,(®) <= Be MOD,(2).

Beweis: klar. O

Version vom 16. Oktober 2023 Seite 140



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

3.5 Beispiele fiir Formeln der Logik erster Stufe in
verschiedenen Anwendungsbereichen

Folie 226
Notation
e Ab jetzt verwenden wir fiir die Logik erster Stufe dhnliche
Klammerkonventionen wie bei der Aussagenlogik.
o Fiir gewisse zweistellige Funktionssymbole wie +, - und zweistellige
Relationssymbole wie < verwenden wir Infiz- statt Prafixnotation.
Dabei setzen wir auf natiirliche Weise Klammern, um die eindeutige
Lesbarkeit zu gewéhrleisten.
e Wir schreiben z <y als Abkiirzung fiir die Formel
(x <y AN nz=y )
Folie 227
Ordnungen
Beispiel 3.32. Wir betrachten Strukturen und Formeln iiber der Signatur
o:={<}.
Zur Erinnerung: Eine o-Struktur A = (A, <*) ist eine lineare Ordnung,
falls gilt:
(1) <Aist refleziv,
e dh. firalleac Agilt: a<4a
e dh. A= ¢.p, wobel
Yre = Vo x<a
(2) <A ist transitiv,
o d.h. fiir alle a,b,c € A gilt: Wenn a <A b und b < ¢, dann auch
a <A c
e d.h. AFE @uuns, wobei
Oprans ‘= VaVyVz ((x <y N y< z) — < z)
Folie 228

Version vom 16. Oktober 2023 Seite 141



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

(3) <A ist antisymmetrisch,

e d.h. fiir alle a,b € A mit a # b gilt: Wenn a <4 b, dann b £4 a
o d.h. A pantisym, wobei

antisym = VaVy (ﬂx =y = (z<y = -y< :c))
(4) <A ist konne,
o d.h. firallea,bec Agilt: a<*boderb<*aodera=5b
e dh. AE Vronnes, Wobei
Phonmes = VIVY (fvéy VysazV x=y>

Insgesamt gilt fiir jede {<}-Struktur A = (A, <4):
A = (A, <A ist eine lineare Ordnung <= A |= ©yn. 0ra, Wobei

Plin.Ord = Prefl AN Pantisym A Ptrans A Pkonnex

Der FO[o]-Satz @uin. ora definiert (bzw. axiomatisiert) also die Klasse aller
linearen Ordnungen.

Folie 229

Arithmetik

Beispiel 3.33. Wir betrachten Formeln iiber der Signatur
o :={+,-,<,0,1} und ihre Bedeutung im Standardmodell Ay der
Arithmetik.

e Gesucht: Eine FO[o]-Formel ¢_(x,y, 2), die besagt ,o —y = z*
Prizise: Fiir alle a, b, c € N soll gelten:
An E o _[a,bc] <= a—-b=c.

Lésung:
o (r,y,2) = x==z+y

e Gesucht: Eine FO[o]-Formel ¢ (z,y), die besagt ,x teilt y*.
Prizise: Fiir alle a,b € N soll gelten:
Av E ¢(la,b] <= esgibteinceN,sodassa-c=b.
Lésung:

o (z,y) = Fzax-z2=y

Version vom 16. Oktober 2023 Seite 142



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Folie 230
e Gesucht: Eine FO[o]-Formel p=(z,y, 2), die besagt , =y (mod z)“.
Prizise: Fiir alle a, b, c € N soll gelten:
An E p=la,b,d] <= a=b(modc) dh. c||a—0b]
Losung:
p-@y2) = T (e ey w) Ve (g.,0) A gz w))
—~ . ———
»W = \:v—y|“ ,,z\w“
Folie 231
o Gesucht: Eine FO[o]-Formel ¢,.im(2), die besagt ,,x ist eine
Primzahl®.
Prizise: Fiir alle a € N soll gelten:
An E ©primla] <= a ist eine Primzahl
d.h. ¢ > 2 und « ist nur durch sich selbst und
durch 1 teilbar.
Lésung:
Oprim(x) = 14+1<2x A Vz <go|(z,x) — (z=2 V z :l)>
2
w2z 2° W2k
e Gesucht: Ein FO[o]-Satz ¢, der in Ay besagt
,Es gibt unendlich viele Primzahlen*.
Lésung:
Voo = Vy Iz <y <z A wprim(x)>
In Ay besagt dieser Satz, dass es fiir jede natiirliche Zahl b eine
natiirliche Zahl a > b gibt, die eine Primzahl ist.
Folie 232

Version vom 16. Oktober 2023 Seite 143



Folie 233

Folie 234

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Worte

Beispiel 3.34. Wir betrachten das Alphabet ¥ := {a, b} und die Signatur
Oy = {g,Pa,Pb}.

Zur Erinnerung: Wir représentieren ein nicht-leeres Wort w € ¥* durch die
os-Struktur A,,, deren Universum aus der Menge {1, ..., |w|} aller
Positionen in w besteht, und bei der PAw (bzw. P;*) aus allen Positionen
besteht, an denen der Buchstabe a (bzw. b) steht.

Gesucht: Ein FO[ox]-Satz ¢, so dass fiir jedes nicht-leere Wort w € ¥* gilt:
A, Ee <= wist von der Form a*b*.

Lésung: Wir konstruieren eine Formel ¢, die besagt, dass es eine Position

x gibt, so dass alle Positionen links von x den Buchstaben a tragen und alle

Positionen rechts von x den Buchstaben b tragen. Dies wird durch
folgenden FO[ox]-Satz realisiert:

@ = dxVy ((y<x—>Pa(y)) A (x<y—>Pb(y)))

Wie bereits vereinbart, schreiben wir hier ,x < y“ als Abkiirzung fiir die
Formel (z <yA-z=y).

3.6 Logik und Datenbanken

Datenbanken

Zur Erinnerung: Wir reprisentieren eine Kinodatenbank, die
Informationen iiber Kinos, Filme und das aktuelle Programm enthélt,
durch eine Struktur iiber der Signatur okno =

{ Rkino/4, Rpim/3, Rprog/3} U {‘c’ : c € ASCII"}
und konnen so z.B. die folgende Kinodatenbank als oxno-Struktur D

auffassen, deren Universum D aus der Menge aller Worte iiber dem
ASCII-Alphabet besteht.

Version vom 16. Oktober 2023 Seite 144



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Beispiel: Eine Kinodatenbank

Blade Runner
Blade Runner
Brazil

Brazil
Casablanca
Casablanca
Gravity

Gravity
Monuments Men
Monuments Men
Resident Evil

Ridley Scott
Ridley Scott
Terry Gilliam
Terry Gilliam
Michael Curtiz
Michael Curtiz
Alfonso Cuaron
Alfonso Cuaron
George Clooney
George Clooney
Paul Anderson

Kino

Name Adresse Stadtteil Telefonnummer
Babylon Dresdner Str. 126 Kreuzberg 030 61 60 96 93
Casablanca Friedenstr. 12-13 Adlershof 030 67 75 75 2
Filmtheater am Friedrichshain | Botzowstr. 1-5 Prenzlauer Berg | 030 42 84 51 88
Kino International Karl-Marx-Allee 33 Mitte 030 24 75 60 11
Moviemento Kotbusser Damm 22 | Kreuzberg 030 692 47 85
Urania An der Urania 17 Schéneberg 030 21 89 09 1
Film

Name Regisseur Schauspieler

Alien Ridley Scott Sigourney Weaver

Harrison Ford
Sean Young
Jonathan Pryce
Kim Greist
Humphrey Bogart
Ingrid Bergmann
Sandra Bullock
George Clooney
George Clooney
Matt Damon
Milla Jovovich

Terminator James Cameron | Arnold Schwarzenegger
Terminator James Cameron | Linda Hamilton
Terminator James Cameron | Michael Biehn
Programm

Kino Film Zeit
Babylon Casablanca 17:30
Babylon Gravity 20:15
Casablanca Blade Runner 15:30
Casablanca Alien 18:15
Casablanca Blade Runner 20:30
Casablanca Resident Evil 20:30
Filmtheater am Friedrichshain | Resident Evil 20:00
Filmtheater am Friedrichshain | Resident Evil 21:30
Filmtheater am Friedrichshain | Resident Evil 23:00
Kino International Casablanca 18:00
Kino International Brazil 20:00
Kino International Brazil 22:00
Moviemento Gravity 17:00
Moviemento Gravity 19:30
Moviemento Alien 22:00
Urania Monuments Men | 17:00
Urania Monuments Men | 20:00

Die Kinodatenbank als Struktur

Signatur:

Version vom 16. Oktober 2023

Seite 145

okiNo = { Rkino/4, Rrim/3, Rprog/3} U {‘¢

¢ € ASCIT* }

Folie 235

Folie 236



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Die Kinodatenbank wird dargestellt als oxno-Struktur D.

Universum:

D := ASCII* D { Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93,
Casablanca, ..., 20:00}.

Relationen:

RY. .= { (Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93),
(Casablanca, Friedenstr. 12-13, Adlershof, 030 67 75 75 2),
(Filmtheater am Friedrichshain, Botzowstr. 1-5, Prenzlauer Berg, 030 42 84 51 88),
(Kino International, Karl-Marx-Allee 33, Mitte, 030 24 75 60 11),
(Moviemento, Kotbusser Damm 22, Kreuzberg, 030 692 47 85),
(Urania, An der Urania 17, Schoneberg, 030 21 89 09 1) }
(
(
(
(

lem { Alien, Ridley Scott, Sigourney Weaver),

Blade Runner, Ridley Scott, Harrison Ford), ... }
ng = { (Babylon, Casablanca, 17:30),
Babylon, Gravity, 20:15), ... }
Konstanten: ‘¢ := ¢, fiir jedes ¢ € ASCIT*.

D.h.: jedes Konstantensymbol wird durch den zwischen den Hochkommas
stehenden Text interpretiert.

Folie 237
Beispiel 3.35. (a) Die Anfrage
,Gib die Titel aller Filme aus, die um 22:00 Uhr beginnen. “
lasst sich durch folgende FO[okno]|-Formel ¢;(z7) beschreiben:
o1(zr) == 3rg Rprg(xi, o1, 22:007)
(b) Die Anfrage

,Gib die Titel aller Filme aus, in denen George Clooney
matspielt oder Regie fithrt*

lasst sich durch folgende FO[okno]-Formel beschreiben: — @o(zr) :=
Jzr Rpgm(r, TR, ‘George Clooney’) V Jxg Rpym(zr, ‘George Clooney’, zg)

Version vom 16. Oktober 2023 Seite 146



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Folie 238
(c) Die Anfrage

,Gib Name und Stadtteil aller Kinos aus, in denen ein Film
lauft, in dem George Clooney matspielt oder Regie fiihrt®

lasst sich durch folgende FO[okno]-Formel beschreiben:
803(IK,$57:) =

x4 Ir 10 RKino(TK, A, Tst, TTe1) A
Jxr Iz (Rpmg(fUK,iET,l‘Z) A

(H:UR Rpim(z7, xR, ‘George Clooney’) V Jzg Rpjm(zr, ‘George Clooney’,mg)))

Die erste Zeile der Formel stellt sicher, dass xx ein Kino und xg dessen
Stadtteil ist; die Zeilen 2 und 3 stellen sicher, dass im Kino xx ein Film
lauft, in dem George Clooney mitspielt oder Regie fiihrt.

Folie 239
Eine andere Sichtweise auf die Semantik
o Anstatt Wahrheitswerte in Interpretationen definieren Formeln der
Logik der ersten Stufe auch Relationen in Strukturen.
e Junktoren und Quantoren entsprechen dann algebraischen Operatoren
auf Relationen.
e Diese Sichtweise ist insbesondere in der Datenbanktheorie wichtig und
bildet die Grundlage effizienter Algorithmen zur Auswertung von
Datenbankanfragen.
Folie 240
Definition 3.36. Sei o eine Signatur, sei p(z1, ..., x,) eine FO[o]-Formel
und sei A eine o-Struktur.
Die von ¢(x1,...,2,) in A definierte n-stellige Relation ist
A n
lo(zy,...,z,)]" = {(a1,...,an) € A" : A= glay,...,a,) }.

Vorsicht: Die Relation [¢(z1, . . .,2,)]” hingt nicht nur von der Formel ¢
ab, sondern auch von dem Tupel (x4, ..., x,) € VAR".

Version vom 16. Oktober 2023 Seite 147



Folie 241

Folie 242

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Beispiel 3.37. Die FO[okno]-Formeln yo(zr) und @3(xk, xg) aus
Beispiel 3.35 definieren in unserer Beispiel-Datenbank D die Relationen

[[QOQ(Z'T)]]D = { (GI’&VIty) 5
(Monuments Men) }
und
[es(zk, xs)]° = { (Babylon, Kreuzberg) ,
( Moviemento, Kreuzberg) ,
( Urania, Schoneberg) }

Andern der Variablen

Lemma 3.38. Sei o eine Signatur, sei A eine o-Struktur und sei
o(xy,...,x,) € FO[o].

(a) Fiir jede Permutation' m von [n] ist

[e(@ays - za@)]” = {(@rq)s s aw)

(ay,...,an) € [@(zy,. .. z)]" }.
(b) Fir jede Variable y € VARN\ {x1,...,x,} ist

[[90($1,---,$n,y)]]“4 = [[go(xl,...,xn)]]A x A.

(c) Falls x,, & frei(y), so ist

[[80<x1u---7$n—1)]]A = {(al,...,an_l):

es gibt (mind.) ein a € A so dass (ai,...,an-1,a) € [o(x1,... ,xn)]]A}.

Beweis. (a) ist trivial. (b), (c) folgen direkt aus dem Koinzidenzlemma. [J

'Eine Permutation einer Menge M ist eine bijektive Abbildung von M nach M.

Version vom 16. Oktober 2023 Seite 148



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Rekursive Beschreibung von [p(z1, ..., 2,)]"

Beobachtung 3.39. Ist ¢ eine Signatur und A eine o-Struktur, so kénnen
wir fiir FO[o]-Formeln ¢ und Variablentupel (z1, ..., z,) mit

frei(p) C {zy,...,x,} die Relation [p(zy, . .., z,)]* € A" rekursiv wie folgt
beschreiben:

e Falls ¢ von der Form t; = t, fiir o-Terme ¢4, ¢, ist, so ist

lo(@y, .. a)]* = { (a1,...,a,) € A
tflar, ... a,] = tMar,...,a,]) }
Zur Erinnerung: Fir einen o-Term t(z1, ..., x,) schreiben wir
tA[a1, ..., a,] um das Element [{]**”) € A zu bezeichnen, wobei 3

eine Belegung mit §(x;) = a;, fiir alle i € [n], ist.

e Falls ¢ von der Form R(ty,...,t;) fiir ein R € o, fiir & := ar(R) und

fiir o-Terme tq, ..., ist, so ist
lo(ze, ..., 2)]" = {(a1,...,a,) € A™:
(tfar,. ... an), ..., tiar,...,a,]) € R }
Folie 243
e Falls ¢ von der Form —) ist, so ist
[o(@r, .. a)]* = A"\ (o, 2]
e Falls ¢ von der Form (1 A 1) ist, so ist
[o(zs, .. z)]t = [ilen.. ozt N [y, z)]”
e Falls ¢ von der Form (i1 V 1b5) ist, so ist
[o(zr, .. z)]* = [ilen,.. ozt U [Walen,. .z
e Falls ¢ von der Form (i), — 1)9) ist, so ist
[y, ..z )]t = [z, 2] U [l 2]
Folie 244

Version vom 16. Oktober 2023 Seite 149



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

e Falls ¢ von der Form dy v ist, so ist

[o(zy,. .. z)]* = { (a1,...,a,) € A" : es gibt (mind.) ein
be Amit (ay,...,a,,b) € [[w(xl,...,xn,y)]]A }

Somit ist [ (21, ... ,xn)]]A die Projektion von [¢(z1,. .., xp, y)]]A auf
die ersten n Stellen.

e Falls ¢ von der Form Vy 1) ist, so ist

lo(ar, ...,z = {(ar,...,a,) € A™:
fiir jedes b € Aist (a1, ..., an,b) € [Y(z1, ..., 20, y)]* }

Folie 245

Das Auswertungsproblem fiir FO

FEingabe: Eine endliche Signatur o,
eine o-Struktur A, deren Universum A endlich ist,
eine FO[o]-Formel ¢,
eine Zahl n € N und
ein Variablentupel (z1,...,z,) € VAR", so dass frei(yp) C
{z1,...,2,} ist.
Aufgabe: Berechne [o(xy, ..., z,)]"

Beobachtung 3.39 fiithrt unmittelbar zu einem rekursiven Algorithmus, der
das Auswertungsproblem fiir FO 16st.
Eine Laufzeitanalyse zeigt, dass Folgendes gilt:

Folie 246

Satz 3.40. Es gibt einen Algorithmus, der das Auswertungsproblem fiir FO
bei Fingabe einer Signatur o, eine o-Struktur A, einer FO[o]-Formel ¢,
einer Zahl n und eines Variablentupels (xq, ..., xz,) mit

frei(p) C {1, ..., x,} in Zeit

O (el + 1Al + lef-w-|A")
lost, wobei gilt:

o |p| ist die Linge von ¢, aufgefasst als Wort tiber dem Alphabet Arojo

Version vom 16. Oktober 2023 Seite 150



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

e w ist die maximale Anzahl freier Variablen in Subformeln von ¢ —
die so genannte Breite (engl.: width) von ¢

o |A| ist ein Maf fiir die Grifle einer geeigneten Reprisentation von A
als Eingabe fiir einen Algorithmus; prdzise:

JAl = ol + [A] + D |RYar(R) + Y JAMD-(ar(f)+1)

Reo feo

(Hier ohne Beweis)

3.7 Aquivalenz von Formeln der Logik erster Stufe

. Folie 247
Aquivalenz

Definition 3.41. Sei ¢ eine Signatur.

(a) Zwei FO[o]-Formeln ¢ und v heiflen dquivalent (kurz: ¢ =), wenn fiir
jede o-Interpretation Z gilt:

Iky <= IEY.

(b) Zwei Formelmengen ®, ¥ C FO[o] heiflen dquivalent (kurz: & = W),
wenn fiir jede o-Interpretation Z gilt:?

IE® «— IEU.

Folie 248

Beispiel 3.42.
Welche der folgenden Formeln sind dquivalent, welche nicht?

o ¢ := Ty E(x,y)
o o= Jdz E(z,2)

o 3:= dz E(y,2)

Anwort:

2Zur Erinnerung: T = ® bedeutet, dass Z = ¢ fiir jede Formel ¢ € ® gilt.

Version vom 16. Oktober 2023 Seite 151



Folie 249

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

(1) p1 = @9, denn fiir jede { E}-Struktur .4 und jede Belegung
B : VAR — A gilt fiir 7 := (A, ) Folgendes: Z = p; <= es gibt ein
Element a € A, so dass es in E4 eine Kante von 3(z) zu a gibt (d.h.
(B(z),a) € B4) <= Ik ¢,

(2) @2 Z @3, denn betrachte die { F'}-Interpretation Z = (A, §) mit
A= {12}, B4 ={(1,2)}, B(z) = 1, B(y) = 2 und B(v) =1 fiir alle
v € VAR\ {z,y}.
Fiir dieses Z gilt: Z |= ¢, denn es gibt in A einen Knoten, zu dem von
B(xz) =1 aus eine Kante fiihrt — némlich den Knoten 2. Andererseits

gilt: Z £~ 3, denn es gibt in A keinen Knoten, zu dem von f(y) = 2
aus eine Kante fiihrt.

(3) Aus (1) und (2) und der Transitivitdt der Relation ,=* folgt, dass
©1 F ps3.

Aussagenlogische Aquivalenzen

Lemma 3.43. Ersetzt man in dquivalenten aussagenlogischen Formeln alle
Aussagenymbole durch FO[o]-Formeln, so erhdlt man dquivalente
FO[o]-Formeln.

Beispiel. Aus der aussagenlogische Aquivalenz (X —Y) = =X VY folgt,
dass

(b=9) = —pVi
fiir alle FO[o]-Formeln ¢ und v gilt.

Beweis von Lemma 3.43:

Seien «, @’ € AL zwei aussagenlogische Formeln.

Seien Xi,..., X, die Aussagensymbole, die in « oder o/ vorkommen.
Seien ¢, ..., ¢, € FO[o].

Seien a1, ..., on) bzw. &/(p1,. .., p,) die FO[o]-Formeln, die aus a bzw.
o/ entstehen, indem man jedes Vorkommen einer aussagenlogischen
Variablen X; (fiir i € [n]) durch die FO[o]-Formel ¢; ersetzt.

Sei Z eine beliebige o-Interpretation. Wir miissen zeigen, dass gilt:

ITEalp,....,on) <= ZTEJ(p,...,00).

Sei 7 eine aussagenlogische Interpretation mit Z(X;) = [¢;]” jedes i € [n].

Version vom 16. Oktober 2023 Seite 152



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Per Induktion nach dem Aufbau von « lésst sich leicht zeigen (Details:
Ubung), dass Folgendes gilt:

TEaler,. - on) <= ZITEa

Analog erhélt man auch, dass gilt:
TEA(p1,...,0n) <= ZIEd.

Laut Voraussetzung sind o und o’ dquivalente aussagenlogische Formeln.
Daher gilt:
ITEa <<= ZIEJd.

Somit gilt auch:

ITEalpr,...,on) <= ZTEJ(p,...,00).

Insgesamt erhalten wir, dass a1, ..., p,) und o/(¢1, ..., p,) dquivalente
FO[o]-Formeln sind. O
Folie 250
Quantoren und Negation
Man sieht leicht, dass Folgendes gilt:
Lemma 3.44. Fir alle FO[o]-Formeln ¢ und alle Variablen x € VAR gilt:
—drp = Vo und Ve = dz-p.
Beweis: Folgt direkt aus der Definition der Semantik (Details: Ubung). O
Folie 251

Das Ersetzungslemma
Lemma 3.45. Sei o eine beliebige Signatur und sei ¢ eine FO[o]|-Formel.

Ist ¢’ eine FO[o]-Formel, die aus ¢ entsteht, indem man eine Subformel 1)
von ¢ durch eine zu 1) dquivalente FO[o]|-Formel ¢’ ersetzt, so ist p = ¢'.

Beweis: Ubung.

Satz 3.46. Jede FO[o]-Formel ist dquivalent zu einer FO[o]-Formel, in der

Version vom 16. Oktober 2023 Seite 153



Folie 252

Folie 253

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

(a) keiner der Junktoren {\,—} vorkommt

(d.h., es kommen nur die Junktoren =,V und die Quantoren 3,¥ wvor).
(b) nur Ezistenzquantoren und die Junktoren —,V vorkommen.
(¢) nur Erxistenzquantoren und die Junktoren —, A\ vorkommen.
(d) nur Allquantoren und die Junktoren —,V vorkommen.
(e) nur Allqguantoren und die Junktoren —, \ vorkommen.

Daher geniigt es, bei Beweisen per Induktion iiber den Aufbau von Formeln
von nun an im Induktionsschritt i.d.R. nur noch die Fille fiir 3, -, V zu
betrachten.

Beweis von Satz 3.46:

Aus Lemma 3.43 folgt, dass ,A* und ,,—* mit Hilfe von ,V*“ und ,—“
ausgedriickt werden kénnen. Somit gilt (a).

Aus Lemma 3.44 folgt, dass ,V* mit Hilfe von ,,3“ und ,,—* ausgedriickt
werden. Daher gilt (b).

Da ,,V* mit Hilfe von ;A“ und ,,—* ausgedriickt werden kann, gilt auch (c).
Auflerdem folgt aus Lemma 3.44, dass ,,3“ mit Hilfe von ,V* und ,,—“
ausgedriickt werden kann. Aus (b) und (c) folgt daher (d) und (e). O

3.8 Ehrenfeucht-Fraissé-Spiele

In diesem Abschnitt werden Ehrenfeucht-Fraissé-Spiele (kurz: EF-Spiele)
eingefiihrt. Diese liefern ein Werkzeug, mit dessen Hilfe man zeigen kann,
dass bestimmte Anfragen oder Klassen von Strukturen nicht in Logik erster
Stufe definiert werden kénnen.

Der Einfachheit halber betrachten wir hier nur Signaturen, die keine
Funktionssymbole und keine Konstantensymbole enthalten. Solche
Signaturen werden im Folgenden relationale Signaturen genannt.

Auflerdem werden wir im Folgenden bei zwei gegebenen Strukturen A und
B immer 0.B.d.A. annehmen, dass ihre Universen disjunkt sind, d.h.
ANB=1.

Version vom 16. Oktober 2023 Seite 154



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Das m-Runden EF-Spiel

Sei o eine relationale Signatur und seien A, B zwei o-Strukturen.

Fiir k € Nseien @ :=ay,...,a; € Aund b:=by,..., b, € B Folgen der
Lénge k von Elementen aus A bzw. B.

Sei m € N.

Das m-Runden EF-Spiel auf (A, @) und (B,b) (bzw. auf A und B, falls
k =0 ist) wird gemi$ folgender Spielregeln gespielt:

Spielregeln des m-Runden EF-Spiels auf (A,a@) und (B,b)

e Es gibt 2 Spieler, genannt Spoiler (kurz: Sp) und Duplicator (kurz:
Dupl).

e Das Spielbrett besteht aus (A, a) und (B,b).

e Eine Partie des Spiels besteht aus m Runden.

In jeder Runde i € {1,...,m} geschieht Folgendes:

1. Zunéchst wahlt Spoiler entweder ein Element in A, das im
Folgenden mit ay; bezeichnet wird, oder er wahlt ein Element
in B, das im Folgenden mit by,; bezeichnet wird.

Beachte: Insbes. kann Spoiler in jeder Runde neu entscheiden, in welcher

der beiden Strukturen er ein Element wahlen mdochte.

2. Danach antwortet Duplicator mit einem Element aus dem

Universum der anderen Struktur, d.h. er wéhlt ein by,; € B, falls

Spoiler ein a;; € A gewihlt hat, bzw. ein Element a,,; € A,
falls Spoiler ein byy; € B gewéhlt hat.

Nach Runde m ist die Partie beendet und der Gewinner wird wie
folgt ermittelt:

Gewinnbedingung

Duplicator hat gewonnen, falls die beiden folgenden Bedingungen erfiillt
sind.

(1) Fir alle j,j" € {1,...,k+m} gilt: a; =a; <= b; =bj.

Version vom 16. Oktober 2023 Seite 155

Folie 254

Folie 255



Folie 256

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

(2) Die Abbildung = : {a1,...,akm} — {b1,. .., brrm} mit
m(aj) = b;, fir jedes j € {1,...,k+m}
ist ein partieller Isomorphismus von A nach B (siehe Definition 3.47).

Spoiler hat gewonnen, falls mindestens eine der beiden obigen Bedingungen
verletzt ist.

Definition 3.47 (partieller Isomorphismus).

Sei o eine relationale Signatur, seien A, B zwei o-Strukturenund sei X C A.
Eine Abbildung 7 : X — B heifit partieller Isomorphismus von A nach B,
falls gilt:

(1) 7 ist injektiv und
(2) fur jedes R € o, fiir r := ar(R) und fir alle (z,...,2,) € X" gilt:

(x1,...,2,) e R* = (7(21),...,7(z,)) € R

Beispiel 3.48. Sei 0 := { E/2} und sei k := 0.
In den folgenden Darstellungen von Graphen repréasentiert jede ungerichtete
Kante zwischen Knoten z und y die beiden gerichteten Kanten (x,y) und

(y,z).
(a) Betrachte die folgenden beiden Graphen A, B.

A

)
/\ [
Spoiler gewinnt das 2-Runden EF-Spiel auf A und B, indem er
folgendermaflen spielt:

B:

e Runde 1: Wihle denjenigen Knoten a; in A, der mit allen anderen
Knoten durch eine Kante verbunden ist.

e Runde 2: Wihle einen Knoten b, in B, der nicht zum Knoten b,
benachbart ist.

Version vom 16. Oktober 2023 Seite 156



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Folie 257

(b) Betrachte die beiden folgenden Graphen A, B.

Duplicator gewinnt das 2-Runden EF-Spiel auf A und B, denn in
beiden Graphen gibt es zu jedem Knoten sowohl einen Nachbarn, als
auch einen Nicht-Nachbarn.

(c) Spoiler gewinnt das 3-Runden EF-Spiel auf den Graphen 4 und B aus
(b), indem er in den ersten 3 Runden 3 verschiedene nicht benachbarte
Knoten in A wahlt.

Folie 258

Die Ziele von Spoiler und Duplicator

Die Gewinnbedingung im EF-Spiel ist so gewéhlt, dass die Ziele von Spoiler
und Duplicator anschaulich folgendermafien beschrieben werden kénnen:

e Spoilers Ziel ist es, zu zeigen, dass die beiden Strukturen (A,a) und
(B, b) verschieden sind.

e Duplicators Ziel ist es, einen etwaigen Unterschied zwischen den
beiden Strukturen zu vertuschen.

Folie 259

Gewinnstrategien
Eine Strategie tiir einen der beiden Spieler im m-Runden EF-Spiel auf
(A, @) und (B, b) ist eine Vorschrift, die ihm sagt, welchen Zug er als

Nachstes machen soll. Formal:

Version vom 16. Oktober 2023 Seite 157



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

e Eine Strategie fiir Spoiler ist eine Abbildung

m—1
fo + JAxB) — AUB.
i=0
Sind agy1, ... a5 € Aund byq,...,bky; € B die in den ersten ¢

Runden gewéhlten Elemente, so gibt

Fsp(@rt1, but1s - -, Qhgiy biti)

an, welches Element Spoiler in der (i+1)-ten Runde wéhlen soll.

Folie 260

e Eine Strategie fiir Duplicator ist eine Abbildung

m—1
fDupt U (Ax B)x (AUB) — BUA,

=0

so dass fiir alle i € {0,...,m—1}, alle agy1,...,a5; € A, alle
bk+1, . ;bk—i-i € B und alle Ck+it+1 € AUB gllt

Chpiv1 €A = foupi(@rs1, 0641, - - -, Qhgi, Dy, Chpig1) € B.
Sind agyq, ..., a5 € Aund bgyq,...,bx; € B die in den ersten

¢ Runden und ist cx1;41 € AU B das von Spoiler in Runde i+1
gewdhlte Element, so gibt

fDupl(ak’-l—la bitty - -+ Qhoyis bty Ck+i+1)
an, welches Element Duplicator in der (i+1)-ten Runde wéhlen soll.
e Eine Gewinnstrategie ist eine Strategie fiir einen der beiden Spieler,

mit der er jede Partie des m-Runden EF-Spiels auf (A,a) und (B,b)
gewinnt.

