
Vorlesung
Logik in der Informatik

Wintersemester

Prof. Dr. Nicole Schweikardt

Lehrstuhl Logik in der Informatik
Institut für Informatik
Humboldt-Universität zu Berlin

Kapitel 1:

Einleitung

Abschnitt 1.1:

Von der Bibel bis zu den Simpsons

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Logik

• altgriechisch
”
logos“: Vernunft

• die Lehre des vernünftigen Schlussfolgerns

• Teilgebiet u.a. der Disziplinen Philosophie, Mathematik und Informatik

• zentrale Frage:
Wie kann man Aussagen miteinander verknüpfen, und auf welche Weise
kann man formal Schlüsse ziehen und Beweise durchführen?

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 1

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Das Lügnerparadoxon von Epimenides

Brief des Paulus an Titus 1:12-13:
Es hat einer von ihnen gesagt, ihr eigener Prophet:
Die Kreter sind immer Lügner, böse Tiere und faule Bäuche.

Angenommen, die Aussage des Propheten ist wahr.
Da der Prophet selbst Kreter ist, lügt er also immer (und ist ein
böses Tier und ein fauler Bauch). Dann hat er aber insbesondere
in dem Satz

”
Die Kreter sind immer Lügner, böse Tiere und faule

Bäuche“ gelogen. D.h. die Aussage des Propheten ist nicht wahr.
Dies ist ein Widerspruch!

Angenommen, die Aussage des Propheten ist falsch.
Dann gibt es Kreter, die nicht immer Lügner, böse Tiere und
faule Bäuche sind. Dies stellt keinen Widerspruch dar.

Insgesamt wissen wir also, dass der Prophet in seiner obigen Aussage nicht die
Wahrheit gesagt hat.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 2

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Das Lügnerparadoxon von Epimenides

Brief des Paulus an Titus 1:12-13:
Es hat einer von ihnen gesagt, ihr eigener Prophet:
Die Kreter sind immer Lügner, böse Tiere und faule Bäuche.

Angenommen, die Aussage des Propheten ist wahr.

Da der Prophet selbst Kreter ist, lügt er also immer (und ist ein
böses Tier und ein fauler Bauch). Dann hat er aber insbesondere
in dem Satz

”
Die Kreter sind immer Lügner, böse Tiere und faule

Bäuche“ gelogen. D.h. die Aussage des Propheten ist nicht wahr.
Dies ist ein Widerspruch!

Angenommen, die Aussage des Propheten ist falsch.
Dann gibt es Kreter, die nicht immer Lügner, böse Tiere und
faule Bäuche sind. Dies stellt keinen Widerspruch dar.

Insgesamt wissen wir also, dass der Prophet in seiner obigen Aussage nicht die
Wahrheit gesagt hat.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 2

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Das Lügnerparadoxon von Epimenides

Brief des Paulus an Titus 1:12-13:
Es hat einer von ihnen gesagt, ihr eigener Prophet:
Die Kreter sind immer Lügner, böse Tiere und faule Bäuche.

Angenommen, die Aussage des Propheten ist wahr.
Da der Prophet selbst Kreter ist, lügt er also immer (und ist ein
böses Tier und ein fauler Bauch).

Dann hat er aber insbesondere
in dem Satz

”
Die Kreter sind immer Lügner, böse Tiere und faule

Bäuche“ gelogen. D.h. die Aussage des Propheten ist nicht wahr.
Dies ist ein Widerspruch!

Angenommen, die Aussage des Propheten ist falsch.
Dann gibt es Kreter, die nicht immer Lügner, böse Tiere und
faule Bäuche sind. Dies stellt keinen Widerspruch dar.

Insgesamt wissen wir also, dass der Prophet in seiner obigen Aussage nicht die
Wahrheit gesagt hat.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 2

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Das Lügnerparadoxon von Epimenides

Brief des Paulus an Titus 1:12-13:
Es hat einer von ihnen gesagt, ihr eigener Prophet:
Die Kreter sind immer Lügner, böse Tiere und faule Bäuche.

Angenommen, die Aussage des Propheten ist wahr.
Da der Prophet selbst Kreter ist, lügt er also immer (und ist ein
böses Tier und ein fauler Bauch). Dann hat er aber insbesondere
in dem Satz

”
Die Kreter sind immer Lügner, böse Tiere und faule

Bäuche“ gelogen.

D.h. die Aussage des Propheten ist nicht wahr.
Dies ist ein Widerspruch!

Angenommen, die Aussage des Propheten ist falsch.
Dann gibt es Kreter, die nicht immer Lügner, böse Tiere und
faule Bäuche sind. Dies stellt keinen Widerspruch dar.

Insgesamt wissen wir also, dass der Prophet in seiner obigen Aussage nicht die
Wahrheit gesagt hat.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 2

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Das Lügnerparadoxon von Epimenides

Brief des Paulus an Titus 1:12-13:
Es hat einer von ihnen gesagt, ihr eigener Prophet:
Die Kreter sind immer Lügner, böse Tiere und faule Bäuche.

Angenommen, die Aussage des Propheten ist wahr.
Da der Prophet selbst Kreter ist, lügt er also immer (und ist ein
böses Tier und ein fauler Bauch). Dann hat er aber insbesondere
in dem Satz

”
Die Kreter sind immer Lügner, böse Tiere und faule

Bäuche“ gelogen. D.h. die Aussage des Propheten ist nicht wahr.

Dies ist ein Widerspruch!

Angenommen, die Aussage des Propheten ist falsch.
Dann gibt es Kreter, die nicht immer Lügner, böse Tiere und
faule Bäuche sind. Dies stellt keinen Widerspruch dar.

Insgesamt wissen wir also, dass der Prophet in seiner obigen Aussage nicht die
Wahrheit gesagt hat.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 2

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Das Lügnerparadoxon von Epimenides

Brief des Paulus an Titus 1:12-13:
Es hat einer von ihnen gesagt, ihr eigener Prophet:
Die Kreter sind immer Lügner, böse Tiere und faule Bäuche.

Angenommen, die Aussage des Propheten ist wahr.
Da der Prophet selbst Kreter ist, lügt er also immer (und ist ein
böses Tier und ein fauler Bauch). Dann hat er aber insbesondere
in dem Satz

”
Die Kreter sind immer Lügner, böse Tiere und faule

Bäuche“ gelogen. D.h. die Aussage des Propheten ist nicht wahr.
Dies ist ein Widerspruch!

Angenommen, die Aussage des Propheten ist falsch.
Dann gibt es Kreter, die nicht immer Lügner, böse Tiere und
faule Bäuche sind. Dies stellt keinen Widerspruch dar.

Insgesamt wissen wir also, dass der Prophet in seiner obigen Aussage nicht die
Wahrheit gesagt hat.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 2

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Das Lügnerparadoxon von Epimenides

Brief des Paulus an Titus 1:12-13:
Es hat einer von ihnen gesagt, ihr eigener Prophet:
Die Kreter sind immer Lügner, böse Tiere und faule Bäuche.

Angenommen, die Aussage des Propheten ist wahr.
Da der Prophet selbst Kreter ist, lügt er also immer (und ist ein
böses Tier und ein fauler Bauch). Dann hat er aber insbesondere
in dem Satz

”
Die Kreter sind immer Lügner, böse Tiere und faule

Bäuche“ gelogen. D.h. die Aussage des Propheten ist nicht wahr.
Dies ist ein Widerspruch!

Angenommen, die Aussage des Propheten ist falsch.

Dann gibt es Kreter, die nicht immer Lügner, böse Tiere und
faule Bäuche sind. Dies stellt keinen Widerspruch dar.

Insgesamt wissen wir also, dass der Prophet in seiner obigen Aussage nicht die
Wahrheit gesagt hat.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 2

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Das Lügnerparadoxon von Epimenides

Brief des Paulus an Titus 1:12-13:
Es hat einer von ihnen gesagt, ihr eigener Prophet:
Die Kreter sind immer Lügner, böse Tiere und faule Bäuche.

Angenommen, die Aussage des Propheten ist wahr.
Da der Prophet selbst Kreter ist, lügt er also immer (und ist ein
böses Tier und ein fauler Bauch). Dann hat er aber insbesondere
in dem Satz

”
Die Kreter sind immer Lügner, böse Tiere und faule

Bäuche“ gelogen. D.h. die Aussage des Propheten ist nicht wahr.
Dies ist ein Widerspruch!

Angenommen, die Aussage des Propheten ist falsch.
Dann gibt es Kreter, die nicht immer Lügner, böse Tiere und
faule Bäuche sind.

Dies stellt keinen Widerspruch dar.

Insgesamt wissen wir also, dass der Prophet in seiner obigen Aussage nicht die
Wahrheit gesagt hat.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 2

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Das Lügnerparadoxon von Epimenides

Brief des Paulus an Titus 1:12-13:
Es hat einer von ihnen gesagt, ihr eigener Prophet:
Die Kreter sind immer Lügner, böse Tiere und faule Bäuche.

Angenommen, die Aussage des Propheten ist wahr.
Da der Prophet selbst Kreter ist, lügt er also immer (und ist ein
böses Tier und ein fauler Bauch). Dann hat er aber insbesondere
in dem Satz

”
Die Kreter sind immer Lügner, böse Tiere und faule

Bäuche“ gelogen. D.h. die Aussage des Propheten ist nicht wahr.
Dies ist ein Widerspruch!

Angenommen, die Aussage des Propheten ist falsch.
Dann gibt es Kreter, die nicht immer Lügner, böse Tiere und
faule Bäuche sind. Dies stellt keinen Widerspruch dar.

Insgesamt wissen wir also, dass der Prophet in seiner obigen Aussage nicht die
Wahrheit gesagt hat.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 2

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Das Lügnerparadoxon von Epimenides

Brief des Paulus an Titus 1:12-13:
Es hat einer von ihnen gesagt, ihr eigener Prophet:
Die Kreter sind immer Lügner, böse Tiere und faule Bäuche.

Angenommen, die Aussage des Propheten ist wahr.
Da der Prophet selbst Kreter ist, lügt er also immer (und ist ein
böses Tier und ein fauler Bauch). Dann hat er aber insbesondere
in dem Satz

”
Die Kreter sind immer Lügner, böse Tiere und faule

Bäuche“ gelogen. D.h. die Aussage des Propheten ist nicht wahr.
Dies ist ein Widerspruch!

Angenommen, die Aussage des Propheten ist falsch.
Dann gibt es Kreter, die nicht immer Lügner, böse Tiere und
faule Bäuche sind. Dies stellt keinen Widerspruch dar.

Insgesamt wissen wir also, dass

der Prophet in seiner obigen Aussage nicht die
Wahrheit gesagt hat.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 2

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Das Lügnerparadoxon von Epimenides

Brief des Paulus an Titus 1:12-13:
Es hat einer von ihnen gesagt, ihr eigener Prophet:
Die Kreter sind immer Lügner, böse Tiere und faule Bäuche.

Angenommen, die Aussage des Propheten ist wahr.
Da der Prophet selbst Kreter ist, lügt er also immer (und ist ein
böses Tier und ein fauler Bauch). Dann hat er aber insbesondere
in dem Satz

”
Die Kreter sind immer Lügner, böse Tiere und faule

Bäuche“ gelogen. D.h. die Aussage des Propheten ist nicht wahr.
Dies ist ein Widerspruch!

Angenommen, die Aussage des Propheten ist falsch.
Dann gibt es Kreter, die nicht immer Lügner, böse Tiere und
faule Bäuche sind. Dies stellt keinen Widerspruch dar.

Insgesamt wissen wir also, dass der Prophet in seiner obigen Aussage nicht die
Wahrheit gesagt hat.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 2

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Protagoras und sein Student Euthalus vor Gericht

Protagoras (490 – 420 v.Chr.)
Quelle: http://www.greatthoughtstreasury.com/author/protagoras

Euthalus studierte die Kunst der Argumentation beim Meister Protago-
ras, um Anwalt zu werden.
Er vereinbart mit Protagoras, die Gebühren für den Unterricht zu be-
zahlen, sobald er seinen ersten Prozess gewonnen hat.

Aber dann zögert Euthalus seine Anwaltstätigkeit immer weiter hinaus,
und schließlich beschließt Protagoras, seine Gebühren einzuklagen.
Euthalus verteidigt sich selbst . . .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 3

http://www.greatthoughtstreasury.com/author/protagoras

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Protagoras und sein Student Euthalus vor Gericht

Protagoras (490 – 420 v.Chr.)
Quelle: http://www.greatthoughtstreasury.com/author/protagoras

Euthalus studierte die Kunst der Argumentation beim Meister Protago-
ras, um Anwalt zu werden.
Er vereinbart mit Protagoras, die Gebühren für den Unterricht zu be-
zahlen, sobald er seinen ersten Prozess gewonnen hat.

Aber dann zögert Euthalus seine Anwaltstätigkeit immer weiter hinaus,
und schließlich beschließt Protagoras, seine Gebühren einzuklagen.
Euthalus verteidigt sich selbst . . .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 3

http://www.greatthoughtstreasury.com/author/protagoras

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Protagoras denkt:
Wenn ich den Prozess gewinne, muss Euthalus gemäß
Gerichtsbeschluss zahlen.
Wenn ich den Prozess verliere, muss Euthalus gemäß unserer
Vereinbarung zahlen, da er dann seinen ersten Prozess gewonnen
hat.

Euthalus denkt:
Wenn ich den Prozess gewinne, muss ich gemäß
Gerichtsbeschluss nicht zahlen.
Wenn ich den Prozess verliere, muss ich gemäß unserer
Vereinbarung nicht zahlen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 4

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Protagoras denkt:
Wenn ich den Prozess gewinne, muss Euthalus gemäß
Gerichtsbeschluss zahlen.
Wenn ich den Prozess verliere, muss Euthalus gemäß unserer
Vereinbarung zahlen, da er dann seinen ersten Prozess gewonnen
hat.

Euthalus denkt:
Wenn ich den Prozess gewinne, muss ich gemäß
Gerichtsbeschluss nicht zahlen.
Wenn ich den Prozess verliere, muss ich gemäß unserer
Vereinbarung nicht zahlen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 4

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Achilles und die Schildkröte
Achilles und die Schildkröte laufen ein Wettrennen. Achilles gewährt
der Schildkröte einen Vorsprung. Zenon behauptet, dass Achilles die
Schildkröte niemals einholen kann.

Zenon von Elea (490 – 425 v.Chr.) Quelle:
http://aefucr.blogspot.de/2008/04/resolucin-de-la-paradoja-de-zenn-de.html

Zenons Begründung: Zu dem Zeitpunkt, an dem Achilles den Startpunkt der
Schildkröte erreicht, ist die Schildkröte schon ein Stück weiter.
Etwas später erreicht Achilles diesen Punkt, aber die Schildkröte
ist schon etwas weiter. Wenn Achilles diesen Punkt erreicht, ist
die Schildkröte wieder etwas weiter. So kann Achilles zwar immer
näher an die Schildkröte herankommen, sie aber niemals einholen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 5

http://aefucr.blogspot.de/2008/04/resolucin-de-la-paradoja-de-zenn-de.html

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Achilles und die Schildkröte
Achilles und die Schildkröte laufen ein Wettrennen. Achilles gewährt
der Schildkröte einen Vorsprung. Zenon behauptet, dass Achilles die
Schildkröte niemals einholen kann.

Zenon von Elea (490 – 425 v.Chr.) Quelle:
http://aefucr.blogspot.de/2008/04/resolucin-de-la-paradoja-de-zenn-de.html

Zenons Begründung: Zu dem Zeitpunkt, an dem Achilles den Startpunkt der
Schildkröte erreicht, ist die Schildkröte schon ein Stück weiter.
Etwas später erreicht Achilles diesen Punkt, aber die Schildkröte
ist schon etwas weiter. Wenn Achilles diesen Punkt erreicht, ist
die Schildkröte wieder etwas weiter. So kann Achilles zwar immer
näher an die Schildkröte herankommen, sie aber niemals einholen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 5

http://aefucr.blogspot.de/2008/04/resolucin-de-la-paradoja-de-zenn-de.html

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Auflösung durch die Infinitesimalrechnung:

Gottfried Wilhelm von Leibniz (1646 – 1716)
und Isaac Newton (1643 – 1727)

Quelle: http://www-history.mcs.st-and.ac.uk/PictDisplay/Leibniz.html
und Quelle: http://de.wikipedia.org/wiki/Isaac_Newton

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 6

http://www-history.mcs.st-and.ac.uk/PictDisplay/Leibniz.html
http://de.wikipedia.org/wiki/Isaac_Newton

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Der Barbier von Sonnenthal

Im Städtchen Sonnenthal (in dem bekanntlich viele seltsame Dinge pas-
sieren) wohnt ein Barbier, der genau diejenigen männlichen Einwohner
von Sonnenthal rasiert, die sich nicht selbst rasieren.

Frage: Rasiert der Barbier sich selbst?

Angenommen, der Barbier rasiert sich selbst.
Da er ein männlicher Einwohner von Sonnenthal ist, der sich
selbst rasiert, wird er nicht vom Barbier rasiert. Aber er selbst ist
der Barbier. Dies ist ein Widerspruch!

Angenommen, der Barbier rasiert sich nicht selbst.
Da er in Sonnenthal wohnt und dort alle Einwohner rasiert, die
sich nicht selbst rasieren, muss er sich rasieren. Dies ist ein
Widerspruch!

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 7

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Der Barbier von Sonnenthal

Im Städtchen Sonnenthal (in dem bekanntlich viele seltsame Dinge pas-
sieren) wohnt ein Barbier, der genau diejenigen männlichen Einwohner
von Sonnenthal rasiert, die sich nicht selbst rasieren.

Frage: Rasiert der Barbier sich selbst?

Angenommen, der Barbier rasiert sich selbst.

Da er ein männlicher Einwohner von Sonnenthal ist, der sich
selbst rasiert, wird er nicht vom Barbier rasiert. Aber er selbst ist
der Barbier. Dies ist ein Widerspruch!

Angenommen, der Barbier rasiert sich nicht selbst.
Da er in Sonnenthal wohnt und dort alle Einwohner rasiert, die
sich nicht selbst rasieren, muss er sich rasieren. Dies ist ein
Widerspruch!

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 7

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Der Barbier von Sonnenthal

Im Städtchen Sonnenthal (in dem bekanntlich viele seltsame Dinge pas-
sieren) wohnt ein Barbier, der genau diejenigen männlichen Einwohner
von Sonnenthal rasiert, die sich nicht selbst rasieren.

Frage: Rasiert der Barbier sich selbst?

Angenommen, der Barbier rasiert sich selbst.
Da er ein männlicher Einwohner von Sonnenthal ist, der sich
selbst rasiert, wird er nicht vom Barbier rasiert.

Aber er selbst ist
der Barbier. Dies ist ein Widerspruch!

Angenommen, der Barbier rasiert sich nicht selbst.
Da er in Sonnenthal wohnt und dort alle Einwohner rasiert, die
sich nicht selbst rasieren, muss er sich rasieren. Dies ist ein
Widerspruch!

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 7

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Der Barbier von Sonnenthal

Im Städtchen Sonnenthal (in dem bekanntlich viele seltsame Dinge pas-
sieren) wohnt ein Barbier, der genau diejenigen männlichen Einwohner
von Sonnenthal rasiert, die sich nicht selbst rasieren.

Frage: Rasiert der Barbier sich selbst?

Angenommen, der Barbier rasiert sich selbst.
Da er ein männlicher Einwohner von Sonnenthal ist, der sich
selbst rasiert, wird er nicht vom Barbier rasiert. Aber er selbst ist
der Barbier.

Dies ist ein Widerspruch!

Angenommen, der Barbier rasiert sich nicht selbst.
Da er in Sonnenthal wohnt und dort alle Einwohner rasiert, die
sich nicht selbst rasieren, muss er sich rasieren. Dies ist ein
Widerspruch!

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 7

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Der Barbier von Sonnenthal

Im Städtchen Sonnenthal (in dem bekanntlich viele seltsame Dinge pas-
sieren) wohnt ein Barbier, der genau diejenigen männlichen Einwohner
von Sonnenthal rasiert, die sich nicht selbst rasieren.

Frage: Rasiert der Barbier sich selbst?

Angenommen, der Barbier rasiert sich selbst.
Da er ein männlicher Einwohner von Sonnenthal ist, der sich
selbst rasiert, wird er nicht vom Barbier rasiert. Aber er selbst ist
der Barbier. Dies ist ein Widerspruch!

Angenommen, der Barbier rasiert sich nicht selbst.
Da er in Sonnenthal wohnt und dort alle Einwohner rasiert, die
sich nicht selbst rasieren, muss er sich rasieren. Dies ist ein
Widerspruch!

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 7

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Der Barbier von Sonnenthal

Im Städtchen Sonnenthal (in dem bekanntlich viele seltsame Dinge pas-
sieren) wohnt ein Barbier, der genau diejenigen männlichen Einwohner
von Sonnenthal rasiert, die sich nicht selbst rasieren.

Frage: Rasiert der Barbier sich selbst?

Angenommen, der Barbier rasiert sich selbst.
Da er ein männlicher Einwohner von Sonnenthal ist, der sich
selbst rasiert, wird er nicht vom Barbier rasiert. Aber er selbst ist
der Barbier. Dies ist ein Widerspruch!

Angenommen, der Barbier rasiert sich nicht selbst.

Da er in Sonnenthal wohnt und dort alle Einwohner rasiert, die
sich nicht selbst rasieren, muss er sich rasieren. Dies ist ein
Widerspruch!

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 7

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Der Barbier von Sonnenthal

Im Städtchen Sonnenthal (in dem bekanntlich viele seltsame Dinge pas-
sieren) wohnt ein Barbier, der genau diejenigen männlichen Einwohner
von Sonnenthal rasiert, die sich nicht selbst rasieren.

Frage: Rasiert der Barbier sich selbst?

Angenommen, der Barbier rasiert sich selbst.
Da er ein männlicher Einwohner von Sonnenthal ist, der sich
selbst rasiert, wird er nicht vom Barbier rasiert. Aber er selbst ist
der Barbier. Dies ist ein Widerspruch!

Angenommen, der Barbier rasiert sich nicht selbst.
Da er in Sonnenthal wohnt und dort alle Einwohner rasiert, die
sich nicht selbst rasieren, muss er sich rasieren.

Dies ist ein
Widerspruch!

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 7

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Der Barbier von Sonnenthal

Im Städtchen Sonnenthal (in dem bekanntlich viele seltsame Dinge pas-
sieren) wohnt ein Barbier, der genau diejenigen männlichen Einwohner
von Sonnenthal rasiert, die sich nicht selbst rasieren.

Frage: Rasiert der Barbier sich selbst?

Angenommen, der Barbier rasiert sich selbst.
Da er ein männlicher Einwohner von Sonnenthal ist, der sich
selbst rasiert, wird er nicht vom Barbier rasiert. Aber er selbst ist
der Barbier. Dies ist ein Widerspruch!

Angenommen, der Barbier rasiert sich nicht selbst.
Da er in Sonnenthal wohnt und dort alle Einwohner rasiert, die
sich nicht selbst rasieren, muss er sich rasieren. Dies ist ein
Widerspruch!

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 7

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Die Anfänge der formalen Logik

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Aristoteles’ Syllogismen

Die folgende Schlussweise ist aus rein formalen Gründen korrekt.

Annahme 1: Alle Menschen sind sterblich.
Annahme 2: Sokrates ist ein Mensch.

Folgerung: Also ist Sokrates sterblich.

Diese Art von Schluss und eine Reihe verwandter Schlussweisen nennt man
Syllogismen.

Annahme 1: Alle A sind B.
Annahme 2: C ist ein A.

Folgerung: Also ist C B.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 8

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Aristoteles’ Syllogismen

Die folgende Schlussweise ist aus rein formalen Gründen korrekt.

Annahme 1: Alle Menschen sind sterblich.
Annahme 2: Sokrates ist ein Mensch.

Folgerung: Also ist Sokrates sterblich.

Diese Art von Schluss und eine Reihe verwandter Schlussweisen nennt man
Syllogismen.

Annahme 1: Alle A sind B.
Annahme 2: C ist ein A.

Folgerung: Also ist C B.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 8

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Beispiele

Annahme 1: Alle Borg sind assimiliert worden.
Annahme 2: Seven of Nine ist eine Borg.

Folgerung: Also ist Seven of Nine assimiliert worden.

Annahme 1: Alle Substitutionschiffren sind
anfällig gegen Brute-Force-Angriffe.

Annahme 2: Der Julius-Cäsar-Chiffre ist ein Substitutionschiffre.

Folgerung: Also ist der Julius-Cäsar-Chiffre anfällig
gegen Brute-Force-Angriffe.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 9

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Beispiele

Annahme 1: Alle Borg sind assimiliert worden.
Annahme 2: Seven of Nine ist eine Borg.

Folgerung: Also ist Seven of Nine assimiliert worden.

Annahme 1: Alle Substitutionschiffren sind
anfällig gegen Brute-Force-Angriffe.

Annahme 2: Der Julius-Cäsar-Chiffre ist ein Substitutionschiffre.

Folgerung: Also ist der Julius-Cäsar-Chiffre anfällig
gegen Brute-Force-Angriffe.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 9

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Aristoteles (384 - 322 v.Chr.)
Quelle: http://de.wikipedia.org/wiki/Aristoteles

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 10

http://de.wikipedia.org/wiki/Aristoteles

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Ein komplizierterer formaler Schluss

Annahme 1: Es gibt keine Schweine, die fliegen können.
Annahme 2: Alle Schweine sind gefräßige Tiere.
Annahme 3: Es gibt Schweine.

Folgerung: Also gibt es gefräßige Tiere, die nicht fliegen können.

Die Form des Schlusses ist:

Annahme 1: Es gibt keine A, die B (sind).
Annahme 2: Alle A sind C.
Annahme 3: Es gibt A.

Folgerung: Also gibt es C, die nicht B (sind).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 11

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Ein komplizierterer formaler Schluss

Annahme 1: Es gibt keine Schweine, die fliegen können.
Annahme 2: Alle Schweine sind gefräßige Tiere.
Annahme 3: Es gibt Schweine.

Folgerung: Also gibt es gefräßige Tiere, die nicht fliegen können.

Die Form des Schlusses ist:

Annahme 1: Es gibt keine A, die B (sind).
Annahme 2: Alle A sind C.
Annahme 3: Es gibt A.

Folgerung: Also gibt es C, die nicht B (sind).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 11

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Charles Lutwidge Dodgson a.k.a. Lewis Carroll (1838 – 1898)
Quelle: http://en.wikiquote.org/wiki/Lewis_Carroll

“Contrariwise,” continued Tweedledee, “if it was so, it might be; and if
it were so, it would be; but as it isn’t, it ain’t. That’s logic.”

aus: Alice in Wonderland

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 12

http://en.wikiquote.org/wiki/Lewis_Carroll

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Nicht jeder formale Schluss ist korrekt

Annahme 1: Es gibt Vögel, die fliegen können.
Annahme 2: Es gibt keine fliegenden (Tiere),

die Klavier spielen können.

Folgerung: Also gibt es keine Vögel, die Klavier spielen können.

Kein korrekter Schluss, auch wenn in diesem Fall die Folgerung wahr ist.

Der folgende, offensichtlich falsche, Schluss hat dieselbe Form:

Annahme 1: Es gibt Menschen, die stumm sind.
Annahme 2: Es gibt keine stummen (Lebewesen),

die sprechen können.

Folgerung: Also gibt es keine Menschen, die sprechen können.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 13

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Nicht jeder formale Schluss ist korrekt

Annahme 1: Es gibt Vögel, die fliegen können.
Annahme 2: Es gibt keine fliegenden (Tiere),

die Klavier spielen können.

Folgerung: Also gibt es keine Vögel, die Klavier spielen können.

Kein korrekter Schluss, auch wenn in diesem Fall die Folgerung wahr ist.

Der folgende, offensichtlich falsche, Schluss hat dieselbe Form:

Annahme 1: Es gibt Menschen, die stumm sind.
Annahme 2: Es gibt keine stummen (Lebewesen),

die sprechen können.

Folgerung: Also gibt es keine Menschen, die sprechen können.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 13

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Aber wie merkt man es?

Man kann einen falschen Schluss entlarven, indem man einen formal gleichen
Schluss findet, der klar falsch ist.

Annahme 1: Erbeeren schmecken gut.
Annahme 2: Schlagsahne schmeckt gut.

Folgerung: Also schmecken Erdbeeren mit Schlagsahne gut.

Aber:

Annahme 1: Pizza schmeckt gut.
Annahme 2: Schlagsahne schmeckt gut.

Folgerung: Also schmeckt Pizza mit Schlagsahne gut.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 14

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Aber wie merkt man es?

Man kann einen falschen Schluss entlarven, indem man einen formal gleichen
Schluss findet, der klar falsch ist.

Annahme 1: Erbeeren schmecken gut.
Annahme 2: Schlagsahne schmeckt gut.

Folgerung: Also schmecken Erdbeeren mit Schlagsahne gut.

Aber:

Annahme 1: Pizza schmeckt gut.
Annahme 2: Schlagsahne schmeckt gut.

Folgerung: Also schmeckt Pizza mit Schlagsahne gut.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 14

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Wasons Auswahlaufgabe (Wason’s selection task)

Uns stehen vier Karten der folgenden Art zur Verfügung:
Auf jeder Karte steht auf der Vorderseite eine Ziffer zwischen 0 und 9. Die
Rückseite jeder Karte ist komplett rot oder komplett blau.

Wir sehen Folgendes:

Jemand hat folgende Hypothese aufgestellt:

Wenn auf der Vorderseite eine gerade Zahl steht,
dann ist die Rückseite rot.

Welche Karte(n) müssen Sie umdrehen, um zu überprüfen, ob die Hypothese
stimmt?

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 15

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Wasons Auswahlaufgabe (Wason’s selection task)

Uns stehen vier Karten der folgenden Art zur Verfügung:
Auf jeder Karte steht auf der Vorderseite eine Ziffer zwischen 0 und 9. Die
Rückseite jeder Karte ist komplett rot oder komplett blau.
Wir sehen Folgendes:

Jemand hat folgende Hypothese aufgestellt:

Wenn auf der Vorderseite eine gerade Zahl steht,
dann ist die Rückseite rot.

Welche Karte(n) müssen Sie umdrehen, um zu überprüfen, ob die Hypothese
stimmt?

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 15

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Wasons Auswahlaufgabe (Wason’s selection task)

Uns stehen vier Karten der folgenden Art zur Verfügung:
Auf jeder Karte steht auf der Vorderseite eine Ziffer zwischen 0 und 9. Die
Rückseite jeder Karte ist komplett rot oder komplett blau.
Wir sehen Folgendes:

Jemand hat folgende Hypothese aufgestellt:

Wenn auf der Vorderseite eine gerade Zahl steht,
dann ist die Rückseite rot.

Welche Karte(n) müssen Sie umdrehen, um zu überprüfen, ob die Hypothese
stimmt?

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 15

Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Und was sagen die Simpsons?

Quelle: http://en.

wikipedia.org/wiki/

Simpson_family

Homer: Not a bear in sight. The Bear Patrol
must be working like a charm.

Lisa: That’s specious reasoning, Dad.
Homer: Thank you, dear.
Lisa: By your logic I could claim that

this rock keeps tigers away.
Homer: Oh, how does it work?
Lisa: It doesn’t work.
Homer: Uh-huh.
Lisa: It’s just a stupid rock.
Homer: Uh-huh.
Lisa: But I don’t see any tigers around,

do you?
(Pause)

Homer: Lisa, I want to buy your rock.

[Lisa refuses at first, then takes the exchange]

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 16

http://en.wikipedia.org/wiki/Simpson_family
http://en.wikipedia.org/wiki/Simpson_family
http://en.wikipedia.org/wiki/Simpson_family

Abschnitt 1.2:

Logik in der Informatik

Kapitel 1: Einleitung · Abschnitt 1.2: Logik in der Informatik

Die Rolle der Logik in der Informatik

Halpern, Harper, Immerman, Kolaitis, Vardi, Vianu (2001):

Concepts and methods of logic occupy a central place in computer
science, insomuch that logic has been called
“the calculus of computer science”.

aus: On the unusual effectiveness of logic in computer science, Bulletin of
Symbolic Logic 7(2): 213-236 (2001)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 17

Kapitel 1: Einleitung · Abschnitt 1.2: Logik in der Informatik

Anwendungsbereiche der Logik in der Informatik
• Repräsentation von Wissen (z.B. im Bereich der künstlichen Intelligenz)

[siehe Kapitel 2 und 3]

• Grundlage für Datenbank-Anfragesprachen [siehe Kapitel 3]

• Bestandteil von Programmiersprachen
(z.B. um Bedingungen in IF-Anweisungen zu formulieren) [siehe Kapitel 2]

• automatische Generierung von Beweisen
(so genannte Theorembeweiser) [siehe Kapitel 4]

• Verifikation von
• Schaltkreisen (Ziel: beweise, dass ein Schaltkreis bzw. Chip

”
richtig“

funktioniert)

• Programmen (Ziel: beweise, dass ein Programm gewisse wünschenswerte
Eigenschaften hat)

• Protokollen (Ziel: beweise, dass die Kommunikation zwischen zwei

”
Agenten“, die nach einem gewissen Protokoll abläuft,

”
sicher“ ist — etwa

gegen Abhören oder Manipulation durch dritte; Anwendungsbeispiel:
Internet-Banking)

• Logik-Programmierung [siehe folgende Folien und Kapitel 5]

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 18

Kapitel 1: Einleitung · Abschnitt 1.2: Logik in der Informatik

Anwendungsbereiche der Logik in der Informatik
• Repräsentation von Wissen (z.B. im Bereich der künstlichen Intelligenz)

[siehe Kapitel 2 und 3]

• Grundlage für Datenbank-Anfragesprachen [siehe Kapitel 3]

• Bestandteil von Programmiersprachen
(z.B. um Bedingungen in IF-Anweisungen zu formulieren) [siehe Kapitel 2]

• automatische Generierung von Beweisen
(so genannte Theorembeweiser) [siehe Kapitel 4]

• Verifikation von
• Schaltkreisen (Ziel: beweise, dass ein Schaltkreis bzw. Chip

”
richtig“

funktioniert)

• Programmen (Ziel: beweise, dass ein Programm gewisse wünschenswerte
Eigenschaften hat)

• Protokollen (Ziel: beweise, dass die Kommunikation zwischen zwei

”
Agenten“, die nach einem gewissen Protokoll abläuft,

”
sicher“ ist — etwa

gegen Abhören oder Manipulation durch dritte; Anwendungsbeispiel:
Internet-Banking)

• Logik-Programmierung [siehe folgende Folien und Kapitel 5]

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 18

Kapitel 1: Einleitung · Abschnitt 1.2: Logik in der Informatik

Anwendungsbereiche der Logik in der Informatik
• Repräsentation von Wissen (z.B. im Bereich der künstlichen Intelligenz)

[siehe Kapitel 2 und 3]

• Grundlage für Datenbank-Anfragesprachen [siehe Kapitel 3]

• Bestandteil von Programmiersprachen
(z.B. um Bedingungen in IF-Anweisungen zu formulieren) [siehe Kapitel 2]

• automatische Generierung von Beweisen
(so genannte Theorembeweiser) [siehe Kapitel 4]

• Verifikation von
• Schaltkreisen (Ziel: beweise, dass ein Schaltkreis bzw. Chip

”
richtig“

funktioniert)

• Programmen (Ziel: beweise, dass ein Programm gewisse wünschenswerte
Eigenschaften hat)

• Protokollen (Ziel: beweise, dass die Kommunikation zwischen zwei

”
Agenten“, die nach einem gewissen Protokoll abläuft,

”
sicher“ ist — etwa

gegen Abhören oder Manipulation durch dritte; Anwendungsbeispiel:
Internet-Banking)

• Logik-Programmierung [siehe folgende Folien und Kapitel 5]

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 18

Kapitel 1: Einleitung · Abschnitt 1.2: Logik in der Informatik

Anwendungsbereiche der Logik in der Informatik
• Repräsentation von Wissen (z.B. im Bereich der künstlichen Intelligenz)

[siehe Kapitel 2 und 3]

• Grundlage für Datenbank-Anfragesprachen [siehe Kapitel 3]

• Bestandteil von Programmiersprachen
(z.B. um Bedingungen in IF-Anweisungen zu formulieren) [siehe Kapitel 2]

• automatische Generierung von Beweisen
(so genannte Theorembeweiser) [siehe Kapitel 4]

• Verifikation von
• Schaltkreisen (Ziel: beweise, dass ein Schaltkreis bzw. Chip

”
richtig“

funktioniert)

• Programmen (Ziel: beweise, dass ein Programm gewisse wünschenswerte
Eigenschaften hat)

• Protokollen (Ziel: beweise, dass die Kommunikation zwischen zwei

”
Agenten“, die nach einem gewissen Protokoll abläuft,

”
sicher“ ist — etwa

gegen Abhören oder Manipulation durch dritte; Anwendungsbeispiel:
Internet-Banking)

• Logik-Programmierung [siehe folgende Folien und Kapitel 5]

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 18

Kapitel 1: Einleitung · Abschnitt 1.2: Logik in der Informatik

Anwendungsbereiche der Logik in der Informatik
• Repräsentation von Wissen (z.B. im Bereich der künstlichen Intelligenz)

[siehe Kapitel 2 und 3]

• Grundlage für Datenbank-Anfragesprachen [siehe Kapitel 3]

• Bestandteil von Programmiersprachen
(z.B. um Bedingungen in IF-Anweisungen zu formulieren) [siehe Kapitel 2]

• automatische Generierung von Beweisen
(so genannte Theorembeweiser) [siehe Kapitel 4]

• Verifikation von
• Schaltkreisen (Ziel: beweise, dass ein Schaltkreis bzw. Chip

”
richtig“

funktioniert)

• Programmen (Ziel: beweise, dass ein Programm gewisse wünschenswerte
Eigenschaften hat)

• Protokollen (Ziel: beweise, dass die Kommunikation zwischen zwei

”
Agenten“, die nach einem gewissen Protokoll abläuft,

”
sicher“ ist — etwa

gegen Abhören oder Manipulation durch dritte; Anwendungsbeispiel:
Internet-Banking)

• Logik-Programmierung [siehe folgende Folien und Kapitel 5]

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 18

Kapitel 1: Einleitung · Abschnitt 1.2: Logik in der Informatik

Anwendungsbereiche der Logik in der Informatik
• Repräsentation von Wissen (z.B. im Bereich der künstlichen Intelligenz)

[siehe Kapitel 2 und 3]

• Grundlage für Datenbank-Anfragesprachen [siehe Kapitel 3]

• Bestandteil von Programmiersprachen
(z.B. um Bedingungen in IF-Anweisungen zu formulieren) [siehe Kapitel 2]

• automatische Generierung von Beweisen
(so genannte Theorembeweiser) [siehe Kapitel 4]

• Verifikation von
• Schaltkreisen (Ziel: beweise, dass ein Schaltkreis bzw. Chip

”
richtig“

funktioniert)

• Programmen (Ziel: beweise, dass ein Programm gewisse wünschenswerte
Eigenschaften hat)

• Protokollen (Ziel: beweise, dass die Kommunikation zwischen zwei

”
Agenten“, die nach einem gewissen Protokoll abläuft,

”
sicher“ ist — etwa

gegen Abhören oder Manipulation durch dritte; Anwendungsbeispiel:
Internet-Banking)

• Logik-Programmierung [siehe folgende Folien und Kapitel 5]

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 18

Kapitel 1: Einleitung · Abschnitt 1.2: Logik in der Informatik

Anwendungsbereiche der Logik in der Informatik
• Repräsentation von Wissen (z.B. im Bereich der künstlichen Intelligenz)

[siehe Kapitel 2 und 3]

• Grundlage für Datenbank-Anfragesprachen [siehe Kapitel 3]

• Bestandteil von Programmiersprachen
(z.B. um Bedingungen in IF-Anweisungen zu formulieren) [siehe Kapitel 2]

• automatische Generierung von Beweisen
(so genannte Theorembeweiser) [siehe Kapitel 4]

• Verifikation von
• Schaltkreisen (Ziel: beweise, dass ein Schaltkreis bzw. Chip

”
richtig“

funktioniert)

• Programmen (Ziel: beweise, dass ein Programm gewisse wünschenswerte
Eigenschaften hat)

• Protokollen (Ziel: beweise, dass die Kommunikation zwischen zwei

”
Agenten“, die nach einem gewissen Protokoll abläuft,

”
sicher“ ist — etwa

gegen Abhören oder Manipulation durch dritte; Anwendungsbeispiel:
Internet-Banking)

• Logik-Programmierung [siehe folgende Folien und Kapitel 5]

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 18

Kapitel 1: Einleitung · Abschnitt 1.2: Logik in der Informatik

Anwendungsbereiche der Logik in der Informatik
• Repräsentation von Wissen (z.B. im Bereich der künstlichen Intelligenz)

[siehe Kapitel 2 und 3]

• Grundlage für Datenbank-Anfragesprachen [siehe Kapitel 3]

• Bestandteil von Programmiersprachen
(z.B. um Bedingungen in IF-Anweisungen zu formulieren) [siehe Kapitel 2]

• automatische Generierung von Beweisen
(so genannte Theorembeweiser) [siehe Kapitel 4]

• Verifikation von
• Schaltkreisen (Ziel: beweise, dass ein Schaltkreis bzw. Chip

”
richtig“

funktioniert)

• Programmen (Ziel: beweise, dass ein Programm gewisse wünschenswerte
Eigenschaften hat)

• Protokollen (Ziel: beweise, dass die Kommunikation zwischen zwei

”
Agenten“, die nach einem gewissen Protokoll abläuft,

”
sicher“ ist — etwa

gegen Abhören oder Manipulation durch dritte; Anwendungsbeispiel:
Internet-Banking)

• Logik-Programmierung [siehe folgende Folien und Kapitel 5]
Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 18

Kapitel 1: Einleitung · Abschnitt 1.2: Logik in der Informatik

Einführung in die Logik-Programmierung

Kapitel 1: Einleitung · Abschnitt 1.2: Logik in der Informatik

”
Was“ statt

”
Wie“ am Beispiel von Tiramisu

Tiramisu — Deklarativ
Aus Eigelb, Mascarpone
und in Likör und Kaffee
getränkten Biskuits
hergestellte cremige
Süßspeise

(aus: DUDEN,

Fremdwörterbuch, 6. Auflage)

Tiramisu — Imperativ

1/4 l Milch mit 2 EL Kakao und 2 EL Zucker
aufkochen. 1/4 l starken Kaffee und 4 EL Amaretto
dazugeben.

5 Eigelb mit 75 g Zucker weißschaumig rühren,
dann 500 g Mascarpone dazumischen.

ca 200 g Löffelbiskuit.

Eine Lage Löffelbiskuit in eine Auflaufform legen,
mit der Flüssigkeit tränken und mit der Creme
überziehen. Dann wieder Löffelbiskuit darauflegen,
mit der restlichen Flüssigkeit tränken und mit der
restlichen Creme überziehen.

Über Nacht im Kühlschrank durchziehen lassen und
vor dem Servieren mit Kakao bestäuben.

(aus: Gisela Schweikardt, handschriftliche Kochrezepte)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 19

Kapitel 1: Einleitung · Abschnitt 1.2: Logik in der Informatik

Der große Traum der Informatik

Imperative Vorgehensweise:
Beschreibung, wie das gewünschte Ergebnis erzeugt wird .

”
Wie“

Deklarative Vorgehensweise:
Beschreibung der Eigenschaften des gewünschten Ergebnisses

”
Was“

Traum der Informatik:
Möglichst wenig

”
wie“, möglichst viel

”
was“

D.h.: Automatische Generierung eines Ergebnisses aus seiner Spezifikation

Realität:

Datenbanken: Deklarative Anfragesprache ist Industriestandard (SQL)

Software-Entwicklung: Generierungs-Tools

Programmiersprachen: Logik-Programmierung, insbes. Prolog

ABER: Imperativer Ansatz überwiegt in der Praxis

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 20

Kapitel 1: Einleitung · Abschnitt 1.2: Logik in der Informatik

Der große Traum der Informatik

Imperative Vorgehensweise:
Beschreibung, wie das gewünschte Ergebnis erzeugt wird .

”
Wie“

Deklarative Vorgehensweise:
Beschreibung der Eigenschaften des gewünschten Ergebnisses

”
Was“

Traum der Informatik:
Möglichst wenig

”
wie“, möglichst viel

”
was“

D.h.: Automatische Generierung eines Ergebnisses aus seiner Spezifikation

Realität:

Datenbanken: Deklarative Anfragesprache ist Industriestandard (SQL)

Software-Entwicklung: Generierungs-Tools

Programmiersprachen: Logik-Programmierung, insbes. Prolog

ABER: Imperativer Ansatz überwiegt in der Praxis

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 20

Kapitel 1: Einleitung · Abschnitt 1.2: Logik in der Informatik

Der große Traum der Informatik

Imperative Vorgehensweise:
Beschreibung, wie das gewünschte Ergebnis erzeugt wird .

”
Wie“

Deklarative Vorgehensweise:
Beschreibung der Eigenschaften des gewünschten Ergebnisses

”
Was“

Traum der Informatik:
Möglichst wenig

”
wie“, möglichst viel

”
was“

D.h.: Automatische Generierung eines Ergebnisses aus seiner Spezifikation

Realität:

Datenbanken: Deklarative Anfragesprache ist Industriestandard (SQL)

Software-Entwicklung: Generierungs-Tools

Programmiersprachen: Logik-Programmierung, insbes. Prolog

ABER: Imperativer Ansatz überwiegt in der Praxis

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 20

Kapitel 1: Einleitung · Abschnitt 1.2: Logik in der Informatik

Der große Traum der Informatik

Imperative Vorgehensweise:
Beschreibung, wie das gewünschte Ergebnis erzeugt wird .

”
Wie“

Deklarative Vorgehensweise:
Beschreibung der Eigenschaften des gewünschten Ergebnisses

”
Was“

Traum der Informatik:
Möglichst wenig

”
wie“, möglichst viel

”
was“

D.h.: Automatische Generierung eines Ergebnisses aus seiner Spezifikation

Realität:

Datenbanken: Deklarative Anfragesprache ist Industriestandard (SQL)

Software-Entwicklung: Generierungs-Tools

Programmiersprachen: Logik-Programmierung, insbes. Prolog

ABER: Imperativer Ansatz überwiegt in der Praxis

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 20

Kapitel 1: Einleitung · Abschnitt 1.2: Logik in der Informatik

Der große Traum der Informatik

Imperative Vorgehensweise:
Beschreibung, wie das gewünschte Ergebnis erzeugt wird .

”
Wie“

Deklarative Vorgehensweise:
Beschreibung der Eigenschaften des gewünschten Ergebnisses

”
Was“

Traum der Informatik:
Möglichst wenig

”
wie“, möglichst viel

”
was“

D.h.: Automatische Generierung eines Ergebnisses aus seiner Spezifikation

Realität:

Datenbanken: Deklarative Anfragesprache ist Industriestandard (SQL)

Software-Entwicklung: Generierungs-Tools

Programmiersprachen: Logik-Programmierung, insbes. Prolog

ABER: Imperativer Ansatz überwiegt in der Praxis

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 20

Kapitel 1: Einleitung · Abschnitt 1.2: Logik in der Informatik

Logik-Programmierung

• Logik-Programmierung bezeichnet die Idee, Logik direkt als
Programmiersprache zu verwenden.

• Logik-Programmierung (in Sprachen wie Prolog) und die verwandte
funktionale Programmierung (in Sprachen wie LISP, ML, Haskell) sind
deklarativ,
im Gegensatz zur imperativen Programmierung (in Sprachen wie Java, C,
Perl).

• Die Idee der deklarativen Programmierung besteht darin, dem Computer
lediglich sein Wissen über das Anwendungsszenario und sein Ziel mitzuteilen
und dann die Lösung des Problems dem Computer zu überlassen.

Bei der imperativen Programmierung hingegen gibt man dem Computer die
einzelnen Schritte zur Lösung des Problems vor.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 21

Kapitel 1: Einleitung · Abschnitt 1.2: Logik in der Informatik

Logik-Programmierung

• Logik-Programmierung bezeichnet die Idee, Logik direkt als
Programmiersprache zu verwenden.

• Logik-Programmierung (in Sprachen wie Prolog) und die verwandte
funktionale Programmierung (in Sprachen wie LISP, ML, Haskell) sind
deklarativ,
im Gegensatz zur imperativen Programmierung (in Sprachen wie Java, C,
Perl).

• Die Idee der deklarativen Programmierung besteht darin, dem Computer
lediglich sein Wissen über das Anwendungsszenario und sein Ziel mitzuteilen
und dann die Lösung des Problems dem Computer zu überlassen.

Bei der imperativen Programmierung hingegen gibt man dem Computer die
einzelnen Schritte zur Lösung des Problems vor.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 21

Kapitel 1: Einleitung · Abschnitt 1.2: Logik in der Informatik

Logik-Programmierung

• Logik-Programmierung bezeichnet die Idee, Logik direkt als
Programmiersprache zu verwenden.

• Logik-Programmierung (in Sprachen wie Prolog) und die verwandte
funktionale Programmierung (in Sprachen wie LISP, ML, Haskell) sind
deklarativ,
im Gegensatz zur imperativen Programmierung (in Sprachen wie Java, C,
Perl).

• Die Idee der deklarativen Programmierung besteht darin, dem Computer
lediglich sein Wissen über das Anwendungsszenario und sein Ziel mitzuteilen
und dann die Lösung des Problems dem Computer zu überlassen.

Bei der imperativen Programmierung hingegen gibt man dem Computer die
einzelnen Schritte zur Lösung des Problems vor.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 21

Kapitel 1: Einleitung · Abschnitt 1.2: Logik in der Informatik

Prolog

• Prolog

• ist die wichtigste logische Programmiersprache,

• geht zurück auf Kowalski und Colmerauer
(Anfang der 1970er Jahre, Marseilles),

• steht für (franz.) Programmation en logique.

• Mitte/Ende der 1970er Jahre: effiziente Prolog-Implementierung durch den
von Warren (in Edinburgh) entwickelten Prolog-10 Compiler.

• Aus Effizienzgründen werden in Prolog die abstrakten Ideen der logischen
Programmierung nicht in Reinform umgesetzt, Prolog hat auch

”
nichtlogische“ Elemente.

• Prolog ist eine voll entwickelte und mächtige Programmiersprache, die vor
allem für symbolische Berechnungsprobleme geeignet ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 22

Kapitel 1: Einleitung · Abschnitt 1.2: Logik in der Informatik

Prolog

• Prolog

• ist die wichtigste logische Programmiersprache,

• geht zurück auf Kowalski und Colmerauer
(Anfang der 1970er Jahre, Marseilles),

• steht für (franz.) Programmation en logique.

• Mitte/Ende der 1970er Jahre: effiziente Prolog-Implementierung durch den
von Warren (in Edinburgh) entwickelten Prolog-10 Compiler.

• Aus Effizienzgründen werden in Prolog die abstrakten Ideen der logischen
Programmierung nicht in Reinform umgesetzt, Prolog hat auch

”
nichtlogische“ Elemente.

• Prolog ist eine voll entwickelte und mächtige Programmiersprache, die vor
allem für symbolische Berechnungsprobleme geeignet ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 22

Kapitel 1: Einleitung · Abschnitt 1.2: Logik in der Informatik

Prolog

• Prolog

• ist die wichtigste logische Programmiersprache,

• geht zurück auf Kowalski und Colmerauer
(Anfang der 1970er Jahre, Marseilles),

• steht für (franz.) Programmation en logique.

• Mitte/Ende der 1970er Jahre: effiziente Prolog-Implementierung durch den
von Warren (in Edinburgh) entwickelten Prolog-10 Compiler.

• Aus Effizienzgründen werden in Prolog die abstrakten Ideen der logischen
Programmierung nicht in Reinform umgesetzt, Prolog hat auch

”
nichtlogische“ Elemente.

• Prolog ist eine voll entwickelte und mächtige Programmiersprache, die vor
allem für symbolische Berechnungsprobleme geeignet ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 22

Kapitel 1: Einleitung · Abschnitt 1.2: Logik in der Informatik

Anwendungen

Die wichtigsten Anwendungsgebiete sind die künstliche Intelligenz und die
Computerlinguistik.

Beispiele
Das Interface für natürliche Sprache

• in der International Space Station wurde von der NASA

• beim IBM Watson System, das in 2011 die Jeopardy! Man vs. Machine
Challenge gewonnen hat, wurde

in Prolog implementiert.

Mehr Informationen dazu finden sich z.B. unter
https://sicstus.sics.se/customers.html und
http://www.cs.nmsu.edu/ALP/2011/03/

natural-language-processing-with-prolog-in-the-ibm-watson-system/

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 23

https://sicstus.sics.se/customers.html
http://www.cs.nmsu.edu/ALP/2011/03/natural-language-processing-with-prolog-in-the-ibm-watson-system/
http://www.cs.nmsu.edu/ALP/2011/03/natural-language-processing-with-prolog-in-the-ibm-watson-system/

Kapitel 1: Einleitung · Abschnitt 1.2: Logik in der Informatik

Anwendungen

Die wichtigsten Anwendungsgebiete sind die künstliche Intelligenz und die
Computerlinguistik.

Beispiele
Das Interface für natürliche Sprache

• in der International Space Station wurde von der NASA

• beim IBM Watson System, das in 2011 die Jeopardy! Man vs. Machine
Challenge gewonnen hat, wurde

in Prolog implementiert.

Mehr Informationen dazu finden sich z.B. unter
https://sicstus.sics.se/customers.html und
http://www.cs.nmsu.edu/ALP/2011/03/

natural-language-processing-with-prolog-in-the-ibm-watson-system/

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 23

https://sicstus.sics.se/customers.html
http://www.cs.nmsu.edu/ALP/2011/03/natural-language-processing-with-prolog-in-the-ibm-watson-system/
http://www.cs.nmsu.edu/ALP/2011/03/natural-language-processing-with-prolog-in-the-ibm-watson-system/

Kapitel 1: Einleitung · Abschnitt 1.2: Logik in der Informatik

Anwendungen

Die wichtigsten Anwendungsgebiete sind die künstliche Intelligenz und die
Computerlinguistik.

Beispiele
Das Interface für natürliche Sprache

• in der International Space Station wurde von der NASA

• beim IBM Watson System, das in 2011 die Jeopardy! Man vs. Machine
Challenge gewonnen hat, wurde

in Prolog implementiert.

Mehr Informationen dazu finden sich z.B. unter
https://sicstus.sics.se/customers.html und
http://www.cs.nmsu.edu/ALP/2011/03/

natural-language-processing-with-prolog-in-the-ibm-watson-system/

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 23

https://sicstus.sics.se/customers.html
http://www.cs.nmsu.edu/ALP/2011/03/natural-language-processing-with-prolog-in-the-ibm-watson-system/
http://www.cs.nmsu.edu/ALP/2011/03/natural-language-processing-with-prolog-in-the-ibm-watson-system/

Kapitel 1: Einleitung · Abschnitt 1.2: Logik in der Informatik

Learn Prolog Now!

Im Rahmen der Übungsaufgaben zur Vorlesung werden wir jede Woche eins der
12 Kapitel des Buchs

”
Learn Prolog Now!“ von Patrick Blackburn, Johan Bos und Kristina
Striegnitz (Kings College Publications, 2006)

. . . auch erhältlich als Online-Kurs unter http://www.

learnprolognow.org

durcharbeiten.

Als Unterstützung dazu gibt es jede Woche eine 2-stündige Prolog-Übung.

Am Ende des Semesters, in Kapitel 5, werden wir von Prolog abstrahieren und
uns die Grundprinzipien der Logik-Programmierung anschauen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 24

http://www.learnprolognow.org
http://www.learnprolognow.org

Kapitel 1: Einleitung · Abschnitt 1.2: Logik in der Informatik

Learn Prolog Now!

Im Rahmen der Übungsaufgaben zur Vorlesung werden wir jede Woche eins der
12 Kapitel des Buchs

”
Learn Prolog Now!“ von Patrick Blackburn, Johan Bos und Kristina
Striegnitz (Kings College Publications, 2006)

. . . auch erhältlich als Online-Kurs unter http://www.

learnprolognow.org

durcharbeiten.
Als Unterstützung dazu gibt es jede Woche eine 2-stündige Prolog-Übung.

Am Ende des Semesters, in Kapitel 5, werden wir von Prolog abstrahieren und
uns die Grundprinzipien der Logik-Programmierung anschauen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 24

http://www.learnprolognow.org
http://www.learnprolognow.org

Kapitel 1: Einleitung · Abschnitt 1.2: Logik in der Informatik

Learn Prolog Now!

Im Rahmen der Übungsaufgaben zur Vorlesung werden wir jede Woche eins der
12 Kapitel des Buchs

”
Learn Prolog Now!“ von Patrick Blackburn, Johan Bos und Kristina
Striegnitz (Kings College Publications, 2006)

. . . auch erhältlich als Online-Kurs unter http://www.

learnprolognow.org

durcharbeiten.
Als Unterstützung dazu gibt es jede Woche eine 2-stündige Prolog-Übung.

Am Ende des Semesters, in Kapitel 5, werden wir von Prolog abstrahieren und
uns die Grundprinzipien der Logik-Programmierung anschauen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 24

http://www.learnprolognow.org
http://www.learnprolognow.org

Abschnitt 1.3:

Lernziele, Semesterausblick und Literatur

Kapitel 1: Einleitung · Abschnitt 1.3: Lernziele, Semesterausblick und Literatur

Lern- und Qualifikationsziele

Aus der Modulbeschreibung:

Studierende erlangen die Fähigkeit, Sachverhalte in geeigneten formalen
Systemen zu formalisieren und die grundlegenden Begriffe und Ergeb-
nisse der mathematischen Logik zu verstehen und anzuwenden. Darüber
hinaus erlernen sie anhand der deklarativen Programmiersprache Prolog
ein neues Programmierparadigma.

Und was sagt Goethe dazu?

Mein teurer Freund, ich rat Euch drum
Zuerst Collegium Logicum.
Da wird der Geist Euch wohl dressiert,
In spanische Stiefeln eingeschnürt,
Daß er bedächtiger so fortan
Hinschleiche die Gedankenbahn,
Und nicht etwa, die Kreuz und Quer,
Irrlichteliere hin und her.

Mephistopheles in Faust

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 25

Kapitel 1: Einleitung · Abschnitt 1.3: Lernziele, Semesterausblick und Literatur

Lern- und Qualifikationsziele

Aus der Modulbeschreibung:

Studierende erlangen die Fähigkeit, Sachverhalte in geeigneten formalen
Systemen zu formalisieren und die grundlegenden Begriffe und Ergeb-
nisse der mathematischen Logik zu verstehen und anzuwenden. Darüber
hinaus erlernen sie anhand der deklarativen Programmiersprache Prolog
ein neues Programmierparadigma.

Und was sagt Goethe dazu?

Mein teurer Freund, ich rat Euch drum
Zuerst Collegium Logicum.
Da wird der Geist Euch wohl dressiert,
In spanische Stiefeln eingeschnürt,
Daß er bedächtiger so fortan
Hinschleiche die Gedankenbahn,
Und nicht etwa, die Kreuz und Quer,
Irrlichteliere hin und her.

Mephistopheles in Faust

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 25

Kapitel 1: Einleitung · Abschnitt 1.3: Lernziele, Semesterausblick und Literatur

Semesterüberblick

1. Einleitung (dieses Kapitel)

2. Aussagenlogik
Syntax und Semantik, Normalformen, Modellierung,
Resolution, Erfüllbarkeitsalgorithmen

3. Logik erster Stufe
Syntax und Semantik, Normalformen, Modellierung,
Nichtausdrückbarkeit

4. Grundlagen des automatischen Schließens
Sequenzenkalkül, Vollständigkeits- und Endlichkeitssatz,
Grenzen der Berechenbarkeit, automatische Theorembeweiser

5. Grundlagen der Logik-Programmierung
Syntax und deklarative Semantik von Logikprogrammen, Ableitungen und
Beweisbäume, operationelle Semantik, Unifikation

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 26

Kapitel 1: Einleitung · Abschnitt 1.3: Lernziele, Semesterausblick und Literatur

Semesterüberblick

1. Einleitung (dieses Kapitel)

2. Aussagenlogik
Syntax und Semantik, Normalformen, Modellierung,
Resolution, Erfüllbarkeitsalgorithmen

3. Logik erster Stufe
Syntax und Semantik, Normalformen, Modellierung,
Nichtausdrückbarkeit

4. Grundlagen des automatischen Schließens
Sequenzenkalkül, Vollständigkeits- und Endlichkeitssatz,
Grenzen der Berechenbarkeit, automatische Theorembeweiser

5. Grundlagen der Logik-Programmierung
Syntax und deklarative Semantik von Logikprogrammen, Ableitungen und
Beweisbäume, operationelle Semantik, Unifikation

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 26

Kapitel 1: Einleitung · Abschnitt 1.3: Lernziele, Semesterausblick und Literatur

Semesterüberblick

1. Einleitung (dieses Kapitel)

2. Aussagenlogik
Syntax und Semantik, Normalformen, Modellierung,
Resolution, Erfüllbarkeitsalgorithmen

3. Logik erster Stufe
Syntax und Semantik, Normalformen, Modellierung,
Nichtausdrückbarkeit

4. Grundlagen des automatischen Schließens
Sequenzenkalkül, Vollständigkeits- und Endlichkeitssatz,
Grenzen der Berechenbarkeit, automatische Theorembeweiser

5. Grundlagen der Logik-Programmierung
Syntax und deklarative Semantik von Logikprogrammen, Ableitungen und
Beweisbäume, operationelle Semantik, Unifikation

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 26

Kapitel 1: Einleitung · Abschnitt 1.3: Lernziele, Semesterausblick und Literatur

Semesterüberblick

1. Einleitung (dieses Kapitel)

2. Aussagenlogik
Syntax und Semantik, Normalformen, Modellierung,
Resolution, Erfüllbarkeitsalgorithmen

3. Logik erster Stufe
Syntax und Semantik, Normalformen, Modellierung,
Nichtausdrückbarkeit

4. Grundlagen des automatischen Schließens
Sequenzenkalkül, Vollständigkeits- und Endlichkeitssatz,
Grenzen der Berechenbarkeit, automatische Theorembeweiser

5. Grundlagen der Logik-Programmierung
Syntax und deklarative Semantik von Logikprogrammen, Ableitungen und
Beweisbäume, operationelle Semantik, Unifikation

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 26

Kapitel 1: Einleitung · Abschnitt 1.3: Lernziele, Semesterausblick und Literatur

Semesterüberblick

1. Einleitung (dieses Kapitel)

2. Aussagenlogik
Syntax und Semantik, Normalformen, Modellierung,
Resolution, Erfüllbarkeitsalgorithmen

3. Logik erster Stufe
Syntax und Semantik, Normalformen, Modellierung,
Nichtausdrückbarkeit

4. Grundlagen des automatischen Schließens
Sequenzenkalkül, Vollständigkeits- und Endlichkeitssatz,
Grenzen der Berechenbarkeit, automatische Theorembeweiser

5. Grundlagen der Logik-Programmierung
Syntax und deklarative Semantik von Logikprogrammen, Ableitungen und
Beweisbäume, operationelle Semantik, Unifikation

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 26

Kapitel 1: Einleitung · Abschnitt 1.3: Lernziele, Semesterausblick und Literatur

Literaturempfehlungen

Folgende Schriften werden zur Vertiefung des Vorlesungsstoffes empfohlen:

1. dieses Vorlesungsskript zur Veranstaltung
Logik in der Informatik

2. die Lehrbücher [?, ?, ?] und das Buch [?].

Als Ergänzung seien auch folgende Lehrbücher genannt:

• [?] (Einführung in die mathematische Logik)

• [?] (Einführung in die Mengenlehre)

• [?, ?] (Bücher zum Thema Logik und Komplexität)

• [?, ?, ?] (weiterführende Literatur im Bereich Logik und automatisches
Schließen)

• [?] (weiterführende Literatur zum Thema Logik-Programmierung und
Prolog)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 27

Kapitel 1: Einleitung · Abschnitt 1.3: Lernziele, Semesterausblick und Literatur

Literaturempfehlungen

Folgende Schriften werden zur Vertiefung des Vorlesungsstoffes empfohlen:

1. dieses Vorlesungsskript zur Veranstaltung
Logik in der Informatik

2. die Lehrbücher [?, ?, ?] und das Buch [?].

Als Ergänzung seien auch folgende Lehrbücher genannt:

• [?] (Einführung in die mathematische Logik)

• [?] (Einführung in die Mengenlehre)

• [?, ?] (Bücher zum Thema Logik und Komplexität)

• [?, ?, ?] (weiterführende Literatur im Bereich Logik und automatisches
Schließen)

• [?] (weiterführende Literatur zum Thema Logik-Programmierung und
Prolog)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 27

Kapitel 2:

Aussagenlogik

Abschnitt 2.1:

Syntax und Semantik

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Aussagen

Die Frage
”
Was ist eigentlich ein Wort?“ ist analog der

”
Was ist eine

Schachfigur?“ Ludwig Wittgenstein, Philosophische Untersuchungen

• Aussagen (im Sinne der Aussagenlogik) sind sprachliche Gebilde, die
entweder wahr oder falsch sind.

• Aussagen können mit Junktoren wie nicht, und, oder oder wenn . . . dann
zu komplexeren Aussagen verknüpft werden.

• Aussagenlogik beschäftigt sich mit allgemeinen Prinzipien des korrekten
Argumentierens und Schließens mit Aussagen und Kombinationen von
Aussagen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 28

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Aussagen

Die Frage
”
Was ist eigentlich ein Wort?“ ist analog der

”
Was ist eine

Schachfigur?“ Ludwig Wittgenstein, Philosophische Untersuchungen

• Aussagen (im Sinne der Aussagenlogik) sind sprachliche Gebilde, die
entweder wahr oder falsch sind.

• Aussagen können mit Junktoren wie nicht, und, oder oder wenn . . . dann
zu komplexeren Aussagen verknüpft werden.

• Aussagenlogik beschäftigt sich mit allgemeinen Prinzipien des korrekten
Argumentierens und Schließens mit Aussagen und Kombinationen von
Aussagen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 28

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Aussagen

Die Frage
”
Was ist eigentlich ein Wort?“ ist analog der

”
Was ist eine

Schachfigur?“ Ludwig Wittgenstein, Philosophische Untersuchungen

• Aussagen (im Sinne der Aussagenlogik) sind sprachliche Gebilde, die
entweder wahr oder falsch sind.

• Aussagen können mit Junktoren wie nicht, und, oder oder wenn . . . dann
zu komplexeren Aussagen verknüpft werden.

• Aussagenlogik beschäftigt sich mit allgemeinen Prinzipien des korrekten
Argumentierens und Schließens mit Aussagen und Kombinationen von
Aussagen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 28

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Aussagen

Die Frage
”
Was ist eigentlich ein Wort?“ ist analog der

”
Was ist eine

Schachfigur?“ Ludwig Wittgenstein, Philosophische Untersuchungen

• Aussagen (im Sinne der Aussagenlogik) sind sprachliche Gebilde, die
entweder wahr oder falsch sind.

• Aussagen können mit Junktoren wie nicht, und, oder oder wenn . . . dann
zu komplexeren Aussagen verknüpft werden.

• Aussagenlogik beschäftigt sich mit allgemeinen Prinzipien des korrekten
Argumentierens und Schließens mit Aussagen und Kombinationen von
Aussagen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 28

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Ludwig Wittgenstein (1889 – 1951)
Quelle: http://en.wikipedia.org/wiki/Ludwig_Wittgenstein

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 29

http://en.wikipedia.org/wiki/Ludwig_Wittgenstein

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Beispiel 2.1 (Geburtstagsfeier)

Fred möchte mit möglichst vielen seiner Freunde Anne, Bernd, Christine, Dirk
und Eva seinen Geburtstag feiern. Er weiß Folgendes:
Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf keinen Fall
kommen. Und Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur
Feier kommen. Aber Eva kommt allenfalls dann, wenn Christine und Dirk
kommen. Andererseits kommt Christine nur dann, wenn auch Anne kommt.
Anne wiederum wird nur dann kommen, wenn auch Bernd oder Christine dabei
sind.

Frage: Wie viele Freunde (und welche) werden im besten Fall zur Party
kommen?

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 30

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Das Wissen, das in dem Text wiedergegeben ist, lässt sich in
”
atomare

Aussagen“ zerlegen, die mit Junktoren verknüpft werden können.
Die atomaren Aussagen, um die sich der Text dreht, kürzen wir folgendermaßen
ab:

A : Anne kommt zur Feier

B : Bernd kommt zur Feier

C : Christine kommt zur Feier

D : Dirk kommt zur Feier

E : Eva kommt zur Feier

Das im Text zusammengefasste Wissen lässt sich wie folgt repräsentieren.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 31

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

(1) Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf keinen
Fall kommen.

kurz: Wenn (B und A), dann nicht E kürzer: (B ∧ A) → ¬E

(2) Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier
kommen.

kurz: Wenn (B und E), dann nicht D kürzer: (B ∧ E) → ¬D

(3) Eva kommt allenfalls dann, wenn Christine und Dirk kommen.

kurz: Wenn E , dann (C und D) kürzer: E → (C ∧ D)

(4) Christine kommt nur dann, wenn auch Anne kommt.

kurz: Wenn C , dann A kürzer: C → A

(5) Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind.

kurz: Wenn A, dann (B oder C) kürzer: A → (B ∨ C)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 32

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

(1) Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf keinen
Fall kommen.

kurz: Wenn (B und A), dann nicht E

kürzer: (B ∧ A) → ¬E

(2) Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier
kommen.

kurz: Wenn (B und E), dann nicht D kürzer: (B ∧ E) → ¬D

(3) Eva kommt allenfalls dann, wenn Christine und Dirk kommen.

kurz: Wenn E , dann (C und D) kürzer: E → (C ∧ D)

(4) Christine kommt nur dann, wenn auch Anne kommt.

kurz: Wenn C , dann A kürzer: C → A

(5) Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind.

kurz: Wenn A, dann (B oder C) kürzer: A → (B ∨ C)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 32

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

(1) Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf keinen
Fall kommen.

kurz: Wenn (B und A), dann nicht E kürzer: (B ∧ A) → ¬E

(2) Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier
kommen.

kurz: Wenn (B und E), dann nicht D kürzer: (B ∧ E) → ¬D

(3) Eva kommt allenfalls dann, wenn Christine und Dirk kommen.

kurz: Wenn E , dann (C und D) kürzer: E → (C ∧ D)

(4) Christine kommt nur dann, wenn auch Anne kommt.

kurz: Wenn C , dann A kürzer: C → A

(5) Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind.

kurz: Wenn A, dann (B oder C) kürzer: A → (B ∨ C)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 32

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

(1) Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf keinen
Fall kommen.

kurz: Wenn (B und A), dann nicht E kürzer: (B ∧ A) → ¬E

(2) Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier
kommen.

kurz: Wenn (B und E), dann nicht D

kürzer: (B ∧ E) → ¬D

(3) Eva kommt allenfalls dann, wenn Christine und Dirk kommen.

kurz: Wenn E , dann (C und D) kürzer: E → (C ∧ D)

(4) Christine kommt nur dann, wenn auch Anne kommt.

kurz: Wenn C , dann A kürzer: C → A

(5) Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind.

kurz: Wenn A, dann (B oder C) kürzer: A → (B ∨ C)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 32

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

(1) Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf keinen
Fall kommen.

kurz: Wenn (B und A), dann nicht E kürzer: (B ∧ A) → ¬E

(2) Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier
kommen.

kurz: Wenn (B und E), dann nicht D kürzer: (B ∧ E) → ¬D

(3) Eva kommt allenfalls dann, wenn Christine und Dirk kommen.

kurz: Wenn E , dann (C und D) kürzer: E → (C ∧ D)

(4) Christine kommt nur dann, wenn auch Anne kommt.

kurz: Wenn C , dann A kürzer: C → A

(5) Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind.

kurz: Wenn A, dann (B oder C) kürzer: A → (B ∨ C)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 32

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

(1) Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf keinen
Fall kommen.

kurz: Wenn (B und A), dann nicht E kürzer: (B ∧ A) → ¬E

(2) Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier
kommen.

kurz: Wenn (B und E), dann nicht D kürzer: (B ∧ E) → ¬D

(3) Eva kommt allenfalls dann, wenn Christine und Dirk kommen.

kurz: Wenn E , dann (C und D)

kürzer: E → (C ∧ D)

(4) Christine kommt nur dann, wenn auch Anne kommt.

kurz: Wenn C , dann A kürzer: C → A

(5) Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind.

kurz: Wenn A, dann (B oder C) kürzer: A → (B ∨ C)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 32

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

(1) Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf keinen
Fall kommen.

kurz: Wenn (B und A), dann nicht E kürzer: (B ∧ A) → ¬E

(2) Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier
kommen.

kurz: Wenn (B und E), dann nicht D kürzer: (B ∧ E) → ¬D

(3) Eva kommt allenfalls dann, wenn Christine und Dirk kommen.

kurz: Wenn E , dann (C und D) kürzer: E → (C ∧ D)

(4) Christine kommt nur dann, wenn auch Anne kommt.

kurz: Wenn C , dann A kürzer: C → A

(5) Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind.

kurz: Wenn A, dann (B oder C) kürzer: A → (B ∨ C)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 32

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

(1) Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf keinen
Fall kommen.

kurz: Wenn (B und A), dann nicht E kürzer: (B ∧ A) → ¬E

(2) Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier
kommen.

kurz: Wenn (B und E), dann nicht D kürzer: (B ∧ E) → ¬D

(3) Eva kommt allenfalls dann, wenn Christine und Dirk kommen.

kurz: Wenn E , dann (C und D) kürzer: E → (C ∧ D)

(4) Christine kommt nur dann, wenn auch Anne kommt.

kurz: Wenn C , dann A

kürzer: C → A

(5) Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind.

kurz: Wenn A, dann (B oder C) kürzer: A → (B ∨ C)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 32

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

(1) Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf keinen
Fall kommen.

kurz: Wenn (B und A), dann nicht E kürzer: (B ∧ A) → ¬E

(2) Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier
kommen.

kurz: Wenn (B und E), dann nicht D kürzer: (B ∧ E) → ¬D

(3) Eva kommt allenfalls dann, wenn Christine und Dirk kommen.

kurz: Wenn E , dann (C und D) kürzer: E → (C ∧ D)

(4) Christine kommt nur dann, wenn auch Anne kommt.

kurz: Wenn C , dann A kürzer: C → A

(5) Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind.

kurz: Wenn A, dann (B oder C) kürzer: A → (B ∨ C)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 32

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

(1) Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf keinen
Fall kommen.

kurz: Wenn (B und A), dann nicht E kürzer: (B ∧ A) → ¬E

(2) Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier
kommen.

kurz: Wenn (B und E), dann nicht D kürzer: (B ∧ E) → ¬D

(3) Eva kommt allenfalls dann, wenn Christine und Dirk kommen.

kurz: Wenn E , dann (C und D) kürzer: E → (C ∧ D)

(4) Christine kommt nur dann, wenn auch Anne kommt.

kurz: Wenn C , dann A kürzer: C → A

(5) Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind.

kurz: Wenn A, dann (B oder C)

kürzer: A → (B ∨ C)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 32

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

(1) Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf keinen
Fall kommen.

kurz: Wenn (B und A), dann nicht E kürzer: (B ∧ A) → ¬E

(2) Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier
kommen.

kurz: Wenn (B und E), dann nicht D kürzer: (B ∧ E) → ¬D

(3) Eva kommt allenfalls dann, wenn Christine und Dirk kommen.

kurz: Wenn E , dann (C und D) kürzer: E → (C ∧ D)

(4) Christine kommt nur dann, wenn auch Anne kommt.

kurz: Wenn C , dann A kürzer: C → A

(5) Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind.

kurz: Wenn A, dann (B oder C) kürzer: A → (B ∨ C)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 32

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Fallstricke natürlichsprachlicher Aussagen
Die Verwendung der Wörter und, wenn . . . dann, oder, nicht in der
Alltagssprache entspricht nicht immer exakt unseren logischen Junktoren.

(1) Anne hat mit dem Kaffeetrinken aufgehört.

kurz: V und nicht G kürzer: V ∧ ¬G

(2) Anne hat nicht mit dem Kaffeetrinken aufgehört.

kurz: V und G kürzer: V ∧ G

Ist (2) die Negation von (1)? In dem Fall, dass Anne noch nie Kaffee getrunken
hat, ist keine der beiden Aussagen wahr.

V : Anne war in der Vergangenheit Kaffeetrinkerin.

G : Anne ist zur Zeit Kaffeetrinkerin.

Zwei weitere Beispiele:

• Ich werde mir ein rotes oder ein blaues Fahrrad kaufen.

• Wenn Regen vorhergesagt ist, dann nehme ich einen Schirm mit.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 33

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Fallstricke natürlichsprachlicher Aussagen
Die Verwendung der Wörter und, wenn . . . dann, oder, nicht in der
Alltagssprache entspricht nicht immer exakt unseren logischen Junktoren.

(1) Anne hat mit dem Kaffeetrinken aufgehört.

kurz: V und nicht G kürzer: V ∧ ¬G

(2) Anne hat nicht mit dem Kaffeetrinken aufgehört.

kurz: V und G kürzer: V ∧ G

Ist (2) die Negation von (1)?

In dem Fall, dass Anne noch nie Kaffee getrunken
hat, ist keine der beiden Aussagen wahr.

V : Anne war in der Vergangenheit Kaffeetrinkerin.

G : Anne ist zur Zeit Kaffeetrinkerin.

Zwei weitere Beispiele:

• Ich werde mir ein rotes oder ein blaues Fahrrad kaufen.

• Wenn Regen vorhergesagt ist, dann nehme ich einen Schirm mit.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 33

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Fallstricke natürlichsprachlicher Aussagen
Die Verwendung der Wörter und, wenn . . . dann, oder, nicht in der
Alltagssprache entspricht nicht immer exakt unseren logischen Junktoren.

(1) Anne hat mit dem Kaffeetrinken aufgehört.

kurz: V und nicht G kürzer: V ∧ ¬G

(2) Anne hat nicht mit dem Kaffeetrinken aufgehört.

kurz: V und G kürzer: V ∧ G

Ist (2) die Negation von (1)? In dem Fall, dass Anne noch nie Kaffee getrunken
hat, ist keine der beiden Aussagen wahr.

V : Anne war in der Vergangenheit Kaffeetrinkerin.

G : Anne ist zur Zeit Kaffeetrinkerin.

Zwei weitere Beispiele:

• Ich werde mir ein rotes oder ein blaues Fahrrad kaufen.

• Wenn Regen vorhergesagt ist, dann nehme ich einen Schirm mit.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 33

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Fallstricke natürlichsprachlicher Aussagen
Die Verwendung der Wörter und, wenn . . . dann, oder, nicht in der
Alltagssprache entspricht nicht immer exakt unseren logischen Junktoren.

(1) Anne hat mit dem Kaffeetrinken aufgehört.

kurz: V und nicht G kürzer: V ∧ ¬G

(2) Anne hat nicht mit dem Kaffeetrinken aufgehört.

kurz: V und G kürzer: V ∧ G

Ist (2) die Negation von (1)? In dem Fall, dass Anne noch nie Kaffee getrunken
hat, ist keine der beiden Aussagen wahr.

V : Anne war in der Vergangenheit Kaffeetrinkerin.

G : Anne ist zur Zeit Kaffeetrinkerin.

Zwei weitere Beispiele:

• Ich werde mir ein rotes oder ein blaues Fahrrad kaufen.

• Wenn Regen vorhergesagt ist, dann nehme ich einen Schirm mit.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 33

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Fallstricke natürlichsprachlicher Aussagen
Die Verwendung der Wörter und, wenn . . . dann, oder, nicht in der
Alltagssprache entspricht nicht immer exakt unseren logischen Junktoren.

(1) Anne hat mit dem Kaffeetrinken aufgehört.

kurz: V und nicht G kürzer: V ∧ ¬G

(2) Anne hat nicht mit dem Kaffeetrinken aufgehört.

kurz: V und G kürzer: V ∧ G

Ist (2) die Negation von (1)? In dem Fall, dass Anne noch nie Kaffee getrunken
hat, ist keine der beiden Aussagen wahr.

V : Anne war in der Vergangenheit Kaffeetrinkerin.

G : Anne ist zur Zeit Kaffeetrinkerin.

Zwei weitere Beispiele:

• Ich werde mir ein rotes oder ein blaues Fahrrad kaufen.

• Wenn Regen vorhergesagt ist, dann nehme ich einen Schirm mit.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 33

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Fallstricke natürlichsprachlicher Aussagen
Die Verwendung der Wörter und, wenn . . . dann, oder, nicht in der
Alltagssprache entspricht nicht immer exakt unseren logischen Junktoren.