Folie 261

Version vom 16. Oktober 2023 Seite 158



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Der Satz von Ehrenfeucht

Sei o eine relationale Signatur, seien A, B zwei o-Strukturen, sei m € N, sei
keN,seia=ay,...,ap € Aund b=10by,...,b, € B.

Der Satz von Ehrenfeucht besagt, dass die beiden folgenden Aussagen
aquivalent sind:

(1) Duplicator hat eine Gewinnstrategie im m-Runden EF-Spiel auf (A, @)
und (B, b).

(2) Fir jede FO[o]-Formel ¢(x1, ..., xx) der Quantorentiefe < m gilt:
A E plar,...,ax] <= B E ob,..., bl

Anschaulich bedeutet dies, dass (A, @) und (1, b) aus Perspektive von
FO[o]-Formeln der Quantorentiefe < m ,gleich“ aussehen, d.h. dass
(A, @) und (B,b) von solchen Formeln nicht unterschieden werden
koénnen.

Die Quantorentiefe einer Formel ¢ ist dabei die maximale Anzahl von
ineinander geschachtelten Quantoren, die in ¢ vorkommen:

Folie 262

Definition 3.49. Die Quantorentiefe (bzw. der Quantorenrang, engl.:
quantifier rank) qr(p) einer FO[o]-Formel ¢ ist rekursiv wie folgt definiert:

o Ist ¢ atomar, so ist qr(p) := 0.
e Ist ¢ von der Form —), so ist qr(y) := qr(v).

e Ist ¢ von der Form (¢1 * 1b5) mit x € {A,V,—}, so ist
ar(p) = max{qr(¢1), qr(ee)}.

e Ist ¢ von der Form Jx v oder Vx 1), so ist qr(p) := qr(¢) + 1.

Beispiele:
o ar(3avy (z=yV E(z.y))) = 2.
o a3z (E(z,2)VVy -E(z,y)) = 2.
o ar((3zE(x z)VVy-Ez,y)

~—
SN—"
I
—

Version vom 16. Oktober 2023 Seite 159



Folie 263

Folie 264

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Bemerkung 3.50. Geméif Satz 3.46 ist jede FO[o]-Formel ¢ dquivalent zu
einer FO[o]-Formel ¢, in der nur Existenzquantoren und die Junktoren
=,V vorkommen (d.h.: in ¢’ kommt keins der Symbole V, A, — vor).

Man sieht leicht, dass ¢’ sogar so gewahlt werden kann, dass gilt:

qr(¢’) = qr(e) und frei(¢') = frei(p).

Wir beweisen hier nur die Richtung ,,(1) = (2)“ des Satzes von
Ehrenfeucht, deren Kontraposition in folgendem Satz formuliert wird.

Satz 3.51 (Satz von Ehrenfeucht, einfache Version).

Sei o eine relationale Signatur und seien A, B zwei o-Strukturen, sei
meN, sei k€N, sei a=ay,...,a, €A und sei b="by,..., b, € B.
Falls es eine FO[o]|-Formel o(xy, ..., xx) mit frei(p) C {xy,..., 25} und
qr(yp) < m gibt, so dass

A E glay, ... a und B plbr, ..., bk,

so hat Spoiler eine Gewinnstrategie im m-Runden EF-Spiel auf (A,a) und

(B.D).

Beweisidee

Zunéchst illustrieren wir die Beweisidee an einem Beispiel. Betrachte dazu
die Formel
@ = El.’l?l va (1'1:.1'2 V E(l’l,l'g) )

und die beiden Graphen A, B aus Beispiel 3.48(a).

A B:
[ )
./\. [}
Es gilt: A= und B} ¢, d.h. B .
Klar:
—p = Vr;dr, (_|l'1:$2 N = E(zy,x9) )
Also gilt:

Version vom 16. Oktober 2023 Seite 160



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

A ): 31‘1 v.%'g (ZL’lzl’g V E(l‘l,xg)) (32)

und

B IZ V£L‘1 E'ZL'Q (_|CL'1:{E2 VAN _|E(ZL'1,ZE2)) (33)

Eine Gewinnstrategie fiir Spoiler im 2-Runden EF-Spiel auf A und B lésst
sich daran direkt ablesen — Spoiler gewinnt, indem er wie folgt ,,die Formel
© ausspielt:

Wegen (3.2) kann Spoiler in Runde 1 ein a; € A wihlen, so dass gilt:

A ): (VIEQ (1‘1:]72 vV E(xl,xQ) ) > [al] (34)
Dieses a; ist gerade der Knoten ,,in der Mitte* des Graphen A, d.h. der
Knoten, der Kanten zu allen anderen Knoten von A besitzt.

Wegen (3.3) gilt dann fiir jedes Element b; € B, mit dem Duplicator in
Runde 1 antworten kénnte, dass

B = (3:52 (~zi=2s A = E(z1,12) )) [b1] (3.5)

In Runde 2 kann Spoiler daher ein Element b, € B auswéhlen, fiir das gilt:
B = ( 1=z A = E(z1, ) ) [b1, bo] (3.6)

Wegen (3.4) gilt fir jedes Element as € A, mit dem Duplicator in Runde 2
antworten koénnte, dass

A E (:Ul:xQ v E(xl,x2)> [ai, as] (3.7)

Am Ende der Partie wissen wir gemaf (3.7) und (3.6) also, dass Folgendes
gilt:

( a; = ay oder (aj,a) € EA ) und ( by # by und (by,by) & E® >

Falls a; = ay ist, so ist Teil (1) der Gewinnbedingung fiir Duplicator
verletzt; falls (a1, ap) € B4 ist, so ist Teil (2) der Gewinnbedingung fiir
Duplicator verletzt. Also gewinnt Spoiler jede Partie des 2-Runden
EF-Spiels auf A und B.
Somit hat Spoiler eine Gewinnstrategie im 2-Runden EF-Spiel auf A und B.
Folie 265

Version vom 16. Oktober 2023 Seite 161



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Beweis von Satz 3.51:

Wir fithren den Beweis per Induktion iiber den Aufbau von Formeln.
Es seien eine relationale Signatur ¢ und zwei o-Strukturen A und B
gegeben. Die Aussage A(yp), die wir fiir alle FO[o]-Formeln ¢ beweisen
wollen, besagt Folgendes:

Fiir alle m,k €N, alle @=aj,...,a5 € A und alle
b="by,...,bp € B gilt:

Falls qr(¢) < m und |frei(p)| < k und

A E glay,...,a] <= B ¥ ob,..., b,

so hat Spoiler eine Gewinnstrategie im m-Runden EF-Spiel auf

(A, @) und (B,b).

Um A(p) fiir eine gegebene Formel ¢ zu beweisen, seien im Folgenden
m,keN, a=ay,...,a, € A und b=1by,...,b, € B beliebig gewahlt.
Es geniigt, den Fall zu betrachten, in dem gilt:

(x): m=ar(p), k=|[frei(p)] und  Al=pla] < B~ o[b],

denn andernfalls muss geméfl der Formulierung von A(p) nichts gezeigt
werden.

Ziel ist, zu zeigen, dass Spoiler eine Gewinnstrategie im m-Runden
EF-Spiel auf (A,a) und (B,b) hat.

Induktionsanfang: Sei ¢ atomar. Da o eine relationale Signatur ist, sind
Variablen die einzigen o-Terme, d.h.: T, = VAR. Somit ist jede atomare
o-Formel von einer der beiden im Folgenden betrachteten Formen.

e  ist von der Form x;, = x;,, mit i1,io € {1,...,k}

Wegen () gilt dann insbesondere:
Qi = Ay < bil 7é big-

Somit ist Duplicators Gewinnbedingung (1) verletzt, und Spoiler
gewinnt jede Partie des m-Runden EF-Spiels auf (A, @) und (B, b).

e ¢ ist von der Form R(x;,...,x; ), wobei R € o, r := ar(R) und
i e € {1, k)

Version vom 16. Oktober 2023 Seite 162



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Wegen (x) gilt dann insbesondere:
(Giy,...,a;) € RY = (by,...,b,) & RP.

Somit ist Duplicators Gewinnbedingung (2) verletzt, und Spoiler
gewinnt jede Partie des m-Runden EF-Spiels auf (A, @) und (B, b).

Induktionsschritt: Sei ¢ eine beliebige nicht-atomare FO[o]-Formel. Gemaf
Bemerkung 3.50 geniigt es, im Folgenden die Fille zu betrachten, in denen
¢ von einer der folgenden Formen ist:  Jyv, —b, (1 V iby).
e Fall 1: ¢ ist von der Form dy).

Geméf Induktionsannahme gilt A(v).

Unser Ziel ist, zu zeigen, dass Spoiler eine Gewinnstrategie im
m-Runden EF-Spiel auf (A, @) und (B, b) hat.

GeméB (%) gilt: m > qr(p), k > |frei(p)|, A ¢la] <= B ¢[b)].

Fall 1.1: A E pla] und B}~ ¢[b].
Da ¢ von der Form dz ) ist, gilt also:

AE (3zv) [a] und B (Va—1p) [b]
Somit gibt es ein agyq1 € A, so dass gilt: A = ¢[a, agq].
Und fiir jedes by, € B gilt: B |= =[b, bpy].

Spoiler kann daher in Runde 1 ein ag; € A mit A = ¢[a, agyq]
wéhlen. Fiir jedes bpiq € B, mit dem Duplicator in Runde 1 antworten

kann, gilt: B = —[b, b1
Es gilt:

- ar(y)
— |frei(y)] < |frei()|+1 < k+1 =: k', und

/

= qr(p) =1 < m—1 =

— fiir @ :=aq,...,ag a1 und b= bi,. .., by, bpr1 gilt:
Abv@]  wd  BREYp]
Da A(¢)) gemiB Induktionsannahme gilt, hat Spoiler daher eine
Gewinnstrategie im m/-Runden EF-Spiel auf (A, @) und (B,5).

Fiir das m-Runden EF-Spiel auf (A, @) und (B,b) erhilt Spoiler daher
eine Gewinnstrategie, indem er in Runde 1 ein ag,; € A wihlt, so dass

gilt: A = ¢[a, apiq].

Version vom 16. Oktober 2023 Seite 163



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Fiir jedes by € B, mit dem Duplicator in Runde 1 antworten kann,
spielt Spoiler die restlichen m’ =m—1 Runden dann geméaf seiner
Gewinnstrategie im (m—1)-Runden EF-Spiel auf (A, @, ax,1) und

(B ) b, bk+l)'

Fall 1.2: B = ¢[b] und A W plal.
Da ¢ von der Form dz ) ist, gilt also:

B (3zv) [b] und AE (Vz—) [a]

Somit gibt es ein by 1 € B, so dass gilt: B |= ¢[b, bgy1].
Und fiir jedes agy1 € A gilt: A | —[a, agi].
Spoiler kann daher in Runde 1 ein by, € B mit B = 1[b, by11]

wéhlen. Fiir jedes agy1 € A, mit dem Duplicator in Runde 1 antworten

kann, gilt: A = —[a, api1].

Genau wie in Fall 1.1 hat Spoiler geméafl Induktionsannahme eine
Gewinnstrategie im (m—1)-Runden EF-Spiel auf (A, @, ax41) und
(Ba b> bk+1)'

Insgesamt liefert dies eine Gewinnstrategie fiir Spoiler im m-Runden

EF-Spiel auf (A,a) und (B,b).

e Fall 2: ¢ ist von der Form —).
GeméB Induktionsannahme gilt A(1)).
GemafB (%) gilt: m > qr(y), k> |frei(p)], A ¢la] <= B}~ ¢[b).
Da ¢ von der Form — ist, gilt: ~
qr(y) = ar(p), frei(y) = frei(p), AW ¢la] < B = ¢[b].

Da A(¢)) gemif Induktionsannahme gilt, hat Spoiler also eine
Gewinnstrategie im m-Runden EF-Spiel auf (A, @) und (B,b).

e Fall 3: ¢ ist von der Form (¢ V 19).
Geméif Induktionsannahme gilt A(¢);) und A(es).
GemiB (x) gilt: m > qr(p), k > |frei(p)|, A | ¢la] <= B ¢[b).

Da ¢ von der Form (11 V 1,) ist, sicht man leicht, dass es ein ¢ € {1,2}
geben muss, so dass gilt:

AEgilal = By

Version vom 16. Oktober 2023 Seite 164



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Auflerdem gilt: qr(¢;) < qr(e) < m, und |frei(¢;)| < | frei(¢)| < k.
Da A(v;) gemiB Induktionsannahme gilt, hat Spoiler also eine
Gewinnstrategie im m-Runden EF-Spiel auf (A,a@) und (B, ).

Dies beendet den Beweis von Satz 3.51. O
Folie 266

Folgerung aus dem Satz von Ehrenfeucht

Notation 3.52. Eine Klasse € von o-Strukturen heiffit FO-definierbar, falls
es einen FO[o]-Satz ¢ gibt, der € definiert.

Zur Erinnerung:
Fiir einen FO[o]-Satz ¢ und eine Klasse € von o-Strukturen sagen wir ,,¢
definiert €, falls fiir jede o-Struktur A gilt: A€ € <— AE ¢.

Um fiir eine gegebene Klasse € von o-Strukturen zu zeigen, dass sie nicht
FO-definierbar ist, konnen wir das folgende Korollar nutzen, das wir als eine
einfache Folgerung aus Satz 3.51 erhalten.

Korollar 3.53.
Sei o eine relationale Signatur und sei € eine Klasse von o-Strukturen.
Fulls es fiir jedes m > 1 zwei o-Strukturen A,, und B,, gibt, so dass gilt:

1. A, €€ und
2. B, &€ und

3. Duplicator hat eine Gewinnstrategie im m-Runden EF-Spiel auf A,,
und B,,,

dann ist € nicht FO-definierbar.

Bewezs.

Fiir jedes m > 1 seien A,, und B,, zwei o-Strukturen, so dass 1.-3. gilt.
Wir fithren einen Beweis durch Widerspruch und nehmen an, dass € doch
FO-definierbar ist. D.h. es gibt einen FO[o]-Satz ¢, der € definiert. Somit
gilt fiir jede o-Struktur C:

CEyp < Cec, (3.8)

Betrachte die Strukturen A4,, und B, fir ein m mit m > qr(p).
Laut Voraussetzung wissen wir, dass 1.-3. gilt.

Version vom 16. Oktober 2023 Seite 165



Folie 267

Folie 268

Folie 269

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Wegen A, € € und B, ¢ € gilt gemaf (3.8), dass

A IZ @ und B, I?é -

Gemaéf Satz 3.51 (Satz von Ehrenfeucht, einfache Version) hat Spoiler also
eine Gewinnstrategie im m-Runden EF-Spiel auf A,, und B,,.

Dies ist ein Widerspruch zu 3., da gemifl 3. Duplicator eine
Gewinnstrategie im m-Runden EF-Spiel auf A,, und B,, hat. O

Lineare Ordnungen gerader Kardinalitét

Wir werden nun Korollar 3.53 anwenden, um folgenden Satz zu zeigen.

Satz 3.54. Die Klasse EVEN, die aus allen linearen Ordnungen
A = (A, <A) gerader Kardinalitit besteht (d.h., A ist endlich und |A| ist
durch 2 teilbar), ist nicht FO-definierbar.

Um diesen Satz zu beweisen, geniigt es gemafl Korollar 3.53, fiir jede
Rundenzahl m > 1 eine lineare Ordnung A,, gerader Kardinalitat und eine
lineare Ordnung B,, ungerader Kardinalitdt anzugeben, fiir die wir zeigen
konnen, dass Duplicator eine Gewinnstrategie im m-Runden EF-Spiel auf
A,, und B,, hat.

Als Vorbereitung dazu betrachten wir zunéchst ein Beispiel.

Beispiel 3.55.

Betrachte die linearen Ordnungen A = (A, <*) und B = (B, <5) mit
A={1,...,8} und B ={1,...,9}, wobei <* und <? die natiirlichen
linearen Ordnungen auf A und B sind.

Seien auBerdem k := 2 und @ := ay, as und b := by, by mit a; = b; = 1 und
as = 8 und by = 9 vorgegeben.

Frage: Was ist die grofite Zahl m, so dass Duplicator eine Gewinnstrategie
im m-Runden EF-Spiel auf (A, a) und (B, b) hat?

Antwort: Duplicator hat eine Gewinnstrategie im 2-Runden EF-Spiel auf
(A, @) und (B,b); Spoiler hat eine Gewinnstrategie im 3-Runden EF-Spiel
auf (A,a) und (B, D).

Die Gewinnstrategie fiir Duplicator lésst sich zu folgendem Resultat
verallgemeinern.

Version vom 16. Oktober 2023 Seite 166



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Lemma 3.56. Seien A und B endliche® lineare Ordnungen, sei k := 2, und
set a:=ay,as und b:= by, by, wobei ay,by die kleinsten und as, by die
griften Elemente in A und B beziiglich <* und <8 sind.

Fiir jedes m > 1 gilt: Falls |Al],|B| > 2™ oder |A| = |B|, so hat Duplicator
eine Gewinnstrategie im m-Runden EF-Spiel auf (A,a) und (B,b).

Beweis.

Falls |A| = |B], so sind A und B isomorph (beachte dazu: laut
Voraussetzung sind A und B endlich). Sei 7 : A = B ein Isomorphismus von
A nach B. Duplicator gewinnt das m-Runden EF-Spiel auf (A, @) und
(B,b), indem er in jeder Runde i € {1,..., m} einfach Spoilers Zug
skopiert“, d.h. er wihlt 7(ayy;) (bzw. ﬂ_l(bkﬂ»)), wenn Spoiler in Runde 7
ein Element ay,; € A (bzw. by; € B) wahlt.

Im Folgenden betrachten wir den Fall, dass |A| > 2™ und |B| > 2™.
Fiir jedes C € {A, B} betrachte die Distanzfunktion Dist: C x C'— N mit
Dist(c,d) == |{deC : ¢<®d< d oder ¢ <¢d<Ec}

fiir alle ¢, € C.
Folie 270
Wir zeigen nun, dass Duplicator so spielen kann, dass fiir jedes

i €{0,1,...,m} die folgende Invariante (x); erfullt ist:

(*);: Sind agq, ..., a94; und boyq, ..., boy; die in den Runden 1,... i
gewihlten Elemente in A und B, so gilt fiir alle j, 5" € {1,...,2+i}:

1. a; <A aj; bj gB bj/ und
2. Dist(aj,ay) = Dist(b;, b)) oder Dist(a;,aj), Dist(bj,byr) = 2™
Der Beweis folgt per Induktion nach .

Induktionsanfang: 1=0
Die Bedingung (x)g ist erfiillt, denn laut Voraussetzung gilt:

Dist(ai,a2) = |A]=1 > 2™ und Dist(by,b) = |B|—-1 > 2™.
Induktionsschritt: © — i+1

GeméB Induktionsannahme sind bereits © Runden gespielt und die
Bedingung (x); ist nach der i-ten Runde erfiillt.

3d.h., die Universen von A und B sind endlich

Version vom 16. Oktober 2023 Seite 167



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Fall 1: Spoiler wéhlt in der (i+1)-ten Runde ein Element ag;,; in A,
Falls agy;41 = a; fiir ein j € {1,...,2+i}, so antwortet Duplicator mit
botit1 := b; und bewirkt damit, dass die Bedingung (x);4; erfiillt ist.
Ansonsten gibt es Indizes 7,5’ € {1,...,2+i}, so dass gilt:

* a; <A A9yit1 <A a; und
o fiir alle j” € {1,...,24i} gilt: a;» <A a; oder aj <A ajo.
Da (x); gemaf Induktionsannahme erfiillt ist, gilt:
(1.) Dist(a;,a;) = Dist(bj, bjr) oder
(2.)  Dist(aj,a;), Dist(bj, b)) = 2™
Im Fall (1.) gibt es ein Element by, ;41 in B, so dass b; <® byy;11 <B by und
Dist(b;, bayir1) = Dist(a;, agriv1) und Dist(bayiy1,bj) = Dist(asyivi, ajr).

Man kann sich leicht davon iiberzeugen, dass die Bedingung (%) erfiillt
ist, wenn Duplicator in der (i+1)-ten Runde dieses by ;1 wéhlt.

Im Fall (2.) muss es mindestens ein Element ¢ € B geben, so dass
b; <Bec <Bby und Dist(b;,c) > E— = 2m~ D und

; 2
Dist(c, bj) > 2”;_1 — ogm—(i+1)

e TFalls Dist(aj, azyis1) = 2™~ und Dist(agiiv1,a;) = 2™ so
wéhlt Duplicator in der (i+1)-ten Runde boy ;1 1= c.

o Falls Dist(aj, (IQ_H'_H) < 2m—(i+1)7 so wahlt Duplicator das b2+i+1 >B bj
mit DiSt(bj, b2+i+1) = Dist(aj, a2+i+1).

o Falls Dist(azyir1,a;) < 2™ D so wihlt Duplicator das
b2+i+1 <B bj/ mit Di$t<b2+i+1, bj/) = DiSt(CL2+i+1, CL]'/).

Man kann leicht nachpriifen, dass in jedem der 3 Félle die Bedingung (x);41
erfiillt ist.

Fall 2: Spoiler wahlt in der (i+1)-ten Runde ein Element by ;41 in B.
Duplicators Antwort asy;11 in A wird analog zu Fall 1 ermittelt.

Damit sind wir fertig mit dem Induktionsschritt.

Wir haben also bewiesen, dass Duplicator, so spielen kann, dass fiir jedes

i €{0,1,...,m} die Bedingung (x); erfiillt ist.

Insbesondere ist nach Runde m die Bedingung (x),, erfiillt und Duplicator
hat daher die Partie gewonnen. O]

Version vom 16. Oktober 2023 Seite 168



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Folie 271
Satz 3.54 folgt nun direkt aus Korollar 3.53 und Lemma 3.56.

Beweis von Satz 3.54.

Um nachzuweisen, dass die Klasse EVEN¢ nicht FO-definierbar ist, geniigt
es laut Korollar 3.53, fiir jede Zahl m > 1 eine endliche lineare Ordnung A4,,
gerader Kardinalitit und eine endliche lineare Ordnung B,,, ungerader
Kardinalitét zu finden, so dass Duplicator eine Gewinnstrategie im
m-Runden EF-Spiel auf A,, und B,, besitzt.

Wir wihlen fiir A,, die natiirliche lineare Ordnung mit Universum

Ay ={1,...,2™4+2}, und fiir B, die natiirliche lineare Ordnung mit
Universum B,, :={1,...,2™+1}.

Gemé&fB Lemma 3.56 hat Duplicator eine Gewinnstrategie im m-Runden
EF-Spiel auf (A,,,@) und (B,,,b), wobei @ = a;, as und b = by, by jeweils aus
dem kleinsten und dem gréfiten Element der beiden linearen Ordnungen
bestehen.

Offensichtlicherweise ist diese Gewinnstrategie auch eine Gewinnstrategie
fiir Duplicator im m-Runden EF-Spiel auf A,, und B,,. ]

Folie 272

Bemerkung 3.57.
Der obige Beweis zeigt nicht nur, dass die Klasse EVEN¢
nicht FO-definierbar ist, sondern sogar die folgende stérkere Aussage:

Fiir jedes n € N gilt: Es gibt keinen FO[{<}]-Satz ¢, so dass fiir
jede endliche lineare Ordnung B mit |B| > n gilt:
Bl <= |B| ist gerade.

Beweis. Durch Widerspruch.

Sei n € N beliebig gewihlt. Angenommen, es gibt einen FO[{<}]-Satz 1, so
dass fiir jede endliche lineare Ordnung B mit |B| > n gilt:

Bl <= |B]ist gerade.

Dann sei m := qr(¢). Wihle ein £ € N mit £ > m und 2° > n. Sei A eine
lineare Ordnung auf genau 2°+1 Elementen und sei B eine lineare Ordnung
auf genau 2°4-2 Elementen.

Da |A| > n und gerade ist, gilt: A | 9.

Da | B| > n und ungerade ist, gilt: B |~ 1.

Geméif Satz 3.51 hat Spoiler eine Gewinnstrategie im m-Runden EF-Spiel
auf A und B. Aber aus Lemma 3.56 folgt, dass Duplicator eine
Gewinnstrategie im m-Runden EF-Spiel auf A und B hat. Widerspruch! [

Folie 273

Version vom 16. Oktober 2023 Seite 169



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Graph-Zusammenhang und Erreichbarkeit sind
nicht FO-definierbar

Wir konnen die Aussage von Bemerkung 3.57 nutzen, um Folgendes zu
zeigen.

Satz 3.58. Sei o := {FE/2}.

(a) ,Graph-Zusammenhang ist nicht FO-definierbar. “

D.h.: Es gibt keinen FO[o]-Satz ¢ conn, so dass fiir jeden endlichen
ungerichteten Graphen G = (V9, E9) und die zugehérige* o-Struktur
A= (A, EA) gilt: AE ©comm < G ist zusammenhingend.

(b) ,Erreichbarkeit ist nicht FO-definierbar.

D.h.: FEs gibt keine FO[o]-Formel @ geaen(,y), so dass fir alle endlichen
gerichteten Graphen A = (A, EA) und alle Knoten a,b € A gilt:

A = Oreachla,b] <= es gibt in A einen Weg von Knoten a zu

Knoten b.

Beweis.

(a): Wir fithren einen Beweis durch Widerspruch und nutzen
Bemerkung 3.57.

Angenommen, ¢ gy, ist ein FO[o]-Satz, so dass fiir jeden endlichen
ungerichteten Graphen G und die zugehorige o-Struktur A gilt:

AE ©conn <= G ist zusammenhingend. (3.9)

Idee: Nutze den Satz ¢ conn, um einen FO[{<}]-Satz v zu konstruieren, so
dass fiir jede endliche lineare Ordnung B = (B, <F) mit |B| > 2 gilt:

BEv <= |B]| ist gerade.

Von Bemerkung 3.57 wissen wir, dass es einen solchen Satz i) nicht geben
kann.

Um den Satz 1 zu konstruieren, ordnen wir jeder endlichen linearen
Ordnung B = (B, <P) mit B = {by,...,b,} und by <B by <B... <Bp,
fir n:=|B| > 2 den Graphen Gz mit Knotenmenge B zu, dessen
Kantenmenge aus genau den Kanten zwischen b; und b, 9, fiir alle 1 < n—2,
und einer zuséatzlichen Kante zwischen b; und b,, besteht.

‘dh. A=VY9 und EA = {(u,v) : {u,v} € B9}

Version vom 16. Oktober 2023 Seite 170



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Skizre -

N\
Bles > Ger &) ) & W ¢

LM S TSHORONOEONGHO

Man sieht leicht, dass Folgendes gilt:

Gp ist zusammenhdngend <= |B| ist gerade. (3.10)
Sei nun &g (z,y) eine FO[{<}]-Formel, die besagt:
o y=u1x+2“ oder ,xr =y+2“ oder
e _x ist das kleinste und y ist das grofite Element bzgl. <“ oder
e . x ist das grofite und y ist das kleinste Element bzgl. <“.

Klar: Eine solche FO[{<}]-Formel {g(, y) ldsst sich leicht formulieren
(Details: Ubung).

Ausgewertet in einer linearen Ordnung B ,simuliert“ die Formel {g(z,y)
gewissermaflen die Kantenrelation des Graphen Gg.

Sei nun ¢ der FO[{<}]-Satz, der aus dem FO[{ E'}]-Satz ¢ conn entsteht,
indem jedes Atom der Form E(z1, z3) durch die FO[{<}]-Formel £g(z1, 29)
ersetzt wird.

Der Satz 1 ist also gerade so konstruiert, dass beim Auswerten von ¢ in B
die Auswertung von @ cen, in der zu Gg gehorenden o-Struktur A simuliert
wird. Es gilt also fiir jede endliche lineare Ordnung B mit |B| > 2, den
ungerichteten endlichen Graphen Gz und die zugehorige o-Struktur A:

B =1 = A E ©comn
@ Ui ist zusammenhéngend
1 |B| ist gerade.
Aber dies ist ein Widerspruch zu Bemerkung 3.57.

Version vom 16. Oktober 2023 Seite 171



Folie 274

Folie 275

Folie 276

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Somit muss unsere Annahme, dass der Satz @ g, existiert, falsch gewesen
sein. Dies beendet den Beweis von (a).

(b) folgt direkt aus (a), denn:

Angenommen @pgeqen(,y) wire eine FO[o]-Formel, so dass fiir alle
gerichteten Graphen A = (A, E4) und alle Knoten a,b € A gilt:

A E ©Rreacn[a,b] <= es gibt in A einen Weg von Knoten a zu Knoten b.
Dann ist

@Conn = Vo Vy SOReach(xa y)

ein FO[o]-Satz, der in einem gerichteten Graphen A genau dann erfiillt ist,
wenn A stark zusammenhéngend ist.

Insbesondere gilt dann fiir jeden ungerichteten Graphen ¢ und die zu G
gehorende o-Struktur A: A = @opnn <= G ist zusammenhéngend.

Dies ist ein Widerspruch zu (a).

Logische Reduktionen

Bemerkung 3.59.
Die im Beweis von Satz 3.58 benutzte Vorgehensweise ist unter dem Begriff
logische Reduktion (oder Transduktionen) bekannt.

Im Beweis von Teil (b) wurde gezeigt: Falls es eine FO[{ E'}]-Formel gibt,
die ausdriickt, dass Knoten y von Knoten = aus erreichbar ist, dann gibt es
auch eine FO[{ E'}]-Formel, die Graph-Zusammenhang definiert.

Somit wurde das Problem, einen FO[{ E'}]-Satz zu finden, der
Graph-Zusammenhang definiert, auf das Problem reduziert, eine

FO[{ E'}]-Formel zu finden, die ausdriickt, dass Knoten y von Knoten x aus
erreichbar ist.

Im Beweis von Teil (a) wurde das Problem, einen FO[{<}]-Satz zu finden,
der ausdriickt, dass eine endliche lineare Ordnung eine gerade Kardinalitat
besitzt, auf das Problem reduziert, einen FO[{ E'}]-Satz zu finden, der
Graph-Zusammenhang definiert.

D.h. es wurde gezeigt: Falls Graph-Zusammenhang FO-definierbar ist, so
ist auch die Aussage ,eine endliche lineare Ordnung besitzt eine gerade
Kardinalitat“ FO-definierbar.

Version vom 16. Oktober 2023 Seite 172



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Dies wurde dadurch erreicht, dass man innerhalb einer linearen Ordnung
einen geeigneten Graphen ,simuliert* (bzw. “interpretiert®), indem man die
Kantenrelation des Graphen durch eine FO[{<}]-Formel beschreibt.