(1) Anne hat mit dem Kaffeetrinken aufgehört.

kurz: V und nicht G kürzer: V ∧ ¬G

(2) Anne hat nicht mit dem Kaffeetrinken aufgehört.

kurz: V und G kürzer: V ∧ G

Ist (2) die Negation von (1)? In dem Fall, dass Anne noch nie Kaffee getrunken
hat, ist keine der beiden Aussagen wahr.

V : Anne war in der Vergangenheit Kaffeetrinkerin.

G : Anne ist zur Zeit Kaffeetrinkerin.

Zwei weitere Beispiele:

• Ich werde mir ein rotes oder ein blaues Fahrrad kaufen.

• Wenn Regen vorhergesagt ist, dann nehme ich einen Schirm mit.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 33

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Syntax und Semantik

Syntax: legt fest, welche Zeichenketten Formeln der Aussagenlogik sind

Semantik: legt fest, welche
”
Bedeutung“ einzelne Formeln haben

Dies ist analog zur Syntax und Semantik von Java-Programmen:

Die Syntax legt fest, welche Zeichenketten Java-Programme sind, während die
Semantik bestimmt, was das Programm tut.

Zur Verdeutlichung werden wir im Folgenden syntaktische Objekte oft in orange
darstellen, während wir semantische Aussagen in blau angeben.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 34

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Syntax und Semantik

Syntax: legt fest, welche Zeichenketten Formeln der Aussagenlogik sind

Semantik: legt fest, welche
”
Bedeutung“ einzelne Formeln haben

Dies ist analog zur Syntax und Semantik von Java-Programmen:

Die Syntax legt fest, welche Zeichenketten Java-Programme sind, während die
Semantik bestimmt, was das Programm tut.

Zur Verdeutlichung werden wir im Folgenden syntaktische Objekte oft in orange
darstellen, während wir semantische Aussagen in blau angeben.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 34

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Syntax der Aussagenlogik

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Notationen

• Die Menge N der natürlichen Zahlen besteht aus allen nicht-negativen
ganzen Zahlen, d.h.

N := { 0, 1, 2, 3, . . . }.

• Für ein n ∈ N ist

[n] := {1, . . . , n} = { i ∈ N : 1 ⩽ i ⩽ n }.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 35

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Definition 2.2
Ein Aussagensymbol (oder eine Aussagenvariable, kurz: Variable) hat die Form
Ai für ein i ∈ N.
Die Menge aller Aussagensymbole bezeichnen wir mit AS, d.h.

AS = {Ai : i ∈ N} = {A0, A1, A2, A3, . . . }

Aussagenlogische Formeln sind Wörter, die über dem folgenden Alphabet
gebildet sind.

Definition 2.3
Das Alphabet der Aussagenlogik besteht aus

• den Aussagesymbolen in AS,

• den Junktoren ¬, ∧, ∨, →,

• den booleschen Konstanten 0, 1,

• den Klammersymbolen (,).

Wir schreiben AAL, um das Alphabet der Aussagenlogik zu bezeichnen, d.h.

AAL := AS ∪ { ¬, ∧, ∨, →, 0, 1, (,) }

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 36

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Definition 2.2
Ein Aussagensymbol (oder eine Aussagenvariable, kurz: Variable) hat die Form
Ai für ein i ∈ N.
Die Menge aller Aussagensymbole bezeichnen wir mit AS, d.h.

AS = {Ai : i ∈ N} = {A0, A1, A2, A3, . . . }

Aussagenlogische Formeln sind Wörter, die über dem folgenden Alphabet
gebildet sind.

Definition 2.3
Das Alphabet der Aussagenlogik besteht aus

• den Aussagesymbolen in AS,

• den Junktoren ¬, ∧, ∨, →,

• den booleschen Konstanten 0, 1,

• den Klammersymbolen (,).

Wir schreiben AAL, um das Alphabet der Aussagenlogik zu bezeichnen, d.h.

AAL := AS ∪ { ¬, ∧, ∨, →, 0, 1, (,) }

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 36

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Definition 2.2
Ein Aussagensymbol (oder eine Aussagenvariable, kurz: Variable) hat die Form
Ai für ein i ∈ N.
Die Menge aller Aussagensymbole bezeichnen wir mit AS, d.h.

AS = {Ai : i ∈ N} = {A0, A1, A2, A3, . . . }

Aussagenlogische Formeln sind Wörter, die über dem folgenden Alphabet
gebildet sind.

Definition 2.3
Das Alphabet der Aussagenlogik besteht aus

• den Aussagesymbolen in AS,

• den Junktoren ¬, ∧, ∨, →,

• den booleschen Konstanten 0, 1,

• den Klammersymbolen (,).

Wir schreiben AAL, um das Alphabet der Aussagenlogik zu bezeichnen, d.h.

AAL := AS ∪ { ¬, ∧, ∨, →, 0, 1, (,) }

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 36

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Definition 2.2
Ein Aussagensymbol (oder eine Aussagenvariable, kurz: Variable) hat die Form
Ai für ein i ∈ N.
Die Menge aller Aussagensymbole bezeichnen wir mit AS, d.h.

AS = {Ai : i ∈ N} = {A0, A1, A2, A3, . . . }

Aussagenlogische Formeln sind Wörter, die über dem folgenden Alphabet
gebildet sind.

Definition 2.3
Das Alphabet der Aussagenlogik besteht aus

• den Aussagesymbolen in AS,

• den Junktoren ¬, ∧, ∨, →,

• den booleschen Konstanten 0, 1,

• den Klammersymbolen (,).

Wir schreiben AAL, um das Alphabet der Aussagenlogik zu bezeichnen, d.h.

AAL := AS ∪ { ¬, ∧, ∨, →, 0, 1, (,) }

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 36

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Definition 2.2
Ein Aussagensymbol (oder eine Aussagenvariable, kurz: Variable) hat die Form
Ai für ein i ∈ N.
Die Menge aller Aussagensymbole bezeichnen wir mit AS, d.h.

AS = {Ai : i ∈ N} = {A0, A1, A2, A3, . . . }

Aussagenlogische Formeln sind Wörter, die über dem folgenden Alphabet
gebildet sind.

Definition 2.3
Das Alphabet der Aussagenlogik besteht aus

• den Aussagesymbolen in AS,

• den Junktoren ¬, ∧, ∨, →,

• den booleschen Konstanten 0, 1,

• den Klammersymbolen (,).

Wir schreiben AAL, um das Alphabet der Aussagenlogik zu bezeichnen, d.h.

AAL := AS ∪ { ¬, ∧, ∨, →, 0, 1, (,) }

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 36

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Definition 2.2
Ein Aussagensymbol (oder eine Aussagenvariable, kurz: Variable) hat die Form
Ai für ein i ∈ N.
Die Menge aller Aussagensymbole bezeichnen wir mit AS, d.h.

AS = {Ai : i ∈ N} = {A0, A1, A2, A3, . . . }

Aussagenlogische Formeln sind Wörter, die über dem folgenden Alphabet
gebildet sind.

Definition 2.3
Das Alphabet der Aussagenlogik besteht aus

• den Aussagesymbolen in AS,

• den Junktoren ¬, ∧, ∨, →,

• den booleschen Konstanten 0, 1,

• den Klammersymbolen (,).

Wir schreiben AAL, um das Alphabet der Aussagenlogik zu bezeichnen, d.h.

AAL := AS ∪ { ¬, ∧, ∨, →, 0, 1, (,) }

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 36

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Definition 2.2
Ein Aussagensymbol (oder eine Aussagenvariable, kurz: Variable) hat die Form
Ai für ein i ∈ N.
Die Menge aller Aussagensymbole bezeichnen wir mit AS, d.h.

AS = {Ai : i ∈ N} = {A0, A1, A2, A3, . . . }

Aussagenlogische Formeln sind Wörter, die über dem folgenden Alphabet
gebildet sind.

Definition 2.3
Das Alphabet der Aussagenlogik besteht aus

• den Aussagesymbolen in AS,

• den Junktoren ¬, ∧, ∨, →,

• den booleschen Konstanten 0, 1,

• den Klammersymbolen (,).

Wir schreiben AAL, um das Alphabet der Aussagenlogik zu bezeichnen, d.h.

AAL := AS ∪ { ¬, ∧, ∨, →, 0, 1, (,) }

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 36

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Definition 2.2
Ein Aussagensymbol (oder eine Aussagenvariable, kurz: Variable) hat die Form
Ai für ein i ∈ N.
Die Menge aller Aussagensymbole bezeichnen wir mit AS, d.h.

AS = {Ai : i ∈ N} = {A0, A1, A2, A3, . . . }

Aussagenlogische Formeln sind Wörter, die über dem folgenden Alphabet
gebildet sind.

Definition 2.3
Das Alphabet der Aussagenlogik besteht aus

• den Aussagesymbolen in AS,

• den Junktoren ¬, ∧, ∨, →,

• den booleschen Konstanten 0, 1,

• den Klammersymbolen (,).

Wir schreiben AAL, um das Alphabet der Aussagenlogik zu bezeichnen, d.h.

AAL := AS ∪ { ¬, ∧, ∨, →, 0, 1, (,) }

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 36

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Definition 2.4 (Syntax der Aussagenlogik)

Die Menge AL der aussagenlogischen Formeln (kurz: Formeln) ist die
folgendermaßen rekursiv definierte Teilmenge von A∗

AL:

Basisregeln: (zum Bilden der so genannten atomaren Formeln)

(B0) 0 ∈ AL

(B1) 1 ∈ AL

(BS) Für jedes Aussagensymbol Ai ∈ AS gilt: Ai ∈ AL

Rekursive Regeln:

(R1) Ist φ ∈ AL, so ist auch ¬φ ∈ AL (Negation)

(R2) Ist φ ∈ AL und ψ ∈ AL, so ist auch

• (φ ∧ ψ) ∈ AL (Konjunktion)

• (φ ∨ ψ) ∈ AL (Disjunktion)

• (φ→ ψ) ∈ AL (Implikation)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 37

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Definition 2.4 (Syntax der Aussagenlogik)

Die Menge AL der aussagenlogischen Formeln (kurz: Formeln) ist die
folgendermaßen rekursiv definierte Teilmenge von A∗

AL:

Basisregeln: (zum Bilden der so genannten atomaren Formeln)

(B0) 0 ∈ AL

(B1) 1 ∈ AL

(BS) Für jedes Aussagensymbol Ai ∈ AS gilt: Ai ∈ AL

Rekursive Regeln:

(R1) Ist φ ∈ AL, so ist auch ¬φ ∈ AL (Negation)

(R2) Ist φ ∈ AL und ψ ∈ AL, so ist auch

• (φ ∧ ψ) ∈ AL (Konjunktion)

• (φ ∨ ψ) ∈ AL (Disjunktion)

• (φ→ ψ) ∈ AL (Implikation)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 37

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Definition 2.4 (Syntax der Aussagenlogik)

Die Menge AL der aussagenlogischen Formeln (kurz: Formeln) ist die
folgendermaßen rekursiv definierte Teilmenge von A∗

AL:

Basisregeln: (zum Bilden der so genannten atomaren Formeln)

(B0) 0 ∈ AL

(B1) 1 ∈ AL

(BS) Für jedes Aussagensymbol Ai ∈ AS gilt: Ai ∈ AL

Rekursive Regeln:

(R1) Ist φ ∈ AL, so ist auch ¬φ ∈ AL (Negation)

(R2) Ist φ ∈ AL und ψ ∈ AL, so ist auch

• (φ ∧ ψ) ∈ AL (Konjunktion)

• (φ ∨ ψ) ∈ AL (Disjunktion)

• (φ→ ψ) ∈ AL (Implikation)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 37

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Definition 2.4 (Syntax der Aussagenlogik)

Die Menge AL der aussagenlogischen Formeln (kurz: Formeln) ist die
folgendermaßen rekursiv definierte Teilmenge von A∗

AL:

Basisregeln: (zum Bilden der so genannten atomaren Formeln)

(B0) 0 ∈ AL

(B1) 1 ∈ AL

(BS) Für jedes Aussagensymbol Ai ∈ AS gilt: Ai ∈ AL

Rekursive Regeln:

(R1) Ist φ ∈ AL, so ist auch ¬φ ∈ AL (Negation)

(R2) Ist φ ∈ AL und ψ ∈ AL, so ist auch

• (φ ∧ ψ) ∈ AL (Konjunktion)

• (φ ∨ ψ) ∈ AL (Disjunktion)

• (φ→ ψ) ∈ AL (Implikation)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 37

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Definition 2.4 (Syntax der Aussagenlogik)

Die Menge AL der aussagenlogischen Formeln (kurz: Formeln) ist die
folgendermaßen rekursiv definierte Teilmenge von A∗

AL:

Basisregeln: (zum Bilden der so genannten atomaren Formeln)

(B0) 0 ∈ AL

(B1) 1 ∈ AL

(BS) Für jedes Aussagensymbol Ai ∈ AS gilt: Ai ∈ AL

Rekursive Regeln:

(R1) Ist φ ∈ AL, so ist auch ¬φ ∈ AL (Negation)

(R2) Ist φ ∈ AL und ψ ∈ AL, so ist auch

• (φ ∧ ψ) ∈ AL (Konjunktion)

• (φ ∨ ψ) ∈ AL (Disjunktion)

• (φ→ ψ) ∈ AL (Implikation)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 37

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Definition 2.4 (Syntax der Aussagenlogik)

Die Menge AL der aussagenlogischen Formeln (kurz: Formeln) ist die
folgendermaßen rekursiv definierte Teilmenge von A∗

AL:

Basisregeln: (zum Bilden der so genannten atomaren Formeln)

(B0) 0 ∈ AL

(B1) 1 ∈ AL

(BS) Für jedes Aussagensymbol Ai ∈ AS gilt: Ai ∈ AL

Rekursive Regeln:

(R1) Ist φ ∈ AL, so ist auch ¬φ ∈ AL (Negation)

(R2) Ist φ ∈ AL und ψ ∈ AL, so ist auch

• (φ ∧ ψ) ∈ AL (Konjunktion)

• (φ ∨ ψ) ∈ AL (Disjunktion)

• (φ→ ψ) ∈ AL (Implikation)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 37

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Definition 2.4 (Syntax der Aussagenlogik)

Die Menge AL der aussagenlogischen Formeln (kurz: Formeln) ist die
folgendermaßen rekursiv definierte Teilmenge von A∗

AL:

Basisregeln: (zum Bilden der so genannten atomaren Formeln)

(B0) 0 ∈ AL

(B1) 1 ∈ AL

(BS) Für jedes Aussagensymbol Ai ∈ AS gilt: Ai ∈ AL

Rekursive Regeln:

(R1) Ist φ ∈ AL, so ist auch ¬φ ∈ AL (Negation)

(R2) Ist φ ∈ AL und ψ ∈ AL, so ist auch

• (φ ∧ ψ) ∈ AL (Konjunktion)

• (φ ∨ ψ) ∈ AL (Disjunktion)

• (φ→ ψ) ∈ AL (Implikation)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 37

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Beispiele

• (¬A0 ∨ (A0 → A1))

∈ AL

• ¬ ((A0 ∧ 0) → ¬A3)

∈ AL

• A1 ∨ A2 ∧ A3

̸∈ AL

• (¬A1)

̸∈ AL

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 38

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Beispiele

• (¬A0 ∨ (A0 → A1)) ∈ AL

• ¬ ((A0 ∧ 0) → ¬A3)

∈ AL

• A1 ∨ A2 ∧ A3

̸∈ AL

• (¬A1)

̸∈ AL

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 38

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Beispiele

• (¬A0 ∨ (A0 → A1)) ∈ AL

• ¬ ((A0 ∧ 0) → ¬A3) ∈ AL

• A1 ∨ A2 ∧ A3

̸∈ AL

• (¬A1)

̸∈ AL

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 38

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Beispiele

• (¬A0 ∨ (A0 → A1)) ∈ AL

• ¬ ((A0 ∧ 0) → ¬A3) ∈ AL

• A1 ∨ A2 ∧ A3 ̸∈ AL

• (¬A1)

̸∈ AL

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 38

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Beispiele

• (¬A0 ∨ (A0 → A1)) ∈ AL

• ¬ ((A0 ∧ 0) → ¬A3) ∈ AL

• A1 ∨ A2 ∧ A3 ̸∈ AL

• (¬A1) ̸∈ AL

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 38

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Griechische Buchstaben

In der Literatur werden Formeln einer Logik traditionell meistens mit
griechischen Buchstaben bezeichnet.

Hier eine Liste der gebräuchlichsten Buchstaben:

Buchstabe φ ψ χ θ bzw. ϑ λ µ ν τ κ

Aussprache phi psi chi theta lambda mü nü tau kappa

Buchstabe σ ρ ξ ζ α β γ δ ω

Aussprache sigma rho xi zeta alpha beta gamma delta omega

Buchstabe ε ι π ∆ Γ Σ Π Φ Ψ

Aussprache epsilon iota pi Delta Gamma Sigma Pi Phi Psi

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 39

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Syntaxbäume

Die Struktur einer Formel lässt sich bequem in einem Syntaxbaum (englisch:
parse tree) darstellen.

Beispiel: Syntaxbaum der Formel (((A4 ∧ 1) ∨ ¬A5) → (A5 ∧ ¬(A4 ∧ 1)))

Ausführlich:

(((A4 ∧ 1) ∨ ¬A5)→(A5 ∧ ¬(A4 ∧ 1)))

((A4 ∧ 1)∨¬A5)

(A4∧1)

A4 1

¬A5

A5

(A5∧¬(A4 ∧ 1))

A5 ¬(A4 ∧ 1)

(A4∧1)

A4 1

Kurzform:

→

∨

∧

A4 1

¬

A5

∧

A5 ¬

∧

A4 1

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 40

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Syntaxbäume

Die Struktur einer Formel lässt sich bequem in einem Syntaxbaum (englisch:
parse tree) darstellen.

Beispiel: Syntaxbaum der Formel (((A4 ∧ 1) ∨ ¬A5) → (A5 ∧ ¬(A4 ∧ 1)))

Ausführlich:

(((A4 ∧ 1) ∨ ¬A5)→(A5 ∧ ¬(A4 ∧ 1)))

((A4 ∧ 1)∨¬A5)

(A4∧1)

A4 1

¬A5

A5

(A5∧¬(A4 ∧ 1))

A5 ¬(A4 ∧ 1)

(A4∧1)

A4 1

Kurzform:

→

∨

∧

A4 1

¬

A5

∧

A5 ¬

∧

A4 1

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 40

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Subformeln und eindeutige Lesbarkeit

• Jede Formel hat genau einen Syntaxbaum. Diese Aussage ist als das
Lemma über die eindeutige Lesbarkeit aussagenlogischer Formeln bekannt.

• Die Formeln ψ, die im ausführlichen Syntaxbaum einer Formel φ als
Knotenbeschriftung vorkommen, nennen wir Subformeln (bzw. Teilformeln)
von φ.

• Eine Subformel ψ von φ kann an mehreren Knoten des Syntaxbaums
vorkommen. Wir sprechen dann von verschiedenen Vorkommen von ψ in φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 41

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Subformeln und eindeutige Lesbarkeit

• Jede Formel hat genau einen Syntaxbaum. Diese Aussage ist als das
Lemma über die eindeutige Lesbarkeit aussagenlogischer Formeln bekannt.

• Die Formeln ψ, die im ausführlichen Syntaxbaum einer Formel φ als
Knotenbeschriftung vorkommen, nennen wir Subformeln (bzw. Teilformeln)
von φ.

• Eine Subformel ψ von φ kann an mehreren Knoten des Syntaxbaums
vorkommen. Wir sprechen dann von verschiedenen Vorkommen von ψ in φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 41

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Subformeln und eindeutige Lesbarkeit

• Jede Formel hat genau einen Syntaxbaum. Diese Aussage ist als das
Lemma über die eindeutige Lesbarkeit aussagenlogischer Formeln bekannt.

• Die Formeln ψ, die im ausführlichen Syntaxbaum einer Formel φ als
Knotenbeschriftung vorkommen, nennen wir Subformeln (bzw. Teilformeln)
von φ.

• Eine Subformel ψ von φ kann an mehreren Knoten des Syntaxbaums
vorkommen. Wir sprechen dann von verschiedenen Vorkommen von ψ in φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 41

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Semantik der Aussagenlogik

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Vorüberlegung zur Semantik

• Eine aussagenlogische Formel wird erst zur Aussage, wenn wir alle in ihr
vorkommenden Aussagensymbole durch Aussagen ersetzen.

• Wir interessieren uns hier nicht so sehr für die tatsächlichen Aussagen,
sondern nur für ihren Wahrheitswert, also dafür, ob sie wahr oder falsch
sind.

• Um das festzustellen, reicht es, den Aussagensymbolen die Wahrheitswerte
der durch sie repräsentierten Aussagen zuzuordnen.

• Die Bedeutung einer Formel besteht also aus ihren Wahrheitswerten unter
allen möglichen Wahrheitswerten für die in der Formel vorkommenden
Aussagensymbole.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 42

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Vorüberlegung zur Semantik

• Eine aussagenlogische Formel wird erst zur Aussage, wenn wir alle in ihr
vorkommenden Aussagensymbole durch Aussagen ersetzen.

• Wir interessieren uns hier nicht so sehr für die tatsächlichen Aussagen,
sondern nur für ihren Wahrheitswert, also dafür, ob sie wahr oder falsch
sind.

• Um das festzustellen, reicht es, den Aussagensymbolen die Wahrheitswerte
der durch sie repräsentierten Aussagen zuzuordnen.

• Die Bedeutung einer Formel besteht also aus ihren Wahrheitswerten unter
allen möglichen Wahrheitswerten für die in der Formel vorkommenden
Aussagensymbole.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 42

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Vorüberlegung zur Semantik

• Eine aussagenlogische Formel wird erst zur Aussage, wenn wir alle in ihr
vorkommenden Aussagensymbole durch Aussagen ersetzen.

• Wir interessieren uns hier nicht so sehr für die tatsächlichen Aussagen,
sondern nur für ihren Wahrheitswert, also dafür, ob sie wahr oder falsch
sind.

• Um das festzustellen, reicht es, den Aussagensymbolen die Wahrheitswerte
der durch sie repräsentierten Aussagen zuzuordnen.

• Die Bedeutung einer Formel besteht also aus ihren Wahrheitswerten unter
allen möglichen Wahrheitswerten für die in der Formel vorkommenden
Aussagensymbole.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 42

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Vorüberlegung zur Semantik

• Eine aussagenlogische Formel wird erst zur Aussage, wenn wir alle in ihr
vorkommenden Aussagensymbole durch Aussagen ersetzen.

• Wir interessieren uns hier nicht so sehr für die tatsächlichen Aussagen,
sondern nur für ihren Wahrheitswert, also dafür, ob sie wahr oder falsch
sind.

• Um das festzustellen, reicht es, den Aussagensymbolen die Wahrheitswerte
der durch sie repräsentierten Aussagen zuzuordnen.

• Die Bedeutung einer Formel besteht also aus ihren Wahrheitswerten unter
allen möglichen Wahrheitswerten für die in der Formel vorkommenden
Aussagensymbole.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 42

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Interpretationen (d.h. Variablenbelegungen)

Wir repräsentieren die Wahrheitswerte wahr und falsch durch 1 und 0.

Definition 2.5
Eine aussagenlogische Interpretation (kurz: Interpretation oder Belegung) ist
eine Abbildung

I : AS → {0, 1}.

D.h.: I
”
belegt“ jedes Aussagensymbol X ∈ AS mit einem der beiden

Wahrheitswerte 1 (für
”
wahr“) oder 0 (für

”
falsch“); und I(X) ist der

Wahrheitswert, mit dem das Aussagensymbol X belegt wird.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 43

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Interpretationen (d.h. Variablenbelegungen)

Wir repräsentieren die Wahrheitswerte wahr und falsch durch 1 und 0.

Definition 2.5
Eine aussagenlogische Interpretation (kurz: Interpretation oder Belegung) ist
eine Abbildung

I : AS → {0, 1}.

D.h.: I
”
belegt“ jedes Aussagensymbol X ∈ AS mit einem der beiden

Wahrheitswerte 1 (für
”
wahr“) oder 0 (für

”
falsch“); und I(X) ist der

Wahrheitswert, mit dem das Aussagensymbol X belegt wird.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 43

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Interpretationen (d.h. Variablenbelegungen)

Wir repräsentieren die Wahrheitswerte wahr und falsch durch 1 und 0.

Definition 2.5
Eine aussagenlogische Interpretation (kurz: Interpretation oder Belegung) ist
eine Abbildung

I : AS → {0, 1}.

D.h.: I
”
belegt“ jedes Aussagensymbol X ∈ AS mit einem der beiden

Wahrheitswerte 1 (für
”
wahr“) oder 0 (für

”
falsch“); und I(X) ist der

Wahrheitswert, mit dem das Aussagensymbol X belegt wird.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 43

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Semantik der Aussagenlogik

Definition 2.6
Zu jeder Formel φ ∈ AL und jeder Interpretation I definieren wir einen
Wahrheitswert JφKI rekursiv wie folgt:

Rekursionsanfang:

• J0KI := 0.

• J1KI := 1.

• Für alle X ∈ AS gilt: JX KI := I(X).

Rekursionsschritt:

• Ist φ ∈ AL, so ist J¬φKI :=

{
1 falls JφKI = 0,

0 sonst.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 44

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Semantik der Aussagenlogik

Definition 2.6
Zu jeder Formel φ ∈ AL und jeder Interpretation I definieren wir einen
Wahrheitswert JφKI rekursiv wie folgt:

Rekursionsanfang:

• J0KI := 0.

• J1KI := 1.

• Für alle X ∈ AS gilt: JX KI := I(X).

Rekursionsschritt:

• Ist φ ∈ AL, so ist J¬φKI :=

{
1 falls JφKI = 0,

0 sonst.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 44

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Semantik der Aussagenlogik

Definition 2.6
Zu jeder Formel φ ∈ AL und jeder Interpretation I definieren wir einen
Wahrheitswert JφKI rekursiv wie folgt:

Rekursionsanfang:

• J0KI := 0.

• J1KI := 1.

• Für alle X ∈ AS gilt: JX KI := I(X).

Rekursionsschritt:

• Ist φ ∈ AL, so ist J¬φKI :=

{
1 falls JφKI = 0,

0 sonst.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 44

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Semantik der Aussagenlogik

Definition 2.6
Zu jeder Formel φ ∈ AL und jeder Interpretation I definieren wir einen
Wahrheitswert JφKI rekursiv wie folgt:

Rekursionsanfang:

• J0KI := 0.

• J1KI := 1.

• Für alle X ∈ AS gilt: JX KI :=

I(X).

Rekursionsschritt:

• Ist φ ∈ AL, so ist J¬φKI :=

{
1 falls JφKI = 0,

0 sonst.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 44

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Semantik der Aussagenlogik

Definition 2.6
Zu jeder Formel φ ∈ AL und jeder Interpretation I definieren wir einen
Wahrheitswert JφKI rekursiv wie folgt:

Rekursionsanfang:

• J0KI := 0.

• J1KI := 1.

• Für alle X ∈ AS gilt: JX KI := I(X).

Rekursionsschritt:

• Ist φ ∈ AL, so ist J¬φKI :=

{
1 falls JφKI = 0,

0 sonst.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 44

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Semantik der Aussagenlogik

Definition 2.6
Zu jeder Formel φ ∈ AL und jeder Interpretation I definieren wir einen
Wahrheitswert JφKI rekursiv wie folgt:

Rekursionsanfang:

• J0KI := 0.

• J1KI := 1.

• Für alle X ∈ AS gilt: JX KI := I(X).

Rekursionsschritt:

• Ist φ ∈ AL, so ist J¬φKI :=

{
1 falls JφKI = 0,

0 sonst.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 44

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Semantik der Aussagenlogik

Definition 2.6
Zu jeder Formel φ ∈ AL und jeder Interpretation I definieren wir einen
Wahrheitswert JφKI rekursiv wie folgt:

Rekursionsanfang:

• J0KI := 0.

• J1KI := 1.

• Für alle X ∈ AS gilt: JX KI := I(X).

Rekursionsschritt:

• Ist φ ∈ AL, so ist J¬φKI :=

{
1 falls JφKI = 0,

0 sonst.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 44

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Semantik der Aussagenlogik (Fortsetzung)

• Ist φ ∈ AL und ψ ∈ AL, so ist

• J(φ ∧ ψ)KI :=

{
1 falls JφKI = JψKI = 1,

0 sonst.

• J(φ ∨ ψ)KI :=

{
0 falls JφKI = JψKI = 0,

1 sonst.

• J(φ→ ψ)KI :=

{
0 falls JφKI = 1 und JψKI = 0,

1 sonst.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 45

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Semantik der Aussagenlogik (Fortsetzung)

• Ist φ ∈ AL und ψ ∈ AL, so ist

• J(φ ∧ ψ)KI :=

{
1 falls JφKI = JψKI = 1,

0 sonst.

• J(φ ∨ ψ)KI :=

{
0 falls JφKI = JψKI = 0,

1 sonst.

• J(φ→ ψ)KI :=

{
0 falls JφKI = 1 und JψKI = 0,

1 sonst.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 45

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Semantik der Aussagenlogik (Fortsetzung)

• Ist φ ∈ AL und ψ ∈ AL, so ist

• J(φ ∧ ψ)KI :=

{
1 falls JφKI = JψKI = 1,

0 sonst.

• J(φ ∨ ψ)KI :=

{
0 falls JφKI = JψKI = 0,

1 sonst.

• J(φ→ ψ)KI :=

{
0 falls JφKI = 1 und JψKI = 0,

1 sonst.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 45

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Semantik der Aussagenlogik (Fortsetzung)

• Ist φ ∈ AL und ψ ∈ AL, so ist

• J(φ ∧ ψ)KI :=

{
1 falls JφKI = JψKI = 1,

0 sonst.

• J(φ ∨ ψ)KI :=

{
0 falls JφKI = JψKI = 0,

1 sonst.

• J(φ→ ψ)KI :=

{
0 falls JφKI = 1 und JψKI = 0,

1 sonst.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 45

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Semantik der Aussagenlogik (Fortsetzung)

• Ist φ ∈ AL und ψ ∈ AL, so ist

• J(φ ∧ ψ)KI :=

{
1 falls JφKI = JψKI = 1,

0 sonst.

• J(φ ∨ ψ)KI :=

{
0 falls JφKI = JψKI = 0,

1 sonst.

• J(φ→ ψ)KI :=

{
0 falls JφKI = 1 und JψKI = 0,

1 sonst.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 45

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Semantik der Aussagenlogik (Fortsetzung)

• Ist φ ∈ AL und ψ ∈ AL, so ist

• J(φ ∧ ψ)KI :=

{
1 falls JφKI = JψKI = 1,

0 sonst.

• J(φ ∨ ψ)KI :=

{
0 falls JφKI = JψKI = 0,

1 sonst.

• J(φ→ ψ)KI :=

{
0 falls JφKI = 1 und JψKI = 0,

1 sonst.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 45

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Intuitive Bedeutung der Semantik

Boolesche Konstanten: 1 und 0 bedeuten einfach
”
wahr“ und

”
falsch“.

Aussagensymbole: Die Aussagensymbole stehen für irgendwelche Aussagen, von
denen uns aber nur der Wahrheitswert interessiert. Dieser wird
durch die Interpretation festgelegt.

Negation: ¬φ bedeutet
”
nicht φ“.

Konjunktion: (φ ∧ ψ) bedeutet
”
φ und ψ“.

Disjunktion: (φ ∨ ψ) bedeutet
”
φ oder ψ“.

Implikation: (φ→ ψ) bedeutet
”
φ impliziert ψ“ (oder

”
wenn φ dann ψ“).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 46

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Intuitive Bedeutung der Semantik

Boolesche Konstanten: 1 und 0 bedeuten einfach
”
wahr“ und

”
falsch“.

Aussagensymbole: Die Aussagensymbole stehen für irgendwelche Aussagen, von
denen uns aber nur der Wahrheitswert interessiert. Dieser wird
durch die Interpretation festgelegt.

Negation: ¬φ bedeutet
”
nicht φ“.

Konjunktion: (φ ∧ ψ) bedeutet
”
φ und ψ“.

Disjunktion: (φ ∨ ψ) bedeutet
”
φ oder ψ“.

Implikation: (φ→ ψ) bedeutet
”
φ impliziert ψ“ (oder

”
wenn φ dann ψ“).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 46

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Intuitive Bedeutung der Semantik

Boolesche Konstanten: 1 und 0 bedeuten einfach
”
wahr“ und

”
falsch“.

Aussagensymbole: Die Aussagensymbole stehen für irgendwelche Aussagen, von
denen uns aber nur der Wahrheitswert interessiert. Dieser wird
durch die Interpretation festgelegt.

Negation: ¬φ bedeutet
”
nicht φ“.

Konjunktion: (φ ∧ ψ) bedeutet
”
φ und ψ“.

Disjunktion: (φ ∨ ψ) bedeutet
”
φ oder ψ“.

Implikation: (φ→ ψ) bedeutet
”
φ impliziert ψ“ (oder

”
wenn φ dann ψ“).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 46

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Intuitive Bedeutung der Semantik

Boolesche Konstanten: 1 und 0 bedeuten einfach
”
wahr“ und

”
falsch“.

Aussagensymbole: Die Aussagensymbole stehen für irgendwelche Aussagen, von
denen uns aber nur der Wahrheitswert interessiert. Dieser wird
durch die Interpretation festgelegt.

Negation: ¬φ bedeutet
”
nicht φ“.

Konjunktion: (φ ∧ ψ) bedeutet
”
φ und ψ“.

Disjunktion: (φ ∨ ψ) bedeutet
”
φ oder ψ“.

Implikation: (φ→ ψ) bedeutet
”
φ impliziert ψ“ (oder

”
wenn φ dann ψ“).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 46

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Intuitive Bedeutung der Semantik

Boolesche Konstanten: 1 und 0 bedeuten einfach
”
wahr“ und

”
falsch“.

Aussagensymbole: Die Aussagensymbole stehen für irgendwelche Aussagen, von
denen uns aber nur der Wahrheitswert interessiert. Dieser wird
durch die Interpretation festgelegt.

Negation: ¬φ bedeutet
”
nicht φ“.

Konjunktion: (φ ∧ ψ) bedeutet
”
φ und ψ“.

Disjunktion: (φ ∨ ψ) bedeutet
”
φ oder ψ“.

Implikation: (φ→ ψ) bedeutet
”
φ impliziert ψ“ (oder

”
wenn φ dann ψ“).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 46

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Intuitive Bedeutung der Semantik

Boolesche Konstanten: 1 und 0 bedeuten einfach
”
wahr“ und

”
falsch“.

Aussagensymbole: Die Aussagensymbole stehen für irgendwelche Aussagen, von
denen uns aber nur der Wahrheitswert interessiert. Dieser wird
durch die Interpretation festgelegt.

Negation: ¬φ bedeutet
”
nicht φ“.

Konjunktion: (φ ∧ ψ) bedeutet
”
φ und ψ“.

Disjunktion: (φ ∨ ψ) bedeutet
”
φ oder ψ“.

Implikation: (φ→ ψ) bedeutet
”
φ impliziert ψ“ (oder

”
wenn φ dann ψ“).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 46

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Rekursive Definitionen über Formeln

• Ähnlich wie Funktionen auf den natürlichen Zahlen, wie zum Beispiel die
Fakultätsfunktion oder die Fibonacci Folge, können wir Funktionen auf den
aussagenlogischen Formeln rekursiv definieren.

• Dabei gehen wir von den atomaren Formeln aus und definieren dann den
Funktionswert einer zusammengesetzten Formel aus den Funktionswerten
ihrer Bestandteile.

• Zur Rechtfertigung solcher Definitionen benötigt man die eindeutige
Lesbarkeit aussagenlogischer Formeln, die besagt, dass sich jede Formel
eindeutig in ihre Bestandteile zerlegen lässt.

• Wir haben auf diese Weise die Semantik definiert. Wir haben nämlich für
jede Interpretation I rekursiv eine Funktion J · KI : AL → {0, 1} definiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 47

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Rekursive Definitionen über Formeln

• Ähnlich wie Funktionen auf den natürlichen Zahlen, wie zum Beispiel die
Fakultätsfunktion oder die Fibonacci Folge, können wir Funktionen auf den
aussagenlogischen Formeln rekursiv definieren.

• Dabei gehen wir von den atomaren Formeln aus und definieren dann den
Funktionswert einer zusammengesetzten Formel aus den Funktionswerten
ihrer Bestandteile.

• Zur Rechtfertigung solcher Definitionen benötigt man die eindeutige
Lesbarkeit aussagenlogischer Formeln, die besagt, dass sich jede Formel
eindeutig in ihre Bestandteile zerlegen lässt.

• Wir haben auf diese Weise die Semantik definiert. Wir haben nämlich für
jede Interpretation I rekursiv eine Funktion J · KI : AL → {0, 1} definiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 47

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Rekursive Definitionen über Formeln

• Ähnlich wie Funktionen auf den natürlichen Zahlen, wie zum Beispiel die
Fakultätsfunktion oder die Fibonacci Folge, können wir Funktionen auf den
aussagenlogischen Formeln rekursiv definieren.

• Dabei gehen wir von den atomaren Formeln aus und definieren dann den
Funktionswert einer zusammengesetzten Formel aus den Funktionswerten
ihrer Bestandteile.

• Zur Rechtfertigung solcher Definitionen benötigt man die eindeutige
Lesbarkeit aussagenlogischer Formeln, die besagt, dass sich jede Formel
eindeutig in ihre Bestandteile zerlegen lässt.

• Wir haben auf diese Weise die Semantik definiert. Wir haben nämlich für
jede Interpretation I rekursiv eine Funktion J · KI : AL → {0, 1} definiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 47

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Rekursive Definitionen über Formeln

• Ähnlich wie Funktionen auf den natürlichen Zahlen, wie zum Beispiel die
Fakultätsfunktion oder die Fibonacci Folge, können wir Funktionen auf den
aussagenlogischen Formeln rekursiv definieren.

• Dabei gehen wir von den atomaren Formeln aus und definieren dann den
Funktionswert einer zusammengesetzten Formel aus den Funktionswerten
ihrer Bestandteile.

• Zur Rechtfertigung solcher Definitionen benötigt man die eindeutige
Lesbarkeit aussagenlogischer Formeln, die besagt, dass sich jede Formel
eindeutig in ihre Bestandteile zerlegen lässt.

• Wir haben auf diese Weise die Semantik definiert. Wir haben nämlich für
jede Interpretation I rekursiv eine Funktion J · KI : AL → {0, 1} definiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 47

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Rekursive Definitionen (Forts.)

Schematisch sieht die rekursive Definition einer Funktion f : AL → M
(für eine beliebige Menge M) folgendermaßen aus:

Rekursionsanfang:

• Definiere f (0) und f (1).

• Definiere f (X) für alle X ∈ AS.

Rekursionsschritt:

• Definiere f (¬φ) aus f (φ).
• Definiere f ((φ ∧ ψ)) aus f (φ) und f (ψ).

• Definiere f ((φ ∨ ψ)) aus f (φ) und f (ψ).

• Definiere f ((φ→ ψ)) aus f (φ) und f (ψ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 48

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Rekursive Definitionen (Forts.)

Schematisch sieht die rekursive Definition einer Funktion f : AL → M
(für eine beliebige Menge M) folgendermaßen aus:

Rekursionsanfang:

• Definiere f (0) und f (1).

• Definiere f (X) für alle X ∈ AS.

Rekursionsschritt:

• Definiere f (¬φ) aus f (φ).
• Definiere f ((φ ∧ ψ)) aus f (φ) und f (ψ).

• Definiere f ((φ ∨ ψ)) aus f (φ) und f (ψ).

• Definiere f ((φ→ ψ)) aus f (φ) und f (ψ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 48

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Beispiel 2.7
Betrachte die Formel φ :=

(
¬A0 ∨ (A5 → A1)

)
und die Interpretation I : AS → {0, 1} mit

I(A0) = 1, I(A1) = 1, I(A5) = 0

und I(Y) = 0 für alle Y ∈ AS \ {A0,A1,A5}.

Der Wahrheitswert JφKI ist der Wert

JφKI Def. 2.6
=

{
0, falls J¬A0K

I = 0 und J(A5 → A1)K
I = 0

1, sonst

Def. 2.6
=

{
0, falls JA0K

I = 1 und
(
JA5K

I = 1 und JA1K
I = 0

)
1, sonst

Def. 2.6
=

{
0, falls I(A0) = 1 und I(A5) = 1 und I(A1) = 0

1, sonst

= 1 (denn gemäß obiger Wahl von I gilt I(A5) = 0).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 49

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Beispiel 2.7
Betrachte die Formel φ :=

(
¬A0 ∨ (A5 → A1)

)
und die Interpretation I : AS → {0, 1} mit

I(A0) = 1, I(A1) = 1, I(A5) = 0

und I(Y) = 0 für alle Y ∈ AS \ {A0,A1,A5}.

Der Wahrheitswert JφKI ist der Wert

JφKI Def. 2.6
=

{
0, falls J¬A0K

I = 0 und J(A5 → A1)K
I = 0

1, sonst

Def. 2.6
=

{
0, falls JA0K

I = 1 und
(
JA5K

I = 1 und JA1K
I = 0

)
1, sonst

Def. 2.6
=

{
0, falls I(A0) = 1 und I(A5) = 1 und I(A1) = 0

1, sonst

= 1 (denn gemäß obiger Wahl von I gilt I(A5) = 0).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 49

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Beispiel 2.7
Betrachte die Formel φ :=

(
¬A0 ∨ (A5 → A1)

)
und die Interpretation I : AS → {0, 1} mit

I(A0) = 1, I(A1) = 1, I(A5) = 0

und I(Y) = 0 für alle Y ∈ AS \ {A0,A1,A5}.

Der Wahrheitswert JφKI ist der Wert

JφKI Def. 2.6
=

{
0, falls J¬A0K

I = 0 und J(A5 → A1)K
I = 0

1, sonst

Def. 2.6
=

{
0, falls JA0K

I = 1 und
(
JA5K

I = 1 und JA1K
I = 0

)
1, sonst

Def. 2.6
=

{
0, falls I(A0) = 1 und I(A5) = 1 und I(A1) = 0

1, sonst

= 1 (denn gemäß obiger Wahl von I gilt I(A5) = 0).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 49

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Beispiel 2.7
Betrachte die Formel φ :=

(
¬A0 ∨ (A5 → A1)

)
und die Interpretation I : AS → {0, 1} mit

I(A0) = 1, I(A1) = 1, I(A5) = 0

und I(Y) = 0 für alle Y ∈ AS \ {A0,A1,A5}.

Der Wahrheitswert JφKI ist der Wert

JφKI Def. 2.6
=

{
0, falls J¬A0K

I = 0 und J(A5 → A1)K
I = 0

1, sonst

Def. 2.6
=

{
0, falls JA0K

I = 1 und
(
JA5K

I = 1 und JA1K
I = 0

)
1, sonst

Def. 2.6
=

{
0, falls I(A0) = 1 und I(A5) = 1 und I(A1) = 0

1, sonst

=

1 (denn gemäß obiger Wahl von I gilt I(A5) = 0).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 49

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Beispiel 2.7
Betrachte die Formel φ :=

(
¬A0 ∨ (A5 → A1)

)
und die Interpretation I : AS → {0, 1} mit

I(A0) = 1, I(A1) = 1, I(A5) = 0

und I(Y) = 0 für alle Y ∈ AS \ {A0,A1,A5}.

Der Wahrheitswert JφKI ist der Wert

JφKI Def. 2.6
=

{
0, falls J¬A0K

I = 0 und J(A5 → A1)K
I = 0

1, sonst

Def. 2.6
=

{
0, falls JA0K

I = 1 und
(
JA5K

I = 1 und JA1K
I = 0

)
1, sonst

Def. 2.6
=

{
0, falls I(A0) = 1 und I(A5) = 1 und I(A1) = 0

1, sonst

= 1 (denn gemäß obiger Wahl von I gilt I(A5) = 0).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 49

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Alternative Art, den Wert JφKI zu bestimmen

• Ersetze in φ jedes Aussagensymbol X durch seinen gemäß I festgelegten
Wahrheitswert, d.h. durch den Wert I(X), und rechne dann den Wert des
resultierenden booleschen Ausdrucks aus.

• Speziell für die Formel φ und die Interpretation I aus Beispiel 2.7 ergibt die
Ersetzung der Aussagensymbole durch die gemäß I festgelegten
Wahrheitswerte den booleschen Ausdruck(

¬1 ∨ (0 → 1)
)
.

• Ausrechnen von ¬1 ergibt den Wert 0.

Ausrechnen von (0 → 1) ergibt den Wert 1.

• Insgesamt erhalten wir also (0 ∨ 1), was sich zum Wert 1 errechnet.

Somit erhalten wir, dass JφKI = 1 ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 50

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Alternative Art, den Wert JφKI zu bestimmen

• Ersetze in φ jedes Aussagensymbol X durch seinen gemäß I festgelegten
Wahrheitswert, d.h. durch den Wert I(X), und rechne dann den Wert des
resultierenden booleschen Ausdrucks aus.

• Speziell für die Formel φ und die Interpretation I aus Beispiel 2.7 ergibt die
Ersetzung der Aussagensymbole durch die gemäß I festgelegten
Wahrheitswerte den booleschen Ausdruck

(
¬1 ∨ (0 → 1)

)
.

• Ausrechnen von ¬1 ergibt den Wert 0.

Ausrechnen von (0 → 1) ergibt den Wert 1.

• Insgesamt erhalten wir also (0 ∨ 1), was sich zum Wert 1 errechnet.

Somit erhalten wir, dass JφKI = 1 ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 50

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Alternative Art, den Wert JφKI zu bestimmen

• Ersetze in φ jedes Aussagensymbol X durch seinen gemäß I festgelegten
Wahrheitswert, d.h. durch den Wert I(X), und rechne dann den Wert des
resultierenden booleschen Ausdrucks aus.

• Speziell für die Formel φ und die Interpretation I aus Beispiel 2.7 ergibt die
Ersetzung der Aussagensymbole durch die gemäß I festgelegten
Wahrheitswerte den booleschen Ausdruck(

¬1 ∨ (0 → 1)
)
.

• Ausrechnen von ¬1 ergibt den Wert 0.

Ausrechnen von (0 → 1) ergibt den Wert 1.

• Insgesamt erhalten wir also (0 ∨ 1), was sich zum Wert 1 errechnet.

Somit erhalten wir, dass JφKI = 1 ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 50

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Alternative Art, den Wert JφKI zu bestimmen

• Ersetze in φ jedes Aussagensymbol X durch seinen gemäß I festgelegten
Wahrheitswert, d.h. durch den Wert I(X), und rechne dann den Wert des
resultierenden booleschen Ausdrucks aus.

• Speziell für die Formel φ und die Interpretation I aus Beispiel 2.7 ergibt die
Ersetzung der Aussagensymbole durch die gemäß I festgelegten
Wahrheitswerte den booleschen Ausdruck(

¬1 ∨ (0 → 1)
)
.

• Ausrechnen von ¬1 ergibt den Wert

0.

Ausrechnen von (0 → 1) ergibt den Wert 1.

• Insgesamt erhalten wir also (0 ∨ 1), was sich zum Wert 1 errechnet.

Somit erhalten wir, dass JφKI = 1 ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 50

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Alternative Art, den Wert JφKI zu bestimmen

• Ersetze in φ jedes Aussagensymbol X durch seinen gemäß I festgelegten
Wahrheitswert, d.h. durch den Wert I(X), und rechne dann den Wert des
resultierenden booleschen Ausdrucks aus.

• Speziell für die Formel φ und die Interpretation I aus Beispiel 2.7 ergibt die
Ersetzung der Aussagensymbole durch die gemäß I festgelegten
Wahrheitswerte den booleschen Ausdruck(

¬1 ∨ (0 → 1)
)
.

• Ausrechnen von ¬1 ergibt den Wert 0.

Ausrechnen von (0 → 1) ergibt den Wert 1.

• Insgesamt erhalten wir also (0 ∨ 1), was sich zum Wert 1 errechnet.

Somit erhalten wir, dass JφKI = 1 ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 50

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Alternative Art, den Wert JφKI zu bestimmen

• Ersetze in φ jedes Aussagensymbol X durch seinen gemäß I festgelegten
Wahrheitswert, d.h. durch den Wert I(X), und rechne dann den Wert des
resultierenden booleschen Ausdrucks aus.

• Speziell für die Formel φ und die Interpretation I aus Beispiel 2.7 ergibt die
Ersetzung der Aussagensymbole durch die gemäß I festgelegten
Wahrheitswerte den booleschen Ausdruck(

¬1 ∨ (0 → 1)
)
.

• Ausrechnen von ¬1 ergibt den Wert 0.

Ausrechnen von (0 → 1) ergibt den Wert

1.

• Insgesamt erhalten wir also (0 ∨ 1), was sich zum Wert 1 errechnet.

Somit erhalten wir, dass JφKI = 1 ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 50

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Alternative Art, den Wert JφKI zu bestimmen

• Ersetze in φ jedes Aussagensymbol X durch seinen gemäß I festgelegten
Wahrheitswert, d.h. durch den Wert I(X), und rechne dann den Wert des
resultierenden booleschen Ausdrucks aus.

• Speziell für die Formel φ und die Interpretation I aus Beispiel 2.7 ergibt die
Ersetzung der Aussagensymbole durch die gemäß I festgelegten
Wahrheitswerte den booleschen Ausdruck(

¬1 ∨ (0 → 1)
)
.

• Ausrechnen von ¬1 ergibt den Wert 0.

Ausrechnen von (0 → 1) ergibt den Wert 1.

• Insgesamt erhalten wir also (0 ∨ 1), was sich zum Wert 1 errechnet.

Somit erhalten wir, dass JφKI = 1 ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 50

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Alternative Art, den Wert JφKI zu bestimmen

• Ersetze in φ jedes Aussagensymbol X durch seinen gemäß I festgelegten
Wahrheitswert, d.h. durch den Wert I(X), und rechne dann den Wert des
resultierenden booleschen Ausdrucks aus.

• Speziell für die Formel φ und die Interpretation I aus Beispiel 2.7 ergibt die
Ersetzung der Aussagensymbole durch die gemäß I festgelegten
Wahrheitswerte den booleschen Ausdruck(

¬1 ∨ (0 → 1)
)
.

• Ausrechnen von ¬1 ergibt den Wert 0.

Ausrechnen von (0 → 1) ergibt den Wert 1.

• Insgesamt erhalten wir also

(0 ∨ 1), was sich zum Wert 1 errechnet.

Somit erhalten wir, dass JφKI = 1 ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 50

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Alternative Art, den Wert JφKI zu bestimmen

• Ersetze in φ jedes Aussagensymbol X durch seinen gemäß I festgelegten
Wahrheitswert, d.h. durch den Wert I(X), und rechne dann den Wert des
resultierenden booleschen Ausdrucks aus.

• Speziell für die Formel φ und die Interpretation I aus Beispiel 2.7 ergibt die
Ersetzung der Aussagensymbole durch die gemäß I festgelegten
Wahrheitswerte den booleschen Ausdruck(

¬1 ∨ (0 → 1)
)
.

• Ausrechnen von ¬1 ergibt den Wert 0.

Ausrechnen von (0 → 1) ergibt den Wert 1.

• Insgesamt erhalten wir also (0 ∨ 1), was sich zum Wert

1 errechnet.

Somit erhalten wir, dass JφKI = 1 ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 50

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Alternative Art, den Wert JφKI zu bestimmen

• Ersetze in φ jedes Aussagensymbol X durch seinen gemäß I festgelegten
Wahrheitswert, d.h. durch den Wert I(X), und rechne dann den Wert des
resultierenden booleschen Ausdrucks aus.

• Speziell für die Formel φ und die Interpretation I aus Beispiel 2.7 ergibt die
Ersetzung der Aussagensymbole durch die gemäß I festgelegten
Wahrheitswerte den booleschen Ausdruck(

¬1 ∨ (0 → 1)
)
.

• Ausrechnen von ¬1 ergibt den Wert 0.

Ausrechnen von (0 → 1) ergibt den Wert 1.

• Insgesamt erhalten wir also (0 ∨ 1), was sich zum Wert 1 errechnet.

Somit erhalten wir, dass JφKI = 1 ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 50

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Die Modellbeziehung

Definition 2.8

(a) Eine Interpretation I erfüllt eine Formel φ ∈ AL (wir schreiben: I |= φ),

wenn JφKI = 1.

Wir schreiben kurz I ̸|= φ um auszudrücken, dass I die Formel φ

nicht erfüllt (d.h., es gilt JφKI = 0).

(b) Eine Interpretation I erfüllt eine Formelmenge Φ ⊆ AL (wir schreiben:
I |= Φ), wenn I |= φ für alle φ ∈ Φ.

(c) Ein Modell einer Formel φ

(bzw. einer Formelmenge Φ)

ist eine
Interpretation I mit I |= φ

(bzw. I |= Φ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 51

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Die Modellbeziehung

Definition 2.8

(a) Eine Interpretation I erfüllt eine Formel φ ∈ AL (wir schreiben: I |= φ),

wenn JφKI = 1.

Wir schreiben kurz I ̸|= φ um auszudrücken, dass I die Formel φ

nicht erfüllt (d.h., es gilt JφKI = 0).

(b) Eine Interpretation I erfüllt eine Formelmenge Φ ⊆ AL (wir schreiben:
I |= Φ), wenn I |= φ für alle φ ∈ Φ.

(c) Ein Modell einer Formel φ

(bzw. einer Formelmenge Φ)

ist eine
Interpretation I mit I |= φ

(bzw. I |= Φ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 51

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Die Modellbeziehung

Definition 2.8

(a) Eine Interpretation I erfüllt eine Formel φ ∈ AL (wir schreiben: I |= φ),

wenn JφKI = 1.

Wir schreiben kurz I ̸|= φ um auszudrücken, dass I die Formel φ

nicht erfüllt (d.h., es gilt JφKI = 0).

(b) Eine Interpretation I erfüllt eine Formelmenge Φ ⊆ AL (wir schreiben:
I |= Φ), wenn I |= φ für alle φ ∈ Φ.

(c) Ein Modell einer Formel φ

(bzw. einer Formelmenge Φ)

ist eine
Interpretation I mit I |= φ

(bzw. I |= Φ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 51

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Die Modellbeziehung

Definition 2.8

(a) Eine Interpretation I erfüllt eine Formel φ ∈ AL (wir schreiben: I |= φ),

wenn JφKI = 1.

Wir schreiben kurz I ̸|= φ um auszudrücken, dass I die Formel φ

nicht erfüllt (d.h., es gilt JφKI = 0).

(b) Eine Interpretation I erfüllt eine Formelmenge Φ ⊆ AL (wir schreiben:
I |= Φ), wenn I |= φ für alle φ ∈ Φ.

(c) Ein Modell einer Formel φ (bzw. einer Formelmenge Φ) ist eine
Interpretation I mit I |= φ (bzw. I |= Φ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 51

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Das Koinzidenzlemma

• Offensichtlich hängt der Wert JφKI nur von den Werten I(X) der
Aussagensymbole X ∈ AS ab, die auch in φ vorkommen.

Diese Aussage ist als das Koinzidenzlemma der Aussagenlogik bekannt.

• Um JφKI festzulegen, reicht es also, die Werte I(X) nur für diejenigen
Aussagensymbole X ∈ AS anzugeben, die in φ vorkommen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 52

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Das Koinzidenzlemma

• Offensichtlich hängt der Wert JφKI nur von den Werten I(X) der
Aussagensymbole X ∈ AS ab, die auch in φ vorkommen.

Diese Aussage ist als das Koinzidenzlemma der Aussagenlogik bekannt.

• Um JφKI festzulegen, reicht es also, die Werte I(X) nur für diejenigen
Aussagensymbole X ∈ AS anzugeben, die in φ vorkommen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 52

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Das Koinzidenzlemma

• Offensichtlich hängt der Wert JφKI nur von den Werten I(X) der
Aussagensymbole X ∈ AS ab, die auch in φ vorkommen.

Diese Aussage ist als das Koinzidenzlemma der Aussagenlogik bekannt.

• Um JφKI festzulegen, reicht es also, die Werte I(X) nur für diejenigen
Aussagensymbole X ∈ AS anzugeben, die in φ vorkommen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 52

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Vereinbarungen zu Interpretationen

• Statt der vollen Interpretation I : AS → {0, 1} geben wir in der Regel nur
endlich viele Werte I(X1), . . . , I(Xn) an und legen fest, dass I(Y) := 0 für
alle Y ∈ AS \ {X1, . . . ,Xn}.

• In den Beispielen legen wir eine Interpretation oft durch eine Wertetabelle
fest.

Beispielsweise beschreibt die Tabelle

X A0 A1 A5

I(X) 1 1 0

die Interpretation I mit I(A0) = I(A1) = 1 und I(A5) = 0 und I(Y) = 0
für alle Y ∈ AS \ {A0,A1,A5}.

• Wir schreiben φ(X1, . . . ,Xn), um anzudeuten, dass in φ nur
Aussagensymbole aus der Menge {X1, . . . ,Xn} vorkommen.

Für Wahrheitswerte b1, . . . , bn ∈ {0, 1} schreiben wir dann φ[b1, . . . , bn]

anstatt JφKI für eine (bzw. alle) Interpretationen I mit I(Xi) = bi für alle
i ∈ [n] := {1, . . . , n}.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 53

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Vereinbarungen zu Interpretationen

• Statt der vollen Interpretation I : AS → {0, 1} geben wir in der Regel nur
endlich viele Werte I(X1), . . . , I(Xn) an und legen fest, dass I(Y) := 0 für
alle Y ∈ AS \ {X1, . . . ,Xn}.

• In den Beispielen legen wir eine Interpretation oft durch eine Wertetabelle
fest.

Beispielsweise beschreibt die Tabelle

X A0 A1 A5

I(X) 1 1 0

die Interpretation I mit I(A0) = I(A1) = 1 und I(A5) = 0 und I(Y) = 0
für alle Y ∈ AS \ {A0,A1,A5}.

• Wir schreiben φ(X1, . . . ,Xn), um anzudeuten, dass in φ nur
Aussagensymbole aus der Menge {X1, . . . ,Xn} vorkommen.

Für Wahrheitswerte b1, . . . , bn ∈ {0, 1} schreiben wir dann φ[b1, . . . , bn]

anstatt JφKI für eine (bzw. alle) Interpretationen I mit I(Xi) = bi für alle
i ∈ [n] := {1, . . . , n}.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 53

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Vereinbarungen zu Interpretationen

• Statt der vollen Interpretation I : AS → {0, 1} geben wir in der Regel nur
endlich viele Werte I(X1), . . . , I(Xn) an und legen fest, dass I(Y) := 0 für
alle Y ∈ AS \ {X1, . . . ,Xn}.

• In den Beispielen legen wir eine Interpretation oft durch eine Wertetabelle
fest. Beispielsweise beschreibt die Tabelle

X A0 A1 A5

I(X) 1 1 0

die Interpretation I mit I(A0) = I(A1) = 1 und I(A5) = 0 und I(Y) = 0
für alle Y ∈ AS \ {A0,A1,A5}.

• Wir schreiben φ(X1, . . . ,Xn), um anzudeuten, dass in φ nur
Aussagensymbole aus der Menge {X1, . . . ,Xn} vorkommen.

Für Wahrheitswerte b1, . . . , bn ∈ {0, 1} schreiben wir dann φ[b1, . . . , bn]

anstatt JφKI für eine (bzw. alle) Interpretationen I mit I(Xi) = bi für alle
i ∈ [n] := {1, . . . , n}.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 53

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Vereinbarungen zu Interpretationen

• Statt der vollen Interpretation I : AS → {0, 1} geben wir in der Regel nur
endlich viele Werte I(X1), . . . , I(Xn) an und legen fest, dass I(Y) := 0 für
alle Y ∈ AS \ {X1, . . . ,Xn}.

• In den Beispielen legen wir eine Interpretation oft durch eine Wertetabelle
fest. Beispielsweise beschreibt die Tabelle

X A0 A1 A5

I(X) 1 1 0

die Interpretation I mit I(A0) = I(A1) = 1 und I(A5) = 0 und I(Y) = 0
für alle Y ∈ AS \ {A0,A1,A5}.

• Wir schreiben φ(X1, . . . ,Xn), um anzudeuten, dass in φ nur
Aussagensymbole aus der Menge {X1, . . . ,Xn} vorkommen.

Für Wahrheitswerte b1, . . . , bn ∈ {0, 1} schreiben wir dann φ[b1, . . . , bn]

anstatt JφKI für eine (bzw. alle) Interpretationen I mit I(Xi) = bi für alle
i ∈ [n] := {1, . . . , n}.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 53

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Vereinbarungen zu Interpretationen

• Statt der vollen Interpretation I : AS → {0, 1} geben wir in der Regel nur
endlich viele Werte I(X1), . . . , I(Xn) an und legen fest, dass I(Y) := 0 für
alle Y ∈ AS \ {X1, . . . ,Xn}.

• In den Beispielen legen wir eine Interpretation oft durch eine Wertetabelle
fest. Beispielsweise beschreibt die Tabelle

X A0 A1 A5

I(X) 1 1 0

die Interpretation I mit I(A0) = I(A1) = 1 und I(A5) = 0 und I(Y) = 0
für alle Y ∈ AS \ {A0,A1,A5}.

• Wir schreiben φ(X1, . . . ,Xn), um anzudeuten, dass in φ nur
Aussagensymbole aus der Menge {X1, . . . ,Xn} vorkommen.

Für Wahrheitswerte b1, . . . , bn ∈ {0, 1} schreiben wir dann φ[b1, . . . , bn]

anstatt JφKI für eine (bzw. alle) Interpretationen I mit I(Xi) = bi für alle
i ∈ [n] := {1, . . . , n}.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 53

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Vereinbarungen

• Wir schreiben (φ↔ ψ) als Abkürzung für ((φ→ ψ) ∧ (ψ → φ)).

• Statt mit A0,A1,A2, . . . bezeichnen wir Aussagensymbole auch oft mit
A,B,C , . . . ,X ,Y ,Z , . . . oder mit Varianten wie X ′,Y1,

• Die äußeren Klammern einer Formel lassen wir manchmal weg und
schreiben z.B. (X ∧ Y) → Z an Stelle des (formal korrekten)
((X ∧ Y) → Z).

• Bezüglich Klammerung vereinbaren wir, dass ¬ am stärksten bindet, und
dass ∧ und ∨ stärker binden als →.

Wir können also z.B. X ∧ ¬Y → Z ∨ X schreiben und meinen damit
((X ∧ ¬Y) → (Z ∨ X)).

Nicht schreiben können wir z.B. X ∧ Y ∨ Z (da wir nichts darüber
vereinbart haben, wie fehlende Klammern hier zu setzen sind).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 54

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Vereinbarungen

• Wir schreiben (φ↔ ψ) als Abkürzung für ((φ→ ψ) ∧ (ψ → φ)).

• Statt mit A0,A1,A2, . . . bezeichnen wir Aussagensymbole auch oft mit
A,B,C , . . . ,X ,Y ,Z , . . . oder mit Varianten wie X ′,Y1,

• Die äußeren Klammern einer Formel lassen wir manchmal weg und
schreiben z.B. (X ∧ Y) → Z an Stelle des (formal korrekten)
((X ∧ Y) → Z).

• Bezüglich Klammerung vereinbaren wir, dass ¬ am stärksten bindet, und
dass ∧ und ∨ stärker binden als →.

Wir können also z.B. X ∧ ¬Y → Z ∨ X schreiben und meinen damit
((X ∧ ¬Y) → (Z ∨ X)).

Nicht schreiben können wir z.B. X ∧ Y ∨ Z (da wir nichts darüber
vereinbart haben, wie fehlende Klammern hier zu setzen sind).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 54

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Vereinbarungen

• Wir schreiben (φ↔ ψ) als Abkürzung für ((φ→ ψ) ∧ (ψ → φ)).

• Statt mit A0,A1,A2, . . . bezeichnen wir Aussagensymbole auch oft mit
A,B,C , . . . ,X ,Y ,Z , . . . oder mit Varianten wie X ′,Y1,

• Die äußeren Klammern einer Formel lassen wir manchmal weg und
schreiben z.B. (X ∧ Y) → Z an Stelle des (formal korrekten)
((X ∧ Y) → Z).

• Bezüglich Klammerung vereinbaren wir, dass ¬ am stärksten bindet, und
dass ∧ und ∨ stärker binden als →.

Wir können also z.B. X ∧ ¬Y → Z ∨ X schreiben und meinen damit
((X ∧ ¬Y) → (Z ∨ X)).

Nicht schreiben können wir z.B. X ∧ Y ∨ Z (da wir nichts darüber
vereinbart haben, wie fehlende Klammern hier zu setzen sind).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 54

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Vereinbarungen

• Wir schreiben (φ↔ ψ) als Abkürzung für ((φ→ ψ) ∧ (ψ → φ)).

• Statt mit A0,A1,A2, . . . bezeichnen wir Aussagensymbole auch oft mit
A,B,C , . . . ,X ,Y ,Z , . . . oder mit Varianten wie X ′,Y1,

• Die äußeren Klammern einer Formel lassen wir manchmal weg und
schreiben z.B. (X ∧ Y) → Z an Stelle des (formal korrekten)
((X ∧ Y) → Z).

• Bezüglich Klammerung vereinbaren wir, dass ¬ am stärksten bindet, und
dass ∧ und ∨ stärker binden als →.

Wir können also z.B. X ∧ ¬Y → Z ∨ X schreiben und meinen damit
((X ∧ ¬Y) → (Z ∨ X)).

Nicht schreiben können wir z.B. X ∧ Y ∨ Z (da wir nichts darüber
vereinbart haben, wie fehlende Klammern hier zu setzen sind).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 54

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Vereinbarungen

• Wir schreiben (φ↔ ψ) als Abkürzung für ((φ→ ψ) ∧ (ψ → φ)).

• Statt mit A0,A1,A2, . . . bezeichnen wir Aussagensymbole auch oft mit
A,B,C , . . . ,X ,Y ,Z , . . . oder mit Varianten wie X ′,Y1,

• Die äußeren Klammern einer Formel lassen wir manchmal weg und
schreiben z.B. (X ∧ Y) → Z an Stelle des (formal korrekten)
((X ∧ Y) → Z).

• Bezüglich Klammerung vereinbaren wir, dass ¬ am stärksten bindet, und
dass ∧ und ∨ stärker binden als →.

Wir können also z.B. X ∧ ¬Y → Z ∨ X schreiben und meinen damit

((X ∧ ¬Y) → (Z ∨ X)).

Nicht schreiben können wir z.B. X ∧ Y ∨ Z (da wir nichts darüber
vereinbart haben, wie fehlende Klammern hier zu setzen sind).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 54

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Vereinbarungen

• Wir schreiben (φ↔ ψ) als Abkürzung für ((φ→ ψ) ∧ (ψ → φ)).

• Statt mit A0,A1,A2, . . . bezeichnen wir Aussagensymbole auch oft mit
A,B,C , . . . ,X ,Y ,Z , . . . oder mit Varianten wie X ′,Y1,

• Die äußeren Klammern einer Formel lassen wir manchmal weg und
schreiben z.B. (X ∧ Y) → Z an Stelle des (formal korrekten)
((X ∧ Y) → Z).

• Bezüglich Klammerung vereinbaren wir, dass ¬ am stärksten bindet, und
dass ∧ und ∨ stärker binden als →.

Wir können also z.B. X ∧ ¬Y → Z ∨ X schreiben und meinen damit
((X ∧ ¬Y) → (Z ∨ X)).

Nicht schreiben können wir z.B. X ∧ Y ∨ Z (da wir nichts darüber
vereinbart haben, wie fehlende Klammern hier zu setzen sind).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 54

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Vereinbarungen

• Wir schreiben (φ↔ ψ) als Abkürzung für ((φ→ ψ) ∧ (ψ → φ)).

• Statt mit A0,A1,A2, . . . bezeichnen wir Aussagensymbole auch oft mit
A,B,C , . . . ,X ,Y ,Z , . . . oder mit Varianten wie X ′,Y1,

• Die äußeren Klammern einer Formel lassen wir manchmal weg und
schreiben z.B. (X ∧ Y) → Z an Stelle des (formal korrekten)
((X ∧ Y) → Z).

• Bezüglich Klammerung vereinbaren wir, dass ¬ am stärksten bindet, und
dass ∧ und ∨ stärker binden als →.

Wir können also z.B. X ∧ ¬Y → Z ∨ X schreiben und meinen damit
((X ∧ ¬Y) → (Z ∨ X)).

Nicht schreiben können wir z.B. X ∧ Y ∨ Z (da wir nichts darüber
vereinbart haben, wie fehlende Klammern hier zu setzen sind).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 54

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

• Wir schreiben
n∧

i=1

φi bzw. (φ1 ∧ . . . ∧ φn) an Stelle von

(· · · ((φ1 ∧ φ2) ∧ φ3) ∧ . . . ∧ φn)

und nutzen analoge Schreibweisen auch für
”
∨“ an Stelle von

”
∧“.

• Ist M eine endliche Menge aussagenlogischer Formeln, so schreiben wir∧
φ∈M

φ

um die Formel (φ1 ∧ · · · ∧φn) zu bezeichnen, wobei n = |M| die Anzahl der
Formeln in M ist und φ1, . . . , φn die Auflistung aller Formeln in M in
lexikographischer Reihenfolge ist. Formeln sind hierbei Worte über dem
Alphabet der Aussagenlogik, wobei die einzelnen Symbole dieses Alphabets
folgendermaßen aufsteigend sortiert sind:

0, 1, ¬, ∧, ∨, →, (,), A0, A1, A2, A3,

Die analoge Schreibweise nutzen wir auch für
”
∨“ an Stelle von

”
∧“.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 55

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

• Wir schreiben
n∧

i=1

φi bzw. (φ1 ∧ . . . ∧ φn) an Stelle von

(· · · ((φ1 ∧ φ2) ∧ φ3) ∧ . . . ∧ φn)

und nutzen analoge Schreibweisen auch für
”
∨“ an Stelle von

”
∧“.

• Ist M eine endliche Menge aussagenlogischer Formeln, so schreiben wir∧
φ∈M

φ

um die Formel (φ1 ∧ · · · ∧φn) zu bezeichnen, wobei n = |M| die Anzahl der
Formeln in M ist und φ1, . . . , φn die Auflistung aller Formeln in M in
lexikographischer Reihenfolge ist. Formeln sind hierbei Worte über dem
Alphabet der Aussagenlogik, wobei die einzelnen Symbole dieses Alphabets
folgendermaßen aufsteigend sortiert sind:

0, 1, ¬, ∧, ∨, →, (,), A0, A1, A2, A3,

Die analoge Schreibweise nutzen wir auch für
”
∨“ an Stelle von

”
∧“.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 55

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

• Wir schreiben
n∧

i=1

φi bzw. (φ1 ∧ . . . ∧ φn) an Stelle von

(· · · ((φ1 ∧ φ2) ∧ φ3) ∧ . . . ∧ φn)

und nutzen analoge Schreibweisen auch für
”
∨“ an Stelle von

”
∧“.

• Ist M eine endliche Menge aussagenlogischer Formeln, so schreiben wir∧
φ∈M

φ

um die Formel (φ1 ∧ · · · ∧φn) zu bezeichnen, wobei n = |M| die Anzahl der
Formeln in M ist und φ1, . . . , φn die Auflistung aller Formeln in M in
lexikographischer Reihenfolge ist. Formeln sind hierbei Worte über dem
Alphabet der Aussagenlogik, wobei die einzelnen Symbole dieses Alphabets
folgendermaßen aufsteigend sortiert sind:

0, 1, ¬, ∧, ∨, →, (,), A0, A1, A2, A3,

Die analoge Schreibweise nutzen wir auch für
”
∨“ an Stelle von

”
∧“.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 55

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

• Wir schreiben
n∧

i=1

φi bzw. (φ1 ∧ . . . ∧ φn) an Stelle von

(· · · ((φ1 ∧ φ2) ∧ φ3) ∧ . . . ∧ φn)

und nutzen analoge Schreibweisen auch für
”
∨“ an Stelle von

”
∧“.

• Ist M eine endliche Menge aussagenlogischer Formeln, so schreiben wir∧
φ∈M

φ

um die Formel (φ1 ∧ · · · ∧φn) zu bezeichnen, wobei n = |M| die Anzahl der
Formeln in M ist und φ1, . . . , φn die Auflistung aller Formeln in M in
lexikographischer Reihenfolge ist.

Formeln sind hierbei Worte über dem
Alphabet der Aussagenlogik, wobei die einzelnen Symbole dieses Alphabets
folgendermaßen aufsteigend sortiert sind:

0, 1, ¬, ∧, ∨, →, (,), A0, A1, A2, A3,

Die analoge Schreibweise nutzen wir auch für
”
∨“ an Stelle von

”
∧“.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 55

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

• Wir schreiben
n∧

i=1

φi bzw. (φ1 ∧ . . . ∧ φn) an Stelle von

(· · · ((φ1 ∧ φ2) ∧ φ3) ∧ . . . ∧ φn)

und nutzen analoge Schreibweisen auch für
”
∨“ an Stelle von

”
∧“.

• Ist M eine endliche Menge aussagenlogischer Formeln, so schreiben wir∧
φ∈M

φ

um die Formel (φ1 ∧ · · · ∧φn) zu bezeichnen, wobei n = |M| die Anzahl der
Formeln in M ist und φ1, . . . , φn die Auflistung aller Formeln in M in
lexikographischer Reihenfolge ist. Formeln sind hierbei Worte über dem
Alphabet der Aussagenlogik, wobei die einzelnen Symbole dieses Alphabets
folgendermaßen aufsteigend sortiert sind:

0, 1, ¬, ∧, ∨, →, (,), A0, A1, A2, A3,

Die analoge Schreibweise nutzen wir auch für
”
∨“ an Stelle von

”
∧“.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 55

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

• Wir schreiben
n∧

i=1

φi bzw. (φ1 ∧ . . . ∧ φn) an Stelle von

(· · · ((φ1 ∧ φ2) ∧ φ3) ∧ . . . ∧ φn)

und nutzen analoge Schreibweisen auch für
”
∨“ an Stelle von

”
∧“.

• Ist M eine endliche Menge aussagenlogischer Formeln, so schreiben wir∧
φ∈M

φ

um die Formel (φ1 ∧ · · · ∧φn) zu bezeichnen, wobei n = |M| die Anzahl der
Formeln in M ist und φ1, . . . , φn die Auflistung aller Formeln in M in
lexikographischer Reihenfolge ist. Formeln sind hierbei Worte über dem
Alphabet der Aussagenlogik, wobei die einzelnen Symbole dieses Alphabets
folgendermaßen aufsteigend sortiert sind:

0, 1, ¬, ∧, ∨, →, (,), A0, A1, A2, A3,

Die analoge Schreibweise nutzen wir auch für
”
∨“ an Stelle von

”
∧“.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 55

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

• Diese Schreibweisen werden wir manchmal auch kombinieren. Sind zum
Beispiel I = {i1, . . . , im} und J = {j1, . . . , jn} endliche Mengen und ist für
jedes i ∈ I und j ∈ J eine Formel φi,j gegeben, so schreiben wir∧

i∈I

∨
j∈J

φi,j

um die Formel (ψi1 ∧ · · · ∧ ψim) zu bezeichnen, wobei für jedes i ∈ I die
Formel ψi durch ψi := (φi,j1 ∨ · · · ∨ φi,jn) definiert ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 56

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Wahrheitstafeln
Für jede Formel φ(X1, . . . ,Xn) kann man die Wahrheitswerte unter allen
möglichen Interpretationen in einer Wahrheitstafel darstellen. Für alle
(b1, . . . , bn) ∈ {0, 1}n enthält die Tafel eine Zeile mit den Werten
b1 · · · bn | φ[b1, . . . , bn].

Um die Wahrheitstafel für φ auszufüllen, ist es bequem, auch Spalten für (alle
oder einige) Subformeln von φ einzufügen.

Beispiel: Wahrheitstafel für φ(X ,Y ,Z) := ((X ∨ Y) → (X ∧ Z)):

X Y Z (X ∨ Y) (X ∧ Z) φ

0 0 0 0 0 1
0 0 1 0 0 1
0 1 0 1 0 0
0 1 1 1 0 0
1 0 0 1 0 0
1 0 1 1 1 1
1 1 0 1 0 0
1 1 1 1 1 1

Die Reihenfolge der Zeilen ist dabei unerheblich. Wir vereinbaren allerdings, die
Zeilen stets so anzuordnen, dass die Werte b1 · · · bn ∈ {0, 1}n, aufgefasst als
Binärzahlen, in aufsteigender Reihenfolge aufgelistet werden.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 57

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Wahrheitstafeln
Für jede Formel φ(X1, . . . ,Xn) kann man die Wahrheitswerte unter allen
möglichen Interpretationen in einer Wahrheitstafel darstellen. Für alle
(b1, . . . , bn) ∈ {0, 1}n enthält die Tafel eine Zeile mit den Werten
b1 · · · bn | φ[b1, . . . , bn].
Um die Wahrheitstafel für φ auszufüllen, ist es bequem, auch Spalten für (alle
oder einige) Subformeln von φ einzufügen.

Beispiel: Wahrheitstafel für φ(X ,Y ,Z) := ((X ∨ Y) → (X ∧ Z)):

X Y Z (X ∨ Y) (X ∧ Z) φ

0 0 0 0 0 1
0 0 1 0 0 1
0 1 0 1 0 0
0 1 1 1 0 0
1 0 0 1 0 0
1 0 1 1 1 1
1 1 0 1 0 0
1 1 1 1 1 1

Die Reihenfolge der Zeilen ist dabei unerheblich. Wir vereinbaren allerdings, die
Zeilen stets so anzuordnen, dass die Werte b1 · · · bn ∈ {0, 1}n, aufgefasst als
Binärzahlen, in aufsteigender Reihenfolge aufgelistet werden.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 57

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Wahrheitstafeln
Für jede Formel φ(X1, . . . ,Xn) kann man die Wahrheitswerte unter allen
möglichen Interpretationen in einer Wahrheitstafel darstellen. Für alle
(b1, . . . , bn) ∈ {0, 1}n enthält die Tafel eine Zeile mit den Werten
b1 · · · bn | φ[b1, . . . , bn].
Um die Wahrheitstafel für φ auszufüllen, ist es bequem, auch Spalten für (alle
oder einige) Subformeln von φ einzufügen.

Beispiel: Wahrheitstafel für φ(X ,Y ,Z) := ((X ∨ Y) → (X ∧ Z)):

X Y Z (X ∨ Y) (X ∧ Z) φ

0 0 0 0 0 1
0 0 1 0 0 1
0 1 0 1 0 0
0 1 1 1 0 0
1 0 0 1 0 0
1 0 1 1 1 1
1 1 0 1 0 0
1 1 1 1 1 1

Die Reihenfolge der Zeilen ist dabei unerheblich. Wir vereinbaren allerdings, die
Zeilen stets so anzuordnen, dass die Werte b1 · · · bn ∈ {0, 1}n, aufgefasst als
Binärzahlen, in aufsteigender Reihenfolge aufgelistet werden.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 57

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Wahrheitstafeln
Für jede Formel φ(X1, . . . ,Xn) kann man die Wahrheitswerte unter allen
möglichen Interpretationen in einer Wahrheitstafel darstellen. Für alle
(b1, . . . , bn) ∈ {0, 1}n enthält die Tafel eine Zeile mit den Werten
b1 · · · bn | φ[b1, . . . , bn].
Um die Wahrheitstafel für φ auszufüllen, ist es bequem, auch Spalten für (alle
oder einige) Subformeln von φ einzufügen.

Beispiel: Wahrheitstafel für φ(X ,Y ,Z) := ((X ∨ Y) → (X ∧ Z)):

X Y Z (X ∨ Y) (X ∧ Z) φ

0 0 0 0 0 1
0 0 1 0 0 1
0 1 0 1 0 0
0 1 1 1 0 0
1 0 0 1 0 0
1 0 1 1 1 1
1 1 0 1 0 0
1 1 1 1 1 1

Die Reihenfolge der Zeilen ist dabei unerheblich. Wir vereinbaren allerdings, die
Zeilen stets so anzuordnen, dass die Werte b1 · · · bn ∈ {0, 1}n, aufgefasst als
Binärzahlen, in aufsteigender Reihenfolge aufgelistet werden.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 57

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Wahrheitstafeln
Für jede Formel φ(X1, . . . ,Xn) kann man die Wahrheitswerte unter allen
möglichen Interpretationen in einer Wahrheitstafel darstellen. Für alle
(b1, . . . , bn) ∈ {0, 1}n enthält die Tafel eine Zeile mit den Werten
b1 · · · bn | φ[b1, . . . , bn].
Um die Wahrheitstafel für φ auszufüllen, ist es bequem, auch Spalten für (alle
oder einige) Subformeln von φ einzufügen.