Generell ist diese Methode der logischen Reduktionen oft niitzlich, um
bereits bekannte Nicht-Definierbarkeits-Resultate auf neue
Nicht-Definierbarkeits-Resultate zu iibertragen.

3.9 Erfiillbarkeit, Allgemeingiiltigkeit und die
Folgerungsbeziehung

Folie 277
Die im Folgenden eingefiihrten Begriffe der Erfiillbarkeit,

Allgemeingiiltigkeit und der Folgerungsbeziehung sind fiir die Logik erster
Stufe dhnlich definiert wie fiir die Aussagenlogik.
Im Folgenden sei o stets eine beliebige Signatur.

Folie 278

Erfiillbarkeit und Allgemeingiiltigkeit

Definition 3.60. Eine FO[o]-Formel ¢ (bzw. eine Formelmenge ® C FO[o])
heifit erfiillbar, wenn es eine o-Interpretation gibt, die ¢ (bzw. ®) erfiillt.

Eine Formel oder Formelmenge, die nicht erfiillbar ist, nennen wir
unerfillbar.

Definition 3.61. Eine FO[o]-Formel ¢ heifit allgemeingiiltig, wenn jede
o-Interpretation die Formel ¢ erfiillt.

Wir schreiben kurz |= ¢ um auszudriicken, dass ¢ allgemeingiiltig ist.

Offensichtlicherweise gilt fiir alle FO[o]-Formeln ¢:

@ ist allgemeingiiltig <= —¢ ist unerfiillbar.

Folie 279

Version vom 16. Oktober 2023 Seite 173



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Verum (T) und Falsum (L)

Beispiele:
e Die FO[o]-Formel Yuvy vg=v, ist allgemeingiiltig.

e Die FO[o]-Formel Juvy = vg=vy ist unerfiillbar.

Notation 3.62.
Wir schreiben T (in Worten: Verum), um die allgemeingiiltige FO-Formel
Yvg vg=v9 zu bezeichnen.

Wir schreiben L (in Worten: Falsum), um die unerfiillbare FO-Formel
dvg = vg=vy zu bezeichnen.

Folie 280

Die Folgerungsbeziehung

Definition 3.63. Eine FO[o]-Formel ¢ folgt aus einer Formelmenge
¢ C FO[o] (wir schreiben: ® = 1), wenn fiir jede o-Interpretation Z gilt:
Falls Z = @, so gilt auch Z = 4.

Notation. Fir zwei FO[o]-Formeln ¢, 1) schreiben wir kurz ¢ |= ¢ an
Stelle von {¢} = 1 und sagen, dass die Formel ¢ aus der Formel ¢ folgt.

Folie 281

Zusammenhinge

Es bestehen dhnliche Zusammenhénge wie bei der Aussagenlogik:

Lemma 3.64 (Allgemeingiiltigkeit, Unerfiillbarkeit und Folgerung).
Fiir jede FO[o]-Formel ¢ gilt:

(a) ¢ ist allgemeingiiltiy <— =T < T E .
(b) ¢ ist unerfillbar <= =1 <= ¢ L.

() by «— Ok
D.h.: ¢ ist allgemeingiiltiy <= ¢ folgt aus der leeren Menge.

Version vom 16. Oktober 2023 Seite 174



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Lemma 3.65 (Erfiillbarkeit und die Folgerungsbeziehung).

(a) Fir alle Formelmengen ® C FO[o] und alle FO[o]|-Formeln i gilt:

Py <  dU{wW} st unerfillbar.

(b) Fiir alle FO[o]-Formeln v,y gilt: =19 <<= E(p< ).

Beweis der beiden Lemmas: Analog zu den Beweisen der entsprechenden
Resultate in der Aussagenlogik. Details: Ubung.

3.10 Normalformen

Folie 282
Negationsnormalform
Die Negationsnormalform fiir Formeln der Logik erster Stufe ist d&hnlich
definiert wie die Negationsnormalform der Aussagenlogik.
Definition 3.66. Sei o eine beliebige Signatur.
Eine FO[o]-Formel ¢ ist in Negationsnormalform (kurz: NNF), wenn
Negationszeichen in ¢ nur unmittelbar vor atomaren Subformeln auftreten
und ¢ den Junktor ,— nicht enthélt.
Satz 3.67. Jede FO[o]-Formel ¢ ist dquivalent zu einer Formel in NNF.
Beweis. Geméafl Satz 3.46 konnen wir 0.B.d.A. annehmen, dass ¢ den
Junktor ,,—“ nicht enthélt.
Ahnlich wie fiir die Aussagenlogik definieren wir per Induktion iiber den
Aufbau zu jeder FO[o]-Formel ¢ zwei FO[o]-Formeln ¢' und ¢” in NNF, so
dass gilt: p=¢' und —p ="
Details: Ubung. n
Folie 283

Version vom 16. Oktober 2023 Seite 175



Folie 284

Folie 285

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Prianexe Normalform

Definition 3.68. Sei o eine beliebige Signatur.

(a) Eine FO[o]-Formel heifit quantorenfrei, falls in ihr keins der Symbole
3,V vorkommt.

Die Menge aller quantorenfreien FO[o]-Formeln bezeichnen wir mit

QF,.

(b) Eine FO[o]-Formel ¢ ist in prdanezer Normalform (bzw.
Prdnex-Normalform, kurz: PNF), wenn sie von der Form

lel e ann X

ist, wobei n >0, Q1,...,Q, € {3,V}, z1,...,2, € VAR und
x € QF,.

Qx1 - Qpr, wird Quantoren-Prdfix von @ genannt;

X heifit Kern (bzw. Matriz) von .

Satz 3.69. Jede FO[o]-Formel ¢ ist dquivalent zu einer FO[o|-Formel ¢ in
pranezer Normalform mit frei(y') = frei(yp).

Bevor wir Satz 3.69 beweisen, betrachten wir zunéchst ein Beispiel.

Beispiel 3.70. Sei
ply) = Vo= (JyEr,y) — JrE(r,y)).

Umformung in eine dquvivalente Formel in Prénex-Normalform:

© = VY- (—Ely E(z,y) V 3z E(x, y)) Elimination von “ — 7

vxﬁ(Vy —E(z,y) V EIxE(x,y)) -Jyp = Yy

Yz — (V21 —FE(z,2z1) V 2z E(29,9) ) Umbenennung von
gebundenen Variablen

Vo = Vz; dzo (—|E(:1:, z1) V E(z2,y) ) Zusammenlegung der Disjunktion

Va 321 V2o = (2E(z,21) V E(22,y)) | Negation

Diese Formel ist in PNF.

Version vom 16. Oktober 2023 Seite 176



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Beweis von Satz 3.69:

Wir zeigen zunéchst drei Lemmas und schlieen danach den Beweis ab.

Lemma 3.71.
Sei = Q1 Qury X, wobei n=>0, Qq,...,Q, € {3,V} und
X € FO[o]. Fiir jedes Q € {3,V} sei

@ - YV falls Q =3,
)l 3 falls Q=V.
Dann gilt: -y = @1551 : @nxn X

Beweis. Einfaches Nachrechnen per Induktion nach n unter Verwendung
der Tatsache, dass —Jdzy = Vr—p und ~Vry = Jr—gp
(Lemma 3.44). Details: Ubung. O

Folie 286

Lemma 3.72. Fir alle FO[o]-Formeln ¢ und ¢ und fir alle Variablen
x € VAR frei(yp) gilt:

(¢ AJzy) = Fz(eny) (¢ AVzy) = Vo (pAY),

(gp\/EIa:w) = Ela:(go\/w) , (goviw) = Vx(gp\/g[}

Beweis. Die Beweise aller vier Aquivalenzen sind dhnlich. Wir beweisen
hier nur die erste:

(90 A Elxzp) = dz ((p/\w) ) (3.11)

,—“ Sei T = (A, 3) eine beliebige o-Interpretation mit Z |= (ga A dx 1[))

Dann gilt: Z = ¢ und Z |= 3z 9. Insbesondere gibt es ein a € A, so
dass 72 = ).

Wegen 7 = ¢ und x ¢ frei(p) folgt aus dem Koinzidenzlemma, dass
auch 72 = ¢.

Somit gilt: Z¢ |= (gp A w), und daher gilt: Z = Jx ((,0 A 1/})

Version vom 16. Oktober 2023 Seite 177



Folie 287

Folie 288

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

=" Sei T = (A, ) eine beliebige o-Interpretation mit Z = Jz (¢ A ).
Somit gibt es ein a € A, so dass T¢ |= (go A w).

Insbesondere gilt: 7% = . Wegen o ¢ frei(yp) folgt geméaf
Koinzidenzlemma, dass Z |= ¢.

AuBlerdem gilt wegen T2 |=1, dass Z = 3z .
Insgesamt gilt also: Z = (¢ A 3z ).

Dies beendet den Beweis von (3.11). Die anderen drei im Lemma genannten
Aquivalenzen kénnen auf analoge Art bewiesen werden. Details: Ubung. [

Lemma 3.73. Seien
77/)1 = lel ce qujg X1 und ¢2 = Qllyl T Q;nym X2,

wobei £,m >0, Qy,...,Q Qf,...,Q,, €{3,V},
X1,y Toy Yly - Ym € VAR, X1, x2 € FO[o].

Es gelte: {x1,...,z} Nfrei(vo) =0 und {y1,...,ym} Nirei(x1) = 0.
Dann gilt fiir * € {A\,V}, dass

(1/11 * 2/12) = Qv Qg Qi@h"'@lmym (Xl * Xz)-

Beweis. Zwei Induktionen iiber ¢ bzw. m unter Verwendung von
Lemma 3.72:
Per Induktion nach ¢ folgt unter Verwendung von Lemma 3.72, dass

(%* Q1$1"'Qe$£>{1) = Qﬂl"'@ﬂé(% *X1)-
Die Kommutativitit von x € {A, V} liefert daher:
(1 % o) = Quar - Quue (x1 * Y2 ). (3.12)

Andererseits folgt per Induktion nach m unter Verwendung von
Lemma 3.72, dass

( X1 * Qi QlLym X2 ) = Qv QLym (X1 kX2 ) (3.13)
Die Kombination von (3.12) und (3.13) liefert also:
(% * 7ﬁ2) = QuzrQury Qi Qrym (Xl *XQ)-
[

Version vom 16. Oktober 2023 Seite 178



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Abschluss des Beweises von Satz 3.69:

Sei ¢ eine FO[o]-Formel. Geméaf Satz 3.46 konnen wir 0.B.d.A. annehmen,
dass ¢ den Junktor ,—* nicht enthélt.

Per Induktion iiber den Aufbau von ¢ zeigen wir, dass es eine zu ¢
dquivalente Formel ¢ in PNF gibt mit frei(¢’) = frei(p).

Induktionsanfang: Atomare Formeln sind quantorenfrei und daher
insbesondere in PNF.

Induktionsschritt:

Fall 1: ¢ ist von der Form Qz ¢ mit @ € {3,V}, z € VAR, ¢ € FO[o]:
Geméf Induktionsannahme gibt es eine zu 1 dquivalente Formel ¢/ in PNF
mit frei(y’) = frei(¢y).

Offensichtlich ist ¢’ := Qz ¢’ die gesuchte PNF-Formel mit ¢’ = .

Es gilt: frei(¢’) = frei(y).

Fall 2: ¢ ist von der Form —) mit ¢ € FO[o].

Geméf Induktionsannahme gibt es eine zu 1 dquivalente Formel ¢’ in PNF
mit frei(¢’) = frei(y).

Klar: ¢ = -,

Wir nutzen Lemma 3.71 und erhalten die zu —)’ &quivalente Formel ¢’ in
PNF. Es gilt: frei(¢’) = frei(yp).

Fall 3: ¢ ist von der Form (v %) mit * € {A,V} und ¢, v, € FO[o].
Gemaéf Induktionsannahme gibt es Formeln v}, ¢) in PNF, so dass fiir jedes
i€ {1,2} gilt: ¢} = ¢b; und frei(¢y)) = frei(v;).
Klar: ¢ = (¢f * ).
Sei Qqx1---Qpxp x1 die Form von ] (mit y; quantorenfrei) und sei

"1 QL ym X2 die Form von ¢}, (mit y2 quantorenfrei).
Wir koénnen 0.B.d.A. annehmen, dass {x1,...,z,} Nfrei(yy) =0 und
{y1,. -, ym} Nirei(x1) =0 (dies konnen wir durch konsistentes
Umbenennen der in 9] bzw. ¢}, gebundenen Variablen 1, ..., %, y1,. .., Ym
erreichen).

Lemma 3.73 liefert uns dann die gesuchte zu (@U’l * @/Jé) dquivalente Formel
¢" in PNF. Es gilt: frei(¢’) = frei(yp).

Dies beendet den Beweis von Satz 3.69. O

Version vom 16. Oktober 2023 Seite 179



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Version vom 16. Oktober 2023 Seite 180



Kapitel 4

Grundlagen des automatischen
Schlieflens

Folie 289
Ziel: Automatisches Schlieflen

e In typischen Anwendungen der Logik beschreibt man mit Hilfe einer
Formelmenge das Wissen iiber ein Anwendungsszenario und will aus
diesem Wissen dann, moglichst automatisch, Folgerungen ziehen.

e In diesem Kapitel werden wir untersuchen, inwieweit sich fiir die
Logik erster Stufe das Folgern automatiseren lésst.

e Wir werden einen syntaktischen Beweisbegriff einfithren, der genau
dem semantischen Folgerungsbegriff entspricht ( Vollstindigkeitssatz).

e Dadurch werden wir einen Algorithmus erhalten, der nach und nach
alle allgemeingiiltigen Satze der Logik erster Stufe aufzéhlt.

e Andererseits werden wir zeigen, dass es keinen Algorithmus gibt, der
bei Eingabe eines beliebigen Satzes der Logik erster Stufe entscheidet,

ob der Satz allgemeingiiltig ist.

e Als Folgerung aus dem Vollsténdigkeitssatz werden wir auch den
Endlichkeitssatz fiir die Logik erster Stufe erhalten.

Version vom 16. Oktober 2023 Seite 181



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

4.1 Kalkiile und Ableitungen

Folie 290
Ableitungsregeln und Kalkiile
Definition 4.1. Sei M eine beliebige Menge.
(a) Eine Ableitungsregel iber M (kurz: Regel) hat die Form
al DY an
b
wobei n > 0 und aq,...,a,,b € M.
Wir bezeichnen aq, ..., a, als die Voraussetzungen der Regel und b als
die Konsequenz.
Ableitungsregeln ohne Voraussetzungen (also mit n = 0) bezeichnen wir
als Aziome.
(b) Ein Kalkil iiber M ist eine Menge von Ableitungsregeln iiber M.
Folie 291

Ableitungen

Definition 4.2.
Sei R ein Kalkiil iiber einer Menge M, sei V C M und sei a € M.

(a) Eine Ableitung von a aus V in R ist eine endliche Folge
(ai,...,a;) € M* sodass £>1, ay=a und fiir allei € {1,...,¢}
gilt:t
e q;, €V oder
e — ist ein Axiom in & oder
e es gibt in K eine Ableitungsregel
by -+ b,

a;

so dass by,...,b, € {a1,...,a;_1}.

'Die Menge V kann hierbei als Menge von ,, Voraussetzungen® betrachtet werden, und
der Kalkiil legt fest, welche Axiome gelten und welche Schlussweisen zuléssig sind.

Version vom 16. Oktober 2023 Seite 182



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Der besseren Lesbarkeit halber schreiben wir in konkreten Beispielen
Ableitungen der Form (ay, ..., a,) oft zeilenweise, also

und geben am Ende jeder Zeile eine kurze Begriindung an.

(b) Ein Element a € M ist aus V in & ableitbar, wenn es eine Ableitung
von a aus V' in K gibt.

(¢) Wir schreiben ablg(V'), um die Menge aller aus V' in R ableitbaren
Elemente zu bezeichnen.

(d) Fiir V = ) nutzen wir folgende Notationen:
Eine Ableitung von a in K ist eine Ableitung von a aus () in 8.

Ein Element a € M heifit ableitbar aus R, falls es eine Ableitung von a
in R gibt.

Die Menge aller in K ableitbaren Elemente bezeichnen wir mit ablg,
d.h.: ablg := ablg(0).

Wir werden Kalkiile nutzen, um auf elegante Art rekursive Definitionen
bestimmter Mengen anzugeben:

Um eine bestimmte Teilmenge A einer Menge M rekursiv zu definieren,
geniigt es, einen Kalkiil R iiber M anzugeben, fiir den gilt: ablg = A.

Version vom 16. Oktober 2023 Seite 183

Folie 292

Folie 293

Folie 294



Folie 295

Folie 296

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Beispiel: Mengen natiirlicher Zahlen

Beispiel 4.3.
Sei R der Kalkiil iiber M := N mit folgenden Ableitungsregeln:

Axiom: -
° xlom1

e Weitere Regeln: QE , fiir jedes n € N.
n

Fragen:

e Was ist ablg 7

e Was ist ablg(V) fir V:={3}7

Antworten:

e ablg ist die Menge aller Zweierpotenzen, d.h. ablg = {2° : i € N}.
e ablg({3})={2" : ieN}U{2"-3 : i e N}

Beispiel: Aussagenlogik

Beispiel 4.4.
Sei ¥ := Aa_ das Alphabet der Aussagenlogik, d.h.

Y= ASU{—- AV, =01, ()},

wobei AS = {A; : i € N} die Menge aller Aussagensymbole ist.

Gesucht: Ein Kalkil & iber M :=¥*, aus dem genau die syntaktisch
korrekten aussagenlogischen Formeln ableitbar sind, d.h. ablg = AL.

Losung: R besteht aus folgenden Ableitungsregeln:

e Axiome: 0 1 X fiir jedes Aussagensymbol X € AS.

e Weitere Regeln: Fiir jedes ¢ € X* und jedes ¢ € X* die Regeln
K2 o Y o Y ¢ Y
o (eAy) T (eVve) T (e )

Dann gilt: ablg = AL.

Version vom 16. Oktober 2023 Seite 184



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Beispiel: Resolution

Die Kalkiil-Schreibweise lasst sich auch dazu nutzen, eine elegante
Darstellung der in Kapitel 2.6 eingefiithrten Resolutionswiderleqgungen zu
anzugeben.

Zur Erinnerung:

e Eine Klausel ist eine endliche Menge von Literalen.
Ein Literal ist eine aussagenlogische Formel der Form X oder =X,

wobei X € AS.

e Wir haben in Satz 2.59 gezeigt, dass fiir jede Menge I' von Klauseln
gilt:
I ist unerfiillbar <= T'Fgz0.
Hierbei ist () die leere Klausel.
oI Fr 0% bedeutet, dass es eine Resolutionswiderlegung von I" gibt.

Zur Erinnerung hier die Definition des Begriffs der
Resolutionswiderlegungen:

Folie 297
Resolutionsableitungen und -widerlegungen
Definition 2.56. Sei I' eine Klauselmenge.
(a) Eine Resolutionsableitung einer Klausel § aus I ist ein Tupel (4, ..., d;)
von Klauseln, so dass gilt: £ > 1, §, =0, und fiir alle i € [(] ist
e ); €', oder
e es gibt j,k € [i—1], so dass J; eine Resolvente von 4, und dy, ist.
(b) Eine Resolutionswiderlegung von T ist eine Resolutionsableitung der
leeren Klausel aus I'.
Zur Erinnerung:
Eine Klausel ¢ ist genau dann eine Resolvente zweier Klauseln v, und s,
wenn es ein Literal A gibt, so dass gilt:
A€, A E Y, und 0= (71\{>\}) U (72\{X}).
Folie 298

Version vom 16. Oktober 2023 Seite 185



Folie 299

Folie 300

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Der Resolutionskalkiil der Aussagenlogik

Gesucht: Ein Kalkil Rg tber der Menge aller Klauseln, so dass fiir jede
Klauselmenge I' und jede Klausel ¢ gilt:

o€ ablﬁR(F) <~ r I_R )

d.h.: ¢ ist genau dann aus I' in Kg ableitbar, wenn es eine
Resolutionsableitung von ¢ aus I' gibt.

Losung: Rgr besteht aus folgenden Ableitungsregeln:

Fiir alle Klauseln v; und 7, fiir jedes Literal A, so dass A € 7 und
A € 79, und fur die Klausel 0 := (71 \ {A\}) U (12 \ {\}) enthilt Rg

die Ableitungsregel
7172

J

Dann entsprechen Ableitungen in K aus einer Klauselmenge I' gerade den
Resolutionsableitungen aus I', und somit gilt: ablg(I') ={d : I'Fg d}.
Insbesondere gibt es genau dann eine Resolutionswiderlegung von I', wenn
ably(T") die leere Klausel enthélt.

Der Kalkiil Kz wird Resolutionskalkil der Aussagenlogik genannt.

Kalkiile und abgeschlossene Mengen

Definition 4.5. Sei R ein Kalkiil iiber einer Menge M.
Eine Menge A C M heiflt abgeschlossen unter K, wenn fiir jede

Ableitungsregel
al DR an

b
in R gilt: Falls aq,...,a, € A, soist auch b € A.

Satz 4.6. Sei R ein Kalkiil iber einer Menge M und ser V' C M.
Dann ist ablg(V') die bzgl. ,C“ kleinste unter 8 abgeschlossene Menge, die
V' enthdlt. D.h. es gilt:

(a) V Cablg(V).

(b) ablg(V) ist abgeschlossen unter R.

Version vom 16. Oktober 2023 Seite 186



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

(c) Fliir jede Menge A mit VC A C M gilt:
Falls A abgeschlossen ist unter R, so ist ablg(V) C A.

(d) ablg(V) = N A .
VCACM,
A abgeschlossen unter K

Bewess.

(a) Fiir jedes v € V ist (v) eine Ableitung von v aus V' in K. Somit ist
V C ablg(V).

(b) Sei

al DR an
b

eine Ableitungsregel in 8, so dass ay,...,a, € ablg(V). Wir miissen
zeigen, dass dann gilt: b € ablg(V'). D.h. wir miissen eine Ableitung
von b aus V' in R finden.

Laut Voraussetzung gilt fiir jedes i € [n]:
a; € ablg(V), d.h. es gibt eine Ableitung

(ai, ..., a;)
von a; aus V in K. Insbesondere gilt: a; = a};i.
Dann ist
(a},...,a%l, a%,...,ai, cee a’f,...,a?n, b)
eine Ableitung von b aus V' in K. Somit gilt: b € ablg(V).
(c) Sei A eine Menge mit V' C A C M, die abgeschlossen ist unter 8 Wir
miissen zeigen, dass gilt: ablg(V) C A.

Sei dazu a ein beliebiges Element in ablg(V'), und sei (ay,...,a,) eine
Ableitung von a aus V' in K. Wir wollen zeigen, dass gilt: a € A.

Wir zeigen per Induktion nach i, dass fiir jedes i € [n] gilt: a; € A.
Wegen a = a, gilt dann insbesondere, dass a € A.
Induktionsanfang 1 =1:

Da (ay,...,ap) eine Ableitung von a aus V' in R ist, gilt insbesondere:
a1 €V oder o ist ein Axiom in R.

Im ersten Fall ist a1 € A wegen a; € V C A.

Version vom 16. Oktober 2023 Seite 187



Folie 301

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Im zweiten Fall ist a; € A, da A laut Voraussetzung unter K
abgeschlossen ist.

Induktionsschritt i—1 — i:

Die Induktionsannahme besagt, dass fiir jedes j < i—1 gilt: a; € A.
Wir miissen im Induktionsschritt zeigen, dass auch gilt: a; € A.

Da (aq,...,as) eine Ableitung von a aus V' in R ist, gilt insbesondere:

a; €V oder — ist ein Axiom in & oder es gibt in K eine
by - by
a;

Ableitungsregel so dass by,...,b, € {ay,...,a;_1} ist.

In den ersten beiden Féllen folgt ,a; € A“ genauso wie im

Induktionsanfang ,,a; € A“ folgt.

Im dritten Fall liefert die Induktionsannahme, dass gilt: bq,...,b, € A.
Da auflerdem A laut Voraussetzung unter K abgeschlossen ist, folgt:
a; € A.

(d) ,C“ folgt direkt aus (c).

,2" folgt direkt aus (a) und (b), da fiir die Menge A := ablg(V') gemif
(a) und (b) gilt: V C A C M und A ist abgeschlossen unter K.

Somit ist ablg(V') eine der Mengen A, aus denen der Durchschnitt
gebildet wird. Daher gilt:

N A C ablg(V).
VCACM,
A abgeschlossen unter &

Induktionsprinzip fiir die ableitbaren Elemente eines Kalkiils

Sei K ein Kalkiil iiber einer Menge M und sei V' C M. Um zu zeigen, dass
eine bestimmte Aussage A(a) fiir alle aus V' in K ableitbaren Elemente a
gilt, konnen wir das Induktionsprinzip nutzen und einfach Folgendes zeigen:

(1) Die Aussage A(a) gilt fiir jedes a € V, und

(2) fiir jede Ableitungsregel
al DY an
b
in R gilt: Falls A(a;) fiir jedes ¢ € [n] gilt, so gilt auch A(b).

Version vom 16. Oktober 2023 Seite 188



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Daraus folgt laut dem néchsten Lemma dann, dass A(a) fiir jedes
a € ablg(V) gilt.

Lemma 4.7. Sei 8 ein Kalkiil iber einer Menge M und set V C M. Falls
(1) eine Aussage A(a) fir jedes a € V' gilt und
(2) fir jede Ableitungsregel
al DR an
b
in R gilt: falls A(a;) fir jedes i € [n] gilt, so gilt auch A(b),

dann gilt die Aussage A(a) fir jedes a € ablg(V).

Folie 302
Beweis. Es seien (1) und (2) erfiillt.
Betrachte die Menge
A = {ae M : die Aussage A(a) gilt } .
Wegen (1) ist V C A.
Wegen (2) ist A abgeschlossen unter 8.
Aus Satz 4.6 folgt daher: ablg(V) C A.
Somit gilt die Aussage A(a) fiir jedes a € ablg(V). O
4.2 Ein Beweiskalkiil fiir die Logik erster Stufe — der
Vollstidndigkeitssatz
Folie 303

Notation

e In diesem Kapitel sei o eine beliebige fest gewihlte Signatur.

e Der Einfachheit halber werden wir 0.B.d.A. in diesem Kapitel nur
FO[o]-Formeln betrachten, in denen das Symbol ,,—* nicht

vorkommt.
o {,u,ty,to,t',u/,u”, ... bezeichnen immer o-Terme.
e 0,1, ,... bezeichnen immer FO[o]-Formeln.

Version vom 16. Oktober 2023 Seite 189



Folie 304

Folie 305

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

e & U & &y V' ... bezeichnen immer Mengen von FO[o]-Formeln.

o ' ATV, Ay, Ay, ... bezeichnen immer endliche Mengen von
FO[c]-Formeln.

e Fir ® CFO[o] ist frei(®) := U frei(yp).
ped

Manchmal schreiben wir auch frei(®, ¢) an Stelle von frei(® U {¢}).

e Ist M eine Menge, so schreiben wir L C, M, um auszudriicken, dass
L eine endliche Teilmenge von M ist.

Sequenzen

Definition 4.8.
(a) Eine Sequenz ist ein Ausdruck der Form
'

wobei ¢ € FO[o] und T' C, FO[o] (d.h., T ist eine endliche Menge von
FO[o]-Formeln).

Wir bezeichnen I' als das Antezedens und v als das Sukzedens der
Sequenz ["F 1.

(b) Wir schreiben Mg um die Menge aller Sequenzen zu bezeichnen, d.h.:

Ms = {I'kv¢ : T C,FOlo], v € FO[o] }.

Korrektheit einer Sequenz

Definition 4.9. Eine Sequenz I' - ¢ heifit korrekt, falls gilt: ' |=1).

Zur Erinnerung: 1" =1 bedeutet:
Fiir jede o-Interpretation Z gilt: Falls Z =1, so auch Z = 1.

Beispiel:

Welche der folgenden Sequenzen sind korrekt fiir alle ¢, € FO[o] und alle
x,y € VAR; welche sind nicht korrekt?

Version vom 16. Oktober 2023 Seite 190



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

1 {(_‘Y\/U>*H‘9}FL'
E (e V)

{FzVy p} F YyIz @

2

(1)
(2) 0
(3)
(4) {VyJwa=y} F JzVyaz=y

Antwort:
Die ersten drei Sequenzen sind korrekt; die vierte ist nicht korrekt.
Folie 306

Ziel
Wir wollen im Folgenden einen Kalkiil R iiber Mg angeben, so dass gilt:

(1) Rist korrekt, d.h. jede in K ableitbare Sequenz ist korrekt.
(2) R ist vollstindig, d.h. jede korrekte Sequenz ist in & ableitbar.

(3) Rist effektiv, d.h. es gibt einen Algorithmus, der nach und nach genau
die aus R ableitbaren Sequenzen aufzihlt.

Dies liefert dann insbesondere einen Algorithmus, der nach und nach alle
allgemeingiiltigen FO[o]-Formeln aufzihlt: Dazu lasse den gema8 (3)
existierenden Algorithmus laufen, und immer wenn dieser eine Sequenz der
Form T'F 1 mit I' = () ausgeben will, gib v aus.

Wegen (1) ist die Sequenz dann korrekt, d.h. es gilt ) = v, und daher ist v
allgemeingiiltig.

Wegen (2) werden tatséchlich alle allgemeingiiltigen FO[o]-Formeln
aufgezihlt.

Bemerkung. Einen Kalkiil R iber Mg zu finden, der die Bedingungen (1)
und (2) erfiillt, ist nicht schwer. Wir kénnten dafiir z.B. einfach den Kalkiil
nehmen, der aus allen Axiomen der Form

L'Ea

besteht, fiir die gilt: I' C, FO[o], ¢ € FO[o] und T = 4.

Dieser Kalkiil ist offensichtlicherweise korrekt und vollstandig, d.h. er erfiillt
die Bedingungen (1) und (2).

Version vom 16. Oktober 2023 Seite 191



Folie 307

Folie 308

Folie 309

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Die Bedingung (3) ist hier allerdings problematisch. Wir miissten dazu
einen Algorithmus haben, der bei Eingabe einer beliebigen endlichen Menge
I' C. FO[o] und einer beliebigen FO[o]-Formel v entscheidet, ob die
Sequenz ['F 1) korrekt ist, d.h. ob gilt: T' = .

Tatséchlich ist dieses Problem unentscheidbar, da (wie wir am Ende des
Kapitels sehen werden) sogar bereits das

Allgemeingiiltigkeitsproblem

FEingabe: eine beliebige Formel ¢ der Logik erster Stufe
Frage: Ist ¢ allgemeingiiltig?

unentscheidbar ist.

Notationen fiir Sequenzen

Wir schreiben kurz
e Iy F ¢, um die Sequenz T'U{p} F 1 zu bezeichnen.
® ©1,...,0p F ¥, umdie Sequenz {p1,...,¢,} F ¥ zu bezeichnen.

e F1, um die Sequenz 0 F ¢ zu bezeichnen.

Sequenzenregeln

Eine Sequenzenregel ist eine Ableitungsregel iiber Mg.

Sequenzenregeln der Form

ap -+ G
b
schreiben wir meistens zeilenweise, als
ai
Qn,
b

wobei jedes a; eine Sequenz der Form I'; - 1); ist,
und b eine Sequenz der Form At ¢ ist.

Version vom 16. Oktober 2023 Seite 192



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Definition 4.10. Eine Sequenzenregel

Iy =y

Ly =y
AF oy

heilt korrekt, wenn Folgendes gilt: Sind die Sequenzen I'; - 1); fiir alle
i€ {l,...,n} korrekt, so ist auch die Sequenz At ¢ korrekt.

Aus dem Induktionsprinzip fiir Kalkiile (Lemma 4.7) folgt direkt:

Lemma 4.11.
FEin Kalkil R tiber Mg st korrekt, falls jede Sequenzenregel in K korrekt ist.

Wir werden nun eine Reihe von korrekten Sequenzenregeln
zusammentragen, die alle zusammen dann den von uns gesuchten korrekten,
vollstéandigen und effektiven Kalkiil iiber Mg bilden werden.

Folie 310

Grundregeln:

Fiir alle I', IV C, FO[o] und alle ¢ € FO[o] betrachten wir die folgenden
Sequenzenregeln:

o Voraussetzungsregel (V):

Lok o

o FErweiterungsregel (E):

Thry

XARE falls T C I

Lemma 4.12. Jede der Grundregeln (V) bzw. (E) ist korrekt.

Version vom 16. Oktober 2023 Seite 193



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Beweis. Die Voraussetzungsregel

(V): | RO I o

ist korrekt, denn offensichtlicherweise gilt: I' U{¢} = ¢.

Die Erweiterungsregel

' Fop ,
: N C
(E): o falls ' C T

ist korrekt, denn:
Sei I' - ¢ korrekt. Dann gilt: ' =@, Fir IV DT gilt dann
offensichtlicherweise auch: I = .

Folie 311
Ausagenlogische Regeln:
Fiir alle I' C, FO[o] und alle ¢, 1, x € FO[o] betrachten wir die folgenden
Sequenzenregeln:
e Fallunterscheidungsregel (FU):
L o
Lopbe
r Fo
o Widerspruchsregel (W):
'F o
I'F = (fiir alle ¢ € FO[o])
'F ¢
Folie 312

o A-Einfihrung im Antezedens (AAp), (AAg):

|7 Y L',y X
Lo (pAY)Fx Lo(pAy)Ex

Version vom 16. Oktober 2023 Seite 194



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

o A-Einfiihrung im Sukzedens (AS):

' o
=
' (pAY)

o V-Einfihrung im Antezedens (VA):

I X
L' X
L (eVy) kX

o V-Einfihrung im Sukzedens (VSy), (VSz):
IrE v Ik 9
THE(pvy) THE(pvy)

Folie 313
Lemma 4.13. Jede der aussagenlogischen Regeln (FU), (W), (AAy),
(AAg), (AS), (VA), (VSy), (VSa) ist korrekt.

Beweis. e Die Fallunterscheidungsregel
Ly Fo
(FU: Lk
r F o

ist korrekt, denn: Seien die beiden Sequenzen I',¢) - ¢ und
I = + ¢ korrekt. Dann gilt fiir jede o-Interpretation Z mit

ZETU{Y} oder T =T U{w}, dass T = .
Wir miissen zeigen, dass die Sequenz I' - ¢ korrekt ist.

Sei dazu Z eine beliebige o-Interpretation mit Z = T'.
Klar: Entweder gilt Z |= 1), oder es gilt Z = ).

Im ersten Fall gilt: Z =TU {¢}, und daher folgt aus der Korrektheit
der Sequenz T')¢ F ¢, dass Z = .

Im zweiten Fall gilt: Z = T"U {—%}, und daher folgt aus der
Korrektheit der Sequenz I', =)+ ¢, dass Z = .

Somit gilt in jedem Fall, dass Z = .
Also gilt: T |= ¢, und daher ist die Sequenz T'F ¢ korrekt.

Version vom 16. Oktober 2023 Seite 195



Folie 314

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

e Die Widerspruchsregel

TH 4
(W): I'F— (fiir alle ¢ € FO[o])
'F ¢

ist korrekt, denn: Seien die beiden Sequenzen I'1 und T'F =9
korrekt. Dann gilt fiir jede o-Interpretation Z mit Z =T, dass
ZTE¢ und 7 -, dh: T (¢ A—2). Ein solches Z gibt es
nicht. Somit ist I" unerfiillbar. Daher gilt fiir jede FO[o]-Formel ¢,
dass I' = ¢, und daher ist die Sequenz I' - ¢ korrekt.

e Die Regel zur A-Einfithrung im Antezendens

, 1% X
(W) T GARFX

ist korrekt, denn: Sei die Sequenz I',p F x korrekt.
Wir miissen zeigen, dass auch die Sequenz I', (¢ A ) F x korrekt ist.

Sei dazu Z eine beliebige o-Interpretation mit Z =T U{(¢ A¢)}.
Insbesondere gilt dann: Z =T und Z | ¢, d.h. es gilt:

Z =T U{p}. Aus der Korrektheit der Sequenz I',¢ - x folgt, dass
7T Ex.

Somit gilt: TU{(p A¥)} = x, und daher ist die Sequenz

[ (e A1) B x korrekt.

o Die Korrektheit der restlichen Regeln (AAg), (AS), (VA), (VS1),
(VSs) kann auf dhnliche Art gezeigt werden. Details: Ubung.

Substitutionen

Um weitere wichtige Sequenzenregeln einfithren zu kénnen, benétigen wir
eine Moglichkeit, fiir eine Variable x € VAR und einen o-Term ¢t € T, eine
FO[o]-Formel ¢ so zu einer FO[o]-Formel ¢X abzuéndern, dass gilt:

Die Formel go% sagt tiber den Term t dasselbe aus, wie

die Formel ¢ diber die Variable x.

Version vom 16. Oktober 2023 Seite 196



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Prézise: Es soll fiir jede o-Interpretation Z gelten:

Tk ot — It kg (4.1)

Dabei ist die o-Interpretation Tt fiir 7 = (A, 3) wie folgt definiert:
It = (A, B9), fir a:= [t]*.

AuBlerdem soll gelten:
vz = (4.2)

Folie 315
Um zu gewéhrleisten, dass (4.1) und (4.2) gilt, wéhlen wir zu gegebenem ¢,

t und z die Formel ¢* wie folgt:
e Falls t = x, so setze ga% := . Andernfalls gehe wie folgt vor:

e Sei vy, ...,y eine Liste aller Variablen aus var(t) U {z}, die
gebundene Vorkommen in ¢ besitzen.

e Sei z1,..., 2 eine Liste von Variablen # x, die nicht in ¢ oder t
vorkommen.

e Sei ¢’ die Formel, die aus ¢ entsteht, indem fiir jedes i € {1,...,¢}
jedes gebundene Vorkommen der Variablen y; ersetzt wird durch die
Variable z;.

e Sei gp% die Formel, die aus ¢’ entsteht, indem jedes Vorkommen der
Variablen x durch den Term ¢ ersetzt wird.

Man kann zeigen:

Lemma 4.14 (Substitutionslemma). Fiir jede FO[o]-Formel ¢, jeden
o-Term t, jede Variable x € VAR und jede o-Interpretation T gilt:

T E ot — Tt = o

Beweis. Ubung. O

Wir kénnen nun weitere wichtige Sequenzenregeln formulieren:
Folie 316

Version vom 16. Oktober 2023 Seite 197



Folie 317

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Quantorenregeln:

Fiir alle I' C, FO[o], alle , 1 € FO[o], alle z,y € VAR und alle t € T,
betrachten wir die folgenden Sequenzenregeln:

e V-Einfiihrung im Antezedens (VA):

Lol F9

I \Vzp F v

e V-FEinfihrung im Sukzedens (VS):

'+ @%

TV falls y ¢ frei(T", Vay)

e J-Einfiihrung im Antezedens (JA):

Lo 4 .
—z—n Py falls y ¢ frei(I", Jzp, )

e J-FEinfihrung im Sukzedens (3S):

'+ goﬁ
I'=dze

Lemma 4.15.
Jede der Quantorenregeln (YA), (VS), (3A), (3S) st korrekt.

Beweis. e Die Regel zur V-Einfithrung im Antezedens
, Lol F9
(VA): I''Vep =y

ist korrekt, denn: Sei die Sequenz F,go% F v korrekt.
Wir miissen zeigen, dass die Sequenz I',Vxyp F 1 korrekt ist.

Sei dazu Z eine beliebige o-Interpretation mit Z = I' U {Vxy}.
Insbesondere gilt dann: Z |=1T', und 72 |= ¢ fiir a := [t]*.

Somit gilt: T |= ¢.

Version vom 16. Oktober 2023 Seite 198



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Das Substitutionslemma (Lemma 4.14) liefert: 7 = L.
Also gilt: Z =T und 7 |= pt.

Die Korrektheit der Sequenz T, gp% 4 liefert: Z = .
Somit ist die Sequenz I',Vxp F ¢ korrekt.

e Die Regel zur V-Einfithrung im Sukzedens

q). TFep fall frei(T
(VS): TF Voo alls y & frei(T', Vayp)

ist korrekt, denn:

Sei y ¢ frei(I', Vop), und sei die Sequenz I' - ¢ korrekt.
Wir miissen zeigen, dass die Sequenz I' - Vze korrekt ist.

Sei dazu Z = (A, ) eine beliebige o-Interpretation mit Z =T

Wegen y & frei(I") gilt laut Koinzidenzlemma fiir alle a € A, dass
7% = I'. Die Korrektheit der Sequenz I' b % liefert, dass Z? = ¥
Dies gilt fiir alle a € A. Somit gilt: Z = Vy p¥.

Wegen y ¢ frei(Vry) gilt fiir jede o-Interpretation J:
J E Vypl = J E Ve
Aus T |=Vy o2 folgt also: T |=Vr.

Somit ist die Sequenz I' - Vzy korrekt.

e Die Korrektheit der restlichen Regeln (JA) und (3S) kann auf

gdhnliche Art gezeigt werden. Details: Ubung.

Folie 318
Gleichheitsregeln:

Fiir alle T' C, FO[o], alle ¢ € FO[o], alle x € VAR und alle t,u € T,
betrachten wir die folgenden Sequenzenregeln:

o Reflexivitit der Gleichheit (G):

' t=t

Version vom 16. Oktober 2023 Seite 199



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

o Substitutionsregel (S):
r F ol
[ i=ut %

Lemma 4.16. Jede der Gleichheitsregeln (G) bzw. (S) ist korrekt.

Beweis. e Die Regel zur Reflexivitiat der Gleichheitsregel

(G): T F =t

ist korrekt, denn: Die Formel t=t ist offensichtlicherweise
allgemeingiiltig. Daher gilt fiir alle Formelmengen I', dass ' | t=t.
Somit ist die Sequenz I' - t=t korrekt.

e Die Substitutionsregel

' r + gpé
(8): [ t=u b o

ist korrekt, denn: Sei die Sequenz I' F X korrekt.
Wir miissen zeigen, dass die Sequenz T', t=u F % korrekt ist.

Sei dazu Z eine beliebige o-Interpretation mit Z = I'U {t=u}.
Dh. esgilt: Z=T und [t]" = [u]".

Wegen Z =T folgt aus der Korrektheit der Sequenz T' - cp%, dass
1 gt

Das Substitutionslemma liefert fiir a := []*, dass 7% .

Wegen a = [t]* = [u]” gilt auch: Tt = .

Das Substitutionslemma liefert: 7 |= ¢*.

Somit ist die Sequenz I, t=u = ¢ korrekt.

Folie 319

Version vom 16. Oktober 2023 Seite 200



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Der Sequenzenkalkiil K¢ fiir die Logik erster Stufe

Definition 4.17.

Der Sequenzenkalkiil Rs ist der Kalkiil iiber der Menge Mg aller Sequenzen,
der fiir alle I',T" C, FO[o], alle ¢,1,x € FO[o], alle t,u € T, und alle
z,y € VAR aus

e den Grundregeln (V), (E),

e den aussagenlogischen Regeln

(FU), (W), (AA1), (AAg), (AS), (VA), (VS1), (VSy),
e den Quantorenregeln (VA), (VS), (JA), (39)
e und den Gleichheitsregeln (G), (S)
besteht.
Aus der Korrektheit der Regeln des Sequenzenkalkiils (Lemmas 4.12, 4.13,
4.15, 4.16) folgt mit Lemma 4.11:

Satz 4.18. Der Sequenzenkalkiil Rs ist korrekt,
d.h. jede in Rs ableitbare Sequenz ist korrekt.

Folie 320
Auflerdem sieht man anhand der Definition der einzelnen Regeln leicht, dass
es einen Algorithmus gibt, der bei Eingabe einer Zahl ¢ > 1 und einer Folge
(ai,...,a;) € M entscheidet, ob (ay, ..., as) eine Ableitung in fg ist.
Fiir abzdhlbare Signaturen o kann man auflerdem einen Algorithmus
angeben, der nach und nach alle Folgen in {(ay,...,a;) € M§ : (> 1}
ausgibt.
Beides zusammen liefert fiir abzdhlbare Signaturen o, dass der
Sequenzenkalkiil Kg effektiv ist.
Details: Ubung.
Unser néchstes Ziel ist, zu zeigen, dass der Sequenzenkalkiil K¢ auch
vollstindig ist, d.h. dass es fiir jede korrekte Sequenz eine Ableitung in Ky
gibt.
Dazu betrachten wir zunéchst einige Beispiele fiir Ableitungen im
Sequenzenkalkiil Rg.
Folie 321

Version vom 16. Oktober 2023 Seite 201



Folie 322

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Darstellung von Ableitungen

Am Anfang des Kapitels haben wir bereits vereinbart, dass wir dhnlich wie
bei Resolutionsableitungen auch allgemein fiir einen Kalkiil K iiber einer
Menge M Ableitungen (aq,...,as) der besseren Lesbarkeit halber oft
zeilenweise schreiben, also

und am Ende jeder Zeile eine kurze Begriindung angeben.

Im Folgenden betrachten wir einige Beispiele fiir Ableitungen im
Sequenzenkalkiil Kg.

Beispiele 4.19.

(a) Fir jedes I' C, FO[o] und jedes ¢ € FO[o] ist die Sequenz
I'F (pV —p) ableitbar in Rg:

1) Ty kg (V)

2 Dyp F (pV-p) (VSy) auf (1) angewendet

3) Ti-e bk e (V)

4) T,=p F (V) (VSs) auf (3) angewendet

(5) T F (V) (FU) auf (2), (4) angewendet.

)
1) R(f(@)) = R(f(2)) (V)
@ R@)a=f@) FRGUE) Ot @i
(3) R(f(as)),Va:x:f(a:) + R(f(f(iﬁ))) (VA) auf (2) mit
t.=x.

Version vom 16. Oktober 2023 Seite 202



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

(c) Fur alle Terme t,u € T, ist die Sequenz t=u F u=t ableitbar in Rg:

(1) Fot=t (G)
(2) t=u F u=t (S) auf (1) mit ¢ :=x=t

(d) Fiir jedes ¢ € FO[o] ist die Sequenz JzVv ¢ F Yvdz ¢ ableitbar in Kg:

1) ¢ Fop (V)

(2) ¢ F Jzp (3S) auf (1) mit ¢ := 2

(3) Wwe F Jzg (VA) auf (2) mit t :=v

(4)  Yve F Yodze (VS) auf (3) mit z :=v

(5)  JVve F Vodze (3A) auf (4) mit y := 2

Folie 323
Beweisbarkeit: @ gz, ¢
Definition 4.20. Sei ¢ C FO[o] und sei ¢ € FO[o].
Die Formel ¢ heifit beweisbar aus ® (kurz: @ g, ¢), wenn es ein I' C, ®
gibt, so dass die Sequenz ' ¢ in Kg ableitbar ist.
Ein Beweis von ¢ aus ® ist eine Ableitung einer Sequenz I't ¢ in Rg,
wobei I' C, & ist.
Notation. An Stelle von () g, ¢ schreiben wir auch kurz: Fgg .
Aus der Korrektheit des Sequenzenkalkiils 8g (Satz 4.18) folgt:
Korollar 4.21.
Fiir jede FO[o]-Formel ¢ und fiir jede Formelmenge ® C FO[o] gilt:
Plrgop = P Eo.
Beweis.
Es gelte ® g, . Somit gibt es ein I' C, ®, so dass die Sequenz I'- ¢ in
Rg ableitbar ist.
GeméiB Satz 4.18 ist die Sequenz I'F ¢ korrekt, d.h. es gilt: ' = .
Wegen I' C & gilt daher auch: @ = . O
Folie 324

Version vom 16. Oktober 2023 Seite 203



Folie 325

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Widerspruchsfreiheit

In der Mathematik nennen wir eine Menge von Aussagen widerspruchsvoll,
falls sich daraus ein Widerspruch (d.h. eine bestimmte Aussage und deren
Negat) herleiten lasst.

Wenn wir unter , herleiten“ einen Beweis im Sequenzenkalkiil K¢ verstehen,
ergibt sich folgender Begriff:

Definition 4.22. Sei & C FO[o].

(a) ® heilt widerspruchsvoll, falls es eine FO[o]-Formel ¢ gibt, so dass
D g0 und D g, .

(b) @ heifit widerspruchsfrei, falls ® nicht widerspruchsvoll ist.

Aus der Korrektheit des Sequenzenkalkiils folgt, dass erfiillbare
Formelmengen widerspruchsfrei sind:

Korollar 4.23. Fir alle ® C FO[o] gilt:

O erfillbar =  ® widerspruchsfrei.

Beweis.

Sei @ erfiillbar. Dann gibt es eine o-Interpretation Z mit Z = &.
Angenommen, ® ist nicht widerspruchsfrei. Somit ist ® widerspruchsvoll,
d.h. es gibt eine FO[o]-Formel ¢, so dass

D g, @ und D g, .
Korollar 4.21 liefert:
Pl  und D E .
Wegen 7 |= & gilt also:
Tk und 7 E .

Dies ist ein Widerspruch! O]

Version vom 16. Oktober 2023 Seite 204



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Eigenschaften widerspruchsvoller Mengen

Lemma 4.24.
Fiir jede Formelmenge ® C FO[o] sind folgende Aussagen dquivalent:

(a) @ ist widerspruchsvoll.
(b) Fiir jede FO[o]-Formel ¢ gilt:  ® g .

Beweis von Lemma 4.24.
” (b) — ((l) “: Trivial.

o(a) = (b)*:

Geméf Voraussetzung ist @ widerspruchsvoll.

D.h. es gibt ein ¢ € FO[o], so dass ® Fg, ¢ und @ kg, —o.

Somit gibt es I';, 'y C. @, so dass die Sequenzen I'y ¢ und I's - - in
Rg ableitbar sind.

Dann ist fiir jede beliebige FO[o]-Formel ¢ auch Folgendes in K¢ ableitbar:

(1 I o
(2) T F e
(3) Ihuly F o Erweiterungsregel (E) auf (1)
(4) TI'yul's F =p  Erweiterungsregel (E) auf (2)
(5) Ttuly F 9 Widerspruchsregel (W) auf (3), (4)
Somit gilt ® g, ¢ fiir jedes beliebige ¢ € FO[o]. O
Folie 326

Der Vollstiandigkeitssatz

Satz 4.25. Fir alle Signaturen o, alle Formelmengen ® C FO[o] und alle
Formeln ¢ € FO[o] gilt:

(1) OPlgp <= Do

(2) @ ist widerspruchsfrei <= ® ist erfillbar.

Die Richtung ,,==* von (1) und die Richung ,,<=* von (2) haben wir
bereits in Korollar 4.21 und Korollar 4.23 bewiesen.

Die Richtung ,,==“ von (2) wird von dem folgenden, schwer zu
beweisenden FErfillbarkeitslemma bereitgestellt:

Version vom 16. Oktober 2023 Seite 205



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Lemma 4.26 (Erfiillbarkeitslemma).
Jede widerspruchsfreie Menge ® C FO[o] st erfillbar.

Folie 327
Beweis des Vollstindigkeitssatzes unter Verwendung des
Erfiillbarkeitslemmas:
Unter Verwendung des Erfiillbarkeitslemmas (Lemma 4.26) erhalten wir
zusammen mit Korollar 4.23, dass Teil (2) des Vollstandigkeitssatzes
korrekt ist. D.h. fiir jede Formelmenge ® C FO[o] gilt:
(2) & ist widerspruchsfrei <= ® ist erfiillbar.

Die Richtung ,,=—=“ von (1) haben wir bereits in Korollar 4.21 gezeigt.
Die Richtung ,,<=" von Teil (1) des Vollstandigkeitssatzes ldsst sich wie
folgt beweisen:
Es seien ® C FO[o] und ¢ € FO[o], so dass gilt: @ |= ¢.
Wir wollen zeigen, dass gilt: @ g, .
Fall 1: ® U {—p} ist widerspruchsfrei.
Gemaéf Eriillbarkeitslemma ist ® U {—p} erfillbar. D.h. es gibt eine
o-Interpretation Z, so dass Z = ® U {—p}.
Somit gilt: Z =& und Z [ ¢.
Aber geméafl Voraussetzung gilt: ® = ¢. Dies ist ein Widerspruch!
Somit kann der Fall, dass ® U {—¢} widerspruchsfrei ist, nicht eintreten.
Fall 2: ® U {—p} ist nicht widerspruchsfrei.
Somit ist ® U {—¢} widerspruchsvoll.
Geméf Lemma 4.24 gilt dann fiir jede FO[o]-Formel 1), dass

o U {_|QD} l_gs ’l/)
Insbesondere gilt also fiir die Formel v := ¢, dass

b U {_|Q0} l_ﬁs @.
Andererseits erhdlt man aus der Voraussetzungsregel (V), dass

®U{p} Fas @
Die Fallunterscheidungsregel (FU) liefert:

d |_~QS @Y.
Dies beendet den Beweis des Vollstindigkeitssatzes.
Folie 328

Version vom 16. Oktober 2023 Seite 206



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Zum Beweis des Erfiillbarkeitslemmas:

Zur Erinnerung: Das Erfiillbarkeitslemma besagt:

Jede widerspruchsfreie Formelmenge @ C FOJ[o] ist erfiillbar.

Beweisidee:
Konstruiere eine o-Interpretation Zg = (A, 5), so dass gilt:

e Das Universum A von A ist die Menge T, aller o-Terme.
e Fiir jeden o-Term t gilt: [[t]]Z =t.

e Fiir jedes Relationssymbol R € o, fir k := ar(R), und fiir alle
o-Terme tq,...,t; gilt:

(tl,...,tk) S RA <= P l_ﬁs R(tl,,tk)

Diese Interpretation Zg wird Terminterpretation von ® genannt.

GeméB Definition erfiillt Zg alle atomaren Formeln der Form R(t4,. .., %)
in ®.

Im Allgemeinen gilt jedoch noch nicht Zg |= & (betrachte dazu
beispielsweise die Formelmenge ® := {vy=v, }, die offensichtlicherweise
erfiillbar ist, fiir die aber gilt: Zg = ).

Aber nach einigen anspruchsvollen Modifikationen von Zg erhélt man eine
Interpretation Zj mit Zj, = .

Details finden sich im Buch ,,Einfiihrung in die mathematische Logik®“ von
Ebbinghaus, Flum und Thomas.

4.3 Der Endlichkeitssatz

Folie 329
Zur Erinnerung:

Wir haben bereits den Endlichkeitssatz der Aussagenlogik kennen gelernt,
der besagt, dass Folgendes fiir jede Menge ® C AL und jede Formel ¢ € AL
gilt:

(1) @ ist erfillbar <= Jede endliche Teilmenge von  ist erfiillbar.

(2) & =1 <= Esgibt eine endliche Teilmenge I' von ®, so dass I' = 1.

Version vom 16. Oktober 2023 Seite 207



Folie 330

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Der Endlichkeitssatz gilt auch fiir die Logik erster Stufe, d.h. die Aussagen
(1) und (2) gelten auch fiir alle Mengen ® C FO[o] und alle ¢ € FO[o].

Zum Beweis der Endlichkeitssatzes der Logik erster Stufe nutzen wir den
Vollstéandigkeitssatz sowie das folgende Lemma.

Das syntaktische Endlichkeitslemma

Lemma 4.27. Fir jede Signatur o und jede Formelmenge ® C FO[o] gilt:

& ist widerspruchsfrei <= Jede endliche Teilmenge von ® ist
widerspruchsfrei.

Bewezs.

Sei o eine Signatur und sei ® C FO[o]. Um das Lemma zu beweisen, geniigt
es offensichtlicherweise, zu zeigen, dass Folgendes gilt:

® ist widerspruchsvoll <= Es gibt eine endliche Teilmenge
von ®, die widerspruchsvoll ist.

Diese Aussage folgt direkt aus der Definition des Begriffs
,widerspruchsvoll“, denn:

® ist widerspruchsvoll

Definftion 422 g gibt ein ¢ € FO[o],so dass ® g, ¢ und @ g, ¢

Definjtion 420 gibt ein ¢ € FO[o] und Mengen I'1, Ty C, @, so

dass die Sequenzen I'y - ¢ und I's F —¢ in Rg
ableitbar sind
Frvied ) o gibt ein ¢ € FO[o] und ein I' C, @, so dass die
Sequenzen I' ¢ und I'F —¢ in Kg ableitbar sind

= es gibt ein ¢ € FO[o] und ein I' C, ®, so dass
[I'Fgg @ und I'igg —p

— es gibt ein I' C, @, das widerspruchsvoll ist.

Version vom 16. Oktober 2023 Seite 208



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Alternativ ldsst sich Lemma 4.27 auch durch Widerspruch beweisen:

,=—=": Geméaf Voraussetzung sei ® widerspruchsfrei.

Sei I' eine beliebige endliche Teilmenge von ®.

Angenommen, T ist widerspruchsvoll. Dann gibt es eine FO[o]-Formel ¢, so
dass gilt: I' g, ¢ und I' g —e.

Wegen I' C ® gilt dann auch: ® g, ¢ und @ g, . Somit ist O
widerspruchsvoll. Widerspruch!

<" Geméafl Voraussetzung sei jede endliche Teilmenge von ®
widerspruchsfrei. Angenommen, ® ist widerspruchsvoll.

Dann gibt es eine FO[o]-Formel ¢, so dass gilt: ® Fg, ¢ und @ g, —o.
Gemaéf Definition 4.20 gibt es dann endliche Teilmengen I'y und I'y; von @,
so dass die Sequenzen I'y ¢ und TI's - —p im Sequenzenkalkiil Kg
ableitbar sind.

GeméaB der Erweiterungsregel (E) sind dann fiir I' :== I'; U T’y auch die
Sequenzen ' ¢ und I'F —p in Kg ableitbar.

Somit gilt: I'tg, ¢ und I'g, . Aber dies bedeutet, dass die Menge
I', die ja eine endliche Teilmenge von & ist, widerspruchsvoll ist.
Widerspruch! ]

Folie 331

Der Endlichkeitssatz (auch bekannt als Kompaktheitssatz)

Satz 4.28. Flir jede Signatur o, jede Formelmenge ® C FO[o] und jede
Formel ¢ € FO[o] gilt:

(1) @ ist erfilllbar <= Jede endliche Teilmenge von ® ist erfillbar.
(2) ® 1Y <= FEs gibt eine endliche Teilmenge T' von ®, so dass T = 1).

Beachte: Die Aussage des Endlichkeitssatzes ist nur fiir unendliche
Formelmengen ® interessant (fiir endliche Mengen ® ist sie trivial).

Beweis. Zu (1): Es gilt:

Vollstandigkeitssatz
=

® ist erfiillbar ® ist widerspruchsfrei

beryma 27 jede endliche Teilmenge I' von & ist

widerspruchsfrei

Vollstéandigkeitssatz . . . .
— jede endliche Teilmenge I' von & ist

erfiillbar.

Zu (2): Es gilt:

Version vom 16. Oktober 2023 Seite 209



Folie 332

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Vollstandigkeitssatz
<~

O = D g Y

es gibt eine endliche Teilmenge I’
von @, so dass I' gy ¢

Definition 4.20
i

Vollstandigkeitssatz . . . .
— es gibt eine endliche Teilmenge I

von @, so dass I' = 1.

Erststufige Axiomatisierbarkeit

Definition 4.29.
Eine Klasse € von o-Strukturen heifit erststufig aziomatisierbar, falls es eine
Menge ® von FO[o]-Sétzen gibt, so dass gilt: € = MOD, ().

Zur Erinnerung:
MOD, (®) ist die Klasse aller o-Strukturen A, fiir die gilt: A = ®.

Definition 4.30. Die Mdichtigkeit einer o-Struktur ist die Méchtigkeit ihres
Universums.

Eine o-Struktur heiBt endlich, unendlich, abzihlbar?, bzw. iiberabzihlbar,
wenn ihr Universum die entsprechende Michtigkeit besitzt.

Beispiel 4.31.
Die Klasse aller unendlichen o-Strukturen ist erststufig axiomatisierbar.

Beweis. Fir jedes n € N mit n > 1 betrachte die FO[o]-Formel

Op = dxy---dz, /\ X=T

1<i<j<n
Offensichtlicherweise gilt fiir jedes n > 1 und fiir jede o-Struktur A:
A=y, <<= |A] =2 n
Somit gilt fir ® :={¢, : n €N, n > 1} und fir jede o-Struktur A:
AE® < |4 = .

Also wird die Klasse aller unendlichen Strukturen durch die Formelmenge ®
erststufig axiomatisiert. O]

2Wir bezeichnen eine Menge M als abzihlbar, wenn sie entweder endlich ist oder dieselbe
Michtigkeit wie N besitzt. Somit ist M genau dann abzéhlbar, wenn es eine injektve
Abbildung von M nach N gibt.

Version vom 16. Oktober 2023 Seite 210



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Wir kénnen den Endlichkeitssatz anwenden, um zu zeigen, dass bestimmte
Klassen von Strukturen nicht erststufig axiomatisierbar sind.

Im Folgenden betrachten wir dazu zwei Beispiele: die
Nicht-Axiomatisierbarkeit der ,,Endlichkeit” von Strukturen und die
Nicht-Axiomatisierbarkeit von ,, Graph-Zusammenhang*.