Beispiel: Wahrheitstafel für φ(X ,Y ,Z) := ((X ∨ Y) → (X ∧ Z)):

X Y Z (X ∨ Y) (X ∧ Z) φ

0 0 0 0 0 1
0 0 1 0 0 1
0 1 0 1 0 0
0 1 1 1 0 0
1 0 0 1 0 0
1 0 1 1 1 1
1 1 0 1 0 0
1 1 1 1 1 1

Die Reihenfolge der Zeilen ist dabei unerheblich. Wir vereinbaren allerdings, die
Zeilen stets so anzuordnen, dass die Werte b1 · · · bn ∈ {0, 1}n, aufgefasst als
Binärzahlen, in aufsteigender Reihenfolge aufgelistet werden.
Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 57

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Wahrheitstafeln für die Junktoren

Die Bedeutung der Junktoren kann man mittels ihrer Wahrheitstafeln
beschreiben:

X ¬X
0 1
1 0

X Y (X∧Y)

0 0 0
0 1 0
1 0 0
1 1 1

X Y (X∨Y)

0 0 0
0 1 1
1 0 1
1 1 1

X Y (X→Y)

0 0 1
0 1 1
1 0 0
1 1 1

Genauso kann man eine Wahrheitstafel für die Formel X↔Y , die ja eine
Abkürzung für (X → Y) ∧ (Y → X) ist, bestimmen:

X Y (X↔Y)

0 0 1
0 1 0
1 0 0
1 1 1

X↔Y bedeutet also
”
X genau dann wenn Y“.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 58

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Wahrheitstafeln für die Junktoren

Die Bedeutung der Junktoren kann man mittels ihrer Wahrheitstafeln
beschreiben:

X ¬X
0 1
1 0

X Y (X∧Y)

0 0 0
0 1 0
1 0 0
1 1 1

X Y (X∨Y)

0 0 0
0 1 1
1 0 1
1 1 1

X Y (X→Y)

0 0 1
0 1 1
1 0 0
1 1 1

Genauso kann man eine Wahrheitstafel für die Formel X↔Y , die ja eine
Abkürzung für (X → Y) ∧ (Y → X) ist, bestimmen:

X Y (X↔Y)

0 0 1
0 1 0
1 0 0
1 1 1

X↔Y bedeutet also
”
X genau dann wenn Y“.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 58

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Wahrheitstafeln für die Junktoren

Die Bedeutung der Junktoren kann man mittels ihrer Wahrheitstafeln
beschreiben:

X ¬X
0 1
1 0

X Y (X∧Y)

0 0 0
0 1 0
1 0 0
1 1 1

X Y (X∨Y)

0 0 0
0 1 1
1 0 1
1 1 1

X Y (X→Y)

0 0 1
0 1 1
1 0 0
1 1 1

Genauso kann man eine Wahrheitstafel für die Formel X↔Y , die ja eine
Abkürzung für (X → Y) ∧ (Y → X) ist, bestimmen:

X Y (X↔Y)

0 0 1
0 1 0
1 0 0
1 1 1

X↔Y bedeutet also
”
X genau dann wenn Y“.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 58

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Ein Logikrätsel

Beispiel 2.9
Auf der Insel Wafa gibt es zwei Dörfer: Das Dorf Wa, dessen Einwohner:innen
immer die Wahrheit sagen, und das Dorf Fa, dessen Einwohner:innen immer
lügen.

Ein Reisender besucht die Insel und trifft auf drei Einwohner A, B, C , die
ihm Folgendes erzählen:

• A sagt:

”
B und C sagen genau dann die Wahrheit, wenn C die Wahrheit sagt.“

• B sagt:

”
Wenn A und C die Wahrheit sagen, dann ist es nicht der Fall, dass A die
Wahrheit sagt, wenn B und C die Wahrheit sagen.“

• C sagt:

”
B lügt genau dann, wenn A oder B die Wahrheit sagen.“

Frage: In welchen der beiden Dörfern leben jeweils A, B bzw. C?

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 59

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Ein Logikrätsel

Beispiel 2.9
Auf der Insel Wafa gibt es zwei Dörfer: Das Dorf Wa, dessen Einwohner:innen
immer die Wahrheit sagen, und das Dorf Fa, dessen Einwohner:innen immer
lügen. Ein Reisender besucht die Insel und trifft auf drei Einwohner A, B, C , die
ihm Folgendes erzählen:

• A sagt:

”
B und C sagen genau dann die Wahrheit, wenn C die Wahrheit sagt.“

• B sagt:

”
Wenn A und C die Wahrheit sagen, dann ist es nicht der Fall, dass A die
Wahrheit sagt, wenn B und C die Wahrheit sagen.“

• C sagt:

”
B lügt genau dann, wenn A oder B die Wahrheit sagen.“

Frage: In welchen der beiden Dörfern leben jeweils A, B bzw. C?

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 59

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Aussagenlogische Modellierung

Aussagensymbole:

• WA steht für
”
A sagt die Wahrheit.“

• WB steht für
”
B sagt die Wahrheit.“

• WC steht für
”
C sagt die Wahrheit.“

Aussagen der drei Inselbewohner:

• φA := (WB ∧WC) ↔ WC

• φB := (WA ∧WC) → ¬
(
(WB ∧WC) → WA

)
• φC := ¬WB ↔ (WA ∨WB)

Wir suchen nach einer Interpretation, die die Formel

ψ := (WA ↔ φA) ∧ (WB ↔ φB) ∧ (WC ↔ φC)

erfüllt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 60

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Aussagenlogische Modellierung

Aussagensymbole:

• WA steht für
”
A sagt die Wahrheit.“

• WB steht für
”
B sagt die Wahrheit.“

• WC steht für
”
C sagt die Wahrheit.“

Aussagen der drei Inselbewohner:

• φA :=

(WB ∧WC) ↔ WC

• φB := (WA ∧WC) → ¬
(
(WB ∧WC) → WA

)
• φC := ¬WB ↔ (WA ∨WB)

Wir suchen nach einer Interpretation, die die Formel

ψ := (WA ↔ φA) ∧ (WB ↔ φB) ∧ (WC ↔ φC)

erfüllt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 60

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Aussagenlogische Modellierung

Aussagensymbole:

• WA steht für
”
A sagt die Wahrheit.“

• WB steht für
”
B sagt die Wahrheit.“

• WC steht für
”
C sagt die Wahrheit.“

Aussagen der drei Inselbewohner:

• φA := (WB ∧WC) ↔ WC

• φB := (WA ∧WC) → ¬
(
(WB ∧WC) → WA

)
• φC := ¬WB ↔ (WA ∨WB)

Wir suchen nach einer Interpretation, die die Formel

ψ :=

(WA ↔ φA) ∧ (WB ↔ φB) ∧ (WC ↔ φC)

erfüllt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 60

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Aussagenlogische Modellierung

Aussagensymbole:

• WA steht für
”
A sagt die Wahrheit.“

• WB steht für
”
B sagt die Wahrheit.“

• WC steht für
”
C sagt die Wahrheit.“

Aussagen der drei Inselbewohner:

• φA := (WB ∧WC) ↔ WC

• φB := (WA ∧WC) → ¬
(
(WB ∧WC) → WA

)
• φC := ¬WB ↔ (WA ∨WB)

Wir suchen nach einer Interpretation, die die Formel

ψ := (WA ↔ φA) ∧ (WB ↔ φB) ∧ (WC ↔ φC)

erfüllt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 60

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Lösung mittels Wahrheitstafel

WA WB WC φA φB φC WA ↔ φA WB ↔ φB WC ↔ φC ψ

0 0 0 1 1 0 0 0 1 0
0 0 1 0 1 0 1 0 0 0
0 1 0 1 1 0 0 1 1 0
0 1 1 1 1 0 0 1 0 0
1 0 0 1 1 1 1 0 0 0
1 0 1 0 0 1 0 1 1 0
1 1 0 1 1 0 1 1 1 1
1 1 1 1 0 0 1 0 0 0

Die Interpretation I mit I(WA) = 1, I(WB) = 1, I(WC) = 0 in Zeile 7 ist die
einzige, die die Formel ψ erfüllt.

Gemäß dieser Interpretation sind die Aussagen, die durch die Symbole WA und
WB repräsentiert werden, wahr, während die Aussage, die durch WC

repräsentiert wird, falsch ist.

Das heißt, die Personen A und B sagen die Wahrheit und leben somit im Dorf
Wa, und Person C lügt und lebt daher im Dorf Fa.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 61

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Lösung mittels Wahrheitstafel

WA WB WC φA φB φC WA ↔ φA WB ↔ φB WC ↔ φC ψ

0 0 0 1 1 0 0 0 1 0
0 0 1 0 1 0 1 0 0 0
0 1 0 1 1 0 0 1 1 0
0 1 1 1 1 0 0 1 0 0
1 0 0 1 1 1 1 0 0 0
1 0 1 0 0 1 0 1 1 0
1 1 0 1 1 0 1 1 1 1
1 1 1 1 0 0 1 0 0 0

Die Interpretation I mit I(WA) = 1, I(WB) = 1, I(WC) = 0 in Zeile 7 ist die
einzige, die die Formel ψ erfüllt.

Gemäß dieser Interpretation sind die Aussagen, die durch die Symbole WA und
WB repräsentiert werden, wahr, während die Aussage, die durch WC

repräsentiert wird, falsch ist.

Das heißt, die Personen A und B sagen die Wahrheit und leben somit im Dorf
Wa, und Person C lügt und lebt daher im Dorf Fa.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 61

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Lösung mittels Wahrheitstafel

WA WB WC φA φB φC WA ↔ φA WB ↔ φB WC ↔ φC ψ

0 0 0 1 1 0 0 0 1 0
0 0 1 0 1 0 1 0 0 0
0 1 0 1 1 0 0 1 1 0
0 1 1 1 1 0 0 1 0 0
1 0 0 1 1 1 1 0 0 0
1 0 1 0 0 1 0 1 1 0
1 1 0 1 1 0 1 1 1 1
1 1 1 1 0 0 1 0 0 0

Die Interpretation I mit I(WA) = 1, I(WB) = 1, I(WC) = 0 in Zeile 7 ist die
einzige, die die Formel ψ erfüllt.

Gemäß dieser Interpretation sind die Aussagen, die durch die Symbole WA und
WB repräsentiert werden, wahr, während die Aussage, die durch WC

repräsentiert wird, falsch ist.

Das heißt, die Personen A und B sagen die Wahrheit und leben somit im Dorf
Wa, und Person C lügt und lebt daher im Dorf Fa.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 61

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Lösung mittels Wahrheitstafel

WA WB WC φA φB φC WA ↔ φA WB ↔ φB WC ↔ φC ψ

0 0 0 1 1 0 0 0 1 0
0 0 1 0 1 0 1 0 0 0
0 1 0 1 1 0 0 1 1 0
0 1 1 1 1 0 0 1 0 0
1 0 0 1 1 1 1 0 0 0
1 0 1 0 0 1 0 1 1 0
1 1 0 1 1 0 1 1 1 1
1 1 1 1 0 0 1 0 0 0

Die Interpretation I mit I(WA) = 1, I(WB) = 1, I(WC) = 0 in Zeile 7 ist die
einzige, die die Formel ψ erfüllt.

Gemäß dieser Interpretation sind die Aussagen, die durch die Symbole WA und
WB repräsentiert werden, wahr, während die Aussage, die durch WC

repräsentiert wird, falsch ist.

Das heißt, die Personen A und B sagen die Wahrheit und leben somit im Dorf
Wa, und Person C lügt und lebt daher im Dorf Fa.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 61

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Lösung mittels Wahrheitstafel

WA WB WC φA φB φC WA ↔ φA WB ↔ φB WC ↔ φC ψ

0 0 0 1 1 0 0 0 1 0
0 0 1 0 1 0 1 0 0 0
0 1 0 1 1 0 0 1 1 0
0 1 1 1 1 0 0 1 0 0
1 0 0 1 1 1 1 0 0 0
1 0 1 0 0 1 0 1 1 0
1 1 0 1 1 0 1 1 1 1
1 1 1 1 0 0 1 0 0 0

Die Interpretation I mit I(WA) = 1, I(WB) = 1, I(WC) = 0 in Zeile 7 ist die
einzige, die die Formel ψ erfüllt.

Gemäß dieser Interpretation sind die Aussagen, die durch die Symbole WA und
WB repräsentiert werden, wahr, während die Aussage, die durch WC

repräsentiert wird, falsch ist.

Das heißt, die Personen A und B sagen die Wahrheit und leben somit im Dorf
Wa, und Person C lügt und lebt daher im Dorf Fa.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 61

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Computerlesbare Darstellung von Formeln
Wir betrachten das Alphabet ASCII aller ASCII-Symbole.

Die Menge ASASCII aller ASCII-Repräsentationen von Aussagensymbolen besteht
aus allen nicht-leeren Worten über dem Alphabet ASCII, deren erstes Symbol
ein Buchstabe ist, und bei dem alle weiteren Symbole Buchstaben oder Ziffern
sind.

Die Menge ALASCII aller ASCII-Repräsentationen von aussagenlogischen Formeln
ist die rekursiv wie folgt definierte Teilmenge von ASCII∗:

Basisregeln:

• 0 ∈ ALASCII, 1 ∈ ALASCII und w ∈ ALASCII für alle w ∈ ASASCII.

Rekursive Regeln:

• Ist φ ∈ ALASCII, so ist auch ~φ ∈ ALASCII. (Negation)
• Ist φ ∈ ALASCII und ψ ∈ ALASCII, so ist auch

• (φ /\ψ) ∈ ALASCII (Konjunktion)

• (φ \/ψ) ∈ ALASCII (Disjunktion)

• (φ ->ψ) ∈ ALASCII (Implikation)

• (φ <->ψ) ∈ ALASCII (Biimplikation).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 62

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Computerlesbare Darstellung von Formeln
Wir betrachten das Alphabet ASCII aller ASCII-Symbole.

Die Menge ASASCII aller ASCII-Repräsentationen von Aussagensymbolen besteht
aus allen nicht-leeren Worten über dem Alphabet ASCII, deren erstes Symbol
ein Buchstabe ist, und bei dem alle weiteren Symbole Buchstaben oder Ziffern
sind.

Die Menge ALASCII aller ASCII-Repräsentationen von aussagenlogischen Formeln
ist die rekursiv wie folgt definierte Teilmenge von ASCII∗:

Basisregeln:

• 0 ∈ ALASCII, 1 ∈ ALASCII und w ∈ ALASCII für alle w ∈ ASASCII.

Rekursive Regeln:

• Ist φ ∈ ALASCII, so ist auch ~φ ∈ ALASCII. (Negation)
• Ist φ ∈ ALASCII und ψ ∈ ALASCII, so ist auch

• (φ /\ψ) ∈ ALASCII (Konjunktion)

• (φ \/ψ) ∈ ALASCII (Disjunktion)

• (φ ->ψ) ∈ ALASCII (Implikation)

• (φ <->ψ) ∈ ALASCII (Biimplikation).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 62

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Computerlesbare Darstellung von Formeln
Wir betrachten das Alphabet ASCII aller ASCII-Symbole.

Die Menge ASASCII aller ASCII-Repräsentationen von Aussagensymbolen besteht
aus allen nicht-leeren Worten über dem Alphabet ASCII, deren erstes Symbol
ein Buchstabe ist, und bei dem alle weiteren Symbole Buchstaben oder Ziffern
sind.

Die Menge ALASCII aller ASCII-Repräsentationen von aussagenlogischen Formeln
ist die rekursiv wie folgt definierte Teilmenge von ASCII∗:

Basisregeln:

• 0 ∈ ALASCII, 1 ∈ ALASCII

und w ∈ ALASCII für alle w ∈ ASASCII.

Rekursive Regeln:

• Ist φ ∈ ALASCII, so ist auch ~φ ∈ ALASCII. (Negation)
• Ist φ ∈ ALASCII und ψ ∈ ALASCII, so ist auch

• (φ /\ψ) ∈ ALASCII (Konjunktion)

• (φ \/ψ) ∈ ALASCII (Disjunktion)

• (φ ->ψ) ∈ ALASCII (Implikation)

• (φ <->ψ) ∈ ALASCII (Biimplikation).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 62

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Computerlesbare Darstellung von Formeln
Wir betrachten das Alphabet ASCII aller ASCII-Symbole.

Die Menge ASASCII aller ASCII-Repräsentationen von Aussagensymbolen besteht
aus allen nicht-leeren Worten über dem Alphabet ASCII, deren erstes Symbol
ein Buchstabe ist, und bei dem alle weiteren Symbole Buchstaben oder Ziffern
sind.

Die Menge ALASCII aller ASCII-Repräsentationen von aussagenlogischen Formeln
ist die rekursiv wie folgt definierte Teilmenge von ASCII∗:

Basisregeln:

• 0 ∈ ALASCII, 1 ∈ ALASCII und w ∈ ALASCII für alle w ∈ ASASCII.

Rekursive Regeln:

• Ist φ ∈ ALASCII, so ist auch ~φ ∈ ALASCII. (Negation)
• Ist φ ∈ ALASCII und ψ ∈ ALASCII, so ist auch

• (φ /\ψ) ∈ ALASCII (Konjunktion)

• (φ \/ψ) ∈ ALASCII (Disjunktion)

• (φ ->ψ) ∈ ALASCII (Implikation)

• (φ <->ψ) ∈ ALASCII (Biimplikation).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 62

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Computerlesbare Darstellung von Formeln
Wir betrachten das Alphabet ASCII aller ASCII-Symbole.

Die Menge ASASCII aller ASCII-Repräsentationen von Aussagensymbolen besteht
aus allen nicht-leeren Worten über dem Alphabet ASCII, deren erstes Symbol
ein Buchstabe ist, und bei dem alle weiteren Symbole Buchstaben oder Ziffern
sind.

Die Menge ALASCII aller ASCII-Repräsentationen von aussagenlogischen Formeln
ist die rekursiv wie folgt definierte Teilmenge von ASCII∗:

Basisregeln:

• 0 ∈ ALASCII, 1 ∈ ALASCII und w ∈ ALASCII für alle w ∈ ASASCII.

Rekursive Regeln:

• Ist φ ∈ ALASCII, so ist auch ~φ ∈ ALASCII. (Negation)

• Ist φ ∈ ALASCII und ψ ∈ ALASCII, so ist auch

• (φ /\ψ) ∈ ALASCII (Konjunktion)

• (φ \/ψ) ∈ ALASCII (Disjunktion)

• (φ ->ψ) ∈ ALASCII (Implikation)

• (φ <->ψ) ∈ ALASCII (Biimplikation).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 62

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Computerlesbare Darstellung von Formeln
Wir betrachten das Alphabet ASCII aller ASCII-Symbole.

Die Menge ASASCII aller ASCII-Repräsentationen von Aussagensymbolen besteht
aus allen nicht-leeren Worten über dem Alphabet ASCII, deren erstes Symbol
ein Buchstabe ist, und bei dem alle weiteren Symbole Buchstaben oder Ziffern
sind.

Die Menge ALASCII aller ASCII-Repräsentationen von aussagenlogischen Formeln
ist die rekursiv wie folgt definierte Teilmenge von ASCII∗:

Basisregeln:

• 0 ∈ ALASCII, 1 ∈ ALASCII und w ∈ ALASCII für alle w ∈ ASASCII.

Rekursive Regeln:

• Ist φ ∈ ALASCII, so ist auch ~φ ∈ ALASCII. (Negation)
• Ist φ ∈ ALASCII und ψ ∈ ALASCII, so ist auch

• (φ /\ψ) ∈ ALASCII (Konjunktion)

• (φ \/ψ) ∈ ALASCII (Disjunktion)

• (φ ->ψ) ∈ ALASCII (Implikation)

• (φ <->ψ) ∈ ALASCII (Biimplikation).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 62

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Computerlesbare Darstellung von Formeln
Wir betrachten das Alphabet ASCII aller ASCII-Symbole.

Die Menge ASASCII aller ASCII-Repräsentationen von Aussagensymbolen besteht
aus allen nicht-leeren Worten über dem Alphabet ASCII, deren erstes Symbol
ein Buchstabe ist, und bei dem alle weiteren Symbole Buchstaben oder Ziffern
sind.

Die Menge ALASCII aller ASCII-Repräsentationen von aussagenlogischen Formeln
ist die rekursiv wie folgt definierte Teilmenge von ASCII∗:

Basisregeln:

• 0 ∈ ALASCII, 1 ∈ ALASCII und w ∈ ALASCII für alle w ∈ ASASCII.

Rekursive Regeln:

• Ist φ ∈ ALASCII, so ist auch ~φ ∈ ALASCII. (Negation)
• Ist φ ∈ ALASCII und ψ ∈ ALASCII, so ist auch

• (φ /\ψ) ∈ ALASCII (Konjunktion)

• (φ \/ψ) ∈ ALASCII (Disjunktion)

• (φ ->ψ) ∈ ALASCII (Implikation)

• (φ <->ψ) ∈ ALASCII (Biimplikation).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 62

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Computerlesbare Darstellung von Formeln
Wir betrachten das Alphabet ASCII aller ASCII-Symbole.

Die Menge ASASCII aller ASCII-Repräsentationen von Aussagensymbolen besteht
aus allen nicht-leeren Worten über dem Alphabet ASCII, deren erstes Symbol
ein Buchstabe ist, und bei dem alle weiteren Symbole Buchstaben oder Ziffern
sind.

Die Menge ALASCII aller ASCII-Repräsentationen von aussagenlogischen Formeln
ist die rekursiv wie folgt definierte Teilmenge von ASCII∗:

Basisregeln:

• 0 ∈ ALASCII, 1 ∈ ALASCII und w ∈ ALASCII für alle w ∈ ASASCII.

Rekursive Regeln:

• Ist φ ∈ ALASCII, so ist auch ~φ ∈ ALASCII. (Negation)
• Ist φ ∈ ALASCII und ψ ∈ ALASCII, so ist auch

• (φ /\ψ) ∈ ALASCII (Konjunktion)

• (φ \/ψ) ∈ ALASCII (Disjunktion)

• (φ ->ψ) ∈ ALASCII (Implikation)

• (φ <->ψ) ∈ ALASCII (Biimplikation).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 62

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Computerlesbare Darstellung von Formeln
Wir betrachten das Alphabet ASCII aller ASCII-Symbole.

Die Menge ASASCII aller ASCII-Repräsentationen von Aussagensymbolen besteht
aus allen nicht-leeren Worten über dem Alphabet ASCII, deren erstes Symbol
ein Buchstabe ist, und bei dem alle weiteren Symbole Buchstaben oder Ziffern
sind.

Die Menge ALASCII aller ASCII-Repräsentationen von aussagenlogischen Formeln
ist die rekursiv wie folgt definierte Teilmenge von ASCII∗:

Basisregeln:

• 0 ∈ ALASCII, 1 ∈ ALASCII und w ∈ ALASCII für alle w ∈ ASASCII.

Rekursive Regeln:

• Ist φ ∈ ALASCII, so ist auch ~φ ∈ ALASCII. (Negation)
• Ist φ ∈ ALASCII und ψ ∈ ALASCII, so ist auch

• (φ /\ψ) ∈ ALASCII (Konjunktion)

• (φ \/ψ) ∈ ALASCII (Disjunktion)

• (φ ->ψ) ∈ ALASCII (Implikation)

• (φ <->ψ) ∈ ALASCII (Biimplikation).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 62

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Abstrakte vs. computerlesbare Syntax

Es ist offensichtlich, wie man Formeln aus AL in ihre entsprechende
ASCII-Repräsentation übersetzt und umgekehrt.

Zum Beispiel ist

(
(A0 ∧ 0) → ¬A13

)
eine Formel in AL, deren ASCII-Repräsentation die folgende Zeichenkette aus
ALASCII ist:

((A0 /\ 0) -> ~A13).

Wir werden meistens mit der
”
abstrakten Syntax“, d.h. mit der in Definition 2.4

festgelegten Menge AL, arbeiten. Um aber Formeln in Computer-Programme
einzugeben, können wir die ASCII-Repräsentation verwenden.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 63

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Abstrakte vs. computerlesbare Syntax

Es ist offensichtlich, wie man Formeln aus AL in ihre entsprechende
ASCII-Repräsentation übersetzt und umgekehrt. Zum Beispiel ist

(
(A0 ∧ 0) → ¬A13

)
eine Formel in AL, deren ASCII-Repräsentation die folgende Zeichenkette aus
ALASCII ist:

((A0 /\ 0) -> ~A13).

Wir werden meistens mit der
”
abstrakten Syntax“, d.h. mit der in Definition 2.4

festgelegten Menge AL, arbeiten. Um aber Formeln in Computer-Programme
einzugeben, können wir die ASCII-Repräsentation verwenden.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 63

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Abstrakte vs. computerlesbare Syntax

Es ist offensichtlich, wie man Formeln aus AL in ihre entsprechende
ASCII-Repräsentation übersetzt und umgekehrt. Zum Beispiel ist

(
(A0 ∧ 0) → ¬A13

)
eine Formel in AL, deren ASCII-Repräsentation die folgende Zeichenkette aus
ALASCII ist:

((A0 /\ 0) -> ~A13).

Wir werden meistens mit der
”
abstrakten Syntax“, d.h. mit der in Definition 2.4

festgelegten Menge AL, arbeiten. Um aber Formeln in Computer-Programme
einzugeben, können wir die ASCII-Repräsentation verwenden.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 63

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Abstrakte vs. computerlesbare Syntax

Es ist offensichtlich, wie man Formeln aus AL in ihre entsprechende
ASCII-Repräsentation übersetzt und umgekehrt. Zum Beispiel ist

(
(A0 ∧ 0) → ¬A13

)
eine Formel in AL, deren ASCII-Repräsentation die folgende Zeichenkette aus
ALASCII ist:

((A0 /\ 0) -> ~A13).

Wir werden meistens mit der
”
abstrakten Syntax“, d.h. mit der in Definition 2.4

festgelegten Menge AL, arbeiten. Um aber Formeln in Computer-Programme
einzugeben, können wir die ASCII-Repräsentation verwenden.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 63

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Demo: snippets of logic

• ein Formelchecker für die Aussagenlogik

• entwickelt von André Frochaux

• Funktionalitäten u.a.:

• Syntaxcheck für eingegebene Formeln

• Ausgabe eines Syntaxbaums

• Ausgabe einer Wahrheitstafel

• Zugänglich via

http://www.snippets-of-logic.net/index_AL.php?lang=de

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 64

http://www.snippets-of-logic.net/index_AL.php?lang=de

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Zurück zu Beispiel 2.1 (
”
Geburtstagsfeier“)

Das in Beispiel 2.1 aufgelistete Wissen kann durch folgende aussagenlogische
Formel repräsentiert werden:

φ :=
(
(B ∧ A) → ¬E

)
∧

(
(B ∧ E) → ¬D

)
∧(

E → (C ∧ D)
)

∧ (C → A) ∧
(
A → (B ∨ C)

)

Die Frage

”
Wie viele (und welche) Freunde werden im besten Fall zur Party kom-
men?“

kann nun durch Lösen der folgenden Aufgabe beantwortet werden:

Finde eine Interpretation I für φ, so dass gilt:

• I |= φ (d.h., I ist ein Modell von φ) und

• |{X ∈ {A,B,C ,D,E} : I(X) = 1}| ist so groß wie möglich.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 65

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Zurück zu Beispiel 2.1 (
”
Geburtstagsfeier“)

Das in Beispiel 2.1 aufgelistete Wissen kann durch folgende aussagenlogische
Formel repräsentiert werden:

φ :=
(
(B ∧ A) → ¬E

)
∧

(
(B ∧ E) → ¬D

)
∧(

E → (C ∧ D)
)

∧ (C → A) ∧
(
A → (B ∨ C)

)
Die Frage

”
Wie viele (und welche) Freunde werden im besten Fall zur Party kom-
men?“

kann nun durch Lösen der folgenden Aufgabe beantwortet werden:

Finde eine Interpretation I für φ, so dass gilt:

• I |= φ (d.h., I ist ein Modell von φ) und

• |{X ∈ {A,B,C ,D,E} : I(X) = 1}| ist so groß wie möglich.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 65

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Zurück zu Beispiel 2.1 (
”
Geburtstagsfeier“)

Das in Beispiel 2.1 aufgelistete Wissen kann durch folgende aussagenlogische
Formel repräsentiert werden:

φ :=
(
(B ∧ A) → ¬E

)
∧

(
(B ∧ E) → ¬D

)
∧(

E → (C ∧ D)
)

∧ (C → A) ∧
(
A → (B ∨ C)

)
Die Frage

”
Wie viele (und welche) Freunde werden im besten Fall zur Party kom-
men?“

kann nun durch Lösen der folgenden Aufgabe beantwortet werden:

Finde eine Interpretation I für φ, so dass gilt:

• I |= φ (d.h., I ist ein Modell von φ) und

• |{X ∈ {A,B,C ,D,E} : I(X) = 1}| ist so groß wie möglich.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 65

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Diese Frage können wir lösen, indem wir

(1) die Wahrheitstafel für φ ermitteln,

(2) alle Zeilen raussuchen, in denen in der mit
”
φ“ beschrifteten Spalte der

Wert 1 steht (das liefert uns genau die Modelle von φ) und

(3) aus diesen Zeilen all jene raussuchen, bei denen in den mit A, B, C , D, E
beschrifteten Spalten möglichst viele Einsen stehen. Jede dieser Zeilen
repräsentiert dann eine größtmögliche Konstellation von gleichzeitigen
Partybesuchern.

Prinzipiell führt diese Vorgehensweise zum Ziel.

Leider ist das Verfahren aber recht aufwändig, da die Wahrheitstafel, die man
dabei aufstellen muss, sehr groß wird: Sie hat 25 = 32 Zeilen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 66

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Diese Frage können wir lösen, indem wir

(1) die Wahrheitstafel für φ ermitteln,

(2) alle Zeilen raussuchen, in denen in der mit
”
φ“ beschrifteten Spalte der

Wert 1 steht (das liefert uns genau die Modelle von φ) und

(3) aus diesen Zeilen all jene raussuchen, bei denen in den mit A, B, C , D, E
beschrifteten Spalten möglichst viele Einsen stehen. Jede dieser Zeilen
repräsentiert dann eine größtmögliche Konstellation von gleichzeitigen
Partybesuchern.

Prinzipiell führt diese Vorgehensweise zum Ziel.

Leider ist das Verfahren aber recht aufwändig, da die Wahrheitstafel, die man
dabei aufstellen muss, sehr groß wird: Sie hat 25 = 32 Zeilen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 66

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Diese Frage können wir lösen, indem wir

(1) die Wahrheitstafel für φ ermitteln,

(2) alle Zeilen raussuchen, in denen in der mit
”
φ“ beschrifteten Spalte der

Wert 1 steht (das liefert uns genau die Modelle von φ) und

(3) aus diesen Zeilen all jene raussuchen, bei denen in den mit A, B, C , D, E
beschrifteten Spalten möglichst viele Einsen stehen. Jede dieser Zeilen
repräsentiert dann eine größtmögliche Konstellation von gleichzeitigen
Partybesuchern.

Prinzipiell führt diese Vorgehensweise zum Ziel.

Leider ist das Verfahren aber recht aufwändig, da die Wahrheitstafel, die man
dabei aufstellen muss, sehr groß wird: Sie hat 25 = 32 Zeilen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 66

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Diese Frage können wir lösen, indem wir

(1) die Wahrheitstafel für φ ermitteln,

(2) alle Zeilen raussuchen, in denen in der mit
”
φ“ beschrifteten Spalte der

Wert 1 steht (das liefert uns genau die Modelle von φ) und

(3) aus diesen Zeilen all jene raussuchen, bei denen in den mit A, B, C , D, E
beschrifteten Spalten möglichst viele Einsen stehen. Jede dieser Zeilen
repräsentiert dann eine größtmögliche Konstellation von gleichzeitigen
Partybesuchern.

Prinzipiell führt diese Vorgehensweise zum Ziel.

Leider ist das Verfahren aber recht aufwändig, da die Wahrheitstafel, die man
dabei aufstellen muss, sehr groß wird:

Sie hat 25 = 32 Zeilen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 66

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Diese Frage können wir lösen, indem wir

(1) die Wahrheitstafel für φ ermitteln,

(2) alle Zeilen raussuchen, in denen in der mit
”
φ“ beschrifteten Spalte der

Wert 1 steht (das liefert uns genau die Modelle von φ) und

(3) aus diesen Zeilen all jene raussuchen, bei denen in den mit A, B, C , D, E
beschrifteten Spalten möglichst viele Einsen stehen. Jede dieser Zeilen
repräsentiert dann eine größtmögliche Konstellation von gleichzeitigen
Partybesuchern.

Prinzipiell führt diese Vorgehensweise zum Ziel.

Leider ist das Verfahren aber recht aufwändig, da die Wahrheitstafel, die man
dabei aufstellen muss, sehr groß wird: Sie hat 25 = 32 Zeilen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 66

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

A B C D E E → (C ∧ D) C → A (B ∧ E) → ¬D A → (B ∨ C) (B ∧ A) → ¬E φ

0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 1 0 1 1 1 1 0
0 0 0 1 0 1 1 1 1 1 1
0 0 0 1 1 0 1 1 1 1 0
0 0 1 0 0 1 0 1 1 1 0
0 0 1 0 1 0 0 1 1 1 0
0 0 1 1 0 1 0 1 1 1 0
0 0 1 1 1 1 0 1 1 1 0
0 1 0 0 0 1 1 1 1 1 1
0 1 0 0 1 0 1 1 1 1 0
0 1 0 1 0 1 1 1 1 1 1
0 1 0 1 1 0 1 0 1 1 0
0 1 1 0 0 1 0 1 1 1 0
0 1 1 0 1 0 0 1 1 1 0
0 1 1 1 0 1 0 1 1 1 0
0 1 1 1 1 1 0 0 1 1 0
1 0 0 0 0 1 1 1 0 1 0
1 0 0 0 1 0 1 1 0 1 0
1 0 0 1 0 1 1 1 0 1 0
1 0 0 1 1 0 1 1 0 1 0
1 0 1 0 0 1 1 1 1 1 1
1 0 1 0 1 0 1 1 1 1 0
1 0 1 1 0 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1 1
1 1 0 0 0 1 1 1 1 1 1
1 1 0 0 1 0 1 1 1 0 0
1 1 0 1 0 1 1 1 1 1 1
1 1 0 1 1 0 1 0 1 0 0
1 1 1 0 0 1 1 1 1 1 1
1 1 1 0 1 0 1 1 1 0 0
1 1 1 1 0 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 0 0

Modelle für φ werden hier durch grau unterlegte Zeilen repräsentiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 67

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

In der Wahrheitstafel sieht man:

• Es gibt kein Modell für φ, bei dem in den mit A bis E beschrifteten Spalten
insgesamt 5 Einsen stehen.

• Es gibt genau zwei Modelle für φ, bei denen in den mit A bis E
beschrifteten Spalten insgesamt 4 Einsen stehen, nämlich die beiden
Interpretationen I1 und I2 mit

I1(A) = I1(C) = I1(D) = I1(E) = 1 und I1(B) = 0

und

I2(A) = I2(B) = I2(C) = I2(D) = 1 und I2(E) = 0.

Die Antwort auf die Frage
”
Wie viele (und welche) Freunde werden bestenfalls

zur Party kommen?“ lautet also:

Bestenfalls werden 4 der 5 Freunde kommen, und dafür gibt es zwei
Möglichkeiten, nämlich

(1) dass alle außer Bernd kommen, und

(2) dass alle außer Eva kommen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 68

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

In der Wahrheitstafel sieht man:

• Es gibt kein Modell für φ, bei dem in den mit A bis E beschrifteten Spalten
insgesamt 5 Einsen stehen.

• Es gibt genau zwei Modelle für φ, bei denen in den mit A bis E
beschrifteten Spalten insgesamt 4 Einsen stehen, nämlich die beiden
Interpretationen I1 und I2 mit

I1(A) = I1(C) = I1(D) = I1(E) = 1 und I1(B) = 0

und

I2(A) = I2(B) = I2(C) = I2(D) = 1 und I2(E) = 0.

Die Antwort auf die Frage
”
Wie viele (und welche) Freunde werden bestenfalls

zur Party kommen?“ lautet also:

Bestenfalls werden 4 der 5 Freunde kommen, und dafür gibt es zwei
Möglichkeiten, nämlich

(1) dass alle außer Bernd kommen, und

(2) dass alle außer Eva kommen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 68

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

In der Wahrheitstafel sieht man:

• Es gibt kein Modell für φ, bei dem in den mit A bis E beschrifteten Spalten
insgesamt 5 Einsen stehen.

• Es gibt genau zwei Modelle für φ, bei denen in den mit A bis E
beschrifteten Spalten insgesamt 4 Einsen stehen, nämlich die beiden
Interpretationen I1 und I2 mit

I1(A) = I1(C) = I1(D) = I1(E) = 1 und I1(B) = 0

und

I2(A) = I2(B) = I2(C) = I2(D) = 1 und I2(E) = 0.

Die Antwort auf die Frage
”
Wie viele (und welche) Freunde werden bestenfalls

zur Party kommen?“ lautet also:

Bestenfalls werden 4 der 5 Freunde kommen, und dafür gibt es zwei
Möglichkeiten, nämlich

(1) dass alle außer Bernd kommen, und

(2) dass alle außer Eva kommen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 68

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

In der Wahrheitstafel sieht man:

• Es gibt kein Modell für φ, bei dem in den mit A bis E beschrifteten Spalten
insgesamt 5 Einsen stehen.

• Es gibt genau zwei Modelle für φ, bei denen in den mit A bis E
beschrifteten Spalten insgesamt 4 Einsen stehen, nämlich die beiden
Interpretationen I1 und I2 mit

I1(A) = I1(C) = I1(D) = I1(E) = 1 und I1(B) = 0

und

I2(A) = I2(B) = I2(C) = I2(D) = 1 und I2(E) = 0.

Die Antwort auf die Frage
”
Wie viele (und welche) Freunde werden bestenfalls

zur Party kommen?“ lautet also:

Bestenfalls werden 4 der 5 Freunde kommen, und dafür gibt es zwei
Möglichkeiten, nämlich

(1) dass alle außer Bernd kommen, und

(2) dass alle außer Eva kommen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 68

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Erfüllbarkeit, Allgemeingültigkeit und die
Folgerungsbeziehung

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Erfüllbarkeit

Definition 2.10
Eine Formel φ ∈ AL heißt erfüllbar, wenn es eine Interpretation gibt, die φ
erfüllt.

Eine Formelmenge Φ heißt erfüllbar, wenn es eine Interpretation I gibt, die Φ
erfüllt (d.h. es gilt I |= φ für jedes φ ∈ Φ).

Eine Formel oder Formelmenge, die nicht erfüllbar ist, nennen wir unerfüllbar.

Beobachtung 2.11

(a) Eine aussagenlogische Formel ist genau dann erfüllbar, wenn in der letzten
Spalte ihrer Wahrheitstafel mindestens eine 1 steht.

(b) Eine endliche Formelmenge Φ = {φ1, . . . , φn} ist genau dann erfüllbar,
wenn die Formel

∧n
i=1 φi erfüllbar ist.

Beispiele:
• Die Formel X ist erfüllbar.
• Die Formel (X ∧ ¬X) ist unerfüllbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 69

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Erfüllbarkeit

Definition 2.10
Eine Formel φ ∈ AL heißt erfüllbar, wenn es eine Interpretation gibt, die φ
erfüllt.

Eine Formelmenge Φ heißt erfüllbar, wenn es eine Interpretation I gibt, die Φ
erfüllt (d.h. es gilt I |= φ für jedes φ ∈ Φ).

Eine Formel oder Formelmenge, die nicht erfüllbar ist, nennen wir unerfüllbar.

Beobachtung 2.11

(a) Eine aussagenlogische Formel ist genau dann erfüllbar, wenn in der letzten
Spalte ihrer Wahrheitstafel mindestens eine 1 steht.

(b) Eine endliche Formelmenge Φ = {φ1, . . . , φn} ist genau dann erfüllbar,
wenn die Formel

∧n
i=1 φi erfüllbar ist.

Beispiele:
• Die Formel X ist erfüllbar.
• Die Formel (X ∧ ¬X) ist unerfüllbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 69

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Erfüllbarkeit

Definition 2.10
Eine Formel φ ∈ AL heißt erfüllbar, wenn es eine Interpretation gibt, die φ
erfüllt.

Eine Formelmenge Φ heißt erfüllbar, wenn es eine Interpretation I gibt, die Φ
erfüllt (d.h. es gilt I |= φ für jedes φ ∈ Φ).

Eine Formel oder Formelmenge, die nicht erfüllbar ist, nennen wir unerfüllbar.

Beobachtung 2.11

(a) Eine aussagenlogische Formel ist genau dann erfüllbar, wenn in der letzten
Spalte ihrer Wahrheitstafel mindestens eine 1 steht.

(b) Eine endliche Formelmenge Φ = {φ1, . . . , φn} ist genau dann erfüllbar,
wenn die Formel

∧n
i=1 φi erfüllbar ist.

Beispiele:
• Die Formel X ist erfüllbar.
• Die Formel (X ∧ ¬X) ist unerfüllbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 69

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Erfüllbarkeit

Definition 2.10
Eine Formel φ ∈ AL heißt erfüllbar, wenn es eine Interpretation gibt, die φ
erfüllt.

Eine Formelmenge Φ heißt erfüllbar, wenn es eine Interpretation I gibt, die Φ
erfüllt (d.h. es gilt I |= φ für jedes φ ∈ Φ).

Eine Formel oder Formelmenge, die nicht erfüllbar ist, nennen wir unerfüllbar.

Beobachtung 2.11

(a) Eine aussagenlogische Formel ist genau dann erfüllbar, wenn in der letzten
Spalte ihrer Wahrheitstafel mindestens eine 1 steht.

(b) Eine endliche Formelmenge Φ = {φ1, . . . , φn} ist genau dann erfüllbar,
wenn die Formel

∧n
i=1 φi erfüllbar ist.

Beispiele:
• Die Formel X ist erfüllbar.
• Die Formel (X ∧ ¬X) ist unerfüllbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 69

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Erfüllbarkeit

Definition 2.10
Eine Formel φ ∈ AL heißt erfüllbar, wenn es eine Interpretation gibt, die φ
erfüllt.

Eine Formelmenge Φ heißt erfüllbar, wenn es eine Interpretation I gibt, die Φ
erfüllt (d.h. es gilt I |= φ für jedes φ ∈ Φ).

Eine Formel oder Formelmenge, die nicht erfüllbar ist, nennen wir unerfüllbar.

Beobachtung 2.11

(a) Eine aussagenlogische Formel ist genau dann erfüllbar, wenn in der letzten
Spalte ihrer Wahrheitstafel mindestens eine 1 steht.

(b) Eine endliche Formelmenge Φ = {φ1, . . . , φn} ist genau dann erfüllbar,
wenn die Formel

∧n
i=1 φi erfüllbar ist.

Beispiele:
• Die Formel X ist erfüllbar.
• Die Formel (X ∧ ¬X) ist unerfüllbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 69

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Erfüllbarkeit

Definition 2.10
Eine Formel φ ∈ AL heißt erfüllbar, wenn es eine Interpretation gibt, die φ
erfüllt.

Eine Formelmenge Φ heißt erfüllbar, wenn es eine Interpretation I gibt, die Φ
erfüllt (d.h. es gilt I |= φ für jedes φ ∈ Φ).

Eine Formel oder Formelmenge, die nicht erfüllbar ist, nennen wir unerfüllbar.

Beobachtung 2.11

(a) Eine aussagenlogische Formel ist genau dann erfüllbar, wenn in der letzten
Spalte ihrer Wahrheitstafel mindestens eine 1 steht.

(b) Eine endliche Formelmenge Φ = {φ1, . . . , φn} ist genau dann erfüllbar,
wenn die Formel

∧n
i=1 φi erfüllbar ist.

Beispiele:
• Die Formel X ist

erfüllbar.
• Die Formel (X ∧ ¬X) ist unerfüllbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 69

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Erfüllbarkeit

Definition 2.10
Eine Formel φ ∈ AL heißt erfüllbar, wenn es eine Interpretation gibt, die φ
erfüllt.

Eine Formelmenge Φ heißt erfüllbar, wenn es eine Interpretation I gibt, die Φ
erfüllt (d.h. es gilt I |= φ für jedes φ ∈ Φ).

Eine Formel oder Formelmenge, die nicht erfüllbar ist, nennen wir unerfüllbar.

Beobachtung 2.11

(a) Eine aussagenlogische Formel ist genau dann erfüllbar, wenn in der letzten
Spalte ihrer Wahrheitstafel mindestens eine 1 steht.

(b) Eine endliche Formelmenge Φ = {φ1, . . . , φn} ist genau dann erfüllbar,
wenn die Formel

∧n
i=1 φi erfüllbar ist.

Beispiele:
• Die Formel X ist erfüllbar.

• Die Formel (X ∧ ¬X) ist unerfüllbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 69

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Erfüllbarkeit

Definition 2.10
Eine Formel φ ∈ AL heißt erfüllbar, wenn es eine Interpretation gibt, die φ
erfüllt.

Eine Formelmenge Φ heißt erfüllbar, wenn es eine Interpretation I gibt, die Φ
erfüllt (d.h. es gilt I |= φ für jedes φ ∈ Φ).

Eine Formel oder Formelmenge, die nicht erfüllbar ist, nennen wir unerfüllbar.

Beobachtung 2.11

(a) Eine aussagenlogische Formel ist genau dann erfüllbar, wenn in der letzten
Spalte ihrer Wahrheitstafel mindestens eine 1 steht.

(b) Eine endliche Formelmenge Φ = {φ1, . . . , φn} ist genau dann erfüllbar,
wenn die Formel

∧n
i=1 φi erfüllbar ist.

Beispiele:
• Die Formel X ist erfüllbar.
• Die Formel (X ∧ ¬X) ist

unerfüllbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 69

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Erfüllbarkeit

Definition 2.10
Eine Formel φ ∈ AL heißt erfüllbar, wenn es eine Interpretation gibt, die φ
erfüllt.

Eine Formelmenge Φ heißt erfüllbar, wenn es eine Interpretation I gibt, die Φ
erfüllt (d.h. es gilt I |= φ für jedes φ ∈ Φ).

Eine Formel oder Formelmenge, die nicht erfüllbar ist, nennen wir unerfüllbar.

Beobachtung 2.11

(a) Eine aussagenlogische Formel ist genau dann erfüllbar, wenn in der letzten
Spalte ihrer Wahrheitstafel mindestens eine 1 steht.

(b) Eine endliche Formelmenge Φ = {φ1, . . . , φn} ist genau dann erfüllbar,
wenn die Formel

∧n
i=1 φi erfüllbar ist.

Beispiele:
• Die Formel X ist erfüllbar.
• Die Formel (X ∧ ¬X) ist unerfüllbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 69

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Allgemeingültigkeit

Definition 2.12
Eine Formel φ ∈ AL ist allgemeingültig, wenn jede Interpretation I die Formel φ
erfüllt.

Bemerkung
Allgemeingültige Formeln nennt man auch Tautologien.
Man schreibt auch |= φ um auszudrücken, dass φ allgemeingültig ist.

Beobachtung 2.13
Eine aussagenlogische Formel ist genau dann allgemeingültig, wenn in der
letzten Spalte ihrer Wahrheitstafel nur 1en stehen.

Beispiel: Die Formel (X ∨ ¬X) ist allgemeingültig.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 70

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Allgemeingültigkeit

Definition 2.12
Eine Formel φ ∈ AL ist allgemeingültig, wenn jede Interpretation I die Formel φ
erfüllt.

Bemerkung
Allgemeingültige Formeln nennt man auch Tautologien.

Man schreibt auch |= φ um auszudrücken, dass φ allgemeingültig ist.

Beobachtung 2.13
Eine aussagenlogische Formel ist genau dann allgemeingültig, wenn in der
letzten Spalte ihrer Wahrheitstafel nur 1en stehen.

Beispiel: Die Formel (X ∨ ¬X) ist allgemeingültig.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 70

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Allgemeingültigkeit

Definition 2.12
Eine Formel φ ∈ AL ist allgemeingültig, wenn jede Interpretation I die Formel φ
erfüllt.

Bemerkung
Allgemeingültige Formeln nennt man auch Tautologien.
Man schreibt auch |= φ um auszudrücken, dass φ allgemeingültig ist.

Beobachtung 2.13
Eine aussagenlogische Formel ist genau dann allgemeingültig, wenn in der
letzten Spalte ihrer Wahrheitstafel nur 1en stehen.

Beispiel: Die Formel (X ∨ ¬X) ist allgemeingültig.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 70

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Allgemeingültigkeit

Definition 2.12
Eine Formel φ ∈ AL ist allgemeingültig, wenn jede Interpretation I die Formel φ
erfüllt.

Bemerkung
Allgemeingültige Formeln nennt man auch Tautologien.
Man schreibt auch |= φ um auszudrücken, dass φ allgemeingültig ist.

Beobachtung 2.13
Eine aussagenlogische Formel ist genau dann allgemeingültig, wenn in der
letzten Spalte ihrer Wahrheitstafel nur 1en stehen.

Beispiel: Die Formel (X ∨ ¬X) ist allgemeingültig.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 70

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Allgemeingültigkeit

Definition 2.12
Eine Formel φ ∈ AL ist allgemeingültig, wenn jede Interpretation I die Formel φ
erfüllt.

Bemerkung
Allgemeingültige Formeln nennt man auch Tautologien.
Man schreibt auch |= φ um auszudrücken, dass φ allgemeingültig ist.

Beobachtung 2.13
Eine aussagenlogische Formel ist genau dann allgemeingültig, wenn in der
letzten Spalte ihrer Wahrheitstafel nur 1en stehen.

Beispiel: Die Formel (X ∨ ¬X) ist allgemeingültig.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 70

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Beispiel 2.14
Die Formel (X ∨ Y) ∧ (¬X ∨ Y) ist

• erfüllbar, da z.B. die Interpretation I mit I(X) = 0 und I(Y) = 1 die
Formel erfüllt.

• nicht allgemeingültig, da z.B. die Interpretation I ′ mit I ′(X) = 0 und
I ′(Y) = 0 die Formel nicht erfüllt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 71

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Beispiel 2.14
Die Formel (X ∨ Y) ∧ (¬X ∨ Y) ist

• erfüllbar, da z.B. die Interpretation I mit I(X) = 0 und I(Y) = 1 die
Formel erfüllt.

• nicht allgemeingültig, da z.B. die Interpretation I ′ mit I ′(X) = 0 und
I ′(Y) = 0 die Formel nicht erfüllt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 71

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Beispiel 2.14
Die Formel (X ∨ Y) ∧ (¬X ∨ Y) ist

• erfüllbar, da z.B. die Interpretation I mit I(X) = 0 und I(Y) = 1 die
Formel erfüllt.

• nicht allgemeingültig, da z.B. die Interpretation I ′ mit I ′(X) = 0 und
I ′(Y) = 0 die Formel nicht erfüllt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 71

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Die Folgerungsbeziehung

Definition 2.15
Eine Formel ψ ∈ AL folgt aus einer Formelmenge Φ ⊆ AL (wir schreiben:
Φ |= ψ), wenn für jede Interpretation I gilt: Wenn I die Formelmenge Φ erfüllt,
dann erfüllt I auch die Formel ψ.

Notation
Für zwei Formeln φ,ψ ∈ AL schreiben wir kurz φ |= ψ an Stelle von {φ} |= ψ
und sagen, dass die Formel ψ aus der Formel φ folgt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 72

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Die Folgerungsbeziehung

Definition 2.15
Eine Formel ψ ∈ AL folgt aus einer Formelmenge Φ ⊆ AL (wir schreiben:
Φ |= ψ), wenn für jede Interpretation I gilt: Wenn I die Formelmenge Φ erfüllt,
dann erfüllt I auch die Formel ψ.

Notation
Für zwei Formeln φ,ψ ∈ AL schreiben wir kurz φ |= ψ an Stelle von {φ} |= ψ
und sagen, dass die Formel ψ aus der Formel φ folgt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 72

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Beispiel 2.16
Sei φ :=

(
(X ∨ Y) ∧ (¬X ∨ Y)

)
und ψ :=

(
Y ∨ (¬X ∧ ¬Y)

)
.

Dann gilt φ |= ψ, aber es gilt nicht ψ |= φ (kurz: ψ ̸|= φ), denn:

X Y (X ∨ Y) (¬X ∨ Y) φ ψ
0 0 0 1 0 1
0 1 1 1 1 1
1 0 1 0 0 0
1 1 1 1 1 1

In jeder Zeile der Wahrheitstafel, in der in der mit
”
φ“ beschrifteten Spalte eine

1 steht, steht auch in der mit
”
ψ“ beschrifteten Spalte eine 1. Somit gilt

φ |= ψ.

Andererseits steht in Zeile 1 in der mit
”
ψ“ beschrifteten Spalte eine 1 und in

der mit
”
φ“ beschrifteten Spalte eine 0. Für die entsprechende Interpretation I

(mit I(X) = 0 und I(Y) = 0) gilt also JψKI = 1 und JφKI = 0. Daher gilt
ψ ̸|= φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 73

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Beispiel 2.16
Sei φ :=

(
(X ∨ Y) ∧ (¬X ∨ Y)

)
und ψ :=

(
Y ∨ (¬X ∧ ¬Y)

)
.

Dann gilt φ |= ψ, aber es gilt nicht ψ |= φ (kurz: ψ ̸|= φ), denn:

X Y (X ∨ Y) (¬X ∨ Y) φ ψ
0 0 0 1 0 1
0 1 1 1 1 1
1 0 1 0 0 0
1 1 1 1 1 1

In jeder Zeile der Wahrheitstafel, in der in der mit
”
φ“ beschrifteten Spalte eine

1 steht, steht auch in der mit
”
ψ“ beschrifteten Spalte eine 1. Somit gilt

φ |= ψ.

Andererseits steht in Zeile 1 in der mit
”
ψ“ beschrifteten Spalte eine 1 und in

der mit
”
φ“ beschrifteten Spalte eine 0. Für die entsprechende Interpretation I

(mit I(X) = 0 und I(Y) = 0) gilt also JψKI = 1 und JφKI = 0. Daher gilt
ψ ̸|= φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 73

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Beispiel 2.16
Sei φ :=

(
(X ∨ Y) ∧ (¬X ∨ Y)

)
und ψ :=

(
Y ∨ (¬X ∧ ¬Y)

)
.

Dann gilt φ |= ψ, aber es gilt nicht ψ |= φ (kurz: ψ ̸|= φ), denn:

X Y (X ∨ Y) (¬X ∨ Y) φ ψ
0 0 0 1 0 1
0 1 1 1 1 1
1 0 1 0 0 0
1 1 1 1 1 1

In jeder Zeile der Wahrheitstafel, in der in der mit
”
φ“ beschrifteten Spalte eine

1 steht, steht auch in der mit
”
ψ“ beschrifteten Spalte eine 1. Somit gilt

φ |= ψ.

Andererseits steht in Zeile 1 in der mit
”
ψ“ beschrifteten Spalte eine 1 und in

der mit
”
φ“ beschrifteten Spalte eine 0. Für die entsprechende Interpretation I

(mit I(X) = 0 und I(Y) = 0) gilt also JψKI = 1 und JφKI = 0. Daher gilt
ψ ̸|= φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 73

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Beispiel 2.16
Sei φ :=

(
(X ∨ Y) ∧ (¬X ∨ Y)

)
und ψ :=

(
Y ∨ (¬X ∧ ¬Y)

)
.

Dann gilt φ |= ψ, aber es gilt nicht ψ |= φ (kurz: ψ ̸|= φ), denn:

X Y (X ∨ Y) (¬X ∨ Y) φ ψ
0 0 0 1 0 1
0 1 1 1 1 1
1 0 1 0 0 0
1 1 1 1 1 1

In jeder Zeile der Wahrheitstafel, in der in der mit
”
φ“ beschrifteten Spalte eine

1 steht, steht auch in der mit
”
ψ“ beschrifteten Spalte eine 1. Somit gilt

φ |= ψ.

Andererseits steht in Zeile 1 in der mit
”
ψ“ beschrifteten Spalte eine 1 und in

der mit
”
φ“ beschrifteten Spalte eine 0. Für die entsprechende Interpretation I

(mit I(X) = 0 und I(Y) = 0) gilt also JψKI = 1 und JφKI = 0. Daher gilt
ψ ̸|= φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 73

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Beispiel 2.16
Sei φ :=

(
(X ∨ Y) ∧ (¬X ∨ Y)

)
und ψ :=

(
Y ∨ (¬X ∧ ¬Y)

)
.

Dann gilt φ |= ψ, aber es gilt nicht ψ |= φ (kurz: ψ ̸|= φ), denn:

X Y (X ∨ Y) (¬X ∨ Y) φ ψ
0 0 0 1 0 1
0 1 1 1 1 1
1 0 1 0 0 0
1 1 1 1 1 1

In jeder Zeile der Wahrheitstafel, in der in der mit
”
φ“ beschrifteten Spalte eine

1 steht, steht auch in der mit
”
ψ“ beschrifteten Spalte eine 1. Somit gilt

φ |= ψ.

Andererseits steht in Zeile 1 in der mit
”
ψ“ beschrifteten Spalte eine 1 und in

der mit
”
φ“ beschrifteten Spalte eine 0. Für die entsprechende Interpretation I

(mit I(X) = 0 und I(Y) = 0) gilt also JψKI = 1 und JφKI = 0. Daher gilt
ψ ̸|= φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 73

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Beispiel 2.17
Für alle Formeln φ,ψ ∈ AL gilt:

{φ, (φ→ ψ) } |= ψ.

Dies folgt unmittelbar aus der Definition der Semantik:
Sei I eine Interpretation mit I |= {φ, (φ→ ψ)}. Dann gilt:

(1) JφKI = 1 und

(2) J(φ→ ψ)KI = 1, d.h. es gilt JφKI = 0 oder JψKI = 1.

Da JφKI = 1 gemäß (1) gilt, folgt gemäß (2), dass JψKI = 1.

Bemerkung
Man kann die Folgerungsbeziehung {φ, (φ→ ψ)} |= ψ als eine formale
Schlussregel auffassen (ähnlich den Syllogismen in Kapitel 1):
Wenn φ und (φ→ ψ) gelten, so muss auch ψ gelten.
Diese Regel, die unter dem Namen Modus Ponens bekannt ist, ist von
grundlegender Bedeutung in der Logik.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 74

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Beispiel 2.17
Für alle Formeln φ,ψ ∈ AL gilt:

{φ, (φ→ ψ) } |= ψ.

Dies folgt unmittelbar aus der Definition der Semantik:
Sei I eine Interpretation mit I |= {φ, (φ→ ψ)}. Dann gilt:

(1) JφKI = 1 und

(2) J(φ→ ψ)KI = 1, d.h. es gilt JφKI = 0 oder JψKI = 1.

Da JφKI = 1 gemäß (1) gilt, folgt gemäß (2), dass JψKI = 1.

Bemerkung
Man kann die Folgerungsbeziehung {φ, (φ→ ψ)} |= ψ als eine formale
Schlussregel auffassen (ähnlich den Syllogismen in Kapitel 1):
Wenn φ und (φ→ ψ) gelten, so muss auch ψ gelten.
Diese Regel, die unter dem Namen Modus Ponens bekannt ist, ist von
grundlegender Bedeutung in der Logik.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 74

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Beispiel 2.17
Für alle Formeln φ,ψ ∈ AL gilt:

{φ, (φ→ ψ) } |= ψ.

Dies folgt unmittelbar aus der Definition der Semantik:
Sei I eine Interpretation mit I |= {φ, (φ→ ψ)}. Dann gilt:

(1) JφKI = 1 und

(2) J(φ→ ψ)KI = 1, d.h. es gilt JφKI = 0 oder JψKI = 1.

Da JφKI = 1 gemäß (1) gilt, folgt gemäß (2), dass JψKI = 1.

Bemerkung
Man kann die Folgerungsbeziehung {φ, (φ→ ψ)} |= ψ als eine formale
Schlussregel auffassen (ähnlich den Syllogismen in Kapitel 1):
Wenn φ und (φ→ ψ) gelten, so muss auch ψ gelten.
Diese Regel, die unter dem Namen Modus Ponens bekannt ist, ist von
grundlegender Bedeutung in der Logik.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 74

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Beispiel 2.17
Für alle Formeln φ,ψ ∈ AL gilt:

{φ, (φ→ ψ) } |= ψ.

Dies folgt unmittelbar aus der Definition der Semantik:
Sei I eine Interpretation mit I |= {φ, (φ→ ψ)}. Dann gilt:

(1) JφKI = 1 und

(2) J(φ→ ψ)KI = 1, d.h. es gilt JφKI = 0 oder JψKI = 1.

Da JφKI = 1 gemäß (1) gilt, folgt gemäß (2), dass JψKI = 1.

Bemerkung
Man kann die Folgerungsbeziehung {φ, (φ→ ψ)} |= ψ als eine formale
Schlussregel auffassen (ähnlich den Syllogismen in Kapitel 1):
Wenn φ und (φ→ ψ) gelten, so muss auch ψ gelten.
Diese Regel, die unter dem Namen Modus Ponens bekannt ist, ist von
grundlegender Bedeutung in der Logik.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 74

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Zusammenhänge

Lemma 2.18 (Allgemeingültigkeit, Unerfüllbarkeit und Folgerung)

Für jede Formel φ ∈ AL gilt:

(a) φ ist allgemeingültig ⇐⇒ ¬φ ist unerfüllbar ⇐⇒ 1 |= φ.

(b) φ ist unerfüllbar ⇐⇒ φ |= 0.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 75

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Zusammenhänge

Lemma 2.18 (Allgemeingültigkeit, Unerfüllbarkeit und Folgerung)

Für jede Formel φ ∈ AL gilt:

(a) φ ist allgemeingültig ⇐⇒ ¬φ ist unerfüllbar ⇐⇒ 1 |= φ.

(b) φ ist unerfüllbar ⇐⇒ φ |= 0.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 75

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Lemma 2.19 (Erfüllbarkeit und die Folgerungsbeziehung)

Für alle Formelmengen Φ ⊆ AL und für alle Formeln ψ ∈ AL gilt:

Φ |= ψ ⇐⇒ Φ ∪ {¬ψ} ist unerfüllbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 76

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Lemma 2.20 (Allgemeingültigkeit und die Folgerungsbeziehung)

(a) Für jede Formel φ ∈ AL gilt:

φ ist allgemeingültig ⇐⇒ φ folgt aus der leeren Menge,

kurz:
|= φ ⇐⇒ ∅ |= φ.

(b) Für jede Formel ψ ∈ AL und jede endliche Formelmenge
Φ = {φ1, . . . , φn} ⊆ AL gilt:

Φ |= ψ ⇐⇒ (φ1 ∧ · · · ∧ φn) → ψ ist allgemeingültig.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 77

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Lemma 2.20 (Allgemeingültigkeit und die Folgerungsbeziehung)

(a) Für jede Formel φ ∈ AL gilt:

φ ist allgemeingültig ⇐⇒ φ folgt aus der leeren Menge,

kurz:
|= φ ⇐⇒ ∅ |= φ.

(b) Für jede Formel ψ ∈ AL und jede endliche Formelmenge
Φ = {φ1, . . . , φn} ⊆ AL gilt:

Φ |= ψ ⇐⇒ (φ1 ∧ · · · ∧ φn) → ψ ist allgemeingültig.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 77

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Bemerkung 2.21
Aus den beiden vorigen Lemmas erhält man leicht, dass für alle Formeln
φ,ψ ∈ AL gilt:

φ |= ψ ⇐⇒ (φ→ ψ) ist allgemeingültig ⇐⇒ (φ ∧ ¬ψ) ist unerfüllbar.

Beweis.
Es sei Φ := {φ}. Gemäß Lemma 2.20 gilt:

Φ |= ψ ⇐⇒ (φ→ ψ) ist allgemeingültig.

Somit gilt: φ |= ψ ⇐⇒ (φ→ ψ) ist allgemeingültig.

Außerdem gilt gemäß Lemma 2.19:

Φ |= ψ ⇐⇒ Φ ∪ {¬ψ} ist unerfüllbar.

Somit gilt: φ |= ψ ⇐⇒ (φ ∧ ¬ψ) ist unerfüllbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 78

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Bemerkung 2.21
Aus den beiden vorigen Lemmas erhält man leicht, dass für alle Formeln
φ,ψ ∈ AL gilt:

φ |= ψ ⇐⇒ (φ→ ψ) ist allgemeingültig ⇐⇒ (φ ∧ ¬ψ) ist unerfüllbar.

Beweis.
Es sei Φ := {φ}. Gemäß Lemma 2.20 gilt:

Φ |= ψ ⇐⇒ (φ→ ψ) ist allgemeingültig.

Somit gilt: φ |= ψ ⇐⇒ (φ→ ψ) ist allgemeingültig.

Außerdem gilt gemäß Lemma 2.19:

Φ |= ψ ⇐⇒ Φ ∪ {¬ψ} ist unerfüllbar.

Somit gilt: φ |= ψ ⇐⇒ (φ ∧ ¬ψ) ist unerfüllbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 78

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Bemerkung 2.21
Aus den beiden vorigen Lemmas erhält man leicht, dass für alle Formeln
φ,ψ ∈ AL gilt:

φ |= ψ ⇐⇒ (φ→ ψ) ist allgemeingültig ⇐⇒ (φ ∧ ¬ψ) ist unerfüllbar.

Beweis.
Es sei Φ := {φ}. Gemäß Lemma 2.20 gilt:

Φ |= ψ ⇐⇒ (φ→ ψ) ist allgemeingültig.

Somit gilt: φ |= ψ ⇐⇒ (φ→ ψ) ist allgemeingültig.

Außerdem gilt gemäß Lemma 2.19:

Φ |= ψ ⇐⇒ Φ ∪ {¬ψ} ist unerfüllbar.

Somit gilt: φ |= ψ ⇐⇒ (φ ∧ ¬ψ) ist unerfüllbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 78

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Bemerkung 2.21
Aus den beiden vorigen Lemmas erhält man leicht, dass für alle Formeln
φ,ψ ∈ AL gilt:

φ |= ψ ⇐⇒ (φ→ ψ) ist allgemeingültig ⇐⇒ (φ ∧ ¬ψ) ist unerfüllbar.

Beweis.
Es sei Φ := {φ}. Gemäß Lemma 2.20 gilt:

Φ |= ψ ⇐⇒ (φ→ ψ) ist allgemeingültig.

Somit gilt: φ |= ψ ⇐⇒ (φ→ ψ) ist allgemeingültig.

Außerdem gilt gemäß Lemma 2.19:

Φ |= ψ ⇐⇒ Φ ∪ {¬ψ} ist unerfüllbar.

Somit gilt: φ |= ψ ⇐⇒ (φ ∧ ¬ψ) ist unerfüllbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 78

Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Bemerkung 2.21
Aus den beiden vorigen Lemmas erhält man leicht, dass für alle Formeln
φ,ψ ∈ AL gilt:

φ |= ψ ⇐⇒ (φ→ ψ) ist allgemeingültig ⇐⇒ (φ ∧ ¬ψ) ist unerfüllbar.

Beweis.
Es sei Φ := {φ}. Gemäß Lemma 2.20 gilt:

Φ |= ψ ⇐⇒ (φ→ ψ) ist allgemeingültig.

Somit gilt: φ |= ψ ⇐⇒ (φ→ ψ) ist allgemeingültig.

Außerdem gilt gemäß Lemma 2.19:

Φ |= ψ ⇐⇒ Φ ∪ {¬ψ} ist unerfüllbar.

Somit gilt: φ |= ψ ⇐⇒ (φ ∧ ¬ψ) ist unerfüllbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 78

Abschnitt 2.2:

Aussagenlogische Modellierung

Kapitel 2: Aussagenlogik · Abschnitt 2.2: Aussagenlogische Modellierung

Beispiel 1: Sudoku

Kapitel 2: Aussagenlogik · Abschnitt 2.2: Aussagenlogische Modellierung

Sudoku

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 79

Kapitel 2: Aussagenlogik · Abschnitt 2.2: Aussagenlogische Modellierung

Sudoku

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 79

Kapitel 2: Aussagenlogik · Abschnitt 2.2: Aussagenlogische Modellierung

Aussagenlogisches Modell

Koordinaten der Felder:
Feld (i , j) ist das Feld in Zeile i und Spalte j .

Aussagensymbole:
Aussagensymbol Pi,j,k , für i , j , k ∈ [9], steht für die Aussage

”
Das Feld mit den Koordinaten (i , j) enthält die Zahl k.“

Interpretationen beschreiben also Beschriftungen des 9×9-Gitters.

Ziel:
Für jede Anfangsbeschriftung A eine Formelmenge ΦA, so dass für alle
Interpretationen I gilt:

I |= ΦA ⇐⇒ I beschreibt eine korrekte Lösung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 80

Kapitel 2: Aussagenlogik · Abschnitt 2.2: Aussagenlogische Modellierung

Aussagenlogisches Modell

Koordinaten der Felder:
Feld (i , j) ist das Feld in Zeile i und Spalte j .

Aussagensymbole:
Aussagensymbol Pi,j,k , für i , j , k ∈ [9], steht für die Aussage

”
Das Feld mit den Koordinaten (i , j) enthält die Zahl k.“

Interpretationen beschreiben also Beschriftungen des 9×9-Gitters.

Ziel:
Für jede Anfangsbeschriftung A eine Formelmenge ΦA, so dass für alle
Interpretationen I gilt:

I |= ΦA ⇐⇒ I beschreibt eine korrekte Lösung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 80

Kapitel 2: Aussagenlogik · Abschnitt 2.2: Aussagenlogische Modellierung

Aussagenlogisches Modell

Koordinaten der Felder:
Feld (i , j) ist das Feld in Zeile i und Spalte j .

Aussagensymbole:
Aussagensymbol Pi,j,k , für i , j , k ∈ [9], steht für die Aussage

”
Das Feld mit den Koordinaten (i , j) enthält die Zahl k.“

Interpretationen beschreiben also Beschriftungen des 9×9-Gitters.

Ziel:
Für jede Anfangsbeschriftung A eine Formelmenge ΦA, so dass für alle
Interpretationen I gilt:

I |= ΦA ⇐⇒ I beschreibt eine korrekte Lösung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 80

Kapitel 2: Aussagenlogik · Abschnitt 2.2: Aussagenlogische Modellierung

Aussagenlogisches Modell

Koordinaten der Felder:
Feld (i , j) ist das Feld in Zeile i und Spalte j .

Aussagensymbole:
Aussagensymbol Pi,j,k , für i , j , k ∈ [9], steht für die Aussage

”
Das Feld mit den Koordinaten (i , j) enthält die Zahl k.“

Interpretationen beschreiben also Beschriftungen des 9×9-Gitters.

Ziel:
Für jede Anfangsbeschriftung A eine Formelmenge ΦA, so dass für alle
Interpretationen I gilt:

I |= ΦA ⇐⇒ I beschreibt eine korrekte Lösung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 80

Kapitel 2: Aussagenlogik · Abschnitt 2.2: Aussagenlogische Modellierung

Wir beschreiben zunächst eine Formelmenge Φ = {φ1, . . . , φ5}, die die
Grundregeln des Spiels beschreibt.

Beschriftungen:
“Auf jedem Feld steht mindestens eine Zahl“:

φ1 :=
9∧

i,j=1

9∨
k=1

Pi,j,k .

“Auf jedem Feld steht höchstens eine Zahl“:

φ2 :=
9∧

i,j=1

9∧
k,ℓ=1
k ̸=ℓ

¬(Pi,j,k ∧ Pi,j,ℓ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 81

Kapitel 2: Aussagenlogik · Abschnitt 2.2: Aussagenlogische Modellierung

Wir beschreiben zunächst eine Formelmenge Φ = {φ1, . . . , φ5}, die die
Grundregeln des Spiels beschreibt.

Beschriftungen:
“Auf jedem Feld steht mindestens eine Zahl“:

φ1 :=
9∧

i,j=1

9∨
k=1

Pi,j,k .

“Auf jedem Feld steht höchstens eine Zahl“:

φ2 :=
9∧

i,j=1

9∧
k,ℓ=1
k ̸=ℓ

¬(Pi,j,k ∧ Pi,j,ℓ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 81

Kapitel 2: Aussagenlogik · Abschnitt 2.2: Aussagenlogische Modellierung

Wir beschreiben zunächst eine Formelmenge Φ = {φ1, . . . , φ5}, die die
Grundregeln des Spiels beschreibt.

Beschriftungen:
“Auf jedem Feld steht mindestens eine Zahl“:

φ1 :=
9∧

i,j=1

9∨
k=1

Pi,j,k .

“Auf jedem Feld steht höchstens eine Zahl“:

φ2 :=
9∧

i,j=1

9∧
k,ℓ=1
k ̸=ℓ

¬(Pi,j,k ∧ Pi,j,ℓ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 81

Kapitel 2: Aussagenlogik · Abschnitt 2.2: Aussagenlogische Modellierung

Wir beschreiben zunächst eine Formelmenge Φ = {φ1, . . . , φ5}, die die
Grundregeln des Spiels beschreibt.

Beschriftungen:
“Auf jedem Feld steht mindestens eine Zahl“:

φ1 :=
9∧

i,j=1

9∨
k=1

Pi,j,k .

“Auf jedem Feld steht höchstens eine Zahl“:

φ2 :=
9∧

i,j=1

9∧
k,ℓ=1
k ̸=ℓ

¬(Pi,j,k ∧ Pi,j,ℓ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 81

Kapitel 2: Aussagenlogik · Abschnitt 2.2: Aussagenlogische Modellierung

Wir beschreiben zunächst eine Formelmenge Φ = {φ1, . . . , φ5}, die die
Grundregeln des Spiels beschreibt.

Beschriftungen:
“Auf jedem Feld steht mindestens eine Zahl“:

φ1 :=
9∧

i,j=1

9∨
k=1

Pi,j,k .

“Auf jedem Feld steht höchstens eine Zahl“:

φ2 :=
9∧

i,j=1

9∧
k,ℓ=1
k ̸=ℓ

¬(Pi,j,k ∧ Pi,j,ℓ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 81

Kapitel 2: Aussagenlogik · Abschnitt 2.2: Aussagenlogische Modellierung

Zeilen:

”
Jede Zahl kommt in jeder Zeile
vor“:

φ3 :=
9∧

i=1

9∧
k=1

9∨
j=1

Pi,j,k .

Spalten:

”
Jede Zahl kommt in jeder Spalte
vor“:

φ4 :=
9∧

j=1

9∧
k=1

9∨
i=1

Pi,j.k .

Blöcke:

”
Jede Zahl kommt in jedem Block vor“:

φ5 :=
2∧

i,j=0

9∧
k=1

3∨
i ′,j′=1

P3i+i ′,3j+j′,k .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 82

Kapitel 2: Aussagenlogik · Abschnitt 2.2: Aussagenlogische Modellierung

Zeilen:

”
Jede Zahl kommt in jeder Zeile
vor“:

φ3 :=
9∧

i=1

9∧
k=1

9∨
j=1

Pi,j,k .

Spalten:

”
Jede Zahl kommt in jeder Spalte
vor“:

φ4 :=
9∧

j=1

9∧
k=1

9∨
i=1

Pi,j.k .

Blöcke:

”
Jede Zahl kommt in jedem Block vor“:

φ5 :=
2∧

i,j=0

9∧
k=1

3∨
i ′,j′=1

P3i+i ′,3j+j′,k .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 82

Kapitel 2: Aussagenlogik · Abschnitt 2.2: Aussagenlogische Modellierung

Zeilen:

”
Jede Zahl kommt in jeder Zeile
vor“:

φ3 :=
9∧

i=1

9∧
k=1

9∨
j=1

Pi,j,k .

Spalten:

”
Jede Zahl kommt in jeder Spalte
vor“:

φ4 :=
9∧

j=1

9∧
k=1

9∨
i=1

Pi,j.k .

Blöcke:

”
Jede Zahl kommt in jedem Block vor“:

φ5 :=
2∧

i,j=0

9∧
k=1

3∨
i ′,j′=1

P3i+i ′,3j+j′,k .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 82

Kapitel 2: Aussagenlogik · Abschnitt 2.2: Aussagenlogische Modellierung

Zeilen:

”
Jede Zahl kommt in jeder Zeile
vor“:

φ3 :=
9∧

i=1

9∧
k=1

9∨
j=1

Pi,j,k .

Spalten:

”
Jede Zahl kommt in jeder Spalte
vor“:

φ4 :=
9∧

j=1

9∧
k=1

9∨
i=1

Pi,j.k .

Blöcke:

”
Jede Zahl kommt in jedem Block vor“:

φ5 :=
2∧

i,j=0

9∧
k=1

3∨
i ′,j′=1

P3i+i ′,3j+j′,k .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 82

Kapitel 2: Aussagenlogik · Abschnitt 2.2: Aussagenlogische Modellierung

Zeilen:

”
Jede Zahl kommt in jeder Zeile
vor“:

φ3 :=
9∧

i=1

9∧
k=1

9∨
j=1

Pi,j,k .

Spalten:

”
Jede Zahl kommt in jeder Spalte
vor“:

φ4 :=
9∧

j=1

9∧
k=1

9∨
i=1

Pi,j.k .

Blöcke:

”
Jede Zahl kommt in jedem Block vor“:

φ5 :=
2∧

i,j=0

9∧
k=1

3∨
i ′,j′=1

P3i+i ′,3j+j′,k .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 82

Kapitel 2: Aussagenlogik · Abschnitt 2.2: Aussagenlogische Modellierung

Zeilen:

”
Jede Zahl kommt in jeder Zeile
vor“:

φ3 :=
9∧

i=1

9∧
k=1

9∨
j=1

Pi,j,k .

Spalten:

”
Jede Zahl kommt in jeder Spalte
vor“:

φ4 :=
9∧

j=1

9∧
k=1

9∨
i=1

Pi,j.k .

Blöcke:

”
Jede Zahl kommt in jedem Block vor“:

φ5 :=
2∧

i,j=0

9∧
k=1

3∨
i ′,j′=1

P3i+i ′,3j+j′,k .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 82

Kapitel 2: Aussagenlogik · Abschnitt 2.2: Aussagenlogische Modellierung

Anfangsbeschriftung:
Sei A die Anfangsbeschriftung. Wir setzen

ΦA :=

Φ ∪ { Pi,j,k : A beschriftet Feld (i , j) mit der Zahl k }.

Automatische Lösung von Sudokus:
Um ein Sudoku mit Anfangsbeschriftung A zu lösen, können wir nun einfach die
Formel ψA :=

∧
φ∈ΦA

φ bilden und die Wahrheitstafel zu dieser Formel
aufstellen. Falls die Wahrheitstafel zeigt, dass ψA kein Modell besitzt, so ist das
Sudoku nicht lösbar. Andernfalls können wir ein beliebiges Modell I von ψA

hernehmen und daran die Lösung des Sudokus ablesen: Für jedes Feld (i , j) gibt
es gemäß unserer Konstruktion der Formel ψA genau eine Zahl k ∈ [9], so dass
I(Pi,j,k) = 1 ist. Diese Zahl k können wir in Feld (i , j) eintragen und erhalten
damit eine Lösung des Sudokus.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 83

Kapitel 2: Aussagenlogik · Abschnitt 2.2: Aussagenlogische Modellierung

Anfangsbeschriftung:
Sei A die Anfangsbeschriftung. Wir setzen

ΦA := Φ ∪ { Pi,j,k : A beschriftet Feld (i , j) mit der Zahl k }.

Automatische Lösung von Sudokus:
Um ein Sudoku mit Anfangsbeschriftung A zu lösen, können wir nun einfach die
Formel ψA :=

∧
φ∈ΦA

φ bilden und die Wahrheitstafel zu dieser Formel
aufstellen. Falls die Wahrheitstafel zeigt, dass ψA kein Modell besitzt, so ist das
Sudoku nicht lösbar. Andernfalls können wir ein beliebiges Modell I von ψA

hernehmen und daran die Lösung des Sudokus ablesen: Für jedes Feld (i , j) gibt
es gemäß unserer Konstruktion der Formel ψA genau eine Zahl k ∈ [9], so dass
I(Pi,j,k) = 1 ist. Diese Zahl k können wir in Feld (i , j) eintragen und erhalten
damit eine Lösung des Sudokus.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 83

Kapitel 2: Aussagenlogik · Abschnitt 2.2: Aussagenlogische Modellierung

Anfangsbeschriftung:
Sei A die Anfangsbeschriftung. Wir setzen

ΦA := Φ ∪ { Pi,j,k : A beschriftet Feld (i , j) mit der Zahl k }.