Folie 333

Nicht-Axiomatisierbarkeit der ,,Endlichkeit* von Strukturen

Lemma 4.32. Sei ® eine Menge von FO[o]-Sitzen. Falls ® beliebig grofie
endliche Modelle besitzt (d.h. fir jedes n € N gibt es eine endliche
o-Struktur A mit |A| = n und A |= ®), so besitzt O ein unendliches Modell.

Beweis. Fiir n > 1 sei ¢,, die Formel aus dem Beweis von Beispiel 4.31, die
besagt, dass das Universum mindestens n verschiedene Elemente enthélt.
Sei

P = DU {p, : n=1}

Dann ist jede endliche Teilmenge von ® erfiillbar, da gemafl Voraussetzung
® beliebig grofie endliche Modelle besitzt. Gemafi Endlichkeitssatz ist auch
@’ erfiillbar. D.h. es gibt eine o-Struktur A4 mit A = @’

Somit gilt: A E & und A [ ¢, fiir jedes n > 1. Insbesondere ist also

|A| > n fir jedes n € N. Somit ist A ein unendliches Modell von ®. O

Satz 4.33.
Die Klasse aller endlichen o-Strukturen ist nicht erststufig arziomatisierbar.

Beweis. Durch Widerspruch:

Angenommen, ® ist eine Menge von FO[o]-Sétzen, die die Klasse aller
endlichen o-Strukturen erststufig axiomatisiert. Dann hat ® beliebig grofie
endliche Modelle. Geméfl Lemma 4.32 besitzt ® dann auch ein unendliches
Modell. Widerspruch! ]

Korollar 4.34. Es gibt keine endliche Menge von FO[o]-Sdtzen, die die
Klasse aller unendlichen o-Strukturen erststufig axiomatisiert.

Beweis. Durch Widerspruch:

Angenommen, ® = {¢y,...,1¢,,} ist eine endliche Menge von
FO[c]-Sétzen, die die Klasse aller unendlichen o-Strukturen erststufig
axiomatisiert.

Version vom 16. Oktober 2023 Seite 211



Folie 334

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Dann gilt fiir die FO[o]-Formel
o= (U n At
und fiir jede o-Struktur A:
AE¢ <=  Aist endlich.

Somit ist {¢} eine Menge von FO[o]-Sétzen, die die Klasse aller endlichen
o-Strukturen erststufig axiomatisiert. Widerspruch zu Satz 4.33. ]

Nicht-Axiomatisierbarkeit von ,,Graph-Zusammenhang*

Satz 4.35. Die Klasse aller zusammenhdngenden Graphen ist nicht
erststufig axiomatisierbar.

Beweis. Sei 0 := {E} mit ar(F) = 2 die Signatur fiir Graphen.
Fiir jede Zahl n € N sei ¢, (z,y) eine FO[o]-Formel, die besagt, dass es
keinen Weg der Lénge n von Knoten x zu Knoten y gibt. D.h. es sei

Yo(r,y) == —a=y

und, fiir n € N mit n > 1, sei
Un(x,y) == =323z -+ Jz, (zozx A zZp=y A /\E(zi_l,zi)>.
i=1

Offensichtlicherweise gilt fiir alle gerichteten Graphen A und alle Knoten
a,be A
A Eyla,b] <= es gibt in A keinen Weg der Linge n von a nach b.

Sei
v = {4, : neN}L

Dann gilt fiir jeden gerichteten Graphen A, fiir jede Belegung 3 : VAR — A
und fiir die Knoten a := f(z) und b:= f(y):

(A, B)E Y <= es gibt in A keinen Weg von a nach b.

Version vom 16. Oktober 2023 Seite 212



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Angenommen, ® ist eine Menge von FO[o]-Sédtzen die die Klasse aller
zusammenhéngenden Graphen erststufig axiomatisiert. D.h. fiir jeden
ungerichteten Graphen G und den zu G gehorenden® gerichteten Graphen A
gilt:

G ist zusammenhéngend <= AR .

GeméB Definition ist ein ungerichteter Graph G genau dann
zusammenhéngend, wenn es fiir jedes Paar (a,b) von Knoten von G eine
Zahl n € N gibt, so dass es in G einen Weg der Lénge n von Knoten a zu
Knoten b gibt. Daher ist

o = dUVT

eine unerfillbare Menge von FO[o]-Formeln.
Im Folgenden zeigen wir, dass jede endliche Teilmenge I von &’ erfiillbar
ist. Laut Endlichkeitssatz muss daher auch @’ erfiillbar sein. Widerspruch!

Sei also I" eine beliebige endliche Teilmenge von ®’. Unser Ziel ist, zu
zeigen, dass I' erfiillbar ist.

Da I' endlich ist, gibt es ein m € N, so dass fiir jedes n € N mit n > m gilt:
Y, € T (falls TNW = ( ist, so kénnen wir m := 0 wéhlen; ansonsten kénnen
wir m = max{n € N : ¢, € I'} wihlen). Sei G ein Graph, der aus einer
ungerichteten Kette von m+2 Knoten besteht.

Skizze:

D.h.: G ist der Graph mit Knotenmenge {0, ..., m+1} und Kantenmenge
{{i—1,i} : 1 <i <m+1}.
Dann gilt fiir die zu G gehorende o-Struktur A:

1. AE &, da G zusammenhéngend ist, und

2. fiir die Endknoten a :=0 und b:=m+1 der Kette gilt:
Es gibt in A keinen Weg der Léinge < m von Knoten a zu Knoten b.
Somit gilt fiir jedes n < m, dass A | ¥,[a, b].

Geméfl der Wahl von m gilt daher fiir die Belegung § mit f(x) :=a und
B(y) :=0b, dass (A,5) E=T. Somit ist I' erfiillbar. O

Folie 335

3dh. fir G = (V9,E9) ist A die o-Struktur mit Universum A := V9 und mit
Kantenmenge EA := {(u,v) : {u,v} € E9}

Version vom 16. Oktober 2023 Seite 213



Folie 336

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Der Satz von Lowenheim und Skolem

Unter Verwendung von Teilergebnissen, die beim (in dieser Vorlesung nicht
im Detail behandelten) Beweis des Erfiillbarkeitslemmas anfallen, erhélt
man das folgende Resultat.

Satz 4.36 (Der Satz von Lowenheim und Skolem).
Sei o eine abzdhlbare Signatur. Dann hat jede erfillbare Formelmenge
® C FO[o] ein hichstens abzihlbares Modell.

(Hier ohne Beweis)

Als direkte Folgerung aus dem Satz von Lowenheim und Skolem erhalten
wir:

Korollar 4.37. Sei o eine abzdhlbare Signatur.
Dann st die Klasse aller tiberabzdhlbaren o-Strukturen nicht erststufig
axiomatisierbar.

Beweis. Angenommen, ® ist eine Menge von FO[o]-Satzen, die die Klasse
aller iiberabzihlbaren o-Strukturen erststufig axiomatisiert.

Gemal Satz von Lowenheim und Skolem besitzt @ ein hochstens
abzahlbares Modell. Widerspruch! [

4.4 Die Grenzen der Berechenbarkeit

Zur Erinnerung:
Einige Begriffe zum Thema (Un)Entscheidbarkeit

Entscheidungsprobleme sind Probleme, die mit ,ja“ oder ,nein“
beantwortet werden konnen. Genauer:

e Sei M eine abzdhlbar unendliche Menge, zum Beispiel

— die Menge ¥* aller Worte iiber einem endlichen Alphabet 3,
oder

— die Menge aller Graphen, deren Knotenmenge eine endliche
Teilmenge der natiirlichen Zahlen ist.

e Das Entscheidungsproblem fiir eine Menge L C M ist das folgende
Berechnungsproblem:

Version vom 16. Oktober 2023 Seite 214



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Das Entscheidungsproblem fiir L C M
Eingabe: Ein Element m € M.

Frage: Ist m € L 7

Folie 337

Beispiele fiir Entscheidungsprobleme

e Graphzusammenhang ist das Entscheidungsproblem fiir L C M, wobei

M die Menge aller ungerichteten Graphen ist, deren Knotenmenge
eine endliche Teilmenge von N ist und

L die Menge aller zusammenhéngenden Graphen aus M ist.
e Das Halteproblem ist das Entscheidungsproblem fir L C M, wobei

M die Menge aller Worte w#x mit w,z € {0,1}* ist und

L die Menge aller Worte w#x ist, so dass w eine deterministische
Turingmaschine beschreibt, die bei Eingabe x nach endlich vielen
Schritten anhalt.

Folie 338

Entscheidungsprobleme fiir die Logik erster Stufe

Allgemeingiiltigkeitsproblem fiir FO|o]
FEingabe: Eine FO[o]-Formel ¢

Frage: Ist ¢ allgemeingiiltig?

Formal:

M ist die Menge aller Worte iiber dem Alphabet Aro[;) und
L ist die Menge {¢ € FO[o] : ¢ ist allgemeingiiltig}

Erfiillbarkeitsproblem fiir FO[o] Unerfiillbarkeitsproblem fiir FO|o]
Fingabe: FO[o]-Formel ¢ Fingabe: FO[o]-Formel ¢
Frage: Ist ¢ erfiillbar? Frage: Ist ¢ unerfiillbar?

Version vom 16. Oktober 2023 Seite 215



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Folgerungsproblem fiir FO[o]
FEingabe: Zwei FO[o]-Formeln ¢, 9

Frage: Gilt o =4 7

Folie 339

Entscheidbarkeit und Semi-Entscheidbarkeit
Definition 4.38. Sei M eine abzdhlbar unendliche Menge.

(a) Eine Menge L C M heifit entscheidbar, falls es einen Algorithmus gibt,
der bei Eingabe eines m € M nach endlich vielen Schritten anhélt und

o  ja“ ausgibt, fallsme L

e _nein“ ausgibt, fallsm & L.

(b) L € M heiit semi-entscheidbar, falls es einen Algorithmus gibt, der bei
Eingabe eines m € M

e nach endlich vielen Schritten anhélt und ,ja“ ausgibt, falls m € L

e nic anhilt, falls m & L.
Beispiele:

e Graphzusammenhanyg ist entscheidbar (z.B. durch Tiefen- oder
Breitensuche).

e Das Halteproblem ist semi-entscheidbar (bei Eingabe von w#x
konstruiere die von w représentierte deterministische Turingmaschine
und lasse diese mit Eingabe x laufen).

Ist es auch entscheidbar? Nein! — Das Halteproblem ist das
Paradebeispiel eines nicht entscheidbaren Problems.

Folie 340

Version vom 16. Oktober 2023 Seite 216



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Einfache Beobachtungen

e Jede entscheidbare Menge L C M ist auch semi-entscheidbar (anstatt

,hein® auszugeben und anzuhalten, gehen wir einfach in eine
Endlosschleife)

e Fiir jede entscheidbare Menge L C M ist auch die Menge
L:=(M\ L) C M entscheidbar (vertausche einfach die Antworten
,ja‘ und ,nein*)

e Wenn sowohl L C M als auch L := (M \ L) C M semi-entscheidbar
sind, dann ist L C M sogar entscheidbar.

Beweis: Wir nutzen Algorithmen A und B, die L C M bzw. LCM
semi-entscheiden und bauen daraus einen Algorithmus C, der L C M
entscheidet. Bei Eingabe von m € M geht C wie folgt vor:

Firi=1,2,3,... tue Folgendes:

Fiihre den i-ten Berechnungsschritt von A bei Eingabe m aus.
Falls A in diesem Schritt anhélt, so gib ,,ja*“ aus und halte an.

Fiihre den ¢-ten Berechnungsschritt von B bei Eingabe m aus.
Falls B in diesem Schritt anhélt, so gib , nein“ aus und halte an.

Man sieht leicht, dass C nach endlich vielen Schritten anhélt und ,ja“
(bzw. ,nein*) ausgibt, falls m € L (bzw. m & L) ist. O

Semi-Entscheidbarkeit einiger Logik-Probleme

Satz 4.39. Sei o eine hichstens abzdhlbare Signatur.
Jedes der folgenden Probleme ist semi-enscheidbar:

(a) das Allgemeingiiltigkeitsproblem fir FO[o],
(b) das Unerfillbarkeitsproblem fir FO[o],

(c) das Folgerungsproblem fiir FO[o].

Bewess.

Version vom 16. Oktober 2023 Seite 217

Folie 341



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

(a)

()

Fiir jede FO[o]-Formel ¢ gilt gemafl dem Vollstandigkeitssatz:

@ ist allgemeingiiltig
= lEy
<= die Sequenz 0 F ¢ ist korrekt
<= die Sequenz 0+ ¢ ist im Sequenzenkalkiil K5 ableitbar.

Da der Sequenzenkalkiil K¢ effektiv ist, gibt es einen Algorithmus S,
der nach und nach alle aus K¢ ableitbaren Sequenzen ausgibt.

Wir nutzen diesen Algorithmus, um einen
Semi-Entscheidungs-Algorithmus fiir das Allgemeingiiltigkeitsproblem
fir FO[o] zu erhalten: Bei Eingabe einer FO[o]-Formel ¢ starten wir S.
Jedesmal, wenn S eine Sequenz ausgibt, iiberpriift A, ob dies die
Sequenz () F ¢ ist. Falls ja, hédlt A an und gibt ,,ja“ aus.

Offensichtlicherweise gilt fiir jede FO[o]-Formel ¢:

Falls ¢ allgemeingiiltig ist, so wird A bei Eingabe ¢ nach endlich vielen
Schritten mit Ausgabe ,ja“ anhalten (da S nach endlich vielen
Schritten die (korrekte) Sequenz 0 - p“ ausgeben wird).

Falls ¢ nicht allgemeingiiltig ist, wird A bei Eingabe ¢ nie anhalten (da
die Sequenz ,,()  ©“ nicht korrekt ist und daher nie von S ausgegeben
wird).

Fiir jede FO[o]-Formel v gilt:
@ ist unerfiilllbar <= —p ist allgemeingiiltig.

Wir kénnen daher den Semi-Entscheidungs-Algorithmus A aus (a)
nutzen, um einen Semi-Entscheidungs-Algorithmus U fiir das
Unerfiillbarkeitsproblem fiir FO[o] zu erhalten: Bei Eingabe einer
FO[o]-Formel ¢ setzen ¢ := —p und starten Algorithmus A mit
Eingabe 1. Falls A anhélt und ,ja“ ausgibt, hélt auch U an und gibt
»ja’ aus.

Man sieht leicht, dass fiir jede Formel ¢ gilt: Bei Eingabe ¢ wird U
e nach endlich vielen Schritten anhalten und ,ja“ ausgeben, falls die
Formel —¢ allgemeingiiltig, und somit ¢ unerfiillbar ist,
e nie anhalten, falls die Formel —¢ nicht allgemeingiiltig, und somit

o erfiillbar ist.

Fiir alle FO[o]-Formeln ¢ und v gilt:

Version vom 16. Oktober 2023 Seite 218



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

pEYv <= die Formel (—¢ V1) ist allgemeingiiltig.

Wir kénnen daher den Semi-Entscheidungs-Algorithmus A aus (a)
nutzen, um einen Semi-Entscheidungs-Algorithmus F fiir das
Folgerungsproblem zu erhalten: Bei Eingabe zweier FO[o]-Formeln ¢
und 1 konstruiert F die Formel yx := (—p V1), startet dann
Algorithmus A mit Eingabe x und hélt mit Ausgabe ,ja* an, falls A
mit Ausgabe ,ja‘“ anhélt.

Man sieht leicht, dass fiir alle Formeln ¢, v gilt:
Bei Eingabe von ¢ und ¢ wird F

e nach endlich vielen Schritten anhalten und ,ja‘“ ausgeben, falls die
Formel (—¢ V) allgemeingiiltig ist, und somit ¢ | ¥* gilt

e nie anhalten, falls die Formel (—¢ V 1) nicht allgemeingiiltig ist,
und somit ¢ = ¥ nicht gilt.

]

Folie 342
Unentscheidbarkeit einiger Logik-Probleme

Unser néchstes Ziel ist, zu zeigen, dass fiir bestimmte Signaturen o gilt:

Das Allgemeingiiltigkeitsproblem fiir FO[o],

das Unerfiillbarkeitsproblem fiir FO[o],

das Erfullbarkeitsproblem fiir FO[o] und

das Folgerungsproblem fiir FO[o]

ist nicht entscheidbar.

Wir werden dazu wie folgt vorgehen:

1. Wir nutzen das bekannte Resultat, das besagt, dass das Postsche
Korrespondenzproblem unentscheidbar ist.

2. Wir zeigen, wie das Postsche Korrespondenzproblem unter
Zubhilfenahme eines Entscheidungs-Algorithmus fiir das
Allgemeingiiltigkeitsproblem fiir FO[o] (fiir eine geeignete Signatur o)
gelost werden konnte.

Dadurch erhalten wir, dass das Allgemeingiiltigkeitsproblem fiir FO[o]
unentscheidbar ist.

Version vom 16. Oktober 2023 Seite 219



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

3. Die Unentscheidbarkeit des Unerfiillbarkeitsproblems, des
Erfiillbarkeitsproblems und des Folgerungsproblems fiir FO[o] folgen
dann leicht aus der Unentscheidbarkeit des
Allgemeingiiltigkeitsproblems fiir FO[o].

Folie 343

Das Postsche Korrespondenzproblem

Das Postsche Korrespondenzproblem (PKP)
Fingabe: Eine Zahl k > 1 und k Paare (x1,11), (x2,92), - -, (T, Yx)
mit x1,y1, ..., Tk, Yk € {0, 1},

Frage: Gibt es ein n > 1 und Indizes iq,...,7, € {1,...,k}, so
dass gilt: @z, @i, - T, = YiYip " Vi, !

Beispiel:
Das PKP mit Eingabe £ = 3 und

(xlayl) = (]-a 11]—)7 (1‘27,7]2) = (10111, 10)7 (353,93) = (107 O)
hat eine Losung mit n =4 und 1y = 2,15 =1, i3 =1, 74y = 3, denn:

Torix1T3 = 10111 1 1 10
Yory1y1ys = 10 111 111 0.

Bekannt:

e Das PKP ist semi-entscheidbar.

(Dies sieht man leicht.)

e Das PKP ist nicht entscheidbar.

(Dies wurde in der Veranstaltung , Einfiihrung in die Theoretische
Informatik* bewiesen.)

Folie 344

Version vom 16. Oktober 2023 Seite 220



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Die Unentscheidbarkeit der Logik erster Stufe

Satz 4.40. Sei o :={R, fy, f1,c}, wobei ¢ ein Konstantensymbol, R ein
2-stelliges Relationssymbol und fo, fi zwei 1-stellige Funktionssymbole sind.

Das Allgemeingiiltigkeitsproblem fiir FO[o] ist nicht entscheidbar.

Beweis: Auf Grund der Unentscheidbarkeit des PKP reicht es, eine
Reduktion vom PKP zum Allgemeingiiltigkeitsproblem fiir FO[o]
anzugeben. D.h. wir zeigen, dass bei Eingabe eines Tupels

I = (k, (x1,v1)s -y (Tk,Yk) ), das eine Eingabe fiir’'s PKP repréisentiert,
eine FO[o]-Formel ¢; konstruiert werden kann, die genau dann
allgemeingiiltig ist, wenn I eine ,ja“-Instanz fiir's PKP ist (d.h. es gibt
n>1und iy,... i, € [k], sodass @, - -z, =iy - Yi, )-

Wenn das Allgemeingiiltigkeitsproblem fiir FO[o] entscheidbar wére, wére
daher auch das PKP entscheidbar.

Zur Konstruktion der Formel ¢; gehen wir in mehreren Schritten vor.

Folie 345
Schritt 1: Fiir jede Eingabe [ = (k, (x1,11)y -, (z, yk)) fiir das PKP
definiere eine o-Struktur A;, so dass gilt:
ArE32R(z,z) <= I ist eine ,ja“-Instanz fiir’s PKP, d.h.
es gibt n > 1 und 4y,...,4, € [k], so
dass x;, X, = Yiy - Yi,, -
Dazu wihlen wir A; wie folgt:
e Universum A; := {0,1}"
o 1 :=¢ (leeres Wort)
o fiir jedes w € {0,1}* gilt:  f(w) := w0 und f¥(w) :=wl
o RAM = { (@i Tip, Yo Vin ) n21, dn,...in €[k}
Offensichtlicherweise gilt:
A E3JzR(z,2) <= I ist eine ,ja“-Instanz fir’s PKP.
Folie 346

Schritt 2: Konstruiere FO[o]-Formeln 9% und 47" die A; hinreichend
genau beschreiben.

Version vom 16. Oktober 2023 Seite 221



Folie 347

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Die Formel 7' soll besagen, dass die Relation R4 die Tupel (z;,y;) fiir
alle 7 € [k] enthélt.

Die Formel 17" soll besagen, dass die Relation R4 abgeschlossen ist
unter Konkatenation mit (z;,v;); d.h.: Ist (u,v) € R4 und j € [k], so ist
auch (ux;,vy;) € RAL.

Um dies durch FO[o]-Formeln zu formulieren, nutzen wir folgende
Schreibweisen:

Fiir ein Wort w = wy - - -wy € {0,1}* und einen o-Term ¢ schreiben wir

Jfu(t),

um den o-Term
fwz ( T fwz (fwl (ﬂ))

zu bezeichnen. Analog bezeichnen wir fiir eine o-Struktur B mit f5 die
Funktion von B nach B, so dass fiir jedes b € B gilt:

ff(b) = we('” 52( 51(1))))

Beachte, dass dies gerade so definiert ist, dass fiir die Struktur A; und fiir
alle Worte u € {0,1}* und alle nicht-leeren w € {0, 1}* gilt:

fol(w) = uw.

Unter Nutzung dieser Notationen setzen wir
k
Slart . — /\ R ( fs;(0), fy;(0))
j=1
| k
77D}S'chmtt — Yu Vo ( R(u’v) — /\ R (fz] (U), fyj(v)) >
j=1

Beachte: A; = (¢7" A7) da die Relation R4 alle Tupel (z;,y;)
fiir j € [k] enthilt und da fiir alle Tupel (u,v) € RAT gilt, dass auch
(uz;,vy;) € RAT ist, fiir jedes j € [k].

Schritt 3: Setze @ = ( (pftart A apgehritt) — 3z R(z, z) )

Klar: Es gibt einen Algorithmus, der bei Eingabe von I die Formel ¢y
konstruiert.

Behauptung 1:

Version vom 16. Oktober 2023 Seite 222



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

@y ist allgemeingiiltig <= [ ist eine ,ja“-Instanz fiir's PKP.

Bewers:

,=—: Sel p; allgemeingiiltig. Dann gilt insbesondere A; = ¢;. Geméis
Schritt 2 und Schritt 1 ist I dann eine ,,ja“-Instanz fiir's PKP.

,<=": Sei [ eine  ja“-Instanz fiir’s PKP. Dann gibt es ein Wort

@ € {0,1}*, so dass (@, 4) € RAL.

Wir miissen zeigen, dass ¢; allgemeingiiltig ist. Sei dazu B eine beliebige
o-Struktur. Zu zeigen: B ;.

Fall 1: B l# (wIStart A w?‘chm’tt»
Dann gilt gemafl Konstruktion von ¢, dass B |= ¢;.

Fall 2: B ): (¢ftart A @ZJ}Schm'tt).

Wir miissen zeigen, dass dann auch gilt: B |= 3z R(z, z). D.h. wir miissen
ein b € B finden, so dass gilt: (b,b) € RE.

Ein solches b € B finden wir, indem wir b := h(u) setzen, wobei
h:{0,1}* — B wie folgt definiert ist:

h(e) = 5, und fur alle u € {0,1}* gilt:

Per Induktion nach der Lange von w sieht man leicht, dass fiir alle
u € {0,1}* und alle nicht-leeren w € {0, 1}* gilt:

hw) = fE(h(w) wd  h(w) = fS(h) = f5(c5).

Wegen (4, 7) € R folgt daher aus der niichsten Behauptung, dass
(b,b) € R®, und damit ist der Beweis dann beendet.

Behauptung 2: Fiir alle (u,v) € R4 gilt:  (h(u), h(v)) € RP.

Beweis: Per Induktion nach n zeigen wir, dass fiir alle n > 1 und alle

Induktionsanfang n = 1: Wegen B |= 7' gilt insbes. fiir j := 4, dass
B | R(fu(c), fy,(c)).

Somit gilt:  (h(zi,), h(yy)) = ( 51(08), 51(03)) € RS
Dies beendet den Induktionsanfang.

Version vom 16. Oktober 2023 Seite 223



Folie 348

Folie 349

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Induktionsschritt n — n+1: Gemafl Induktionsannahme gilt fiir

wi=ux; --x;, und vi=y; -y, dass (h(u), h(v)) € RP.

Fiir j:=4,.1 miissen wir zeigen, dass auch gilt: (h(uz;), h(vy;)) € R5.
Wegen B = 7" und (h(u), h(v)) € RP gilt gemiB der Konstrukton
von 7t dass

(h(uxj), h(vxj)> = (fj(h(u)), i(h(v))> € RS

Dies beendet den Induktionsschritt und daher auch den Beweis von
Behauptung 2, den Beweis von Behauptung 1 und insgesamt den Beweis
von Satz 4.40. O

Aus Satz 4.39, Satz 4.40 und den bekannten Zusammenhéngen zwischen
semi-entscheidbaren und entscheidbaren Problemen, sowie den
Korrespondenzen zwischen Allgemeingiiltigkeit, (Un)Erfiillbarkeit und
logischer Folgerung, erhélt man leicht:

Korollar 4.41. Sei o die Signatur aus Satz 4.40. Dann gilt:

(a) Das Allgemeingiiltigkeitsproblem fiir FO[o] ist semi-entscheidbar aber
nicht entscheidbar.

(b) Das Folgerungsproblem fiir FO[o] ist semi-entscheidbar
aber nicht entscheidbar.

(¢) Das Unerfillbarkeitsproblem fir FO[o] ist
semi-entscheidbar aber nicht entscheidbar.

(d) Das Erfillbarkeitsproblem fiir FO[o] ist

nicht semi-entscheidbar.

Beweis: Ubung.

Bemerkung 4.42. Man kann zeigen, dass

(1) Korollar 4.41 fiir jede Signatur o gilt, die mindestens ein
Relationssymbol der Stelligkeit > 2 enthélt

(2) fur Signaturen o, die ausschlieBlich aus Konstantensymbolen und
Relationssymbolen der Stelligkeit 1 bestehen, jedes der in Korollar 4.41
betrachteten Probleme entscheidbar ist.

(Hier ohne Beweis)

Version vom 16. Oktober 2023 Seite 224



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

4.5 Der Satz von Herbrand

Folie 350
e Im letzten Abschnitt haben wir gesehen, dass es keinen Algorithmus
gibt, der das Erfiillbarkeitsproblem und das
Allgemeingiiltigkeitsproblem der Logik erster Stufe 16st und stets
terminiert.

e Trotzdem mochte man fiir verschiedene Anwendungsbereiche
Verfahren haben, die das Erfiillbarkeits- oder das
Allgemeingiiltigkeitsproblem der Logik erster Stufe ,,so gut wie
moglich®“ l6sen.

e Einen Ansatz fiir die Entwicklung solcher, in der Praxis nutzbarer,
Verfahren liefert die Herbrand-Theorie, die nach dem franzosischen
Logiker Jacques Herbrand (1908-1931) benannt ist.

o Ziel dieses Abschnitts ist, den Satz von Herbrand vorzustellen, der das
Allgemeingiiltigkeits- bzw. das Erfiillbarkeitsproblem der Logik erster
Stufe auf das entsprechende Problem der Aussagenlogik zuriickfiihrt.

Folie 351

Notationen

e In diesem Abschnitt bezeichnet o stets eine endliche oder abzahlbare
Signatur, die mindestens ein Konstantensymbol enthélt.

e Die Menge aller quantorenfreien FO[o]-Formeln bezeichnen wir mit

QF,.

e Ein Grundterm iiber o ist ein variablenfreier o-Term, d.h., ein
o-Term, der keine Variable enthélt.
Die Menge aller Grundterme iiber o bezeichnen wir mit GT,.

Beispiele:

(a) Sei o:={¢, f/1, g/2, R/2}.

Grundterme iiber ¢ sind dann z.B.

¢, fle), gle,e), f(f(e), [flale,e)), gle, fle), g(f(c),c),

Version vom 16. Oktober 2023 Seite 225



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

(b) Sei o:={¢, R/2}.

Dann ist ¢ der einzige Grundterm iiber o. D.h.

GT, = {c}

Folie 352

Herbrandstrukturen

Definition 4.43. Sei o eine Signatur, die mindestens ein
Konstantensymbol enthélt.
Eine o-Herbrandstruktur ist eine o-Struktur A4 mit folgenden Eigenschaften:

e Das Universum A von A ist genau die Menge GT, aller Grundterme
iiber o (d.h. aller variablenfreien o-Terme).

e Fiir jedes Konstantensymbol ¢ € o ist ¢* = c.

e Fiir jedes Funktionssymbol f € o, fiir k := ar(f), und fiir alle
variablenfreien o-Terme tq,...,1; € A ist

fA, . te) = ft,. . ).

Beachte: Alle o-Herbrandstrukturen haben dasselbe Universum und
dieselbe Interpretation der Konstanten- und Funktionssymbole.
Lediglich die Interpretation der Relationssymbole kann in
o-Herbrandstrukturen frei gewéhlt werden.

Zur Angabe einer konkreten o-Herbrandstruktur A geniigt es also, die
Interpretation der Relationssymbole anzugeben, d.h. fiir jedes
Relationssymbol R € o die Relation R4 anzugeben.

Folie 353
Beispiel

Sei 0:={¢, R/2}.

Frage: Wie sehen o-Herbrandstrukturen aus?

Antwort: Fiir jede o-Herbrandstruktur A gilt:
e Universum: A= {c}

.C'A:C

Version vom 16. Oktober 2023 Seite 226



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

e RAC {c}?, d.h.

RA =0 oder R* = {(c0)}.

Somit gibt es genau 2 verschiedene o-Herbrandstrukturen.

Folie 354
Bemerkung 4.44. Sei A eine o-Herbrandstruktur.
Man sieht leicht, dass Folgendes gilt:
e Fiir jeden variablenfreien o-Term ¢ (d.h. fiir jedes t € GT, = A) gilt:
[t = ¢
e Fiir jede quantorenfreie FO[o]-Formel ¢ gilt:
Ist var(y)) C {xy,...,2,} und sind ¢y, ...,t, € GT,, so gilt:
A B Yt ] = AR gl
Dabei ist @bg—i’; die Formel, die aus ¢ entsteht, indem fiir jedes
i € [n] jedes Vorkommen von x; ersetzt wird durch den Grundterm ¢;.
Folie 355

Herbrand-Modelle und gleichheitsfreie Formeln in Skolemform

Definition 4.45.