Automatische Lösung von Sudokus:
Um ein Sudoku mit Anfangsbeschriftung A zu lösen, können wir nun einfach

die
Formel ψA :=

∧
φ∈ΦA

φ bilden und die Wahrheitstafel zu dieser Formel
aufstellen. Falls die Wahrheitstafel zeigt, dass ψA kein Modell besitzt, so ist das
Sudoku nicht lösbar. Andernfalls können wir ein beliebiges Modell I von ψA

hernehmen und daran die Lösung des Sudokus ablesen: Für jedes Feld (i , j) gibt
es gemäß unserer Konstruktion der Formel ψA genau eine Zahl k ∈ [9], so dass
I(Pi,j,k) = 1 ist. Diese Zahl k können wir in Feld (i , j) eintragen und erhalten
damit eine Lösung des Sudokus.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 83

Kapitel 2: Aussagenlogik · Abschnitt 2.2: Aussagenlogische Modellierung

Anfangsbeschriftung:
Sei A die Anfangsbeschriftung. Wir setzen

ΦA := Φ ∪ { Pi,j,k : A beschriftet Feld (i , j) mit der Zahl k }.

Automatische Lösung von Sudokus:
Um ein Sudoku mit Anfangsbeschriftung A zu lösen, können wir nun einfach die
Formel ψA :=

∧
φ∈ΦA

φ bilden und die Wahrheitstafel zu dieser Formel
aufstellen.

Falls die Wahrheitstafel zeigt, dass ψA kein Modell besitzt, so ist das
Sudoku nicht lösbar. Andernfalls können wir ein beliebiges Modell I von ψA

hernehmen und daran die Lösung des Sudokus ablesen: Für jedes Feld (i , j) gibt
es gemäß unserer Konstruktion der Formel ψA genau eine Zahl k ∈ [9], so dass
I(Pi,j,k) = 1 ist. Diese Zahl k können wir in Feld (i , j) eintragen und erhalten
damit eine Lösung des Sudokus.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 83

Kapitel 2: Aussagenlogik · Abschnitt 2.2: Aussagenlogische Modellierung

Anfangsbeschriftung:
Sei A die Anfangsbeschriftung. Wir setzen

ΦA := Φ ∪ { Pi,j,k : A beschriftet Feld (i , j) mit der Zahl k }.

Automatische Lösung von Sudokus:
Um ein Sudoku mit Anfangsbeschriftung A zu lösen, können wir nun einfach die
Formel ψA :=

∧
φ∈ΦA

φ bilden und die Wahrheitstafel zu dieser Formel
aufstellen. Falls die Wahrheitstafel zeigt, dass ψA kein Modell besitzt, so ist das
Sudoku nicht lösbar.

Andernfalls können wir ein beliebiges Modell I von ψA

hernehmen und daran die Lösung des Sudokus ablesen: Für jedes Feld (i , j) gibt
es gemäß unserer Konstruktion der Formel ψA genau eine Zahl k ∈ [9], so dass
I(Pi,j,k) = 1 ist. Diese Zahl k können wir in Feld (i , j) eintragen und erhalten
damit eine Lösung des Sudokus.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 83

Kapitel 2: Aussagenlogik · Abschnitt 2.2: Aussagenlogische Modellierung

Anfangsbeschriftung:
Sei A die Anfangsbeschriftung. Wir setzen

ΦA := Φ ∪ { Pi,j,k : A beschriftet Feld (i , j) mit der Zahl k }.

Automatische Lösung von Sudokus:
Um ein Sudoku mit Anfangsbeschriftung A zu lösen, können wir nun einfach die
Formel ψA :=

∧
φ∈ΦA

φ bilden und die Wahrheitstafel zu dieser Formel
aufstellen. Falls die Wahrheitstafel zeigt, dass ψA kein Modell besitzt, so ist das
Sudoku nicht lösbar. Andernfalls können wir ein beliebiges Modell I von ψA

hernehmen und daran die Lösung des Sudokus ablesen:

Für jedes Feld (i , j) gibt
es gemäß unserer Konstruktion der Formel ψA genau eine Zahl k ∈ [9], so dass
I(Pi,j,k) = 1 ist. Diese Zahl k können wir in Feld (i , j) eintragen und erhalten
damit eine Lösung des Sudokus.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 83

Kapitel 2: Aussagenlogik · Abschnitt 2.2: Aussagenlogische Modellierung

Anfangsbeschriftung:
Sei A die Anfangsbeschriftung. Wir setzen

ΦA := Φ ∪ { Pi,j,k : A beschriftet Feld (i , j) mit der Zahl k }.

Automatische Lösung von Sudokus:
Um ein Sudoku mit Anfangsbeschriftung A zu lösen, können wir nun einfach die
Formel ψA :=

∧
φ∈ΦA

φ bilden und die Wahrheitstafel zu dieser Formel
aufstellen. Falls die Wahrheitstafel zeigt, dass ψA kein Modell besitzt, so ist das
Sudoku nicht lösbar. Andernfalls können wir ein beliebiges Modell I von ψA

hernehmen und daran die Lösung des Sudokus ablesen: Für jedes Feld (i , j) gibt
es gemäß unserer Konstruktion der Formel ψA genau eine Zahl k ∈ [9], so dass
I(Pi,j,k) = 1 ist. Diese Zahl k können wir in Feld (i , j) eintragen und erhalten
damit eine Lösung des Sudokus.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 83

Kapitel 2: Aussagenlogik · Abschnitt 2.2: Aussagenlogische Modellierung

Beispiel 2: Automatische Hardwareverifikation

Abschnitt 2.3:

Äquivalenz und Adäquatheit

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Äquivalenz

Definition 2.22
Zwei Formeln φ,ψ ∈ AL sind äquivalent (wir schreiben φ ≡ ψ), wenn sie von den
selben Interpretationen erfüllt werden

, d.h., wenn für alle Interpretationen I gilt:
I |= φ ⇐⇒ I |= ψ.

Zwei Formelmengen Φ,Ψ ⊆ AL sind äquivalent (wir schreiben Φ ≡ Ψ), wenn sie von
den selben Interpretationen erfüllt werden, d.h., wenn für alle Interpretationen I gilt:
I |= Φ ⇐⇒ I |= Ψ.

Beobachtung 2.23

(a) Zwei Formeln φ,ψ ∈ AL sind genau dann äquivalent, wenn in den letzten Spalten
ihrer Wahrheitstafeln jeweils die gleichen Einträge stehen.

(b) Für endliche Formelmengen Φ = {φ1, . . . , φm}, Ψ = {ψ1, . . . , ψn} ⊆ AL gilt

Φ ≡ Ψ ⇐⇒

m∧
i=1

φi ≡
n∧

j=1

ψj .

Beispiel: Für alle X ,Y ∈ AS gilt: ¬(X ∨ Y) ≡ (¬X ∧ ¬Y) und X ≡ ¬¬X .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 84

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Äquivalenz

Definition 2.22
Zwei Formeln φ,ψ ∈ AL sind äquivalent (wir schreiben φ ≡ ψ), wenn sie von den
selben Interpretationen erfüllt werden, d.h., wenn für alle Interpretationen I gilt:
I |= φ ⇐⇒ I |= ψ.

Zwei Formelmengen Φ,Ψ ⊆ AL sind äquivalent (wir schreiben Φ ≡ Ψ), wenn sie von
den selben Interpretationen erfüllt werden, d.h., wenn für alle Interpretationen I gilt:
I |= Φ ⇐⇒ I |= Ψ.

Beobachtung 2.23

(a) Zwei Formeln φ,ψ ∈ AL sind genau dann äquivalent, wenn in den letzten Spalten
ihrer Wahrheitstafeln jeweils die gleichen Einträge stehen.

(b) Für endliche Formelmengen Φ = {φ1, . . . , φm}, Ψ = {ψ1, . . . , ψn} ⊆ AL gilt

Φ ≡ Ψ ⇐⇒

m∧
i=1

φi ≡
n∧

j=1

ψj .

Beispiel: Für alle X ,Y ∈ AS gilt: ¬(X ∨ Y) ≡ (¬X ∧ ¬Y) und X ≡ ¬¬X .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 84

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Äquivalenz

Definition 2.22
Zwei Formeln φ,ψ ∈ AL sind äquivalent (wir schreiben φ ≡ ψ), wenn sie von den
selben Interpretationen erfüllt werden, d.h., wenn für alle Interpretationen I gilt:
I |= φ ⇐⇒ I |= ψ.

Zwei Formelmengen Φ,Ψ ⊆ AL sind äquivalent (wir schreiben Φ ≡ Ψ), wenn sie von
den selben Interpretationen erfüllt werden, d.h., wenn für alle Interpretationen I gilt:
I |= Φ ⇐⇒ I |= Ψ.

Beobachtung 2.23

(a) Zwei Formeln φ,ψ ∈ AL sind genau dann äquivalent, wenn in den letzten Spalten
ihrer Wahrheitstafeln jeweils die gleichen Einträge stehen.

(b) Für endliche Formelmengen Φ = {φ1, . . . , φm}, Ψ = {ψ1, . . . , ψn} ⊆ AL gilt

Φ ≡ Ψ ⇐⇒

m∧
i=1

φi ≡
n∧

j=1

ψj .

Beispiel: Für alle X ,Y ∈ AS gilt: ¬(X ∨ Y) ≡ (¬X ∧ ¬Y) und X ≡ ¬¬X .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 84

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Äquivalenz

Definition 2.22
Zwei Formeln φ,ψ ∈ AL sind äquivalent (wir schreiben φ ≡ ψ), wenn sie von den
selben Interpretationen erfüllt werden, d.h., wenn für alle Interpretationen I gilt:
I |= φ ⇐⇒ I |= ψ.

Zwei Formelmengen Φ,Ψ ⊆ AL sind äquivalent (wir schreiben Φ ≡ Ψ), wenn sie von
den selben Interpretationen erfüllt werden, d.h., wenn für alle Interpretationen I gilt:
I |= Φ ⇐⇒ I |= Ψ.

Beobachtung 2.23

(a) Zwei Formeln φ,ψ ∈ AL sind genau dann äquivalent, wenn in den letzten Spalten
ihrer Wahrheitstafeln jeweils die gleichen Einträge stehen.

(b) Für endliche Formelmengen Φ = {φ1, . . . , φm}, Ψ = {ψ1, . . . , ψn} ⊆ AL gilt

Φ ≡ Ψ ⇐⇒

m∧
i=1

φi ≡
n∧

j=1

ψj .

Beispiel: Für alle X ,Y ∈ AS gilt: ¬(X ∨ Y) ≡ (¬X ∧ ¬Y) und X ≡ ¬¬X .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 84

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Äquivalenz

Definition 2.22
Zwei Formeln φ,ψ ∈ AL sind äquivalent (wir schreiben φ ≡ ψ), wenn sie von den
selben Interpretationen erfüllt werden, d.h., wenn für alle Interpretationen I gilt:
I |= φ ⇐⇒ I |= ψ.

Zwei Formelmengen Φ,Ψ ⊆ AL sind äquivalent (wir schreiben Φ ≡ Ψ), wenn sie von
den selben Interpretationen erfüllt werden, d.h., wenn für alle Interpretationen I gilt:
I |= Φ ⇐⇒ I |= Ψ.

Beobachtung 2.23

(a) Zwei Formeln φ,ψ ∈ AL sind genau dann äquivalent, wenn in den letzten Spalten
ihrer Wahrheitstafeln jeweils die gleichen Einträge stehen.

(b) Für endliche Formelmengen Φ = {φ1, . . . , φm}, Ψ = {ψ1, . . . , ψn} ⊆ AL gilt

Φ ≡ Ψ ⇐⇒

m∧
i=1

φi ≡
n∧

j=1

ψj .

Beispiel: Für alle X ,Y ∈ AS gilt: ¬(X ∨ Y) ≡ (¬X ∧ ¬Y) und X ≡ ¬¬X .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 84

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Äquivalenz

Definition 2.22
Zwei Formeln φ,ψ ∈ AL sind äquivalent (wir schreiben φ ≡ ψ), wenn sie von den
selben Interpretationen erfüllt werden, d.h., wenn für alle Interpretationen I gilt:
I |= φ ⇐⇒ I |= ψ.

Zwei Formelmengen Φ,Ψ ⊆ AL sind äquivalent (wir schreiben Φ ≡ Ψ), wenn sie von
den selben Interpretationen erfüllt werden, d.h., wenn für alle Interpretationen I gilt:
I |= Φ ⇐⇒ I |= Ψ.

Beobachtung 2.23

(a) Zwei Formeln φ,ψ ∈ AL sind genau dann äquivalent, wenn in den letzten Spalten
ihrer Wahrheitstafeln jeweils die gleichen Einträge stehen.

(b) Für endliche Formelmengen Φ = {φ1, . . . , φm}, Ψ = {ψ1, . . . , ψn} ⊆ AL gilt

Φ ≡ Ψ ⇐⇒

m∧
i=1

φi ≡
n∧

j=1

ψj .

Beispiel: Für alle X ,Y ∈ AS gilt: ¬(X ∨ Y) ≡ (¬X ∧ ¬Y) und X ≡ ¬¬X .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 84

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Äquivalenz

Definition 2.22
Zwei Formeln φ,ψ ∈ AL sind äquivalent (wir schreiben φ ≡ ψ), wenn sie von den
selben Interpretationen erfüllt werden, d.h., wenn für alle Interpretationen I gilt:
I |= φ ⇐⇒ I |= ψ.

Zwei Formelmengen Φ,Ψ ⊆ AL sind äquivalent (wir schreiben Φ ≡ Ψ), wenn sie von
den selben Interpretationen erfüllt werden, d.h., wenn für alle Interpretationen I gilt:
I |= Φ ⇐⇒ I |= Ψ.

Beobachtung 2.23

(a) Zwei Formeln φ,ψ ∈ AL sind genau dann äquivalent, wenn in den letzten Spalten
ihrer Wahrheitstafeln jeweils die gleichen Einträge stehen.

(b) Für endliche Formelmengen Φ = {φ1, . . . , φm}, Ψ = {ψ1, . . . , ψn} ⊆ AL gilt

Φ ≡ Ψ ⇐⇒
m∧
i=1

φi ≡
n∧

j=1

ψj .

Beispiel: Für alle X ,Y ∈ AS gilt: ¬(X ∨ Y) ≡ (¬X ∧ ¬Y) und X ≡ ¬¬X .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 84

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Äquivalenz und Allgemeingültigkeit

Lemma 2.24
(a) Für alle Formeln φ,ψ ∈ AL gilt:

φ ≡ ψ ⇐⇒ (φ↔ ψ) ist allgemeingültig.

(b) Für alle φ ∈ AL gilt:

φ ist allgemeingültig ⇐⇒ φ ≡ 1.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 85

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Äquivalenz und Allgemeingültigkeit

Lemma 2.24
(a) Für alle Formeln φ,ψ ∈ AL gilt:

φ ≡ ψ ⇐⇒ (φ↔ ψ) ist allgemeingültig.

(b) Für alle φ ∈ AL gilt:

φ ist allgemeingültig ⇐⇒ φ ≡ 1.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 85

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Fundamentale Äquivalenzen

Satz 2.25
Für alle Formeln φ,ψ, χ ∈ AL gelten die folgenden Äquivalenzen:

(a) Idempotenz:
(φ ∧ φ) ≡ φ

, (φ ∨ φ) ≡ φ.

(b) Kommutativität:

(φ ∧ ψ) ≡ (ψ ∧ φ) , (φ ∨ ψ) ≡ (ψ ∨ φ).

(c) Assoziativität:

((φ ∧ ψ) ∧ χ) ≡ (φ ∧ (ψ ∧ χ)) , ((φ ∨ ψ) ∨ χ) ≡ (φ ∨ (ψ ∨ χ)).

(d) Absorption:

(φ ∧ (φ ∨ ψ)) ≡ φ , (φ ∨ (φ ∧ ψ)) ≡ φ.

(Fortsetzung: nächste Folie)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 86

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Fundamentale Äquivalenzen

Satz 2.25
Für alle Formeln φ,ψ, χ ∈ AL gelten die folgenden Äquivalenzen:

(a) Idempotenz:
(φ ∧ φ) ≡ φ , (φ ∨ φ) ≡ φ.

(b) Kommutativität:

(φ ∧ ψ) ≡ (ψ ∧ φ) , (φ ∨ ψ) ≡ (ψ ∨ φ).

(c) Assoziativität:

((φ ∧ ψ) ∧ χ) ≡ (φ ∧ (ψ ∧ χ)) , ((φ ∨ ψ) ∨ χ) ≡ (φ ∨ (ψ ∨ χ)).

(d) Absorption:

(φ ∧ (φ ∨ ψ)) ≡ φ , (φ ∨ (φ ∧ ψ)) ≡ φ.

(Fortsetzung: nächste Folie)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 86

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Fundamentale Äquivalenzen

Satz 2.25
Für alle Formeln φ,ψ, χ ∈ AL gelten die folgenden Äquivalenzen:

(a) Idempotenz:
(φ ∧ φ) ≡ φ , (φ ∨ φ) ≡ φ.

(b) Kommutativität:

(φ ∧ ψ) ≡ (ψ ∧ φ)

, (φ ∨ ψ) ≡ (ψ ∨ φ).

(c) Assoziativität:

((φ ∧ ψ) ∧ χ) ≡ (φ ∧ (ψ ∧ χ)) , ((φ ∨ ψ) ∨ χ) ≡ (φ ∨ (ψ ∨ χ)).

(d) Absorption:

(φ ∧ (φ ∨ ψ)) ≡ φ , (φ ∨ (φ ∧ ψ)) ≡ φ.

(Fortsetzung: nächste Folie)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 86

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Fundamentale Äquivalenzen

Satz 2.25
Für alle Formeln φ,ψ, χ ∈ AL gelten die folgenden Äquivalenzen:

(a) Idempotenz:
(φ ∧ φ) ≡ φ , (φ ∨ φ) ≡ φ.

(b) Kommutativität:

(φ ∧ ψ) ≡ (ψ ∧ φ) , (φ ∨ ψ) ≡ (ψ ∨ φ).

(c) Assoziativität:

((φ ∧ ψ) ∧ χ) ≡ (φ ∧ (ψ ∧ χ)) , ((φ ∨ ψ) ∨ χ) ≡ (φ ∨ (ψ ∨ χ)).

(d) Absorption:

(φ ∧ (φ ∨ ψ)) ≡ φ , (φ ∨ (φ ∧ ψ)) ≡ φ.

(Fortsetzung: nächste Folie)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 86

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Fundamentale Äquivalenzen

Satz 2.25
Für alle Formeln φ,ψ, χ ∈ AL gelten die folgenden Äquivalenzen:

(a) Idempotenz:
(φ ∧ φ) ≡ φ , (φ ∨ φ) ≡ φ.

(b) Kommutativität:

(φ ∧ ψ) ≡ (ψ ∧ φ) , (φ ∨ ψ) ≡ (ψ ∨ φ).

(c) Assoziativität:

((φ ∧ ψ) ∧ χ) ≡ (φ ∧ (ψ ∧ χ))

, ((φ ∨ ψ) ∨ χ) ≡ (φ ∨ (ψ ∨ χ)).

(d) Absorption:

(φ ∧ (φ ∨ ψ)) ≡ φ , (φ ∨ (φ ∧ ψ)) ≡ φ.

(Fortsetzung: nächste Folie)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 86

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Fundamentale Äquivalenzen

Satz 2.25
Für alle Formeln φ,ψ, χ ∈ AL gelten die folgenden Äquivalenzen:

(a) Idempotenz:
(φ ∧ φ) ≡ φ , (φ ∨ φ) ≡ φ.

(b) Kommutativität:

(φ ∧ ψ) ≡ (ψ ∧ φ) , (φ ∨ ψ) ≡ (ψ ∨ φ).

(c) Assoziativität:

((φ ∧ ψ) ∧ χ) ≡ (φ ∧ (ψ ∧ χ)) , ((φ ∨ ψ) ∨ χ) ≡ (φ ∨ (ψ ∨ χ)).

(d) Absorption:

(φ ∧ (φ ∨ ψ)) ≡ φ , (φ ∨ (φ ∧ ψ)) ≡ φ.

(Fortsetzung: nächste Folie)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 86

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Fundamentale Äquivalenzen

Satz 2.25
Für alle Formeln φ,ψ, χ ∈ AL gelten die folgenden Äquivalenzen:

(a) Idempotenz:
(φ ∧ φ) ≡ φ , (φ ∨ φ) ≡ φ.

(b) Kommutativität:

(φ ∧ ψ) ≡ (ψ ∧ φ) , (φ ∨ ψ) ≡ (ψ ∨ φ).

(c) Assoziativität:

((φ ∧ ψ) ∧ χ) ≡ (φ ∧ (ψ ∧ χ)) , ((φ ∨ ψ) ∨ χ) ≡ (φ ∨ (ψ ∨ χ)).

(d) Absorption:

(φ ∧ (φ ∨ ψ)) ≡ φ

, (φ ∨ (φ ∧ ψ)) ≡ φ.

(Fortsetzung: nächste Folie)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 86

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Fundamentale Äquivalenzen

Satz 2.25
Für alle Formeln φ,ψ, χ ∈ AL gelten die folgenden Äquivalenzen:

(a) Idempotenz:
(φ ∧ φ) ≡ φ , (φ ∨ φ) ≡ φ.

(b) Kommutativität:

(φ ∧ ψ) ≡ (ψ ∧ φ) , (φ ∨ ψ) ≡ (ψ ∨ φ).

(c) Assoziativität:

((φ ∧ ψ) ∧ χ) ≡ (φ ∧ (ψ ∧ χ)) , ((φ ∨ ψ) ∨ χ) ≡ (φ ∨ (ψ ∨ χ)).

(d) Absorption:

(φ ∧ (φ ∨ ψ)) ≡ φ , (φ ∨ (φ ∧ ψ)) ≡ φ.

(Fortsetzung: nächste Folie)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 86

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

(e) Distributivität:

(φ∧(ψ∨χ)) ≡ ((φ∧ψ)∨(φ∧χ))

, (φ∨(ψ∧χ)) ≡ ((φ∨ψ)∧(φ∨χ)).

(f) Doppelte Negation:
¬¬φ ≡ φ.

(g) De Morgansche Regeln:

¬(φ ∧ ψ) ≡ (¬φ ∨ ¬ψ) , ¬(φ ∨ ψ) ≡ (¬φ ∧ ¬ψ).

(h) Tertium Non Datur:

(φ ∧ ¬φ) ≡ 0 , (φ ∨ ¬φ) ≡ 1.

(Fortsetzung: nächste Folie)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 87

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

(e) Distributivität:

(φ∧(ψ∨χ)) ≡ ((φ∧ψ)∨(φ∧χ)) , (φ∨(ψ∧χ)) ≡ ((φ∨ψ)∧(φ∨χ)).

(f) Doppelte Negation:
¬¬φ ≡ φ.

(g) De Morgansche Regeln:

¬(φ ∧ ψ) ≡ (¬φ ∨ ¬ψ) , ¬(φ ∨ ψ) ≡ (¬φ ∧ ¬ψ).

(h) Tertium Non Datur:

(φ ∧ ¬φ) ≡ 0 , (φ ∨ ¬φ) ≡ 1.

(Fortsetzung: nächste Folie)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 87

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

(e) Distributivität:

(φ∧(ψ∨χ)) ≡ ((φ∧ψ)∨(φ∧χ)) , (φ∨(ψ∧χ)) ≡ ((φ∨ψ)∧(φ∨χ)).

(f) Doppelte Negation:
¬¬φ ≡ φ.

(g) De Morgansche Regeln:

¬(φ ∧ ψ) ≡ (¬φ ∨ ¬ψ) , ¬(φ ∨ ψ) ≡ (¬φ ∧ ¬ψ).

(h) Tertium Non Datur:

(φ ∧ ¬φ) ≡ 0 , (φ ∨ ¬φ) ≡ 1.

(Fortsetzung: nächste Folie)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 87

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

(e) Distributivität:

(φ∧(ψ∨χ)) ≡ ((φ∧ψ)∨(φ∧χ)) , (φ∨(ψ∧χ)) ≡ ((φ∨ψ)∧(φ∨χ)).

(f) Doppelte Negation:
¬¬φ ≡ φ.

(g) De Morgansche Regeln:

¬(φ ∧ ψ) ≡ (¬φ ∨ ¬ψ)

, ¬(φ ∨ ψ) ≡ (¬φ ∧ ¬ψ).

(h) Tertium Non Datur:

(φ ∧ ¬φ) ≡ 0 , (φ ∨ ¬φ) ≡ 1.

(Fortsetzung: nächste Folie)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 87

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

(e) Distributivität:

(φ∧(ψ∨χ)) ≡ ((φ∧ψ)∨(φ∧χ)) , (φ∨(ψ∧χ)) ≡ ((φ∨ψ)∧(φ∨χ)).

(f) Doppelte Negation:
¬¬φ ≡ φ.

(g) De Morgansche Regeln:

¬(φ ∧ ψ) ≡ (¬φ ∨ ¬ψ) , ¬(φ ∨ ψ) ≡ (¬φ ∧ ¬ψ).

(h) Tertium Non Datur:

(φ ∧ ¬φ) ≡ 0 , (φ ∨ ¬φ) ≡ 1.

(Fortsetzung: nächste Folie)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 87

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

(e) Distributivität:

(φ∧(ψ∨χ)) ≡ ((φ∧ψ)∨(φ∧χ)) , (φ∨(ψ∧χ)) ≡ ((φ∨ψ)∧(φ∨χ)).

(f) Doppelte Negation:
¬¬φ ≡ φ.

(g) De Morgansche Regeln:

¬(φ ∧ ψ) ≡ (¬φ ∨ ¬ψ) , ¬(φ ∨ ψ) ≡ (¬φ ∧ ¬ψ).

(h) Tertium Non Datur:

(φ ∧ ¬φ) ≡ 0

, (φ ∨ ¬φ) ≡ 1.

(Fortsetzung: nächste Folie)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 87

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

(e) Distributivität:

(φ∧(ψ∨χ)) ≡ ((φ∧ψ)∨(φ∧χ)) , (φ∨(ψ∧χ)) ≡ ((φ∨ψ)∧(φ∨χ)).

(f) Doppelte Negation:
¬¬φ ≡ φ.

(g) De Morgansche Regeln:

¬(φ ∧ ψ) ≡ (¬φ ∨ ¬ψ) , ¬(φ ∨ ψ) ≡ (¬φ ∧ ¬ψ).

(h) Tertium Non Datur:

(φ ∧ ¬φ) ≡ 0 , (φ ∨ ¬φ) ≡ 1.

(Fortsetzung: nächste Folie)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 87

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

(i)

(φ ∧ 1) ≡ φ , (φ ∨ 0) ≡ φ ,

(φ ∧ 0) ≡ 0 , (φ ∨ 1) ≡ 1.

(j)
1 ≡ ¬0 , 0 ≡ ¬1.

(k) Elimination der Implikation:

(φ→ ψ) ≡ (¬φ ∨ ψ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 88

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

(i)

(φ ∧ 1) ≡ φ , (φ ∨ 0) ≡ φ ,

(φ ∧ 0) ≡ 0 , (φ ∨ 1) ≡ 1.

(j)
1 ≡ ¬0

, 0 ≡ ¬1.

(k) Elimination der Implikation:

(φ→ ψ) ≡ (¬φ ∨ ψ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 88

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

(i)

(φ ∧ 1) ≡ φ , (φ ∨ 0) ≡ φ ,

(φ ∧ 0) ≡ 0 , (φ ∨ 1) ≡ 1.

(j)
1 ≡ ¬0 , 0 ≡ ¬1.

(k) Elimination der Implikation:

(φ→ ψ) ≡ (¬φ ∨ ψ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 88

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

(i)

(φ ∧ 1) ≡ φ , (φ ∨ 0) ≡ φ ,

(φ ∧ 0) ≡ 0 , (φ ∨ 1) ≡ 1.

(j)
1 ≡ ¬0 , 0 ≡ ¬1.

(k) Elimination der Implikation:

(φ→ ψ) ≡ (¬φ ∨ ψ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 88

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Beweis.
Alle hier genannten Äquivalenzen können leicht mit Hilfe der
Wahrheisttafelmethode überprüft werden.

Zum Beispiel die erste de Morgansche Regel:

¬(φ ∧ ψ) ≡ (¬φ ∨ ¬ψ).

Wir berechnen dazu folgende Wahrheitstafeln:

φ ψ (φ ∧ ψ) ¬(φ ∧ ψ)
0 0 0 1
0 1 0 1
1 0 0 1
1 1 1 0

φ ψ ¬φ ¬ψ (¬φ ∨ ¬ψ)
0 0 1 1 1
0 1 1 0 1
1 0 0 1 1
1 1 0 0 0

Die letzten Spalten der beiden Wahrheitstafeln sind gleich, also sind die Formeln
äquivalent.

Rest: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 89

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Beweis.
Alle hier genannten Äquivalenzen können leicht mit Hilfe der
Wahrheisttafelmethode überprüft werden.

Zum Beispiel die erste de Morgansche Regel:

¬(φ ∧ ψ) ≡ (¬φ ∨ ¬ψ).

Wir berechnen dazu folgende Wahrheitstafeln:

φ ψ (φ ∧ ψ) ¬(φ ∧ ψ)
0 0 0 1
0 1 0 1
1 0 0 1
1 1 1 0

φ ψ ¬φ ¬ψ (¬φ ∨ ¬ψ)
0 0 1 1 1
0 1 1 0 1
1 0 0 1 1
1 1 0 0 0

Die letzten Spalten der beiden Wahrheitstafeln sind gleich, also sind die Formeln
äquivalent.

Rest: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 89

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Beweis.
Alle hier genannten Äquivalenzen können leicht mit Hilfe der
Wahrheisttafelmethode überprüft werden.

Zum Beispiel die erste de Morgansche Regel:

¬(φ ∧ ψ) ≡ (¬φ ∨ ¬ψ).

Wir berechnen dazu folgende Wahrheitstafeln:

φ ψ (φ ∧ ψ) ¬(φ ∧ ψ)
0 0 0 1
0 1 0 1
1 0 0 1
1 1 1 0

φ ψ ¬φ ¬ψ (¬φ ∨ ¬ψ)
0 0 1 1 1
0 1 1 0 1
1 0 0 1 1
1 1 0 0 0

Die letzten Spalten der beiden Wahrheitstafeln sind gleich, also sind die Formeln
äquivalent.

Rest: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 89

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Beweis.
Alle hier genannten Äquivalenzen können leicht mit Hilfe der
Wahrheisttafelmethode überprüft werden.

Zum Beispiel die erste de Morgansche Regel:

¬(φ ∧ ψ) ≡ (¬φ ∨ ¬ψ).

Wir berechnen dazu folgende Wahrheitstafeln:

φ ψ (φ ∧ ψ) ¬(φ ∧ ψ)
0 0 0 1
0 1 0 1
1 0 0 1
1 1 1 0

φ ψ ¬φ ¬ψ (¬φ ∨ ¬ψ)
0 0 1 1 1
0 1 1 0 1
1 0 0 1 1
1 1 0 0 0

Die letzten Spalten der beiden Wahrheitstafeln sind gleich, also sind die Formeln
äquivalent.

Rest: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 89

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Bemerkung
Durch schrittweises Anwenden der in Satz 2.25 aufgelisteten Äquivalenzen kann
man eine gegebene Formel in eine zu ihr äquivalente Formel umformen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 90

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Das Dualitätsprinzip

Definition 2.26
Sei φ ∈ AL eine Formel, in der keine Implikationen vorkommt.
Die zu φ duale Formel ist die Formel φ̃ ∈ AL, die aus φ entsteht, indem man
überall 0 durch 1, 1 durch 0, ∧ durch ∨ und ∨ durch ∧ ersetzt.

Beispiel
Für φ := ((A1 ∧ 0) ∨ ¬(A2 ∨ 1)) ist φ̃ = ((A1 ∨ 1) ∧ ¬(A2 ∧ 0)).

Satz 2.27 (Dualitätssatz der Aussagenlogik)
Für alle Formeln φ,ψ ∈ AL, in denen keine Implikation vorkommt, gilt:

φ ≡ ψ ⇐⇒ φ̃ ≡ ψ̃.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 91

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Das Dualitätsprinzip

Definition 2.26
Sei φ ∈ AL eine Formel, in der keine Implikationen vorkommt.
Die zu φ duale Formel ist die Formel φ̃ ∈ AL, die aus φ entsteht, indem man
überall 0 durch 1, 1 durch 0, ∧ durch ∨ und ∨ durch ∧ ersetzt.

Beispiel
Für φ := ((A1 ∧ 0) ∨ ¬(A2 ∨ 1)) ist φ̃ = ((A1 ∨ 1) ∧ ¬(A2 ∧ 0)).

Satz 2.27 (Dualitätssatz der Aussagenlogik)
Für alle Formeln φ,ψ ∈ AL, in denen keine Implikation vorkommt, gilt:

φ ≡ ψ ⇐⇒ φ̃ ≡ ψ̃.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 91

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Das Dualitätsprinzip

Definition 2.26
Sei φ ∈ AL eine Formel, in der keine Implikationen vorkommt.
Die zu φ duale Formel ist die Formel φ̃ ∈ AL, die aus φ entsteht, indem man
überall 0 durch 1, 1 durch 0, ∧ durch ∨ und ∨ durch ∧ ersetzt.

Beispiel
Für φ := ((A1 ∧ 0) ∨ ¬(A2 ∨ 1)) ist φ̃ = ((A1 ∨ 1) ∧ ¬(A2 ∧ 0)).

Satz 2.27 (Dualitätssatz der Aussagenlogik)
Für alle Formeln φ,ψ ∈ AL, in denen keine Implikation vorkommt, gilt:

φ ≡ ψ ⇐⇒ φ̃ ≡ ψ̃.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 91

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Beweise per Induktion über den Aufbau von Formeln

• Ähnlich wie wir Aussagen über die natürlichen Zahlen durch vollständige
Induktion beweisen können, können wir Aussagen über Formeln per
Induktion über den Aufbau der Formeln beweisen.

• Im Induktionsanfang beweisen wir die Aussagen für die atomaren Formeln,
und im Induktionschritt schließen wir von den Bestandteilen einer Formel
auf die Formel selbst.

• Dieses Vorgehen ist z.B. dadurch gerechtfertigt, dass es sich auch als
vollständige Induktion über die Höhe des Syntaxbaumes auffassen lässt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 92

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Beweise per Induktion über den Aufbau von Formeln

• Ähnlich wie wir Aussagen über die natürlichen Zahlen durch vollständige
Induktion beweisen können, können wir Aussagen über Formeln per
Induktion über den Aufbau der Formeln beweisen.

• Im Induktionsanfang beweisen wir die Aussagen für die atomaren Formeln,

und im Induktionschritt schließen wir von den Bestandteilen einer Formel
auf die Formel selbst.

• Dieses Vorgehen ist z.B. dadurch gerechtfertigt, dass es sich auch als
vollständige Induktion über die Höhe des Syntaxbaumes auffassen lässt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 92

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Beweise per Induktion über den Aufbau von Formeln

• Ähnlich wie wir Aussagen über die natürlichen Zahlen durch vollständige
Induktion beweisen können, können wir Aussagen über Formeln per
Induktion über den Aufbau der Formeln beweisen.

• Im Induktionsanfang beweisen wir die Aussagen für die atomaren Formeln,
und im Induktionschritt schließen wir von den Bestandteilen einer Formel
auf die Formel selbst.

• Dieses Vorgehen ist z.B. dadurch gerechtfertigt, dass es sich auch als
vollständige Induktion über die Höhe des Syntaxbaumes auffassen lässt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 92

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Beweise per Induktion über den Aufbau von Formeln

• Ähnlich wie wir Aussagen über die natürlichen Zahlen durch vollständige
Induktion beweisen können, können wir Aussagen über Formeln per
Induktion über den Aufbau der Formeln beweisen.

• Im Induktionsanfang beweisen wir die Aussagen für die atomaren Formeln,
und im Induktionschritt schließen wir von den Bestandteilen einer Formel
auf die Formel selbst.

• Dieses Vorgehen ist z.B. dadurch gerechtfertigt, dass es sich auch als
vollständige Induktion über die Höhe des Syntaxbaumes auffassen lässt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 92

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Schematisch sieht der Beweis einer Aussage A(φ) für alle Formeln φ ∈ AL wie
folgt aus:

Induktionsanfang:

• Beweise A(0) und A(1).

• Beweise A(X) für alle X ∈ AS.

Induktionsschritt:

• Beweise A(¬φ) unter der Annahme, dass A(φ) gilt.
• Beweise A((φ ∧ ψ)) unter der Annahme, dass A(φ) und A(ψ) gelten.
• Beweise A((φ ∨ ψ)) unter der Annahme, dass A(φ) und A(ψ) gelten.
• Beweise A((φ→ ψ)) unter der Annahme, dass A(φ) und A(ψ) gelten.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 93

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Schematisch sieht der Beweis einer Aussage A(φ) für alle Formeln φ ∈ AL wie
folgt aus:

Induktionsanfang:

• Beweise A(0) und A(1).
• Beweise A(X) für alle X ∈ AS.

Induktionsschritt:

• Beweise A(¬φ) unter der Annahme, dass A(φ) gilt.
• Beweise A((φ ∧ ψ)) unter der Annahme, dass A(φ) und A(ψ) gelten.
• Beweise A((φ ∨ ψ)) unter der Annahme, dass A(φ) und A(ψ) gelten.
• Beweise A((φ→ ψ)) unter der Annahme, dass A(φ) und A(ψ) gelten.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 93

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Schematisch sieht der Beweis einer Aussage A(φ) für alle Formeln φ ∈ AL wie
folgt aus:

Induktionsanfang:

• Beweise A(0) und A(1).
• Beweise A(X) für alle X ∈ AS.

Induktionsschritt:

• Beweise A(¬φ) unter der Annahme, dass A(φ) gilt.

• Beweise A((φ ∧ ψ)) unter der Annahme, dass A(φ) und A(ψ) gelten.
• Beweise A((φ ∨ ψ)) unter der Annahme, dass A(φ) und A(ψ) gelten.
• Beweise A((φ→ ψ)) unter der Annahme, dass A(φ) und A(ψ) gelten.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 93

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Schematisch sieht der Beweis einer Aussage A(φ) für alle Formeln φ ∈ AL wie
folgt aus:

Induktionsanfang:

• Beweise A(0) und A(1).
• Beweise A(X) für alle X ∈ AS.

Induktionsschritt:

• Beweise A(¬φ) unter der Annahme, dass A(φ) gilt.
• Beweise A((φ ∧ ψ)) unter der Annahme, dass A(φ) und A(ψ) gelten.

• Beweise A((φ ∨ ψ)) unter der Annahme, dass A(φ) und A(ψ) gelten.
• Beweise A((φ→ ψ)) unter der Annahme, dass A(φ) und A(ψ) gelten.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 93

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Schematisch sieht der Beweis einer Aussage A(φ) für alle Formeln φ ∈ AL wie
folgt aus:

Induktionsanfang:

• Beweise A(0) und A(1).
• Beweise A(X) für alle X ∈ AS.

Induktionsschritt:

• Beweise A(¬φ) unter der Annahme, dass A(φ) gilt.
• Beweise A((φ ∧ ψ)) unter der Annahme, dass A(φ) und A(ψ) gelten.
• Beweise A((φ ∨ ψ)) unter der Annahme, dass A(φ) und A(ψ) gelten.

• Beweise A((φ→ ψ)) unter der Annahme, dass A(φ) und A(ψ) gelten.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 93

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Schematisch sieht der Beweis einer Aussage A(φ) für alle Formeln φ ∈ AL wie
folgt aus:

Induktionsanfang:

• Beweise A(0) und A(1).
• Beweise A(X) für alle X ∈ AS.

Induktionsschritt:

• Beweise A(¬φ) unter der Annahme, dass A(φ) gilt.
• Beweise A((φ ∧ ψ)) unter der Annahme, dass A(φ) und A(ψ) gelten.
• Beweise A((φ ∨ ψ)) unter der Annahme, dass A(φ) und A(ψ) gelten.
• Beweise A((φ→ ψ)) unter der Annahme, dass A(φ) und A(ψ) gelten.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 93

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Um den Dualitätssatz zu beweisen benötigen wir zunächst noch eine Definition.
Der Kern des Beweises steckt im darauf folgenden Lemma.

Definition 2.28
Sei I eine Interpretation. Die zu I duale Interpretation Ĩ ist definiert durch
Ĩ(X) := 1− I(X) für alle X ∈ AS.

D.h. für alle Aussagensymbole X gilt:

Ĩ(X) =

{
0 , falls I(X) = 1

1 , falls I(X) = 0

Lemma 2.29
Für alle Formeln φ ∈ AL, in denen keine Implikation vorkommt, und alle
Interpretationen I gilt:

I |= φ̃ ⇐⇒ Ĩ ̸|= φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 94

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Um den Dualitätssatz zu beweisen benötigen wir zunächst noch eine Definition.
Der Kern des Beweises steckt im darauf folgenden Lemma.

Definition 2.28
Sei I eine Interpretation. Die zu I duale Interpretation Ĩ ist definiert durch
Ĩ(X) := 1− I(X) für alle X ∈ AS.

D.h. für alle Aussagensymbole X gilt:

Ĩ(X) =

{
0 , falls I(X) = 1

1 , falls I(X) = 0

Lemma 2.29
Für alle Formeln φ ∈ AL, in denen keine Implikation vorkommt, und alle
Interpretationen I gilt:

I |= φ̃ ⇐⇒ Ĩ ̸|= φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 94

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Um den Dualitätssatz zu beweisen benötigen wir zunächst noch eine Definition.
Der Kern des Beweises steckt im darauf folgenden Lemma.

Definition 2.28
Sei I eine Interpretation. Die zu I duale Interpretation Ĩ ist definiert durch
Ĩ(X) := 1− I(X) für alle X ∈ AS.

D.h. für alle Aussagensymbole X gilt:

Ĩ(X) =

{
0 , falls I(X) = 1

1 , falls I(X) = 0

Lemma 2.29
Für alle Formeln φ ∈ AL, in denen keine Implikation vorkommt, und alle
Interpretationen I gilt:

I |= φ̃ ⇐⇒ Ĩ ̸|= φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 94

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Beweis von Satz 2.27.
Seien φ,ψ ∈ AL Formeln, in denen keine Implikation vorkommt.

Wir wollen zeigen, dass gilt: φ ≡ ψ ⇐⇒ φ̃ ≡ ψ̃.

”
=⇒“: Es gilt:1

φ ≡ ψ

=⇒ F.a. Interpretationen I gilt:
(
Ĩ |= φ ⇐⇒ Ĩ |= ψ

)
Lemma 2.29

=⇒ F.a. Interpretationen I gilt:
(
I ̸|= φ̃ ⇐⇒ I ̸|= ψ̃

)
=⇒ F.a. Interpretationen I gilt:

(
I |= φ̃ ⇐⇒ I |= ψ̃

)
=⇒ φ̃ ≡ ψ̃.

”
⇐=“: Es gilt:

φ̃ ≡ ψ̃ =⇒ ˜̃φ ≡ ˜̃
ψ (andere Beweisrichtung)

=⇒ φ ≡ ψ (weil ˜̃φ = φ und
˜̃
ψ = ψ).

1Wir schreiben kurz
”
f.a.“ als Abkürzung für die Worte

”
für alle“

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 95

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Beweis von Satz 2.27.
Seien φ,ψ ∈ AL Formeln, in denen keine Implikation vorkommt.
Wir wollen zeigen, dass gilt: φ ≡ ψ ⇐⇒ φ̃ ≡ ψ̃.

”
=⇒“: Es gilt:1

φ ≡ ψ

=⇒ F.a. Interpretationen I gilt:
(
Ĩ |= φ ⇐⇒ Ĩ |= ψ

)
Lemma 2.29

=⇒ F.a. Interpretationen I gilt:
(
I ̸|= φ̃ ⇐⇒ I ̸|= ψ̃

)
=⇒ F.a. Interpretationen I gilt:

(
I |= φ̃ ⇐⇒ I |= ψ̃

)
=⇒ φ̃ ≡ ψ̃.

”
⇐=“: Es gilt:

φ̃ ≡ ψ̃ =⇒ ˜̃φ ≡ ˜̃
ψ (andere Beweisrichtung)

=⇒ φ ≡ ψ (weil ˜̃φ = φ und
˜̃
ψ = ψ).

1Wir schreiben kurz
”
f.a.“ als Abkürzung für die Worte

”
für alle“

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 95

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Beweis von Satz 2.27.
Seien φ,ψ ∈ AL Formeln, in denen keine Implikation vorkommt.
Wir wollen zeigen, dass gilt: φ ≡ ψ ⇐⇒ φ̃ ≡ ψ̃.

”
=⇒“: Es gilt:1

φ ≡ ψ

=⇒ F.a. Interpretationen I gilt:
(
Ĩ |= φ ⇐⇒ Ĩ |= ψ

)

Lemma 2.29
=⇒ F.a. Interpretationen I gilt:

(
I ̸|= φ̃ ⇐⇒ I ̸|= ψ̃

)
=⇒ F.a. Interpretationen I gilt:

(
I |= φ̃ ⇐⇒ I |= ψ̃

)
=⇒ φ̃ ≡ ψ̃.

”
⇐=“: Es gilt:

φ̃ ≡ ψ̃ =⇒ ˜̃φ ≡ ˜̃
ψ (andere Beweisrichtung)

=⇒ φ ≡ ψ (weil ˜̃φ = φ und
˜̃
ψ = ψ).

1Wir schreiben kurz
”
f.a.“ als Abkürzung für die Worte

”
für alle“

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 95

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Beweis von Satz 2.27.
Seien φ,ψ ∈ AL Formeln, in denen keine Implikation vorkommt.
Wir wollen zeigen, dass gilt: φ ≡ ψ ⇐⇒ φ̃ ≡ ψ̃.

”
=⇒“: Es gilt:1

φ ≡ ψ

=⇒ F.a. Interpretationen I gilt:
(
Ĩ |= φ ⇐⇒ Ĩ |= ψ

)
Lemma 2.29

=⇒ F.a. Interpretationen I gilt:
(
I ̸|= φ̃ ⇐⇒ I ̸|= ψ̃

)

=⇒ F.a. Interpretationen I gilt:
(
I |= φ̃ ⇐⇒ I |= ψ̃

)
=⇒ φ̃ ≡ ψ̃.

”
⇐=“: Es gilt:

φ̃ ≡ ψ̃ =⇒ ˜̃φ ≡ ˜̃
ψ (andere Beweisrichtung)

=⇒ φ ≡ ψ (weil ˜̃φ = φ und
˜̃
ψ = ψ).

1Wir schreiben kurz
”
f.a.“ als Abkürzung für die Worte

”
für alle“

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 95

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Beweis von Satz 2.27.
Seien φ,ψ ∈ AL Formeln, in denen keine Implikation vorkommt.
Wir wollen zeigen, dass gilt: φ ≡ ψ ⇐⇒ φ̃ ≡ ψ̃.

”
=⇒“: Es gilt:1

φ ≡ ψ

=⇒ F.a. Interpretationen I gilt:
(
Ĩ |= φ ⇐⇒ Ĩ |= ψ

)
Lemma 2.29

=⇒ F.a. Interpretationen I gilt:
(
I ̸|= φ̃ ⇐⇒ I ̸|= ψ̃

)
=⇒ F.a. Interpretationen I gilt:

(
I |= φ̃ ⇐⇒ I |= ψ̃

)

=⇒ φ̃ ≡ ψ̃.

”
⇐=“: Es gilt:

φ̃ ≡ ψ̃ =⇒ ˜̃φ ≡ ˜̃
ψ (andere Beweisrichtung)

=⇒ φ ≡ ψ (weil ˜̃φ = φ und
˜̃
ψ = ψ).

1Wir schreiben kurz
”
f.a.“ als Abkürzung für die Worte

”
für alle“

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 95

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Beweis von Satz 2.27.
Seien φ,ψ ∈ AL Formeln, in denen keine Implikation vorkommt.
Wir wollen zeigen, dass gilt: φ ≡ ψ ⇐⇒ φ̃ ≡ ψ̃.

”
=⇒“: Es gilt:1

φ ≡ ψ

=⇒ F.a. Interpretationen I gilt:
(
Ĩ |= φ ⇐⇒ Ĩ |= ψ

)
Lemma 2.29

=⇒ F.a. Interpretationen I gilt:
(
I ̸|= φ̃ ⇐⇒ I ̸|= ψ̃

)
=⇒ F.a. Interpretationen I gilt:

(
I |= φ̃ ⇐⇒ I |= ψ̃

)
=⇒ φ̃ ≡ ψ̃.

”
⇐=“: Es gilt:

φ̃ ≡ ψ̃ =⇒ ˜̃φ ≡ ˜̃
ψ (andere Beweisrichtung)

=⇒ φ ≡ ψ (weil ˜̃φ = φ und
˜̃
ψ = ψ).

1Wir schreiben kurz
”
f.a.“ als Abkürzung für die Worte

”
für alle“

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 95

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Beweis von Satz 2.27.
Seien φ,ψ ∈ AL Formeln, in denen keine Implikation vorkommt.
Wir wollen zeigen, dass gilt: φ ≡ ψ ⇐⇒ φ̃ ≡ ψ̃.

”
=⇒“: Es gilt:1

φ ≡ ψ

=⇒ F.a. Interpretationen I gilt:
(
Ĩ |= φ ⇐⇒ Ĩ |= ψ

)
Lemma 2.29

=⇒ F.a. Interpretationen I gilt:
(
I ̸|= φ̃ ⇐⇒ I ̸|= ψ̃

)
=⇒ F.a. Interpretationen I gilt:

(
I |= φ̃ ⇐⇒ I |= ψ̃

)
=⇒ φ̃ ≡ ψ̃.

”
⇐=“: Es gilt:

φ̃ ≡ ψ̃ =⇒ ˜̃φ ≡ ˜̃
ψ (andere Beweisrichtung)

=⇒ φ ≡ ψ (weil ˜̃φ = φ und
˜̃
ψ = ψ).

1Wir schreiben kurz
”
f.a.“ als Abkürzung für die Worte

”
für alle“

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 95

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Funktionale Vollständigkeit der Aussagenlogik
Im Folgenden bezeichnen wir als Wahrheitstafel eine Tabelle mit n+1 Spalten
und 2n Zeilen, die für jedes Tupel (b1, . . . , bn) ∈ {0, 1}n genau eine Zeile
enthält, deren erste n Einträge b1, . . . , bn sind.

Satz 2.30 (Funktionale Vollständigkeit der Aussagenlogik)
Zu jeder Wahrheitstafel gibt es eine Formel φ ∈ AL mit dieser Wahrheitstafel.

Mathematisch präzise lässt sich dieser Satzes wie folgt formulieren:

Für alle n ∈ N gibt es zu jeder Funktion F : {0, 1}n → {0, 1} eine Formel
φ(A1, . . . ,An) ∈ AL, so dass für alle (b1, . . . , bn) ∈ {0, 1}n gilt:

F (b1, . . . , bn) = 1 ⇐⇒ φ[b1, . . . , bn] = 1.

Definition 2.31
Funktionen F : {0, 1}n → {0, 1} (mit n ∈ N) nennt man Boolesche Funktionen
(der Stelligkeit n).

Bevor wir Satz 2.30 beweisen, betrachten wir zunächst ein Beispiel.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 96

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Funktionale Vollständigkeit der Aussagenlogik
Im Folgenden bezeichnen wir als Wahrheitstafel eine Tabelle mit n+1 Spalten
und 2n Zeilen, die für jedes Tupel (b1, . . . , bn) ∈ {0, 1}n genau eine Zeile
enthält, deren erste n Einträge b1, . . . , bn sind.

Satz 2.30 (Funktionale Vollständigkeit der Aussagenlogik)
Zu jeder Wahrheitstafel gibt es eine Formel φ ∈ AL mit dieser Wahrheitstafel.

Mathematisch präzise lässt sich dieser Satzes wie folgt formulieren:

Für alle n ∈ N gibt es zu jeder Funktion F : {0, 1}n → {0, 1} eine Formel
φ(A1, . . . ,An) ∈ AL, so dass für alle (b1, . . . , bn) ∈ {0, 1}n gilt:

F (b1, . . . , bn) = 1 ⇐⇒ φ[b1, . . . , bn] = 1.

Definition 2.31
Funktionen F : {0, 1}n → {0, 1} (mit n ∈ N) nennt man Boolesche Funktionen
(der Stelligkeit n).

Bevor wir Satz 2.30 beweisen, betrachten wir zunächst ein Beispiel.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 96

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Funktionale Vollständigkeit der Aussagenlogik
Im Folgenden bezeichnen wir als Wahrheitstafel eine Tabelle mit n+1 Spalten
und 2n Zeilen, die für jedes Tupel (b1, . . . , bn) ∈ {0, 1}n genau eine Zeile
enthält, deren erste n Einträge b1, . . . , bn sind.

Satz 2.30 (Funktionale Vollständigkeit der Aussagenlogik)
Zu jeder Wahrheitstafel gibt es eine Formel φ ∈ AL mit dieser Wahrheitstafel.

Mathematisch präzise lässt sich dieser Satzes wie folgt formulieren:

Für alle n ∈ N gibt es zu jeder Funktion F : {0, 1}n → {0, 1} eine Formel
φ(A1, . . . ,An) ∈ AL, so dass für alle (b1, . . . , bn) ∈ {0, 1}n gilt:

F (b1, . . . , bn) = 1 ⇐⇒ φ[b1, . . . , bn] = 1.

Definition 2.31
Funktionen F : {0, 1}n → {0, 1} (mit n ∈ N) nennt man Boolesche Funktionen
(der Stelligkeit n).

Bevor wir Satz 2.30 beweisen, betrachten wir zunächst ein Beispiel.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 96

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Funktionale Vollständigkeit der Aussagenlogik
Im Folgenden bezeichnen wir als Wahrheitstafel eine Tabelle mit n+1 Spalten
und 2n Zeilen, die für jedes Tupel (b1, . . . , bn) ∈ {0, 1}n genau eine Zeile
enthält, deren erste n Einträge b1, . . . , bn sind.

Satz 2.30 (Funktionale Vollständigkeit der Aussagenlogik)
Zu jeder Wahrheitstafel gibt es eine Formel φ ∈ AL mit dieser Wahrheitstafel.

Mathematisch präzise lässt sich dieser Satzes wie folgt formulieren:

Für alle n ∈ N gibt es zu jeder Funktion F : {0, 1}n → {0, 1} eine Formel
φ(A1, . . . ,An) ∈ AL, so dass für alle (b1, . . . , bn) ∈ {0, 1}n gilt:

F (b1, . . . , bn) = 1 ⇐⇒ φ[b1, . . . , bn] = 1.

Definition 2.31
Funktionen F : {0, 1}n → {0, 1} (mit n ∈ N) nennt man Boolesche Funktionen
(der Stelligkeit n).

Bevor wir Satz 2.30 beweisen, betrachten wir zunächst ein Beispiel.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 96

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Funktionale Vollständigkeit der Aussagenlogik
Im Folgenden bezeichnen wir als Wahrheitstafel eine Tabelle mit n+1 Spalten
und 2n Zeilen, die für jedes Tupel (b1, . . . , bn) ∈ {0, 1}n genau eine Zeile
enthält, deren erste n Einträge b1, . . . , bn sind.

Satz 2.30 (Funktionale Vollständigkeit der Aussagenlogik)
Zu jeder Wahrheitstafel gibt es eine Formel φ ∈ AL mit dieser Wahrheitstafel.

Mathematisch präzise lässt sich dieser Satzes wie folgt formulieren:

Für alle n ∈ N gibt es zu jeder Funktion F : {0, 1}n → {0, 1} eine Formel
φ(A1, . . . ,An) ∈ AL, so dass für alle (b1, . . . , bn) ∈ {0, 1}n gilt:

F (b1, . . . , bn) = 1 ⇐⇒ φ[b1, . . . , bn] = 1.

Definition 2.31
Funktionen F : {0, 1}n → {0, 1} (mit n ∈ N) nennt man Boolesche Funktionen
(der Stelligkeit n).

Bevor wir Satz 2.30 beweisen, betrachten wir zunächst ein Beispiel.
Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 96

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Beispiel 2.32
Betrachte die Wahrheitstafel T :

b1 b2 b3 F (b1, b2, b3)
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

Eine Formel φ(A1,A2,A3), so dass T die Wahrheitstafel für φ ist, kann man
folgendermaßen erzeugen:

• Betrachte alle Zeilen von T , bei denen in der letzten Spalte eine
”
1“ steht.

• Für jede solche Zeile konstruiere eine Formel, die genau von der zu der
Zeile gehörenden Belegung von b1, b2, b3 erfüllt wird.

• Bilde die Disjunktion (d.h. die
”
Veroderung“) über all diese Formeln.

Dies liefert die gesuchte Formel φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 97

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Beispiel 2.32
Betrachte die Wahrheitstafel T :

b1 b2 b3 F (b1, b2, b3)
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

Eine Formel φ(A1,A2,A3), so dass T die Wahrheitstafel für φ ist, kann man
folgendermaßen erzeugen:

• Betrachte alle Zeilen von T , bei denen in der letzten Spalte eine
”
1“ steht.

• Für jede solche Zeile konstruiere eine Formel, die genau von der zu der
Zeile gehörenden Belegung von b1, b2, b3 erfüllt wird.

• Bilde die Disjunktion (d.h. die
”
Veroderung“) über all diese Formeln.

Dies liefert die gesuchte Formel φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 97

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Beispiel 2.32
Betrachte die Wahrheitstafel T :

b1 b2 b3 F (b1, b2, b3)
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

Eine Formel φ(A1,A2,A3), so dass T die Wahrheitstafel für φ ist, kann man
folgendermaßen erzeugen:

• Betrachte alle Zeilen von T , bei denen in der letzten Spalte eine
”
1“ steht.

• Für jede solche Zeile konstruiere eine Formel, die genau von der zu der
Zeile gehörenden Belegung von b1, b2, b3 erfüllt wird.

• Bilde die Disjunktion (d.h. die
”
Veroderung“) über all diese Formeln.

Dies liefert die gesuchte Formel φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 97

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Beispiel 2.32
Betrachte die Wahrheitstafel T :

b1 b2 b3 F (b1, b2, b3)
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

Eine Formel φ(A1,A2,A3), so dass T die Wahrheitstafel für φ ist, kann man
folgendermaßen erzeugen:

• Betrachte alle Zeilen von T , bei denen in der letzten Spalte eine
”
1“ steht.

• Für jede solche Zeile konstruiere eine Formel, die genau von der zu der
Zeile gehörenden Belegung von b1, b2, b3 erfüllt wird.

• Bilde die Disjunktion (d.h. die
”
Veroderung“) über all diese Formeln.

Dies liefert die gesuchte Formel φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 97

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

In unserer Beispiel-Wahrheitstafel T gibt es genau 3 Zeilen, bei denen in der
letzten Spalte eine

”
1“ steht, nämlich die Zeilen

b1 b2 b3 F (b1, b2, b3) zur jeweiligen Zeile gehörende Formel:

0 0 0 1

(¬A1 ∧ ¬A2 ∧ ¬A3)

0 0 1 1

(¬A1 ∧ ¬A2 ∧ A3)

...
...

...
...

1 0 1 1

(A1 ∧ ¬A2 ∧ A3)

...
...

...
...

Insgesamt erhalten wir dadurch die zur Wahrheitstafel T passende Formel

φ = (¬A1 ∧ ¬A2 ∧ ¬A3) ∨ (¬A1 ∧ ¬A2 ∧ A3) ∨ (A1 ∧ ¬A2 ∧ A3).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 98

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

In unserer Beispiel-Wahrheitstafel T gibt es genau 3 Zeilen, bei denen in der
letzten Spalte eine

”
1“ steht, nämlich die Zeilen

b1 b2 b3 F (b1, b2, b3) zur jeweiligen Zeile gehörende Formel:

0 0 0 1 (¬A1 ∧ ¬A2 ∧ ¬A3)
0 0 1 1

(¬A1 ∧ ¬A2 ∧ A3)

...
...

...
...

1 0 1 1

(A1 ∧ ¬A2 ∧ A3)

...
...

...
...

Insgesamt erhalten wir dadurch die zur Wahrheitstafel T passende Formel

φ = (¬A1 ∧ ¬A2 ∧ ¬A3) ∨ (¬A1 ∧ ¬A2 ∧ A3) ∨ (A1 ∧ ¬A2 ∧ A3).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 98

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

In unserer Beispiel-Wahrheitstafel T gibt es genau 3 Zeilen, bei denen in der
letzten Spalte eine

”
1“ steht, nämlich die Zeilen

b1 b2 b3 F (b1, b2, b3) zur jeweiligen Zeile gehörende Formel:

0 0 0 1 (¬A1 ∧ ¬A2 ∧ ¬A3)
0 0 1 1 (¬A1 ∧ ¬A2 ∧ A3)
...

...
...

...
1 0 1 1

(A1 ∧ ¬A2 ∧ A3)

...
...

...
...

Insgesamt erhalten wir dadurch die zur Wahrheitstafel T passende Formel

φ = (¬A1 ∧ ¬A2 ∧ ¬A3) ∨ (¬A1 ∧ ¬A2 ∧ A3) ∨ (A1 ∧ ¬A2 ∧ A3).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 98

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

In unserer Beispiel-Wahrheitstafel T gibt es genau 3 Zeilen, bei denen in der
letzten Spalte eine

”
1“ steht, nämlich die Zeilen

b1 b2 b3 F (b1, b2, b3) zur jeweiligen Zeile gehörende Formel:

0 0 0 1 (¬A1 ∧ ¬A2 ∧ ¬A3)
0 0 1 1 (¬A1 ∧ ¬A2 ∧ A3)
...

...
...

...
1 0 1 1 (A1 ∧ ¬A2 ∧ A3)
...

...
...

...

Insgesamt erhalten wir dadurch die zur Wahrheitstafel T passende Formel

φ = (¬A1 ∧ ¬A2 ∧ ¬A3) ∨ (¬A1 ∧ ¬A2 ∧ A3) ∨ (A1 ∧ ¬A2 ∧ A3).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 98

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

In unserer Beispiel-Wahrheitstafel T gibt es genau 3 Zeilen, bei denen in der
letzten Spalte eine

”
1“ steht, nämlich die Zeilen

b1 b2 b3 F (b1, b2, b3) zur jeweiligen Zeile gehörende Formel:

0 0 0 1 (¬A1 ∧ ¬A2 ∧ ¬A3)
0 0 1 1 (¬A1 ∧ ¬A2 ∧ A3)
...

...
...

...
1 0 1 1 (A1 ∧ ¬A2 ∧ A3)
...

...
...

...

Insgesamt erhalten wir dadurch die zur Wahrheitstafel T passende Formel

φ = (¬A1 ∧ ¬A2 ∧ ¬A3) ∨ (¬A1 ∧ ¬A2 ∧ A3) ∨ (A1 ∧ ¬A2 ∧ A3).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 98

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

In unserer Beispiel-Wahrheitstafel T gibt es genau 3 Zeilen, bei denen in der
letzten Spalte eine

”
1“ steht, nämlich die Zeilen

b1 b2 b3 F (b1, b2, b3) zur jeweiligen Zeile gehörende Formel:

0 0 0 1 (¬A1 ∧ ¬A2 ∧ ¬A3)
0 0 1 1 (¬A1 ∧ ¬A2 ∧ A3)
...

...
...

...
1 0 1 1 (A1 ∧ ¬A2 ∧ A3)
...

...
...

...

Insgesamt erhalten wir dadurch die zur Wahrheitstafel T passende Formel

φ = (¬A1 ∧ ¬A2 ∧ ¬A3) ∨ (¬A1 ∧ ¬A2 ∧ A3) ∨ (A1 ∧ ¬A2 ∧ A3).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 98

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Adäquatheit

Satz 2.30 besagt, dass die Aussagenlogik AL die größtmögliche Ausdrucksstärke
hat. Dafür reichen allerdings schon

”
kleinere“ Logiken, wie wir im Folgenden

sehen werden.

Definition 2.33
Sei τ ⊆ {0, 1,¬,∧,∨,→}.

(a) AL(τ) sei das Fragment der Logik AL, das aus den Formeln besteht, in
denen nur Junktoren und Konstanten aus τ vorkommen.

(b) τ heißt adäquat, wenn jede Formel φ ∈ AL äquivalent zu einer Formel in
AL(τ) ist.

Beispiele 2.34

(a) {¬,∧}, {¬,∨}, {0,→} sind adäquat.

(b) {∧,∨,→} ist nicht adäquat.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 99

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Adäquatheit

Satz 2.30 besagt, dass die Aussagenlogik AL die größtmögliche Ausdrucksstärke
hat. Dafür reichen allerdings schon

”
kleinere“ Logiken, wie wir im Folgenden

sehen werden.

Definition 2.33
Sei τ ⊆ {0, 1,¬,∧,∨,→}.

(a) AL(τ) sei das Fragment der Logik AL, das aus den Formeln besteht, in
denen nur Junktoren und Konstanten aus τ vorkommen.

(b) τ heißt adäquat, wenn jede Formel φ ∈ AL äquivalent zu einer Formel in
AL(τ) ist.

Beispiele 2.34

(a) {¬,∧}, {¬,∨}, {0,→} sind adäquat.

(b) {∧,∨,→} ist nicht adäquat.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 99

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Adäquatheit

Satz 2.30 besagt, dass die Aussagenlogik AL die größtmögliche Ausdrucksstärke
hat. Dafür reichen allerdings schon

”
kleinere“ Logiken, wie wir im Folgenden

sehen werden.

Definition 2.33
Sei τ ⊆ {0, 1,¬,∧,∨,→}.

(a) AL(τ) sei das Fragment der Logik AL, das aus den Formeln besteht, in
denen nur Junktoren und Konstanten aus τ vorkommen.

(b) τ heißt adäquat, wenn jede Formel φ ∈ AL äquivalent zu einer Formel in
AL(τ) ist.

Beispiele 2.34

(a) {¬,∧}, {¬,∨}, {0,→} sind adäquat.

(b) {∧,∨,→} ist nicht adäquat.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 99

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Adäquatheit

Satz 2.30 besagt, dass die Aussagenlogik AL die größtmögliche Ausdrucksstärke
hat. Dafür reichen allerdings schon

”
kleinere“ Logiken, wie wir im Folgenden

sehen werden.

Definition 2.33
Sei τ ⊆ {0, 1,¬,∧,∨,→}.

(a) AL(τ) sei das Fragment der Logik AL, das aus den Formeln besteht, in
denen nur Junktoren und Konstanten aus τ vorkommen.

(b) τ heißt adäquat, wenn jede Formel φ ∈ AL äquivalent zu einer Formel in
AL(τ) ist.

Beispiele 2.34

(a) {¬,∧}, {¬,∨}, {0,→} sind adäquat.

(b) {∧,∨,→} ist nicht adäquat.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 99

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Adäquatheit

Satz 2.30 besagt, dass die Aussagenlogik AL die größtmögliche Ausdrucksstärke
hat. Dafür reichen allerdings schon

”
kleinere“ Logiken, wie wir im Folgenden

sehen werden.

Definition 2.33
Sei τ ⊆ {0, 1,¬,∧,∨,→}.

(a) AL(τ) sei das Fragment der Logik AL, das aus den Formeln besteht, in
denen nur Junktoren und Konstanten aus τ vorkommen.

(b) τ heißt adäquat, wenn jede Formel φ ∈ AL äquivalent zu einer Formel in
AL(τ) ist.

Beispiele 2.34

(a) {¬,∧}, {¬,∨}, {0,→} sind adäquat.

(b) {∧,∨,→} ist nicht adäquat.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 99

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Adäquatheit

Satz 2.30 besagt, dass die Aussagenlogik AL die größtmögliche Ausdrucksstärke
hat. Dafür reichen allerdings schon

”
kleinere“ Logiken, wie wir im Folgenden

sehen werden.

Definition 2.33
Sei τ ⊆ {0, 1,¬,∧,∨,→}.

(a) AL(τ) sei das Fragment der Logik AL, das aus den Formeln besteht, in
denen nur Junktoren und Konstanten aus τ vorkommen.

(b) τ heißt adäquat, wenn jede Formel φ ∈ AL äquivalent zu einer Formel in
AL(τ) ist.

Beispiele 2.34

(a) {¬,∧}, {¬,∨}, {0,→} sind adäquat.

(b) {∧,∨,→} ist nicht adäquat.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 99

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Andere Junktoren

• Die Auswahl der Junktoren ¬,∧,∨,→ (und ↔ als Abkürzung) für
”
unsere“

aussagenlogische Sprache richtet sich nach dem umgangssprachlichen
Gebrauch und den Erfordernissen des formalen Schließens, ist aber in
gewisser Weise willkürlich.

• Durch Festlegung ihrer Wahrheitstafeln können wir auch andere Junktoren
definieren und erhalten daraus andere aussagenlogische Sprachen.

• Für jede Menge τ von so definierten Junktoren und den boolschen
Konstanten (die wir als

”
nullstellige“ Junktoren auffassen können) sei

AL(τ) die daraus gebildete aussagenlogische Sprache.

• Satz 2.30 besagt dann, dass jede Formel in AL(τ) zu einer Formel in AL
äquivalent ist. Gilt die Umkehrung ebenfalls, so bezeichnen wir τ als
adäquat.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 100

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Andere Junktoren

• Die Auswahl der Junktoren ¬,∧,∨,→ (und ↔ als Abkürzung) für
”
unsere“

aussagenlogische Sprache richtet sich nach dem umgangssprachlichen
Gebrauch und den Erfordernissen des formalen Schließens, ist aber in
gewisser Weise willkürlich.

• Durch Festlegung ihrer Wahrheitstafeln können wir auch andere Junktoren
definieren und erhalten daraus andere aussagenlogische Sprachen.

• Für jede Menge τ von so definierten Junktoren und den boolschen
Konstanten (die wir als

”
nullstellige“ Junktoren auffassen können) sei

AL(τ) die daraus gebildete aussagenlogische Sprache.

• Satz 2.30 besagt dann, dass jede Formel in AL(τ) zu einer Formel in AL
äquivalent ist. Gilt die Umkehrung ebenfalls, so bezeichnen wir τ als
adäquat.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 100

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Andere Junktoren

• Die Auswahl der Junktoren ¬,∧,∨,→ (und ↔ als Abkürzung) für
”
unsere“

aussagenlogische Sprache richtet sich nach dem umgangssprachlichen
Gebrauch und den Erfordernissen des formalen Schließens, ist aber in
gewisser Weise willkürlich.

• Durch Festlegung ihrer Wahrheitstafeln können wir auch andere Junktoren
definieren und erhalten daraus andere aussagenlogische Sprachen.

• Für jede Menge τ von so definierten Junktoren und den boolschen
Konstanten (die wir als

”
nullstellige“ Junktoren auffassen können) sei

AL(τ) die daraus gebildete aussagenlogische Sprache.

• Satz 2.30 besagt dann, dass jede Formel in AL(τ) zu einer Formel in AL
äquivalent ist. Gilt die Umkehrung ebenfalls, so bezeichnen wir τ als
adäquat.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 100

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Andere Junktoren

• Die Auswahl der Junktoren ¬,∧,∨,→ (und ↔ als Abkürzung) für
”
unsere“

aussagenlogische Sprache richtet sich nach dem umgangssprachlichen
Gebrauch und den Erfordernissen des formalen Schließens, ist aber in
gewisser Weise willkürlich.

• Durch Festlegung ihrer Wahrheitstafeln können wir auch andere Junktoren
definieren und erhalten daraus andere aussagenlogische Sprachen.

• Für jede Menge τ von so definierten Junktoren und den boolschen
Konstanten (die wir als

”
nullstellige“ Junktoren auffassen können) sei

AL(τ) die daraus gebildete aussagenlogische Sprache.

• Satz 2.30 besagt dann, dass jede Formel in AL(τ) zu einer Formel in AL
äquivalent ist. Gilt die Umkehrung ebenfalls, so bezeichnen wir τ als
adäquat.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 100

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Beispiele 1: Exklusives Oder

Der 2-stellige Junktor ⊕ sei definiert durch

φ ψ (φ⊕ ψ)
0 0 0
0 1 1
1 0 1
1 1 0

Intuitiv bedeutet (φ⊕ ψ)
”
entweder φ oder ψ“.

Man nennt ⊕ auch exklusives Oder.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 101

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Der dreistellige Mehrheitsjunktor

Der 3-stellige Junktor M sei definiert durch

φ ψ χ M(φ,ψ, χ)
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Intuitiv ist M(φ,ψ, χ) also genau dann wahr, wenn mindestens zwei (also die
Mehrheit) der Formeln φ,ψ, χ wahr sind.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 102

Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

NAND

Der folgende zweistellige Junktor ist bekannt als NAND-Gatter (not-and) oder
Sheffer-Strich:

φ ψ (φ |ψ)
0 0 1
0 1 1
1 0 1
1 1 0

Satz 2.35
{ | } ist adäquat.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 103

Abschnitt 2.4:

Normalformen

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

Vereinfachende Annahme

In diesem Abschnitt betrachten wir nur Formeln in AL({¬,∨,∧}).

Rechtfertigung
Die Annahme bedeutet keine wesentliche Einschränkung, weil die Menge
{¬,∨,∧} adäquat ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 104

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

NNF

Definition 2.36
Eine Formel ist in Negationsnormalform (NNF), wenn sie zu AL({¬,∧,∨})
gehört und Negationszeichen nur unmittelbar vor Aussagensymbolen auftreten.

Satz 2.37
Jede aussagenlogische Formel ist äquivalent zu einer Formel in NNF.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 105

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

NNF

Definition 2.36
Eine Formel ist in Negationsnormalform (NNF), wenn sie zu AL({¬,∧,∨})
gehört und Negationszeichen nur unmittelbar vor Aussagensymbolen auftreten.

Satz 2.37
Jede aussagenlogische Formel ist äquivalent zu einer Formel in NNF.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 105

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

Ein NNF-Algorithmus

Eingabe: Formel φ ∈ AL({¬,∧,∨}).
Ausgabe: Formel φ′ in NNF

Verfahren:

1. Wiederhole folgende Schritte:
2. Wenn φ in NNF ist, dann halte mit

Ausgabe φ.
3. Ersetze eine Subformel von φ der Gestalt

¬(ψ1 ∧ ψ2) durch (¬ψ1 ∨ ¬ψ2)
oder eine Subformel der Gestalt

¬(ψ1 ∨ ψ2) durch (¬ψ1 ∧ ¬ψ2)
oder eine Subformel der Gestalt

¬¬ψ durch ψ.
Sei φ′ die resultierende Formel.

4. φ := φ′.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 106

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

Ein NNF-Algorithmus

Eingabe: Formel φ ∈ AL({¬,∧,∨}).
Ausgabe: Formel φ′ in NNF

Verfahren:

1. Wiederhole folgende Schritte:
2. Wenn φ in NNF ist, dann halte mit

Ausgabe φ.
3. Ersetze eine Subformel von φ der Gestalt

¬(ψ1 ∧ ψ2) durch (¬ψ1 ∨ ¬ψ2)
oder eine Subformel der Gestalt

¬(ψ1 ∨ ψ2) durch (¬ψ1 ∧ ¬ψ2)
oder eine Subformel der Gestalt

¬¬ψ durch ψ.
Sei φ′ die resultierende Formel.

4. φ := φ′.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 106

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

Korrektheit des NNF-Algorithmus

Satz 2.38
Für jede Eingabeformel φ ∈ AL({¬,∧,∨}) gibt der NNF-Algorithmus nach
endlich vielen Schritten eine zu φ äquivalente Formel φ′ in NNF aus.

(hier ohne Beweis)

Bemerkung
Unter Verwendung geeigneter Datenstrukturen lässt sich der NNF-Algorithmus
mit linearer Laufzeit implementieren, d.h., Laufzeit O(n) bei Eingabe einer
Formel der Länge n.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 107

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

Korrektheit des NNF-Algorithmus

Satz 2.38
Für jede Eingabeformel φ ∈ AL({¬,∧,∨}) gibt der NNF-Algorithmus nach
endlich vielen Schritten eine zu φ äquivalente Formel φ′ in NNF aus.

(hier ohne Beweis)

Bemerkung
Unter Verwendung geeigneter Datenstrukturen lässt sich der NNF-Algorithmus
mit linearer Laufzeit implementieren, d.h., Laufzeit O(n) bei Eingabe einer
Formel der Länge n.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 107

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

Beispiel 2.39
Das Ziel ist, die Formel

((
¬A0 ∧ ¬

(
(A0 ∨ A1)→ A0

))
→ 0

)
in NNF zu bringen, d.h. eine zu ihr äquivalente Formel in NNF zu finden.

Lösung : Wir ersetzen zunächst die Konstanten 0 und 1 sowie alle
Implikationspfeile durch geeignete Formeln aus AL({¬,∧,∨}) und wenden dann
den NNF-Algorithmus an. Der Teil einer Formel, der als Nächstes ersetzt wird,
ist im Folgenden jeweils unterstrichen.((

¬A0 ∧ ¬
(
(A0 ∨ A1)→ A0

))
→ 0

)
≡

((
¬A0 ∧ ¬

(
(A0 ∨ A1)→ A0

))
→ (A0 ∧ ¬A0)

)
≡

(
¬
(
¬A0 ∧ ¬

(
(A0 ∨ A1) → A0

))
∨ (A0 ∧ ¬A0)

)
≡

(
¬
(
¬A0 ∧ ¬

(
¬(A0 ∨ A1) ∨ A0

))
∨ (A0 ∧ ¬A0)

)
≡

((
¬¬A0 ∨ ¬¬

(
¬(A0 ∨ A1) ∨ A0

))
∨ (A0 ∧ ¬A0)

)
≡

((
A0 ∨

(
¬(A0 ∨ A1) ∨ A0

))
∨ (A0 ∧ ¬A0)

)
≡

((
A0 ∨

(
(¬A0 ∧ ¬A1) ∨ A0

))
∨ (A0 ∧ ¬A0)

)
.

Diese Formel ist offensichtlicherweise in NNF.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 108

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

Beispiel 2.39
Das Ziel ist, die Formel

((
¬A0 ∧ ¬

(
(A0 ∨ A1)→ A0

))
→ 0

)
in NNF zu bringen, d.h. eine zu ihr äquivalente Formel in NNF zu finden.

Lösung : Wir ersetzen zunächst die Konstanten 0 und 1 sowie alle
Implikationspfeile durch geeignete Formeln aus AL({¬,∧,∨}) und wenden dann
den NNF-Algorithmus an. Der Teil einer Formel, der als Nächstes ersetzt wird,
ist im Folgenden jeweils unterstrichen.((

¬A0 ∧ ¬
(
(A0 ∨ A1)→ A0

))
→ 0

)

≡
((
¬A0 ∧ ¬

(
(A0 ∨ A1)→ A0

))
→ (A0 ∧ ¬A0)

)
≡

(
¬
(
¬A0 ∧ ¬

(
(A0 ∨ A1) → A0

))
∨ (A0 ∧ ¬A0)

)
≡

(
¬
(
¬A0 ∧ ¬

(
¬(A0 ∨ A1) ∨ A0

))
∨ (A0 ∧ ¬A0)

)
≡

((
¬¬A0 ∨ ¬¬

(
¬(A0 ∨ A1) ∨ A0

))
∨ (A0 ∧ ¬A0)

)
≡

((
A0 ∨

(
¬(A0 ∨ A1) ∨ A0

))
∨ (A0 ∧ ¬A0)

)
≡

((
A0 ∨

(
(¬A0 ∧ ¬A1) ∨ A0

))
∨ (A0 ∧ ¬A0)

)
.

Diese Formel ist offensichtlicherweise in NNF.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 108

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

Beispiel 2.39
Das Ziel ist, die Formel

((
¬A0 ∧ ¬

(
(A0 ∨ A1)→ A0

))
→ 0

)
in NNF zu bringen, d.h. eine zu ihr äquivalente Formel in NNF zu finden.

Lösung : Wir ersetzen zunächst die Konstanten 0 und 1 sowie alle
Implikationspfeile durch geeignete Formeln aus AL({¬,∧,∨}) und wenden dann
den NNF-Algorithmus an. Der Teil einer Formel, der als Nächstes ersetzt wird,
ist im Folgenden jeweils unterstrichen.((

¬A0 ∧ ¬
(
(A0 ∨ A1)→ A0

))
→ 0

)
≡

((
¬A0 ∧ ¬

(
(A0 ∨ A1)→ A0

))
→ (A0 ∧ ¬A0)

)

≡
(
¬
(
¬A0 ∧ ¬

(
(A0 ∨ A1) → A0

))
∨ (A0 ∧ ¬A0)

)
≡

(
¬
(
¬A0 ∧ ¬

(
¬(A0 ∨ A1) ∨ A0

))
∨ (A0 ∧ ¬A0)

)
≡

((
¬¬A0 ∨ ¬¬

(
¬(A0 ∨ A1) ∨ A0

))
∨ (A0 ∧ ¬A0)

)
≡

((
A0 ∨

(
¬(A0 ∨ A1) ∨ A0

))
∨ (A0 ∧ ¬A0)

)
≡

((
A0 ∨

(
(¬A0 ∧ ¬A1) ∨ A0

))
∨ (A0 ∧ ¬A0)

)
.

Diese Formel ist offensichtlicherweise in NNF.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 108

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

Beispiel 2.39
Das Ziel ist, die Formel

((
¬A0 ∧ ¬

(
(A0 ∨ A1)→ A0

))
→ 0

)
in NNF zu bringen, d.h. eine zu ihr äquivalente Formel in NNF zu finden.

Lösung : Wir ersetzen zunächst die Konstanten 0 und 1 sowie alle
Implikationspfeile durch geeignete Formeln aus AL({¬,∧,∨}) und wenden dann
den NNF-Algorithmus an. Der Teil einer Formel, der als Nächstes ersetzt wird,
ist im Folgenden jeweils unterstrichen.((

¬A0 ∧ ¬
(
(A0 ∨ A1)→ A0

))
→ 0

)
≡

((
¬A0 ∧ ¬

(
(A0 ∨ A1)→ A0

))
→ (A0 ∧ ¬A0)

)
≡

(
¬
(
¬A0 ∧ ¬

(
(A0 ∨ A1) → A0

))
∨ (A0 ∧ ¬A0)

)

≡
(
¬
(
¬A0 ∧ ¬

(
¬(A0 ∨ A1) ∨ A0

))
∨ (A0 ∧ ¬A0)

)
≡

((
¬¬A0 ∨ ¬¬

(
¬(A0 ∨ A1) ∨ A0

))
∨ (A0 ∧ ¬A0)

)
≡

((
A0 ∨

(
¬(A0 ∨ A1) ∨ A0

))
∨ (A0 ∧ ¬A0)

)
≡

((
A0 ∨

(
(¬A0 ∧ ¬A1) ∨ A0

))
∨ (A0 ∧ ¬A0)

)
.

Diese Formel ist offensichtlicherweise in NNF.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 108

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

Beispiel 2.39
Das Ziel ist, die Formel

((
¬A0 ∧ ¬

(
(A0 ∨ A1)→ A0

))
→ 0

)
in NNF zu bringen, d.h. eine zu ihr äquivalente Formel in NNF zu finden.

Lösung : Wir ersetzen zunächst die Konstanten 0 und 1 sowie alle
Implikationspfeile durch geeignete Formeln aus AL({¬,∧,∨}) und wenden dann
den NNF-Algorithmus an. Der Teil einer Formel, der als Nächstes ersetzt wird,
ist im Folgenden jeweils unterstrichen.((

¬A0 ∧ ¬
(
(A0 ∨ A1)→ A0

))
→ 0

)
≡

((
¬A0 ∧ ¬

(
(A0 ∨ A1)→ A0

))
→ (A0 ∧ ¬A0)

)
≡

(
¬
(
¬A0 ∧ ¬

(
(A0 ∨ A1) → A0

))
∨ (A0 ∧ ¬A0)

)
≡

(
¬
(
¬A0 ∧ ¬

(
¬(A0 ∨ A1) ∨ A0

))
∨ (A0 ∧ ¬A0)

)

≡
((
¬¬A0 ∨ ¬¬

(
¬(A0 ∨ A1) ∨ A0

))
∨ (A0 ∧ ¬A0)

)
≡

((
A0 ∨

(
¬(A0 ∨ A1) ∨ A0

))
∨ (A0 ∧ ¬A0)

)
≡

((
A0 ∨

(
(¬A0 ∧ ¬A1) ∨ A0

))
∨ (A0 ∧ ¬A0)

)
.

Diese Formel ist offensichtlicherweise in NNF.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 108

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

Beispiel 2.39
Das Ziel ist, die Formel

((
¬A0 ∧ ¬

(
(A0 ∨ A1)→ A0

))
→ 0

)
in NNF zu bringen, d.h. eine zu ihr äquivalente Formel in NNF zu finden.

Lösung : Wir ersetzen zunächst die Konstanten 0 und 1 sowie alle
Implikationspfeile durch geeignete Formeln aus AL({¬,∧,∨}) und wenden dann
den NNF-Algorithmus an. Der Teil einer Formel, der als Nächstes ersetzt wird,
ist im Folgenden jeweils unterstrichen.((

¬A0 ∧ ¬
(
(A0 ∨ A1)→ A0

))
→ 0

)
≡

((
¬A0 ∧ ¬

(
(A0 ∨ A1)→ A0

))
→ (A0 ∧ ¬A0)

)
≡

(
¬
(
¬A0 ∧ ¬

(
(A0 ∨ A1) → A0

))
∨ (A0 ∧ ¬A0)

)
≡

(
¬
(
¬A0 ∧ ¬

(
¬(A0 ∨ A1) ∨ A0

))
∨ (A0 ∧ ¬A0)

)
≡

((
¬¬A0 ∨ ¬¬

(
¬(A0 ∨ A1) ∨ A0

))
∨ (A0 ∧ ¬A0)

)

≡
((

A0 ∨
(
¬(A0 ∨ A1) ∨ A0

))
∨ (A0 ∧ ¬A0)

)
≡

((
A0 ∨

(
(¬A0 ∧ ¬A1) ∨ A0

))
∨ (A0 ∧ ¬A0)

)
.

Diese Formel ist offensichtlicherweise in NNF.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 108

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

Beispiel 2.39
Das Ziel ist, die Formel

((
¬A0 ∧ ¬

(
(A0 ∨ A1)→ A0

))
→ 0

)
in NNF zu bringen, d.h. eine zu ihr äquivalente Formel in NNF zu finden.

Lösung : Wir ersetzen zunächst die Konstanten 0 und 1 sowie alle
Implikationspfeile durch geeignete Formeln aus AL({¬,∧,∨}) und wenden dann
den NNF-Algorithmus an. Der Teil einer Formel, der als Nächstes ersetzt wird,
ist im Folgenden jeweils unterstrichen.((

¬A0 ∧ ¬
(
(A0 ∨ A1)→ A0

))
→ 0

)
≡

((
¬A0 ∧ ¬

(
(A0 ∨ A1)→ A0

))
→ (A0 ∧ ¬A0)

)
≡

(
¬
(
¬A0 ∧ ¬

(
(A0 ∨ A1) → A0

))
∨ (A0 ∧ ¬A0)

)
≡

(
¬
(
¬A0 ∧ ¬

(
¬(A0 ∨ A1) ∨ A0

))
∨ (A0 ∧ ¬A0)

)
≡

((
¬¬A0 ∨ ¬¬

(
¬(A0 ∨ A1) ∨ A0

))
∨ (A0 ∧ ¬A0)

)
≡

((
A0 ∨

(
¬(A0 ∨ A1) ∨ A0

))
∨ (A0 ∧ ¬A0)

)

≡
((

A0 ∨
(
(¬A0 ∧ ¬A1) ∨ A0

))
∨ (A0 ∧ ¬A0)

)
.

Diese Formel ist offensichtlicherweise in NNF.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 108

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

Beispiel 2.39
Das Ziel ist, die Formel

((
¬A0 ∧ ¬

(
(A0 ∨ A1)→ A0

))
→ 0

)
in NNF zu bringen, d.h. eine zu ihr äquivalente Formel in NNF zu finden.

Lösung : Wir ersetzen zunächst die Konstanten 0 und 1 sowie alle
Implikationspfeile durch geeignete Formeln aus AL({¬,∧,∨}) und wenden dann
den NNF-Algorithmus an. Der Teil einer Formel, der als Nächstes ersetzt wird,
ist im Folgenden jeweils unterstrichen.((

¬A0 ∧ ¬
(
(A0 ∨ A1)→ A0

))
→ 0

)
≡

((
¬A0 ∧ ¬

(
(A0 ∨ A1)→ A0

))
→ (A0 ∧ ¬A0)

)
≡

(
¬
(
¬A0 ∧ ¬

(
(A0 ∨ A1) → A0

))
∨ (A0 ∧ ¬A0)

)
≡

(
¬
(
¬A0 ∧ ¬

(
¬(A0 ∨ A1) ∨ A0

))
∨ (A0 ∧ ¬A0)

)
≡

((
¬¬A0 ∨ ¬¬

(
¬(A0 ∨ A1) ∨ A0

))
∨ (A0 ∧ ¬A0)

)
≡

((
A0 ∨

(
¬(A0 ∨ A1) ∨ A0

))
∨ (A0 ∧ ¬A0)

)
≡

((
A0 ∨

(
(¬A0 ∧ ¬A1) ∨ A0

))
∨ (A0 ∧ ¬A0)

)
.

Diese Formel ist offensichtlicherweise in NNF.
Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 108

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

Klammern bei Konjunktionen und Disjunktionen
Weil ∧ assoziativ ist, können wir Formeln der Gestalt

∧n
i=1 φi etwas

großzügiger interpretieren. Von nun an stehe
∧n

i=1 φi für φ1 ∧ · · · ∧ φn mit
irgendeiner Klammerung.

Entsprechend verfahren wir mit Disjunktionen.

Beispiel
Die Formel

∧4
i=1 φi kann für jede der folgenden Formeln stehen:

(((φ1 ∧ φ2) ∧ φ3) ∧ φ4) ,

((φ1 ∧ (φ2 ∧ φ3)) ∧ φ4) ,

((φ1 ∧ φ2) ∧ (φ3 ∧ φ4)) ,

(φ1 ∧ ((φ2 ∧ φ3) ∧ φ4)) ,

(φ1 ∧ (φ2 ∧ (φ3 ∧ φ4))) .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 109

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

Klammern bei Konjunktionen und Disjunktionen
Weil ∧ assoziativ ist, können wir Formeln der Gestalt

∧n
i=1 φi etwas

großzügiger interpretieren. Von nun an stehe
∧n

i=1 φi für φ1 ∧ · · · ∧ φn mit
irgendeiner Klammerung.

Entsprechend verfahren wir mit Disjunktionen.

Beispiel
Die Formel

∧4
i=1 φi kann für jede der folgenden Formeln stehen:

(((φ1 ∧ φ2) ∧ φ3) ∧ φ4) ,

((φ1 ∧ (φ2 ∧ φ3)) ∧ φ4) ,

((φ1 ∧ φ2) ∧ (φ3 ∧ φ4)) ,

(φ1 ∧ ((φ2 ∧ φ3) ∧ φ4)) ,

(φ1 ∧ (φ2 ∧ (φ3 ∧ φ4))) .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 109

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

DNF und KNF

Definition 2.40
(a) Ein Literal ist eine Formel der Gestalt X oder ¬X , wobei X ∈ AS.

Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem
negativen Literal.

(b) Eine Formel ist in disjunktiver Normalform (DNF), wenn sie eine
Disjunktion von Konjunktionen von Literalen ist, d.h., wenn sie die Form

n∨
i=1

(mi∧
j=1

λi,j

)
hat, wobei n,m1, . . . ,mn ⩾ 1 sind und die λi,j für alle i ∈ [n] und j ∈ [mi]
Literale sind. Die Subformeln κi :=

∧mi

j=1 λi,j , für i ∈ [n], nennen wir die
(konjunktiven) Klauseln der Formel.

Beispiele:
• (A1 ∧ ¬A2 ∧ A3) ∨ (¬A2 ∧ ¬A3) ∨ (A2 ∧ A1) ist in DNF
• A1 ∨ ¬A2 ∨ A3 ist in DNF (mit n = 3 und m1 = m2 = m3 = 1)
• A1 ∧ ¬A2 ∧ A3 ist in DNF (mit n = 1 und m1 = 3) und gleichzeitig ist diese

Formel eine konjunktive Klausel

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 110

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

DNF und KNF

Definition 2.40
(a) Ein Literal ist eine Formel der Gestalt X oder ¬X , wobei X ∈ AS.

Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem
negativen Literal.

(b) Eine Formel ist in disjunktiver Normalform (DNF), wenn sie eine
Disjunktion von Konjunktionen von Literalen ist, d.h., wenn sie die Form

n∨
i=1

(mi∧
j=1

λi,j

)
hat, wobei n,m1, . . . ,mn ⩾ 1 sind und die λi,j für alle i ∈ [n] und j ∈ [mi]
Literale sind. Die Subformeln κi :=

∧mi

j=1 λi,j , für i ∈ [n], nennen wir die
(konjunktiven) Klauseln der Formel.

Beispiele:
• (A1 ∧ ¬A2 ∧ A3) ∨ (¬A2 ∧ ¬A3) ∨ (A2 ∧ A1) ist in DNF
• A1 ∨ ¬A2 ∨ A3 ist in DNF (mit n = 3 und m1 = m2 = m3 = 1)
• A1 ∧ ¬A2 ∧ A3 ist in DNF (mit n = 1 und m1 = 3) und gleichzeitig ist diese

Formel eine konjunktive Klausel

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 110

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

DNF und KNF

Definition 2.40
(a) Ein Literal ist eine Formel der Gestalt X oder ¬X , wobei X ∈ AS.

Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem
negativen Literal.

(b) Eine Formel ist in disjunktiver Normalform (DNF), wenn sie eine
Disjunktion von Konjunktionen von Literalen ist, d.h., wenn sie die Form

n∨
i=1

(mi∧
j=1

λi,j

)
hat, wobei n,m1, . . . ,mn ⩾ 1 sind und die λi,j für alle i ∈ [n] und j ∈ [mi]
Literale sind.

Die Subformeln κi :=
∧mi

j=1 λi,j , für i ∈ [n], nennen wir die
(konjunktiven) Klauseln der Formel.

Beispiele:
• (A1 ∧ ¬A2 ∧ A3) ∨ (¬A2 ∧ ¬A3) ∨ (A2 ∧ A1) ist in DNF
• A1 ∨ ¬A2 ∨ A3 ist in DNF (mit n = 3 und m1 = m2 = m3 = 1)
• A1 ∧ ¬A2 ∧ A3 ist in DNF (mit n = 1 und m1 = 3) und gleichzeitig ist diese

Formel eine konjunktive Klausel

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 110

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

DNF und KNF

Definition 2.40
(a) Ein Literal ist eine Formel der Gestalt X oder ¬X , wobei X ∈ AS.

Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem
negativen Literal.

(b) Eine Formel ist in disjunktiver Normalform (DNF), wenn sie eine
Disjunktion von Konjunktionen von Literalen ist, d.h., wenn sie die Form

n∨
i=1

(mi∧
j=1

λi,j

)
hat, wobei n,m1, . . . ,mn ⩾ 1 sind und die λi,j für alle i ∈ [n] und j ∈ [mi]
Literale sind. Die Subformeln κi :=

∧mi

j=1 λi,j , für i ∈ [n], nennen wir die
(konjunktiven) Klauseln der Formel.

Beispiele:
• (A1 ∧ ¬A2 ∧ A3) ∨ (¬A2 ∧ ¬A3) ∨ (A2 ∧ A1) ist in DNF
• A1 ∨ ¬A2 ∨ A3 ist in DNF (mit n = 3 und m1 = m2 = m3 = 1)
• A1 ∧ ¬A2 ∧ A3 ist in DNF (mit n = 1 und m1 = 3) und gleichzeitig ist diese

Formel eine konjunktive Klausel

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 110

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

DNF und KNF

Definition 2.40
(a) Ein Literal ist eine Formel der Gestalt X oder ¬X , wobei X ∈ AS.

Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem
negativen Literal.

(b) Eine Formel ist in disjunktiver Normalform (DNF), wenn sie eine
Disjunktion von Konjunktionen von Literalen ist, d.h., wenn sie die Form

n∨
i=1

(mi∧
j=1

λi,j

)
hat, wobei n,m1, . . . ,mn ⩾ 1 sind und die λi,j für alle i ∈ [n] und j ∈ [mi]
Literale sind. Die Subformeln κi :=

∧mi

j=1 λi,j , für i ∈ [n], nennen wir die
(konjunktiven) Klauseln der Formel.

Beispiele:
• (A1 ∧ ¬A2 ∧ A3) ∨ (¬A2 ∧ ¬A3) ∨ (A2 ∧ A1)

ist in DNF
• A1 ∨ ¬A2 ∨ A3 ist in DNF (mit n = 3 und m1 = m2 = m3 = 1)
• A1 ∧ ¬A2 ∧ A3 ist in DNF (mit n = 1 und m1 = 3) und gleichzeitig ist diese

Formel eine konjunktive Klausel

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 110

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

DNF und KNF

Definition 2.40
(a) Ein Literal ist eine Formel der Gestalt X oder ¬X , wobei X ∈ AS.

Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem
negativen Literal.

(b) Eine Formel ist in disjunktiver Normalform (DNF), wenn sie eine
Disjunktion von Konjunktionen von Literalen ist, d.h., wenn sie die Form

n∨
i=1

(mi∧
j=1

λi,j

)
hat, wobei n,m1, . . . ,mn ⩾ 1 sind und die λi,j für alle i ∈ [n] und j ∈ [mi]
Literale sind. Die Subformeln κi :=

∧mi

j=1 λi,j , für i ∈ [n], nennen wir die
(konjunktiven) Klauseln der Formel.

Beispiele:
• (A1 ∧ ¬A2 ∧ A3) ∨ (¬A2 ∧ ¬A3) ∨ (A2 ∧ A1) ist in DNF

• A1 ∨ ¬A2 ∨ A3 ist in DNF (mit n = 3 und m1 = m2 = m3 = 1)
• A1 ∧ ¬A2 ∧ A3 ist in DNF (mit n = 1 und m1 = 3) und gleichzeitig ist diese

Formel eine konjunktive Klausel

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 110

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

DNF und KNF

Definition 2.40
(a) Ein Literal ist eine Formel der Gestalt X oder ¬X , wobei X ∈ AS.

Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem
negativen Literal.

(b) Eine Formel ist in disjunktiver Normalform (DNF), wenn sie eine
Disjunktion von Konjunktionen von Literalen ist, d.h., wenn sie die Form

n∨
i=1

(mi∧
j=1

λi,j

)
hat, wobei n,m1, . . . ,mn ⩾ 1 sind und die λi,j für alle i ∈ [n] und j ∈ [mi]
Literale sind. Die Subformeln κi :=

∧mi

j=1 λi,j , für i ∈ [n], nennen wir die
(konjunktiven) Klauseln der Formel.

Beispiele:
• (A1 ∧ ¬A2 ∧ A3) ∨ (¬A2 ∧ ¬A3) ∨ (A2 ∧ A1) ist in DNF
• A1 ∨ ¬A2 ∨ A3

ist in DNF (mit n = 3 und m1 = m2 = m3 = 1)
• A1 ∧ ¬A2 ∧ A3 ist in DNF (mit n = 1 und m1 = 3) und gleichzeitig ist diese

Formel eine konjunktive Klausel

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 110

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

DNF und KNF

Definition 2.40
(a) Ein Literal ist eine Formel der Gestalt X oder ¬X , wobei X ∈ AS.

Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem
negativen Literal.

(b) Eine Formel ist in disjunktiver Normalform (DNF), wenn sie eine
Disjunktion von Konjunktionen von Literalen ist, d.h., wenn sie die Form

n∨
i=1

(mi∧
j=1

λi,j

)
hat, wobei n,m1, . . . ,mn ⩾ 1 sind und die λi,j für alle i ∈ [n] und j ∈ [mi]
Literale sind. Die Subformeln κi :=

∧mi

j=1 λi,j , für i ∈ [n], nennen wir die
(konjunktiven) Klauseln der Formel.

Beispiele:
• (A1 ∧ ¬A2 ∧ A3) ∨ (¬A2 ∧ ¬A3) ∨ (A2 ∧ A1) ist in DNF
• A1 ∨ ¬A2 ∨ A3 ist in DNF (mit n = 3 und m1 = m2 = m3 = 1)

• A1 ∧ ¬A2 ∧ A3 ist in DNF (mit n = 1 und m1 = 3) und gleichzeitig ist diese
Formel eine konjunktive Klausel

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 110

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

DNF und KNF

Definition 2.40
(a) Ein Literal ist eine Formel der Gestalt X oder ¬X , wobei X ∈ AS.

Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem
negativen Literal.

(b) Eine Formel ist in disjunktiver Normalform (DNF), wenn sie eine
Disjunktion von Konjunktionen von Literalen ist, d.h., wenn sie die Form

n∨
i=1

(mi∧
j=1

λi,j

)
hat, wobei n,m1, . . . ,mn ⩾ 1 sind und die λi,j für alle i ∈ [n] und j ∈ [mi]
Literale sind. Die Subformeln κi :=

∧mi

j=1 λi,j , für i ∈ [n], nennen wir die
(konjunktiven) Klauseln der Formel.

Beispiele:
• (A1 ∧ ¬A2 ∧ A3) ∨ (¬A2 ∧ ¬A3) ∨ (A2 ∧ A1) ist in DNF
• A1 ∨ ¬A2 ∨ A3 ist in DNF (mit n = 3 und m1 = m2 = m3 = 1)
• A1 ∧ ¬A2 ∧ A3

ist in DNF (mit n = 1 und m1 = 3) und gleichzeitig ist diese
Formel eine konjunktive Klausel

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 110

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

DNF und KNF

Definition 2.40
(a) Ein Literal ist eine Formel der Gestalt X oder ¬X , wobei X ∈ AS.

Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem
negativen Literal.

(b) Eine Formel ist in disjunktiver Normalform (DNF), wenn sie eine
Disjunktion von Konjunktionen von Literalen ist, d.h., wenn sie die Form

n∨
i=1

(mi∧
j=1

λi,j

)
hat, wobei n,m1, . . . ,mn ⩾ 1 sind und die λi,j für alle i ∈ [n] und j ∈ [mi]
Literale sind. Die Subformeln κi :=

∧mi

j=1 λi,j , für i ∈ [n], nennen wir die
(konjunktiven) Klauseln der Formel.

Beispiele:
• (A1 ∧ ¬A2 ∧ A3) ∨ (¬A2 ∧ ¬A3) ∨ (A2 ∧ A1) ist in DNF
• A1 ∨ ¬A2 ∨ A3 ist in DNF (mit n = 3 und m1 = m2 = m3 = 1)
• A1 ∧ ¬A2 ∧ A3 ist in DNF (mit n = 1 und m1 = 3)

und gleichzeitig ist diese
Formel eine konjunktive Klausel

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 110

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

DNF und KNF

Definition 2.40
(a) Ein Literal ist eine Formel der Gestalt X oder ¬X , wobei X ∈ AS.

Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem
negativen Literal.

(b) Eine Formel ist in disjunktiver Normalform (DNF), wenn sie eine
Disjunktion von Konjunktionen von Literalen ist, d.h., wenn sie die Form

n∨
i=1

(mi∧
j=1

λi,j

)
hat, wobei n,m1, . . . ,mn ⩾ 1 sind und die λi,j für alle i ∈ [n] und j ∈ [mi]
Literale sind. Die Subformeln κi :=

∧mi

j=1 λi,j , für i ∈ [n], nennen wir die
(konjunktiven) Klauseln der Formel.

Beispiele:
• (A1 ∧ ¬A2 ∧ A3) ∨ (¬A2 ∧ ¬A3) ∨ (A2 ∧ A1) ist in DNF
• A1 ∨ ¬A2 ∨ A3 ist in DNF (mit n = 3 und m1 = m2 = m3 = 1)
• A1 ∧ ¬A2 ∧ A3 ist in DNF (mit n = 1 und m1 = 3) und gleichzeitig ist diese

Formel eine konjunktive Klausel
Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 110

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

(c) Eine Formel ist in konjunktiver Normalform (KNF), wenn sie eine
Konjunktion von Disjunktion von Literalen ist, d.h., wenn sie die Form

n∧
i=1

(mi∨
j=1

λi,j

)
hat, wobei n,m1, . . . ,mn ⩾ 1 sind und die λi,j für alle i ∈ [n] und j ∈ [mi]
Literale sind.

Die Subformeln κi :=
∨mi

j=1 λi,j , für i ∈ [n], nennen wir die
(disjunktiven) Klauseln der Formel.

Beispiele:
• (A1 ∨ ¬A2 ∨ A3) ∧ (¬A2 ∨ ¬A3) ∧ (A2 ∨ A1) ist in KNF
• A1 ∨ ¬A2 ∨ A3 ist in KNF (mit n = 1 und m1 = 3) und gleichzeitig ist diese

Formel eine disjunktive Klausel
• A1 ∧ ¬A2 ∧ A3 ist in KNF (mit n = 3 und m1 = m2 = m3 = 1)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 111

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

(c) Eine Formel ist in konjunktiver Normalform (KNF), wenn sie eine
Konjunktion von Disjunktion von Literalen ist, d.h., wenn sie die Form

n∧
i=1

(mi∨
j=1

λi,j

)
hat, wobei n,m1, . . . ,mn ⩾ 1 sind und die λi,j für alle i ∈ [n] und j ∈ [mi]
Literale sind. Die Subformeln κi :=

∨mi

j=1 λi,j , für i ∈ [n], nennen wir die
(disjunktiven) Klauseln der Formel.

Beispiele:
• (A1 ∨ ¬A2 ∨ A3) ∧ (¬A2 ∨ ¬A3) ∧ (A2 ∨ A1) ist in KNF
• A1 ∨ ¬A2 ∨ A3 ist in KNF (mit n = 1 und m1 = 3) und gleichzeitig ist diese

Formel eine disjunktive Klausel
• A1 ∧ ¬A2 ∧ A3 ist in KNF (mit n = 3 und m1 = m2 = m3 = 1)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 111

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

(c) Eine Formel ist in konjunktiver Normalform (KNF), wenn sie eine
Konjunktion von Disjunktion von Literalen ist, d.h., wenn sie die Form

n∧
i=1

(mi∨
j=1

λi,j

)
hat, wobei n,m1, . . . ,mn ⩾ 1 sind und die λi,j für alle i ∈ [n] und j ∈ [mi]
Literale sind. Die Subformeln κi :=

∨mi

j=1 λi,j , für i ∈ [n], nennen wir die
(disjunktiven) Klauseln der Formel.

Beispiele:
• (A1 ∨ ¬A2 ∨ A3) ∧ (¬A2 ∨ ¬A3) ∧ (A2 ∨ A1)

ist in KNF
• A1 ∨ ¬A2 ∨ A3 ist in KNF (mit n = 1 und m1 = 3) und gleichzeitig ist diese

Formel eine disjunktive Klausel
• A1 ∧ ¬A2 ∧ A3 ist in KNF (mit n = 3 und m1 = m2 = m3 = 1)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 111

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

(c) Eine Formel ist in konjunktiver Normalform (KNF), wenn sie eine
Konjunktion von Disjunktion von Literalen ist, d.h., wenn sie die Form

n∧
i=1

(mi∨
j=1

λi,j

)
hat, wobei n,m1, . . . ,mn ⩾ 1 sind und die λi,j für alle i ∈ [n] und j ∈ [mi]
Literale sind. Die Subformeln κi :=

∨mi

j=1 λi,j , für i ∈ [n], nennen wir die
(disjunktiven) Klauseln der Formel.

Beispiele:
• (A1 ∨ ¬A2 ∨ A3) ∧ (¬A2 ∨ ¬A3) ∧ (A2 ∨ A1) ist in KNF

• A1 ∨ ¬A2 ∨ A3 ist in KNF (mit n = 1 und m1 = 3) und gleichzeitig ist diese
Formel eine disjunktive Klausel

• A1 ∧ ¬A2 ∧ A3 ist in KNF (mit n = 3 und m1 = m2 = m3 = 1)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 111

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

(c) Eine Formel ist in konjunktiver Normalform (KNF), wenn sie eine
Konjunktion von Disjunktion von Literalen ist, d.h., wenn sie die Form

n∧
i=1

(mi∨
j=1

λi,j

)
hat, wobei n,m1, . . . ,mn ⩾ 1 sind und die λi,j für alle i ∈ [n] und j ∈ [mi]
Literale sind. Die Subformeln κi :=

∨mi

j=1 λi,j , für i ∈ [n], nennen wir die
(disjunktiven) Klauseln der Formel.

Beispiele:
• (A1 ∨ ¬A2 ∨ A3) ∧ (¬A2 ∨ ¬A3) ∧ (A2 ∨ A1) ist in KNF
• A1 ∨ ¬A2 ∨ A3

ist in KNF (mit n = 1 und m1 = 3) und gleichzeitig ist diese
Formel eine disjunktive Klausel

• A1 ∧ ¬A2 ∧ A3 ist in KNF (mit n = 3 und m1 = m2 = m3 = 1)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 111

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

(c) Eine Formel ist in konjunktiver Normalform (KNF), wenn sie eine
Konjunktion von Disjunktion von Literalen ist, d.h., wenn sie die Form

n∧
i=1

(mi∨
j=1

λi,j

)
hat, wobei n,m1, . . . ,mn ⩾ 1 sind und die λi,j für alle i ∈ [n] und j ∈ [mi]
Literale sind. Die Subformeln κi :=

∨mi

j=1 λi,j , für i ∈ [n], nennen wir die
(disjunktiven) Klauseln der Formel.

Beispiele:
• (A1 ∨ ¬A2 ∨ A3) ∧ (¬A2 ∨ ¬A3) ∧ (A2 ∨ A1) ist in KNF
• A1 ∨ ¬A2 ∨ A3 ist in KNF (mit n = 1 und m1 = 3)

und gleichzeitig ist diese
Formel eine disjunktive Klausel

• A1 ∧ ¬A2 ∧ A3 ist in KNF (mit n = 3 und m1 = m2 = m3 = 1)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 111

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

(c) Eine Formel ist in konjunktiver Normalform (KNF), wenn sie eine
Konjunktion von Disjunktion von Literalen ist, d.h., wenn sie die Form

n∧
i=1

(mi∨
j=1

λi,j

)
hat, wobei n,m1, . . . ,mn ⩾ 1 sind und die λi,j für alle i ∈ [n] und j ∈ [mi]
Literale sind. Die Subformeln κi :=

∨mi

j=1 λi,j , für i ∈ [n], nennen wir die
(disjunktiven) Klauseln der Formel.

Beispiele:
• (A1 ∨ ¬A2 ∨ A3) ∧ (¬A2 ∨ ¬A3) ∧ (A2 ∨ A1) ist in KNF
• A1 ∨ ¬A2 ∨ A3 ist in KNF (mit n = 1 und m1 = 3) und gleichzeitig ist diese

Formel eine disjunktive Klausel

• A1 ∧ ¬A2 ∧ A3 ist in KNF (mit n = 3 und m1 = m2 = m3 = 1)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 111

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

(c) Eine Formel ist in konjunktiver Normalform (KNF), wenn sie eine
Konjunktion von Disjunktion von Literalen ist, d.h., wenn sie die Form

n∧
i=1

(mi∨
j=1

λi,j

)
hat, wobei n,m1, . . . ,mn ⩾ 1 sind und die λi,j für alle i ∈ [n] und j ∈ [mi]
Literale sind. Die Subformeln κi :=

∨mi

j=1 λi,j , für i ∈ [n], nennen wir die
(disjunktiven) Klauseln der Formel.

Beispiele:
• (A1 ∨ ¬A2 ∨ A3) ∧ (¬A2 ∨ ¬A3) ∧ (A2 ∨ A1) ist in KNF
• A1 ∨ ¬A2 ∨ A3 ist in KNF (mit n = 1 und m1 = 3) und gleichzeitig ist diese

Formel eine disjunktive Klausel
• A1 ∧ ¬A2 ∧ A3

ist in KNF (mit n = 3 und m1 = m2 = m3 = 1)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 111

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

(c) Eine Formel ist in konjunktiver Normalform (KNF), wenn sie eine
Konjunktion von Disjunktion von Literalen ist, d.h., wenn sie die Form

n∧
i=1

(mi∨
j=1

λi,j

)
hat, wobei n,m1, . . . ,mn ⩾ 1 sind und die λi,j für alle i ∈ [n] und j ∈ [mi]
Literale sind. Die Subformeln κi :=

∨mi

j=1 λi,j , für i ∈ [n], nennen wir die
(disjunktiven) Klauseln der Formel.

Beispiele:
• (A1 ∨ ¬A2 ∨ A3) ∧ (¬A2 ∨ ¬A3) ∧ (A2 ∨ A1) ist in KNF
• A1 ∨ ¬A2 ∨ A3 ist in KNF (mit n = 1 und m1 = 3) und gleichzeitig ist diese

Formel eine disjunktive Klausel
• A1 ∧ ¬A2 ∧ A3 ist in KNF (mit n = 3 und m1 = m2 = m3 = 1)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 111

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

Normalformen spielen in vielen Anwendungsgebieten eine wichtige Rolle.
Beispielsweise geht man in der Schaltungstechnik (Hardware-Entwurf) oft von
DNF-Formeln aus, während bei der aussagenlogischen Modellbildung oftmals
KNF-Formeln auftreten, da sich eine Sammlung von einfach strukturierten
Aussagen sehr gut durch eine Konjunktion von Klauseln ausdrücken lässt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 112

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

Satz 2.41
Jede aussagenlogische Formel ist äquivalent zu einer Formel in DNF und zu
einer Formel in KNF.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 113

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

Bemerkung 2.42
Der Beweis von Satz 2.41 zeigt Folgendes:
Um für eine gegebene Formel ψ eine äquivalente Formel φ in

• DNF zu erzeugen, können wir

die Wahrheitstafel für ψ aufstellen und dann
wie in Beispiel 2.32 vorgehen (bzw. φ := A1 ∧ ¬A1 setzen, falls ψ
unerfüllbar ist).

• KNF zu erzeugen, können wir wie folgt vorgehen:

(1) Stelle die Wahrheitstafel für ψ auf.
(2) Falls in der letzten Spalte nur

”
1“en stehen, setze φ := A1 ∨ ¬A1.

(3) Ansonsten gehe wie folgt vor:
• Betrachte alle Zeilen der Wahrheitstafel, bei denen in der letzten Spalte eine

”
0“ steht.

• Für jede solche Zeile konstruiere die disjunktive Klausel, die von allen
Interpretationen außer der zur Zeile gehörenden erfüllt wird.

Beispiel: Wenn die Zeile der Wahrheitstafel die Form

0 1 1 | 0

hat, so gehört dazu die disjunktive Klausel

A1 ∨ ¬A2 ∨ ¬A3.

• Bilde die Konjunktion all dieser disjunktiven Klauseln.
Dies liefert die gesuchte KNF-Formel φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 114

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

Bemerkung 2.42
Der Beweis von Satz 2.41 zeigt Folgendes:
Um für eine gegebene Formel ψ eine äquivalente Formel φ in

• DNF zu erzeugen, können wir die Wahrheitstafel für ψ aufstellen und dann
wie in Beispiel 2.32 vorgehen

(bzw. φ := A1 ∧ ¬A1 setzen, falls ψ
unerfüllbar ist).

• KNF zu erzeugen, können wir wie folgt vorgehen:

(1) Stelle die Wahrheitstafel für ψ auf.
(2) Falls in der letzten Spalte nur

”
1“en stehen, setze φ := A1 ∨ ¬A1.

(3) Ansonsten gehe wie folgt vor:
• Betrachte alle Zeilen der Wahrheitstafel, bei denen in der letzten Spalte eine

”
0“ steht.

• Für jede solche Zeile konstruiere die disjunktive Klausel, die von allen
Interpretationen außer der zur Zeile gehörenden erfüllt wird.

Beispiel: Wenn die Zeile der Wahrheitstafel die Form

0 1 1 | 0

hat, so gehört dazu die disjunktive Klausel

A1 ∨ ¬A2 ∨ ¬A3.

• Bilde die Konjunktion all dieser disjunktiven Klauseln.
Dies liefert die gesuchte KNF-Formel φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 114

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

Bemerkung 2.42
Der Beweis von Satz 2.41 zeigt Folgendes:
Um für eine gegebene Formel ψ eine äquivalente Formel φ in

• DNF zu erzeugen, können wir die Wahrheitstafel für ψ aufstellen und dann
wie in Beispiel 2.32 vorgehen (bzw. φ := A1 ∧ ¬A1 setzen, falls ψ
unerfüllbar ist).

• KNF zu erzeugen, können wir wie folgt vorgehen:

(1) Stelle die Wahrheitstafel für ψ auf.
(2) Falls in der letzten Spalte nur

”
1“en stehen, setze φ := A1 ∨ ¬A1.

(3) Ansonsten gehe wie folgt vor:
• Betrachte alle Zeilen der Wahrheitstafel, bei denen in der letzten Spalte eine

”
0“ steht.

• Für jede solche Zeile konstruiere die disjunktive Klausel, die von allen
Interpretationen außer der zur Zeile gehörenden erfüllt wird.

Beispiel: Wenn die Zeile der Wahrheitstafel die Form

0 1 1 | 0

hat, so gehört dazu die disjunktive Klausel

A1 ∨ ¬A2 ∨ ¬A3.

• Bilde die Konjunktion all dieser disjunktiven Klauseln.
Dies liefert die gesuchte KNF-Formel φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 114

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

Bemerkung 2.42
Der Beweis von Satz 2.41 zeigt Folgendes:
Um für eine gegebene Formel ψ eine äquivalente Formel φ in

• DNF zu erzeugen, können wir die Wahrheitstafel für ψ aufstellen und dann
wie in Beispiel 2.32 vorgehen (bzw. φ := A1 ∧ ¬A1 setzen, falls ψ
unerfüllbar ist).

• KNF zu erzeugen, können wir wie folgt vorgehen:

(1) Stelle die Wahrheitstafel für ψ auf.

(2) Falls in der letzten Spalte nur
”
1“en stehen, setze φ := A1 ∨ ¬A1.

(3) Ansonsten gehe wie folgt vor:
• Betrachte alle Zeilen der Wahrheitstafel, bei denen in der letzten Spalte eine

”
0“ steht.

• Für jede solche Zeile konstruiere die disjunktive Klausel, die von allen
Interpretationen außer der zur Zeile gehörenden erfüllt wird.

Beispiel: Wenn die Zeile der Wahrheitstafel die Form

0 1 1 | 0

hat, so gehört dazu die disjunktive Klausel

A1 ∨ ¬A2 ∨ ¬A3.

• Bilde die Konjunktion all dieser disjunktiven Klauseln.
Dies liefert die gesuchte KNF-Formel φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 114

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

Bemerkung 2.42
Der Beweis von Satz 2.41 zeigt Folgendes:
Um für eine gegebene Formel ψ eine äquivalente Formel φ in

• DNF zu erzeugen, können wir die Wahrheitstafel für ψ aufstellen und dann
wie in Beispiel 2.32 vorgehen (bzw. φ := A1 ∧ ¬A1 setzen, falls ψ
unerfüllbar ist).

• KNF zu erzeugen, können wir wie folgt vorgehen:

(1) Stelle die Wahrheitstafel für ψ auf.
(2) Falls in der letzten Spalte nur

”
1“en stehen,

setze φ := A1 ∨ ¬A1.
(3) Ansonsten gehe wie folgt vor:

• Betrachte alle Zeilen der Wahrheitstafel, bei denen in der letzten Spalte eine

”
0“ steht.

• Für jede solche Zeile konstruiere die disjunktive Klausel, die von allen
Interpretationen außer der zur Zeile gehörenden erfüllt wird.

Beispiel: Wenn die Zeile der Wahrheitstafel die Form

0 1 1 | 0

hat, so gehört dazu die disjunktive Klausel

A1 ∨ ¬A2 ∨ ¬A3.

• Bilde die Konjunktion all dieser disjunktiven Klauseln.
Dies liefert die gesuchte KNF-Formel φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 114

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

Bemerkung 2.42
Der Beweis von Satz 2.41 zeigt Folgendes:
Um für eine gegebene Formel ψ eine äquivalente Formel φ in

• DNF zu erzeugen, können wir die Wahrheitstafel für ψ aufstellen und dann
wie in Beispiel 2.32 vorgehen (bzw. φ := A1 ∧ ¬A1 setzen, falls ψ
unerfüllbar ist).

• KNF zu erzeugen, können wir wie folgt vorgehen:

(1) Stelle die Wahrheitstafel für ψ auf.
(2) Falls in der letzten Spalte nur

”
1“en stehen, setze φ := A1 ∨ ¬A1.

(3) Ansonsten gehe wie folgt vor:

• Betrachte alle Zeilen der Wahrheitstafel, bei denen in der letzten Spalte eine

”
0“ steht.

• Für jede solche Zeile konstruiere die disjunktive Klausel, die von allen
Interpretationen außer der zur Zeile gehörenden erfüllt wird.

Beispiel: Wenn die Zeile der Wahrheitstafel die Form

0 1 1 | 0

hat, so gehört dazu die disjunktive Klausel

A1 ∨ ¬A2 ∨ ¬A3.

• Bilde die Konjunktion all dieser disjunktiven Klauseln.
Dies liefert die gesuchte KNF-Formel φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 114

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

Bemerkung 2.42
Der Beweis von Satz 2.41 zeigt Folgendes:
Um für eine gegebene Formel ψ eine äquivalente Formel φ in

• DNF zu erzeugen, können wir die Wahrheitstafel für ψ aufstellen und dann
wie in Beispiel 2.32 vorgehen (bzw. φ := A1 ∧ ¬A1 setzen, falls ψ
unerfüllbar ist).

• KNF zu erzeugen, können wir wie folgt vorgehen:

(1) Stelle die Wahrheitstafel für ψ auf.
(2) Falls in der letzten Spalte nur

”
1“en stehen, setze φ := A1 ∨ ¬A1.

(3) Ansonsten gehe wie folgt vor:
• Betrachte alle Zeilen der Wahrheitstafel, bei denen in der letzten Spalte eine

”
0“ steht.

• Für jede solche Zeile konstruiere die disjunktive Klausel, die von allen
Interpretationen außer der zur Zeile gehörenden erfüllt wird.

Beispiel: Wenn die Zeile der Wahrheitstafel die Form

0 1 1 | 0

hat, so gehört dazu die disjunktive Klausel

A1 ∨ ¬A2 ∨ ¬A3.

• Bilde die Konjunktion all dieser disjunktiven Klauseln.
Dies liefert die gesuchte KNF-Formel φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 114

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

Bemerkung 2.42
Der Beweis von Satz 2.41 zeigt Folgendes:
Um für eine gegebene Formel ψ eine äquivalente Formel φ in

• DNF zu erzeugen, können wir die Wahrheitstafel für ψ aufstellen und dann
wie in Beispiel 2.32 vorgehen (bzw. φ := A1 ∧ ¬A1 setzen, falls ψ
unerfüllbar ist).

• KNF zu erzeugen, können wir wie folgt vorgehen:

(1) Stelle die Wahrheitstafel für ψ auf.
(2) Falls in der letzten Spalte nur

”
1“en stehen, setze φ := A1 ∨ ¬A1.

(3) Ansonsten gehe wie folgt vor:
• Betrachte alle Zeilen der Wahrheitstafel, bei denen in der letzten Spalte eine

”
0“ steht.

• Für jede solche Zeile konstruiere die disjunktive Klausel, die von allen
Interpretationen außer der zur Zeile gehörenden erfüllt wird.

Beispiel: Wenn die Zeile der Wahrheitstafel die Form

0 1 1 | 0

hat, so gehört dazu die disjunktive Klausel

A1 ∨ ¬A2 ∨ ¬A3.

• Bilde die Konjunktion all dieser disjunktiven Klauseln.
Dies liefert die gesuchte KNF-Formel φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 114

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

Bemerkung 2.42
Der Beweis von Satz 2.41 zeigt Folgendes:
Um für eine gegebene Formel ψ eine äquivalente Formel φ in

• DNF zu erzeugen, können wir die Wahrheitstafel für ψ aufstellen und dann
wie in Beispiel 2.32 vorgehen (bzw. φ := A1 ∧ ¬A1 setzen, falls ψ
unerfüllbar ist).

• KNF zu erzeugen, können wir wie folgt vorgehen:

(1) Stelle die Wahrheitstafel für ψ auf.
(2) Falls in der letzten Spalte nur

”
1“en stehen, setze φ := A1 ∨ ¬A1.

(3) Ansonsten gehe wie folgt vor:
• Betrachte alle Zeilen der Wahrheitstafel, bei denen in der letzten Spalte eine

”
0“ steht.

• Für jede solche Zeile konstruiere die disjunktive Klausel, die von allen
Interpretationen außer der zur Zeile gehörenden erfüllt wird.

Beispiel: Wenn die Zeile der Wahrheitstafel die Form

0 1 1 | 0

hat, so gehört dazu die disjunktive Klausel

A1 ∨ ¬A2 ∨ ¬A3.

• Bilde die Konjunktion all dieser disjunktiven Klauseln.
Dies liefert die gesuchte KNF-Formel φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 114

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

Wenn eine Formel sehr viele verschiedene Aussagensymbole enthält, die zur
Formel gehörige Wahrheitstafel also sehr groß ist, ist das gerade beschriebene
Verfahren zur Umformung in DNF oder KNF sehr zeitaufwändig.

In solchen Fällen ist es ratsam, stattdessen zu versuchen, die gewünschte
Normalform durch Äquivalenzumformungen zu erzeugen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 115

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

Wenn eine Formel sehr viele verschiedene Aussagensymbole enthält, die zur
Formel gehörige Wahrheitstafel also sehr groß ist, ist das gerade beschriebene
Verfahren zur Umformung in DNF oder KNF sehr zeitaufwändig.

In solchen Fällen ist es ratsam, stattdessen zu versuchen, die gewünschte
Normalform durch Äquivalenzumformungen zu erzeugen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 115

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

Beispiel 2.43
Sei φ :=

((
¬A0 ∧ (A0 → A1)

)
∨ (A2 → A3)

)
.

Transformation von φ in NNF : siehe Tafel

Transformation in DNF: siehe Tafel

Transformation in KNF: siehe Tafel

Je nach Formel muss man ggf. die Distributivitätsregel mehrmals anwenden, bis
man eine Formel der gewünschten Normalform erhält.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 116

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

Beispiel 2.43
Sei φ :=

((
¬A0 ∧ (A0 → A1)

)
∨ (A2 → A3)

)
.

Transformation von φ in NNF : siehe Tafel

Transformation in DNF: siehe Tafel

Transformation in KNF: siehe Tafel

Je nach Formel muss man ggf. die Distributivitätsregel mehrmals anwenden, bis
man eine Formel der gewünschten Normalform erhält.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 116

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

Ein DNF-Algorithmus
Eingabe: Formel φ ∈ AL({¬,∧,∨}) in NNF.
Ausgabe: Formel φ′′ in DNF

Verfahren: 1. Wiederhole folgende Schritte:
2. Wenn φ in DNF ist, dann halte mit

Ausgabe φ.
3. Ersetze eine Subformel von φ der Gestalt

(ψ1 ∧ (ψ2 ∨ ψ3)) durch ((ψ1 ∧ ψ2) ∨ (ψ1 ∧ ψ3))
oder eine Subformel der Gestalt
((ψ1 ∨ ψ2) ∧ ψ3) durch ((ψ1 ∧ ψ3) ∨ (ψ2 ∧ ψ3)).

Sei φ′ die resultierende Formel.
4. φ := φ′.

Satz 2.44
Für jede Eingabeformel φ in NNF gibt der DNF-Algorithmus nach endlich vielen
Schritten eine zu φ äquivalente Formel φ′′ in DNF aus.

(hier ohne Beweis)

Analog kann man auch einen
”
KNF-Algorithmus“ angeben, der bei Eingabe

einer NNF-Formel eine äquivalente Formel in KNF erzeugt (Details: Übung).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 117

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

Ein DNF-Algorithmus
Eingabe: Formel φ ∈ AL({¬,∧,∨}) in NNF.
Ausgabe: Formel φ′′ in DNF
Verfahren: 1. Wiederhole folgende Schritte:

2. Wenn φ in DNF ist, dann halte mit
Ausgabe φ.

3. Ersetze eine Subformel von φ der Gestalt
(ψ1 ∧ (ψ2 ∨ ψ3)) durch ((ψ1 ∧ ψ2) ∨ (ψ1 ∧ ψ3))

oder eine Subformel der Gestalt
((ψ1 ∨ ψ2) ∧ ψ3) durch ((ψ1 ∧ ψ3) ∨ (ψ2 ∧ ψ3)).

Sei φ′ die resultierende Formel.
4. φ := φ′.

Satz 2.44
Für jede Eingabeformel φ in NNF gibt der DNF-Algorithmus nach endlich vielen
Schritten eine zu φ äquivalente Formel φ′′ in DNF aus.

(hier ohne Beweis)

Analog kann man auch einen
”
KNF-Algorithmus“ angeben, der bei Eingabe

einer NNF-Formel eine äquivalente Formel in KNF erzeugt (Details: Übung).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 117

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

Ein DNF-Algorithmus
Eingabe: Formel φ ∈ AL({¬,∧,∨}) in NNF.
Ausgabe: Formel φ′′ in DNF
Verfahren: 1. Wiederhole folgende Schritte:

2. Wenn φ in DNF ist, dann halte mit
Ausgabe φ.

3. Ersetze eine Subformel von φ der Gestalt
(ψ1 ∧ (ψ2 ∨ ψ3)) durch ((ψ1 ∧ ψ2) ∨ (ψ1 ∧ ψ3))

oder eine Subformel der Gestalt
((ψ1 ∨ ψ2) ∧ ψ3) durch ((ψ1 ∧ ψ3) ∨ (ψ2 ∧ ψ3)).

Sei φ′ die resultierende Formel.
4. φ := φ′.

Satz 2.44
Für jede Eingabeformel φ in NNF gibt der DNF-Algorithmus nach endlich vielen
Schritten eine zu φ äquivalente Formel φ′′ in DNF aus.

(hier ohne Beweis)

Analog kann man auch einen
”
KNF-Algorithmus“ angeben, der bei Eingabe

einer NNF-Formel eine äquivalente Formel in KNF erzeugt (Details: Übung).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 117

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

Ein DNF-Algorithmus
Eingabe: Formel φ ∈ AL({¬,∧,∨}) in NNF.
Ausgabe: Formel φ′′ in DNF
Verfahren: 1. Wiederhole folgende Schritte:

2. Wenn φ in DNF ist, dann halte mit
Ausgabe φ.

3. Ersetze eine Subformel von φ der Gestalt
(ψ1 ∧ (ψ2 ∨ ψ3)) durch ((ψ1 ∧ ψ2) ∨ (ψ1 ∧ ψ3))

oder eine Subformel der Gestalt
((ψ1 ∨ ψ2) ∧ ψ3) durch ((ψ1 ∧ ψ3) ∨ (ψ2 ∧ ψ3)).

Sei φ′ die resultierende Formel.
4. φ := φ′.

Satz 2.44
Für jede Eingabeformel φ in NNF gibt der DNF-Algorithmus nach endlich vielen
Schritten eine zu φ äquivalente Formel φ′′ in DNF aus.

(hier ohne Beweis)

Analog kann man auch einen
”
KNF-Algorithmus“ angeben, der bei Eingabe

einer NNF-Formel eine äquivalente Formel in KNF erzeugt (Details: Übung).
Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 117

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

Eine kleine Formel mit großer DNF

Satz 2.45
Sei n ∈ N mit n ⩾ 1, seien X1, . . . ,Xn und Y1, . . . ,Yn genau 2n verschiedene
Aussagensymbole und sei

φn :=
n∧

i=1

(Xi ∨ ¬Yi) .

Jede zu φn äquivalente Formel in DNF hat mindestens 2n konjunktive Klauseln.

Beweis: Übung

Korollar 2.46
Jeder Algorithmus, der bei Eingabe von beliebigen aussagenlogischen Formeln
dazu äquivalente Formeln in DNF erzeugt, hat eine Laufzeit, die im worst-case
exponentiell ist, d.h., 2Ω(n) bei Eingabe von Formeln der Länge n.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 118

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

Eine kleine Formel mit großer DNF

Satz 2.45
Sei n ∈ N mit n ⩾ 1, seien X1, . . . ,Xn und Y1, . . . ,Yn genau 2n verschiedene
Aussagensymbole und sei

φn :=
n∧

i=1

(Xi ∨ ¬Yi) .

Jede zu φn äquivalente Formel in DNF hat mindestens 2n konjunktive Klauseln.

Beweis: Übung

Korollar 2.46
Jeder Algorithmus, der bei Eingabe von beliebigen aussagenlogischen Formeln
dazu äquivalente Formeln in DNF erzeugt, hat eine Laufzeit, die im worst-case
exponentiell ist, d.h., 2Ω(n) bei Eingabe von Formeln der Länge n.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 118

Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

Eine kleine Formel mit großer DNF

Satz 2.45
Sei n ∈ N mit n ⩾ 1, seien X1, . . . ,Xn und Y1, . . . ,Yn genau 2n verschiedene
Aussagensymbole und sei

φn :=
n∧

i=1

(Xi ∨ ¬Yi) .

Jede zu φn äquivalente Formel in DNF hat mindestens 2n konjunktive Klauseln.

Beweis: Übung

Korollar 2.46
Jeder Algorithmus, der bei Eingabe von beliebigen aussagenlogischen Formeln
dazu äquivalente Formeln in DNF erzeugt, hat eine Laufzeit, die im worst-case
exponentiell ist, d.h., 2Ω(n) bei Eingabe von Formeln der Länge n.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 118

Abschnitt 2.5:

Der Endlichkeitssatz

Kapitel 2: Aussagenlogik · Abschnitt 2.5: Der Endlichkeitssatz

Der Endlichkeitssatz
(auch bekannt als Kompaktheitssatz)

Um nachzuweisen, dass eine gegebene unendliche Formelmenge erfüllbar ist, ist
der folgende Satz sehr nützlich.

Satz 2.47 (Der Endlichkeitssatz der Aussagenlogik)

(a) Für jede Formelmenge Φ ⊆ AL gilt:

Φ ist erfüllbar ⇐⇒ Jede endliche Teilmenge von Φ ist erfüllbar.

(b) Für alle Φ ⊆ AL und ψ ∈ AL gilt:

Φ |= ψ ⇐⇒ Es gibt eine endliche Teilmenge Γ von Φ, so dass Γ |= ψ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 119

Kapitel 2: Aussagenlogik · Abschnitt 2.5: Der Endlichkeitssatz

Der Endlichkeitssatz
(auch bekannt als Kompaktheitssatz)

Um nachzuweisen, dass eine gegebene unendliche Formelmenge erfüllbar ist, ist
der folgende Satz sehr nützlich.

Satz 2.47 (Der Endlichkeitssatz der Aussagenlogik)

(a) Für jede Formelmenge Φ ⊆ AL gilt:

Φ ist erfüllbar ⇐⇒ Jede endliche Teilmenge von Φ ist erfüllbar.

(b) Für alle Φ ⊆ AL und ψ ∈ AL gilt:

Φ |= ψ ⇐⇒ Es gibt eine endliche Teilmenge Γ von Φ, so dass Γ |= ψ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 119

Kapitel 2: Aussagenlogik · Abschnitt 2.5: Der Endlichkeitssatz

Anwendung: Färbbarkeit
Definition:

• Ein (ungerichteter) Graph G = (V ,E) besteht aus einer nicht-leeren Menge V
und einer Menge E ⊆

{
{x , y} : x , y ∈ V , x ̸= y

}
. Die Elemente in V werden

Knoten und die Elemente in E werden (ungerichtete) Kanten genannt.

Zwei
Knoten x , y ∈ V heißen benachbart, wenn {x , y} ∈ E .

• Ein Subgraph eines Graphen G = (V ,E) ist ein Graph H = (V ′,E ′) mit V ′ ⊆ V
und E ′ ⊆ E .

• Ein Graph G = (V ,E) heißt endlich (bzw. unendlich), wenn seine Knotenmenge
V endlich (bzw. unendlich) ist.

Definition 2.48
Sei k ∈ N mit k ⩾ 1.
Eine k-Färbung eines Graphen G = (V ,E) ist eine Abbildung f : V → [k], so dass für
alle Kanten {v ,w} ∈ E gilt: f (v) ̸= f (w).
G heißt k-färbbar, falls es eine k-Färbung von G gibt.

Satz 2.49
Sei k ∈ N mit k ⩾ 1.
Ein unendlicher Graph G mit Knotenmenge N ist genau dann k-färbbar, wenn jeder
endliche Subgraph von G k-färbbar ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 120

Kapitel 2: Aussagenlogik · Abschnitt 2.5: Der Endlichkeitssatz

Anwendung: Färbbarkeit
Definition:

• Ein (ungerichteter) Graph G = (V ,E) besteht aus einer nicht-leeren Menge V
und einer Menge E ⊆

{
{x , y} : x , y ∈ V , x ̸= y

}
. Die Elemente in V werden

Knoten und die Elemente in E werden (ungerichtete) Kanten genannt. Zwei
Knoten x , y ∈ V heißen benachbart, wenn {x , y} ∈ E .

• Ein Subgraph eines Graphen G = (V ,E) ist ein Graph H = (V ′,E ′) mit V ′ ⊆ V
und E ′ ⊆ E .

• Ein Graph G = (V ,E) heißt endlich (bzw. unendlich), wenn seine Knotenmenge
V endlich (bzw. unendlich) ist.

Definition 2.48
Sei k ∈ N mit k ⩾ 1.
Eine k-Färbung eines Graphen G = (V ,E) ist eine Abbildung f : V → [k], so dass für
alle Kanten {v ,w} ∈ E gilt: f (v) ̸= f (w).
G heißt k-färbbar, falls es eine k-Färbung von G gibt.

Satz 2.49
Sei k ∈ N mit k ⩾ 1.
Ein unendlicher Graph G mit Knotenmenge N ist genau dann k-färbbar, wenn jeder
endliche Subgraph von G k-färbbar ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 120

Kapitel 2: Aussagenlogik · Abschnitt 2.5: Der Endlichkeitssatz

Anwendung: Färbbarkeit
Definition:

• Ein (ungerichteter) Graph G = (V ,E) besteht aus einer nicht-leeren Menge V
und einer Menge E ⊆

{
{x , y} : x , y ∈ V , x ̸= y

}
. Die Elemente in V werden

Knoten und die Elemente in E werden (ungerichtete) Kanten genannt. Zwei
Knoten x , y ∈ V heißen benachbart, wenn {x , y} ∈ E .

• Ein Subgraph eines Graphen G = (V ,E) ist ein Graph H = (V ′,E ′) mit V ′ ⊆ V
und E ′ ⊆ E .

• Ein Graph G = (V ,E) heißt endlich (bzw. unendlich), wenn seine Knotenmenge
V endlich (bzw. unendlich) ist.

Definition 2.48
Sei k ∈ N mit k ⩾ 1.
Eine k-Färbung eines Graphen G = (V ,E) ist eine Abbildung f : V → [k], so dass für
alle Kanten {v ,w} ∈ E gilt: f (v) ̸= f (w).
G heißt k-färbbar, falls es eine k-Färbung von G gibt.

Satz 2.49
Sei k ∈ N mit k ⩾ 1.
Ein unendlicher Graph G mit Knotenmenge N ist genau dann k-färbbar, wenn jeder
endliche Subgraph von G k-färbbar ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 120

Kapitel 2: Aussagenlogik · Abschnitt 2.5: Der Endlichkeitssatz

Anwendung: Färbbarkeit
Definition:

• Ein (ungerichteter) Graph G = (V ,E) besteht aus einer nicht-leeren Menge V
und einer Menge E ⊆

{
{x , y} : x , y ∈ V , x ̸= y

}
. Die Elemente in V werden

Knoten und die Elemente in E werden (ungerichtete) Kanten genannt. Zwei
Knoten x , y ∈ V heißen benachbart, wenn {x , y} ∈ E .

• Ein Subgraph eines Graphen G = (V ,E) ist ein Graph H = (V ′,E ′) mit V ′ ⊆ V
und E ′ ⊆ E .

• Ein Graph G = (V ,E) heißt endlich (bzw. unendlich), wenn seine Knotenmenge
V endlich (bzw. unendlich) ist.

Definition 2.48
Sei k ∈ N mit k ⩾ 1.
Eine k-Färbung eines Graphen G = (V ,E) ist eine Abbildung f : V → [k], so dass für
alle Kanten {v ,w} ∈ E gilt: f (v) ̸= f (w).
G heißt k-färbbar, falls es eine k-Färbung von G gibt.

Satz 2.49
Sei k ∈ N mit k ⩾ 1.
Ein unendlicher Graph G mit Knotenmenge N ist genau dann k-färbbar, wenn jeder
endliche Subgraph von G k-färbbar ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 120

Kapitel 2: Aussagenlogik · Abschnitt 2.5: Der Endlichkeitssatz

Anwendung: Färbbarkeit
Definition:

• Ein (ungerichteter) Graph G = (V ,E) besteht aus einer nicht-leeren Menge V
und einer Menge E ⊆

{
{x , y} : x , y ∈ V , x ̸= y

}
. Die Elemente in V werden

Knoten und die Elemente in E werden (ungerichtete) Kanten genannt. Zwei
Knoten x , y ∈ V heißen benachbart, wenn {x , y} ∈ E .

• Ein Subgraph eines Graphen G = (V ,E) ist ein Graph H = (V ′,E ′) mit V ′ ⊆ V
und E ′ ⊆ E .

• Ein Graph G = (V ,E) heißt endlich (bzw. unendlich), wenn seine Knotenmenge
V endlich (bzw. unendlich) ist.

Definition 2.48
Sei k ∈ N mit k ⩾ 1.
Eine k-Färbung eines Graphen G = (V ,E) ist eine Abbildung f : V → [k], so dass für
alle Kanten {v ,w} ∈ E gilt: f (v) ̸= f (w).

G heißt k-färbbar, falls es eine k-Färbung von G gibt.

Satz 2.49
Sei k ∈ N mit k ⩾ 1.
Ein unendlicher Graph G mit Knotenmenge N ist genau dann k-färbbar, wenn jeder
endliche Subgraph von G k-färbbar ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 120

Kapitel 2: Aussagenlogik · Abschnitt 2.5: Der Endlichkeitssatz

Anwendung: Färbbarkeit
Definition:

• Ein (ungerichteter) Graph G = (V ,E) besteht aus einer nicht-leeren Menge V
und einer Menge E ⊆

{
{x , y} : x , y ∈ V , x ̸= y

}
. Die Elemente in V werden

Knoten und die Elemente in E werden (ungerichtete) Kanten genannt. Zwei
Knoten x , y ∈ V heißen benachbart, wenn {x , y} ∈ E .

• Ein Subgraph eines Graphen G = (V ,E) ist ein Graph H = (V ′,E ′) mit V ′ ⊆ V
und E ′ ⊆ E .

• Ein Graph G = (V ,E) heißt endlich (bzw. unendlich), wenn seine Knotenmenge
V endlich (bzw. unendlich) ist.

Definition 2.48
Sei k ∈ N mit k ⩾ 1.
Eine k-Färbung eines Graphen G = (V ,E) ist eine Abbildung f : V → [k], so dass für
alle Kanten {v ,w} ∈ E gilt: f (v) ̸= f (w).
G heißt k-färbbar, falls es eine k-Färbung von G gibt.

Satz 2.49
Sei k ∈ N mit k ⩾ 1.
Ein unendlicher Graph G mit Knotenmenge N ist genau dann k-färbbar, wenn jeder
endliche Subgraph von G k-färbbar ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 120

Kapitel 2: Aussagenlogik · Abschnitt 2.5: Der Endlichkeitssatz

Anwendung: Färbbarkeit
Definition:

• Ein (ungerichteter) Graph G = (V ,E) besteht aus einer nicht-leeren Menge V
und einer Menge E ⊆

{
{x , y} : x , y ∈ V , x ̸= y

}
. Die Elemente in V werden

Knoten und die Elemente in E werden (ungerichtete) Kanten genannt. Zwei
Knoten x , y ∈ V heißen benachbart, wenn {x , y} ∈ E .

• Ein Subgraph eines Graphen G = (V ,E) ist ein Graph H = (V ′,E ′) mit V ′ ⊆ V
und E ′ ⊆ E .

• Ein Graph G = (V ,E) heißt endlich (bzw. unendlich), wenn seine Knotenmenge
V endlich (bzw. unendlich) ist.

Definition 2.48
Sei k ∈ N mit k ⩾ 1.
Eine k-Färbung eines Graphen G = (V ,E) ist eine Abbildung f : V → [k], so dass für
alle Kanten {v ,w} ∈ E gilt: f (v) ̸= f (w).
G heißt k-färbbar, falls es eine k-Färbung von G gibt.

Satz 2.49
Sei k ∈ N mit k ⩾ 1.
Ein unendlicher Graph G mit Knotenmenge N ist genau dann k-färbbar, wenn jeder
endliche Subgraph von G k-färbbar ist.
Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 120

Abschnitt 2.6:

Resolution

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Um nachzuweisen, dass eine gegebene KNF-Formel unerfüllbar ist, ist das im
Folgenden vorgestellte Resolutionsverfahren nützlich.

Beispiel 2.50
Wir wollen nachweisen, dass die KNF-Formel

φ := (¬P ∨ ¬R) ∧ (P ∨ ¬R) ∧ (¬Q ∨ S) ∧ (Q ∨ R ∨ T) ∧ ¬T ∧ (¬S ∨ R)

unerfüllbar ist.

Dazu können wir wie folgt argumentieren:

Angenommen, eine Interpretation I erfüllt φ.

• Dann gilt I |= ¬T .

• Aus I |= Q ∨ R ∨ T und I |= ¬T folgt dann I |= Q ∨ R.

• Aus I |= Q ∨ R und I |= ¬Q ∨ S folgt I |= R ∨ S .

• Aus I |= R ∨ S und I |= ¬S ∨ R folgt I |= R.

• Aus I |= ¬P ∨ ¬R und I |= P ∨ ¬R folgt I |= ¬R.

Das ist ein Widerspruch. Somit ist φ nicht erfüllbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 121

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Um nachzuweisen, dass eine gegebene KNF-Formel unerfüllbar ist, ist das im
Folgenden vorgestellte Resolutionsverfahren nützlich.

Beispiel 2.50
Wir wollen nachweisen, dass die KNF-Formel

φ := (¬P ∨ ¬R) ∧ (P ∨ ¬R) ∧ (¬Q ∨ S) ∧ (Q ∨ R ∨ T) ∧ ¬T ∧ (¬S ∨ R)

unerfüllbar ist. Dazu können wir wie folgt argumentieren:

Angenommen, eine Interpretation I erfüllt φ.

• Dann gilt I |= ¬T .

• Aus I |= Q ∨ R ∨ T und I |= ¬T folgt dann I |= Q ∨ R.

• Aus I |= Q ∨ R und I |= ¬Q ∨ S folgt I |= R ∨ S .

• Aus I |= R ∨ S und I |= ¬S ∨ R folgt I |= R.

• Aus I |= ¬P ∨ ¬R und I |= P ∨ ¬R folgt I |= ¬R.

Das ist ein Widerspruch. Somit ist φ nicht erfüllbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 121

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Um nachzuweisen, dass eine gegebene KNF-Formel unerfüllbar ist, ist das im
Folgenden vorgestellte Resolutionsverfahren nützlich.

Beispiel 2.50
Wir wollen nachweisen, dass die KNF-Formel

φ := (¬P ∨ ¬R) ∧ (P ∨ ¬R) ∧ (¬Q ∨ S) ∧ (Q ∨ R ∨ T) ∧ ¬T ∧ (¬S ∨ R)

unerfüllbar ist. Dazu können wir wie folgt argumentieren:

Angenommen, eine Interpretation I erfüllt φ.

• Dann gilt I |= ¬T .

• Aus I |= Q ∨ R ∨ T und I |= ¬T folgt dann I |= Q ∨ R.

• Aus I |= Q ∨ R und I |= ¬Q ∨ S folgt I |= R ∨ S .

• Aus I |= R ∨ S und I |= ¬S ∨ R folgt I |= R.

• Aus I |= ¬P ∨ ¬R und I |= P ∨ ¬R folgt I |= ¬R.

Das ist ein Widerspruch. Somit ist φ nicht erfüllbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 121

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Um nachzuweisen, dass eine gegebene KNF-Formel unerfüllbar ist, ist das im
Folgenden vorgestellte Resolutionsverfahren nützlich.

Beispiel 2.50
Wir wollen nachweisen, dass die KNF-Formel

φ := (¬P ∨ ¬R) ∧ (P ∨ ¬R) ∧ (¬Q ∨ S) ∧ (Q ∨ R ∨ T) ∧ ¬T ∧ (¬S ∨ R)

unerfüllbar ist. Dazu können wir wie folgt argumentieren:

Angenommen, eine Interpretation I erfüllt φ.

• Dann gilt I |= ¬T .

• Aus I |= Q ∨ R ∨ T und I |= ¬T folgt dann I |= Q ∨ R.

• Aus I |= Q ∨ R und I |= ¬Q ∨ S folgt I |= R ∨ S .

• Aus I |= R ∨ S und I |= ¬S ∨ R folgt I |= R.

• Aus I |= ¬P ∨ ¬R und I |= P ∨ ¬R folgt I |= ¬R.

Das ist ein Widerspruch. Somit ist φ nicht erfüllbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 121

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Um nachzuweisen, dass eine gegebene KNF-Formel unerfüllbar ist, ist das im
Folgenden vorgestellte Resolutionsverfahren nützlich.

Beispiel 2.50
Wir wollen nachweisen, dass die KNF-Formel

φ := (¬P ∨ ¬R) ∧ (P ∨ ¬R) ∧ (¬Q ∨ S) ∧ (Q ∨ R ∨ T) ∧ ¬T ∧ (¬S ∨ R)

unerfüllbar ist. Dazu können wir wie folgt argumentieren:

Angenommen, eine Interpretation I erfüllt φ.

• Dann gilt I |= ¬T .

• Aus I |= Q ∨ R ∨ T und I |= ¬T folgt dann I |= Q ∨ R.

• Aus I |= Q ∨ R und I |= ¬Q ∨ S folgt I |= R ∨ S .

• Aus I |= R ∨ S und I |= ¬S ∨ R folgt I |= R.

• Aus I |= ¬P ∨ ¬R und I |= P ∨ ¬R folgt I |= ¬R.

Das ist ein Widerspruch. Somit ist φ nicht erfüllbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 121

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Um nachzuweisen, dass eine gegebene KNF-Formel unerfüllbar ist, ist das im
Folgenden vorgestellte Resolutionsverfahren nützlich.

Beispiel 2.50
Wir wollen nachweisen, dass die KNF-Formel

φ := (¬P ∨ ¬R) ∧ (P ∨ ¬R) ∧ (¬Q ∨ S) ∧ (Q ∨ R ∨ T) ∧ ¬T ∧ (¬S ∨ R)

unerfüllbar ist. Dazu können wir wie folgt argumentieren:

Angenommen, eine Interpretation I erfüllt φ.

• Dann gilt I |= ¬T .

• Aus I |= Q ∨ R ∨ T und I |= ¬T folgt dann I |= Q ∨ R.

• Aus I |= Q ∨ R und I |= ¬Q ∨ S folgt I |= R ∨ S .

• Aus I |= R ∨ S und I |= ¬S ∨ R folgt I |= R.

• Aus I |= ¬P ∨ ¬R und I |= P ∨ ¬R folgt I |= ¬R.

Das ist ein Widerspruch. Somit ist φ nicht erfüllbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 121

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Um nachzuweisen, dass eine gegebene KNF-Formel unerfüllbar ist, ist das im
Folgenden vorgestellte Resolutionsverfahren nützlich.

Beispiel 2.50
Wir wollen nachweisen, dass die KNF-Formel

φ := (¬P ∨ ¬R) ∧ (P ∨ ¬R) ∧ (¬Q ∨ S) ∧ (Q ∨ R ∨ T) ∧ ¬T ∧ (¬S ∨ R)

unerfüllbar ist. Dazu können wir wie folgt argumentieren:

Angenommen, eine Interpretation I erfüllt φ.

• Dann gilt I |= ¬T .

• Aus I |= Q ∨ R ∨ T und I |= ¬T folgt dann I |= Q ∨ R.

• Aus I |= Q ∨ R und I |= ¬Q ∨ S folgt I |= R ∨ S .

• Aus I |= R ∨ S und I |= ¬S ∨ R folgt I |= R.

• Aus I |= ¬P ∨ ¬R und I |= P ∨ ¬R folgt I |= ¬R.

Das ist ein Widerspruch. Somit ist φ nicht erfüllbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 121

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Umwandlung in kleine KNF-Formeln

Das Resolutionsverfahren, das wir im Folgenden vorstellen, funktioniert nur für
KNF-Formeln.

Wir wissen bereits:

• Zu jeder Formel φ gibt es eine äquivalente Formel in KNF.

• Aber möglicherweise ist die kleinste zu φ äquivalente KNF-Formel
exponentiell groß in der Größe von φ.

Wenn es uns nur um die Frage geht, ob eine Formel φ (un)erfüllbar ist, ist es
aber auch gar nicht nötig, eine zu φ äquivalente KNF-Formel zu finden. Es
reicht, eine zu φ erfüllbarkeitsäquivalente KNF-Formel zu konstruieren.

Definition 2.51
Zwei Formeln φ und ψ heißen erfüllbarkeitsäquivalent, falls gilt:

φ ist erfüllbar ⇐⇒ ψ ist erfüllbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 122

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Umwandlung in kleine KNF-Formeln

Das Resolutionsverfahren, das wir im Folgenden vorstellen, funktioniert nur für
KNF-Formeln.

Wir wissen bereits:

• Zu jeder Formel φ gibt es eine äquivalente Formel in KNF.

• Aber möglicherweise ist die kleinste zu φ äquivalente KNF-Formel
exponentiell groß in der Größe von φ.

Wenn es uns nur um die Frage geht, ob eine Formel φ (un)erfüllbar ist, ist es
aber auch gar nicht nötig, eine zu φ äquivalente KNF-Formel zu finden. Es
reicht, eine zu φ erfüllbarkeitsäquivalente KNF-Formel zu konstruieren.

Definition 2.51
Zwei Formeln φ und ψ heißen erfüllbarkeitsäquivalent, falls gilt:

φ ist erfüllbar ⇐⇒ ψ ist erfüllbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 122

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Umwandlung in kleine KNF-Formeln

Das Resolutionsverfahren, das wir im Folgenden vorstellen, funktioniert nur für
KNF-Formeln.

Wir wissen bereits:

• Zu jeder Formel φ gibt es eine äquivalente Formel in KNF.

• Aber möglicherweise ist die kleinste zu φ äquivalente KNF-Formel
exponentiell groß in der Größe von φ.

Wenn es uns nur um die Frage geht, ob eine Formel φ (un)erfüllbar ist, ist es
aber auch gar nicht nötig, eine zu φ äquivalente KNF-Formel zu finden.

Es
reicht, eine zu φ erfüllbarkeitsäquivalente KNF-Formel zu konstruieren.

Definition 2.51
Zwei Formeln φ und ψ heißen erfüllbarkeitsäquivalent, falls gilt:

φ ist erfüllbar ⇐⇒ ψ ist erfüllbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 122

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Umwandlung in kleine KNF-Formeln

Das Resolutionsverfahren, das wir im Folgenden vorstellen, funktioniert nur für
KNF-Formeln.

Wir wissen bereits:

• Zu jeder Formel φ gibt es eine äquivalente Formel in KNF.

• Aber möglicherweise ist die kleinste zu φ äquivalente KNF-Formel
exponentiell groß in der Größe von φ.

Wenn es uns nur um die Frage geht, ob eine Formel φ (un)erfüllbar ist, ist es
aber auch gar nicht nötig, eine zu φ äquivalente KNF-Formel zu finden. Es
reicht, eine zu φ erfüllbarkeitsäquivalente KNF-Formel zu konstruieren.

Definition 2.51
Zwei Formeln φ und ψ heißen erfüllbarkeitsäquivalent, falls gilt:

φ ist erfüllbar ⇐⇒ ψ ist erfüllbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 122

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Umwandlung in kleine KNF-Formeln

Das Resolutionsverfahren, das wir im Folgenden vorstellen, funktioniert nur für
KNF-Formeln.

Wir wissen bereits:

• Zu jeder Formel φ gibt es eine äquivalente Formel in KNF.

• Aber möglicherweise ist die kleinste zu φ äquivalente KNF-Formel
exponentiell groß in der Größe von φ.

Wenn es uns nur um die Frage geht, ob eine Formel φ (un)erfüllbar ist, ist es
aber auch gar nicht nötig, eine zu φ äquivalente KNF-Formel zu finden. Es
reicht, eine zu φ erfüllbarkeitsäquivalente KNF-Formel zu konstruieren.

Definition 2.51
Zwei Formeln φ und ψ heißen erfüllbarkeitsäquivalent, falls gilt:

φ ist erfüllbar ⇐⇒ ψ ist erfüllbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 122

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Eine beliebige Formel in eine erfüllbarkeitsäquivalente KNF-Formel
umzuwandeln, ist in Linearzeit möglich.

Beispiel 2.52
Um die Formel

φ := (P → ¬Q) ∨ (¬ (P ∧ Q) ∧ R)

in eine erfüllbarkeitsäquivalente KNF-Formel umzuformen, können wir wie folgt
vorgehen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 123

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Eine beliebige Formel in eine erfüllbarkeitsäquivalente KNF-Formel
umzuwandeln, ist in Linearzeit möglich.

Beispiel 2.52
Um die Formel

φ := (P → ¬Q) ∨ (¬ (P ∧ Q) ∧ R)

in eine erfüllbarkeitsäquivalente KNF-Formel umzuformen, können wir wie folgt
vorgehen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 123

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Das Tseitin-Verfahren
Auf die gleiche Weise wie in Beispiel 2.52 können wir jede beliebige
aussagenlogische Formel in eine erfüllbarkeitsäquivalente KNF-Formel
umwandeln.

Dieses Verfahren wird Tseitin-Verfahren genannt. Eine
Laufzeitanalyse zeigt, dass das Tseitin-Verfahren in Linearzeit durchgeführt
werden kann. Insgesamt erhalten wir so den folgenden Satz.

Satz 2.53
Zu jeder aussagenlogischen Formel φ gibt es eine aussagenlogische Formel φK

mit folgenden Eigenschaften:

(a) φK ist erfüllbarkeitsäquivalent zu φ.

(b) φK ist in 3-KNF, d.h., in KNF, wobei jede disjunktive Klausel aus
höchstens 3 Literalen besteht (wir sagen: die Klauseln haben Länge ⩽ 3).

(c) |φK | = O(|φ|).
Außerdem gibt es einen Algorithmus, der φK bei Eingabe von φ in Linearzeit
berechnet.

Notation
|φ| bezeichnet die Länge (bzw. Größe) einer aussagenlogischen Formel φ, d.h.
die Länge von φ aufgefasst als Wort über dem Alphabet AAL.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 124

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Das Tseitin-Verfahren
Auf die gleiche Weise wie in Beispiel 2.52 können wir jede beliebige
aussagenlogische Formel in eine erfüllbarkeitsäquivalente KNF-Formel
umwandeln. Dieses Verfahren wird Tseitin-Verfahren genannt.

Eine
Laufzeitanalyse zeigt, dass das Tseitin-Verfahren in Linearzeit durchgeführt
werden kann. Insgesamt erhalten wir so den folgenden Satz.

Satz 2.53
Zu jeder aussagenlogischen Formel φ gibt es eine aussagenlogische Formel φK

mit folgenden Eigenschaften:

(a) φK ist erfüllbarkeitsäquivalent zu φ.

(b) φK ist in 3-KNF, d.h., in KNF, wobei jede disjunktive Klausel aus
höchstens 3 Literalen besteht (wir sagen: die Klauseln haben Länge ⩽ 3).

(c) |φK | = O(|φ|).
Außerdem gibt es einen Algorithmus, der φK bei Eingabe von φ in Linearzeit
berechnet.

Notation
|φ| bezeichnet die Länge (bzw. Größe) einer aussagenlogischen Formel φ, d.h.
die Länge von φ aufgefasst als Wort über dem Alphabet AAL.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 124

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Das Tseitin-Verfahren
Auf die gleiche Weise wie in Beispiel 2.52 können wir jede beliebige
aussagenlogische Formel in eine erfüllbarkeitsäquivalente KNF-Formel
umwandeln. Dieses Verfahren wird Tseitin-Verfahren genannt. Eine
Laufzeitanalyse zeigt, dass das Tseitin-Verfahren in Linearzeit durchgeführt
werden kann.

Insgesamt erhalten wir so den folgenden Satz.

Satz 2.53
Zu jeder aussagenlogischen Formel φ gibt es eine aussagenlogische Formel φK

mit folgenden Eigenschaften:

(a) φK ist erfüllbarkeitsäquivalent zu φ.

(b) φK ist in 3-KNF, d.h., in KNF, wobei jede disjunktive Klausel aus
höchstens 3 Literalen besteht (wir sagen: die Klauseln haben Länge ⩽ 3).

(c) |φK | = O(|φ|).
Außerdem gibt es einen Algorithmus, der φK bei Eingabe von φ in Linearzeit
berechnet.

Notation
|φ| bezeichnet die Länge (bzw. Größe) einer aussagenlogischen Formel φ, d.h.
die Länge von φ aufgefasst als Wort über dem Alphabet AAL.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 124

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Das Tseitin-Verfahren
Auf die gleiche Weise wie in Beispiel 2.52 können wir jede beliebige
aussagenlogische Formel in eine erfüllbarkeitsäquivalente KNF-Formel
umwandeln. Dieses Verfahren wird Tseitin-Verfahren genannt. Eine
Laufzeitanalyse zeigt, dass das Tseitin-Verfahren in Linearzeit durchgeführt
werden kann. Insgesamt erhalten wir so den folgenden Satz.