(a) Ein Herbrand-Modell eines FO[o]-Satzes ¢ ist eine o-Herbrandstruktur,
die ¢ erfiillt.

(b) Eine FO[o]-Formel ¢ heiit gleichheitsfrei, falls das Symbol ,,=* nicht in
¢ vorkommt.

(c¢) Eine FO[o]-Formel ist in Skolemform (auch: Skolem-Normalform), falls
sie von der Form

ist, wobei gilt: n >0, x,...,x, sind paarweise verschiedene
Variablen, und 1) ist eine quantorenfreie FO[o]-Formel.

Version vom 16. Oktober 2023 Seite 227



Folie 356

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Satz 4.46.
Sei o eine Signatur, die mindestens ein Konstantensymbol besitzt.
Fiir jeden gleichheitsfreien FO[o]-Satz ¢ in Skolemform gilt:

@ st erfillbar — @ besitzt ein Herbrand-Modell.

Beweis.

Die Richtung ,,<="* ist offensichtlich.

Fiir den Beweis der Richtung ,,==* sei B eine o-Struktur mit B = ¢. Wir
definieren im Folgenden eine o-Herbrandstruktur A und zeigen dann, dass
gilt: A= o.

Wir definieren die o-Herbrandstruktur A wie folgt: Fiir jedes
Relationssymbol R € o, fiir k := ar(R) und fiir alle ¢y,...,t, € GT, = A
setze

(ty,...,ts) € RA — B = R(ty,....t).

Per Induktion iiber den Aufbau von Formeln erhilt man leicht (Details:
Ubung), dass fiir alle n € N, fiir alle gleichheitsfreien quantorenfreien
FO[o]-Formeln ¢ mit var(¢)) C {zy,...,x,} und fur alle ¢,...,¢, € GT,
gilt:
t,eotn t,eetn
A |y = e (4.3)

..........

Laut Voraussetzung gilt B |= ¢, und ¢ ist von der Form Vz;---Vz, 1,
wobei ¢ eine gleichheitsfreie, quantorenfreie FO[o]-Formel ist.

Wegen B |= V-V, gilt insbes. fir alle Grundterme ¢4, ..., t, € GT,,
dass

B ): ¢[Htlﬂga7[[tn]]8] )
und somit gilt auch:

.....

fir alle t1,...,t, € GT,.
Aus (4.3) folgt, dass

,,,,,

fir alle t¢,...,t, € GT, = A gilt.
Somit gilt: A = V- -V, 1. Also ist A ein Herbrand-Modell von ¢. [

Version vom 16. Oktober 2023 Seite 228



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Die Herbrand-Expansion eines Satzes in Skolemform

Definition 4.47. Sei ¢ ein gleichheitsfreier FO[o]-Satz in Skolemform, d.h.

@ ist von der Form Vx;---Vx, ¥, wobei @) quantorenfrei und
gleichheitsfrei ist.
Die Herbrand-FExpansion von ¢ ist die Formelmenge

HE(p) = {1/}—;1 777 ;’; : tl,...,tnGGTU}

.....

D.h.: Jede Formel in HE(yp) entsteht, indem in der quantorenfreien Formel
1 jede Variable x; ersetzt wird durch einen Grundterm t;.

Beispiel 4.48. Sei 0 ={¢, f/1, g/2, R/3} und sei

p = VaVyVz R(z, f(y),9(z 1))
Dann gehoren z.B. die folgenden Formeln zur Herbrand-Expansion HE(¢):
e R(c, f(c),g(c,c))

(dies erhélt man, indem jede der Variablen z,y, z durch den
Grundterm c ersetzt wird)

o R(f(c), f(c),g(c, f(e))

(dies erhélt man, indem x durch den Grundterm f(c) und jede der
Variablen y, z durch den Grundterm c ersetzt wird)

o R(g(c,c), f(f(e) g(c,g(c;0)))

(dies erhélt man, indem Variable z durch den Grundterm g(c, ¢),
Variable y durch den Grundterm f(c) und Variable z durch den
Grundterm c ersetzt wird)

Die aussagenlogische Version der Herbrand-Expansion

Fiir jeden gleichheitsfreien FO[o]-Satz ¢ in Skolemform gilt:

Jede Formel £ € HE(p) ist quantorenfrei, gleichheitsfrei und variablenfrei,
und jede atomare Subformel von ¢ ist von der Form R(ty,...,t;), wobei
Reo, k=ar(R)und ty,...,t; € GT,.

Fiir jede solche atomare Formel stellen wir ein Aussagensymbol
XR(t1,..tn) € AS bereit.

.....

Version vom 16. Oktober 2023 Seite 229

Folie 357



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Fiir jedes £ € HE(yp) sei al(§) die aussagenlogische Formel, die aus &
entsteht, indem jede atomare Subformel der Form R(t;,...,tx) ersetzt wird
durch das Aussagensymbol Xp,, . 4,)-

Die aussagenlogische Version der Herbrand-Ezrpansion von ¢ ist die Menge

AHE(p) = {al(¢) : €€HE(yp) }.

Folie 358

Der Satz von Herbrand

Satz 4.49 (Satz von Godel-Herbrand-Skolem).

Sei o eine Signatur, die mindestens ein Konstantensymbol enthdlt.

Fiir jeden gleichheitsfreien FO[o]-Satz ¢ in Skolemform gilt: ¢ ist erfillbar
<= die aussagenlogische Formelmenge AHE(p) ist erfillbar.

Beweis. Sei ¢ von der Form Vuxy---Vz, 1, wobei ¢ quantorenfrei und
gleichheitsfrei ist. Es gilt:

@ st erfiillbar
¢ besitzt ein Herbrand-Modell

<= es gibt eine o-Herbrandstruktur A mit A = Va; -V, ¥

Satz 4.46
<

Fiir jede o-Herbrandstruktur A gilt:

A=V -V, 1)
25 fiir alle tsete € GTo gilt: A= wﬁ
Deig(@ A = HE(p)

< Jal= AHE(p),

wobei J4 die aussagenlogische Interpretation ist, so dass fiir jedes R € o,
fir k := ar(R), fur alle Grundterme ti,...,t € GT, und fiir das
zugehorige Aussagensymol Xpg, . 1, gilt:

1 falls .A ): R(tl,...,tk)

sonst
Insbesondere folgt, dass gilt:

¢ erfiillbar = AHE(p) erfiillbar.

Version vom 16. Oktober 2023 Seite 230



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Umgekehrt sei fiir jede aussagenlogische Interpretation J die zu J
gehorende o-Herbrandstruktur A7 definiert via

RA .= {(tl,...,tk) Doty tp € GT, und j(XR(tl tk)) - 1}’

.....

fir jedes R € o und fiir k = ar(R).
Man sieht leicht, dass fiir jede aussagenlogische Interpretation J und jedes
¢ € HE(yp) gilt:

J = al(§) = Az ¢
Somit gilt auch:

JEAHE(p) <«  AsRHE() <  AsFe

Insbesondere gilt also:
AHE(yp) erfilllbar = ¢ erfiillbar.

Dies beendet den Beweis von Satz 4.49. ]

In Verbindung mit dem Endlichkeitssatz der Aussagenlogik erhalten wir:

Satz 4.50 (Satz von Herbrand).
Sei o eine Signatur, die mindestens ein Konstantensymbol enthdlt. Sei
eine gleichheitsfreie und quantorenfreie FO[o]-Formel und sei

{z1,... 2, } = frei(y).
Dann gilt fir die FO[o]-Sdtze ¢ :=Vxy- Ve, und ¢ :=3xy---FJx ¢ -

(a) @ ist erfillbar <= jede endliche Teilmenge von AHE(p) ist
erfillbar.

(b) ¢ ist unerfillbar <= es gibt eine endliche Teilmenge von AHE(yp),
die unerfillbar ist.

(c) ¢ ist allgemeingiiltiy <= es gibt eine Zahl m € N und Grundterme

tit, ... tin fir alle i € [m], so dass die folgende Formel allgemeingtiltig
18t:
tl tl n
Vv
i=1

Version vom 16. Oktober 2023 Seite 231



Folie 359

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Beweis.

Aussage (a) folgt direkt aus dem Satz von Godel-Herbrand-Skolem und
dem Endlichkeitssatz der Aussagenlogik.

Aussage (b) folgt direkt aus (a).

Aussage (c) lasst sich aus (b) wie folgt herleiten:
Offensichtlichwerweise gilt:

¢ ist allgemeingiiltig <= —¢ ist unerfiillbar.
Auflerdem ist
-’ = =3z - Ja, = Vi - -V, .
GeméB (b) ist —¢’ genau dann unerfiillbar, wenn es eine endliche

Teilmenge I' von AHE(Vx; - - - Va,—)) gibt, die unerfiillbar ist.

Geméf der Definition der Herbrand-Expansion einer Formel ist jede
endliche Teilmenge I' von AHE(Vz; - - - Va,,—)) von der Form

{ al( —yp Lltin Yy {10 m) },

T1yee5Tm

wobei m € Nund t;4,...,t;, € GT, fiir jedes i € [m)] ist.
Eine solche Formelmenge ist genau dann unerfiillbar, wenn die
aussagenlogische Formel

m

/\ 117--~1tzn )
Tl Tm

=1

unerfiillbar ist.
Dies wiederum ist genau dann der Fall, wenn der quantorenfreie und
gleichheitsfreie FO[o]-Satz

/\ w 117 azn
L1ye-ey T

unerfiillbar ist.
Und dies gilt genau dann, wenn der FO[o]-Satz

\/ w ’Ll? 77,77,
L1y-.eyT

allgemeingiiltig ist.
Dies beendet den Beweis von (c).

Version vom 16. Oktober 2023 Seite 232



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Anwendung des Satzes von Herbrand

Um nachzuweisen, dass ein gleichheitsfreier FO[o]-Satz ¢ in Skolemform
unerfiillbar ist, kann man auf Grund des Satzes von Herbrand wie folgt
vorgehen:

Fir +=1,2,3,... tue Folgendes:

(1) Sei &; die i-te Formel in AHE(p)

(2) Teste, ob die aussagenlogische Formel (& A--- A &)
unerfiillbar ist.

(3) Falls ja, halte an mit Ausgabe ¢ ist unerfiillbar®

Man sieht leicht, dass dies ein Semi-Entscheidungsverfahren ist, das eine
gegebene Formel ¢ auf Unerfiillbarkeit testet.

Durch die Einschréankung auf gleichheitsfreie FO[o]-Sdtze in Skolemform
scheint dieses Verfahren auf den ersten Blick nur sehr eingeschrénkt
anwendbar zu sein.

Im Folgenden zeigen wir jedoch, dass jede FO[o]-Formel in eine zu ihr
erfiillbarkeitséquivalente Formel der richtigen Form transformiert werden
kann.

Definition 4.51. Seien oy, 0y Signaturen und ¢; eine FO[o;]-Formel, fir
jedes i € {1,2}.
Die Formel oy heiflt erfillbarkeitsdquivalent zu ¢y, falls gilt:

o st erfiillbar = @1 ist erfiillbar.

Satz 4.52 (Skolemisierung). Zu jeder Signatur o gibt es eine Signatur &,
so dass jede FO[o]|-Formel ¢ in einen zu ¢ erfillbarkeitsiquivalenten
gleichheitsfreien FO[G]-Satz ¢ in Skolemform transformiert werden kann.

Bevor wir den Satz beweisen, betrachten wir zunéchst ein Beispiel.

Beispiel 4.53. Die Formel Vz3yVz3u R(x,y,z,u) ist

erfiillbarkeitsdquivalent zum folgenden gleichheitsfreien Satz in Skolemform:

Vo Vz R(x, f(z),z,g(z, z))

Version vom 16. Oktober 2023 Seite 233

Folie 360



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Beweis von Satz 4.52:
Wir gehen in mehreren Schritten vor.

Schritt 1: Elimination von freien Variablen

Sei {xy,...,x,} = frei(p), seien ¢y, ..., ¢, paarweise verschiedene
Konstantensymbole, die nicht in o liegen.

Sei o1 :=0U{cy,...,c,}, und sei p; der FO[o;]-Satz, der aus ¢ entsteht,
indem jedes freie Vorkommen der Variable z; (fiir i € [n]) ersetzt wird
durch die Konstante ¢;. Offensichtlicherweise gilt:

@1 st erfiillbar = @ ist erfiillbar.

Schritt 2: Elimination des Gleichheitszeichens
Sei 09 := 01 U{G}, wobei G ein 2-stelliges Relationssymbol ist, das nicht
in o7 vorkommt.
Falls ¢ kein Gleichheitszeichen enthélt, so setze s := ¢ und beende
Schritt 2. Ansonsten gehe wie folgt vor.
Sei ¢ die Formel, die aus ¢, entsteht, indem jede atomare Subformel der
Form t;=ty (fiir o-Terme t1,t5) ersetzt wird durch die Formel G(t1,t5).
Sei xj, ein FO[{G}]-Satz, der besagt, dass G eine Aquivalenzrelation ist,
d.h.:

Xiq = Vo G(z,r) A

YV Vy (G(w,y — G(y,x)) A

)
Va Wy Ve ((G(:c,y) AG(y, 2)) = Gla, z)) .

Fiir jedes Funktionssymbol f € o und fiir k := ar(f) sei x; der folgende
FO[{f, G}]-Satz, der besagt, dass G , vertraglich® ist mit f.

k
Xp = Vay-Vag Yy ooV </\G($myl> -

=1

G(f(ml,...,xk), f(yl,...,yk))>.

Fiir jedes Relationssymbol R € o und fiir k := ar(R) sei xg der folgende
FO[{ R, G}]-Satz, der besagt, dass G ,vertréglich® ist mit R.

XR = Vap---Vuy VZ/1"'V?/k<
k
(/\G(xl,yl) A R(l’l,...,l’k)) — R(yl,...,yk) )
=3

Version vom 16. Oktober 2023 Seite 234



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Sei nun

o2 = wo Axag AN e AN\ xe
fea(pr) Reo(p1)

Offensichtlicherweise ist ¢y ein gleichheitsfreier FO[o3]-Satz.
Behauptung: o ist genau dann erfiillbar, wenn ¢ erfiillbar ist.

Beweisidee:

Die Richtung ,,<=" ist trivial.

Fiir den Beweis der Richtung ,,=— sei A ein Modell von 5. Wir bauen
daraus wie folgt ein Modell B fiir ¢;:

Die Elemente des Universums von B sind genau die Aquivalenzklassen von
Elementen des Universums von A beziiglich der Aquivalenzrelation G*.
Wir schreiben [a], um die Aquivalenzklasse von a € A bzgl. G* zu
bezeichnen, d.h.

@] = {deA : (a,d)eG*}.
Wir setzen
B = {la : a€A}.

Fiir jedes Funktionssymbol f € o, fiir k := ar(f) und fiir alle aq,...,a;, € A
setzen wir

fB([al],...,[ak]) = [fA(al,...,ak)].

Wegen A = xy ist dies wohldefiniert.
Fiir jedes Relationssymbol R € ¢ und fiir k := ar(R) setzen wir

RB = { ([al],...,[ak]) : (al,...,ak) ER'A }
Wegen A = xgr gilt dann fiir alle o}, ...a) € A:
([}, ..., [a]) € R® = (di,...,a},) € RA

Aus A o kann man nun folgern (Details: Ubung), dass gilt: B = s.
Dies beendet den Beweis der Behauptung.

Schritt 3: Erzeugen der Formel in Skolemform

Wir bringen nun den gleichheitsfreien FO[os]-Satz ¢, in
Préanex-Normalform und erhalten dadurch einen zu ¢y dquivalenten
gleichheitsfreien FO[oy]-Satz der Form

lel te ann wv

wobei gilt: v ist quantorenfrei und gleichheitsfrei, n > 0,
Q1,...,Qn € {3,V}, und 0.B.d.A. sind die Variablen z1,...,x, paarweise

Version vom 16. Oktober 2023 Seite 235



Folie 361

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

verschieden und es gilt @1 =V (falls letzteres nicht der Fall ist, ersetzen
wir ¢} durch die Formel Vz ), wobei z € VAR\ {zy,...,z,}).

Falls @, = --- = Q,, = V ist, so sind wir fertig. Andernfalls sei ¢ > 1
minimal, so dass @);+1 = 3. Dann ist ¢}, von der Form

V-V, 3w €

fir §:= Qi2Tito- - Qurp.

Sei f ein i-stelliges Funktionssymbol, das nicht zu oy gehort. Sei £ die
Formel, die aus ¢ entsteht, indem jedes Vorkommen der Variablen z;,
ersetzt wird durch den Term f(xq,...,x;), sel 031 : =03 U{f} und sei

P31 = V-V fl

Behauptung: @3, ist genau dann erfiillbar, wenn ¢, eriillbar ist.

Beweis: Ubung.

Falls 31 keinen Existenzquantor enthélt, sind wir fertig und setzen
0:=o03; und ¢ := 3;.

Ansonsten verfahren wir mit ¢3; genauso wie mit ¢, um den ersten in ¢3;
vorkommenden Existenzquantor zu eliminieren. Nach weniger als n
[terationen erhalten wir einen zu ¢, erfiillbarkeitsédquivalenten,

gleichheitsfreien Satz in Skolemform. Dies beendet den Beweis von
Satz 4.52. 0

4.6 Automatische Theorembeweiser

Einfaches Verfahren (ohne Unifikation)

Seien ¢ und ¢ zwei FO[o]-Formeln.
Ziel: Automatischer Beweis, dass ¢ = 9 gilt.

Dazu reicht es, zu zeigen, dass die Formel (¢ A =) unerfiillbar ist.

Verfahren:

1. Erzeuge einen zu (¢ A =) erfiillbarkeitséiquivalenten gleichheitsfreien
FO[5]-Satz x in Skolemform (iiber der erweiterten Signatur &).

Nutze dazu das im Beweis von Satz 4.52 vorgestellte Verfahren.

2. Verwende das auf Seite 233 beschriebene
Semi-Entscheidungsverfahren, um zu herauszufinden, ob y unerfiillbar
ist.

Version vom 16. Oktober 2023 Seite 236



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Folie 362
Beispiel 4.54.
Sei 0 :={R/1,¢, f/1},
p = R(e) A Va3y ((R(@) = R(F(fW)) Vv R(f(2)))
¢ o= e R(f(f(2))).
Dann ist (¢ A ) =
R(c) A Yo 3y ((R(z) = R(f(f(v)))V R(f(2))) A =3z R(f(f(2)))
ein gleichheitsfreier Satz. Eine Umformung in Préanex-Normalform liefert
den dazu dquivalenten Satz
vody (R() A (=R(z) v RUF(FW) V R(F(=)) A ~R(F(f()) ).
Wir erweitern die Signatur um ein 1-stelliges Funktionssymbol g und
erhalten den dazu erfiillbarkeitsdquivalenten gleichheitsfreien Satz in
Skolemform y =
vo (R(e) A (~R@) vV RU(F9)) V RUF@)) A —R((f@) )
tiber der Signatur ¢ = {R, ¢, f, g}.
Folie 363

Fiir jeden Grundterm ¢ € GT; enthélt die aussagenlogische Variante
AHE(x) der Herbrand-Expansion von y die aussagenlogische Formel

& = Xpo A ( ~Xrw) V X)) vV Xrow) ) N 2 XR((s@)-
Wir zdhlen die Grundterme in GT; in der folgenden Reihenfolge auf

thh=c b= [f(c), ts=glc), ta=f({f(c)), 1 =g(f(c)),
und zéhlen die Formeln in AHE(x) in derselben Reihenfolge auf, also

§=6, &=8n &=,

Bei dem auf Seite 233 beschriebenen Verfahren wird dann beispielsweise im
Schleifendurchlauf fiir ¢« = 5 getestet, ob die aussagenlogische Formel

(& A& A& A& NG

Version vom 16. Oktober 2023 Seite 237



Folie 364

Folie 365

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

unerfiillbar ist. Dazu kénnen wir beispielsweise das in Kapitel 2.6
behandelte Resolutionsverfahren oder den in Kapitel 2.7 behandelten
DPLL-Algorithmus anwenden.

In unserem Beispiel entspricht die Formel (51 A---N&) der Klauselmenge

I =
{ Xro }
{ "Xk » Xruee » Xrgen Y { "Xrggon b s
{ “Xrp©) » Xreuwuem s Xegaen b { " Xegouen t o
{ " Xren » Xruoeen) » Xegeon b { "Xruueen }
{ “Xriru©) » Xreuweae@m) » Xeacsem b " Xreeraom

{ 7 Xeir@) + XrGGG6UE) + XRG6@E) T o 7 XRGG6UEM) | }

Wir konstruieren eine Resolutionswiderlegung fiir I':

(1) {XR(c) } inT

2 {~Xre XR(f( fa@)) » Xage) } in I

(3) A Xrgiue)) o Resolvente aus 1,2
@ | ﬁXR(f(f(g(c)))) } in I

(5)  { Xrge) } Resolvente aus 3,4
6)  {~Xrg@) » Xe(Ger@) » Xege)y T

(1) { Xrurwe@) » Xegre) ) Resolvente aus 5,6
®)  {~"Xryuen ) in T

(9) {XR(f(f(g(f(c))))) } Resolvente aus 7,8
(10)  { ~Xr((s@ren) } in I

(11) 0 Resolvente aus 9,10

Somit ist I' unerfiillbar (geméfl Satz 2.59). Das auf Seite 233 angegebene
Verfahren hélt daher (spétestens) im Schleifendurchlauf fiir ¢ = 5 mit der
Ausgabe ,,x ist unerfiillbar an. Da x erfiillbarkeitséiquivalent zur Formel
(p A =) ist, wissen wir also, dass ¢ = 9 gilt.

Dies beendet Beispiel 4.54.

Version vom 16. Oktober 2023 Seite 238



Kapzitel 5

Logik-Programmierung

5.1 Einfiihrung

Folie 366
Logik-Programmierung
Logik- Programmierung bezeichnet die Idee, Logik direkt als
Programmiersprache zu verwenden.
Logik-Programmierung (in Sprachen wie Prolog) und die verwandte
funktionale Programmierung (in Sprachen wie LISP, ML, Haskell) sind
deklarativ,
im Gegensatz zur imperativen Programmierung (in Sprachen wie Java, C,
Perl).
Die Idee der deklarativen Programmierung besteht darin, dem Computer
lediglich sein Wissen iiber das Anwendungsszenario und sein Ziel
mitzuteilen und dann die Lésung des Problems dem Computer zu
iiberlassen.
Bei der imperativen Programmierung hingegen gibt man dem Computer die
einzelnen Schritte zur Losung des Problems vor.
Folie 367

Prolog

e ist die wichtigste logische Programmiersprache,

e geht zuriick auf Kowalski und Colmerauer
(Anfang der 1970er Jahre, Marseilles),

Version vom 16. Oktober 2023 Seite 239



Folie 368

Folie 369

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

e steht fiir (franz.) Programmation en logique.

e Mitte/Ende der 1970er Jahre: effiziente Prolog-Implementierung durch
den von Warren (in Edinburgh) entwickelten Prolog-10 Compiler.

Prolog ist eine voll entwickelte und méchtige Programmiersprache, die vor
allem fiir symbolische Berechnungsprobleme geeignet ist.

Aus Effizienzgriinden werden in Prolog die abstrakten Ideen der logischen
Programmierung nicht in Reinform umgesetzt, Prolog hat auch
,nichtlogische“ Elemente.

Dieses Kapitel

e setzt voraus, dass Sie bereits Grundkenntnisse der
Programmiersprache Prolog besitzen, die beispielsweise im Buch
,Learn Prolog Now!“ von P. Blackburn, J. Bos und K. Striegnitz
vermittelt werden, und die wihrend des Semesters bereits im
Ubungsbetrieb behandelt wurden.

e gibt eine Einfithrung in die Grundlagen der Logik-Programmierung —
keine Einfithrung in die Programmiersprache Prolog!

Auf einige der Hauptunterschiede zwischen allgemeiner
Logik-Programmierung und Prolog werden wir im Laufe dieses Kapitels
eingehen.

Alle in diesem Kapitel enthaltenen Beispiele von Logikprogrammen sind
voll lauffdhige Prologprogramme, aber in einigen Féllen unterscheidet sich

die Semantik des Programms im Sinne der Logik-Programmierung von der
Semantik des Programms im Sinne von Prolog.

Zunichst zwei Beispiele fiir Logikprogramme

Beispiel 5.1. Ein Logikprogramm zur Représentation natiirlicher Zahlen in
Unérdarstellung und der zugehorigen Arithmetik und der Kleiner-Relation.

Version vom 16. Oktober 2023 Seite 240



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Programm: unat.pl

unat (null).
unat(s(X)) :- unat(X).

plus(null, Y, Y).
plus(s(X), Y, s(2)) :- plus(X, Y, Z).

minus(X, Y, Z) :- plus(Y, Z, X).

mal(null, Y, null).
mal(s(X), Y, Z) :- mal(X, Y, Z1), plus(Z1, Y, Z).

less(null, s(.)).
less(s(X), s(Y)) :- less(X, V).

Folie 370

Beispiel 5.2. Ein Programm, das Daten iiber Familienstammbé&ume des
Buchs ,,Vom Winde verweht“ von Margaret Mitchell (1936) enthélt.

Programm: vomWindeVerweht.pl

mutter (solange, ellen).
mutter (katie, gerald).
mutter(ellen, scarlett). mutter(ellen, suellen). mutter(ellen, carreen).
mutter (scarlett, wade). mutter(scarlett, ella). mutter(scarlett, bonnie).
mutter (melanie, beau).

vater(pierre, ellen).

vater(gerald, scarlett). vater(gerald, suellen). vater(gerald, carreen).
vater(charles, wade).

vater (frank, ella).

vater (rhett, bonnie).

vater(john, ashley). vater(john, india).

vater (ashley, beau).

weiblich(solange) . weiblich(ellen). weiblich(katie).
weiblich(scarlett). weiblich(suellen). weiblich(carreen).
weiblich(ella). weiblich(bonnie) . weiblich(melanie).
weiblich(india) .

Version vom 16. Oktober 2023 Seite 241



Folie 371

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

maennlich(gerald) . maennlich(wade) . maennlich(beau) .
maennlich(pierre). maennlich(charles). maennlich(frank) .
maennlich(rhett) . maennlich(john). maennlich(ashley).

elternteil (X,Y) :- vater(X,Y).
elternteil (X,Y) :- mutter(X,Y).

grossmutter(X,Z) :- mutter(X,Y), elternteil(Y,Z).
grossvater(X,Z) :- vater(X,Y), elternteil(Y,Z).

schwester(X,Y) :-
elternteil(Z,X), elternteil(Z,Y), weiblich(X), X \== Y.

bruder (X,Y) :-
elternteil(Z,X), elternteil(Z,Y), maennlich(X), X \== Y.

tante(X,Y) :- elternteil(Z,Y), schwester(X,Z).
onkel(X,Y) :- elternteil(Z,Y), bruder(X,Z).

vorfahre(X,Y) :- elternteil(X,Y).
vorfahre(X,Y) :- elternteil(X,Z), vorfahre(Z,Y).

nachkomme (X,Y) :- vorfahre(Y,X).

5.2 Syntax und deklarative Semantik von
Logikprogrammen

Logikprogramme

Logikprogramme sind ,, Wissensbasen®, bestehend aus einer endlichen Menge
von Fakten und Regeln.

Eine Berechnung eines Logikprogramms besteht aus der Ableitung der
Konsequenzen, die aus den Fakten und den Regeln des Programms
hergeleitet werden kénnen.

Man fiihrt ein Programm aus, indem man Anfragen an die Wissensbasis
stellt.

Fakten beschreiben Relationen zwischen Objekten.

Version vom 16. Oktober 2023 Seite 242



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Beispiele: vater(gerald,scarlett), maennlich(rhett), party,
plus(s(null),s(s(null)),s(s(s(null)))).

Relationen haben eine Stelligkeit k > 0.
Nullstellige Relationen sind einfach Aussagen (z.B. besagt ,party*, dass
die Party stattfindet).

Eine Anfrage ist eine durch Kommas getrennte Liste von Fakten; gefragt
wird, ob diese Fakten in der Wissenbasis gelten, d.h., ob sie aus der
Wissensbasis ableitbar sind.

Beispiele: Die Anfrage 7- schwester(scarlett, suellen) fragt, ob
Scarlett eine Schwester von Suellen ist.

Die Anfrage ?- mutter(scarlett, X), vater(ashley, X) fragt, ob
Scarlett und Ashley ein gemeinsames Kind haben.

Folie 372

Die Rolle der Terme

Terme sind in Logikprogrammen die universelle Datenstruktur.

Je nach Kontext spielen sie die Rolle von Fakten
oder von Objekten, iiber die die Fakten sprechen.

Die einfachste Art von Termen in Logikprogrammen sind die im Folgenden

definierten Konstanten und Variablen.

Folie 373

Atome, Zahlen, Konstanten und Variablen der
Logik-Programmierung

Definition 5.3.

(a) Atome sind die Grundbausteine von Logikprogrammen. Sie werden
bezeichnet durch Zeichenketten, die keins der Symbole , (“ und ,,)“
enthalten und die mit einem Kleinbuchstaben beginnen oder in
einfachen Hochkommata stehen. Atome repréasentieren Individuen.

Beispiele: scarlett, ’Scarlett’, logikInDerInformatik

(b) Zahlen in Logikprogrammen sind entweder ganze Zahlen oder reelle
Zahlen in Gleitkommadarstellung.

Beispiele: 42, 1.2e-3

Version vom 16. Oktober 2023 Seite 243



Folie 374

Folie 375

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

(¢) Konstanten der Logik-Programmierung sind Atome oder Zahlen.

Definition 5.4. Variablen der Logik-Programmierung werden durch
Zeichenketten bezeichnet, die mit einem Grof3buchstaben oder einem
Unterstrich beginnen und keins der Symbole ,, (“ und ,,)“ enthalten.

Eine Variable repréisentiert in einem Logikprogramm (&hnlich wie in der
Logik erster Stufe) ein nicht-spezifiziertes Individuum.

Man beachte den Gegensatz zur imperativen Programmierung, bei der eine
Variable fiir eine ,,Speicherzelle® steht, in der Werte gespeichert und
verdndert werden koénnen.

Beispiele: X, Mutter, _mutter, RUD26

Terme der Logik-Programmierung

Definition 5.5.

(a) Ein einfacher Term der Logik-Programmierung ist eine Konstante oder
eine Variable (d.h., ein Atom, eine Zahl oder eine Variable der
Logik-Programmierung).

(b) Die Menge T p der Terme der Logik-Programmierung ist rekursiv wie
folgt definiert:
(1) Jeder einfache Term ist ein Term.