Satz 2.53
Zu jeder aussagenlogischen Formel φ gibt es eine aussagenlogische Formel φK

mit folgenden Eigenschaften:

(a) φK ist erfüllbarkeitsäquivalent zu φ.

(b) φK ist in 3-KNF, d.h., in KNF, wobei jede disjunktive Klausel aus
höchstens 3 Literalen besteht (wir sagen: die Klauseln haben Länge ⩽ 3).

(c) |φK | = O(|φ|).
Außerdem gibt es einen Algorithmus, der φK bei Eingabe von φ in Linearzeit
berechnet.

Notation
|φ| bezeichnet die Länge (bzw. Größe) einer aussagenlogischen Formel φ, d.h.
die Länge von φ aufgefasst als Wort über dem Alphabet AAL.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 124

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Das Tseitin-Verfahren
Auf die gleiche Weise wie in Beispiel 2.52 können wir jede beliebige
aussagenlogische Formel in eine erfüllbarkeitsäquivalente KNF-Formel
umwandeln. Dieses Verfahren wird Tseitin-Verfahren genannt. Eine
Laufzeitanalyse zeigt, dass das Tseitin-Verfahren in Linearzeit durchgeführt
werden kann. Insgesamt erhalten wir so den folgenden Satz.

Satz 2.53
Zu jeder aussagenlogischen Formel φ gibt es eine aussagenlogische Formel φK

mit folgenden Eigenschaften:

(a) φK ist erfüllbarkeitsäquivalent zu φ.

(b) φK ist in 3-KNF, d.h., in KNF, wobei jede disjunktive Klausel aus
höchstens 3 Literalen besteht (wir sagen: die Klauseln haben Länge ⩽ 3).

(c) |φK | = O(|φ|).
Außerdem gibt es einen Algorithmus, der φK bei Eingabe von φ in Linearzeit
berechnet.

Notation
|φ| bezeichnet die Länge (bzw. Größe) einer aussagenlogischen Formel φ, d.h.
die Länge von φ aufgefasst als Wort über dem Alphabet AAL.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 124

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Das Tseitin-Verfahren
Auf die gleiche Weise wie in Beispiel 2.52 können wir jede beliebige
aussagenlogische Formel in eine erfüllbarkeitsäquivalente KNF-Formel
umwandeln. Dieses Verfahren wird Tseitin-Verfahren genannt. Eine
Laufzeitanalyse zeigt, dass das Tseitin-Verfahren in Linearzeit durchgeführt
werden kann. Insgesamt erhalten wir so den folgenden Satz.

Satz 2.53
Zu jeder aussagenlogischen Formel φ gibt es eine aussagenlogische Formel φK

mit folgenden Eigenschaften:

(a) φK ist erfüllbarkeitsäquivalent zu φ.

(b) φK ist in 3-KNF, d.h., in KNF, wobei jede disjunktive Klausel aus
höchstens 3 Literalen besteht (wir sagen: die Klauseln haben Länge ⩽ 3).

(c) |φK | = O(|φ|).
Außerdem gibt es einen Algorithmus, der φK bei Eingabe von φ in Linearzeit
berechnet.

Notation
|φ| bezeichnet die Länge (bzw. Größe) einer aussagenlogischen Formel φ, d.h.
die Länge von φ aufgefasst als Wort über dem Alphabet AAL.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 124

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Das Tseitin-Verfahren
Auf die gleiche Weise wie in Beispiel 2.52 können wir jede beliebige
aussagenlogische Formel in eine erfüllbarkeitsäquivalente KNF-Formel
umwandeln. Dieses Verfahren wird Tseitin-Verfahren genannt. Eine
Laufzeitanalyse zeigt, dass das Tseitin-Verfahren in Linearzeit durchgeführt
werden kann. Insgesamt erhalten wir so den folgenden Satz.

Satz 2.53
Zu jeder aussagenlogischen Formel φ gibt es eine aussagenlogische Formel φK

mit folgenden Eigenschaften:

(a) φK ist erfüllbarkeitsäquivalent zu φ.

(b) φK ist in 3-KNF, d.h., in KNF, wobei jede disjunktive Klausel aus
höchstens 3 Literalen besteht (wir sagen: die Klauseln haben Länge ⩽ 3).

(c) |φK | = O(|φ|).
Außerdem gibt es einen Algorithmus, der φK bei Eingabe von φ in Linearzeit
berechnet.

Notation
|φ| bezeichnet die Länge (bzw. Größe) einer aussagenlogischen Formel φ, d.h.
die Länge von φ aufgefasst als Wort über dem Alphabet AAL.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 124

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Repräsentation von KNF-Formeln
Für den Rest diese Abschnitts werden wir nur noch KNF-Formeln betrachten,
und wenn wir von Klauseln sprechen, meinen wir stets disjunktive Klauseln, also
Disjunktionen von Literalen.

Für das Resolutionsverfahren ist die folgende Repräsentation von Klauseln und
KNF-Formeln sehr hilfreich:

• Eine Klausel (λ1 ∨ · · · ∨ λℓ), die aus Literalen λ1, . . . , λℓ besteht,
identifizieren wir mit der Menge {λ1, . . . , λℓ} ihrer Literale.

Beispiel: Wir schreiben z.B. {A1,¬A2,A3} um die Klausel (A1 ∨¬A2 ∨A3)
zu bezeichnen.

D.h.: Ab jetzt sind disjunktive Klauseln für uns dasselbe wie endliche
Mengen von Literalen. Wenn wir von einer Klausel sprechen, meinen wir
eine endliche Menge von Literalen und identifizieren diese mit der Formel,
die aus der Disjunktion all dieser Literale besteht.

Spezialfall: Die leere Menge ∅ entspricht der unerfüllbaren Formel 0 (die
wiederum der

”
Formel“ entspricht, die aus der Disjunktion aller Literale aus

∅ besteht).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 125

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Repräsentation von KNF-Formeln
Für den Rest diese Abschnitts werden wir nur noch KNF-Formeln betrachten,
und wenn wir von Klauseln sprechen, meinen wir stets disjunktive Klauseln, also
Disjunktionen von Literalen.

Für das Resolutionsverfahren ist die folgende Repräsentation von Klauseln und
KNF-Formeln sehr hilfreich:

• Eine Klausel (λ1 ∨ · · · ∨ λℓ), die aus Literalen λ1, . . . , λℓ besteht,
identifizieren wir mit der Menge {λ1, . . . , λℓ} ihrer Literale.

Beispiel: Wir schreiben z.B. {A1,¬A2,A3} um die Klausel (A1 ∨¬A2 ∨A3)
zu bezeichnen.

D.h.: Ab jetzt sind disjunktive Klauseln für uns dasselbe wie endliche
Mengen von Literalen. Wenn wir von einer Klausel sprechen, meinen wir
eine endliche Menge von Literalen und identifizieren diese mit der Formel,
die aus der Disjunktion all dieser Literale besteht.

Spezialfall: Die leere Menge ∅ entspricht der unerfüllbaren Formel 0 (die
wiederum der

”
Formel“ entspricht, die aus der Disjunktion aller Literale aus

∅ besteht).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 125

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Repräsentation von KNF-Formeln
Für den Rest diese Abschnitts werden wir nur noch KNF-Formeln betrachten,
und wenn wir von Klauseln sprechen, meinen wir stets disjunktive Klauseln, also
Disjunktionen von Literalen.

Für das Resolutionsverfahren ist die folgende Repräsentation von Klauseln und
KNF-Formeln sehr hilfreich:

• Eine Klausel (λ1 ∨ · · · ∨ λℓ), die aus Literalen λ1, . . . , λℓ besteht,
identifizieren wir mit der Menge {λ1, . . . , λℓ} ihrer Literale.

Beispiel: Wir schreiben z.B. {A1,¬A2,A3} um die Klausel (A1 ∨¬A2 ∨A3)
zu bezeichnen.

D.h.: Ab jetzt sind disjunktive Klauseln für uns dasselbe wie endliche
Mengen von Literalen. Wenn wir von einer Klausel sprechen, meinen wir
eine endliche Menge von Literalen und identifizieren diese mit der Formel,
die aus der Disjunktion all dieser Literale besteht.

Spezialfall: Die leere Menge ∅ entspricht der unerfüllbaren Formel 0 (die
wiederum der

”
Formel“ entspricht, die aus der Disjunktion aller Literale aus

∅ besteht).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 125

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Repräsentation von KNF-Formeln
Für den Rest diese Abschnitts werden wir nur noch KNF-Formeln betrachten,
und wenn wir von Klauseln sprechen, meinen wir stets disjunktive Klauseln, also
Disjunktionen von Literalen.

Für das Resolutionsverfahren ist die folgende Repräsentation von Klauseln und
KNF-Formeln sehr hilfreich:

• Eine Klausel (λ1 ∨ · · · ∨ λℓ), die aus Literalen λ1, . . . , λℓ besteht,
identifizieren wir mit der Menge {λ1, . . . , λℓ} ihrer Literale.

Beispiel: Wir schreiben z.B. {A1,¬A2,A3} um die Klausel (A1 ∨¬A2 ∨A3)
zu bezeichnen.

D.h.: Ab jetzt sind disjunktive Klauseln für uns dasselbe wie endliche
Mengen von Literalen. Wenn wir von einer Klausel sprechen, meinen wir
eine endliche Menge von Literalen und identifizieren diese mit der Formel,
die aus der Disjunktion all dieser Literale besteht.

Spezialfall: Die leere Menge ∅ entspricht der unerfüllbaren Formel 0 (die
wiederum der

”
Formel“ entspricht, die aus der Disjunktion aller Literale aus

∅ besteht).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 125

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Repräsentation von KNF-Formeln
Für den Rest diese Abschnitts werden wir nur noch KNF-Formeln betrachten,
und wenn wir von Klauseln sprechen, meinen wir stets disjunktive Klauseln, also
Disjunktionen von Literalen.

Für das Resolutionsverfahren ist die folgende Repräsentation von Klauseln und
KNF-Formeln sehr hilfreich:

• Eine Klausel (λ1 ∨ · · · ∨ λℓ), die aus Literalen λ1, . . . , λℓ besteht,
identifizieren wir mit der Menge {λ1, . . . , λℓ} ihrer Literale.

Beispiel: Wir schreiben z.B. {A1,¬A2,A3} um die Klausel (A1 ∨¬A2 ∨A3)
zu bezeichnen.

D.h.: Ab jetzt sind disjunktive Klauseln für uns dasselbe wie endliche
Mengen von Literalen. Wenn wir von einer Klausel sprechen, meinen wir
eine endliche Menge von Literalen und identifizieren diese mit der Formel,
die aus der Disjunktion all dieser Literale besteht.

Spezialfall: Die leere Menge ∅ entspricht der unerfüllbaren Formel 0 (die
wiederum der

”
Formel“ entspricht, die aus der Disjunktion aller Literale aus

∅ besteht).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 125

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

• Eine KNF-Formel φ =
m∧
i=1

γi , die aus (disjunktiven) Klauseln γ1, . . . , γm

besteht, identifizieren wir mit der Menge Γ := {γ1, . . . , γm} ihrer Klauseln.

Offensichtlicherweise gilt für alle Interpretationen I:

I |= φ ⇐⇒ I |= Γ.

Beispiel: Die KNF-Formel φ = A1 ∧ (¬A2 ∨ A1) ∧ (A3 ∨ ¬A2 ∨ ¬A1)
repräsentieren wir durch die endliche Klauselmenge{

A1, (¬A2 ∨ A1), (A3 ∨ ¬A2 ∨ ¬A1)
}

bzw. durch {
{A1}, {¬A2,A1}, {A3,¬A2,¬A1}

}
”
Erfüllbarkeit von KNF-Formeln“ ist damit im Wesentlichen dasselbe Problem
wie

”
Erfüllbarkeit von endlichen Mengen von Klauseln“.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 126

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

• Eine KNF-Formel φ =
m∧
i=1

γi , die aus (disjunktiven) Klauseln γ1, . . . , γm

besteht, identifizieren wir mit der Menge Γ := {γ1, . . . , γm} ihrer Klauseln.

Offensichtlicherweise gilt für alle Interpretationen I:

I |= φ ⇐⇒ I |= Γ.

Beispiel: Die KNF-Formel φ = A1 ∧ (¬A2 ∨ A1) ∧ (A3 ∨ ¬A2 ∨ ¬A1)
repräsentieren wir durch die endliche Klauselmenge{

A1, (¬A2 ∨ A1), (A3 ∨ ¬A2 ∨ ¬A1)
}

bzw. durch {
{A1}, {¬A2,A1}, {A3,¬A2,¬A1}

}
”
Erfüllbarkeit von KNF-Formeln“ ist damit im Wesentlichen dasselbe Problem
wie

”
Erfüllbarkeit von endlichen Mengen von Klauseln“.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 126

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

• Eine KNF-Formel φ =
m∧
i=1

γi , die aus (disjunktiven) Klauseln γ1, . . . , γm

besteht, identifizieren wir mit der Menge Γ := {γ1, . . . , γm} ihrer Klauseln.

Offensichtlicherweise gilt für alle Interpretationen I:

I |= φ ⇐⇒ I |= Γ.

Beispiel: Die KNF-Formel φ = A1 ∧ (¬A2 ∨ A1) ∧ (A3 ∨ ¬A2 ∨ ¬A1)
repräsentieren wir durch die endliche Klauselmenge{

A1, (¬A2 ∨ A1), (A3 ∨ ¬A2 ∨ ¬A1)
}

bzw. durch {
{A1}, {¬A2,A1}, {A3,¬A2,¬A1}

}
”
Erfüllbarkeit von KNF-Formeln“ ist damit im Wesentlichen dasselbe Problem
wie

”
Erfüllbarkeit von endlichen Mengen von Klauseln“.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 126

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

• Eine KNF-Formel φ =
m∧
i=1

γi , die aus (disjunktiven) Klauseln γ1, . . . , γm

besteht, identifizieren wir mit der Menge Γ := {γ1, . . . , γm} ihrer Klauseln.

Offensichtlicherweise gilt für alle Interpretationen I:

I |= φ ⇐⇒ I |= Γ.

Beispiel: Die KNF-Formel φ = A1 ∧ (¬A2 ∨ A1) ∧ (A3 ∨ ¬A2 ∨ ¬A1)
repräsentieren wir durch die endliche Klauselmenge{

A1, (¬A2 ∨ A1), (A3 ∨ ¬A2 ∨ ¬A1)
}

bzw. durch {
{A1}, {¬A2,A1}, {A3,¬A2,¬A1}

}

”
Erfüllbarkeit von KNF-Formeln“ ist damit im Wesentlichen dasselbe Problem
wie

”
Erfüllbarkeit von endlichen Mengen von Klauseln“.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 126

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

• Eine KNF-Formel φ =
m∧
i=1

γi , die aus (disjunktiven) Klauseln γ1, . . . , γm

besteht, identifizieren wir mit der Menge Γ := {γ1, . . . , γm} ihrer Klauseln.

Offensichtlicherweise gilt für alle Interpretationen I:

I |= φ ⇐⇒ I |= Γ.

Beispiel: Die KNF-Formel φ = A1 ∧ (¬A2 ∨ A1) ∧ (A3 ∨ ¬A2 ∨ ¬A1)
repräsentieren wir durch die endliche Klauselmenge{

A1, (¬A2 ∨ A1), (A3 ∨ ¬A2 ∨ ¬A1)
}

bzw. durch {
{A1}, {¬A2,A1}, {A3,¬A2,¬A1}

}
”
Erfüllbarkeit von KNF-Formeln“ ist damit im Wesentlichen dasselbe Problem
wie

”
Erfüllbarkeit von endlichen Mengen von Klauseln“.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 126

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Resolution
Notation
Für ein Literal λ sei

λ̄ :=

{
¬X , falls λ von der Form X für ein X ∈ AS ist

X , falls λ von der Form ¬X für ein X ∈ AS ist.

Wir nennen λ auch das Negat von λ.

Definition 2.54 (Resolutionsregel)
Seien γ1, γ2 und δ endliche Mengen von Literalen (d.h. disjunktive Klauseln). Dann ist
δ eine Resolvente von γ1 und γ2, wenn es ein Literal λ gibt, so dass gilt:

λ ∈ γ1, λ ∈ γ2 und δ =
(
γ1 \ {λ}

)
∪

(
γ2 \ {λ }

)
.

Graphische Darstellung:

δ

γ1 γ2

”
δ ist eine Resolvente von γ1 und γ2.“

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 127

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Resolution
Notation
Für ein Literal λ sei

λ̄ :=

{
¬X , falls λ von der Form X für ein X ∈ AS ist

X , falls λ von der Form ¬X für ein X ∈ AS ist.

Wir nennen λ auch das Negat von λ.

Definition 2.54 (Resolutionsregel)
Seien γ1, γ2 und δ endliche Mengen von Literalen (d.h. disjunktive Klauseln). Dann ist
δ eine Resolvente von γ1 und γ2, wenn es ein Literal λ gibt, so dass gilt:

λ ∈ γ1, λ ∈ γ2 und δ =
(
γ1 \ {λ}

)
∪

(
γ2 \ {λ }

)
.

Graphische Darstellung:

δ

γ1 γ2

”
δ ist eine Resolvente von γ1 und γ2.“

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 127

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Resolution
Notation
Für ein Literal λ sei

λ̄ :=

{
¬X , falls λ von der Form X für ein X ∈ AS ist

X , falls λ von der Form ¬X für ein X ∈ AS ist.

Wir nennen λ auch das Negat von λ.

Definition 2.54 (Resolutionsregel)
Seien γ1, γ2 und δ endliche Mengen von Literalen (d.h. disjunktive Klauseln). Dann ist
δ eine Resolvente von γ1 und γ2, wenn es ein Literal λ gibt, so dass gilt:

λ ∈ γ1, λ ∈ γ2 und δ =
(
γ1 \ {λ}

)
∪

(
γ2 \ {λ }

)
.

Graphische Darstellung:

δ

γ1 γ2

”
δ ist eine Resolvente von γ1 und γ2.“

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 127

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Das Resolutionslemma

Notation
Ein Klausel ist eine endliche Menge von Literalen (eine solche Klausel
repräsentiert die Disjunktion der in ihr enthaltenen Literale).

Eine Klauselmenge ist eine (endliche oder unendliche) Menge von Klauseln.

Lemma 2.55 (Resolutionslemma)
Sei Γ eine Klauselmenge, seien γ1, γ2 ∈ Γ und sei δ eine Resolvente von γ1 und
γ2. Dann sind die Klauselmengen Γ und Γ ∪ {δ} äquivalent.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 128

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Das Resolutionslemma

Notation
Ein Klausel ist eine endliche Menge von Literalen (eine solche Klausel
repräsentiert die Disjunktion der in ihr enthaltenen Literale).
Eine Klauselmenge ist eine (endliche oder unendliche) Menge von Klauseln.

Lemma 2.55 (Resolutionslemma)
Sei Γ eine Klauselmenge, seien γ1, γ2 ∈ Γ und sei δ eine Resolvente von γ1 und
γ2. Dann sind die Klauselmengen Γ und Γ ∪ {δ} äquivalent.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 128

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Das Resolutionslemma

Notation
Ein Klausel ist eine endliche Menge von Literalen (eine solche Klausel
repräsentiert die Disjunktion der in ihr enthaltenen Literale).
Eine Klauselmenge ist eine (endliche oder unendliche) Menge von Klauseln.

Lemma 2.55 (Resolutionslemma)
Sei Γ eine Klauselmenge, seien γ1, γ2 ∈ Γ und sei δ eine Resolvente von γ1 und
γ2. Dann sind die Klauselmengen Γ und Γ ∪ {δ} äquivalent.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 128

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Resolutionsableitungen und -widerlegungen

Definition 2.56
Sei Γ eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel δ aus Γ ist

ein Tupel (δ1, . . . , δℓ)
von Klauseln, so dass gilt: ℓ ⩾ 1, δℓ = δ, und für alle i ∈ [ℓ] ist

• δi ∈ Γ, oder

• es gibt j , k ∈ [i−1], so dass δi eine Resolvente von δj und δk ist.

(b) Eine Resolutionswiderlegung von Γ ist eine Resolutionsableitung der
leeren Klausel aus Γ.

Zur Erinnerung:
Eine Klausel δ ist genau dann eine Resolvente zweier Klauseln γ1 und γ2, wenn
es ein Literal λ gibt, so dass gilt:

λ ∈ γ1, λ ∈ γ2 und δ =
(
γ1 \ {λ}

)
∪

(
γ2 \ {λ }

)
.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 129

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Resolutionsableitungen und -widerlegungen

Definition 2.56
Sei Γ eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel δ aus Γ ist ein Tupel (δ1, . . . , δℓ)
von Klauseln, so dass gilt: ℓ ⩾ 1,

δℓ = δ, und für alle i ∈ [ℓ] ist

• δi ∈ Γ, oder

• es gibt j , k ∈ [i−1], so dass δi eine Resolvente von δj und δk ist.

(b) Eine Resolutionswiderlegung von Γ ist eine Resolutionsableitung der
leeren Klausel aus Γ.

Zur Erinnerung:
Eine Klausel δ ist genau dann eine Resolvente zweier Klauseln γ1 und γ2, wenn
es ein Literal λ gibt, so dass gilt:

λ ∈ γ1, λ ∈ γ2 und δ =
(
γ1 \ {λ}

)
∪

(
γ2 \ {λ }

)
.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 129

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Resolutionsableitungen und -widerlegungen

Definition 2.56
Sei Γ eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel δ aus Γ ist ein Tupel (δ1, . . . , δℓ)
von Klauseln, so dass gilt: ℓ ⩾ 1, δℓ = δ,

und für alle i ∈ [ℓ] ist

• δi ∈ Γ, oder

• es gibt j , k ∈ [i−1], so dass δi eine Resolvente von δj und δk ist.

(b) Eine Resolutionswiderlegung von Γ ist eine Resolutionsableitung der
leeren Klausel aus Γ.

Zur Erinnerung:
Eine Klausel δ ist genau dann eine Resolvente zweier Klauseln γ1 und γ2, wenn
es ein Literal λ gibt, so dass gilt:

λ ∈ γ1, λ ∈ γ2 und δ =
(
γ1 \ {λ}

)
∪

(
γ2 \ {λ }

)
.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 129

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Resolutionsableitungen und -widerlegungen

Definition 2.56
Sei Γ eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel δ aus Γ ist ein Tupel (δ1, . . . , δℓ)
von Klauseln, so dass gilt: ℓ ⩾ 1, δℓ = δ, und für alle i ∈ [ℓ] ist

• δi ∈ Γ, oder

• es gibt j , k ∈ [i−1], so dass δi eine Resolvente von δj und δk ist.

(b) Eine Resolutionswiderlegung von Γ ist eine Resolutionsableitung der
leeren Klausel aus Γ.

Zur Erinnerung:
Eine Klausel δ ist genau dann eine Resolvente zweier Klauseln γ1 und γ2, wenn
es ein Literal λ gibt, so dass gilt:

λ ∈ γ1, λ ∈ γ2 und δ =
(
γ1 \ {λ}

)
∪

(
γ2 \ {λ }

)
.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 129

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Resolutionsableitungen und -widerlegungen

Definition 2.56
Sei Γ eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel δ aus Γ ist ein Tupel (δ1, . . . , δℓ)
von Klauseln, so dass gilt: ℓ ⩾ 1, δℓ = δ, und für alle i ∈ [ℓ] ist

• δi ∈ Γ, oder

• es gibt j , k ∈ [i−1], so dass δi eine Resolvente von δj und δk ist.

(b) Eine Resolutionswiderlegung von Γ ist eine Resolutionsableitung der
leeren Klausel aus Γ.

Zur Erinnerung:
Eine Klausel δ ist genau dann eine Resolvente zweier Klauseln γ1 und γ2, wenn
es ein Literal λ gibt, so dass gilt:

λ ∈ γ1, λ ∈ γ2 und δ =
(
γ1 \ {λ}

)
∪

(
γ2 \ {λ }

)
.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 129

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Resolutionsableitungen und -widerlegungen

Definition 2.56
Sei Γ eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel δ aus Γ ist ein Tupel (δ1, . . . , δℓ)
von Klauseln, so dass gilt: ℓ ⩾ 1, δℓ = δ, und für alle i ∈ [ℓ] ist

• δi ∈ Γ, oder

• es gibt j , k ∈ [i−1], so dass δi eine Resolvente von δj und δk ist.

(b) Eine Resolutionswiderlegung von Γ ist eine Resolutionsableitung der
leeren Klausel aus Γ.

Zur Erinnerung:
Eine Klausel δ ist genau dann eine Resolvente zweier Klauseln γ1 und γ2, wenn
es ein Literal λ gibt, so dass gilt:

λ ∈ γ1, λ ∈ γ2 und δ =
(
γ1 \ {λ}

)
∪

(
γ2 \ {λ }

)
.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 129

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Resolutionsableitungen und -widerlegungen

Definition 2.56
Sei Γ eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel δ aus Γ ist ein Tupel (δ1, . . . , δℓ)
von Klauseln, so dass gilt: ℓ ⩾ 1, δℓ = δ, und für alle i ∈ [ℓ] ist

• δi ∈ Γ, oder

• es gibt j , k ∈ [i−1], so dass δi eine Resolvente von δj und δk ist.

(b) Eine Resolutionswiderlegung von Γ ist eine Resolutionsableitung der
leeren Klausel aus Γ.

Zur Erinnerung:
Eine Klausel δ ist genau dann eine Resolvente zweier Klauseln γ1 und γ2, wenn

es ein Literal λ gibt, so dass gilt:

λ ∈ γ1, λ ∈ γ2 und δ =
(
γ1 \ {λ}

)
∪

(
γ2 \ {λ }

)
.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 129

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Resolutionsableitungen und -widerlegungen

Definition 2.56
Sei Γ eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel δ aus Γ ist ein Tupel (δ1, . . . , δℓ)
von Klauseln, so dass gilt: ℓ ⩾ 1, δℓ = δ, und für alle i ∈ [ℓ] ist

• δi ∈ Γ, oder

• es gibt j , k ∈ [i−1], so dass δi eine Resolvente von δj und δk ist.

(b) Eine Resolutionswiderlegung von Γ ist eine Resolutionsableitung der
leeren Klausel aus Γ.

Zur Erinnerung:
Eine Klausel δ ist genau dann eine Resolvente zweier Klauseln γ1 und γ2, wenn
es ein Literal λ gibt, so dass gilt:

λ ∈ γ1, λ ∈ γ2 und δ =

(
γ1 \ {λ}

)
∪

(
γ2 \ {λ }

)
.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 129

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Resolutionsableitungen und -widerlegungen

Definition 2.56
Sei Γ eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel δ aus Γ ist ein Tupel (δ1, . . . , δℓ)
von Klauseln, so dass gilt: ℓ ⩾ 1, δℓ = δ, und für alle i ∈ [ℓ] ist

• δi ∈ Γ, oder

• es gibt j , k ∈ [i−1], so dass δi eine Resolvente von δj und δk ist.

(b) Eine Resolutionswiderlegung von Γ ist eine Resolutionsableitung der
leeren Klausel aus Γ.

Zur Erinnerung:
Eine Klausel δ ist genau dann eine Resolvente zweier Klauseln γ1 und γ2, wenn
es ein Literal λ gibt, so dass gilt:

λ ∈ γ1, λ ∈ γ2 und δ =
(
γ1 \ {λ}

)
∪

(
γ2 \ {λ }

)
.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 129

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Notation 2.57
(a) Wir schreiben kurz Γ ⊢R δ um auszudrücken, dass es eine

Resolutionsableitung von δ aus Γ gibt.

Insbesondere bedeutet Γ ⊢R ∅, dass es eine Resolutionswiderlegung von Γ
gibt.

(b) An Stelle von (δ1, . . . , δℓ) schreiben wir Resolutionsableitungen der
besseren Lesbarkeit halber oft zeilenweise, also

(1) δ1
(2) δ2
...

(ℓ) δℓ

und geben am Ende jeder Zeile eine kurze Begründung an.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 130

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Notation 2.57
(a) Wir schreiben kurz Γ ⊢R δ um auszudrücken, dass es eine

Resolutionsableitung von δ aus Γ gibt.

Insbesondere bedeutet Γ ⊢R ∅, dass es eine Resolutionswiderlegung von Γ
gibt.

(b) An Stelle von (δ1, . . . , δℓ) schreiben wir Resolutionsableitungen der
besseren Lesbarkeit halber oft zeilenweise, also

(1) δ1
(2) δ2
...

(ℓ) δℓ

und geben am Ende jeder Zeile eine kurze Begründung an.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 130

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Notation 2.57
(a) Wir schreiben kurz Γ ⊢R δ um auszudrücken, dass es eine

Resolutionsableitung von δ aus Γ gibt.

Insbesondere bedeutet Γ ⊢R ∅, dass es eine Resolutionswiderlegung von Γ
gibt.

(b) An Stelle von (δ1, . . . , δℓ) schreiben wir Resolutionsableitungen der
besseren Lesbarkeit halber oft zeilenweise, also

(1) δ1
(2) δ2
...

(ℓ) δℓ

und geben am Ende jeder Zeile eine kurze Begründung an.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 130

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Beispiel 2.58
Sei

Γ :=
{
{¬P,¬R} , {P,¬R} , {¬Q,S} , {Q,R,T} , {¬T} , {¬S ,R} , {T ,R}

}
Eine Resolutionswiderlegung von Γ ist:

(1) {¬T} (in Γ)

(2) {Q,R,T} (in Γ)

(3) {Q,R} (Resolvente von (1), (2))

(4) {¬Q, S} (in Γ)

(5) {S ,R} (Resolvente von (3), (4))

(6) {¬S ,R} (in Γ)

(7) {R} (Resolvente von (5), (6))

(8) {¬P,¬R} (in Γ)

(9) {P,¬R} (in Γ)

(10) {¬R} (Resolvente von (8), (9))

(11) ∅ (Resolvente von (7), (10))

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 131

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Beispiel 2.58
Sei

Γ :=
{
{¬P,¬R} , {P,¬R} , {¬Q,S} , {Q,R,T} , {¬T} , {¬S ,R} , {T ,R}

}
Eine Resolutionswiderlegung von Γ ist:

(1) {¬T} (in Γ)

(2) {Q,R,T} (in Γ)

(3) {Q,R} (Resolvente von (1), (2))

(4) {¬Q, S} (in Γ)

(5) {S ,R} (Resolvente von (3), (4))

(6) {¬S ,R} (in Γ)

(7) {R} (Resolvente von (5), (6))

(8) {¬P,¬R} (in Γ)

(9) {P,¬R} (in Γ)

(10) {¬R} (Resolvente von (8), (9))

(11) ∅ (Resolvente von (7), (10))

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 131

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Beispiel 2.58
Sei

Γ :=
{
{¬P,¬R} , {P,¬R} , {¬Q,S} , {Q,R,T} , {¬T} , {¬S ,R} , {T ,R}

}
Eine Resolutionswiderlegung von Γ ist:

(1) {¬T} (in Γ)

(2) {Q,R,T} (in Γ)

(3) {Q,R} (Resolvente von (1), (2))

(4) {¬Q, S} (in Γ)

(5) {S ,R} (Resolvente von (3), (4))

(6) {¬S ,R} (in Γ)

(7) {R} (Resolvente von (5), (6))

(8) {¬P,¬R} (in Γ)

(9) {P,¬R} (in Γ)

(10) {¬R} (Resolvente von (8), (9))

(11) ∅ (Resolvente von (7), (10))

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 131

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Beispiel 2.58
Sei

Γ :=
{
{¬P,¬R} , {P,¬R} , {¬Q,S} , {Q,R,T} , {¬T} , {¬S ,R} , {T ,R}

}
Eine Resolutionswiderlegung von Γ ist:

(1) {¬T} (in Γ)

(2) {Q,R,T} (in Γ)

(3) {Q,R} (Resolvente von (1), (2))

(4) {¬Q, S} (in Γ)

(5) {S ,R} (Resolvente von (3), (4))

(6) {¬S ,R} (in Γ)

(7) {R} (Resolvente von (5), (6))

(8) {¬P,¬R} (in Γ)

(9) {P,¬R} (in Γ)

(10) {¬R} (Resolvente von (8), (9))

(11) ∅ (Resolvente von (7), (10))

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 131

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Beispiel 2.58
Sei

Γ :=
{
{¬P,¬R} , {P,¬R} , {¬Q,S} , {Q,R,T} , {¬T} , {¬S ,R} , {T ,R}

}
Eine Resolutionswiderlegung von Γ ist:

(1) {¬T} (in Γ)

(2) {Q,R,T} (in Γ)

(3) {Q,R} (Resolvente von (1), (2))

(4) {¬Q, S} (in Γ)

(5) {S ,R} (Resolvente von (3), (4))

(6) {¬S ,R} (in Γ)

(7) {R} (Resolvente von (5), (6))

(8) {¬P,¬R} (in Γ)

(9) {P,¬R} (in Γ)

(10) {¬R} (Resolvente von (8), (9))

(11) ∅ (Resolvente von (7), (10))

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 131

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Beispiel 2.58
Sei

Γ :=
{
{¬P,¬R} , {P,¬R} , {¬Q,S} , {Q,R,T} , {¬T} , {¬S ,R} , {T ,R}

}
Eine Resolutionswiderlegung von Γ ist:

(1) {¬T} (in Γ)

(2) {Q,R,T} (in Γ)

(3) {Q,R} (Resolvente von (1), (2))

(4) {¬Q, S} (in Γ)

(5) {S ,R} (Resolvente von (3), (4))

(6) {¬S ,R} (in Γ)

(7) {R} (Resolvente von (5), (6))

(8) {¬P,¬R} (in Γ)

(9) {P,¬R} (in Γ)

(10) {¬R} (Resolvente von (8), (9))

(11) ∅ (Resolvente von (7), (10))

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 131

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Beispiel 2.58
Sei

Γ :=
{
{¬P,¬R} , {P,¬R} , {¬Q,S} , {Q,R,T} , {¬T} , {¬S ,R} , {T ,R}

}
Eine Resolutionswiderlegung von Γ ist:

(1) {¬T} (in Γ)

(2) {Q,R,T} (in Γ)

(3) {Q,R} (Resolvente von (1), (2))

(4) {¬Q, S} (in Γ)

(5) {S ,R} (Resolvente von (3), (4))

(6) {¬S ,R} (in Γ)

(7) {R} (Resolvente von (5), (6))

(8) {¬P,¬R} (in Γ)

(9) {P,¬R} (in Γ)

(10) {¬R} (Resolvente von (8), (9))

(11) ∅ (Resolvente von (7), (10))

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 131

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Beispiel 2.58
Sei

Γ :=
{
{¬P,¬R} , {P,¬R} , {¬Q,S} , {Q,R,T} , {¬T} , {¬S ,R} , {T ,R}

}
Eine Resolutionswiderlegung von Γ ist:

(1) {¬T} (in Γ)

(2) {Q,R,T} (in Γ)

(3) {Q,R} (Resolvente von (1), (2))

(4) {¬Q, S} (in Γ)

(5) {S ,R} (Resolvente von (3), (4))

(6) {¬S ,R} (in Γ)

(7) {R} (Resolvente von (5), (6))

(8) {¬P,¬R} (in Γ)

(9) {P,¬R} (in Γ)

(10) {¬R} (Resolvente von (8), (9))

(11) ∅ (Resolvente von (7), (10))

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 131

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Beispiel 2.58
Sei

Γ :=
{
{¬P,¬R} , {P,¬R} , {¬Q,S} , {Q,R,T} , {¬T} , {¬S ,R} , {T ,R}

}
Eine Resolutionswiderlegung von Γ ist:

(1) {¬T} (in Γ)

(2) {Q,R,T} (in Γ)

(3) {Q,R} (Resolvente von (1), (2))

(4) {¬Q, S} (in Γ)

(5) {S ,R} (Resolvente von (3), (4))

(6) {¬S ,R} (in Γ)

(7) {R} (Resolvente von (5), (6))

(8) {¬P,¬R} (in Γ)

(9) {P,¬R} (in Γ)

(10) {¬R} (Resolvente von (8), (9))

(11) ∅ (Resolvente von (7), (10))

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 131

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Beispiel 2.58
Sei

Γ :=
{
{¬P,¬R} , {P,¬R} , {¬Q,S} , {Q,R,T} , {¬T} , {¬S ,R} , {T ,R}

}
Eine Resolutionswiderlegung von Γ ist:

(1) {¬T} (in Γ)

(2) {Q,R,T} (in Γ)

(3) {Q,R} (Resolvente von (1), (2))

(4) {¬Q, S} (in Γ)

(5) {S ,R} (Resolvente von (3), (4))

(6) {¬S ,R} (in Γ)

(7) {R} (Resolvente von (5), (6))

(8) {¬P,¬R} (in Γ)

(9) {P,¬R} (in Γ)

(10) {¬R} (Resolvente von (8), (9))

(11) ∅ (Resolvente von (7), (10))

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 131

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Beispiel 2.58
Sei

Γ :=
{
{¬P,¬R} , {P,¬R} , {¬Q,S} , {Q,R,T} , {¬T} , {¬S ,R} , {T ,R}

}
Eine Resolutionswiderlegung von Γ ist:

(1) {¬T} (in Γ)

(2) {Q,R,T} (in Γ)

(3) {Q,R} (Resolvente von (1), (2))

(4) {¬Q, S} (in Γ)

(5) {S ,R} (Resolvente von (3), (4))

(6) {¬S ,R} (in Γ)

(7) {R} (Resolvente von (5), (6))

(8) {¬P,¬R} (in Γ)

(9) {P,¬R} (in Γ)

(10) {¬R} (Resolvente von (8), (9))

(11) ∅ (Resolvente von (7), (10))

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 131

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Beispiel 2.58
Sei

Γ :=
{
{¬P,¬R} , {P,¬R} , {¬Q,S} , {Q,R,T} , {¬T} , {¬S ,R} , {T ,R}

}
Eine Resolutionswiderlegung von Γ ist:

(1) {¬T} (in Γ)

(2) {Q,R,T} (in Γ)

(3) {Q,R} (Resolvente von (1), (2))

(4) {¬Q, S} (in Γ)

(5) {S ,R} (Resolvente von (3), (4))

(6) {¬S ,R} (in Γ)

(7) {R} (Resolvente von (5), (6))

(8) {¬P,¬R} (in Γ)

(9) {P,¬R} (in Γ)

(10) {¬R} (Resolvente von (8), (9))

(11) ∅ (Resolvente von (7), (10))

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 131

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Graphische Darstellung der Resolutionswiderlegung

∅

{R}

{S ,R}

{Q,R}

{¬T} {Q,R,T}

{¬Q,S}

{¬S ,R}

{¬R}

{¬P,¬R} {P,¬R}

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 132

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Eine weitere Resolutionswiderlegung von Γ ist:

(1) {¬T} (in Γ)

(2) {T ,R} (in Γ)

(3) {R} (Resolvente von (1), (2))

(4) {P,¬R} (in Γ)

(5) {P} (Resolvente von (3), (4))

(6) {¬P,¬R} (in Γ)

(7) {¬R} (Resolvente von (5), (6))

(8) ∅ (Resolvente von (7), (3))

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 133

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Eine weitere Resolutionswiderlegung von Γ ist:

(1) {¬T} (in Γ)

(2) {T ,R} (in Γ)

(3) {R} (Resolvente von (1), (2))

(4) {P,¬R} (in Γ)

(5) {P} (Resolvente von (3), (4))

(6) {¬P,¬R} (in Γ)

(7) {¬R} (Resolvente von (5), (6))

(8) ∅ (Resolvente von (7), (3))

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 133

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Eine weitere Resolutionswiderlegung von Γ ist:

(1) {¬T} (in Γ)

(2) {T ,R} (in Γ)

(3) {R} (Resolvente von (1), (2))

(4) {P,¬R} (in Γ)

(5) {P} (Resolvente von (3), (4))

(6) {¬P,¬R} (in Γ)

(7) {¬R} (Resolvente von (5), (6))

(8) ∅ (Resolvente von (7), (3))

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 133

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Eine weitere Resolutionswiderlegung von Γ ist:

(1) {¬T} (in Γ)

(2) {T ,R} (in Γ)

(3) {R} (Resolvente von (1), (2))

(4) {P,¬R} (in Γ)

(5) {P} (Resolvente von (3), (4))

(6) {¬P,¬R} (in Γ)

(7) {¬R} (Resolvente von (5), (6))

(8) ∅ (Resolvente von (7), (3))

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 133

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Eine weitere Resolutionswiderlegung von Γ ist:

(1) {¬T} (in Γ)

(2) {T ,R} (in Γ)

(3) {R} (Resolvente von (1), (2))

(4) {P,¬R} (in Γ)

(5) {P} (Resolvente von (3), (4))

(6) {¬P,¬R} (in Γ)

(7) {¬R} (Resolvente von (5), (6))

(8) ∅ (Resolvente von (7), (3))

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 133

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Eine weitere Resolutionswiderlegung von Γ ist:

(1) {¬T} (in Γ)

(2) {T ,R} (in Γ)

(3) {R} (Resolvente von (1), (2))

(4) {P,¬R} (in Γ)

(5) {P} (Resolvente von (3), (4))

(6) {¬P,¬R} (in Γ)

(7) {¬R} (Resolvente von (5), (6))

(8) ∅ (Resolvente von (7), (3))

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 133

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Eine weitere Resolutionswiderlegung von Γ ist:

(1) {¬T} (in Γ)

(2) {T ,R} (in Γ)

(3) {R} (Resolvente von (1), (2))

(4) {P,¬R} (in Γ)

(5) {P} (Resolvente von (3), (4))

(6) {¬P,¬R} (in Γ)

(7) {¬R} (Resolvente von (5), (6))

(8) ∅ (Resolvente von (7), (3))

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 133

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Eine weitere Resolutionswiderlegung von Γ ist:

(1) {¬T} (in Γ)

(2) {T ,R} (in Γ)

(3) {R} (Resolvente von (1), (2))

(4) {P,¬R} (in Γ)

(5) {P} (Resolvente von (3), (4))

(6) {¬P,¬R} (in Γ)

(7) {¬R} (Resolvente von (5), (6))

(8) ∅ (Resolvente von (7), (3))

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 133

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Eine weitere Resolutionswiderlegung von Γ ist:

(1) {¬T} (in Γ)

(2) {T ,R} (in Γ)

(3) {R} (Resolvente von (1), (2))

(4) {P,¬R} (in Γ)

(5) {P} (Resolvente von (3), (4))

(6) {¬P,¬R} (in Γ)

(7) {¬R} (Resolvente von (5), (6))

(8) ∅ (Resolvente von (7), (3))

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 133

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Korrektheit und Vollständigkeit der Resolution

Satz 2.59
Für jede Klauselmenge Γ gilt:

Γ ⊢R ∅ ⇐⇒ Γ ist unerfüllbar.

D.h.: Eine Klauselmenge hat genau dann eine Resolutionswiderlegung, wenn sie
unerfüllbar ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 134

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Vorsicht

Beim Anwenden der Resolutionsregel (Definition 2.54) darf immer nur
ein Literal λ betrachtet werden.

Beispiel:

Betrachte die Klauselmenge Γ := {γ1, γ2} mit γ1 := {X ,Y } und
γ2 := {¬X ,¬Y } (wobei X und Y zwei verschiedene Ausagensymbole sind).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 135

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Der Satz von Haken
Für eine endliche Klauselmenge Γ sei die Größe von Γ die Zahl

||Γ|| :=
∑
γ∈Γ

|γ|,

wobei |γ| die Anzahl der Literale in γ bezeichnet.

Der folgende (schwer zu beweisende) Satz zeigt, dass es im Worst-Case
exponentiell lange dauern kann, eine Resolutionswiderlegung zu finden.

Satz 2.60 (Satz von Haken, 1985)
Es gibt Konstanten c , d > 0 und endliche Klauselmengen Γn für n ⩾ 1, so dass
für alle n ∈ N mit n ⩾ 1 gilt:

1. ||Γn|| ⩽ nc ,

2. Γn ist unerfüllbar, und

3. jede Resolutionswiderlegung von Γn hat Länge ⩾ 2dn.

(Hier ohne Beweis)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 136

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Der Satz von Haken
Für eine endliche Klauselmenge Γ sei die Größe von Γ die Zahl

||Γ|| :=
∑
γ∈Γ

|γ|,

wobei |γ| die Anzahl der Literale in γ bezeichnet.

Der folgende (schwer zu beweisende) Satz zeigt, dass es im Worst-Case
exponentiell lange dauern kann, eine Resolutionswiderlegung zu finden.

Satz 2.60 (Satz von Haken, 1985)
Es gibt Konstanten c , d > 0 und endliche Klauselmengen Γn für n ⩾ 1, so dass
für alle n ∈ N mit n ⩾ 1 gilt:

1. ||Γn|| ⩽ nc ,

2. Γn ist unerfüllbar, und

3. jede Resolutionswiderlegung von Γn hat Länge ⩾ 2dn.

(Hier ohne Beweis)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 136

Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Der Satz von Haken
Für eine endliche Klauselmenge Γ sei die Größe von Γ die Zahl

||Γ|| :=
∑
γ∈Γ

|γ|,

wobei |γ| die Anzahl der Literale in γ bezeichnet.

Der folgende (schwer zu beweisende) Satz zeigt, dass es im Worst-Case
exponentiell lange dauern kann, eine Resolutionswiderlegung zu finden.

Satz 2.60 (Satz von Haken, 1985)
Es gibt Konstanten c , d > 0 und endliche Klauselmengen Γn für n ⩾ 1, so dass
für alle n ∈ N mit n ⩾ 1 gilt:

1. ||Γn|| ⩽ nc ,

2. Γn ist unerfüllbar, und

3. jede Resolutionswiderlegung von Γn hat Länge ⩾ 2dn.

(Hier ohne Beweis)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 136

Abschnitt 2.7:

Erfüllbarkeitsalgorithmen

Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

Das aussagenlogische Erfüllbarkeitsproblem

Wir betrachten im Folgenden Algorithmen für das

Aussagenlogische Erfüllbarkeitsproblem:

Eingabe: eine Formel φ ∈ AL
Ausgabe:

”
erfüllbar“, falls φ erfüllbar ist;

”
unerfüllbar“, sonst.

Notation
Im Folgenden bezeichnet n immer die Anzahl der in φ vorkommenden
verschiedenen Aussagensymbole, und m := |φ| bezeichnet die Länge von φ
(aufgefasst als Wort über dem Alphabet der Aussagenlogik).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 137

Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

Das aussagenlogische Erfüllbarkeitsproblem

Wir betrachten im Folgenden Algorithmen für das

Aussagenlogische Erfüllbarkeitsproblem:

Eingabe: eine Formel φ ∈ AL
Ausgabe:

”
erfüllbar“, falls φ erfüllbar ist;

”
unerfüllbar“, sonst.

Notation
Im Folgenden bezeichnet n immer die Anzahl der in φ vorkommenden
verschiedenen Aussagensymbole, und m := |φ| bezeichnet die Länge von φ
(aufgefasst als Wort über dem Alphabet der Aussagenlogik).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 137

Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

Varianten des Erfüllbarkeitsproblems

Berechnen einer erfüllenden Interpretation:
Zusätzlich soll bei erfüllbaren Formeln noch ein Modell berechnet werden, d.h.,
ein Tupel (b1, . . . , bn) ∈ {0, 1}n, so dass φ[b1, . . . , bn] = 1.

Einschränkung auf KNF-Formeln:
Oft beschränkt man sich auf Eingabeformeln in KNF oder sogar 3-KNF. Das ist
keine wesentliche Einschränkung, weil sich mit Hilfe des Tseitin-Verfahrens jede
Formel in Linearzeit in eine erfüllbarkeitsäquivalente Formel in 3-KNF
transformieren lässt (Satz 2.53).
Das Erfüllbarkeitsproblem für Formeln in KNF bzw. 3-KNF bezeichnet man mit
SAT bzw. 3-SAT.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 138

Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

Varianten des Erfüllbarkeitsproblems

Berechnen einer erfüllenden Interpretation:
Zusätzlich soll bei erfüllbaren Formeln noch ein Modell berechnet werden, d.h.,
ein Tupel (b1, . . . , bn) ∈ {0, 1}n, so dass φ[b1, . . . , bn] = 1.

Einschränkung auf KNF-Formeln:
Oft beschränkt man sich auf Eingabeformeln in KNF oder sogar 3-KNF. Das ist
keine wesentliche Einschränkung, weil sich mit Hilfe des Tseitin-Verfahrens jede
Formel in Linearzeit in eine erfüllbarkeitsäquivalente Formel in 3-KNF
transformieren lässt (Satz 2.53).

Das Erfüllbarkeitsproblem für Formeln in KNF bzw. 3-KNF bezeichnet man mit
SAT bzw. 3-SAT.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 138

Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

Varianten des Erfüllbarkeitsproblems

Berechnen einer erfüllenden Interpretation:
Zusätzlich soll bei erfüllbaren Formeln noch ein Modell berechnet werden, d.h.,
ein Tupel (b1, . . . , bn) ∈ {0, 1}n, so dass φ[b1, . . . , bn] = 1.

Einschränkung auf KNF-Formeln:
Oft beschränkt man sich auf Eingabeformeln in KNF oder sogar 3-KNF. Das ist
keine wesentliche Einschränkung, weil sich mit Hilfe des Tseitin-Verfahrens jede
Formel in Linearzeit in eine erfüllbarkeitsäquivalente Formel in 3-KNF
transformieren lässt (Satz 2.53).
Das Erfüllbarkeitsproblem für Formeln in KNF bzw. 3-KNF bezeichnet man mit
SAT bzw. 3-SAT.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 138

Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

Komplexität des Erfüllbarkeitsproblems

Satz 2.61 (Satz von Cook und Levin, ≈1971)
Das aussagenlogische Erfüllbarkeitsproblem (und sogar die Einschränkung
3-SAT) ist NP-vollständig.

Die Komplexitätsklassen P und NP, der Begriff der NP-Vollständigkeit, sowie ein
Beweis des Satzes von Cook und Levin werden in der Vorlesung Einführung in
die Theoretische Informatik behandelt.

Bemerkung

• Wenn also P ̸= NP ist (was allgemein vermutet wird), gibt es für das
aussagenlogische Erfüllbarkeitsproblem keinen Polynomialzeitalgorithmus.

• Man vermutet sogar, dass es eine Konstante c > 1 gibt, so dass jeder
Algorithmus für 3-SAT eine worst-case Laufzeit von Ω(cn) hat.
Diese Vermutung ist unter dem Namen

”
Exponential Time Hypothesis“

(ETH) bekannt.

• Der im Worst-Case beste derzeit bekannte Algorithmus für 3-SAT hat eine
Laufzeit von etwa O(1.4n).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 139

Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

Komplexität des Erfüllbarkeitsproblems

Satz 2.61 (Satz von Cook und Levin, ≈1971)
Das aussagenlogische Erfüllbarkeitsproblem (und sogar die Einschränkung
3-SAT) ist NP-vollständig.

Die Komplexitätsklassen P und NP, der Begriff der NP-Vollständigkeit, sowie ein
Beweis des Satzes von Cook und Levin werden in der Vorlesung Einführung in
die Theoretische Informatik behandelt.

Bemerkung

• Wenn also P ̸= NP ist (was allgemein vermutet wird), gibt es für das
aussagenlogische Erfüllbarkeitsproblem keinen Polynomialzeitalgorithmus.

• Man vermutet sogar, dass es eine Konstante c > 1 gibt, so dass jeder
Algorithmus für 3-SAT eine worst-case Laufzeit von Ω(cn) hat.
Diese Vermutung ist unter dem Namen

”
Exponential Time Hypothesis“

(ETH) bekannt.

• Der im Worst-Case beste derzeit bekannte Algorithmus für 3-SAT hat eine
Laufzeit von etwa O(1.4n).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 139

Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

Komplexität des Erfüllbarkeitsproblems

Satz 2.61 (Satz von Cook und Levin, ≈1971)
Das aussagenlogische Erfüllbarkeitsproblem (und sogar die Einschränkung
3-SAT) ist NP-vollständig.

Die Komplexitätsklassen P und NP, der Begriff der NP-Vollständigkeit, sowie ein
Beweis des Satzes von Cook und Levin werden in der Vorlesung Einführung in
die Theoretische Informatik behandelt.

Bemerkung

• Wenn also P ̸= NP ist (was allgemein vermutet wird), gibt es für das
aussagenlogische Erfüllbarkeitsproblem keinen Polynomialzeitalgorithmus.

• Man vermutet sogar, dass es eine Konstante c > 1 gibt, so dass jeder
Algorithmus für 3-SAT eine worst-case Laufzeit von Ω(cn) hat.

Diese Vermutung ist unter dem Namen
”
Exponential Time Hypothesis“

(ETH) bekannt.

• Der im Worst-Case beste derzeit bekannte Algorithmus für 3-SAT hat eine
Laufzeit von etwa O(1.4n).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 139

Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

Komplexität des Erfüllbarkeitsproblems

Satz 2.61 (Satz von Cook und Levin, ≈1971)
Das aussagenlogische Erfüllbarkeitsproblem (und sogar die Einschränkung
3-SAT) ist NP-vollständig.

Die Komplexitätsklassen P und NP, der Begriff der NP-Vollständigkeit, sowie ein
Beweis des Satzes von Cook und Levin werden in der Vorlesung Einführung in
die Theoretische Informatik behandelt.

Bemerkung

• Wenn also P ̸= NP ist (was allgemein vermutet wird), gibt es für das
aussagenlogische Erfüllbarkeitsproblem keinen Polynomialzeitalgorithmus.

• Man vermutet sogar, dass es eine Konstante c > 1 gibt, so dass jeder
Algorithmus für 3-SAT eine worst-case Laufzeit von Ω(cn) hat.
Diese Vermutung ist unter dem Namen

”
Exponential Time Hypothesis“

(ETH) bekannt.

• Der im Worst-Case beste derzeit bekannte Algorithmus für 3-SAT hat eine
Laufzeit von etwa O(1.4n).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 139

Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

Komplexität des Erfüllbarkeitsproblems

Satz 2.61 (Satz von Cook und Levin, ≈1971)
Das aussagenlogische Erfüllbarkeitsproblem (und sogar die Einschränkung
3-SAT) ist NP-vollständig.

Die Komplexitätsklassen P und NP, der Begriff der NP-Vollständigkeit, sowie ein
Beweis des Satzes von Cook und Levin werden in der Vorlesung Einführung in
die Theoretische Informatik behandelt.

Bemerkung

• Wenn also P ̸= NP ist (was allgemein vermutet wird), gibt es für das
aussagenlogische Erfüllbarkeitsproblem keinen Polynomialzeitalgorithmus.

• Man vermutet sogar, dass es eine Konstante c > 1 gibt, so dass jeder
Algorithmus für 3-SAT eine worst-case Laufzeit von Ω(cn) hat.
Diese Vermutung ist unter dem Namen

”
Exponential Time Hypothesis“

(ETH) bekannt.

• Der im Worst-Case beste derzeit bekannte Algorithmus für 3-SAT hat eine
Laufzeit von etwa O(1.4n).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 139

Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

Der Wahrheitstafelalgorithmus

Lemma 2.62
Es gibt einen Linearzeitalgorithmus, der bei Eingabe einer Formel
φ(A1, . . . ,An) ∈ AL und eines Tupels (b1, . . . , bn) ∈ {0, 1}n den Wert
φ[b1, . . . , bn] berechnet.

Beweis: Übung.

Der folgende Algorithmus löst das aussagenlogische Erfüllbarkeitsproblem.

Wahrheitstafelalgorithmus
Eingabe: eine Formel φ ∈ AL

1. Berechne die Wahrheitstafel für φ.

2. Falls in der letzten Spalte mindestens eine 1 auftaucht, gib
”
erfüllbar“ aus,

sonst gib
”
unerfüllbar“ aus.

Laufzeit: O(m · 2n) (sogar im
”
Best-Case“)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 140

Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

Der Wahrheitstafelalgorithmus

Lemma 2.62
Es gibt einen Linearzeitalgorithmus, der bei Eingabe einer Formel
φ(A1, . . . ,An) ∈ AL und eines Tupels (b1, . . . , bn) ∈ {0, 1}n den Wert
φ[b1, . . . , bn] berechnet.

Beweis: Übung.

Der folgende Algorithmus löst das aussagenlogische Erfüllbarkeitsproblem.

Wahrheitstafelalgorithmus
Eingabe: eine Formel φ ∈ AL

1. Berechne die Wahrheitstafel für φ.

2. Falls in der letzten Spalte mindestens eine 1 auftaucht, gib
”
erfüllbar“ aus,

sonst gib
”
unerfüllbar“ aus.

Laufzeit: O(m · 2n) (sogar im
”
Best-Case“)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 140

Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

Der Wahrheitstafelalgorithmus

Lemma 2.62
Es gibt einen Linearzeitalgorithmus, der bei Eingabe einer Formel
φ(A1, . . . ,An) ∈ AL und eines Tupels (b1, . . . , bn) ∈ {0, 1}n den Wert
φ[b1, . . . , bn] berechnet.

Beweis: Übung.

Der folgende Algorithmus löst das aussagenlogische Erfüllbarkeitsproblem.

Wahrheitstafelalgorithmus
Eingabe: eine Formel φ ∈ AL

1. Berechne die Wahrheitstafel für φ.

2. Falls in der letzten Spalte mindestens eine 1 auftaucht, gib
”
erfüllbar“ aus,

sonst gib
”
unerfüllbar“ aus.

Laufzeit:

O(m · 2n) (sogar im
”
Best-Case“)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 140

Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

Der Wahrheitstafelalgorithmus

Lemma 2.62
Es gibt einen Linearzeitalgorithmus, der bei Eingabe einer Formel
φ(A1, . . . ,An) ∈ AL und eines Tupels (b1, . . . , bn) ∈ {0, 1}n den Wert
φ[b1, . . . , bn] berechnet.

Beweis: Übung.

Der folgende Algorithmus löst das aussagenlogische Erfüllbarkeitsproblem.

Wahrheitstafelalgorithmus
Eingabe: eine Formel φ ∈ AL

1. Berechne die Wahrheitstafel für φ.

2. Falls in der letzten Spalte mindestens eine 1 auftaucht, gib
”
erfüllbar“ aus,

sonst gib
”
unerfüllbar“ aus.

Laufzeit: O(m · 2n) (sogar im
”
Best-Case“)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 140

Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

Der Resolutionsalgorithmus

Der Resolutionsalgorithmus probiert einfach alle möglichen
Resolutionsableitungen durch und testet so, ob es eine Resolutionswiderlegung
gibt (d.h. die Klauselmenge unerfüllbar ist).

Resolutionsalgorithmus
Eingabe: eine endliche Klauselmenge Γ (entspricht einer KNF-Formel)

1. Wiederhole, bis keine neuen Klauseln mehr generiert werden:
Füge alle Resolventen aller Klauseln aus Γ zu Γ hinzu.

2. Falls ∅ ∈ Γ, gib
”
unerfüllbar“ aus, sonst gib

”
erfüllbar“ aus.

Laufzeit: 2O(n) (weil es bei n Aussagensymbolen 4n verschiedene Klauseln gibt).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 141

Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

Der Resolutionsalgorithmus

Der Resolutionsalgorithmus probiert einfach alle möglichen
Resolutionsableitungen durch und testet so, ob es eine Resolutionswiderlegung
gibt (d.h. die Klauselmenge unerfüllbar ist).

Resolutionsalgorithmus
Eingabe: eine endliche Klauselmenge Γ (entspricht einer KNF-Formel)

1. Wiederhole, bis keine neuen Klauseln mehr generiert werden:
Füge alle Resolventen aller Klauseln aus Γ zu Γ hinzu.

2. Falls ∅ ∈ Γ,

gib
”
unerfüllbar“ aus, sonst gib

”
erfüllbar“ aus.

Laufzeit: 2O(n) (weil es bei n Aussagensymbolen 4n verschiedene Klauseln gibt).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 141

Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

Der Resolutionsalgorithmus

Der Resolutionsalgorithmus probiert einfach alle möglichen
Resolutionsableitungen durch und testet so, ob es eine Resolutionswiderlegung
gibt (d.h. die Klauselmenge unerfüllbar ist).

Resolutionsalgorithmus
Eingabe: eine endliche Klauselmenge Γ (entspricht einer KNF-Formel)

1. Wiederhole, bis keine neuen Klauseln mehr generiert werden:
Füge alle Resolventen aller Klauseln aus Γ zu Γ hinzu.

2. Falls ∅ ∈ Γ, gib
”
unerfüllbar“ aus, sonst

gib
”
erfüllbar“ aus.

Laufzeit: 2O(n) (weil es bei n Aussagensymbolen 4n verschiedene Klauseln gibt).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 141

Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

Der Resolutionsalgorithmus

Der Resolutionsalgorithmus probiert einfach alle möglichen
Resolutionsableitungen durch und testet so, ob es eine Resolutionswiderlegung
gibt (d.h. die Klauselmenge unerfüllbar ist).

Resolutionsalgorithmus
Eingabe: eine endliche Klauselmenge Γ (entspricht einer KNF-Formel)

1. Wiederhole, bis keine neuen Klauseln mehr generiert werden:
Füge alle Resolventen aller Klauseln aus Γ zu Γ hinzu.

2. Falls ∅ ∈ Γ, gib
”
unerfüllbar“ aus, sonst gib

”
erfüllbar“ aus.

Laufzeit: 2O(n) (weil es bei n Aussagensymbolen 4n verschiedene Klauseln gibt).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 141

Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

Der Resolutionsalgorithmus

Der Resolutionsalgorithmus probiert einfach alle möglichen
Resolutionsableitungen durch und testet so, ob es eine Resolutionswiderlegung
gibt (d.h. die Klauselmenge unerfüllbar ist).

Resolutionsalgorithmus
Eingabe: eine endliche Klauselmenge Γ (entspricht einer KNF-Formel)

1. Wiederhole, bis keine neuen Klauseln mehr generiert werden:
Füge alle Resolventen aller Klauseln aus Γ zu Γ hinzu.

2. Falls ∅ ∈ Γ, gib
”
unerfüllbar“ aus, sonst gib

”
erfüllbar“ aus.

Laufzeit:

2O(n) (weil es bei n Aussagensymbolen 4n verschiedene Klauseln gibt).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 141

Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

Der Resolutionsalgorithmus

Der Resolutionsalgorithmus probiert einfach alle möglichen
Resolutionsableitungen durch und testet so, ob es eine Resolutionswiderlegung
gibt (d.h. die Klauselmenge unerfüllbar ist).

Resolutionsalgorithmus
Eingabe: eine endliche Klauselmenge Γ (entspricht einer KNF-Formel)

1. Wiederhole, bis keine neuen Klauseln mehr generiert werden:
Füge alle Resolventen aller Klauseln aus Γ zu Γ hinzu.

2. Falls ∅ ∈ Γ, gib
”
unerfüllbar“ aus, sonst gib

”
erfüllbar“ aus.

Laufzeit: 2O(n) (weil es bei n Aussagensymbolen 4n verschiedene Klauseln gibt).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 141

Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

Der Davis-Putnam-Logemann-Loveland Algorithmus

Der DPLL-Algorithmus ist ein in der Praxis sehr erfolgreicher Algorithmus, der
die Wahrheitstafelmethode mit Resolution kombiniert.

Ähnlich wie bei dem Wahrheitstafelalgorithmus durchsucht der
DPLL-Algorithmus systematisch den Raum aller möglichen Interpretationen und
testet, ob diese die gegebene Klauselmenge erfüllen. Resolution wird dabei dazu
verwendet, die Suche geschickt zu steuern und Dinge, die während der Suche
bereits über die Klauselmenge

”
gelernt“ wurden, weiterzuverwenden.

Der DPLL-Algorithmus ist die Basis moderner SAT-Solver, die Klauselmengen,
die aus Millionen von Klauseln und Hunderttausenden von Aussagensymbolen
bestehen, auf Erfüllbarkeit testen können.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 142

Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

Der Davis-Putnam-Logemann-Loveland Algorithmus

Der DPLL-Algorithmus ist ein in der Praxis sehr erfolgreicher Algorithmus, der
die Wahrheitstafelmethode mit Resolution kombiniert.

Ähnlich wie bei dem Wahrheitstafelalgorithmus durchsucht der
DPLL-Algorithmus systematisch den Raum aller möglichen Interpretationen und
testet, ob diese die gegebene Klauselmenge erfüllen. Resolution wird dabei dazu
verwendet, die Suche geschickt zu steuern und Dinge, die während der Suche
bereits über die Klauselmenge

”
gelernt“ wurden, weiterzuverwenden.

Der DPLL-Algorithmus ist die Basis moderner SAT-Solver, die Klauselmengen,
die aus Millionen von Klauseln und Hunderttausenden von Aussagensymbolen
bestehen, auf Erfüllbarkeit testen können.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 142

Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

DPLL-Algorithmus
Eingabe: eine endliche Klauselmenge Γ (entspricht einer KNF-Formel)

1. Vereinfache Γ. % Details dazu: siehe nächste Folie

2. Falls Γ = ∅, gib
”
erfüllbar“ aus.

3. Falls ∅ ∈ Γ, gib
”
unerfüllbar“ aus.

4. Wähle ein Literal λ.

5. % probiere aus, ob Γ ein Modell hat, bei dem das Literal λ erfüllt wird:
Löse rekursiv Γ ∪

{
{λ}

}
. Falls dies erfüllbar ist, gib

”
erfüllbar“ aus.

6. % probiere aus, ob Γ ein Modell hat, bei dem das Literal λ erfüllt wird:
Löse rekursiv Γ ∪

{
{λ}

}
. Falls dies erfüllbar ist, gib

”
erfüllbar“ aus. Sonst

gib
”
unerfüllbar“ aus.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 143

Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

DPLL-Algorithmus
Eingabe: eine endliche Klauselmenge Γ (entspricht einer KNF-Formel)

1. Vereinfache Γ. % Details dazu: siehe nächste Folie

2. Falls Γ = ∅,

gib
”
erfüllbar“ aus.

3. Falls ∅ ∈ Γ, gib
”
unerfüllbar“ aus.

4. Wähle ein Literal λ.

5. % probiere aus, ob Γ ein Modell hat, bei dem das Literal λ erfüllt wird:
Löse rekursiv Γ ∪

{
{λ}

}
. Falls dies erfüllbar ist, gib

”
erfüllbar“ aus.

6. % probiere aus, ob Γ ein Modell hat, bei dem das Literal λ erfüllt wird:
Löse rekursiv Γ ∪

{
{λ}

}
. Falls dies erfüllbar ist, gib

”
erfüllbar“ aus. Sonst

gib
”
unerfüllbar“ aus.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 143

Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

DPLL-Algorithmus
Eingabe: eine endliche Klauselmenge Γ (entspricht einer KNF-Formel)

1. Vereinfache Γ. % Details dazu: siehe nächste Folie

2. Falls Γ = ∅, gib
”
erfüllbar“ aus.

3. Falls ∅ ∈ Γ, gib
”
unerfüllbar“ aus.

4. Wähle ein Literal λ.

5. % probiere aus, ob Γ ein Modell hat, bei dem das Literal λ erfüllt wird:
Löse rekursiv Γ ∪

{
{λ}

}
. Falls dies erfüllbar ist, gib

”
erfüllbar“ aus.

6. % probiere aus, ob Γ ein Modell hat, bei dem das Literal λ erfüllt wird:
Löse rekursiv Γ ∪

{
{λ}

}
. Falls dies erfüllbar ist, gib

”
erfüllbar“ aus. Sonst

gib
”
unerfüllbar“ aus.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 143

Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

DPLL-Algorithmus
Eingabe: eine endliche Klauselmenge Γ (entspricht einer KNF-Formel)

1. Vereinfache Γ. % Details dazu: siehe nächste Folie

2. Falls Γ = ∅, gib
”
erfüllbar“ aus.

3. Falls ∅ ∈ Γ,

gib
”
unerfüllbar“ aus.

4. Wähle ein Literal λ.

5. % probiere aus, ob Γ ein Modell hat, bei dem das Literal λ erfüllt wird:
Löse rekursiv Γ ∪

{
{λ}

}
. Falls dies erfüllbar ist, gib

”
erfüllbar“ aus.

6. % probiere aus, ob Γ ein Modell hat, bei dem das Literal λ erfüllt wird:
Löse rekursiv Γ ∪

{
{λ}

}
. Falls dies erfüllbar ist, gib

”
erfüllbar“ aus. Sonst

gib
”
unerfüllbar“ aus.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 143

Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

DPLL-Algorithmus
Eingabe: eine endliche Klauselmenge Γ (entspricht einer KNF-Formel)

1. Vereinfache Γ. % Details dazu: siehe nächste Folie

2. Falls Γ = ∅, gib
”
erfüllbar“ aus.

3. Falls ∅ ∈ Γ, gib
”
unerfüllbar“ aus.

4. Wähle ein Literal λ.

5. % probiere aus, ob Γ ein Modell hat, bei dem das Literal λ erfüllt wird:
Löse rekursiv Γ ∪

{
{λ}

}
. Falls dies erfüllbar ist, gib

”
erfüllbar“ aus.

6. % probiere aus, ob Γ ein Modell hat, bei dem das Literal λ erfüllt wird:
Löse rekursiv Γ ∪

{
{λ}

}
. Falls dies erfüllbar ist, gib

”
erfüllbar“ aus. Sonst

gib
”
unerfüllbar“ aus.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 143

Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

DPLL-Algorithmus
Eingabe: eine endliche Klauselmenge Γ (entspricht einer KNF-Formel)

1. Vereinfache Γ. % Details dazu: siehe nächste Folie

2. Falls Γ = ∅, gib
”
erfüllbar“ aus.

3. Falls ∅ ∈ Γ, gib
”
unerfüllbar“ aus.

4. Wähle ein Literal λ.

5. % probiere aus, ob Γ ein Modell hat, bei dem das Literal λ erfüllt wird:

Löse rekursiv Γ ∪
{
{λ}

}
. Falls dies erfüllbar ist, gib

”
erfüllbar“ aus.

6. % probiere aus, ob Γ ein Modell hat, bei dem das Literal λ erfüllt wird:
Löse rekursiv Γ ∪

{
{λ}

}
. Falls dies erfüllbar ist, gib

”
erfüllbar“ aus. Sonst

gib
”
unerfüllbar“ aus.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 143

Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

DPLL-Algorithmus
Eingabe: eine endliche Klauselmenge Γ (entspricht einer KNF-Formel)

1. Vereinfache Γ. % Details dazu: siehe nächste Folie

2. Falls Γ = ∅, gib
”
erfüllbar“ aus.

3. Falls ∅ ∈ Γ, gib
”
unerfüllbar“ aus.

4. Wähle ein Literal λ.

5. % probiere aus, ob Γ ein Modell hat, bei dem das Literal λ erfüllt wird:
Löse rekursiv Γ ∪

{
{λ}

}
. Falls dies erfüllbar ist, gib

”
erfüllbar“ aus.

6. % probiere aus, ob Γ ein Modell hat, bei dem das Literal λ erfüllt wird:
Löse rekursiv Γ ∪

{
{λ}

}
. Falls dies erfüllbar ist, gib

”
erfüllbar“ aus. Sonst

gib
”
unerfüllbar“ aus.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 143

Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

DPLL-Algorithmus
Eingabe: eine endliche Klauselmenge Γ (entspricht einer KNF-Formel)

1. Vereinfache Γ. % Details dazu: siehe nächste Folie

2. Falls Γ = ∅, gib
”
erfüllbar“ aus.

3. Falls ∅ ∈ Γ, gib
”
unerfüllbar“ aus.

4. Wähle ein Literal λ.

5. % probiere aus, ob Γ ein Modell hat, bei dem das Literal λ erfüllt wird:
Löse rekursiv Γ ∪

{
{λ}

}
. Falls dies erfüllbar ist, gib

”
erfüllbar“ aus.

6. % probiere aus, ob Γ ein Modell hat, bei dem das Literal λ erfüllt wird:

Löse rekursiv Γ ∪
{
{λ}

}
. Falls dies erfüllbar ist, gib

”
erfüllbar“ aus. Sonst

gib
”
unerfüllbar“ aus.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 143

Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

DPLL-Algorithmus
Eingabe: eine endliche Klauselmenge Γ (entspricht einer KNF-Formel)

1. Vereinfache Γ. % Details dazu: siehe nächste Folie

2. Falls Γ = ∅, gib
”
erfüllbar“ aus.

3. Falls ∅ ∈ Γ, gib
”
unerfüllbar“ aus.

4. Wähle ein Literal λ.

5. % probiere aus, ob Γ ein Modell hat, bei dem das Literal λ erfüllt wird:
Löse rekursiv Γ ∪

{
{λ}

}
. Falls dies erfüllbar ist, gib

”
erfüllbar“ aus.

6. % probiere aus, ob Γ ein Modell hat, bei dem das Literal λ erfüllt wird:
Löse rekursiv Γ ∪

{
{λ}

}
. Falls dies erfüllbar ist, gib

”
erfüllbar“ aus. Sonst

gib
”
unerfüllbar“ aus.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 143

Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

Vereinfachungsheuristiken, die in Schritt 1. angewendet werden:

• Unit Propagation: Für alle
”
Einerklauseln“ {λ} ∈ Γ (wobei λ ein Literal ist),

bilde alle Resolventen von {λ} mit anderen Klauseln und streiche anschließend
alle Klauseln, die λ enthalten. Wiederhole dies, so lange es Einerklauseln gibt.

Präzise: Für jede
”
Einerklausel“ {λ} ∈ Γ tue Folgendes:

1. Ersetze jede Klausel γ ∈ Γ durch die Klausel γ \ {λ}.
2. Entferne aus Γ jede Klausel, die das Literal λ enthält.

Wiederhole dies, so lange es in Γ Einerklauseln gibt.

• Pure Literal Rule: Literale λ, deren Negat λ nirgendwo in der Klauselmenge
auftaucht, können auf 1 gesetzt werden. Alle Klauseln, die ein solches Literal
enthalten, sind dann wahr und können gestrichen werden. Wiederhole dies, so
lange es Literale gibt, deren Negat nirgendwo in der Klauselmenge auftaucht.

• Streiche Klauseln, die Obermengen von anderen Klauseln sind (dies ist allerdings
ineffizient und wird in der Praxis zumeist weggelassen).

Man sieht leicht, dass das Anwenden dieser Vereinfachungsheuristiken die Klauselmenge Γ in
eine erfüllbarkeitsäquivalente Klauselmenge transformiert. Hieraus folgt leicht, dass der
DPLL-Algorithmus stets die korrekte Antwort gibt (d.h., er terminiert immer, und er gibt
genau dann

”
erfüllbar“ aus, wenn die eingegebene Klauselmenge Γ erfüllbar ist).

Laufzeit des DPLL-Algorithmus:

O(m · 2n) im Worst-Case; in der Praxis aber häufig sehr effizient.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 144

Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

Vereinfachungsheuristiken, die in Schritt 1. angewendet werden:

• Unit Propagation: Für alle
”
Einerklauseln“ {λ} ∈ Γ (wobei λ ein Literal ist),

bilde alle Resolventen von {λ} mit anderen Klauseln und streiche anschließend
alle Klauseln, die λ enthalten. Wiederhole dies, so lange es Einerklauseln gibt.

Präzise: Für jede
”
Einerklausel“ {λ} ∈ Γ tue Folgendes:

1. Ersetze jede Klausel γ ∈ Γ durch die Klausel γ \ {λ}.
2. Entferne aus Γ jede Klausel, die das Literal λ enthält.

Wiederhole dies, so lange es in Γ Einerklauseln gibt.

• Pure Literal Rule: Literale λ, deren Negat λ nirgendwo in der Klauselmenge
auftaucht, können auf 1 gesetzt werden. Alle Klauseln, die ein solches Literal
enthalten, sind dann wahr und können gestrichen werden. Wiederhole dies, so
lange es Literale gibt, deren Negat nirgendwo in der Klauselmenge auftaucht.

• Streiche Klauseln, die Obermengen von anderen Klauseln sind (dies ist allerdings
ineffizient und wird in der Praxis zumeist weggelassen).

Man sieht leicht, dass das Anwenden dieser Vereinfachungsheuristiken die Klauselmenge Γ in
eine erfüllbarkeitsäquivalente Klauselmenge transformiert. Hieraus folgt leicht, dass der
DPLL-Algorithmus stets die korrekte Antwort gibt (d.h., er terminiert immer, und er gibt
genau dann

”
erfüllbar“ aus, wenn die eingegebene Klauselmenge Γ erfüllbar ist).

Laufzeit des DPLL-Algorithmus:

O(m · 2n) im Worst-Case; in der Praxis aber häufig sehr effizient.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 144

Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

Vereinfachungsheuristiken, die in Schritt 1. angewendet werden:

• Unit Propagation: Für alle
”
Einerklauseln“ {λ} ∈ Γ (wobei λ ein Literal ist),

bilde alle Resolventen von {λ} mit anderen Klauseln und streiche anschließend
alle Klauseln, die λ enthalten. Wiederhole dies, so lange es Einerklauseln gibt.

Präzise: Für jede
”
Einerklausel“ {λ} ∈ Γ tue Folgendes:

1. Ersetze jede Klausel γ ∈ Γ durch die Klausel γ \ {λ}.
2. Entferne aus Γ jede Klausel, die das Literal λ enthält.

Wiederhole dies, so lange es in Γ Einerklauseln gibt.

• Pure Literal Rule: Literale λ, deren Negat λ nirgendwo in der Klauselmenge
auftaucht, können auf 1 gesetzt werden. Alle Klauseln, die ein solches Literal
enthalten, sind dann wahr und können gestrichen werden.

Wiederhole dies, so
lange es Literale gibt, deren Negat nirgendwo in der Klauselmenge auftaucht.

• Streiche Klauseln, die Obermengen von anderen Klauseln sind (dies ist allerdings
ineffizient und wird in der Praxis zumeist weggelassen).

Man sieht leicht, dass das Anwenden dieser Vereinfachungsheuristiken die Klauselmenge Γ in
eine erfüllbarkeitsäquivalente Klauselmenge transformiert. Hieraus folgt leicht, dass der
DPLL-Algorithmus stets die korrekte Antwort gibt (d.h., er terminiert immer, und er gibt
genau dann

”
erfüllbar“ aus, wenn die eingegebene Klauselmenge Γ erfüllbar ist).

Laufzeit des DPLL-Algorithmus:

O(m · 2n) im Worst-Case; in der Praxis aber häufig sehr effizient.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 144

Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

Vereinfachungsheuristiken, die in Schritt 1. angewendet werden:

• Unit Propagation: Für alle
”
Einerklauseln“ {λ} ∈ Γ (wobei λ ein Literal ist),

bilde alle Resolventen von {λ} mit anderen Klauseln und streiche anschließend
alle Klauseln, die λ enthalten. Wiederhole dies, so lange es Einerklauseln gibt.

Präzise: Für jede
”
Einerklausel“ {λ} ∈ Γ tue Folgendes:

1. Ersetze jede Klausel γ ∈ Γ durch die Klausel γ \ {λ}.
2. Entferne aus Γ jede Klausel, die das Literal λ enthält.

Wiederhole dies, so lange es in Γ Einerklauseln gibt.

• Pure Literal Rule: Literale λ, deren Negat λ nirgendwo in der Klauselmenge
auftaucht, können auf 1 gesetzt werden. Alle Klauseln, die ein solches Literal
enthalten, sind dann wahr und können gestrichen werden. Wiederhole dies, so
lange es Literale gibt, deren Negat nirgendwo in der Klauselmenge auftaucht.

• Streiche Klauseln, die Obermengen von anderen Klauseln sind (dies ist allerdings
ineffizient und wird in der Praxis zumeist weggelassen).

Man sieht leicht, dass das Anwenden dieser Vereinfachungsheuristiken die Klauselmenge Γ in
eine erfüllbarkeitsäquivalente Klauselmenge transformiert. Hieraus folgt leicht, dass der
DPLL-Algorithmus stets die korrekte Antwort gibt (d.h., er terminiert immer, und er gibt
genau dann

”
erfüllbar“ aus, wenn die eingegebene Klauselmenge Γ erfüllbar ist).

Laufzeit des DPLL-Algorithmus:

O(m · 2n) im Worst-Case; in der Praxis aber häufig sehr effizient.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 144

Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

Vereinfachungsheuristiken, die in Schritt 1. angewendet werden:

• Unit Propagation: Für alle
”
Einerklauseln“ {λ} ∈ Γ (wobei λ ein Literal ist),

bilde alle Resolventen von {λ} mit anderen Klauseln und streiche anschließend
alle Klauseln, die λ enthalten. Wiederhole dies, so lange es Einerklauseln gibt.

Präzise: Für jede
”
Einerklausel“ {λ} ∈ Γ tue Folgendes:

1. Ersetze jede Klausel γ ∈ Γ durch die Klausel γ \ {λ}.
2. Entferne aus Γ jede Klausel, die das Literal λ enthält.

Wiederhole dies, so lange es in Γ Einerklauseln gibt.

• Pure Literal Rule: Literale λ, deren Negat λ nirgendwo in der Klauselmenge
auftaucht, können auf 1 gesetzt werden. Alle Klauseln, die ein solches Literal
enthalten, sind dann wahr und können gestrichen werden. Wiederhole dies, so
lange es Literale gibt, deren Negat nirgendwo in der Klauselmenge auftaucht.

• Streiche Klauseln, die Obermengen von anderen Klauseln sind (dies ist allerdings
ineffizient und wird in der Praxis zumeist weggelassen).

Man sieht leicht, dass das Anwenden dieser Vereinfachungsheuristiken die Klauselmenge Γ in
eine erfüllbarkeitsäquivalente Klauselmenge transformiert. Hieraus folgt leicht, dass der
DPLL-Algorithmus stets die korrekte Antwort gibt (d.h., er terminiert immer, und er gibt
genau dann

”
erfüllbar“ aus, wenn die eingegebene Klauselmenge Γ erfüllbar ist).

Laufzeit des DPLL-Algorithmus:

O(m · 2n) im Worst-Case; in der Praxis aber häufig sehr effizient.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 144

Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

Vereinfachungsheuristiken, die in Schritt 1. angewendet werden:

• Unit Propagation: Für alle
”
Einerklauseln“ {λ} ∈ Γ (wobei λ ein Literal ist),

bilde alle Resolventen von {λ} mit anderen Klauseln und streiche anschließend
alle Klauseln, die λ enthalten. Wiederhole dies, so lange es Einerklauseln gibt.

Präzise: Für jede
”
Einerklausel“ {λ} ∈ Γ tue Folgendes:

1. Ersetze jede Klausel γ ∈ Γ durch die Klausel γ \ {λ}.
2. Entferne aus Γ jede Klausel, die das Literal λ enthält.

Wiederhole dies, so lange es in Γ Einerklauseln gibt.

• Pure Literal Rule: Literale λ, deren Negat λ nirgendwo in der Klauselmenge
auftaucht, können auf 1 gesetzt werden. Alle Klauseln, die ein solches Literal
enthalten, sind dann wahr und können gestrichen werden. Wiederhole dies, so
lange es Literale gibt, deren Negat nirgendwo in der Klauselmenge auftaucht.

• Streiche Klauseln, die Obermengen von anderen Klauseln sind (dies ist allerdings
ineffizient und wird in der Praxis zumeist weggelassen).

Man sieht leicht, dass das Anwenden dieser Vereinfachungsheuristiken die Klauselmenge Γ in
eine erfüllbarkeitsäquivalente Klauselmenge transformiert.

Hieraus folgt leicht, dass der
DPLL-Algorithmus stets die korrekte Antwort gibt (d.h., er terminiert immer, und er gibt
genau dann

”
erfüllbar“ aus, wenn die eingegebene Klauselmenge Γ erfüllbar ist).

Laufzeit des DPLL-Algorithmus:

O(m · 2n) im Worst-Case; in der Praxis aber häufig sehr effizient.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 144

Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

Vereinfachungsheuristiken, die in Schritt 1. angewendet werden:

• Unit Propagation: Für alle
”
Einerklauseln“ {λ} ∈ Γ (wobei λ ein Literal ist),

bilde alle Resolventen von {λ} mit anderen Klauseln und streiche anschließend
alle Klauseln, die λ enthalten. Wiederhole dies, so lange es Einerklauseln gibt.

Präzise: Für jede
”
Einerklausel“ {λ} ∈ Γ tue Folgendes:

1. Ersetze jede Klausel γ ∈ Γ durch die Klausel γ \ {λ}.
2. Entferne aus Γ jede Klausel, die das Literal λ enthält.

Wiederhole dies, so lange es in Γ Einerklauseln gibt.

• Pure Literal Rule: Literale λ, deren Negat λ nirgendwo in der Klauselmenge
auftaucht, können auf 1 gesetzt werden. Alle Klauseln, die ein solches Literal
enthalten, sind dann wahr und können gestrichen werden. Wiederhole dies, so
lange es Literale gibt, deren Negat nirgendwo in der Klauselmenge auftaucht.

• Streiche Klauseln, die Obermengen von anderen Klauseln sind (dies ist allerdings
ineffizient und wird in der Praxis zumeist weggelassen).

Man sieht leicht, dass das Anwenden dieser Vereinfachungsheuristiken die Klauselmenge Γ in
eine erfüllbarkeitsäquivalente Klauselmenge transformiert. Hieraus folgt leicht, dass der
DPLL-Algorithmus stets die korrekte Antwort gibt (d.h., er terminiert immer, und er gibt
genau dann

”
erfüllbar“ aus, wenn die eingegebene Klauselmenge Γ erfüllbar ist).

Laufzeit des DPLL-Algorithmus:

O(m · 2n) im Worst-Case; in der Praxis aber häufig sehr effizient.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 144

Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

Vereinfachungsheuristiken, die in Schritt 1. angewendet werden:

• Unit Propagation: Für alle
”
Einerklauseln“ {λ} ∈ Γ (wobei λ ein Literal ist),

bilde alle Resolventen von {λ} mit anderen Klauseln und streiche anschließend
alle Klauseln, die λ enthalten. Wiederhole dies, so lange es Einerklauseln gibt.

Präzise: Für jede
”
Einerklausel“ {λ} ∈ Γ tue Folgendes:

1. Ersetze jede Klausel γ ∈ Γ durch die Klausel γ \ {λ}.
2. Entferne aus Γ jede Klausel, die das Literal λ enthält.

Wiederhole dies, so lange es in Γ Einerklauseln gibt.

• Pure Literal Rule: Literale λ, deren Negat λ nirgendwo in der Klauselmenge
auftaucht, können auf 1 gesetzt werden. Alle Klauseln, die ein solches Literal
enthalten, sind dann wahr und können gestrichen werden. Wiederhole dies, so
lange es Literale gibt, deren Negat nirgendwo in der Klauselmenge auftaucht.

• Streiche Klauseln, die Obermengen von anderen Klauseln sind (dies ist allerdings
ineffizient und wird in der Praxis zumeist weggelassen).

Man sieht leicht, dass das Anwenden dieser Vereinfachungsheuristiken die Klauselmenge Γ in
eine erfüllbarkeitsäquivalente Klauselmenge transformiert. Hieraus folgt leicht, dass der
DPLL-Algorithmus stets die korrekte Antwort gibt (d.h., er terminiert immer, und er gibt
genau dann

”
erfüllbar“ aus, wenn die eingegebene Klauselmenge Γ erfüllbar ist).

Laufzeit des DPLL-Algorithmus:

O(m · 2n) im Worst-Case

; in der Praxis aber häufig sehr effizient.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 144

Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

Vereinfachungsheuristiken, die in Schritt 1. angewendet werden:

• Unit Propagation: Für alle
”
Einerklauseln“ {λ} ∈ Γ (wobei λ ein Literal ist),

bilde alle Resolventen von {λ} mit anderen Klauseln und streiche anschließend
alle Klauseln, die λ enthalten. Wiederhole dies, so lange es Einerklauseln gibt.

Präzise: Für jede
”
Einerklausel“ {λ} ∈ Γ tue Folgendes:

1. Ersetze jede Klausel γ ∈ Γ durch die Klausel γ \ {λ}.
2. Entferne aus Γ jede Klausel, die das Literal λ enthält.

Wiederhole dies, so lange es in Γ Einerklauseln gibt.

• Pure Literal Rule: Literale λ, deren Negat λ nirgendwo in der Klauselmenge
auftaucht, können auf 1 gesetzt werden. Alle Klauseln, die ein solches Literal
enthalten, sind dann wahr und können gestrichen werden. Wiederhole dies, so
lange es Literale gibt, deren Negat nirgendwo in der Klauselmenge auftaucht.

• Streiche Klauseln, die Obermengen von anderen Klauseln sind (dies ist allerdings
ineffizient und wird in der Praxis zumeist weggelassen).

Man sieht leicht, dass das Anwenden dieser Vereinfachungsheuristiken die Klauselmenge Γ in
eine erfüllbarkeitsäquivalente Klauselmenge transformiert. Hieraus folgt leicht, dass der
DPLL-Algorithmus stets die korrekte Antwort gibt (d.h., er terminiert immer, und er gibt
genau dann

”
erfüllbar“ aus, wenn die eingegebene Klauselmenge Γ erfüllbar ist).

Laufzeit des DPLL-Algorithmus:

O(m · 2n) im Worst-Case; in der Praxis aber häufig sehr effizient.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 144

Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

Beispiel 2.63
Sei Γ :={

{X1,¬X5,¬X6,X7}, {¬X1,X2,¬X5}, {¬X1,¬X2,¬X3,¬X5,¬X6},
{X1,X2,¬X4,X7}, {¬X4,¬X6,¬X7}, {X3,¬X5,X7},
{X3,¬X4,¬X5}, {X5,¬X6}, {X5,X4,¬X8},
{X1,X3,X5,X6,X7}, {¬X7,X8}, {¬X6,¬X7,¬X8}

}

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 145

Abschnitt 2.8:

Hornformeln

Kapitel 2: Aussagenlogik · Abschnitt 2.8: Hornformeln

Hornklauseln und Hornformeln
Hornformeln sind spezielle aussagenlogische Formeln, die die Basis der logischen
Programmierung bilden, und für die das Erfüllbarkeitsproblem effizient gelöst
werden kann.

Definition 2.64
Eine Hornklausel ist eine disjunktive Klausel, in der höchstens ein positives
Literal vorkommt.
Eine Hornformel ist eine Konjunktion endlich vieler Hornklauseln.

Beispiele

• {¬X ,¬Y ,¬Z} (bzw. ¬X ∨ ¬Y ∨ ¬Z) ist eine Hornklausel.

• {¬X ,¬Y ,Z} (bzw. ¬X ∨ ¬Y ∨ Z) ist eine Hornklausel.

• {¬X ,Y ,Z} (bzw. ¬X ∨ Y ∨ Z) ist keine Hornklausel.

• {X} (bzw. X) ist eine Hornklausel.

• ∅ ist eine Hornklausel.

• (X ∨ ¬Y) ∧ (¬Z ∨ ¬X ∨ ¬Y) ∧ Y ist eine Hornformel.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 146

Kapitel 2: Aussagenlogik · Abschnitt 2.8: Hornformeln

Hornklauseln und Hornformeln
Hornformeln sind spezielle aussagenlogische Formeln, die die Basis der logischen
Programmierung bilden, und für die das Erfüllbarkeitsproblem effizient gelöst
werden kann.

Definition 2.64
Eine Hornklausel ist eine disjunktive Klausel, in der höchstens ein positives
Literal vorkommt.

Eine Hornformel ist eine Konjunktion endlich vieler Hornklauseln.

Beispiele

• {¬X ,¬Y ,¬Z} (bzw. ¬X ∨ ¬Y ∨ ¬Z) ist eine Hornklausel.

• {¬X ,¬Y ,Z} (bzw. ¬X ∨ ¬Y ∨ Z) ist eine Hornklausel.

• {¬X ,Y ,Z} (bzw. ¬X ∨ Y ∨ Z) ist keine Hornklausel.

• {X} (bzw. X) ist eine Hornklausel.

• ∅ ist eine Hornklausel.

• (X ∨ ¬Y) ∧ (¬Z ∨ ¬X ∨ ¬Y) ∧ Y ist eine Hornformel.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 146

Kapitel 2: Aussagenlogik · Abschnitt 2.8: Hornformeln

Hornklauseln und Hornformeln
Hornformeln sind spezielle aussagenlogische Formeln, die die Basis der logischen
Programmierung bilden, und für die das Erfüllbarkeitsproblem effizient gelöst
werden kann.

Definition 2.64
Eine Hornklausel ist eine disjunktive Klausel, in der höchstens ein positives
Literal vorkommt.
Eine Hornformel ist eine Konjunktion endlich vieler Hornklauseln.

Beispiele

• {¬X ,¬Y ,¬Z} (bzw. ¬X ∨ ¬Y ∨ ¬Z) ist eine Hornklausel.

• {¬X ,¬Y ,Z} (bzw. ¬X ∨ ¬Y ∨ Z) ist eine Hornklausel.

• {¬X ,Y ,Z} (bzw. ¬X ∨ Y ∨ Z) ist keine Hornklausel.

• {X} (bzw. X) ist eine Hornklausel.

• ∅ ist eine Hornklausel.

• (X ∨ ¬Y) ∧ (¬Z ∨ ¬X ∨ ¬Y) ∧ Y ist eine Hornformel.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 146

Kapitel 2: Aussagenlogik · Abschnitt 2.8: Hornformeln

Hornklauseln und Hornformeln
Hornformeln sind spezielle aussagenlogische Formeln, die die Basis der logischen
Programmierung bilden, und für die das Erfüllbarkeitsproblem effizient gelöst
werden kann.

Definition 2.64
Eine Hornklausel ist eine disjunktive Klausel, in der höchstens ein positives
Literal vorkommt.
Eine Hornformel ist eine Konjunktion endlich vieler Hornklauseln.

Beispiele

• {¬X ,¬Y ,¬Z} (bzw. ¬X ∨ ¬Y ∨ ¬Z)

ist eine Hornklausel.

• {¬X ,¬Y ,Z} (bzw. ¬X ∨ ¬Y ∨ Z) ist eine Hornklausel.

• {¬X ,Y ,Z} (bzw. ¬X ∨ Y ∨ Z) ist keine Hornklausel.

• {X} (bzw. X) ist eine Hornklausel.

• ∅ ist eine Hornklausel.

• (X ∨ ¬Y) ∧ (¬Z ∨ ¬X ∨ ¬Y) ∧ Y ist eine Hornformel.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 146

Kapitel 2: Aussagenlogik · Abschnitt 2.8: Hornformeln

Hornklauseln und Hornformeln
Hornformeln sind spezielle aussagenlogische Formeln, die die Basis der logischen
Programmierung bilden, und für die das Erfüllbarkeitsproblem effizient gelöst
werden kann.

Definition 2.64
Eine Hornklausel ist eine disjunktive Klausel, in der höchstens ein positives
Literal vorkommt.
Eine Hornformel ist eine Konjunktion endlich vieler Hornklauseln.

Beispiele

• {¬X ,¬Y ,¬Z} (bzw. ¬X ∨ ¬Y ∨ ¬Z) ist eine Hornklausel.

• {¬X ,¬Y ,Z} (bzw. ¬X ∨ ¬Y ∨ Z)

ist eine Hornklausel.

• {¬X ,Y ,Z} (bzw. ¬X ∨ Y ∨ Z) ist keine Hornklausel.

• {X} (bzw. X) ist eine Hornklausel.

• ∅ ist eine Hornklausel.

• (X ∨ ¬Y) ∧ (¬Z ∨ ¬X ∨ ¬Y) ∧ Y ist eine Hornformel.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 146

Kapitel 2: Aussagenlogik · Abschnitt 2.8: Hornformeln

Hornklauseln und Hornformeln
Hornformeln sind spezielle aussagenlogische Formeln, die die Basis der logischen
Programmierung bilden, und für die das Erfüllbarkeitsproblem effizient gelöst
werden kann.

Definition 2.64
Eine Hornklausel ist eine disjunktive Klausel, in der höchstens ein positives
Literal vorkommt.
Eine Hornformel ist eine Konjunktion endlich vieler Hornklauseln.

Beispiele

• {¬X ,¬Y ,¬Z} (bzw. ¬X ∨ ¬Y ∨ ¬Z) ist eine Hornklausel.

• {¬X ,¬Y ,Z} (bzw. ¬X ∨ ¬Y ∨ Z) ist eine Hornklausel.

• {¬X ,Y ,Z} (bzw. ¬X ∨ Y ∨ Z)

ist keine Hornklausel.

• {X} (bzw. X) ist eine Hornklausel.

• ∅ ist eine Hornklausel.

• (X ∨ ¬Y) ∧ (¬Z ∨ ¬X ∨ ¬Y) ∧ Y ist eine Hornformel.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 146

Kapitel 2: Aussagenlogik · Abschnitt 2.8: Hornformeln

Hornklauseln und Hornformeln
Hornformeln sind spezielle aussagenlogische Formeln, die die Basis der logischen
Programmierung bilden, und für die das Erfüllbarkeitsproblem effizient gelöst
werden kann.

Definition 2.64
Eine Hornklausel ist eine disjunktive Klausel, in der höchstens ein positives
Literal vorkommt.
Eine Hornformel ist eine Konjunktion endlich vieler Hornklauseln.

Beispiele

• {¬X ,¬Y ,¬Z} (bzw. ¬X ∨ ¬Y ∨ ¬Z) ist eine Hornklausel.

• {¬X ,¬Y ,Z} (bzw. ¬X ∨ ¬Y ∨ Z) ist eine Hornklausel.

• {¬X ,Y ,Z} (bzw. ¬X ∨ Y ∨ Z) ist keine Hornklausel.

• {X} (bzw. X)

ist eine Hornklausel.

• ∅ ist eine Hornklausel.

• (X ∨ ¬Y) ∧ (¬Z ∨ ¬X ∨ ¬Y) ∧ Y ist eine Hornformel.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 146

Kapitel 2: Aussagenlogik · Abschnitt 2.8: Hornformeln

Hornklauseln und Hornformeln
Hornformeln sind spezielle aussagenlogische Formeln, die die Basis der logischen
Programmierung bilden, und für die das Erfüllbarkeitsproblem effizient gelöst
werden kann.

Definition 2.64
Eine Hornklausel ist eine disjunktive Klausel, in der höchstens ein positives
Literal vorkommt.
Eine Hornformel ist eine Konjunktion endlich vieler Hornklauseln.

Beispiele

• {¬X ,¬Y ,¬Z} (bzw. ¬X ∨ ¬Y ∨ ¬Z) ist eine Hornklausel.

• {¬X ,¬Y ,Z} (bzw. ¬X ∨ ¬Y ∨ Z) ist eine Hornklausel.

• {¬X ,Y ,Z} (bzw. ¬X ∨ Y ∨ Z) ist keine Hornklausel.

• {X} (bzw. X) ist eine Hornklausel.

• ∅

ist eine Hornklausel.

• (X ∨ ¬Y) ∧ (¬Z ∨ ¬X ∨ ¬Y) ∧ Y ist eine Hornformel.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 146

Kapitel 2: Aussagenlogik · Abschnitt 2.8: Hornformeln

Hornklauseln und Hornformeln
Hornformeln sind spezielle aussagenlogische Formeln, die die Basis der logischen
Programmierung bilden, und für die das Erfüllbarkeitsproblem effizient gelöst
werden kann.

Definition 2.64
Eine Hornklausel ist eine disjunktive Klausel, in der höchstens ein positives
Literal vorkommt.
Eine Hornformel ist eine Konjunktion endlich vieler Hornklauseln.

Beispiele

• {¬X ,¬Y ,¬Z} (bzw. ¬X ∨ ¬Y ∨ ¬Z) ist eine Hornklausel.

• {¬X ,¬Y ,Z} (bzw. ¬X ∨ ¬Y ∨ Z) ist eine Hornklausel.

• {¬X ,Y ,Z} (bzw. ¬X ∨ Y ∨ Z) ist keine Hornklausel.

• {X} (bzw. X) ist eine Hornklausel.

• ∅ ist eine Hornklausel.

• (X ∨ ¬Y) ∧ (¬Z ∨ ¬X ∨ ¬Y) ∧ Y

ist eine Hornformel.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 146

Kapitel 2: Aussagenlogik · Abschnitt 2.8: Hornformeln

Hornklauseln und Hornformeln
Hornformeln sind spezielle aussagenlogische Formeln, die die Basis der logischen
Programmierung bilden, und für die das Erfüllbarkeitsproblem effizient gelöst
werden kann.

Definition 2.64
Eine Hornklausel ist eine disjunktive Klausel, in der höchstens ein positives
Literal vorkommt.
Eine Hornformel ist eine Konjunktion endlich vieler Hornklauseln.

Beispiele

• {¬X ,¬Y ,¬Z} (bzw. ¬X ∨ ¬Y ∨ ¬Z) ist eine Hornklausel.

• {¬X ,¬Y ,Z} (bzw. ¬X ∨ ¬Y ∨ Z) ist eine Hornklausel.

• {¬X ,Y ,Z} (bzw. ¬X ∨ Y ∨ Z) ist keine Hornklausel.

• {X} (bzw. X) ist eine Hornklausel.

• ∅ ist eine Hornklausel.

• (X ∨ ¬Y) ∧ (¬Z ∨ ¬X ∨ ¬Y) ∧ Y ist eine Hornformel.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 146

Kapitel 2: Aussagenlogik · Abschnitt 2.8: Hornformeln

Hornklauseln als Implikationen
• Eine Hornklausel der Form {¬X1, . . . ,¬Xn−1,Xn} (bzw.

¬X1 ∨ · · · ∨ ¬Xn−1 ∨ Xn) ist äquivalent zur Formel

(X1 ∧ · · · ∧ Xn−1) → Xn.

Solche Klauseln werden auch
”
Regeln“ (oder

”
Prozedurklauseln“) genannt.

• Eine Hornklausel der Form {¬X1, . . . ,¬Xn−1} ist äquivalent zur Formel

(X1 ∧ . . . ∧ Xn−1) → 0.

Solche Klauseln werden auch
”
Zielklauseln“ (oder

”
Frageklauseln“)

genannt.

• Eine Hornklausel der Form {X1} ist äquivalent zur Formel

1 → X1.

Solche Klauseln werden auch
”
Tatsachenklausel“ genannt.

• Die leere (Horn-)Klausel ∅ ist unerfüllbar und daher äquivalent zur Formel

1 → 0.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 147

Kapitel 2: Aussagenlogik · Abschnitt 2.8: Hornformeln

Hornklauseln als Implikationen
• Eine Hornklausel der Form {¬X1, . . . ,¬Xn−1,Xn} (bzw.

¬X1 ∨ · · · ∨ ¬Xn−1 ∨ Xn) ist äquivalent zur Formel

(X1 ∧ · · · ∧ Xn−1) → Xn.

Solche Klauseln werden auch
”
Regeln“ (oder

”
Prozedurklauseln“) genannt.

• Eine Hornklausel der Form {¬X1, . . . ,¬Xn−1} ist äquivalent zur Formel

(X1 ∧ . . . ∧ Xn−1) → 0.

Solche Klauseln werden auch
”
Zielklauseln“ (oder

”
Frageklauseln“)

genannt.

• Eine Hornklausel der Form {X1} ist äquivalent zur Formel

1 → X1.

Solche Klauseln werden auch
”
Tatsachenklausel“ genannt.

• Die leere (Horn-)Klausel ∅ ist unerfüllbar und daher äquivalent zur Formel

1 → 0.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 147

Kapitel 2: Aussagenlogik · Abschnitt 2.8: Hornformeln

Hornklauseln als Implikationen
• Eine Hornklausel der Form {¬X1, . . . ,¬Xn−1,Xn} (bzw.

¬X1 ∨ · · · ∨ ¬Xn−1 ∨ Xn) ist äquivalent zur Formel

(X1 ∧ · · · ∧ Xn−1) → Xn.

Solche Klauseln werden auch
”
Regeln“ (oder

”
Prozedurklauseln“) genannt.

• Eine Hornklausel der Form {¬X1, . . . ,¬Xn−1} ist äquivalent zur Formel

(X1 ∧ . . . ∧ Xn−1) → 0.

Solche Klauseln werden auch
”
Zielklauseln“ (oder

”
Frageklauseln“)

genannt.

• Eine Hornklausel der Form {X1} ist äquivalent zur Formel

1 → X1.

Solche Klauseln werden auch
”
Tatsachenklausel“ genannt.

• Die leere (Horn-)Klausel ∅ ist unerfüllbar und daher äquivalent zur Formel

1 → 0.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 147

Kapitel 2: Aussagenlogik · Abschnitt 2.8: Hornformeln

Hornklauseln als Implikationen
• Eine Hornklausel der Form {¬X1, . . . ,¬Xn−1,Xn} (bzw.

¬X1 ∨ · · · ∨ ¬Xn−1 ∨ Xn) ist äquivalent zur Formel

(X1 ∧ · · · ∧ Xn−1) → Xn.

Solche Klauseln werden auch
”
Regeln“ (oder

”
Prozedurklauseln“) genannt.

• Eine Hornklausel der Form {¬X1, . . . ,¬Xn−1} ist äquivalent zur Formel

(X1 ∧ . . . ∧ Xn−1) → 0.

Solche Klauseln werden auch
”
Zielklauseln“ (oder

”
Frageklauseln“)

genannt.

• Eine Hornklausel der Form {X1} ist äquivalent zur Formel

1 → X1.

Solche Klauseln werden auch
”
Tatsachenklausel“ genannt.

• Die leere (Horn-)Klausel ∅ ist unerfüllbar und daher äquivalent zur Formel

1 → 0.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 147

Kapitel 2: Aussagenlogik · Abschnitt 2.8: Hornformeln

Hornklauseln als Implikationen
• Eine Hornklausel der Form {¬X1, . . . ,¬Xn−1,Xn} (bzw.

¬X1 ∨ · · · ∨ ¬Xn−1 ∨ Xn) ist äquivalent zur Formel

(X1 ∧ · · · ∧ Xn−1) → Xn.

Solche Klauseln werden auch
”
Regeln“ (oder

”
Prozedurklauseln“) genannt.

• Eine Hornklausel der Form {¬X1, . . . ,¬Xn−1} ist äquivalent zur Formel

(X1 ∧ . . . ∧ Xn−1) → 0.

Solche Klauseln werden auch
”
Zielklauseln“ (oder

”
Frageklauseln“)

genannt.

• Eine Hornklausel der Form {X1} ist äquivalent zur Formel

1 → X1.

Solche Klauseln werden auch
”
Tatsachenklausel“ genannt.

• Die leere (Horn-)Klausel ∅ ist unerfüllbar und daher äquivalent zur Formel

1 → 0.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 147

Kapitel 2: Aussagenlogik · Abschnitt 2.8: Hornformeln

Hornklauseln als Implikationen
• Eine Hornklausel der Form {¬X1, . . . ,¬Xn−1,Xn} (bzw.

¬X1 ∨ · · · ∨ ¬Xn−1 ∨ Xn) ist äquivalent zur Formel

(X1 ∧ · · · ∧ Xn−1) → Xn.

Solche Klauseln werden auch
”
Regeln“ (oder

”
Prozedurklauseln“) genannt.

• Eine Hornklausel der Form {¬X1, . . . ,¬Xn−1} ist äquivalent zur Formel

(X1 ∧ . . . ∧ Xn−1) → 0.

Solche Klauseln werden auch
”
Zielklauseln“ (oder

”
Frageklauseln“)

genannt.

• Eine Hornklausel der Form {X1} ist äquivalent zur Formel

1 → X1.

Solche Klauseln werden auch
”
Tatsachenklausel“ genannt.

• Die leere (Horn-)Klausel ∅ ist unerfüllbar und daher äquivalent zur Formel

1 → 0.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 147

Kapitel 2: Aussagenlogik · Abschnitt 2.8: Hornformeln

Hornklauseln als Implikationen
• Eine Hornklausel der Form {¬X1, . . . ,¬Xn−1,Xn} (bzw.

¬X1 ∨ · · · ∨ ¬Xn−1 ∨ Xn) ist äquivalent zur Formel

(X1 ∧ · · · ∧ Xn−1) → Xn.

Solche Klauseln werden auch
”
Regeln“ (oder

”
Prozedurklauseln“) genannt.

• Eine Hornklausel der Form {¬X1, . . . ,¬Xn−1} ist äquivalent zur Formel

(X1 ∧ . . . ∧ Xn−1) → 0.

Solche Klauseln werden auch
”
Zielklauseln“ (oder

”
Frageklauseln“)

genannt.

• Eine Hornklausel der Form {X1} ist äquivalent zur Formel

1 → X1.

Solche Klauseln werden auch
”
Tatsachenklausel“ genannt.

• Die leere (Horn-)Klausel ∅ ist unerfüllbar und daher äquivalent zur Formel

1 → 0.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 147

Kapitel 2: Aussagenlogik · Abschnitt 2.8: Hornformeln

Der Streichungsalgorithmus

Der folgende Algorithmus löst das Erfüllbarkeitsproblem für Hornformeln in
Polynomialzeit.

Wir geben zunächst den Algorithmus an, betrachten dann Beispielläufe davon,
analysieren die Laufzeit und zeigen danach, dass der Algorithmus korrekt ist,
d.h. stets die richtige Antwort gibt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 148

Kapitel 2: Aussagenlogik · Abschnitt 2.8: Hornformeln

Streichungsalgorithmus
Eingabe: eine endliche Menge Γ von Hornklauseln

1. Wiederhole:

2. Falls ∅ ∈ Γ

, so halte mit Ausgabe
”
unerfüllbar“.

3. Falls Γ keine Tatsachenklausel (d.h. Klausel {X} mit X ∈ AS)
enthält, so halte mit Ausgabe

”
erfüllbar“.

% Γ wird erfüllt, indem jedes Aussagensymbol mit 0 belegt wird

4. Wähle eine Tatsachenklausel {X} ∈ Γ.
% Idee: Um Γ zu erfüllen, muss X mit dem Wert 1 belegt werden

5. Streiche ¬X aus allen Klauseln δ ∈ Γ, die das Literal ¬X
enthalten.
% Wenn X den Wert 1 hat, trägt ¬X nichts zum Erfüllen einer Klausel bei

6. Streiche aus Γ alle Klauseln δ ∈ Γ, die das Literal X enthalten
(d.h. entferne aus Γ alle δ ∈ Γ, für die gilt: X ∈ δ).
% Wenn X den Wert 1 hat, sind solche Klauseln erfüllt

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 149

Kapitel 2: Aussagenlogik · Abschnitt 2.8: Hornformeln

Streichungsalgorithmus
Eingabe: eine endliche Menge Γ von Hornklauseln

1. Wiederhole:

2. Falls ∅ ∈ Γ, so halte mit Ausgabe
”
unerfüllbar“.

3. Falls Γ keine Tatsachenklausel (d.h. Klausel {X} mit X ∈ AS)
enthält, so halte mit Ausgabe

”
erfüllbar“.

% Γ wird erfüllt, indem jedes Aussagensymbol mit 0 belegt wird

4. Wähle eine Tatsachenklausel {X} ∈ Γ.
% Idee: Um Γ zu erfüllen, muss X mit dem Wert 1 belegt werden

5. Streiche ¬X aus allen Klauseln δ ∈ Γ, die das Literal ¬X
enthalten.
% Wenn X den Wert 1 hat, trägt ¬X nichts zum Erfüllen einer Klausel bei

6. Streiche aus Γ alle Klauseln δ ∈ Γ, die das Literal X enthalten
(d.h. entferne aus Γ alle δ ∈ Γ, für die gilt: X ∈ δ).
% Wenn X den Wert 1 hat, sind solche Klauseln erfüllt

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 149

Kapitel 2: Aussagenlogik · Abschnitt 2.8: Hornformeln

Streichungsalgorithmus
Eingabe: eine endliche Menge Γ von Hornklauseln

1. Wiederhole:

2. Falls ∅ ∈ Γ, so halte mit Ausgabe
”
unerfüllbar“.

3. Falls Γ keine Tatsachenklausel (d.h. Klausel {X} mit X ∈ AS)
enthält

, so halte mit Ausgabe
”
erfüllbar“.

% Γ wird erfüllt, indem jedes Aussagensymbol mit 0 belegt wird

4. Wähle eine Tatsachenklausel {X} ∈ Γ.
% Idee: Um Γ zu erfüllen, muss X mit dem Wert 1 belegt werden

5. Streiche ¬X aus allen Klauseln δ ∈ Γ, die das Literal ¬X
enthalten.
% Wenn X den Wert 1 hat, trägt ¬X nichts zum Erfüllen einer Klausel bei

6. Streiche aus Γ alle Klauseln δ ∈ Γ, die das Literal X enthalten
(d.h. entferne aus Γ alle δ ∈ Γ, für die gilt: X ∈ δ).
% Wenn X den Wert 1 hat, sind solche Klauseln erfüllt

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 149

Kapitel 2: Aussagenlogik · Abschnitt 2.8: Hornformeln

Streichungsalgorithmus
Eingabe: eine endliche Menge Γ von Hornklauseln

1. Wiederhole:

2. Falls ∅ ∈ Γ, so halte mit Ausgabe
”
unerfüllbar“.

3. Falls Γ keine Tatsachenklausel (d.h. Klausel {X} mit X ∈ AS)
enthält, so halte mit Ausgabe

”
erfüllbar“.

% Γ wird erfüllt, indem jedes Aussagensymbol mit 0 belegt wird

4. Wähle eine Tatsachenklausel {X} ∈ Γ.
% Idee: Um Γ zu erfüllen, muss X mit dem Wert 1 belegt werden

5. Streiche ¬X aus allen Klauseln δ ∈ Γ, die das Literal ¬X
enthalten.
% Wenn X den Wert 1 hat, trägt ¬X nichts zum Erfüllen einer Klausel bei

6. Streiche aus Γ alle Klauseln δ ∈ Γ, die das Literal X enthalten
(d.h. entferne aus Γ alle δ ∈ Γ, für die gilt: X ∈ δ).
% Wenn X den Wert 1 hat, sind solche Klauseln erfüllt

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 149

Kapitel 2: Aussagenlogik · Abschnitt 2.8: Hornformeln

Streichungsalgorithmus
Eingabe: eine endliche Menge Γ von Hornklauseln

1. Wiederhole:

2. Falls ∅ ∈ Γ, so halte mit Ausgabe
”
unerfüllbar“.

3. Falls Γ keine Tatsachenklausel (d.h. Klausel {X} mit X ∈ AS)
enthält, so halte mit Ausgabe

”
erfüllbar“.

% Γ wird erfüllt, indem jedes Aussagensymbol mit 0 belegt wird

4. Wähle eine Tatsachenklausel {X} ∈ Γ.
% Idee: Um Γ zu erfüllen, muss X mit dem Wert 1 belegt werden

5. Streiche ¬X aus allen Klauseln δ ∈ Γ, die das Literal ¬X
enthalten.
% Wenn X den Wert 1 hat, trägt ¬X nichts zum Erfüllen einer Klausel bei

6. Streiche aus Γ alle Klauseln δ ∈ Γ, die das Literal X enthalten
(d.h. entferne aus Γ alle δ ∈ Γ, für die gilt: X ∈ δ).
% Wenn X den Wert 1 hat, sind solche Klauseln erfüllt

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 149

Kapitel 2: Aussagenlogik · Abschnitt 2.8: Hornformeln

Streichungsalgorithmus
Eingabe: eine endliche Menge Γ von Hornklauseln

1. Wiederhole:

2. Falls ∅ ∈ Γ, so halte mit Ausgabe
”
unerfüllbar“.

3. Falls Γ keine Tatsachenklausel (d.h. Klausel {X} mit X ∈ AS)
enthält, so halte mit Ausgabe

”
erfüllbar“.

% Γ wird erfüllt, indem jedes Aussagensymbol mit 0 belegt wird

4. Wähle eine Tatsachenklausel {X} ∈ Γ.
% Idee: Um Γ zu erfüllen, muss X mit dem Wert 1 belegt werden

5. Streiche ¬X aus allen Klauseln δ ∈ Γ, die das Literal ¬X
enthalten.
% Wenn X den Wert 1 hat, trägt ¬X nichts zum Erfüllen einer Klausel bei

6. Streiche aus Γ alle Klauseln δ ∈ Γ, die das Literal X enthalten
(d.h. entferne aus Γ alle δ ∈ Γ, für die gilt: X ∈ δ).
% Wenn X den Wert 1 hat, sind solche Klauseln erfüllt

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 149

Kapitel 2: Aussagenlogik · Abschnitt 2.8: Hornformeln

Streichungsalgorithmus
Eingabe: eine endliche Menge Γ von Hornklauseln

1. Wiederhole:

2. Falls ∅ ∈ Γ, so halte mit Ausgabe
”
unerfüllbar“.

3. Falls Γ keine Tatsachenklausel (d.h. Klausel {X} mit X ∈ AS)
enthält, so halte mit Ausgabe

”
erfüllbar“.

% Γ wird erfüllt, indem jedes Aussagensymbol mit 0 belegt wird

4. Wähle eine Tatsachenklausel {X} ∈ Γ.
% Idee: Um Γ zu erfüllen, muss X mit dem Wert 1 belegt werden

5. Streiche ¬X aus allen Klauseln δ ∈ Γ, die das Literal ¬X
enthalten.
% Wenn X den Wert 1 hat, trägt ¬X nichts zum Erfüllen einer Klausel bei

6. Streiche aus Γ alle Klauseln δ ∈ Γ, die das Literal X enthalten
(d.h. entferne aus Γ alle δ ∈ Γ, für die gilt: X ∈ δ).
% Wenn X den Wert 1 hat, sind solche Klauseln erfüllt

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 149

Kapitel 2: Aussagenlogik · Abschnitt 2.8: Hornformeln

Beispiele 2.65
Wir wenden den Streichungsalgorithmus auf die beiden folgenden Mengen von
Hornklauseln an.

(a) Γa :=
{
S → 0, (P ∧ Q) → R, (S ∧ R) → 0, (U ∧ T ∧ Q) → P,

(U ∧ T) → Q, 1 → U, 1 → T
}

(b) Γb :=
{
(Q ∧ P) → T , (U ∧ T ∧ Q) → R, (U ∧ T) → Q,

1 → U, R → 0, 1 → T
}

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 150

Kapitel 2: Aussagenlogik · Abschnitt 2.8: Hornformeln

Beispiele 2.65
Wir wenden den Streichungsalgorithmus auf die beiden folgenden Mengen von
Hornklauseln an.

(a) Γa :=
{
S → 0, (P ∧ Q) → R, (S ∧ R) → 0, (U ∧ T ∧ Q) → P,

(U ∧ T) → Q, 1 → U, 1 → T
}

(b) Γb :=
{
(Q ∧ P) → T , (U ∧ T ∧ Q) → R, (U ∧ T) → Q,

1 → U, R → 0, 1 → T
}

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 150

Kapitel 2: Aussagenlogik · Abschnitt 2.8: Hornformeln

Laufzeit des Streichungsalgorithmus

Man sieht leicht, dass in jedem Schleifendurchlauf die Anzahl der Klauseln in Γ
kleiner wird. Daher terminiert der Algorithmus nach maximal
m Schleifendurchläufen, wobei m die Anzahl der Klauseln in der Eingabemenge
Γ ist.

In jedem einzelnen Schleifendurchlauf betrachtet der Algorithmus alle Klauseln
der aktuellen Klauselmenge und führt dabei O(n) Schritte durch, wobei n = ||Γ||
die Größe der Klauselmenge ist.

Insgesamt terminiert der Streichungsalgorithmus also nach O(m·n) Schritten,
d.h. in Zeit polynomiell in der Größe von Γ.

Satz 2.66
Die Laufzeit des Streichungsalgorithmus ist O(m·n), wobei m = |Γ| die Anzahl
der Hornklauseln in der eingegebenen Menge Γ und n = ||Γ|| die Größe von Γ ist.

Bemerkung
Eine Variante des Streichungsalgorithmus läuft sogar in Linearzeit, d.h. in Zeit
O(n).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 151

Kapitel 2: Aussagenlogik · Abschnitt 2.8: Hornformeln

Laufzeit des Streichungsalgorithmus

Man sieht leicht, dass in jedem Schleifendurchlauf die Anzahl der Klauseln in Γ
kleiner wird.

Daher terminiert der Algorithmus nach maximal
m Schleifendurchläufen, wobei m die Anzahl der Klauseln in der Eingabemenge
Γ ist.

In jedem einzelnen Schleifendurchlauf betrachtet der Algorithmus alle Klauseln
der aktuellen Klauselmenge und führt dabei O(n) Schritte durch, wobei n = ||Γ||
die Größe der Klauselmenge ist.

Insgesamt terminiert der Streichungsalgorithmus also nach O(m·n) Schritten,
d.h. in Zeit polynomiell in der Größe von Γ.

Satz 2.66
Die Laufzeit des Streichungsalgorithmus ist O(m·n), wobei m = |Γ| die Anzahl
der Hornklauseln in der eingegebenen Menge Γ und n = ||Γ|| die Größe von Γ ist.

Bemerkung
Eine Variante des Streichungsalgorithmus läuft sogar in Linearzeit, d.h. in Zeit
O(n).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 151

Kapitel 2: Aussagenlogik · Abschnitt 2.8: Hornformeln

Laufzeit des Streichungsalgorithmus

Man sieht leicht, dass in jedem Schleifendurchlauf die Anzahl der Klauseln in Γ
kleiner wird. Daher terminiert der Algorithmus nach maximal
m Schleifendurchläufen, wobei m die Anzahl der Klauseln in der Eingabemenge
Γ ist.

In jedem einzelnen Schleifendurchlauf betrachtet der Algorithmus alle Klauseln
der aktuellen Klauselmenge und führt dabei O(n) Schritte durch, wobei n = ||Γ||
die Größe der Klauselmenge ist.

Insgesamt terminiert der Streichungsalgorithmus also nach O(m·n) Schritten,
d.h. in Zeit polynomiell in der Größe von Γ.

Satz 2.66
Die Laufzeit des Streichungsalgorithmus ist O(m·n), wobei m = |Γ| die Anzahl
der Hornklauseln in der eingegebenen Menge Γ und n = ||Γ|| die Größe von Γ ist.

Bemerkung
Eine Variante des Streichungsalgorithmus läuft sogar in Linearzeit, d.h. in Zeit
O(n).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 151

Kapitel 2: Aussagenlogik · Abschnitt 2.8: Hornformeln

Laufzeit des Streichungsalgorithmus

Man sieht leicht, dass in jedem Schleifendurchlauf die Anzahl der Klauseln in Γ
kleiner wird. Daher terminiert der Algorithmus nach maximal
m Schleifendurchläufen, wobei m die Anzahl der Klauseln in der Eingabemenge
Γ ist.

In jedem einzelnen Schleifendurchlauf betrachtet der Algorithmus alle Klauseln
der aktuellen Klauselmenge und führt dabei O(n) Schritte durch, wobei n = ||Γ||
die Größe der Klauselmenge ist.

Insgesamt terminiert der Streichungsalgorithmus also nach O(m·n) Schritten,
d.h. in Zeit polynomiell in der Größe von Γ.

Satz 2.66
Die Laufzeit des Streichungsalgorithmus ist O(m·n), wobei m = |Γ| die Anzahl
der Hornklauseln in der eingegebenen Menge Γ und n = ||Γ|| die Größe von Γ ist.

Bemerkung
Eine Variante des Streichungsalgorithmus läuft sogar in Linearzeit, d.h. in Zeit
O(n).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 151

Kapitel 2: Aussagenlogik · Abschnitt 2.8: Hornformeln

Laufzeit des Streichungsalgorithmus

Man sieht leicht, dass in jedem Schleifendurchlauf die Anzahl der Klauseln in Γ
kleiner wird. Daher terminiert der Algorithmus nach maximal
m Schleifendurchläufen, wobei m die Anzahl der Klauseln in der Eingabemenge
Γ ist.

In jedem einzelnen Schleifendurchlauf betrachtet der Algorithmus alle Klauseln
der aktuellen Klauselmenge und führt dabei O(n) Schritte durch, wobei n = ||Γ||
die Größe der Klauselmenge ist.

Insgesamt terminiert der Streichungsalgorithmus also nach O(m·n) Schritten,
d.h. in Zeit polynomiell in der Größe von Γ.

Satz 2.66
Die Laufzeit des Streichungsalgorithmus ist O(m·n), wobei m = |Γ| die Anzahl
der Hornklauseln in der eingegebenen Menge Γ und n = ||Γ|| die Größe von Γ ist.

Bemerkung
Eine Variante des Streichungsalgorithmus läuft sogar in Linearzeit, d.h. in Zeit
O(n).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 151

Kapitel 2: Aussagenlogik · Abschnitt 2.8: Hornformeln

Laufzeit des Streichungsalgorithmus

Man sieht leicht, dass in jedem Schleifendurchlauf die Anzahl der Klauseln in Γ
kleiner wird. Daher terminiert der Algorithmus nach maximal
m Schleifendurchläufen, wobei m die Anzahl der Klauseln in der Eingabemenge
Γ ist.

In jedem einzelnen Schleifendurchlauf betrachtet der Algorithmus alle Klauseln
der aktuellen Klauselmenge und führt dabei O(n) Schritte durch, wobei n = ||Γ||
die Größe der Klauselmenge ist.

Insgesamt terminiert der Streichungsalgorithmus also nach O(m·n) Schritten,
d.h. in Zeit polynomiell in der Größe von Γ.

Satz 2.66
Die Laufzeit des Streichungsalgorithmus ist O(m·n), wobei m = |Γ| die Anzahl
der Hornklauseln in der eingegebenen Menge Γ und n = ||Γ|| die Größe von Γ ist.

Bemerkung
Eine Variante des Streichungsalgorithmus läuft sogar in Linearzeit, d.h. in Zeit
O(n).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 151

Kapitel 2: Aussagenlogik · Abschnitt 2.8: Hornformeln

Laufzeit des Streichungsalgorithmus

Man sieht leicht, dass in jedem Schleifendurchlauf die Anzahl der Klauseln in Γ
kleiner wird. Daher terminiert der Algorithmus nach maximal
m Schleifendurchläufen, wobei m die Anzahl der Klauseln in der Eingabemenge
Γ ist.

In jedem einzelnen Schleifendurchlauf betrachtet der Algorithmus alle Klauseln
der aktuellen Klauselmenge und führt dabei O(n) Schritte durch, wobei n = ||Γ||
die Größe der Klauselmenge ist.

Insgesamt terminiert der Streichungsalgorithmus also nach O(m·n) Schritten,
d.h. in Zeit polynomiell in der Größe von Γ.

Satz 2.66
Die Laufzeit des Streichungsalgorithmus ist O(m·n), wobei m = |Γ| die Anzahl
der Hornklauseln in der eingegebenen Menge Γ und n = ||Γ|| die Größe von Γ ist.

Bemerkung
Eine Variante des Streichungsalgorithmus läuft sogar in Linearzeit, d.h. in Zeit
O(n).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 151

Kapitel 2: Aussagenlogik · Abschnitt 2.8: Hornformeln

Der Streichungsalgorithmus und Resolution

Lemma 2.67
Sei Γ0 eine endliche Menge von Hornklauseln und δ eine Klausel, die zu
irgendeinem Zeitpunkt während des Laufs des Streichungsalgorithmus bei
Eingabe Γ0 in der vom Algorithmus gespeicherten Menge Γ liegt. Dann gilt:
Γ0 ⊢R δ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 152

Kapitel 2: Aussagenlogik · Abschnitt 2.8: Hornformeln

Korrektheit des Streichungsalgorithmus

Satz 2.68
Der Streichungsalgorithmus ist korrekt.

Das heißt, bei Eingabe einer endlichen Menge Γ0 von Hornklauseln hält der
Algorithmus mit Ausgabe

”
erfüllbar“, falls Γ0 erfüllbar ist, und mit Ausgabe

”
nicht erfüllbar“, falls Γ0 unerfüllbar ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 153

Kapitel 3:

Logik erster Stufe

Abschnitt 3.1:

Strukturen

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Strukturen

Wir führen einen allgemeinen Strukturbegriff ein, der es uns erlaubt:

• mathematische Strukturen wie Gruppen, Körper, Vektorräume, Graphen,
etc.

• und die gängigen Modelle der Informatik wie Transitionssysteme, endliche
Automaten, relationale Datenbanken, Schaltkreise, etc.

zu beschreiben.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 154

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Signaturen

Definition 3.1
Eine Signatur (auch Vokabular oder Symbolmenge) ist eine Menge σ von
Relations-, Funktions- und/oder Konstantensymbolen.

Jedes Relationsymbol R ∈ σ und jedes Funktionssymbol f ∈ σ hat eine
Stelligkeit (bzw. Arität, engl. arity)

ar(R) ∈ N \ {0} bzw. ar(f) ∈ N \ {0}.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 155

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Signaturen

Definition 3.1
Eine Signatur (auch Vokabular oder Symbolmenge) ist eine Menge σ von
Relations-, Funktions- und/oder Konstantensymbolen.

Jedes Relationsymbol R ∈ σ und jedes Funktionssymbol f ∈ σ hat eine
Stelligkeit (bzw. Arität, engl. arity)

ar(R) ∈ N \ {0} bzw. ar(f) ∈ N \ {0}.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 155

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Notation

• In diesem Kapitel bezeichnet der griechische Buchstabe σ (in Worten:
sigma) immer eine Signatur.

• Für Relationssymbole verwenden wir normalerweise Großbuchstaben wie
R,P,Q,E , für Funktionsymbole verwenden wir meistens Kleinbuchstaben
wie f , g , h und für Konstantensymbole Kleinbuchstaben wie c , d .

• Gelegentlich verwenden wir als Relations- und Funktionssymbole auch
Zeichen wie ⩽ (2-stelliges Relationssymbol) und +, · (2-stellige
Funktionssymbole), und wir verwenden 0, 1 als Konstantensymbole.

• Die Stelligkeit eines Relations- oder Funktionssymbols deuten wir häufig
an, indem wir sie mit Schrägstrich hinter das Symbol schreiben.

Beispiel
Die Notation R/2 deutet an, dass R ein 2-stelliges Relationssymbol ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 156

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Notation

• In diesem Kapitel bezeichnet der griechische Buchstabe σ (in Worten:
sigma) immer eine Signatur.

• Für Relationssymbole verwenden wir normalerweise Großbuchstaben wie
R,P,Q,E , für Funktionsymbole verwenden wir meistens Kleinbuchstaben
wie f , g , h und für Konstantensymbole Kleinbuchstaben wie c , d .

• Gelegentlich verwenden wir als Relations- und Funktionssymbole auch
Zeichen wie ⩽ (2-stelliges Relationssymbol) und +, · (2-stellige
Funktionssymbole), und wir verwenden 0, 1 als Konstantensymbole.

• Die Stelligkeit eines Relations- oder Funktionssymbols deuten wir häufig
an, indem wir sie mit Schrägstrich hinter das Symbol schreiben.

Beispiel
Die Notation R/2 deutet an, dass R ein 2-stelliges Relationssymbol ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 156

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Notation

• In diesem Kapitel bezeichnet der griechische Buchstabe σ (in Worten:
sigma) immer eine Signatur.

• Für Relationssymbole verwenden wir normalerweise Großbuchstaben wie
R,P,Q,E , für Funktionsymbole verwenden wir meistens Kleinbuchstaben
wie f , g , h und für Konstantensymbole Kleinbuchstaben wie c , d .

• Gelegentlich verwenden wir als Relations- und Funktionssymbole auch
Zeichen wie ⩽ (2-stelliges Relationssymbol) und +, · (2-stellige
Funktionssymbole), und wir verwenden 0, 1 als Konstantensymbole.

• Die Stelligkeit eines Relations- oder Funktionssymbols deuten wir häufig
an, indem wir sie mit Schrägstrich hinter das Symbol schreiben.

Beispiel
Die Notation R/2 deutet an, dass R ein 2-stelliges Relationssymbol ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 156

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Notation

• In diesem Kapitel bezeichnet der griechische Buchstabe σ (in Worten:
sigma) immer eine Signatur.

• Für Relationssymbole verwenden wir normalerweise Großbuchstaben wie
R,P,Q,E , für Funktionsymbole verwenden wir meistens Kleinbuchstaben
wie f , g , h und für Konstantensymbole Kleinbuchstaben wie c , d .

• Gelegentlich verwenden wir als Relations- und Funktionssymbole auch
Zeichen wie ⩽ (2-stelliges Relationssymbol) und +, · (2-stellige
Funktionssymbole), und wir verwenden 0, 1 als Konstantensymbole.

• Die Stelligkeit eines Relations- oder Funktionssymbols deuten wir häufig
an, indem wir sie mit Schrägstrich hinter das Symbol schreiben.

Beispiel
Die Notation R/2 deutet an, dass R ein 2-stelliges Relationssymbol ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 156

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Notation

• In diesem Kapitel bezeichnet der griechische Buchstabe σ (in Worten:
sigma) immer eine Signatur.

• Für Relationssymbole verwenden wir normalerweise Großbuchstaben wie
R,P,Q,E , für Funktionsymbole verwenden wir meistens Kleinbuchstaben
wie f , g , h und für Konstantensymbole Kleinbuchstaben wie c , d .

• Gelegentlich verwenden wir als Relations- und Funktionssymbole auch
Zeichen wie ⩽ (2-stelliges Relationssymbol) und +, · (2-stellige
Funktionssymbole), und wir verwenden 0, 1 als Konstantensymbole.

• Die Stelligkeit eines Relations- oder Funktionssymbols deuten wir häufig
an, indem wir sie mit Schrägstrich hinter das Symbol schreiben.

Beispiel
Die Notation R/2 deutet an, dass R ein 2-stelliges Relationssymbol ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 156

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Strukturen

Definition 3.2
Eine σ-Struktur A besteht aus folgenden Komponenten:

• einer nicht-leeren Menge A, dem Universum von A (auch: Träger, engl.
universe, domain),

• für jedes Relationssymbol R ∈ σ und für k := ar(R) gibt es eine k-stellige
Relation RA ⊆ Ak ,

• für jedes Funktionssymbol f ∈ σ und für k := ar(f) gibt es eine k-stellige
Funktion f A : Ak → A, und

• für jedes Konstantensymbol c ∈ σ gibt es ein Element cA ∈ A.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 157

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Strukturen

Definition 3.2
Eine σ-Struktur A besteht aus folgenden Komponenten:

• einer nicht-leeren Menge A, dem Universum von A (auch: Träger, engl.
universe, domain),

• für jedes Relationssymbol R ∈ σ und für k := ar(R) gibt es eine k-stellige
Relation RA ⊆ Ak ,

• für jedes Funktionssymbol f ∈ σ und für k := ar(f) gibt es eine k-stellige
Funktion f A : Ak → A, und

• für jedes Konstantensymbol c ∈ σ gibt es ein Element cA ∈ A.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 157

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Strukturen

Definition 3.2
Eine σ-Struktur A besteht aus folgenden Komponenten:

• einer nicht-leeren Menge A, dem Universum von A (auch: Träger, engl.
universe, domain),

• für jedes Relationssymbol R ∈ σ und für k := ar(R) gibt es eine k-stellige
Relation RA ⊆ Ak ,

• für jedes Funktionssymbol f ∈ σ und für k := ar(f) gibt es eine k-stellige
Funktion f A : Ak → A, und

• für jedes Konstantensymbol c ∈ σ gibt es ein Element cA ∈ A.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 157

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Strukturen

Definition 3.2
Eine σ-Struktur A besteht aus folgenden Komponenten:

• einer nicht-leeren Menge A, dem Universum von A (auch: Träger, engl.
universe, domain),

• für jedes Relationssymbol R ∈ σ und für k := ar(R) gibt es eine k-stellige
Relation RA ⊆ Ak ,

• für jedes Funktionssymbol f ∈ σ und für k := ar(f) gibt es eine k-stellige
Funktion f A : Ak → A, und

• für jedes Konstantensymbol c ∈ σ gibt es ein Element cA ∈ A.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 157

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Notation

• Wir beschreiben σ-Strukturen oft in Tupelschreibweise:
A =

(
A, (SA)S∈σ

)
.

Falls σ = {S1, . . . ,Sk} endlich ist, schreiben wir auch
A =

(
A, SA

1 , . . . ,S
A
k

)
.

• Wir bezeichnen σ-Strukturen meistens mit
”
kalligraphischen“ Buchstaben

wie A,B, C,W, Das Universum der Strukturen bezeichnen wir dann
durch die entsprechenden lateinischen Großbuchstaben, also
A,B,C ,W ,

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 158

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Notation

• Wir beschreiben σ-Strukturen oft in Tupelschreibweise:
A =

(
A, (SA)S∈σ

)
.

Falls σ = {S1, . . . ,Sk} endlich ist, schreiben wir auch
A =

(
A, SA

1 , . . . ,S
A
k

)
.

• Wir bezeichnen σ-Strukturen meistens mit
”
kalligraphischen“ Buchstaben

wie A,B, C,W, Das Universum der Strukturen bezeichnen wir dann
durch die entsprechenden lateinischen Großbuchstaben, also
A,B,C ,W ,

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 158

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Notation

• Wir beschreiben σ-Strukturen oft in Tupelschreibweise:
A =

(
A, (SA)S∈σ

)
.

Falls σ = {S1, . . . ,Sk} endlich ist, schreiben wir auch
A =

(
A, SA

1 , . . . ,S
A
k

)
.

• Wir bezeichnen σ-Strukturen meistens mit
”
kalligraphischen“ Buchstaben

wie A,B, C,W,

Das Universum der Strukturen bezeichnen wir dann
durch die entsprechenden lateinischen Großbuchstaben, also
A,B,C ,W ,

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 158

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Notation

• Wir beschreiben σ-Strukturen oft in Tupelschreibweise:
A =

(
A, (SA)S∈σ

)
.

Falls σ = {S1, . . . ,Sk} endlich ist, schreiben wir auch
A =

(
A, SA

1 , . . . ,S
A
k

)
.

• Wir bezeichnen σ-Strukturen meistens mit
”
kalligraphischen“ Buchstaben

wie A,B, C,W, Das Universum der Strukturen bezeichnen wir dann
durch die entsprechenden lateinischen Großbuchstaben, also
A,B,C ,W ,

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 158

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Mengen

Für die leere Signatur σ := ∅ bestehen σ-Strukturen

nur aus ihrem Universum,
sind also einfach (nicht-leere) Mengen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 159

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Mengen

Für die leere Signatur σ := ∅ bestehen σ-Strukturen nur aus ihrem Universum,
sind also einfach (nicht-leere) Mengen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 159

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Graphen

In diesem Kapitel bezeichnet E immer ein zweistelliges Relationssymbol.

• Ein gerichteter Graph (kurz: Digraph) G = (V G ,EG) mit Knotenmenge V G

und Kantenmenge EG ist eine {E}-Struktur. Das Universum ist die
Knotenmenge V G .

• Einen ungerichteten Graphen G = (V G ,EG) mit Knotenmenge V G und
Kantenmenge EG ⊆ {e ⊆ V G : |e| = 2} repräsentieren wir durch eine
{E}-Struktur A = (A,EA) mit Universum A = V G und Relation
EA = {(u, v) : {u, v} ∈ EG}. Insbesondere ist EA symmetrisch und
irreflexiv im Sinne der folgenden Definition.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 160

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Graphen

In diesem Kapitel bezeichnet E immer ein zweistelliges Relationssymbol.

• Ein gerichteter Graph (kurz: Digraph) G = (V G ,EG) mit Knotenmenge V G

und Kantenmenge EG ist eine {E}-Struktur. Das Universum ist die
Knotenmenge V G .

• Einen ungerichteten Graphen G = (V G ,EG) mit Knotenmenge V G und
Kantenmenge EG ⊆ {e ⊆ V G : |e| = 2} repräsentieren wir durch eine
{E}-Struktur A = (A,EA)

mit Universum A = V G und Relation
EA = {(u, v) : {u, v} ∈ EG}. Insbesondere ist EA symmetrisch und
irreflexiv im Sinne der folgenden Definition.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 160

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Graphen

In diesem Kapitel bezeichnet E immer ein zweistelliges Relationssymbol.

• Ein gerichteter Graph (kurz: Digraph) G = (V G ,EG) mit Knotenmenge V G

und Kantenmenge EG ist eine {E}-Struktur. Das Universum ist die
Knotenmenge V G .

• Einen ungerichteten Graphen G = (V G ,EG) mit Knotenmenge V G und
Kantenmenge EG ⊆ {e ⊆ V G : |e| = 2} repräsentieren wir durch eine
{E}-Struktur A = (A,EA) mit Universum A = V G und Relation
EA = {(u, v) : {u, v} ∈ EG}.

Insbesondere ist EA symmetrisch und
irreflexiv im Sinne der folgenden Definition.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 160

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Graphen

In diesem Kapitel bezeichnet E immer ein zweistelliges Relationssymbol.

• Ein gerichteter Graph (kurz: Digraph) G = (V G ,EG) mit Knotenmenge V G

und Kantenmenge EG ist eine {E}-Struktur. Das Universum ist die
Knotenmenge V G .

• Einen ungerichteten Graphen G = (V G ,EG) mit Knotenmenge V G und
Kantenmenge EG ⊆ {e ⊆ V G : |e| = 2} repräsentieren wir durch eine
{E}-Struktur A = (A,EA) mit Universum A = V G und Relation
EA = {(u, v) : {u, v} ∈ EG}. Insbesondere ist EA symmetrisch und
irreflexiv im Sinne der folgenden Definition.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 160

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Eigenschaften zweistelliger Relationen

Definition 3.3
Sei A = (A,RA), wobei RA eine zweistellige Relation über der Menge A ist
(d.h. (A,RA) ist ein gerichteter Graph).

(a) RA heißt reflexiv, wenn für alle a ∈ A gilt: (a, a) ∈ RA.

RA heißt irreflexiv, wenn für alle a ∈ A gilt: (a, a) ̸∈ RA.

(b) RA heißt symmetrisch, wenn für alle a, b ∈ A gilt:

Wenn (a, b) ∈ RA, dann ist auch (b, a) ∈ RA.

RA heißt antisymmetrisch, wenn für alle a, b ∈ A mit a ̸= b gilt:

Wenn (a, b) ∈ RA, dann (b, a) ̸∈ RA.

(c) RA heißt transitiv, wenn für alle a, b, c ∈ A gilt:

Wenn (a, b) ∈ RA und (b, c) ∈ RA, dann auch (a, c) ∈ RA.

(d) RA heißt konnex, wenn für alle a, b ∈ A gilt:

(a, b) ∈ RA oder (b, a) ∈ RA oder a = b.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 161

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Eigenschaften zweistelliger Relationen

Definition 3.3
Sei A = (A,RA), wobei RA eine zweistellige Relation über der Menge A ist
(d.h. (A,RA) ist ein gerichteter Graph).

(a) RA heißt reflexiv, wenn

für alle a ∈ A gilt: (a, a) ∈ RA.

RA heißt irreflexiv, wenn für alle a ∈ A gilt: (a, a) ̸∈ RA.

(b) RA heißt symmetrisch, wenn für alle a, b ∈ A gilt:

Wenn (a, b) ∈ RA, dann ist auch (b, a) ∈ RA.

RA heißt antisymmetrisch, wenn für alle a, b ∈ A mit a ̸= b gilt:

Wenn (a, b) ∈ RA, dann (b, a) ̸∈ RA.

(c) RA heißt transitiv, wenn für alle a, b, c ∈ A gilt:

Wenn (a, b) ∈ RA und (b, c) ∈ RA, dann auch (a, c) ∈ RA.

(d) RA heißt konnex, wenn für alle a, b ∈ A gilt:

(a, b) ∈ RA oder (b, a) ∈ RA oder a = b.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 161

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Eigenschaften zweistelliger Relationen

Definition 3.3
Sei A = (A,RA), wobei RA eine zweistellige Relation über der Menge A ist
(d.h. (A,RA) ist ein gerichteter Graph).

(a) RA heißt reflexiv, wenn für alle a ∈ A gilt: (a, a) ∈ RA.

RA heißt irreflexiv, wenn für alle a ∈ A gilt: (a, a) ̸∈ RA.

(b) RA heißt symmetrisch, wenn für alle a, b ∈ A gilt:

Wenn (a, b) ∈ RA, dann ist auch (b, a) ∈ RA.

RA heißt antisymmetrisch, wenn für alle a, b ∈ A mit a ̸= b gilt:

Wenn (a, b) ∈ RA, dann (b, a) ̸∈ RA.

(c) RA heißt transitiv, wenn für alle a, b, c ∈ A gilt:

Wenn (a, b) ∈ RA und (b, c) ∈ RA, dann auch (a, c) ∈ RA.

(d) RA heißt konnex, wenn für alle a, b ∈ A gilt:

(a, b) ∈ RA oder (b, a) ∈ RA oder a = b.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 161

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Eigenschaften zweistelliger Relationen

Definition 3.3
Sei A = (A,RA), wobei RA eine zweistellige Relation über der Menge A ist
(d.h. (A,RA) ist ein gerichteter Graph).

(a) RA heißt reflexiv, wenn für alle a ∈ A gilt: (a, a) ∈ RA.

RA heißt irreflexiv, wenn

für alle a ∈ A gilt: (a, a) ̸∈ RA.

(b) RA heißt symmetrisch, wenn für alle a, b ∈ A gilt:

Wenn (a, b) ∈ RA, dann ist auch (b, a) ∈ RA.

RA heißt antisymmetrisch, wenn für alle a, b ∈ A mit a ̸= b gilt:

Wenn (a, b) ∈ RA, dann (b, a) ̸∈ RA.

(c) RA heißt transitiv, wenn für alle a, b, c ∈ A gilt:

Wenn (a, b) ∈ RA und (b, c) ∈ RA, dann auch (a, c) ∈ RA.

(d) RA heißt konnex, wenn für alle a, b ∈ A gilt:

(a, b) ∈ RA oder (b, a) ∈ RA oder a = b.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 161

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Eigenschaften zweistelliger Relationen

Definition 3.3
Sei A = (A,RA), wobei RA eine zweistellige Relation über der Menge A ist
(d.h. (A,RA) ist ein gerichteter Graph).

(a) RA heißt reflexiv, wenn für alle a ∈ A gilt: (a, a) ∈ RA.

RA heißt irreflexiv, wenn für alle a ∈ A gilt: (a, a) ̸∈ RA.

(b) RA heißt symmetrisch, wenn für alle a, b ∈ A gilt:

Wenn (a, b) ∈ RA, dann ist auch (b, a) ∈ RA.

RA heißt antisymmetrisch, wenn für alle a, b ∈ A mit a ̸= b gilt:

Wenn (a, b) ∈ RA, dann (b, a) ̸∈ RA.

(c) RA heißt transitiv, wenn für alle a, b, c ∈ A gilt:

Wenn (a, b) ∈ RA und (b, c) ∈ RA, dann auch (a, c) ∈ RA.

(d) RA heißt konnex, wenn für alle a, b ∈ A gilt:

(a, b) ∈ RA oder (b, a) ∈ RA oder a = b.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 161

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Eigenschaften zweistelliger Relationen

Definition 3.3
Sei A = (A,RA), wobei RA eine zweistellige Relation über der Menge A ist
(d.h. (A,RA) ist ein gerichteter Graph).

(a) RA heißt reflexiv, wenn für alle a ∈ A gilt: (a, a) ∈ RA.

RA heißt irreflexiv, wenn für alle a ∈ A gilt: (a, a) ̸∈ RA.

(b) RA heißt symmetrisch, wenn

für alle a, b ∈ A gilt:

Wenn (a, b) ∈ RA, dann ist auch (b, a) ∈ RA.

RA heißt antisymmetrisch, wenn für alle a, b ∈ A mit a ̸= b gilt:

Wenn (a, b) ∈ RA, dann (b, a) ̸∈ RA.

(c) RA heißt transitiv, wenn für alle a, b, c ∈ A gilt:

Wenn (a, b) ∈ RA und (b, c) ∈ RA, dann auch (a, c) ∈ RA.

(d) RA heißt konnex, wenn für alle a, b ∈ A gilt:

(a, b) ∈ RA oder (b, a) ∈ RA oder a = b.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 161

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Eigenschaften zweistelliger Relationen

Definition 3.3
Sei A = (A,RA), wobei RA eine zweistellige Relation über der Menge A ist
(d.h. (A,RA) ist ein gerichteter Graph).

(a) RA heißt reflexiv, wenn für alle a ∈ A gilt: (a, a) ∈ RA.

RA heißt irreflexiv, wenn für alle a ∈ A gilt: (a, a) ̸∈ RA.

(b) RA heißt symmetrisch, wenn für alle a, b ∈ A gilt:

Wenn (a, b) ∈ RA, dann ist auch (b, a) ∈ RA.

RA heißt antisymmetrisch, wenn für alle a, b ∈ A mit a ̸= b gilt:

Wenn (a, b) ∈ RA, dann (b, a) ̸∈ RA.

(c) RA heißt transitiv, wenn für alle a, b, c ∈ A gilt:

Wenn (a, b) ∈ RA und (b, c) ∈ RA, dann auch (a, c) ∈ RA.

(d) RA heißt konnex, wenn für alle a, b ∈ A gilt:

(a, b) ∈ RA oder (b, a) ∈ RA oder a = b.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 161

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Eigenschaften zweistelliger Relationen

Definition 3.3
Sei A = (A,RA), wobei RA eine zweistellige Relation über der Menge A ist
(d.h. (A,RA) ist ein gerichteter Graph).

(a) RA heißt reflexiv, wenn für alle a ∈ A gilt: (a, a) ∈ RA.

RA heißt irreflexiv, wenn für alle a ∈ A gilt: (a, a) ̸∈ RA.

(b) RA heißt symmetrisch, wenn für alle a, b ∈ A gilt:

Wenn (a, b) ∈ RA, dann ist auch (b, a) ∈ RA.

RA heißt antisymmetrisch, wenn

für alle a, b ∈ A mit a ̸= b gilt:

Wenn (a, b) ∈ RA, dann (b, a) ̸∈ RA.

(c) RA heißt transitiv, wenn für alle a, b, c ∈ A gilt:

Wenn (a, b) ∈ RA und (b, c) ∈ RA, dann auch (a, c) ∈ RA.

(d) RA heißt konnex, wenn für alle a, b ∈ A gilt:

(a, b) ∈ RA oder (b, a) ∈ RA oder a = b.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 161

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Eigenschaften zweistelliger Relationen

Definition 3.3
Sei A = (A,RA), wobei RA eine zweistellige Relation über der Menge A ist
(d.h. (A,RA) ist ein gerichteter Graph).

(a) RA heißt reflexiv, wenn für alle a ∈ A gilt: (a, a) ∈ RA.

RA heißt irreflexiv, wenn für alle a ∈ A gilt: (a, a) ̸∈ RA.

(b) RA heißt symmetrisch, wenn für alle a, b ∈ A gilt:

Wenn (a, b) ∈ RA, dann ist auch (b, a) ∈ RA.

RA heißt antisymmetrisch, wenn für alle a, b ∈ A mit a ̸= b gilt:

Wenn (a, b) ∈ RA, dann (b, a) ̸∈ RA.

(c) RA heißt transitiv, wenn für alle a, b, c ∈ A gilt:

Wenn (a, b) ∈ RA und (b, c) ∈ RA, dann auch (a, c) ∈ RA.

(d) RA heißt konnex, wenn für alle a, b ∈ A gilt:

(a, b) ∈ RA oder (b, a) ∈ RA oder a = b.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 161

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Eigenschaften zweistelliger Relationen

Definition 3.3
Sei A = (A,RA), wobei RA eine zweistellige Relation über der Menge A ist
(d.h. (A,RA) ist ein gerichteter Graph).

(a) RA heißt reflexiv, wenn für alle a ∈ A gilt: (a, a) ∈ RA.

RA heißt irreflexiv, wenn für alle a ∈ A gilt: (a, a) ̸∈ RA.

(b) RA heißt symmetrisch, wenn für alle a, b ∈ A gilt:

Wenn (a, b) ∈ RA, dann ist auch (b, a) ∈ RA.

RA heißt antisymmetrisch, wenn für alle a, b ∈ A mit a ̸= b gilt:

Wenn (a, b) ∈ RA, dann (b, a) ̸∈ RA.

(c) RA heißt transitiv,

wenn für alle a, b, c ∈ A gilt:

Wenn (a, b) ∈ RA und (b, c) ∈ RA, dann auch (a, c) ∈ RA.

(d) RA heißt konnex, wenn für alle a, b ∈ A gilt:

(a, b) ∈ RA oder (b, a) ∈ RA oder a = b.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 161

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Eigenschaften zweistelliger Relationen

Definition 3.3
Sei A = (A,RA), wobei RA eine zweistellige Relation über der Menge A ist
(d.h. (A,RA) ist ein gerichteter Graph).

(a) RA heißt reflexiv, wenn für alle a ∈ A gilt: (a, a) ∈ RA.

RA heißt irreflexiv, wenn für alle a ∈ A gilt: (a, a) ̸∈ RA.

(b) RA heißt symmetrisch, wenn für alle a, b ∈ A gilt:

Wenn (a, b) ∈ RA, dann ist auch (b, a) ∈ RA.

RA heißt antisymmetrisch, wenn für alle a, b ∈ A mit a ̸= b gilt:

Wenn (a, b) ∈ RA, dann (b, a) ̸∈ RA.

(c) RA heißt transitiv, wenn für alle a, b, c ∈ A gilt:

Wenn (a, b) ∈ RA und (b, c) ∈ RA, dann auch (a, c) ∈ RA.

(d) RA heißt konnex, wenn für alle a, b ∈ A gilt:

(a, b) ∈ RA oder (b, a) ∈ RA oder a = b.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 161

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Eigenschaften zweistelliger Relationen

Definition 3.3
Sei A = (A,RA), wobei RA eine zweistellige Relation über der Menge A ist
(d.h. (A,RA) ist ein gerichteter Graph).

(a) RA heißt reflexiv, wenn für alle a ∈ A gilt: (a, a) ∈ RA.

RA heißt irreflexiv, wenn für alle a ∈ A gilt: (a, a) ̸∈ RA.

(b) RA heißt symmetrisch, wenn für alle a, b ∈ A gilt:

Wenn (a, b) ∈ RA, dann ist auch (b, a) ∈ RA.

RA heißt antisymmetrisch, wenn für alle a, b ∈ A mit a ̸= b gilt:

Wenn (a, b) ∈ RA, dann (b, a) ̸∈ RA.

(c) RA heißt transitiv, wenn für alle a, b, c ∈ A gilt:

Wenn (a, b) ∈ RA und (b, c) ∈ RA, dann auch (a, c) ∈ RA.

(d) RA heißt konnex,

wenn für alle a, b ∈ A gilt:

(a, b) ∈ RA oder (b, a) ∈ RA oder a = b.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 161

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Eigenschaften zweistelliger Relationen

Definition 3.3
Sei A = (A,RA), wobei RA eine zweistellige Relation über der Menge A ist
(d.h. (A,RA) ist ein gerichteter Graph).

(a) RA heißt reflexiv, wenn für alle a ∈ A gilt: (a, a) ∈ RA.

RA heißt irreflexiv, wenn für alle a ∈ A gilt: (a, a) ̸∈ RA.

(b) RA heißt symmetrisch, wenn für alle a, b ∈ A gilt:

Wenn (a, b) ∈ RA, dann ist auch (b, a) ∈ RA.

RA heißt antisymmetrisch, wenn für alle a, b ∈ A mit a ̸= b gilt:

Wenn (a, b) ∈ RA, dann (b, a) ̸∈ RA.

(c) RA heißt transitiv, wenn für alle a, b, c ∈ A gilt:

Wenn (a, b) ∈ RA und (b, c) ∈ RA, dann auch (a, c) ∈ RA.

(d) RA heißt konnex, wenn für alle a, b ∈ A gilt:

(a, b) ∈ RA oder (b, a) ∈ RA oder a = b.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 161

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Äquivalenzrelationen

Eine Äquivalenzrelation auf einer Menge A ist

eine 2-stellige Relation über A,
die reflexiv, transitiv und symmetrisch ist.

Beispiele

(a) Gleichheit: Für jede Menge M ist {(m,m) : m ∈ M} eine
Äquivalenzrelation auf M.

(b) Gleichmächtigkeit: Für jede endliche Menge M und deren Potenzmenge
P(M) = {N : N ⊆ M} gilt: {(A,B) : A,B ⊆ M, |A| = |B|} ist eine
Äquivalenzrelation auf P(M).

(c) Logische Äquivalenz: Die Relation { (φ,ψ) : φ,ψ ∈ AL, φ ≡ ψ } ist eine
Äquivalenzrelation auf der Menge AL aller aussagenlogischen Formeln.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 162

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Äquivalenzrelationen

Eine Äquivalenzrelation auf einer Menge A ist eine 2-stellige Relation über A,
die reflexiv, transitiv und symmetrisch ist.

Beispiele

(a) Gleichheit: Für jede Menge M ist {(m,m) : m ∈ M} eine
Äquivalenzrelation auf M.

(b) Gleichmächtigkeit: Für jede endliche Menge M und deren Potenzmenge
P(M) = {N : N ⊆ M} gilt: {(A,B) : A,B ⊆ M, |A| = |B|} ist eine
Äquivalenzrelation auf P(M).

(c) Logische Äquivalenz: Die Relation { (φ,ψ) : φ,ψ ∈ AL, φ ≡ ψ } ist eine
Äquivalenzrelation auf der Menge AL aller aussagenlogischen Formeln.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 162

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Äquivalenzrelationen

Eine Äquivalenzrelation auf einer Menge A ist eine 2-stellige Relation über A,
die reflexiv, transitiv und symmetrisch ist.

Beispiele

(a) Gleichheit: Für jede Menge M ist {(m,m) : m ∈ M} eine
Äquivalenzrelation auf M.

(b) Gleichmächtigkeit: Für jede endliche Menge M und deren Potenzmenge
P(M) = {N : N ⊆ M} gilt: {(A,B) : A,B ⊆ M, |A| = |B|} ist eine
Äquivalenzrelation auf P(M).

(c) Logische Äquivalenz: Die Relation { (φ,ψ) : φ,ψ ∈ AL, φ ≡ ψ } ist eine
Äquivalenzrelation auf der Menge AL aller aussagenlogischen Formeln.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 162

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Äquivalenzrelationen

Eine Äquivalenzrelation auf einer Menge A ist eine 2-stellige Relation über A,
die reflexiv, transitiv und symmetrisch ist.

Beispiele

(a) Gleichheit: Für jede Menge M ist {(m,m) : m ∈ M} eine
Äquivalenzrelation auf M.

(b) Gleichmächtigkeit: Für jede endliche Menge M und deren Potenzmenge
P(M) = {N : N ⊆ M} gilt: {(A,B) : A,B ⊆ M, |A| = |B|} ist eine
Äquivalenzrelation auf P(M).

(c) Logische Äquivalenz: Die Relation { (φ,ψ) : φ,ψ ∈ AL, φ ≡ ψ } ist eine
Äquivalenzrelation auf der Menge AL aller aussagenlogischen Formeln.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 162

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Äquivalenzrelationen

Eine Äquivalenzrelation auf einer Menge A ist eine 2-stellige Relation über A,
die reflexiv, transitiv und symmetrisch ist.

Beispiele

(a) Gleichheit: Für jede Menge M ist {(m,m) : m ∈ M} eine
Äquivalenzrelation auf M.

(b) Gleichmächtigkeit: Für jede endliche Menge M und deren Potenzmenge
P(M) = {N : N ⊆ M} gilt: {(A,B) : A,B ⊆ M, |A| = |B|} ist eine
Äquivalenzrelation auf P(M).

(c) Logische Äquivalenz: Die Relation { (φ,ψ) : φ,ψ ∈ AL, φ ≡ ψ } ist eine
Äquivalenzrelation auf der Menge AL aller aussagenlogischen Formeln.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 162

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Ordnungen
In diesem Kapitel bezeichnet ⩽ immer ein zweistelliges Relationssymbol. Für ⩽
verwenden wir Infixschreibweise, d.h., wir schreiben x ⩽A y statt (x , y) ∈ ⩽A.

(a) Eine Präordnung ist eine {⩽}-Struktur A = (A,⩽A), bei der ⩽A reflexiv
und transitiv ist.

(b) Eine partielle Ordnung (oder Halbordnung) ist eine Präordnung A, bei der
⩽A antisymmetrisch ist.

(c) Eine lineare (oder totale) Ordnung ist eine partielle Ordnung A, bei der ⩽A

konnex ist.

Beispiele

(a) Die
”
kleiner-gleich“ Relation auf N (oder Z oder R) ist eine lineare

Ordnung; die
”
größer-gleich“ auch.

(b) Für jede Menge M ist die Teilmengenrelation ⊆ eine partielle Ordnung auf
der Potenzmenge P(M); aber keine lineare Ordnung, sofern M mindestens
zwei Elemente besitzt. Dasselbe gilt für die Obermengenrelation ⊇.

(c) Die Folgerungsrelation für aussagenlogische Formeln:
{(φ,ψ) : φ,ψ ∈ AL, φ |= ψ} ist eine Präordnung auf der Menge AL, aber
keine partielle Ordnung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 163

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Ordnungen
In diesem Kapitel bezeichnet ⩽ immer ein zweistelliges Relationssymbol. Für ⩽
verwenden wir Infixschreibweise, d.h., wir schreiben x ⩽A y statt (x , y) ∈ ⩽A.
(a) Eine Präordnung ist eine {⩽}-Struktur A = (A,⩽A), bei der ⩽A reflexiv

und transitiv ist.