(2) Ist £ ein Atom, ist £ € N mit £ > 1 und sind t1,...,tx € Tip
Terme, so ist

£, ..., 1)
ein Term in T p.

(¢) Terme in Typ, die keine einfachen Terme sind, heiflen zusammengesetzte
Terme der Logik-Programmierung.

In einem zusammengesetzten Term der Form £ (¢1,...,t) spielt das Atom
f die Rolle eines k-stelligen Funktors, den wir mit £/k bezeichnen.

Spezialfall £ = 0: Jedes Atom g wird als ein O-stelliger Funktor betrachtet,
der mit g/0 bezeichnet wird, und der ein (einfacher) Term ist.

Version vom 16. Oktober 2023 Seite 244



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Folie 376
Beispiele: party, vater(gerald,scarlett), s(s(s(null))),
vorlesung(name (logikInDerInformatik),
zeit(Mi,9,11),
ort (gebaeude (RUD26) ,raum(0110))) .
Folie 377
Gleichheit von Termen
Zwei Terme ¢ und t' der Logik-Programmierung werden nur dann als gleich
bezeichnet, wenn sie syntaktisch, d.h. als Zeichenketten betrachtet,
identisch sind.
Beispiel:
Die beiden Terme plus(null,X,X) und plus(null,Y,Y) sind nicht
gleich.
Folie 378
Substitutionen
Notation. Fiir eine partielle Funktion f schreiben wir Def(f) und Bild(f)
um den Definitionsbereich und den Bildbereich von f zu bezeichnen.
D.h. Def(f) ist die Menge aller Objekte x, fiir die der Wert f(x) definiert
ist, und Bild(f) = {f(z) : x € Def(f)}.
Definition 5.6.
Eine Substitution ist eine partielle Abbildung von der Menge der Variablen
auf die Menge der Terme.
Eine Substitution fiir eine Menge V von Variablen der
Logik-Programmierung ist eine Substitution S mit Def(S) C V.
Beisprel:
S:={X—c, Y £X,gle), Z—Y}
bezeichnet die Substitution mit Definitionsbereich Def(S) = {X, Y, Z}, fiir
die gilt: S(X) =c, S(Y)=£1X,glc)), S(Z) =Y.
Folie 379

Version vom 16. Oktober 2023 Seite 245



Folie 380

Folie 381

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Anwendung von Substitutionen

Durch Anwenden einer Substitution S auf einen Term ¢ € T p erhalten wir
den Term tS € Ty p, der aus t durch simultanes Ersetzen jeder Variablen
X € Def(S) durch den Term S(X) entsteht.

Beispiel: Sei

t = hEEX), Y, £(Y,g(2))
und
S = {Xmec YiX,gle), Z—Y}
Dann ist
tS = h(f(c,c), £(X,glc)), £(f(X,g(c)), g(¥))).

Definition 5.7.
Ein Term t' ist eine Instanz eines Terms ¢, wenn es eine Substitution S gibt,
so dass t/ = tS.

Grundterme

Definition 5.8.
Ein Grundterm der Logik-Programmierung ist ein Term, der keine
Variable(n) enthélt.

Eine Grundinstanz eines Terms t € T p ist eine Instanz von t, die ein
Grundterm ist.

Eine Grundinstanz eines Terms ¢ entsteht also, indem jede in ¢
vorkommende Variable durch einen Grundterm ersetzt wird.

Beispiele: h(c,c,f(c)) und h(f(f(c,c),g(d)),d,f(glg(c)))) sind
Grundinstanzen des Terms h(X,Y,f(Z)).

Bemerkung. Grundterme sind wichtig, weil sie in dem Modell, das dem
Logikprogramm zu Grunde liegt, eine unmittelbare Bedeutung haben.
Variablen hingegen haben keine direkte Bedeutung, sondern sind nur
Platzhalter fiir Objekte.

Version vom 16. Oktober 2023 Seite 246



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Fakten der Logik-Programmierung

Definition 5.9.
Ein Faktum der Logik-Programmierung ist ein Atom oder ein
zusammengesetzter Term der Logik-Programmierung.

Fakten beschreiben Tatsachen bzw. Relationen zwischen Objekten.

Beispiele: Das Faktum party beschreibt, dass eine Party stattfindet.

Das Faktum unat (s(s(null))) beschreibt, dass der Term s(s(null)) die
Unérdarstellung einer natiirlichen Zahl ist.

Das Faktum mutter(scarlett, bonnie) beschreibt, dass Scarlett die
Mutter von Bonnie ist.

Fakten diirfen auch Variablen enthalten. Eine Variable in einem Faktum
bedeutet, dass die entsprechende Aussage fiir alle Objekte, durch die die
Variable ersetzt werden kann, gilt.

Beispiel: plus(null,Y,Y)

Folie 382
Regeln
Definition 5.10.
Eine Regel der Logik-Programmierung besteht aus
e cinem Faktum (dem so genannten Kopf der Regel),
e gefolgt von : -
(in der Literatur wird an Stelle von ,,: =“ oft auch , < geschrieben)
und
e ciner durch Kommas getrennten Liste von Fakten (dem so genannten
Rumpf der Regel).
Wir interpretieren die Regel als Implikation:
Wenn alle Fakten im Rumpf gelten, dann gilt auch das Faktum im Kopf.
Beispiele:
minus(X,Y,Z) :- plus(Y,Z,X)
grossmutter(X,Z) :- mutter(X,Y), elternteil(Y,Z)
Folie 383

Version vom 16. Oktober 2023 Seite 247



Folie 384

Folie 385

Folie 386

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Logikprogramme

Definition 5.11.
Ein Logikprogramm ist eine endliche Menge von Fakten und Regeln der
Logik-Programmierung.

Es ist oft bequem, Fakten als spezielle Regeln mit leerem Rumpf
aufzufassen. Dann besteht ein Logikprogramm nur aus Regeln.

In konkreten Beispielen stellen wir Logikprogramme meistens als Liste der
in ihnen enthaltenen Fakten und Regeln dar, wobei das Ende jedes Eintrags
dieser Liste durch einen Punkt markiert wird.

Beispiele: Das Programm unat.pl aus Beispiel 5.1 ist ein Logikprogramm
im Sinne von Definition 5.11. Das Programm vomWindeVerweht.pl aus
Beispiel 5.2 nicht, da dort Ungleichheitspriadikate der Form X \==
vorkommen, die gemé&f Definition 5.10 nicht im Rumpf von Regeln
vorkommen konnen, da sie keine Fakten geméafl Definition 5.9 sind.

Ableitungen aus Logikprogrammen

Definition 5.12.

Eine Ableitung aus einem Logikprogramm IT ist ein Tupel (¢4, ...,%;) von
Termen, so dass £ € N mit ¢ > 1 ist und fiir jedes ¢ € [¢] (mindestens) eine
der beiden folgenden Aussagen zutrifft:

e {; ist eine Instanz eines Faktums in II.

e Es gibt eine Regel
o = Py Y
in II, eine Substitution S und Indizes 1,...,0, € {1,...,i—1}, so
dass gilt: t; =S und t;; =;S fiir jedes j € [m)].

Eine Ableitung eines Terms t aus Il ist eine Ableitung (¢4, ...,%,) aus Il mit
ty =t.

Ein Term t ist ableitbar aus II, wenn es eine Ableitung von ¢ aus II gibt.

Die im Kapitel iiber Automatisches Schlieflen eingefiihrte
Kalkiil-Schreibweise lasst sich dazu nutzen, eine elegante Darstellung des
Begriffs der Ableitungen aus Logikprogrammen anzugeben.

Version vom 16. Oktober 2023 Seite 248



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Verwendung der Kalkiil-Schreibweise fiir Ableitungen in
Logikprogrammen

Sei II ein Logikprogramm.
Gesucht: Ein Kalkil Ky iiber der Menge Ty p, so dass ablg, genau die
Menge aller aus II ableitbaren Terme ist.

Losung: R besteht aus folgenden Ableitungsregeln:

e Axiome: Fiir jedes Faktum ¢ in I (d.h., jede Regel in II, die keinen
Rumpf besitzt) und jede Substitution S ist

pS

ein Axiom in Ry.

o Weitere Regeln: Fiir jede Regel ¢ :=1,...,%,, in Il und fiir jede
Substitution S ist
P15 - YS

oS

eine Ableitungsregel in Kyy.

Dann ist ablg, genau die Menge aller aus II ableitbaren Terme.
Folie 387

Darstellung von Ableitungen

e An Stelle von (¢, ...,t,) schreiben wir Ableitungen der besseren
Lesbarkeit halber oft zeilenweise, also

(6) te
und geben am Ende jeder Zeile eine kurze Begriindung an.

e Ableitungen werden oft auch als Baume dargestellt; man bezeichnet
diese als Beweisbdume.

Folie 388

Version vom 16. Oktober 2023 Seite 249



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Beispiel

Betrachte das Programm vomWindeVerwehtl.pl

Programm: vomWindeVerwehtl.pl

mutter (solange, ellen).

mutter (katie, gerald).

mutter (ellen, scarlett). mutter(ellen, suellen). mutter(ellen, carreen).
mutter(scarlett, wade). mutter(scarlett, ella). mutter(scarlett, bonnie).
mutter (melanie, beau).

vater (pierre, ellen).

vater(gerald, scarlett). vater(gerald, suellen). vater(gerald, carreen).
vater(charles, wade).

vater (frank, ella).

vater (rhett, bonnie).

vater (john, ashley). vater(john, india).

vater (ashley, beau).

weiblich(solange) . weiblich(ellen) . weiblich(katie).
weiblich(scarlett). weiblich(suellen). weiblich(carreen) .
weiblich(ella). weiblich(bonnie) . weiblich(melanie).
weiblich(india).

maennlich(gerald) . maennlich(wade) . maennlich(beau) .
maennlich(pierre). maennlich(charles). maennlich(frank) .
maennlich(rhett) . maennlich(john). maennlich(ashley).

elternteil(X,Y) :- vater(X,Y).
elternteil (X,Y) :- mutter(X,Y).

schwester (X,Y) :-
elternteil(Z,X), elternteil(Z,Y), weiblich(X), ungleich(X,Y).

tante(X,Y) :- elternteil(Z,Y), schwester(X,Z).
ungleich(suellen, scarlett). ungleich(scarlett, suellen).

ungleich(carreen, scarlett). ungleich(scarlett, carreen).
ungleich(suellen, carreen). wungleich(carreen, suellen).

Folie 389

Version vom 16. Oktober 2023 Seite 250



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Beispiel 5.13. Ableitung von tante(suellen,bonnie) aus dem
Programm vomWindeVerwehtl.pl:

(1) mutter(ellen,scarlett) Faktum in Zeile 3
(2) elternteil(ellen,scarlett) Regel in Zeile 25 und (1)
(3) mutter(ellen,suellen) Faktum in Zeile 3
(4) elternteil(ellen,suellen) Regel in Zeile 25 und (3)
(5) ungleich(suellen,scarlett) Regel in Zeile 32
(6) weiblich(suellen) Faktum in Zeile 16
(7) schwester(suellen,scarlett) Regel in Zeile 27 und (4),(2),(6),(5)
(8) mutter(scarlett,bonnie) Faktum in Zeile 4
(9) elternteil(scarlett,bonnie) Regel in Zeile 25 und (8)
(10) tante(suellen,bonnie) Regel in Zeile 27 und (9),(7)

Zugehdriger Beweisbaum:

tante(suellen,bonnie)

elternteil(scarlett,bonnie) ‘ schwester (suellen,scarlett)

mutter(scarlett,bonnie)

elternteil(ellen,suellen)
elternteil(ellen,scarlett)

Folie 390
Beweisbidume
Definition 5.14. Sei Il ein Logikprogramm und sei ¢ ein Term.

Ein Beweisbaum fiir t aus II ist ein endlicher Baum, dessen Knoten mit
Termen beschriftet sind, so dass gilt:

e die Wurzel ist mit dem ,,Ziel* ¢ beschriftet,

Version vom 16. Oktober 2023 Seite 251



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

e jedes Blatt ist mit einer Instanz eines Faktums in II beschriftet, und

e fiir jeden inneren Knoten u und dessen Kinder vy, ..., v,, gilt:
Es gibt eine Regel
o = PP,
in IT und eine Substitution S, so dass fiir die Beschriftung ¢, von u
und die Beschriftungen ¢,,,...,t,, der Knoten vy,..., v, gilt:
ty =S,  ty, =S,  ty, =S, ..., t, =15

Man sieht leicht, dass es genau dann einen Beweisbaum fiir ¢ aus II gibt,
wenn t aus II ableitbar ist (Details: Ubung).

Folie 391

Deklarative Semantik von Logikprogrammen

Definition 5.15. Sei Il ein Logikprogramm.
Die Bedeutung von II ist die Menge B(II) aller Grundterme, die aus I1
ableitbar sind.

Beispiel 5.16. Sei II das folgende Logikprogramm unati.pl.

Programm: unatl.pl

unat (null) .

unat (s(X)) :- unat(X).
less(null, s(X)) :- unat(X).
less(s(X), s(Y)) :- less(X, Y).

Die Bedeutung von IT ist die Menge B(II), und diese enthilt u.a. die Terme

unat (null),
unat (s (null)),

unat (s(s(null))),

unat (s(s(s(null)))), ...

und die Terme

less(null, s(null),

less(null, s(s(null)),
less(null, s(s(s(null))),
less(null, s(s(s(s(null)))), ...

Version vom 16. Oktober 2023 Seite 252



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

und die Terme

less(s(null), s(s(null))),
less(s(null), s(s(s(null)))),
less(s(null), s(s(s(s(null))))),
less(s(null), s(s(s(s(s(null)))))), ...

Insgesamt ist

B(Ml) = {unat(s'(null)) : i€ N} U
{ less(s'(null), s’(null)) : 4,5 € Nmiti<j },
wobei wir s”(null) schreiben, um den Term null zu bezeichnen, und fiir

jedes i € N5, bezeichnet s'(null) den Term s(s'~!(null)).
Folie 392

Beispiel: Wege in Digraphen (d.h., gerichteten Graphen)

Wir repréasentieren einen gerichteten Graphen G durch die Auflistung
node (v) fiir alle Knoten v von G und edge (v,w) fiir alle Kanten (v,w) von

G.

Ziel: path(X,Y) soll besagen, dass es in G einen Weg von Knoten X zu
Knoten Y gibt.

Lésung:

path(X,X) .
path(X,Y) :- edge(X,Z), path(Z,Y).

Im folgenden Programm digraph.pl ist dies zusammen mit einem
Beispiel-Graphen gegeben.

Programm: digraph.pl

node(a) . node (b) . node(c). node(d) .
node(e) . node(f) . node(g) . node (h) .
node(i). node(j) .

edge(a,j).
edge(c,e).
edge(d,e).
edge(e,f).

Version vom 16. Oktober 2023 Seite 253



Nicole Schweikardt

- HU Berlin - Vorlesung Logik in der Informatik

edge(f,g) .

edge(g,h). edge(g,j).

edge(h,g). edge(h,i).

edge(i,a). edge(i,b). edge(di,j).

edge(j,b). edge(j,c). edge(j,d). edge(j,f).
path(X,X).

path(X,Y) :- edge(X,Z), path(Z,Y).

Folie 393
Der in digraph.pl angegebene Graph sieht wie folgt aus:

Ein Beweisbaum fiir path(a,g) aus digraph.pl:

\AQQ o Wiale &\QM ?Q,\A\ a0 —> ‘}——> £ - oo

266 3 2egp IS

Version vom 16. Oktober 2023 Seite 254



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Folie 394
Ein Beweisbaum fiir path(h,a) aus digraph.pl:
M s Wialde ()\Qn,\ ?QA hsisa.
Folie 395
Und was tut Prolog bei Eingabe von
?7- consult(digraph) .
7- path(a,g).
und bei Eingabe von
?- path(h,a).
?
Auf die Frage, ob path(a,g) gilt, antwortet Prolog mit ,true®.
Auf die Frage, ob path(h,a) gilt, antwortet Prolog mit ,ERROR: Out of
local stack”.
Folie 396

Was passiert hier?

Die Details zur Berechnung, die Prolog hier durchfiihrt, kénnen wir mit uns
mit

?- trace.
7- path(h,a).

anschauen.

Dies zeigt, dass die Prolog-Suche nach einem Beweisbaum im Kreis

Version vom 16. Oktober 2023 Seite 255



Folie 397

Folie 398

Folie 399

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

o

I

©
stecken bleibt.

Unterschied zwischen Theorie und Praxis

In der Theorie funktioniert die Pfadsuche aus digraph.pl fiir alle endlichen
gerichteten Graphen.

In der Praxis funktioniert sie aber nur fiir azyklische Graphen.

Die operationelle Semantik von Prolog entspricht also nicht genau der
deklarativen Semantik von Logikprogrammen!

Anfragen an Logikprogramme

Definition 5.17.

Eine Anfrage der Logik-Progammierung besteht aus den Symbolen 7-
gefolgt von einem Faktum oder aus einer durch Kommas getrennten Liste
von Fakten der Logik-Programmierung.

Die Antwort auf eine Anfrage o der Form
- Qg0

an ein Logikprogramm II ist definiert als die Menge [a]" aller
Substitutionen S fiir die in o vorkommenden Variablen, so dass gilt:
a1S, ..., a,S sind Grundterme, die aus II ableitbar sind.

Hier reprisentiert die leere Menge () die Antwort ,,falsch®.

Beachte: Eine Variable X in einer Anfrage fragt also nach einem bzw. allen
Objekten, die die Anfrage erfiillen.

Beispiel 5.18. Betrachte die Anfrage

7- vater(gerald,X), mutter(ellen,X)

Version vom 16. Oktober 2023 Seite 256



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

angewendet auf das Logikprogramm vomWindeVerweht1.pl.

Die Antwort auf diese Anfrage besteht aus den drei Substitutionen

S; = {X — scarlett },
Sy = {X > suellen },
S3 = {X ~— carreen }.

Beispiele von Anfragen an das Logikprogramm unat.pl:

?- plus(s(null),s(s(null)),X).
7- plus(X,Y,s(s(s(null)))).

5.3 Operationelle Semantik

Folie 400
Deklarative vs. Operationelle Semantik

e Die in Definition 5.15 festgelegte deklarative Semantik von
Logikprogrammen beruht auf einer logischen Interpretation von
Programmen (Regeln als Implikationen) und logischer Deduktion.

e Jetzt werden wir dieser deklarativen Semantik eine operationelle
Semantik gegeniiberstellen, indem wir einen Algorithmus angeben, der
Programme ausfiihrt (auf einem abstrakten, nichtdeterministischen
Maschinenmodell).

Dadurch legen wir ebenfalls die Antworten auf die Anfragen fest und
weisen somit Programmen eine Bedeutung zu.

e Wir werden sehen, dass die deklarative Bedeutung von
Logikprogrammen mit der operationellen iibereinstimmt.

Folie 401

Semantik von Programmiersprachen im Allgemeinen

Generell unterscheidet man zwischen zwei Wegen, die Semantik von
Programmiersprachen zu definieren:

Version vom 16. Oktober 2023 Seite 257



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

e Die deklarative oder denotationelle Semantik ordnet Programmen
Objekte in abstrakten mathematischen Rdumen zu, in der Regel
partielle Funktionen, oder im Fall von Logikprogrammen Mengen von
Grundtermen.

Zur Erinnerung: Die Bedeutung B(II) eines Logikprogramms II ist
gemaf Definition 5.15 die die Menge aller Grundterme, die aus 11
ableitbar sind.

e Die operationelle Semantik legt fest, wie Programme auf abstrakten
Maschinenmodellen ausgefiihrt werden.

Folie 402
Notation
e LP := die Menge aller Logikprogramme
e Alp := die Menge aller Atome der Logik-Programmierung
Vip := die Menge aller Variablen der Logik-Programmierung
Kip := die Menge aller Konstanten der Logik-Programmierung
Tip := die Menge aller Terme der Logik-Programmierung
Fip := die Menge aller Anfragen der Logik-Programmierung
Rip := die Menge aller Regeln der Logik-Programmierung
e Fiir jedes & aus T p UFp URLp ULP bezeichnet Var(£) die Menge
aller Variablen, die in £ vorkommen.
Beispiel: Ist p die Regel path(X,Y) :- edge(X,Z), path(Z,Y),
dann ist Var(p) = {X,Y,Z}.
e Ist S eine Substitution und o € F p eine Anfrage der Form
?- Qq,...,Q,, ist, so bezeichnet oS die Anfrage 7- a1 S, ..., @,,S.
Entsprechend definieren wir fiir jede Regel p € R p die Regel pS.
Folie 403

Version vom 16. Oktober 2023 Seite 258



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Mehr iiber Substitutionen

o Zur Erinnerung: Eine Substitution ist eine partielle Abbildung S von

Vip nach T p. Den Definitionsbereich von S bezeichnen wir mit
Def(S), den Bildbereich mit Bild(S5).

e Die Verkettung zweier Substitutionen S und 7 ist die Substitution ST
mit Def(ST) = Def(S) U Def(T) und X(ST) := (XS)T fiir alle
X € Def(ST).

e Die Finschrdnkung einer Substitution S auf eine Menge V' von
Variablen ist die Substitution S|y mit Def(S|y) = Def(S) NV und
XS|y := XS fiir alle X € Def(S)NV.

e Die leere Substitution bezeichnen wir mit I. Es gilt:

— tI =t fir alle Terme t € Ty p, und
— IS =S5I=5 fiir alle Substitutionen S.

Folie 404
Beispiel 5.19. Fiir die Substitutionen
S = { X+ good(c,Y), Y+ rainy(d) },
T = { Y+ sunny(d), Z+ humid(e) }.
gilt:
ST = { X+ good(c,sunny(d)), Y rainy(d), Z > humid(e) }
TS = { X~ good(c,Y), Y+ sunny(d), Z+ humid(e) }.
Folie 405
Umbennungen

e Eine Umbenennung ist eine injektive partielle Abbildung von V,p
nach V|_|:>.

Wegen Vi p C T p, sind Umbenennungen spezielle Substitutionen.

e Eine Umbenennung fiir eine Menge V' von Variablen ist eine
Umbennung U mit Def(U) = V.

Version vom 16. Oktober 2023 Seite 259



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

e Ist U eine Umbennung, so bezeichnet U ! ihre Umkehrung.

Beispiel: U :={X—Y, Y— Z} ist eine Umbenennung fir {X, Y}.
Ul={Y—X, Z— Y} ist die Umkehrung von U.

Folie 406

Ein einfacher Interpreter fiir Logikprogramme

Algorithmus ANTWORT (11, @)
% Eingabe: Programm 11 € LP, Anfrage 7-a € Fip mit a = ay, ...,y
% Ausgabe: eine Substitution S fiir Var(«) oder das Wort ,gescheitert”.

1. Wihle ein i € [m)] % o ist das nachste ,Ziel

2. Wiéhle eine Regel p aus II. Sei ¢ := 1y,...,1, die Form von p.
% Fakten fassen wir als Regeln ohne Rumpf auf

3. Sei U eine Umbennung fiir Var(p), so dass Var(pU) N Var(a) = 0.

4. Wihle eine Substitution 7', so dass ;T = pUT. Wenn dies nicht
moglich ist, gib , gescheitert” aus und halte an.

5. Wenn m = 1 und n = 0, gib T'|var(a) aus und halte an.

6. Setze o := anT,...,0; T, ) UT,... 0, UT, a,; AT, ... a,T.
7. Setze T" := ANTWORT(IL, o)

8. Wenn 7" eine Substitution ist, gib (T7")|var(a) aus und halte an.

9. Gib ,gescheitert” aus und halte an.

Folie 407

Zum Nichtdeterminismus des Interpreters

e Das Programm ANTWORT ist nichtdeterministisch. Wir sprechen von
verschiedenen Ldufen des Programms, die durch die Auswahlen in den
Zeilen 1-4 bestimmt sind.

e Ein Lauf heifit akzeptierend, wenn die Ausgabe eine Substitution ist.

Version vom 16. Oktober 2023 Seite 260



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

e Von den nichtdeterministischen Auswahlschritten in den Zeilen 14 ist
die Wahl der Substitution in Zeile 4 am problematischsten, weil hier
ein Element einer unendlichen Menge ausgewéhlt wird, und weil nicht
klar ist, wie man so ein Element iiberhaupt finden kann.

e Die Wahl der Umbennung in Zeile 3 hingegen ist unwesentlich. Jede
Umbennung U, fiir die Var(pU) N Var(a) = 0 gilt, fithrt zum gleichen
Ergebnis, und es ist leicht, eine solche Umbennung zu finden.

Folie 408

Korrektheit und Vollstindigkeit des Interpreters

Satz 5.20. Seien Il € LP ein Logikprogramm, sei 7-a € Fip eine Anfrage
mit a0 = aq,...,Qy,, und sei S eine Substitution fir Var(a). Dann sind
folgende Aussagen dquivalent:

(a) Die Terme ayS, ..., a,S sind aus I1 ableitbar.

(b) Es gibt einen Lauf von ANTWORT(II, o), der S ausgibt.

Die Richtung ,(b) = (a)“ wird Korrektheit des Interpreters genannt; die
Richtung ,(a) = (b)“ Vollstindigkeit.

Fiir den Spezialfall, dass m = 1 und « ein Grundterm ist, erhalten wir das
folgende Korollar.

Korollar 5.21.
Sei I1 € LP ein Programm und sei o ein Grundterm. Dann gilt:
a € B(Il) < es gibt einen akzeptierenden Lauf von ANTWORT(II, ).

Beweis von Satz 5.20.

(a) = (b): Wir nutzen folgende Sprechweise:
Eine Ableitung der Ldinge ¢ von oS aus 11 ist eine Ableitung
(t1,...,ts) aus 11, so dass es fiir jedes i € [m] ein j € [¢] mit

Version vom 16. Oktober 2023 Seite 261



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Wir fithren den Beweis, indem wir per Induktion nach ¢ beweisen, dass fiir
jedes £ € N mit ¢ > 1, fiir jedes a € Fp und jede Substitution S fiir a gilt:
Falls es eine Ableitung (t1,...,t,) von «S aus Il gibt, dann gibt es einen
Lauf von ANTWORT(II, @), der S ausgibt.

Induktionsanfang ¢ = 1:
Sei (t1) eine Ableitung von «.S aus II. Daher ist t; = @15, und es gilt
a;S = oS fiir alle j € [m]. Da (t1) = (a1 5) eine Ableitung von oyS
aus II ist, muss a5 eine Instanz eines Faktums aus II sein. Sei ¢
solch ein Faktum und sei S’ eine Substitution mit Def(S’) = Var(y),
so dass S’ = a4 S.

Sei U eine Umbennung fiir Var(p), so dass
Var(U) N ( Var(ay) U Var(a:5)) = 0, (5.1)
()
= Def

und sei S” die Substitution mit Def(S”) = Var(¢U) und
XS" = XULS fiir alle X € Var(oU).

Insbesondere gilt:
eUS" = oS = wS. (5.2)

Setze nun
T .= S (5.3)
Dann gilt UT = ay.S, denn:
e pUS = pU, da wegen (5.1) gilt: Var(pU) N Def(S) = 0.
e UT = oUSS" = pUS” (22 a1S.
AuBerdem gilt: T|var(a,) = S (und daher insbes. o7 = .5), denn:

e T'=55". Somit gilt fiir alle X € Var(a;) = Def(.S), dass
XT = XSS”, wobei XS € Var(a;5).

e Gemif (5.1) sind Var(ayS) und Var(eU) = Def(S”) disjunkt.
Daher ist XT' = XS fiir alle X € Def(S).

Insgesamt folgt also: Der Lauf von ANTWORT(II, o), in dem

e in Zeile 1 die Zahl 1 € [m],
e in Zeile 2 das Faktum ¢,

e in Zeile 3 die Umbennung U und

Version vom 16. Oktober 2023 Seite 262



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

e in Zeile 4 die Substitution 7'
gewahlt wird,

e hilt in Zeile 5 mit Ausgabe S an.
Dies beendet den Induktionsanfang.

Induktionsschritt { — (+1:
Sei (t1,...,ter1) eine Ableitung von S aus II. Falls t,,1 # «; fiir alle
i € [m], so ist auch (t1,...,t,) eine Ableitung von a.S aus II, und
gemif Induktionsannahme gibt es einen Lauf von ANTWORT(II, ),
der S ausgibt.

Wir miissen im Folgenden also nur noch den Fall betrachten, dass
ter1 = ;S fiir ein ¢ € [m] ist. Seien

e p:= ¢ = Y,...,1, eine Regel von II,

e S5’ eine Substitution fiir ¢ so dass .S’ = @;S, und

® ji,...,Jn € [{], so dass fiir jedes k € [n] gilt: 5" =t;

P

Sei U eine Umbennung fiir Var(p), so dass

Var(pU) N ( Var(a) U Var(aS)) = 0, (5.4)
=Def(S)

und sei S” die Substitution mit Def(S”) = Var(pU) und
XS" = XU™LS" fiir alle X € Var(pU). Insbesondere gilt:

eUS" = pS" = o9, (5.5)
und fiir alle k € [n] gilt:
WUS" = S = t;,. (5.6)

Setze nun

T := S5".
Dann gilt oUT = «;S, denn:

o pUS = U, da wegen (5.4) gilt: Var(pU) N Def(S) = 0.
o UT = oUSS" = pUS” p=2 a;S.

Analog erhalten wir, dass Y, UT = t;, fiir alle k € [n], denn

Version vom 16. Oktober 2023 Seite 263



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

o . US = U, da wegen (5.4) gilt: Var(¢U) N Def(S) = 0.
o U UT = 4 USS" = US" 2, .

AuBerdem gilt: T'|var(e) = S (und daher insbes. o;T' = ;S fiir alle
J € [m]), denn:

o T'=S5S5". Somit gilt fiir alle X € Var(a) = Def(.S), dass
XT = XS85", wobei XS € Var(asS).

e GemiB (5.4) sind Var(a.S) und Var(pU) = Def(S”) disjunkt.
Daher ist XT' = XS fiir alle X € Def(S).

Betrachten wir den Lauf von ANTWORT(II, @), in dem in Zeile 1 die
Zahl i € [m], in Zeile 2 die Regel p, in Zeile 3 die Umbennung U und
in Zeile 4 die Substitution 7" gewéhlt wird. Dann ist in Zeile 6

O.// = OélT, ceey O[i_lT, ¢1UT, ce ,Q/JnUT, O[H_lT, ce 7OémTy

= OélS,...,Oéifls,tjl,...,tjn,aiJrlS,...,OémS.