(b) Eine partielle Ordnung (oder Halbordnung) ist eine Präordnung A, bei der
⩽A antisymmetrisch ist.

(c) Eine lineare (oder totale) Ordnung ist eine partielle Ordnung A, bei der ⩽A

konnex ist.

Beispiele

(a) Die
”
kleiner-gleich“ Relation auf N (oder Z oder R) ist eine lineare

Ordnung; die
”
größer-gleich“ auch.

(b) Für jede Menge M ist die Teilmengenrelation ⊆ eine partielle Ordnung auf
der Potenzmenge P(M); aber keine lineare Ordnung, sofern M mindestens
zwei Elemente besitzt. Dasselbe gilt für die Obermengenrelation ⊇.

(c) Die Folgerungsrelation für aussagenlogische Formeln:
{(φ,ψ) : φ,ψ ∈ AL, φ |= ψ} ist eine Präordnung auf der Menge AL, aber
keine partielle Ordnung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 163

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Ordnungen
In diesem Kapitel bezeichnet ⩽ immer ein zweistelliges Relationssymbol. Für ⩽
verwenden wir Infixschreibweise, d.h., wir schreiben x ⩽A y statt (x , y) ∈ ⩽A.
(a) Eine Präordnung ist eine {⩽}-Struktur A = (A,⩽A), bei der ⩽A reflexiv

und transitiv ist.
(b) Eine partielle Ordnung (oder Halbordnung) ist eine Präordnung A, bei der

⩽A antisymmetrisch ist.

(c) Eine lineare (oder totale) Ordnung ist eine partielle Ordnung A, bei der ⩽A

konnex ist.

Beispiele

(a) Die
”
kleiner-gleich“ Relation auf N (oder Z oder R) ist eine lineare

Ordnung; die
”
größer-gleich“ auch.

(b) Für jede Menge M ist die Teilmengenrelation ⊆ eine partielle Ordnung auf
der Potenzmenge P(M); aber keine lineare Ordnung, sofern M mindestens
zwei Elemente besitzt. Dasselbe gilt für die Obermengenrelation ⊇.

(c) Die Folgerungsrelation für aussagenlogische Formeln:
{(φ,ψ) : φ,ψ ∈ AL, φ |= ψ} ist eine Präordnung auf der Menge AL, aber
keine partielle Ordnung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 163

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Ordnungen
In diesem Kapitel bezeichnet ⩽ immer ein zweistelliges Relationssymbol. Für ⩽
verwenden wir Infixschreibweise, d.h., wir schreiben x ⩽A y statt (x , y) ∈ ⩽A.
(a) Eine Präordnung ist eine {⩽}-Struktur A = (A,⩽A), bei der ⩽A reflexiv

und transitiv ist.
(b) Eine partielle Ordnung (oder Halbordnung) ist eine Präordnung A, bei der

⩽A antisymmetrisch ist.
(c) Eine lineare (oder totale) Ordnung ist eine partielle Ordnung A, bei der ⩽A

konnex ist.

Beispiele

(a) Die
”
kleiner-gleich“ Relation auf N (oder Z oder R) ist eine lineare

Ordnung; die
”
größer-gleich“ auch.

(b) Für jede Menge M ist die Teilmengenrelation ⊆ eine partielle Ordnung auf
der Potenzmenge P(M); aber keine lineare Ordnung, sofern M mindestens
zwei Elemente besitzt. Dasselbe gilt für die Obermengenrelation ⊇.

(c) Die Folgerungsrelation für aussagenlogische Formeln:
{(φ,ψ) : φ,ψ ∈ AL, φ |= ψ} ist eine Präordnung auf der Menge AL, aber
keine partielle Ordnung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 163

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Ordnungen
In diesem Kapitel bezeichnet ⩽ immer ein zweistelliges Relationssymbol. Für ⩽
verwenden wir Infixschreibweise, d.h., wir schreiben x ⩽A y statt (x , y) ∈ ⩽A.
(a) Eine Präordnung ist eine {⩽}-Struktur A = (A,⩽A), bei der ⩽A reflexiv

und transitiv ist.
(b) Eine partielle Ordnung (oder Halbordnung) ist eine Präordnung A, bei der

⩽A antisymmetrisch ist.
(c) Eine lineare (oder totale) Ordnung ist eine partielle Ordnung A, bei der ⩽A

konnex ist.

Beispiele

(a) Die
”
kleiner-gleich“ Relation auf N (oder Z oder R)

ist eine lineare
Ordnung; die

”
größer-gleich“ auch.

(b) Für jede Menge M ist die Teilmengenrelation ⊆ eine partielle Ordnung auf
der Potenzmenge P(M); aber keine lineare Ordnung, sofern M mindestens
zwei Elemente besitzt. Dasselbe gilt für die Obermengenrelation ⊇.

(c) Die Folgerungsrelation für aussagenlogische Formeln:
{(φ,ψ) : φ,ψ ∈ AL, φ |= ψ} ist eine Präordnung auf der Menge AL, aber
keine partielle Ordnung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 163

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Ordnungen
In diesem Kapitel bezeichnet ⩽ immer ein zweistelliges Relationssymbol. Für ⩽
verwenden wir Infixschreibweise, d.h., wir schreiben x ⩽A y statt (x , y) ∈ ⩽A.
(a) Eine Präordnung ist eine {⩽}-Struktur A = (A,⩽A), bei der ⩽A reflexiv

und transitiv ist.
(b) Eine partielle Ordnung (oder Halbordnung) ist eine Präordnung A, bei der

⩽A antisymmetrisch ist.
(c) Eine lineare (oder totale) Ordnung ist eine partielle Ordnung A, bei der ⩽A

konnex ist.

Beispiele

(a) Die
”
kleiner-gleich“ Relation auf N (oder Z oder R) ist eine lineare

Ordnung; die
”
größer-gleich“ auch.

(b) Für jede Menge M ist die Teilmengenrelation ⊆ eine partielle Ordnung auf
der Potenzmenge P(M); aber keine lineare Ordnung, sofern M mindestens
zwei Elemente besitzt. Dasselbe gilt für die Obermengenrelation ⊇.

(c) Die Folgerungsrelation für aussagenlogische Formeln:
{(φ,ψ) : φ,ψ ∈ AL, φ |= ψ} ist eine Präordnung auf der Menge AL, aber
keine partielle Ordnung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 163

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Ordnungen
In diesem Kapitel bezeichnet ⩽ immer ein zweistelliges Relationssymbol. Für ⩽
verwenden wir Infixschreibweise, d.h., wir schreiben x ⩽A y statt (x , y) ∈ ⩽A.
(a) Eine Präordnung ist eine {⩽}-Struktur A = (A,⩽A), bei der ⩽A reflexiv

und transitiv ist.
(b) Eine partielle Ordnung (oder Halbordnung) ist eine Präordnung A, bei der

⩽A antisymmetrisch ist.
(c) Eine lineare (oder totale) Ordnung ist eine partielle Ordnung A, bei der ⩽A

konnex ist.

Beispiele

(a) Die
”
kleiner-gleich“ Relation auf N (oder Z oder R) ist eine lineare

Ordnung; die
”
größer-gleich“ auch.

(b) Für jede Menge M ist die Teilmengenrelation ⊆

eine partielle Ordnung auf
der Potenzmenge P(M); aber keine lineare Ordnung, sofern M mindestens
zwei Elemente besitzt. Dasselbe gilt für die Obermengenrelation ⊇.

(c) Die Folgerungsrelation für aussagenlogische Formeln:
{(φ,ψ) : φ,ψ ∈ AL, φ |= ψ} ist eine Präordnung auf der Menge AL, aber
keine partielle Ordnung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 163

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Ordnungen
In diesem Kapitel bezeichnet ⩽ immer ein zweistelliges Relationssymbol. Für ⩽
verwenden wir Infixschreibweise, d.h., wir schreiben x ⩽A y statt (x , y) ∈ ⩽A.
(a) Eine Präordnung ist eine {⩽}-Struktur A = (A,⩽A), bei der ⩽A reflexiv

und transitiv ist.
(b) Eine partielle Ordnung (oder Halbordnung) ist eine Präordnung A, bei der

⩽A antisymmetrisch ist.
(c) Eine lineare (oder totale) Ordnung ist eine partielle Ordnung A, bei der ⩽A

konnex ist.

Beispiele

(a) Die
”
kleiner-gleich“ Relation auf N (oder Z oder R) ist eine lineare

Ordnung; die
”
größer-gleich“ auch.

(b) Für jede Menge M ist die Teilmengenrelation ⊆ eine partielle Ordnung auf
der Potenzmenge P(M);

aber keine lineare Ordnung, sofern M mindestens
zwei Elemente besitzt. Dasselbe gilt für die Obermengenrelation ⊇.

(c) Die Folgerungsrelation für aussagenlogische Formeln:
{(φ,ψ) : φ,ψ ∈ AL, φ |= ψ} ist eine Präordnung auf der Menge AL, aber
keine partielle Ordnung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 163

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Ordnungen
In diesem Kapitel bezeichnet ⩽ immer ein zweistelliges Relationssymbol. Für ⩽
verwenden wir Infixschreibweise, d.h., wir schreiben x ⩽A y statt (x , y) ∈ ⩽A.
(a) Eine Präordnung ist eine {⩽}-Struktur A = (A,⩽A), bei der ⩽A reflexiv

und transitiv ist.
(b) Eine partielle Ordnung (oder Halbordnung) ist eine Präordnung A, bei der

⩽A antisymmetrisch ist.
(c) Eine lineare (oder totale) Ordnung ist eine partielle Ordnung A, bei der ⩽A

konnex ist.

Beispiele

(a) Die
”
kleiner-gleich“ Relation auf N (oder Z oder R) ist eine lineare

Ordnung; die
”
größer-gleich“ auch.

(b) Für jede Menge M ist die Teilmengenrelation ⊆ eine partielle Ordnung auf
der Potenzmenge P(M); aber keine lineare Ordnung, sofern M mindestens
zwei Elemente besitzt.

Dasselbe gilt für die Obermengenrelation ⊇.

(c) Die Folgerungsrelation für aussagenlogische Formeln:
{(φ,ψ) : φ,ψ ∈ AL, φ |= ψ} ist eine Präordnung auf der Menge AL, aber
keine partielle Ordnung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 163

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Ordnungen
In diesem Kapitel bezeichnet ⩽ immer ein zweistelliges Relationssymbol. Für ⩽
verwenden wir Infixschreibweise, d.h., wir schreiben x ⩽A y statt (x , y) ∈ ⩽A.
(a) Eine Präordnung ist eine {⩽}-Struktur A = (A,⩽A), bei der ⩽A reflexiv

und transitiv ist.
(b) Eine partielle Ordnung (oder Halbordnung) ist eine Präordnung A, bei der

⩽A antisymmetrisch ist.
(c) Eine lineare (oder totale) Ordnung ist eine partielle Ordnung A, bei der ⩽A

konnex ist.

Beispiele

(a) Die
”
kleiner-gleich“ Relation auf N (oder Z oder R) ist eine lineare

Ordnung; die
”
größer-gleich“ auch.

(b) Für jede Menge M ist die Teilmengenrelation ⊆ eine partielle Ordnung auf
der Potenzmenge P(M); aber keine lineare Ordnung, sofern M mindestens
zwei Elemente besitzt. Dasselbe gilt für die Obermengenrelation ⊇.

(c) Die Folgerungsrelation für aussagenlogische Formeln:
{(φ,ψ) : φ,ψ ∈ AL, φ |= ψ} ist eine Präordnung auf der Menge AL, aber
keine partielle Ordnung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 163

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Ordnungen
In diesem Kapitel bezeichnet ⩽ immer ein zweistelliges Relationssymbol. Für ⩽
verwenden wir Infixschreibweise, d.h., wir schreiben x ⩽A y statt (x , y) ∈ ⩽A.
(a) Eine Präordnung ist eine {⩽}-Struktur A = (A,⩽A), bei der ⩽A reflexiv

und transitiv ist.
(b) Eine partielle Ordnung (oder Halbordnung) ist eine Präordnung A, bei der

⩽A antisymmetrisch ist.
(c) Eine lineare (oder totale) Ordnung ist eine partielle Ordnung A, bei der ⩽A

konnex ist.

Beispiele

(a) Die
”
kleiner-gleich“ Relation auf N (oder Z oder R) ist eine lineare

Ordnung; die
”
größer-gleich“ auch.

(b) Für jede Menge M ist die Teilmengenrelation ⊆ eine partielle Ordnung auf
der Potenzmenge P(M); aber keine lineare Ordnung, sofern M mindestens
zwei Elemente besitzt. Dasselbe gilt für die Obermengenrelation ⊇.

(c) Die Folgerungsrelation für aussagenlogische Formeln:
{(φ,ψ) : φ,ψ ∈ AL, φ |= ψ}

ist eine Präordnung auf der Menge AL, aber
keine partielle Ordnung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 163

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Ordnungen
In diesem Kapitel bezeichnet ⩽ immer ein zweistelliges Relationssymbol. Für ⩽
verwenden wir Infixschreibweise, d.h., wir schreiben x ⩽A y statt (x , y) ∈ ⩽A.
(a) Eine Präordnung ist eine {⩽}-Struktur A = (A,⩽A), bei der ⩽A reflexiv

und transitiv ist.
(b) Eine partielle Ordnung (oder Halbordnung) ist eine Präordnung A, bei der

⩽A antisymmetrisch ist.
(c) Eine lineare (oder totale) Ordnung ist eine partielle Ordnung A, bei der ⩽A

konnex ist.

Beispiele

(a) Die
”
kleiner-gleich“ Relation auf N (oder Z oder R) ist eine lineare

Ordnung; die
”
größer-gleich“ auch.

(b) Für jede Menge M ist die Teilmengenrelation ⊆ eine partielle Ordnung auf
der Potenzmenge P(M); aber keine lineare Ordnung, sofern M mindestens
zwei Elemente besitzt. Dasselbe gilt für die Obermengenrelation ⊇.

(c) Die Folgerungsrelation für aussagenlogische Formeln:
{(φ,ψ) : φ,ψ ∈ AL, φ |= ψ} ist eine Präordnung auf der Menge AL,

aber
keine partielle Ordnung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 163

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Ordnungen
In diesem Kapitel bezeichnet ⩽ immer ein zweistelliges Relationssymbol. Für ⩽
verwenden wir Infixschreibweise, d.h., wir schreiben x ⩽A y statt (x , y) ∈ ⩽A.
(a) Eine Präordnung ist eine {⩽}-Struktur A = (A,⩽A), bei der ⩽A reflexiv

und transitiv ist.
(b) Eine partielle Ordnung (oder Halbordnung) ist eine Präordnung A, bei der

⩽A antisymmetrisch ist.
(c) Eine lineare (oder totale) Ordnung ist eine partielle Ordnung A, bei der ⩽A

konnex ist.

Beispiele

(a) Die
”
kleiner-gleich“ Relation auf N (oder Z oder R) ist eine lineare

Ordnung; die
”
größer-gleich“ auch.

(b) Für jede Menge M ist die Teilmengenrelation ⊆ eine partielle Ordnung auf
der Potenzmenge P(M); aber keine lineare Ordnung, sofern M mindestens
zwei Elemente besitzt. Dasselbe gilt für die Obermengenrelation ⊇.

(c) Die Folgerungsrelation für aussagenlogische Formeln:
{(φ,ψ) : φ,ψ ∈ AL, φ |= ψ} ist eine Präordnung auf der Menge AL, aber
keine partielle Ordnung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 163

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Arithmetische Strukturen

+ und · seien immer zweistellige Funktionssymbole, für die wir Infixschreibweise
verwenden. 0 und 1 seien Konstantensymbole.

• Der Körper der reellen Zahlen ist die {+, ·, 0, 1}-Struktur AR, so dass
AR := R, +AR und ·AR sind die normale Addition bzw. Multiplikation auf
R, und 0AR := 0, 1AR := 1.

• Der Ring der ganzen Zahlen ist die {+, ·, 0, 1}-Struktur AZ, so dass
AZ := Z, +AZ und ·AZ sind die normale Addition bzw. Multiplikation auf
Z, und 0AZ := 0, 1AZ := 1.

• Das Standardmodell der Arithmetik ist die {+, ·,⩽, 0, 1}-Struktur AN, so
dass AN := N ist; die Funktionen +AN und ·AN und die Relation ⩽AN sind
die normale Addition, Multiplikation bzw. Ordnung auf N, und 0AN := 0,
1AN := 1.

• Der zweielementige Körper ist die {+, ·, 0, 1}-Struktur F2 mit Universum
F2 := {0, 1}, den Funktionen +F2 und ·F2 der Addition bzw. Multiplikation
modulo 2, und 0F2 := 0, 1F2 := 1.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 164

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Arithmetische Strukturen

+ und · seien immer zweistellige Funktionssymbole, für die wir Infixschreibweise
verwenden. 0 und 1 seien Konstantensymbole.

• Der Körper der reellen Zahlen ist die {+, ·, 0, 1}-Struktur AR, so dass
AR := R, +AR und ·AR sind die normale Addition bzw. Multiplikation auf
R, und 0AR := 0, 1AR := 1.

• Der Ring der ganzen Zahlen ist die {+, ·, 0, 1}-Struktur AZ, so dass
AZ := Z, +AZ und ·AZ sind die normale Addition bzw. Multiplikation auf
Z, und 0AZ := 0, 1AZ := 1.

• Das Standardmodell der Arithmetik ist die {+, ·,⩽, 0, 1}-Struktur AN, so
dass AN := N ist; die Funktionen +AN und ·AN und die Relation ⩽AN sind
die normale Addition, Multiplikation bzw. Ordnung auf N, und 0AN := 0,
1AN := 1.

• Der zweielementige Körper ist die {+, ·, 0, 1}-Struktur F2 mit Universum
F2 := {0, 1}, den Funktionen +F2 und ·F2 der Addition bzw. Multiplikation
modulo 2, und 0F2 := 0, 1F2 := 1.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 164

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Arithmetische Strukturen

+ und · seien immer zweistellige Funktionssymbole, für die wir Infixschreibweise
verwenden. 0 und 1 seien Konstantensymbole.

• Der Körper der reellen Zahlen ist die {+, ·, 0, 1}-Struktur AR, so dass
AR := R, +AR und ·AR sind die normale Addition bzw. Multiplikation auf
R, und 0AR := 0, 1AR := 1.

• Der Ring der ganzen Zahlen ist die {+, ·, 0, 1}-Struktur AZ, so dass
AZ := Z, +AZ und ·AZ sind die normale Addition bzw. Multiplikation auf
Z, und 0AZ := 0, 1AZ := 1.

• Das Standardmodell der Arithmetik ist die {+, ·,⩽, 0, 1}-Struktur AN, so
dass AN := N ist; die Funktionen +AN und ·AN und die Relation ⩽AN sind
die normale Addition, Multiplikation bzw. Ordnung auf N, und 0AN := 0,
1AN := 1.

• Der zweielementige Körper ist die {+, ·, 0, 1}-Struktur F2 mit Universum
F2 := {0, 1}, den Funktionen +F2 und ·F2 der Addition bzw. Multiplikation
modulo 2, und 0F2 := 0, 1F2 := 1.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 164

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Arithmetische Strukturen

+ und · seien immer zweistellige Funktionssymbole, für die wir Infixschreibweise
verwenden. 0 und 1 seien Konstantensymbole.

• Der Körper der reellen Zahlen ist die {+, ·, 0, 1}-Struktur AR, so dass
AR := R, +AR und ·AR sind die normale Addition bzw. Multiplikation auf
R, und 0AR := 0, 1AR := 1.

• Der Ring der ganzen Zahlen ist die {+, ·, 0, 1}-Struktur AZ, so dass
AZ := Z, +AZ und ·AZ sind die normale Addition bzw. Multiplikation auf
Z, und 0AZ := 0, 1AZ := 1.

• Das Standardmodell der Arithmetik ist die {+, ·,⩽, 0, 1}-Struktur AN, so
dass AN := N ist; die Funktionen +AN und ·AN und die Relation ⩽AN sind
die normale Addition, Multiplikation bzw. Ordnung auf N, und 0AN := 0,
1AN := 1.

• Der zweielementige Körper ist die {+, ·, 0, 1}-Struktur F2 mit Universum
F2 := {0, 1}, den Funktionen +F2 und ·F2 der Addition bzw. Multiplikation
modulo 2, und 0F2 := 0, 1F2 := 1.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 164

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Arithmetische Strukturen

+ und · seien immer zweistellige Funktionssymbole, für die wir Infixschreibweise
verwenden. 0 und 1 seien Konstantensymbole.

• Der Körper der reellen Zahlen ist die {+, ·, 0, 1}-Struktur AR, so dass
AR := R, +AR und ·AR sind die normale Addition bzw. Multiplikation auf
R, und 0AR := 0, 1AR := 1.

• Der Ring der ganzen Zahlen ist die {+, ·, 0, 1}-Struktur AZ, so dass
AZ := Z, +AZ und ·AZ sind die normale Addition bzw. Multiplikation auf
Z, und 0AZ := 0, 1AZ := 1.

• Das Standardmodell der Arithmetik ist die {+, ·,⩽, 0, 1}-Struktur AN, so
dass AN := N ist; die Funktionen +AN und ·AN und die Relation ⩽AN sind
die normale Addition, Multiplikation bzw. Ordnung auf N, und 0AN := 0,
1AN := 1.

• Der zweielementige Körper ist die {+, ·, 0, 1}-Struktur F2 mit Universum
F2 := {0, 1}, den Funktionen +F2 und ·F2 der Addition bzw. Multiplikation
modulo 2, und 0F2 := 0, 1F2 := 1.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 164

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Wörter als Strukturen
Sei Σ ein endliches, nicht-leeres Alphabet. Für jedes a ∈ Σ sei Pa ein einstelliges
Relationssymbol, und es sei

σΣ := {⩽} ∪ {Pa : a ∈ Σ}.

Für jedes nicht-leere Wort w := w1 · · ·wn ∈ Σ∗ mit w1, . . . ,wn ∈ Σ sei Aw die
σΣ-Struktur

• mit Universum Aw := [n], für die gilt:

• ⩽Aw ist die natürliche lineare Ordnung auf [n],
d.h., ⩽Aw= { (i , j) : i , j ∈ N, 1 ⩽ i ⩽ j ⩽ n },

• Für jedes a ∈ Σ ist PAw
a := {i ∈ [n] : wi = a}.

Beispiel
Sei Σ := {a, b, c}. Für w := abacaba ist Aw die folgende σΣ-Struktur:

• Aw = {1, 2, 3, 4, 5, 6, 7}
• ⩽Aw = { (i , j) : i , j ∈ N, 1 ⩽ i ⩽ j ⩽ 7 }
• PAw

a = {1, 3, 5, 7}, PAw

b = {2, 6}, PAw
c = {4}.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 165

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Wörter als Strukturen
Sei Σ ein endliches, nicht-leeres Alphabet. Für jedes a ∈ Σ sei Pa ein einstelliges
Relationssymbol, und es sei

σΣ := {⩽} ∪ {Pa : a ∈ Σ}.

Für jedes nicht-leere Wort w := w1 · · ·wn ∈ Σ∗ mit w1, . . . ,wn ∈ Σ sei Aw die
σΣ-Struktur

• mit Universum Aw := [n], für die gilt:

• ⩽Aw ist die natürliche lineare Ordnung auf [n],
d.h., ⩽Aw= { (i , j) : i , j ∈ N, 1 ⩽ i ⩽ j ⩽ n },

• Für jedes a ∈ Σ ist PAw
a := {i ∈ [n] : wi = a}.

Beispiel
Sei Σ := {a, b, c}. Für w := abacaba ist Aw die folgende σΣ-Struktur:

• Aw = {1, 2, 3, 4, 5, 6, 7}
• ⩽Aw = { (i , j) : i , j ∈ N, 1 ⩽ i ⩽ j ⩽ 7 }
• PAw

a = {1, 3, 5, 7}, PAw

b = {2, 6}, PAw
c = {4}.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 165

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Wörter als Strukturen
Sei Σ ein endliches, nicht-leeres Alphabet. Für jedes a ∈ Σ sei Pa ein einstelliges
Relationssymbol, und es sei

σΣ := {⩽} ∪ {Pa : a ∈ Σ}.

Für jedes nicht-leere Wort w := w1 · · ·wn ∈ Σ∗ mit w1, . . . ,wn ∈ Σ sei Aw die
σΣ-Struktur

• mit Universum Aw := [n], für die gilt:

• ⩽Aw ist die natürliche lineare Ordnung auf [n],
d.h., ⩽Aw= { (i , j) : i , j ∈ N, 1 ⩽ i ⩽ j ⩽ n },

• Für jedes a ∈ Σ ist PAw
a := {i ∈ [n] : wi = a}.

Beispiel
Sei Σ := {a, b, c}. Für w := abacaba ist Aw die folgende σΣ-Struktur:

• Aw = {1, 2, 3, 4, 5, 6, 7}
• ⩽Aw = { (i , j) : i , j ∈ N, 1 ⩽ i ⩽ j ⩽ 7 }
• PAw

a = {1, 3, 5, 7}, PAw

b = {2, 6}, PAw
c = {4}.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 165

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Wörter als Strukturen
Sei Σ ein endliches, nicht-leeres Alphabet. Für jedes a ∈ Σ sei Pa ein einstelliges
Relationssymbol, und es sei

σΣ := {⩽} ∪ {Pa : a ∈ Σ}.

Für jedes nicht-leere Wort w := w1 · · ·wn ∈ Σ∗ mit w1, . . . ,wn ∈ Σ sei Aw die
σΣ-Struktur

• mit Universum Aw := [n], für die gilt:

• ⩽Aw ist die natürliche lineare Ordnung auf [n],
d.h., ⩽Aw= { (i , j) : i , j ∈ N, 1 ⩽ i ⩽ j ⩽ n },

• Für jedes a ∈ Σ ist PAw
a := {i ∈ [n] : wi = a}.

Beispiel
Sei Σ := {a, b, c}. Für w := abacaba ist Aw die folgende σΣ-Struktur:

• Aw = {1, 2, 3, 4, 5, 6, 7}
• ⩽Aw = { (i , j) : i , j ∈ N, 1 ⩽ i ⩽ j ⩽ 7 }
• PAw

a = {1, 3, 5, 7}, PAw

b = {2, 6}, PAw
c = {4}.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 165

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Wörter als Strukturen
Sei Σ ein endliches, nicht-leeres Alphabet. Für jedes a ∈ Σ sei Pa ein einstelliges
Relationssymbol, und es sei

σΣ := {⩽} ∪ {Pa : a ∈ Σ}.

Für jedes nicht-leere Wort w := w1 · · ·wn ∈ Σ∗ mit w1, . . . ,wn ∈ Σ sei Aw die
σΣ-Struktur

• mit Universum Aw := [n], für die gilt:

• ⩽Aw ist die natürliche lineare Ordnung auf [n],
d.h., ⩽Aw= { (i , j) : i , j ∈ N, 1 ⩽ i ⩽ j ⩽ n },

• Für jedes a ∈ Σ ist PAw
a := {i ∈ [n] : wi = a}.

Beispiel
Sei Σ := {a, b, c}. Für w := abacaba ist Aw die folgende σΣ-Struktur:

• Aw = {1, 2, 3, 4, 5, 6, 7}
• ⩽Aw = { (i , j) : i , j ∈ N, 1 ⩽ i ⩽ j ⩽ 7 }
• PAw

a = {1, 3, 5, 7}, PAw

b = {2, 6}, PAw
c = {4}.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 165

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Wörter als Strukturen
Sei Σ ein endliches, nicht-leeres Alphabet. Für jedes a ∈ Σ sei Pa ein einstelliges
Relationssymbol, und es sei

σΣ := {⩽} ∪ {Pa : a ∈ Σ}.

Für jedes nicht-leere Wort w := w1 · · ·wn ∈ Σ∗ mit w1, . . . ,wn ∈ Σ sei Aw die
σΣ-Struktur

• mit Universum Aw := [n], für die gilt:

• ⩽Aw ist die natürliche lineare Ordnung auf [n],
d.h., ⩽Aw= { (i , j) : i , j ∈ N, 1 ⩽ i ⩽ j ⩽ n },

• Für jedes a ∈ Σ ist PAw
a := {i ∈ [n] : wi = a}.

Beispiel
Sei Σ := {a, b, c}. Für w := abacaba ist Aw die folgende σΣ-Struktur:

• Aw = {1, 2, 3, 4, 5, 6, 7}
• ⩽Aw = { (i , j) : i , j ∈ N, 1 ⩽ i ⩽ j ⩽ 7 }
• PAw

a = {1, 3, 5, 7}, PAw

b = {2, 6}, PAw
c = {4}.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 165

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Wortstrukturen
Eine Wortstruktur über Σ ist eine σΣ-Struktur A für die gilt:

• das Universum A von A ist endlich,

• (A,⩽A) ist eine lineare Ordnung,

• für jedes i ∈ A gibt es genau ein a ∈ Σ, so dass i ∈ PA
a .

Beispiel 3.4
Sei Σ := {a, b, c}. Die σΣ-Struktur B mit

• Universum B = {♢,♡,♠,♣},
• linearer Ordnung ⩽B, die besagt, dass ♢ < ♡ < ♠ < ♣ ist, d.h.

⩽B = {(♢,♢), (♢,♡), (♢,♠), (♢,♣), (♡,♡), (♡,♠), (♡,♣), (♠,♠), (♠,♣), (♣,♣)},

• PB
a = {♢, ♣}

• PB
b = {♡, ♠},

• PB
c = ∅,

ist eine Wortstruktur, die das Wort w = abba repräsentiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 166

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Wortstrukturen
Eine Wortstruktur über Σ ist eine σΣ-Struktur A für die gilt:

• das Universum A von A ist endlich,

• (A,⩽A) ist eine lineare Ordnung,

• für jedes i ∈ A gibt es genau ein a ∈ Σ, so dass i ∈ PA
a .

Beispiel 3.4
Sei Σ := {a, b, c}. Die σΣ-Struktur B mit

• Universum B = {♢,♡,♠,♣},
• linearer Ordnung ⩽B, die besagt, dass ♢ < ♡ < ♠ < ♣ ist, d.h.

⩽B = {(♢,♢), (♢,♡), (♢,♠), (♢,♣), (♡,♡), (♡,♠), (♡,♣), (♠,♠), (♠,♣), (♣,♣)},

• PB
a = {♢, ♣}

• PB
b = {♡, ♠},

• PB
c = ∅,

ist eine Wortstruktur, die das Wort w = abba repräsentiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 166

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Wortstrukturen
Eine Wortstruktur über Σ ist eine σΣ-Struktur A für die gilt:

• das Universum A von A ist endlich,

• (A,⩽A) ist eine lineare Ordnung,

• für jedes i ∈ A gibt es genau ein a ∈ Σ, so dass i ∈ PA
a .

Beispiel 3.4
Sei Σ := {a, b, c}. Die σΣ-Struktur B mit

• Universum B = {♢,♡,♠,♣},
• linearer Ordnung ⩽B, die besagt, dass ♢ < ♡ < ♠ < ♣ ist, d.h.

⩽B = {(♢,♢), (♢,♡), (♢,♠), (♢,♣), (♡,♡), (♡,♠), (♡,♣), (♠,♠), (♠,♣), (♣,♣)},

• PB
a = {♢, ♣}

• PB
b = {♡, ♠},

• PB
c = ∅,

ist eine Wortstruktur, die das Wort w = abba repräsentiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 166

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Wortstrukturen
Eine Wortstruktur über Σ ist eine σΣ-Struktur A für die gilt:

• das Universum A von A ist endlich,

• (A,⩽A) ist eine lineare Ordnung,

• für jedes i ∈ A gibt es genau ein a ∈ Σ, so dass i ∈ PA
a .

Beispiel 3.4
Sei Σ := {a, b, c}. Die σΣ-Struktur B mit

• Universum B = {♢,♡,♠,♣},
• linearer Ordnung ⩽B, die besagt, dass ♢ < ♡ < ♠ < ♣ ist, d.h.

⩽B = {(♢,♢), (♢,♡), (♢,♠), (♢,♣), (♡,♡), (♡,♠), (♡,♣), (♠,♠), (♠,♣), (♣,♣)},

• PB
a = {♢, ♣}

• PB
b = {♡, ♠},

• PB
c = ∅,

ist eine Wortstruktur, die das Wort w = abba repräsentiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 166

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Wortstrukturen
Eine Wortstruktur über Σ ist eine σΣ-Struktur A für die gilt:

• das Universum A von A ist endlich,

• (A,⩽A) ist eine lineare Ordnung,

• für jedes i ∈ A gibt es genau ein a ∈ Σ, so dass i ∈ PA
a .

Beispiel 3.4
Sei Σ := {a, b, c}. Die σΣ-Struktur B mit

• Universum B = {♢,♡,♠,♣},

• linearer Ordnung ⩽B, die besagt, dass ♢ < ♡ < ♠ < ♣ ist, d.h.

⩽B = {(♢,♢), (♢,♡), (♢,♠), (♢,♣), (♡,♡), (♡,♠), (♡,♣), (♠,♠), (♠,♣), (♣,♣)},

• PB
a = {♢, ♣}

• PB
b = {♡, ♠},

• PB
c = ∅,

ist eine Wortstruktur, die das Wort w = abba repräsentiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 166

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Wortstrukturen
Eine Wortstruktur über Σ ist eine σΣ-Struktur A für die gilt:

• das Universum A von A ist endlich,

• (A,⩽A) ist eine lineare Ordnung,

• für jedes i ∈ A gibt es genau ein a ∈ Σ, so dass i ∈ PA
a .

Beispiel 3.4
Sei Σ := {a, b, c}. Die σΣ-Struktur B mit

• Universum B = {♢,♡,♠,♣},
• linearer Ordnung ⩽B, die besagt, dass ♢ < ♡ < ♠ < ♣ ist, d.h.

⩽B =

{(♢,♢), (♢,♡), (♢,♠), (♢,♣), (♡,♡), (♡,♠), (♡,♣), (♠,♠), (♠,♣), (♣,♣)},

• PB
a = {♢, ♣}

• PB
b = {♡, ♠},

• PB
c = ∅,

ist eine Wortstruktur, die das Wort w = abba repräsentiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 166

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Wortstrukturen
Eine Wortstruktur über Σ ist eine σΣ-Struktur A für die gilt:

• das Universum A von A ist endlich,

• (A,⩽A) ist eine lineare Ordnung,

• für jedes i ∈ A gibt es genau ein a ∈ Σ, so dass i ∈ PA
a .

Beispiel 3.4
Sei Σ := {a, b, c}. Die σΣ-Struktur B mit

• Universum B = {♢,♡,♠,♣},
• linearer Ordnung ⩽B, die besagt, dass ♢ < ♡ < ♠ < ♣ ist, d.h.

⩽B = {(♢,♢), (♢,♡), (♢,♠), (♢,♣), (♡,♡), (♡,♠), (♡,♣), (♠,♠), (♠,♣), (♣,♣)},

• PB
a = {♢, ♣}

• PB
b = {♡, ♠},

• PB
c = ∅,

ist eine Wortstruktur, die das Wort w = abba repräsentiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 166

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Wortstrukturen
Eine Wortstruktur über Σ ist eine σΣ-Struktur A für die gilt:

• das Universum A von A ist endlich,

• (A,⩽A) ist eine lineare Ordnung,

• für jedes i ∈ A gibt es genau ein a ∈ Σ, so dass i ∈ PA
a .

Beispiel 3.4
Sei Σ := {a, b, c}. Die σΣ-Struktur B mit

• Universum B = {♢,♡,♠,♣},
• linearer Ordnung ⩽B, die besagt, dass ♢ < ♡ < ♠ < ♣ ist, d.h.

⩽B = {(♢,♢), (♢,♡), (♢,♠), (♢,♣), (♡,♡), (♡,♠), (♡,♣), (♠,♠), (♠,♣), (♣,♣)},

• PB
a = {♢, ♣}

• PB
b = {♡, ♠},

• PB
c = ∅,

ist eine Wortstruktur, die das Wort w = abba repräsentiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 166

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Wortstrukturen
Eine Wortstruktur über Σ ist eine σΣ-Struktur A für die gilt:

• das Universum A von A ist endlich,

• (A,⩽A) ist eine lineare Ordnung,

• für jedes i ∈ A gibt es genau ein a ∈ Σ, so dass i ∈ PA
a .

Beispiel 3.4
Sei Σ := {a, b, c}. Die σΣ-Struktur B mit

• Universum B = {♢,♡,♠,♣},
• linearer Ordnung ⩽B, die besagt, dass ♢ < ♡ < ♠ < ♣ ist, d.h.

⩽B = {(♢,♢), (♢,♡), (♢,♠), (♢,♣), (♡,♡), (♡,♠), (♡,♣), (♠,♠), (♠,♣), (♣,♣)},

• PB
a = {♢, ♣}

• PB
b = {♡, ♠},

• PB
c = ∅,

ist eine Wortstruktur, die das Wort w = abba repräsentiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 166

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Wortstrukturen
Eine Wortstruktur über Σ ist eine σΣ-Struktur A für die gilt:

• das Universum A von A ist endlich,

• (A,⩽A) ist eine lineare Ordnung,

• für jedes i ∈ A gibt es genau ein a ∈ Σ, so dass i ∈ PA
a .

Beispiel 3.4
Sei Σ := {a, b, c}. Die σΣ-Struktur B mit

• Universum B = {♢,♡,♠,♣},
• linearer Ordnung ⩽B, die besagt, dass ♢ < ♡ < ♠ < ♣ ist, d.h.

⩽B = {(♢,♢), (♢,♡), (♢,♠), (♢,♣), (♡,♡), (♡,♠), (♡,♣), (♠,♠), (♠,♣), (♣,♣)},

• PB
a = {♢, ♣}

• PB
b = {♡, ♠},

• PB
c = ∅,

ist eine Wortstruktur, die das Wort

w = abba repräsentiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 166

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Wortstrukturen
Eine Wortstruktur über Σ ist eine σΣ-Struktur A für die gilt:

• das Universum A von A ist endlich,

• (A,⩽A) ist eine lineare Ordnung,

• für jedes i ∈ A gibt es genau ein a ∈ Σ, so dass i ∈ PA
a .

Beispiel 3.4
Sei Σ := {a, b, c}. Die σΣ-Struktur B mit

• Universum B = {♢,♡,♠,♣},
• linearer Ordnung ⩽B, die besagt, dass ♢ < ♡ < ♠ < ♣ ist, d.h.

⩽B = {(♢,♢), (♢,♡), (♢,♠), (♢,♣), (♡,♡), (♡,♠), (♡,♣), (♠,♠), (♠,♣), (♣,♣)},

• PB
a = {♢, ♣}

• PB
b = {♡, ♠},

• PB
c = ∅,

ist eine Wortstruktur, die das Wort w = abba repräsentiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 166

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Relationale Datenbanken

• Relationale Datenbanken bestehen aus endlich vielen endlichen Tabellen.

• Jede solche Tabelle lässt sich als Relation auffassen, die Zeilen der Tabelle
entsprechen dabei den Tupeln in der Relation.

• Eine relationale Datenbank entspricht dann einer endlichen Struktur, deren
Universum aus allen potentiellen Einträgen in einzelnen Zellen der Tabellen
besteht, und die für jede Tabelle in der Datenbank eine Relation enthält.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 167

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Relationale Datenbanken

• Relationale Datenbanken bestehen aus endlich vielen endlichen Tabellen.

• Jede solche Tabelle lässt sich als Relation auffassen, die Zeilen der Tabelle
entsprechen dabei den Tupeln in der Relation.

• Eine relationale Datenbank entspricht dann einer endlichen Struktur, deren
Universum aus allen potentiellen Einträgen in einzelnen Zellen der Tabellen
besteht, und die für jede Tabelle in der Datenbank eine Relation enthält.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 167

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Relationale Datenbanken

• Relationale Datenbanken bestehen aus endlich vielen endlichen Tabellen.

• Jede solche Tabelle lässt sich als Relation auffassen, die Zeilen der Tabelle
entsprechen dabei den Tupeln in der Relation.

• Eine relationale Datenbank entspricht dann einer endlichen Struktur, deren
Universum aus allen potentiellen Einträgen in einzelnen Zellen der Tabellen
besteht, und die für jede Tabelle in der Datenbank eine Relation enthält.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 167

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Beispiel: Eine Kinodatenbank
Kino
Name Adresse Stadtteil Telefonnummer
Babylon Dresdner Str. 126 Kreuzberg 030 61 60 96 93
Casablanca Friedenstr. 12-13 Adlershof 030 67 75 75 2
Filmtheater am Friedrichshain Bötzowstr. 1-5 Prenzlauer Berg 030 42 84 51 88
Kino International Karl-Marx-Allee 33 Mitte 030 24 75 60 11
Moviemento Kotbusser Damm 22 Kreuzberg 030 692 47 85
Urania An der Urania 17 Schöneberg 030 21 89 09 1

Film
Name Regisseur Schauspieler
Alien Ridley Scott Sigourney Weaver
Blade Runner Ridley Scott Harrison Ford
Blade Runner Ridley Scott Sean Young
Brazil Terry Gilliam Jonathan Pryce
Brazil Terry Gilliam Kim Greist
Casablanca Michael Curtiz Humphrey Bogart
Casablanca Michael Curtiz Ingrid Bergmann
Gravity Alfonso Cuaron Sandra Bullock
Gravity Alfonso Cuaron George Clooney
Monuments Men George Clooney George Clooney
Monuments Men George Clooney Matt Damon
Resident Evil Paul Anderson Milla Jovovich
Terminator James Cameron Arnold Schwarzenegger
Terminator James Cameron Linda Hamilton
Terminator James Cameron Michael Biehn

· · · · · · · · ·

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 168

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Beispiel: Eine Kinodatenbank
Kino
Name Adresse Stadtteil Telefonnummer
Babylon Dresdner Str. 126 Kreuzberg 030 61 60 96 93
Casablanca Friedenstr. 12-13 Adlershof 030 67 75 75 2
Filmtheater am Friedrichshain Bötzowstr. 1-5 Prenzlauer Berg 030 42 84 51 88
Kino International Karl-Marx-Allee 33 Mitte 030 24 75 60 11
Moviemento Kotbusser Damm 22 Kreuzberg 030 692 47 85
Urania An der Urania 17 Schöneberg 030 21 89 09 1

Film
Name Regisseur Schauspieler
Alien Ridley Scott Sigourney Weaver
Blade Runner Ridley Scott Harrison Ford
Blade Runner Ridley Scott Sean Young
Brazil Terry Gilliam Jonathan Pryce
Brazil Terry Gilliam Kim Greist
Casablanca Michael Curtiz Humphrey Bogart
Casablanca Michael Curtiz Ingrid Bergmann
Gravity Alfonso Cuaron Sandra Bullock
Gravity Alfonso Cuaron George Clooney
Monuments Men George Clooney George Clooney
Monuments Men George Clooney Matt Damon
Resident Evil Paul Anderson Milla Jovovich
Terminator James Cameron Arnold Schwarzenegger
Terminator James Cameron Linda Hamilton
Terminator James Cameron Michael Biehn

· · · · · · · · ·

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 168

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Programm
Kino Film Zeit
Babylon Casablanca 17:30
Babylon Gravity 20:15
Casablanca Blade Runner 15:30
Casablanca Alien 18:15
Casablanca Blade Runner 20:30
Casablanca Resident Evil 20:30
Filmtheater am Friedrichshain Resident Evil 20:00
Filmtheater am Friedrichshain Resident Evil 21:30
Filmtheater am Friedrichshain Resident Evil 23:00
Kino International Casablanca 18:00
Kino International Brazil 20:00
Kino International Brazil 22:00
Moviemento Gravity 17:00
Moviemento Gravity 19:30
Moviemento Alien 22:00
Urania Monuments Men 17:00
Urania Monuments Men 20:00

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 169

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Die Kinodatenbank als Struktur

Signatur: σKINO := { RKino/4, RFilm/3, RProg/3 }

∪ { ‘c’ : c ∈ ASCII∗ }

Die Kinodatenbank wird dargestellt als σKINO-Struktur D.

Universum:

D := ASCII
∗ ⊇ { Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93,

Casablanca, . . . , 20:00}.

Relationen:

RD
Kino :=

{
(Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93),

(Casablanca, Friedenstr. 12-13, Adlershof, 030 67 75 75 2),

· · · ,

(Urania, An der Urania 17, Schöneberg, 030 21 89 09 1)
}

Konstanten: ‘c’D := c, für jedes c ∈ ASCII∗.

D.h.: jedes Konstantensymbol wird durch den zwischen den Hochkommas stehenden Text interpretiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 170

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Die Kinodatenbank als Struktur

Signatur: σKINO := { RKino/4, RFilm/3, RProg/3 } ∪ { ‘c’ : c ∈ ASCII∗ }

Die Kinodatenbank wird dargestellt als σKINO-Struktur D.

Universum:

D := ASCII
∗ ⊇ { Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93,

Casablanca, . . . , 20:00}.

Relationen:

RD
Kino :=

{
(Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93),

(Casablanca, Friedenstr. 12-13, Adlershof, 030 67 75 75 2),

· · · ,

(Urania, An der Urania 17, Schöneberg, 030 21 89 09 1)
}

Konstanten: ‘c’D := c, für jedes c ∈ ASCII∗.

D.h.: jedes Konstantensymbol wird durch den zwischen den Hochkommas stehenden Text interpretiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 170

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Die Kinodatenbank als Struktur

Signatur: σKINO := { RKino/4, RFilm/3, RProg/3 } ∪ { ‘c’ : c ∈ ASCII∗ }

Die Kinodatenbank wird dargestellt als σKINO-Struktur D.

Universum:

D := ASCII
∗ ⊇ { Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93,

Casablanca, . . . , 20:00}.

Relationen:

RD
Kino :=

{
(Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93),

(Casablanca, Friedenstr. 12-13, Adlershof, 030 67 75 75 2),

· · · ,

(Urania, An der Urania 17, Schöneberg, 030 21 89 09 1)
}

Konstanten: ‘c’D := c, für jedes c ∈ ASCII∗.

D.h.: jedes Konstantensymbol wird durch den zwischen den Hochkommas stehenden Text interpretiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 170

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Die Kinodatenbank als Struktur

Signatur: σKINO := { RKino/4, RFilm/3, RProg/3 } ∪ { ‘c’ : c ∈ ASCII∗ }

Die Kinodatenbank wird dargestellt als σKINO-Struktur D.

Universum:

D := ASCII
∗ ⊇ { Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93,

Casablanca, . . . , 20:00}.

Relationen:

RD
Kino :=

{
(Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93),

(Casablanca, Friedenstr. 12-13, Adlershof, 030 67 75 75 2),

· · · ,

(Urania, An der Urania 17, Schöneberg, 030 21 89 09 1)
}

Konstanten: ‘c’D := c, für jedes c ∈ ASCII∗.

D.h.: jedes Konstantensymbol wird durch den zwischen den Hochkommas stehenden Text interpretiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 170

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Die Kinodatenbank als Struktur
Signatur: σKINO := { RKino/4, RFilm/3, RProg/3 } ∪ { ‘c’ : c ∈ ASCII∗ }

Die Kinodatenbank wird dargestellt als σKINO-Struktur D.

Universum:

D := ASCII
∗ ⊇ { Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93,

Casablanca, . . . , 20:00}.

Relationen:

RD
Kino :=

{
(Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93),

(Casablanca, Friedenstr. 12-13, Adlershof, 030 67 75 75 2),

· · · ,

(Urania, An der Urania 17, Schöneberg, 030 21 89 09 1)
}

RD
Film :=

{
(Alien, Ridley Scott, Sigourney Weaver),

(Blade Runner, Ridley Scott, Harrison Ford), . . .
}

Konstanten: ‘c’D := c, für jedes c ∈ ASCII∗.

D.h.: jedes Konstantensymbol wird durch den zwischen den Hochkommas stehenden Text interpretiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 170

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Die Kinodatenbank als Struktur
Signatur: σKINO := { RKino/4, RFilm/3, RProg/3 } ∪ { ‘c’ : c ∈ ASCII∗ }

Die Kinodatenbank wird dargestellt als σKINO-Struktur D.

Universum:

D := ASCII
∗ ⊇ { Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93,

Casablanca, . . . , 20:00}.

Relationen:

RD
Kino :=

{
(Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93),

(Casablanca, Friedenstr. 12-13, Adlershof, 030 67 75 75 2),

· · · ,

(Urania, An der Urania 17, Schöneberg, 030 21 89 09 1)
}

RD
Film :=

{
(Alien, Ridley Scott, Sigourney Weaver),

(Blade Runner, Ridley Scott, Harrison Ford), . . .
}

RD
Prog :=

{
(Babylon, Casablanca, 17:30),

(Babylon, Gravity, 20:15), . . .
}
.

Konstanten: ‘c’D := c, für jedes c ∈ ASCII∗.

D.h.: jedes Konstantensymbol wird durch den zwischen den Hochkommas stehenden Text interpretiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 170

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Die Kinodatenbank als Struktur
Signatur: σKINO := { RKino/4, RFilm/3, RProg/3 } ∪ { ‘c’ : c ∈ ASCII∗ }

Die Kinodatenbank wird dargestellt als σKINO-Struktur D.

Universum:

D := ASCII
∗ ⊇ { Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93,

Casablanca, . . . , 20:00}.

Relationen:

RD
Kino :=

{
(Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93),

(Casablanca, Friedenstr. 12-13, Adlershof, 030 67 75 75 2),

· · · ,

(Urania, An der Urania 17, Schöneberg, 030 21 89 09 1)
}

RD
Film :=

{
(Alien, Ridley Scott, Sigourney Weaver),

(Blade Runner, Ridley Scott, Harrison Ford), . . .
}

RD
Prog :=

{
(Babylon, Casablanca, 17:30),

(Babylon, Gravity, 20:15), . . .
}
.

Konstanten: ‘c’D := c, für jedes c ∈ ASCII∗.

D.h.: jedes Konstantensymbol wird durch den zwischen den Hochkommas stehenden Text interpretiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 170

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Die Kinodatenbank als Struktur
Signatur: σKINO := { RKino/4, RFilm/3, RProg/3 } ∪ { ‘c’ : c ∈ ASCII∗ }

Die Kinodatenbank wird dargestellt als σKINO-Struktur D.

Universum:

D := ASCII
∗ ⊇ { Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93,

Casablanca, . . . , 20:00}.

Relationen:

RD
Kino :=

{
(Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93),

(Casablanca, Friedenstr. 12-13, Adlershof, 030 67 75 75 2),

· · · ,

(Urania, An der Urania 17, Schöneberg, 030 21 89 09 1)
}

RD
Film :=

{
(Alien, Ridley Scott, Sigourney Weaver),

(Blade Runner, Ridley Scott, Harrison Ford), . . .
}

RD
Prog :=

{
(Babylon, Casablanca, 17:30),

(Babylon, Gravity, 20:15), . . .
}
.

Konstanten:

‘c’D := c, für jedes c ∈ ASCII∗.

D.h.: jedes Konstantensymbol wird durch den zwischen den Hochkommas stehenden Text interpretiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 170

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Die Kinodatenbank als Struktur
Signatur: σKINO := { RKino/4, RFilm/3, RProg/3 } ∪ { ‘c’ : c ∈ ASCII∗ }

Die Kinodatenbank wird dargestellt als σKINO-Struktur D.

Universum:

D := ASCII
∗ ⊇ { Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93,

Casablanca, . . . , 20:00}.

Relationen:

RD
Kino :=

{
(Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93),

(Casablanca, Friedenstr. 12-13, Adlershof, 030 67 75 75 2),

· · · ,

(Urania, An der Urania 17, Schöneberg, 030 21 89 09 1)
}

RD
Film :=

{
(Alien, Ridley Scott, Sigourney Weaver),

(Blade Runner, Ridley Scott, Harrison Ford), . . .
}

RD
Prog :=

{
(Babylon, Casablanca, 17:30),

(Babylon, Gravity, 20:15), . . .
}
.

Konstanten: ‘c’D := c, für jedes c ∈ ASCII∗.

D.h.: jedes Konstantensymbol wird durch den zwischen den Hochkommas stehenden Text interpretiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 170

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Redukte und Expansionen

Definition 3.5
Seien σ und τ Signaturen mit σ ⊆ τ .

(a) Das σ-Redukt einer τ -Struktur B ist die σ-Struktur B|σ mit B|σ := B und
SB|σ := SB für jedes S ∈ σ.

D.h.: Ist B =
(
B, (SB)S∈τ

)
, so ist B|σ =

(
B, (SB)S∈σ

)
.

(b) Eine τ -Struktur B ist eine τ -Expansion einer σ-Struktur A, wenn A = B|σ.

Beispiel
Das {+, 0}-Redukt des Standardmodells der Arithmetik ist die Struktur

AN|{+,0} = (N,+AN , 0AN),

wobei +AN die natürliche Addition auf N und 0AN die natürliche Zahl 0 ist.

Man bezeichnet diese Struktur als das Standardmodell der Presburger
Arithmetik.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 171

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Redukte und Expansionen

Definition 3.5
Seien σ und τ Signaturen mit σ ⊆ τ .

(a) Das σ-Redukt einer τ -Struktur B ist die σ-Struktur B|σ mit B|σ := B und
SB|σ := SB für jedes S ∈ σ.

D.h.: Ist B =
(
B, (SB)S∈τ

)
, so ist B|σ =

(
B, (SB)S∈σ

)
.

(b) Eine τ -Struktur B ist eine τ -Expansion einer σ-Struktur A, wenn A = B|σ.

Beispiel
Das {+, 0}-Redukt des Standardmodells der Arithmetik ist die Struktur

AN|{+,0} = (N,+AN , 0AN),

wobei +AN die natürliche Addition auf N und 0AN die natürliche Zahl 0 ist.

Man bezeichnet diese Struktur als das Standardmodell der Presburger
Arithmetik.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 171

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Redukte und Expansionen

Definition 3.5
Seien σ und τ Signaturen mit σ ⊆ τ .

(a) Das σ-Redukt einer τ -Struktur B ist die σ-Struktur B|σ mit B|σ := B und
SB|σ := SB für jedes S ∈ σ.

D.h.: Ist B =
(
B, (SB)S∈τ

)
, so ist B|σ =

(
B, (SB)S∈σ

)
.

(b) Eine τ -Struktur B ist eine τ -Expansion einer σ-Struktur A, wenn A = B|σ.

Beispiel
Das {+, 0}-Redukt des Standardmodells der Arithmetik ist die Struktur

AN|{+,0} = (N,+AN , 0AN),

wobei +AN die natürliche Addition auf N und 0AN die natürliche Zahl 0 ist.

Man bezeichnet diese Struktur als das Standardmodell der Presburger
Arithmetik.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 171

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Redukte und Expansionen

Definition 3.5
Seien σ und τ Signaturen mit σ ⊆ τ .

(a) Das σ-Redukt einer τ -Struktur B ist die σ-Struktur B|σ mit B|σ := B und
SB|σ := SB für jedes S ∈ σ.

D.h.: Ist B =
(
B, (SB)S∈τ

)
, so ist B|σ =

(
B, (SB)S∈σ

)
.

(b) Eine τ -Struktur B ist eine τ -Expansion einer σ-Struktur A, wenn A = B|σ.

Beispiel
Das {+, 0}-Redukt des Standardmodells der Arithmetik ist die Struktur

AN|{+,0} = (N,+AN , 0AN),

wobei +AN die natürliche Addition auf N und 0AN die natürliche Zahl 0 ist.

Man bezeichnet diese Struktur als das Standardmodell der Presburger
Arithmetik.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 171

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Redukte und Expansionen

Definition 3.5
Seien σ und τ Signaturen mit σ ⊆ τ .

(a) Das σ-Redukt einer τ -Struktur B ist die σ-Struktur B|σ mit B|σ := B und
SB|σ := SB für jedes S ∈ σ.

D.h.: Ist B =
(
B, (SB)S∈τ

)
, so ist B|σ =

(
B, (SB)S∈σ

)
.

(b) Eine τ -Struktur B ist eine τ -Expansion einer σ-Struktur A, wenn A = B|σ.

Beispiel
Das {+, 0}-Redukt des Standardmodells der Arithmetik ist die Struktur

AN|{+,0} = (N,+AN , 0AN),

wobei +AN die natürliche Addition auf N und 0AN die natürliche Zahl 0 ist.

Man bezeichnet diese Struktur als das Standardmodell der Presburger
Arithmetik.
Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 171

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Prinzipielle Gleichheit von Strukturen

Frage: Wann sind zwei σ-Strukturen A und B
”
prinzipiell gleich“?

Antwort: Wenn B aus A entsteht, indem man die Elemente des Universums von
A umbenennt.

Dies wird in der folgenden Definition präzisiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 172

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Prinzipielle Gleichheit von Strukturen

Frage: Wann sind zwei σ-Strukturen A und B
”
prinzipiell gleich“?

Antwort: Wenn B aus A entsteht, indem man die Elemente des Universums von
A umbenennt.

Dies wird in der folgenden Definition präzisiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 172

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Prinzipielle Gleichheit von Strukturen

Frage: Wann sind zwei σ-Strukturen A und B
”
prinzipiell gleich“?

Antwort: Wenn B aus A entsteht, indem man die Elemente des Universums von
A umbenennt.

Dies wird in der folgenden Definition präzisiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 172

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Isomorphismen

Definition 3.6
Seien A und B σ-Strukturen. Ein Isomorphismus von A nach B ist eine
Abbildung π : A → B mit folgenden Eigenschaften:

1. π ist bijektiv.

2. Für alle k ∈ N \ {0}, alle k-stelligen Relationssymbole R ∈ σ und alle
k-Tupel (a1, . . . , ak) ∈ Ak gilt:

(a1, . . . , ak) ∈ RA ⇐⇒
(
π(a1), . . . , π(ak)

)
∈ RB.

3. Für alle Konstantensymbole c ∈ σ gilt:

π
(
cA

)
= cB.

4. Für alle k ∈ N \ {0}, alle k-stelligen Funktionssymbole f ∈ σ und alle
k-Tupel (a1, . . . , ak) ∈ Ak gilt:

π
(
f A(a1, . . . , ak)

)
= f B

(
π(a1), . . . , π(ak)

)
.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 173

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Isomorphismen

Definition 3.6
Seien A und B σ-Strukturen. Ein Isomorphismus von A nach B ist eine
Abbildung π : A → B mit folgenden Eigenschaften:

1. π ist bijektiv.

2. Für alle k ∈ N \ {0}, alle k-stelligen Relationssymbole R ∈ σ und alle
k-Tupel (a1, . . . , ak) ∈ Ak gilt:

(a1, . . . , ak) ∈ RA ⇐⇒
(
π(a1), . . . , π(ak)

)
∈ RB.

3. Für alle Konstantensymbole c ∈ σ gilt:

π
(
cA

)
= cB.

4. Für alle k ∈ N \ {0}, alle k-stelligen Funktionssymbole f ∈ σ und alle
k-Tupel (a1, . . . , ak) ∈ Ak gilt:

π
(
f A(a1, . . . , ak)

)
= f B

(
π(a1), . . . , π(ak)

)
.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 173

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Isomorphismen

Definition 3.6
Seien A und B σ-Strukturen. Ein Isomorphismus von A nach B ist eine
Abbildung π : A → B mit folgenden Eigenschaften:

1. π ist bijektiv.

2. Für alle k ∈ N \ {0}, alle k-stelligen Relationssymbole R ∈ σ und alle
k-Tupel (a1, . . . , ak) ∈ Ak gilt:

(a1, . . . , ak) ∈ RA ⇐⇒
(
π(a1), . . . , π(ak)

)
∈ RB.

3. Für alle Konstantensymbole c ∈ σ gilt:

π
(
cA

)
= cB.

4. Für alle k ∈ N \ {0}, alle k-stelligen Funktionssymbole f ∈ σ und alle
k-Tupel (a1, . . . , ak) ∈ Ak gilt:

π
(
f A(a1, . . . , ak)

)
= f B

(
π(a1), . . . , π(ak)

)
.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 173

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Isomorphismen

Definition 3.6
Seien A und B σ-Strukturen. Ein Isomorphismus von A nach B ist eine
Abbildung π : A → B mit folgenden Eigenschaften:

1. π ist bijektiv.

2. Für alle k ∈ N \ {0}, alle k-stelligen Relationssymbole R ∈ σ und alle
k-Tupel (a1, . . . , ak) ∈ Ak gilt:

(a1, . . . , ak) ∈ RA ⇐⇒
(
π(a1), . . . , π(ak)

)
∈ RB.

3. Für alle Konstantensymbole c ∈ σ gilt:

π
(
cA

)
= cB.

4. Für alle k ∈ N \ {0}, alle k-stelligen Funktionssymbole f ∈ σ und alle
k-Tupel (a1, . . . , ak) ∈ Ak gilt:

π
(
f A(a1, . . . , ak)

)
= f B

(
π(a1), . . . , π(ak)

)
.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 173

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Isomorphismen

Definition 3.6
Seien A und B σ-Strukturen. Ein Isomorphismus von A nach B ist eine
Abbildung π : A → B mit folgenden Eigenschaften:

1. π ist bijektiv.

2. Für alle k ∈ N \ {0}, alle k-stelligen Relationssymbole R ∈ σ und alle
k-Tupel (a1, . . . , ak) ∈ Ak gilt:

(a1, . . . , ak) ∈ RA ⇐⇒
(
π(a1), . . . , π(ak)

)
∈ RB.

3. Für alle Konstantensymbole c ∈ σ gilt:

π
(
cA

)
= cB.

4. Für alle k ∈ N \ {0}, alle k-stelligen Funktionssymbole f ∈ σ und alle
k-Tupel (a1, . . . , ak) ∈ Ak gilt:

π
(
f A(a1, . . . , ak)

)
= f B

(
π(a1), . . . , π(ak)

)
.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 173

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Isomorphie

Notation
Seien A und B σ-Strukturen. Wir schreiben π : A ∼= B, um anzudeuten, dass π
ein Isomorphismus von A nach B ist.

Definition 3.7
Zwei σ-Strukturen A und B heißen isomorph (wir schreiben: A ∼= B), wenn es
einen Isomorphismus von A nach B gibt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 174

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Isomorphie

Notation
Seien A und B σ-Strukturen. Wir schreiben π : A ∼= B, um anzudeuten, dass π
ein Isomorphismus von A nach B ist.

Definition 3.7
Zwei σ-Strukturen A und B heißen isomorph (wir schreiben: A ∼= B), wenn es
einen Isomorphismus von A nach B gibt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 174

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Beispiele 3.8

(a) Seien A,B nicht-leere Mengen. Dann sind die ∅-Strukturen A := (A) und
B := (B) genau dann isomorph, wenn

A und B gleichmächtig sind (d.h. es
gibt eine Bijektion von A nach B).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 175

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Beispiele 3.8

(a) Seien A,B nicht-leere Mengen. Dann sind die ∅-Strukturen A := (A) und
B := (B) genau dann isomorph, wenn A und B gleichmächtig sind (d.h. es
gibt eine Bijektion von A nach B).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 175

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

(b) Seien A = (A,EA) und B = (B,EB) die beiden folgenden Digraphen:

Dann ist π : A → B mit

i 1 2 3 4 5 6 7 8
π(i) a b c d h g f e

ein Isomorphismus von A nach B.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 176

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

(b) Seien A = (A,EA) und B = (B,EB) die beiden folgenden Digraphen:

Dann ist π : A → B mit

i 1 2 3 4 5 6 7 8
π(i) a b c d h g f e

ein Isomorphismus von A nach B.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 176

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

(b) Seien A = (A,EA) und B = (B,EB) die beiden folgenden Digraphen:

Dann ist π : A → B mit

i 1 2 3 4 5 6 7 8
π(i) a b c d h g f e

ein Isomorphismus von A nach B.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 176

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

(c) Sei A = (A,⩽A) mit A = {1, 2, 3, 4} und

⩽A = { (i , j) : i , j ∈ N, 1 ⩽ i ⩽ j ⩽ 4 },

und sei B = (B,⩽A) mit B = {♢,♡,♠,♣}, wobei ⩽B wie in Beispiel 3.4
definiert ist. Skizze:

Dann ist π : A→ B mit

i 1 2 3 4

π(i) ♢ ♡ ♠ ♣

ein Isomorphismus von A nach B.

Allgemein gilt: Sind A und B endliche Mengen mit |A| = |B|, und sind ⩽A und
⩽B lineare Ordnungen auf A und B, so ist die Abbildung π : A→ B, die das
(bzgl. ⩽A) kleinste Element in A auf das (bzgl. ⩽B) kleinste Element in B
abbildet, und allgemein für jedes i ∈ {1, . . . , |A|} das (bzgl. ⩽A) i-kleinste
Element in A auf das (bzgl. ⩽B) i-kleinste Element in B abbildet, ein
Isomorphismus von A := (A,⩽A) nach B := (B,⩽B).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 177

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

(c) Sei A = (A,⩽A) mit A = {1, 2, 3, 4} und

⩽A = { (i , j) : i , j ∈ N, 1 ⩽ i ⩽ j ⩽ 4 },

und sei B = (B,⩽A) mit B = {♢,♡,♠,♣}, wobei ⩽B wie in Beispiel 3.4
definiert ist. Skizze:

Dann ist π : A→ B mit

i 1 2 3 4

π(i) ♢ ♡ ♠ ♣

ein Isomorphismus von A nach B.

Allgemein gilt: Sind A und B endliche Mengen mit |A| = |B|, und sind ⩽A und
⩽B lineare Ordnungen auf A und B, so ist die Abbildung π : A→ B, die das
(bzgl. ⩽A) kleinste Element in A auf das (bzgl. ⩽B) kleinste Element in B
abbildet, und allgemein für jedes i ∈ {1, . . . , |A|} das (bzgl. ⩽A) i-kleinste
Element in A auf das (bzgl. ⩽B) i-kleinste Element in B abbildet, ein
Isomorphismus von A := (A,⩽A) nach B := (B,⩽B).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 177

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

(c) Sei A = (A,⩽A) mit A = {1, 2, 3, 4} und

⩽A = { (i , j) : i , j ∈ N, 1 ⩽ i ⩽ j ⩽ 4 },

und sei B = (B,⩽A) mit B = {♢,♡,♠,♣}, wobei ⩽B wie in Beispiel 3.4
definiert ist. Skizze:

Dann ist π : A→ B mit

i 1 2 3 4

π(i) ♢ ♡ ♠ ♣

ein Isomorphismus von A nach B.

Allgemein gilt: Sind A und B endliche Mengen mit |A| = |B|, und sind ⩽A und
⩽B lineare Ordnungen auf A und B, so ist die Abbildung π : A→ B, die das
(bzgl. ⩽A) kleinste Element in A auf das (bzgl. ⩽B) kleinste Element in B
abbildet, und allgemein für jedes i ∈ {1, . . . , |A|} das (bzgl. ⩽A) i-kleinste
Element in A auf das (bzgl. ⩽B) i-kleinste Element in B abbildet, ein
Isomorphismus von A := (A,⩽A) nach B := (B,⩽B).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 177

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

(c) Sei A = (A,⩽A) mit A = {1, 2, 3, 4} und

⩽A = { (i , j) : i , j ∈ N, 1 ⩽ i ⩽ j ⩽ 4 },

und sei B = (B,⩽A) mit B = {♢,♡,♠,♣}, wobei ⩽B wie in Beispiel 3.4
definiert ist. Skizze:

Dann ist π : A→ B mit

i 1 2 3 4

π(i) ♢ ♡ ♠ ♣

ein Isomorphismus von A nach B.

Allgemein gilt: Sind A und B endliche Mengen mit |A| = |B|, und sind ⩽A und
⩽B lineare Ordnungen auf A und B, so ist die Abbildung π : A→ B, die

das
(bzgl. ⩽A) kleinste Element in A auf das (bzgl. ⩽B) kleinste Element in B
abbildet, und allgemein für jedes i ∈ {1, . . . , |A|} das (bzgl. ⩽A) i-kleinste
Element in A auf das (bzgl. ⩽B) i-kleinste Element in B abbildet, ein
Isomorphismus von A := (A,⩽A) nach B := (B,⩽B).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 177

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

(c) Sei A = (A,⩽A) mit A = {1, 2, 3, 4} und

⩽A = { (i , j) : i , j ∈ N, 1 ⩽ i ⩽ j ⩽ 4 },

und sei B = (B,⩽A) mit B = {♢,♡,♠,♣}, wobei ⩽B wie in Beispiel 3.4
definiert ist. Skizze:

Dann ist π : A→ B mit

i 1 2 3 4

π(i) ♢ ♡ ♠ ♣

ein Isomorphismus von A nach B.

Allgemein gilt: Sind A und B endliche Mengen mit |A| = |B|, und sind ⩽A und
⩽B lineare Ordnungen auf A und B, so ist die Abbildung π : A→ B, die das
(bzgl. ⩽A) kleinste Element in A auf das (bzgl. ⩽B) kleinste Element in B
abbildet, und allgemein für jedes i ∈ {1, . . . , |A|} das (bzgl. ⩽A) i-kleinste
Element in A auf das (bzgl. ⩽B) i-kleinste Element in B abbildet, ein
Isomorphismus von A := (A,⩽A) nach B := (B,⩽B).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 177

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

(d) Sind ⩽N und ⩽Z die natürlichen linearen Ordnungen auf N und Z, so sind
die {⩽}-Strukturen N := (N,⩽N) und Z := (Z,⩽Z)

nicht isomorph
(kurz: N ̸∼= Z).

Beweis: Angenommen, π : N → Z ist ein Isomorphismus von N nach Z.
Sei z := π(0). In Z gibt es ein Element z ′ ∈ Z mit z ′ < z (z.B. z ′ = z − 1).
Da π surjektiv ist, muss es ein n′ ∈ N geben, so dass π(n′) = z ′. Wegen
z ′ ̸= z muss n′ ̸= 0 gelten (da π injektiv ist). Somit gilt:

0 ⩽N n′ aber z ̸⩽Z z ′.

Also ist π kein Isomorphismus von N nach Z. Widerspruch!

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 178

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

(d) Sind ⩽N und ⩽Z die natürlichen linearen Ordnungen auf N und Z, so sind
die {⩽}-Strukturen N := (N,⩽N) und Z := (Z,⩽Z) nicht isomorph
(kurz: N ̸∼= Z).

Beweis: Angenommen, π : N → Z ist ein Isomorphismus von N nach Z.
Sei z := π(0). In Z gibt es ein Element z ′ ∈ Z mit z ′ < z (z.B. z ′ = z − 1).
Da π surjektiv ist, muss es ein n′ ∈ N geben, so dass π(n′) = z ′. Wegen
z ′ ̸= z muss n′ ̸= 0 gelten (da π injektiv ist). Somit gilt:

0 ⩽N n′ aber z ̸⩽Z z ′.

Also ist π kein Isomorphismus von N nach Z. Widerspruch!

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 178

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

(d) Sind ⩽N und ⩽Z die natürlichen linearen Ordnungen auf N und Z, so sind
die {⩽}-Strukturen N := (N,⩽N) und Z := (Z,⩽Z) nicht isomorph
(kurz: N ̸∼= Z).

Beweis:

Angenommen, π : N → Z ist ein Isomorphismus von N nach Z.
Sei z := π(0). In Z gibt es ein Element z ′ ∈ Z mit z ′ < z (z.B. z ′ = z − 1).
Da π surjektiv ist, muss es ein n′ ∈ N geben, so dass π(n′) = z ′. Wegen
z ′ ̸= z muss n′ ̸= 0 gelten (da π injektiv ist). Somit gilt:

0 ⩽N n′ aber z ̸⩽Z z ′.

Also ist π kein Isomorphismus von N nach Z. Widerspruch!

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 178

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

(d) Sind ⩽N und ⩽Z die natürlichen linearen Ordnungen auf N und Z, so sind
die {⩽}-Strukturen N := (N,⩽N) und Z := (Z,⩽Z) nicht isomorph
(kurz: N ̸∼= Z).

Beweis: Angenommen, π : N → Z ist ein Isomorphismus von N nach Z.

Sei z := π(0). In Z gibt es ein Element z ′ ∈ Z mit z ′ < z (z.B. z ′ = z − 1).
Da π surjektiv ist, muss es ein n′ ∈ N geben, so dass π(n′) = z ′. Wegen
z ′ ̸= z muss n′ ̸= 0 gelten (da π injektiv ist). Somit gilt:

0 ⩽N n′ aber z ̸⩽Z z ′.

Also ist π kein Isomorphismus von N nach Z. Widerspruch!

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 178

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

(d) Sind ⩽N und ⩽Z die natürlichen linearen Ordnungen auf N und Z, so sind
die {⩽}-Strukturen N := (N,⩽N) und Z := (Z,⩽Z) nicht isomorph
(kurz: N ̸∼= Z).

Beweis: Angenommen, π : N → Z ist ein Isomorphismus von N nach Z.
Sei z := π(0). In Z gibt es ein Element z ′ ∈ Z mit z ′ < z (z.B. z ′ = z − 1).

Da π surjektiv ist, muss es ein n′ ∈ N geben, so dass π(n′) = z ′. Wegen
z ′ ̸= z muss n′ ̸= 0 gelten (da π injektiv ist). Somit gilt:

0 ⩽N n′ aber z ̸⩽Z z ′.

Also ist π kein Isomorphismus von N nach Z. Widerspruch!

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 178

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

(d) Sind ⩽N und ⩽Z die natürlichen linearen Ordnungen auf N und Z, so sind
die {⩽}-Strukturen N := (N,⩽N) und Z := (Z,⩽Z) nicht isomorph
(kurz: N ̸∼= Z).

Beweis: Angenommen, π : N → Z ist ein Isomorphismus von N nach Z.
Sei z := π(0). In Z gibt es ein Element z ′ ∈ Z mit z ′ < z (z.B. z ′ = z − 1).
Da π surjektiv ist, muss es ein n′ ∈ N geben, so dass π(n′) = z ′.

Wegen
z ′ ̸= z muss n′ ̸= 0 gelten (da π injektiv ist). Somit gilt:

0 ⩽N n′ aber z ̸⩽Z z ′.

Also ist π kein Isomorphismus von N nach Z. Widerspruch!

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 178

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

(d) Sind ⩽N und ⩽Z die natürlichen linearen Ordnungen auf N und Z, so sind
die {⩽}-Strukturen N := (N,⩽N) und Z := (Z,⩽Z) nicht isomorph
(kurz: N ̸∼= Z).

Beweis: Angenommen, π : N → Z ist ein Isomorphismus von N nach Z.
Sei z := π(0). In Z gibt es ein Element z ′ ∈ Z mit z ′ < z (z.B. z ′ = z − 1).
Da π surjektiv ist, muss es ein n′ ∈ N geben, so dass π(n′) = z ′. Wegen
z ′ ̸= z muss n′ ̸= 0 gelten (da π injektiv ist). Somit gilt:

0 ⩽N n′ aber z ̸⩽Z z ′.

Also ist π kein Isomorphismus von N nach Z. Widerspruch!

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 178

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

(d) Sind ⩽N und ⩽Z die natürlichen linearen Ordnungen auf N und Z, so sind
die {⩽}-Strukturen N := (N,⩽N) und Z := (Z,⩽Z) nicht isomorph
(kurz: N ̸∼= Z).

Beweis: Angenommen, π : N → Z ist ein Isomorphismus von N nach Z.
Sei z := π(0). In Z gibt es ein Element z ′ ∈ Z mit z ′ < z (z.B. z ′ = z − 1).
Da π surjektiv ist, muss es ein n′ ∈ N geben, so dass π(n′) = z ′. Wegen
z ′ ̸= z muss n′ ̸= 0 gelten (da π injektiv ist). Somit gilt:

0 ⩽N n′ aber z ̸⩽Z z ′.

Also ist π kein Isomorphismus von N nach Z. Widerspruch!

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 178

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

(e) Sei σ := {f , c}, wobei f ein 2-stelliges Funktionssymbol und c ein
Konstantensymbol ist. Sei A := (A, f A, cA), wobei gilt:
• A := N ist die Menge aller natürlichen Zahlen,
• f A := +AN ist die natürliche Addition auf N,
• cA := 0 ist die natürliche Zahl 0

und sei B := (B, f B, cB), wobei
• B := {2n : n ∈ N} ist die Menge aller Zweierpotenzen,
• f B : B × B → B ist die Funktion mit

f B(b1, b2) := b1 · b2, für alle b1, b2 ∈ B

• cB := 1 = 20 ∈ B.

Dann gilt: A ∼= B, und die Abbildung π : A → B mit π(n) := 2n für alle
n ∈ N ist ein Isomorphismus von A nach B, denn:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 179

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

(e) Sei σ := {f , c}, wobei f ein 2-stelliges Funktionssymbol und c ein
Konstantensymbol ist. Sei A := (A, f A, cA), wobei gilt:
• A := N ist die Menge aller natürlichen Zahlen,
• f A := +AN ist die natürliche Addition auf N,
• cA := 0 ist die natürliche Zahl 0

und sei B := (B, f B, cB), wobei
• B := {2n : n ∈ N} ist die Menge aller Zweierpotenzen,
• f B : B × B → B ist die Funktion mit

f B(b1, b2) := b1 · b2, für alle b1, b2 ∈ B

• cB := 1 = 20 ∈ B.

Dann gilt:

A ∼= B, und die Abbildung π : A → B mit π(n) := 2n für alle
n ∈ N ist ein Isomorphismus von A nach B, denn:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 179

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

(e) Sei σ := {f , c}, wobei f ein 2-stelliges Funktionssymbol und c ein
Konstantensymbol ist. Sei A := (A, f A, cA), wobei gilt:
• A := N ist die Menge aller natürlichen Zahlen,
• f A := +AN ist die natürliche Addition auf N,
• cA := 0 ist die natürliche Zahl 0

und sei B := (B, f B, cB), wobei
• B := {2n : n ∈ N} ist die Menge aller Zweierpotenzen,
• f B : B × B → B ist die Funktion mit

f B(b1, b2) := b1 · b2, für alle b1, b2 ∈ B

• cB := 1 = 20 ∈ B.

Dann gilt: A ∼= B, und die Abbildung π : A → B mit

π(n) := 2n für alle
n ∈ N ist ein Isomorphismus von A nach B, denn:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 179

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

(e) Sei σ := {f , c}, wobei f ein 2-stelliges Funktionssymbol und c ein
Konstantensymbol ist. Sei A := (A, f A, cA), wobei gilt:
• A := N ist die Menge aller natürlichen Zahlen,
• f A := +AN ist die natürliche Addition auf N,
• cA := 0 ist die natürliche Zahl 0

und sei B := (B, f B, cB), wobei
• B := {2n : n ∈ N} ist die Menge aller Zweierpotenzen,
• f B : B × B → B ist die Funktion mit

f B(b1, b2) := b1 · b2, für alle b1, b2 ∈ B

• cB := 1 = 20 ∈ B.

Dann gilt: A ∼= B, und die Abbildung π : A → B mit π(n) := 2n für alle
n ∈ N ist ein Isomorphismus von A nach B, denn:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 179

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Isomorphie ist eine Äquivalenzrelation

Lemma 3.9
Isomorphie ist eine Äquivalenzrelation auf der Klasse aller σ-Strukturen.

D.h.:
Für alle σ-Strukturen A,B, C gilt:

1. A ∼= A (Reflexivität),

2. A ∼= B =⇒ B ∼= A (Symmetrie),

3. A ∼= B und B ∼= C =⇒ A ∼= C (Transitivität).

Beweis: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 180

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Isomorphie ist eine Äquivalenzrelation

Lemma 3.9
Isomorphie ist eine Äquivalenzrelation auf der Klasse aller σ-Strukturen. D.h.:
Für alle σ-Strukturen A,B, C gilt:

1. A ∼= A (Reflexivität),

2. A ∼= B =⇒ B ∼= A (Symmetrie),

3. A ∼= B und B ∼= C =⇒ A ∼= C (Transitivität).

Beweis: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 180

Kapitel 3: Logik erster Stufe · Abschnitt 3.1: Strukturen

Isomorphie ist eine Äquivalenzrelation

Lemma 3.9
Isomorphie ist eine Äquivalenzrelation auf der Klasse aller σ-Strukturen. D.h.:
Für alle σ-Strukturen A,B, C gilt:

1. A ∼= A (Reflexivität),

2. A ∼= B =⇒ B ∼= A (Symmetrie),

3. A ∼= B und B ∼= C =⇒ A ∼= C (Transitivität).

Beweis: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 180

Abschnitt 3.2:

Terme der Logik erster Stufe

Kapitel 3: Logik erster Stufe · Abschnitt 3.2: Terme der Logik erster Stufe

Individuenvariablen

Definition 3.10
Eine Individuenvariable (auch: Variable erster Stufe; kurz: Variable) hat die
Form vi für ein i ∈ N.

Die Menge aller Variablen bezeichnen wir mit VAR, d.h.

VAR = {v0, v1, v2, v3, . . . } = {vi : i ∈ N}.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 181

Kapitel 3: Logik erster Stufe · Abschnitt 3.2: Terme der Logik erster