Also ist (t1,...,ts) eine Ableitung von o/ aus II. Gemif
Induktionsannahme (fiir o/ und I an Stelle von « und S) existiert ein
Lauf von ANTWORT(II, ') mit Ausgabe 7" := I (zur Erinnerung: I
bezeichnet die Substitution mit X7 = X fiir alle Variablen X'). Somit
gibt es einen Lauf von ANTWORT(II, @) mit Ausgabe

(TT/)|Var(a) = (TI)|Var(a) = T|Var(a) =5.

(b) = (a): Wir fithren den Beweis per Induktion nach der Rekursionstiefe
t des Laufs von ANTWORT(II, o) mit Ausgabe S.

Induktionsanfang t = 0:
Wir betrachten einen Lauf von ANTWORT(IL, ) mit Ausgabe S der
Rekursionstiefe 0, also ohne rekursiven Aufruf von ANTWORT. Dieser
Lauf muss in Zeile 5 anhalten. Es gilt also m = 1, und es gibt ein
Faktum ¢ in II, eine Substitution 7', und eine Umbennung U fiir
Var(y) mit Var(pU) N Var(ay) = 0, so dass ayT = @UT und
T|Var(a;) = S. Dann ist 0. = a1 T = @UT eine Substitutionsinstanz
von . Somit ist («;.S) eine Ableitung von oy S aus II.

Induktionsschritt t — t41:
Wir betrachten einen Lauf von ANTWORT(II, @) mit Ausgabe S der
Rekursionstiefe t+1. Seien

(1) i€ m],

Version vom 16. Oktober 2023 Seite 264



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

(2) p= ¥ - 1/117-.-,%7
(3) U7
4 T

die Auswahlen in den Zeilen 1-4. Dann gilt o7 = @UT. Weil t+1 > 0
ist, hélt der Lauf nicht in Zeile 5, sondern in Zeile 8.

Sei o/ wie in Zeile 6 definiert, d.h.
O/ = OélT, cee ,Oéi_lT, 1/)1UT, ce ,’QUnUT, Oéi+1T, ce ,OémT.

Seien m':=m—1+n und of,...,a/, € TLp, so dass

/ / /
o= ay,...,00.

Sei T" die Substitution, die der rekursive Aufruf von ANTWORT(II, o)
in Zeile 7 ausgibt. Dann gilt S = (T7T")|var(a)-

Nach Induktionsannahme existiert fiir jedes j € [m/] eine Ableitung
von a;T" aus IL. Sei (¢, ...,1; ) eine solche Ableitung. Dann gilt:
e Fiir jedes j € {1,...,i—1}ist (t,... ,tzj) eine Ableitung von
T = a;TT = ;S aus 1.
e Fiir jedes j € {i+1,...,m} ist (£]77,... ,t;:fj) eine Ableitung

/ L r_
von 1" = o TT" = ;5 aus 11

e Fiir jedes k € [n] ist (£ ... ,té;ﬁi ) eine Ableitung von
o 1T = Y UTT aus II. Somit ist

i—14+k i—1+k
( (tl rees ’tfi—u-k )k:l,..,n

, ngTT’)
eine Ableitung von UTT' = o;TT' = ;S aus II.
Also sind 4 S, ..., a,,S ableitbar aus II. ]

Folie 409

Nichstes Ziel: Auflésen des Nichtdeterminismus in Zeile 4

Als ein Hauptproblem des nichtdeterministischen Interpreters ANTWORT
haben wir die Wahl der Substitution 7" in Zeile 4 identifiziert.

Mit Hilfe der im Folgenden vorgestellten Unifikatoren konnen die richtigen
Substitutionen auf deterministische Art gefunden werden.

Folie 410

Version vom 16. Oktober 2023 Seite 265



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Unifikation

Definition 5.22. Seien t,s € T p Terme der Logik-Programmierung.
(a) Ein Unifikator fir t und s ist eine Substitution S, so dass tS = sS.

(b) t und s sind wunifizierbar, wenn es einen Unifikator fiir ¢ und s gibt.

Beispiel 5.23.

t:=mal(s(X), Y, s(Z)) und s:=mal(s(s(null)), Y, Y) sind
unifizierbar.

Ein Unifikator ist

S = {Xr—>s(null)7 Y +— s(Z) }

Die entstehende gemeinsame Instanz ist
tS = mal(s(s(null)), s(Z), s(Z2)) = sS.

Ein weiterer Unifikator fir ¢ und s ist
S = { X — s(null), Y+~ s(null), Z+ null }

Die entstehende gemeinsame Instanz ist
tS" = mal(s(s(null)), s(null), s(null)) = s95'.

Beispiele.

(a) t:=f(X,g(¥,2)) und s:=f(h(Z),W) sind unifizierbar.

Ein Unifikator ist beispielsweise
Sp = {X—h@), W—gX,2)}
Die entstehende gemeinsame Instanz ist
tS1 = £(h(2),g(Y,Z2)) = sSi.
Ein Beispiel fiir einen weiteren Unifikator fiir ¢ und s ist
Sy == {X—h(f(c,d)), Yc, Zm f(c,d), W glc,flc,d)) }.
Die entstehende gemeinsame Instanz ist

tSy = f(h(f(c,d)),glc,f(c,d))) = s5,.

Version vom 16. Oktober 2023 Seite 266



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

b) t:=£(X,Y) und s := g(X,Y) sind nicht unifizierbar.

£f(X,Y) und s := £(X) sind nicht unifizierbar.

(
(c) t:
( f(c,X) und s := £(d,X) sind nicht unifizierbar.

(e) t:=Xund s := £ (X,X) sind nicht unifizierbar.

)

)
d) t:

)

)

(f) t :=X und s := £(Y,Y) sind unifizierbar.
Ein Unifikator ist z.B. { X — £(Y,Y) }.
Ein weiterer Unifikator ist { X — f(g(c,c),g(c,c)), Y— glc,c) }.

Folie 411
Eine Ordnung auf den Substitutionen
Definition 5.24.
Zwei Substitutionen S und 7T sind dquivalent (kurz: S = T'), wenn fiir alle
Variablen X € Vp gilt: XS = XT.
Beobachtung:
S und 7 sind genau dann dquivalent, wenn XS = XT fiir alle
X € Def(S) N Def(7T") und XS = X fiir alle X € Def(S) \ Def(T") und XT' =X
fir alle X € Def(T') \ Def(95).
Definition 5.25.
Seien S und 7' Substitutionen. S ist allgemeiner als T' (wir schreiben
S £ T), wenn es eine Substitution S’ gibt, so dass SS' =T
Beobachtung:
I ist eine allgemeinste Substitution, d.h. fiir jede Substitution 7" gilt
IST.
Folie 412

Allgemeinste Unifikatoren
(kurz: mgu, fiir ,,most general unifier*)

Definition 5.26.
Seien t,s € T p. Ein allgemeinster Unifikator fiir ¢t und s ist ein Unifikator
S fiir ¢ und s, so dass gilt: S < T fiir alle Unifikatoren T fiir ¢ und s.

Das folgende Lemma besagt, dass allgemeinste Unifikatoren bis auf
Umbenennung von Variablen eindeutig sind.

Version vom 16. Oktober 2023 Seite 267



Folie 413

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Lemma 5.27.
Seiten t,s € Tip, und seien S, T allgemeinste Unifikatoren fiir t und s.
Dann gibt es eine Umbennenung U, so dass SU =T.

Beweis. Es gilt S < T und T < S. Daher gibt es Substitutionen S’, 7", so
dass SS'=T und TT'=S. Es gilt:

STy = (ST = TT' = S (5.7)

Fiir alle X € Vp \ Def(S) gilt XS = X; und wegen S(S'T") = S gilt
XS'T" = XS = X. Daher muss insbesondere XS’ € V| p sein.

Auflerdem gilt fiir alle X € Def(S), dass XSS"T” = XS, und daher muss fiir
alle Variablen Y € Var(XS) gelten: YS"T” = Y. Daher muss insbesondere
YS" € Vip sein.

Insgesamt gilt also fiir alle Variablen Z € (Vip \ Def(S)) U B, fiir

B = U Var(XS),

XeDef(S)
dass 2S5’ € Vi p und ZS'T" = Z. Somit ist
U = S/’D mit D = (VLP\Def(S)) UB

eine Umbenennung (d.h. eine injektive partielle Abbildung von V| p nach

VLP).
Wegen SS’ = T gilt aulerdem fiir alle X € Vp:

XI' = X(S9) = (x9)8 = (XS)U = X(SU).

Somit ist T = SU. O

Ein Unifikationsalgorithmus

Algorithmus MGU(t, s)

% Eingabe: zwei Terme t,s € Typ.
% Ausgabe: eine Substitution S oder die Worte ,,nicht unifizierbar"

1. Wenn ¢t = s, dann gib [ aus und halte an.
2. Wennt=X¢€ V|_|:>

Version vom 16. Oktober 2023 Seite 268



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Wenn X € Var(s), dann gib , nicht unifizierbar® aus und halte an.

Gib {X — s} aus und halte an.
. Wenn s =X € Vp

Gib {X — t} aus und halte an.

. Wenn ¢t =1£(ty,...,t) und s==£(sy,...,Sk)
fiir ein Atom f € A p und eine Stelligkeit £k € N mit k£ > 1

9. Setze S := 1.
10. Fir ¢ =1,..., k tue Folgendes:

3
4
5
6. Wenn X € Var(t) dann gib ,nicht unifizierbar® aus und halte an.
7
8

11. Setze T; := MGU(t;S;, :5;).

12. Wenn T; = | nicht unifizierbar® dann gib ,nicht unifizierbar*
aus und halte an.

13. Setze Si—i-l = SZT',

14. Gib Sk4+1 aus und halte an.

15. Gib ,nicht unifizierbar® aus und halte an.

Korrektheit des Unifikationsalgorithmus

Satz 5.28. Fiir alle Terme t,s € Typ gilt:

(a) Sind t und s unifizierbar, so gibt MGU(t, s) einen allgemeinsten
Unifikator fir t und s aus.

(b) Sind t und s nicht unifizierbar, so gibt MGU(t, s) die Worte ,nicht
unifizierbar® aus.

(Hier ohne Beweis)

Korollar 5.29. Sind zwei Terme unifizierbar, so gibt es fiir diese Terme
einen allgemeinsten Unifikator.

Beispiele 5.30.

Version vom 16. Oktober 2023 Seite 269

Folie 414

Folie 415



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

(a) Ein allgemeinster Unifikator fiir
t = g(EX,V),£V,W)) und s = gW,f(Z,g(X,Y)))
ist
S = { V= £fX,Y), Z—£X,Y), W—gX,Y) }
= (Ve f&END} {Z—~fX, N} {W=gX, V)1,
und es gilt tS =55 = g(£(X,Y),f(£(X,Y),g(X,Y))).

(b) g(£(X,Y),Y) und g(c,Y) sind nicht unifizierbar.

(c) Seien n > 1 und seien Xj,..., X, € V. p paarweise verschieden. Sei
tn = f(Xl,XQ...,Xn)
Sp = f(g(XO:XO):g(XI:XI)’~-':g(Xn—l:Xn—l)) .

Dann sind ¢,, und s,, unifizierbar durch einen allgemeinsten Unifikator
S, fiir den gilt:

S(Xl) = g(Xo,Xp)

S(Xy) = g(S(X1),S(X1))
= g(g(Xy,X0),g(Xo,X0))

S(X3) = g(9(X2),5(Xs))
= glglg(Xo,X0),g(X0,X0)),g(g(Xo,X0),g(Xo,X0)))

USwW.

Es gilt: Fiir jeden Unifikator T fiir ¢,, und s,, ist der Term T'(X,,)
exponentiell grofl in n, und jede gemeinsame Instanz von t,, und s, ist
exponentiell lang in n.

Folie 416

Auflésen des Nichtdeterminismus in Zeile 4

Wir kénnen nun den Nichtdeterminismus in Zeile 4 unseres einfachen
Interpreters fiir Logikprogramme, ANTWORT(II, @), auflésen, indem wir als
Substitution 7" einen allgemeinsten Unifikator von «; und U wéhlen, und
zwar den allgemeinsten Unifikator, der vom Algorithmus MGU («;, ¢U)
ausgegeben wird.

Dadurch erhalten wir den folgenden Algorithmus UANTWORT(IL, «v).

Folie 417

Version vom 16. Oktober 2023 Seite 270



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Interpreter fiir Logikprogramme mit allgemeinsten Unifikatoren

Algorithmus UANTWORT(1I, o)
% Eingabe: Programm 11 € LP, Anfrage 7-a € Fip mita = ay, ...,
% Ausgabe: eine Substitution S fiir Var(«) oder das Wort ,gescheitert”.

1. Wihle ein i € [m)] % «; ist das nachste | Ziel”

2. Wihle eine Regel p aus I1. Sei ¢ := 9q,...,1, die Form von p.
% Fakten fassen wir als Regeln ohne Rumpf auf

3. Sei U eine Umbennung fiir Var(p), so dass Var(pU) N Var(a) = 0.

4. Setze T := MGU(a, U)
% T soll ein allgemeinster Unifikator von «; und U sein

5. Wenn T = , nicht unifizierbar®, gib . gescheitert aus und halte an.
6. Wenn m =1 und n = 0, gib T’Var(a) aus und halte an.

7. Setze & = aiT, ..., c;i T, UT, ..., 0, UT, i, ... anT.
8. Setze T' := UANTWORT(IL, &)

9. Wenn T” eine Substitution ist, gib (TT’ )[Var(a) aus und halte an.

10. Gib ,,gescheitert® aus und halte an.

Korrektheit und Vollstindigkeit des Interpreters

Satz 5.31. Sei Il € LP ein Logikprogramm, sei 7- o € Fyp eine Anfrage
mit o =, .. ., Oy, und sei S eine Substitution fiir Var(«). Dann sind
folgende Aussagen dquivalent:

(a) Die Terme a1 S, ..., a;,S sind aus I1 ableitbar.

(b) Es gibt einen Lauf von UANTWORT(IL, ), der eine Substitution S fiir
Var(a) mit S < S ausgibt.

Korollar 5.32.
Sei 11 € LP ein Logikprogramm und sei o ein Grundterm. Dann gilt:
a € B(Il) < es gibt einen akzeptierenden Lauf von UANTWORT(IL, o).

Version vom 16. Oktober 2023 Seite 271

Folie 418



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Fiir den Beweis der Richtung ,(a) = (b)“ von Satz 5.31 verwenden wir:

Lemma 5.33. Sei Il € LP und sei 7- o € Fip mit « = o, ..., € Fip,
und sei S’ eine Substitution fir a. Dann gibt es zu jedem Lauf von
ANTWORT(IL, S’), der eine Substitution S ausgibt, einen Lauf von
UANTWORT(IL, ), der eine Substitution S mit S < 5'S ausgibt.

Beweis von Satz 5.31 unter Verwendung von Lemma 5.33.

(a) = (b):

Seien 1S, ..., a,,S aus Il ableitbar. Dann gibt es gemé&fl Satz 5.20 einen
Lauf L von ANTWORT(II, o), der S ausgibt. Gemafi Lemma 5.33 (fiir

S’ :=1I) gibt es dann auch einen Lauf L von UANTWORT(IL, av), der eine
Substitution S < S ausgibt.

(b) = (a): i

Sei L ein Lauf von UANTWORT(II, @), der eine Substitution S fiir & mit

S < S ausgibt. GemiB der Konstruktion der Algorithmen UANTWORT und
ANTWORT gibt es dann auch einen Lauf von ANTWORT(II, @), der S
ausgibt. Aus Satz 5.20 folgt, dass die Terme oS, ..., amS aus II ableitbar
sind.

Fiir jedes i € [m] sei (t{,...,t} ) eine Ableitung von ;S aus I1.
Wegen S < S gibt es eine Substitution S’, so dass S5’ = S. Dann ist
(t1S',...,t, ") eine Ableitung von ;55" = ;S aus IL O

Beweis von Lemma 5.33.

Sei L ein Lauf von ANTWORT(II, aS”), der S ausgibt. Wir zeigen per
Induktion nach der Rekursionstiefe ¢ von L, dass es einen Lauf L von
UANTWORT(IT, ) gibt, der eine Substitution S mit S < S'S ausgibt.

Induktionsanfang t = 0:
Der Lauf L muss in Zeile 5 akzeptieren. Es gilt also m = 1, und es
gibt ein Faktum ¢ in II, eine Substitution 7', und eine Umbennung U
fir Var(p) mit Var(oU) N Var(ayS") = 0, so dass a1 ST = ¢UT und
T|Var(arsry = S- O.B.d.A. kénnen wir zusétzlich annehmen, dass
Var(pU) N Def(S") = 0 (sonst verwenden wir eine andere
Umbenennung und modifizieren 7" entsprechend). Dann gilt
oUS" = U, und somit ist S"T" ein Unifikator von a; und ¢U.

Version vom 16. Oktober 2023 Seite 272



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Sei T' der von MGU((ay, ¢U) berechnete allgemeinste Unifikator fiir
a; und pU. Dann gilt 7' = S'T'. Also gilt auch
T|Var(a) é (S/T)|Var(a) = S/S

Sei nun L der Lauf von UANTWORT(II, @), der in Zeile 1 die Zahl 1,
in Zeile 2 das Faktum ¢ und in Zeile 3 die Umbennenung U wéhlt.

Dann wird in Zeile 4 der allgemeinste Unifikator 7" berechnet und in
Zeile 6 die Substitution S := T|Var(a) ausgegeben. Wir wissen bereits,

dass S < 9'S ist.

Induktionsschritt t — t+1:
Der Lauf L muss in Zeile 8 akzeptieren. Seien 4, p, U, T die in L in den
Zeilen 1-4 getroffenen Auswahlen. O.B.d.A. nehmen wir wieder an,
dass Var(pU) N Def(S") = 0. Dann gilt pU = pUS" und
a;S'"T = oUT = pUS'T. Somit ist S'T ein Unifikator fiir a;; und ¢U.

Sei T der von MGU («;, ¢U) berechnete allgemeinste Unifikator fiir «;

und oU. Dann gilt T' < S'T. Seien

Oé/ = 0515/T7 ce ,ai,lS’T, wlUT, ce ;wnUT; ai+IS/T7 c. 7OémSIT,

6{/ = O[1T7 e ,Oéi_lj:’, wlUT, N 7¢nUT7 OZZ‘_HT, Ce ,OémT.
Wegen T' < S'T gibt es eine Substitution S;, so dass
TS, = S'T. (5.8)

Dann gilt o/ = &'S;.

Weil der Lauf L in Zeile 8 akzeptiert, gibt es einen akzeptierenden
Lauf L’ von ANTWORT(II, o) der Rekursionstiefe ¢, der eine
Substitution 7" ausgibt. Der Lauf L gibt in Zeile 8 die Substitution

S = (TT)|var(as (5.9)

aus.

Geméf Induktionsannahme (fiir &', Sy, 7" an Stelle von «, S’, S und
wegen o = &'S1) gibt es einen Lauf L' von UANTWORT(II, &), der
eine Substitution 7" mit 77 < S1T" ausgibt. Sei S, eine Substitution
mit

'Sy, = ST (5.10)

Sei L der Lauf von UANTWORT(II, ), der in den Zeilen 1-3 die Zahl
i € [m], die Regel p und die Umbennung U wihlt. Dann wird in den

Version vom 16. Oktober 2023 Seite 273



Folie 419

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Zeilen 4 und 7 der allgemeinste Unifikator T und die Anfrage &
berechnet. Dugchfiihren des Laufs L’ liefert dann in Zeile 8 die
Substitution 7”. In Zeile 9 wird dann die Substitution

S = (TT)|var(e) (5.11)

ausgegeben.

Es bleibt noch zu zeigen, dass S <SS ist.
Eingeschrénkt auf Var(«aS”) bzw. Var(a) wissen wir, dass gilt:

gs ¥ sy = (T)T
(TS = T(S.T)
O Frs) = (@S, =) 8,
Somit ist S < §'S. O

Bemerkungen

e Indem wir das nichtdeterministische Auswéhlen einer Substitution im
Algorithmus ANTWORT im Algorithmus UANTWORT durch das
deterministische Berechnen eines allgemeinsten Unifikators ersetzt
haben, sind wir einen entscheidenden Schritt in Richtung , praktische
Ausfithrbarkeit“ gegangen.

e Es bleiben aber immer noch die nichtdeterministischen
Auswahlschritte eines Ziels in Zeile 1 und einer Regel in Zeile 2. Diese
miissen bei einer praktischen Implementierung durch eine
systematische Suche durch alle M6glichkeiten ersetzt werden.

(Die Wahl der Umbennenung in Zeile 3 unproblematisch.)

e Verschiedene logische Programmiersprachen unterscheiden sich in den
verwendeten Suchstrategien.

e Prolog verwendet Tiefensuche.

Version vom 16. Oktober 2023 Seite 274



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

5.4 Logik-Programmierung und Prolog

Folie 420
Reines Prolog
Reines Prolog ist das Fragment der Programmiersprache Prolog, dessen
Programme gerade die Logikprogramme in LP sind.
Insbesondere enthélt reines Prolog keine speziellen Prolog-Operatoren wie
Cut ,,!“, arithmetische Pradikate oder Ein-/Ausgabe-Pradikate (d.h.
Préadikate mit Seiteneffekten).
Die Semantik von reinem Prolog stimmt nicht mit der deklarativen
Semantik der Logik-Programmierung iiberein.
Die erste vom Prolog-Interpreter ausgegebene Antwort wird geméafl dem
folgenden Interpreter PERSTEANTWORT ermittelt.
Folie 421
Ein Prolog-Interpreter
Algorithmus PERSTEANTWORT(IL, «)
% Eingabe: Programm I1 € LP, Anfrage 7- o € Fip mita = ay,...,qp,
% Ausgabe: eine Substitution S fiir Var(«) oder das Wort ,false”
1. Betrachte alle Regeln p in II in der Reihenfolge ihres Vorkommens in
IT und tue Folgendes: % Fakten fassen wir als Regeln ohne Rumpf auf
2. Sei ¢ = Yq,...,1, die Form von p
3. Sei U eine Umbennung fiir Var(p), so dass Var(pU) N Var(«a) = )
4. Setze T := MGU(ay, ¢U)
5. Wenn T eine Substitution ist
6. Wenn m = 1 und n = 0, gib T'|var(e) aus und halte an
7. Setze o/ == UT, ..., v, UT, T, ..., T
8. Setze T" := PERSTEANTWORT(II, o)
9. Wenn 7" eine Substitution ist, gib (77”)|var() aus und halte an
10. Gib ,false“ aus und halte an
Folie 422

Version vom 16. Oktober 2023 Seite 275



Folie 423

Folie 424

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Vergleich zur deklarativen Semantik
PERSTEANTWORT(IL, o) gibt hdchstens eine Substitution aus, kann u.U.
aber auch in eine Endlosschleife gelangen und nicht terminieren.

Der folgende Satz besagt, dass im Falle der Terminierung die ausgegebene
Antwort korrekt ist.

Satz 5.34. Sei Il € LP ein Logikprogramm und sei 7- o € Fip mit
a=aqy,...,q, ene Anfrage. Dann gilt:

(a) Wenn PERSTEANTWORT(II, o) eine Substitution S ausgibt, dann sind
die Terme 1S, ..., a,,S aus I ableitbar.

(b) Wenn PERSTEANTWORT(II, o) das Wort ,false“ ausgibt, dann gibt es
keine Substitution S, so dass die Terme oy S, ..., oS aus 11 ableitbar
sind.

(Hier ohne Beweis)

Terminierung

Intuitiv besagt Satz 5.34, dass im Falle der Terminierung die vom
Prolog-Interpreter bei Eingabe eines Logikprogramms II und einer Anfrage
7- « gegebene erste Antwort korrekt ist.

Moglicherweise hélt der Prolog-Interpreter aber gar nicht an, obwohl es laut
Definition der deklarativen Semantik korrekte Antworten gibt.

Es ist Aufgabe des Programmierers, dies zu verhindern!
Typische Probleme dabei sind Dummbheit und linksrekursive Regeln.

Beispiel: vorfahre(X,Y) :- vorfahre(X,Z), elternteil(Z,Y)

Unterschied zwischen Theorie und Praxis

Beispiel 5.35.

Die folgenden Logikprogramme myplusl.pl, myplus2.pl, myplus3.pl
haben die gleiche Bedeutung hinsichtlich der deklarativen Semantik im
folgenden Sinne:

Version vom 16. Oktober 2023 Seite 276



Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Aus allen drei Programmen koénnen genau dieselben Grundterme der Form
myplus(...) abgeleitet werden.

Alle drei Programme erzeugen jedoch unterschiedliche Ausgaben in Prolog.

Folie 425
Programm: myplusl.pl

myplus(X,Y,Z) :- myplus(Y,X,Z).
myplus(0,X,X).
myplus(1,1,2). myplus(1,2,3). myplus(1,3,4).
myplus(2,2,4). myplus(2,3,5).
myplus(3,3,6).

Programm: myplus2.pl

myplus(0,X,X).
myplus(1,1,2). myplus(1,2,3). myplus(1,3,4).
myplus(2,2,4). myplus(2,3,5).
myplus(3,3,6).
myplus(X,Y,Z) :- myplus(Y,X,Z).

Programm: myplus3.pl

myplusH(0,X,X).
myplusH(1,1,2). myplusH(1,2,3). myplusH(1,3,4).
myplusH(2,2,4). myplusH(2,3,5).
myplusH(3,3,6) .
myplus(X,Y,Z) :- myplusH(X,Y,Z).
myplus(X,Y,Z) :- myplusH(Y,X,Z).

Folie 426
Aus Sicht des Prolog-Interpreters (und des Interpreters PERSTEANTWORT)

ist das Programm myplus1.pl idiotisch und liefert auf keine Anfrage der
Form ,myplus(...)“ eine Antwort, da die Auswertung des Programms
stets mit der ersten Regel in eine Endlosschleife gerit.

Das Programm myplus2.pl ist besser, hélt aber auch bei , falschen*
Anfragen wie z.B.  jmyplus(1,1,3)“ nicht an, da die Auswertung des
Programms dann mit der letzten Regel in eine Endlosschleife gerét.

Das Programm myplus3.pl leistet das, was es soll.

Folie 427

Version vom 16. Oktober 2023 Seite 277



Folie 428

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Beweisbiume vs. Suchbdume

Beweisbdume

sind in Definition 5.14 definiert. Ein Beweisbaum ist eine graphische
Darstellung einer Ableitung eines Terms t € T p aus einem Logikprogramm
IT € LP.

Somit stellt ein Beweisbaum eine einzelne Ableitung dar. Diese entspricht
einem erfolgreichen Lauf unseres nichtdeterministischen Interpreters
ANTWORT.

Suchbidume

stellen die vollstdndige Suche des Prolog-Interpreters bei Eingabe eines
Logikprogramms Il und einer Anfrage 7- o dar. Insbesondere enthélt der
Suchbaum Informationen iiber alle erfolgreichen Laufe des
nichtdeterministischen Interpreters ANTWORT.

Unifikation in Prolog

In Prolog testet der Ausdruck ¢ = s nicht, ob die Terme ¢ und s gleich
sind, sondern ob sie unifizierbar sind.

Der in den meisten Prologimplementierungen verwendete
Unifikationsalgorithmus testet aus Effizienzgriinden bei der Unifikation
einer Variablen X mit einem Term ¢ nicht, ob X in ¢ vorkommt.

Diesen Test bezeichnet man als Occurs-Check, er findet in den Zeilen 3 und
6 unseres Unifikationsalgorithmus M GU statt.

In Prolog ist es eine Aufgabe des Programmierers, sicherzustellen, dass
niemals eine Variable mit einem Term unifiziert wird, der diese Variable
enthélt.

Version vom 16. Oktober 2023 Seite 278



Literaturverzeichnis

[BBSO6]

[Bur9g]

[Cam98]

[Ebb03]

[EFTO7]

[FGOS]

[HRO4]

[KKO6]

[Lib04]

Patrick Blackburn, Johan Bos, and Kristina Striegnitz. Learn
PROLOG Now! Kings College Publications, 2006. Online Version:
http://www.learnprolognow.org/.

S. Burris. Logic for Mathematics and Computer Science. Prentice
Hall, 1998.

P. J. Cameron. Sets, Logic and Categories. Springer, 1998.

Heinz-Dieter Ebbinghaus. Einfiihrung in die Mengenlehre.
Spektrum Akademischer Verlag, 2003. 4. Auflage.

Heinz-Dieter Ebbinghaus, Jorg Flum, and Wolfgang Thomas.
Einfiihrung in die Mathematische Logik. Spektrum Akademischer
Verlag, 2007. 5. Auflage.

Jorg Flum and Martin Grohe. Parameterized Complexity Theory.
Springer, 1998.

M. Huth and M. Ryan. Logic in Computer Science — Modelling
and Reasoning About Systems. Cambridge University Press, 2004.

M. Kreuzer and S. Kiihling. Logik fiir Informatiker. Pearson, 2006.

Leonid Libkin. Elements of Finite Model Theory. Springer, 2004.

Version vom 16. Oktober 2023 Seite 279


http://www.learnprolognow.org/

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

[Sch00] Uwe Schoning. Logik fiir Informatiker. Spektrum Akademischer
Verlag, 2000. 5. Auflage.

[SS94]  Ehud Shapiro and Leon Sterling. The Art of PROLOG: Advanced
Programming Techniques. MIT Press, 1994. 2. Auflage.

[vDO4]  D. van Dalen. Logic and Structure. Springer, 2004.

Version vom 16. Oktober 2023 Seite 280



	Einleitung
	Von der Bibel bis zu den Simpsons
	Logik in der Informatik
	Lernziele, Semesterausblick und Literatur

	Aussagenlogik
	Syntax und Semantik
	Aussagenlogische Modellierung
	Äquivalenz und Adäquatheit
	Normalformen
	Der Endlichkeitssatz
	Resolution
	Erfüllbarkeitsalgorithmen
	Hornformeln

	Logik erster Stufe
	Strukturen
	Terme der Logik erster Stufe
	Syntax der Logik erster Stufe
	Semantik der Logik erster Stufe
	Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen
	Logik und Datenbanken
	Äquivalenz von Formeln der Logik erster Stufe
	Ehrenfeucht-Fraïssé-Spiele
	Erfüllbarkeit, Allgemeingültigkeit und die Folgerungsbeziehung
	Normalformen

	Grundlagen des automatischen Schließens
	Kalküle und Ableitungen
	Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz
	Der Endlichkeitssatz
	Die Grenzen der Berechenbarkeit
	Der Satz von Herbrand
	Automatische Theorembeweiser

	Logik-Programmierung
	Einführung
	Syntax und deklarative Semantik von Logikprogrammen
	Operationelle Semantik
	Logik-Programmierung und Prolog

	Literaturverzeichnis

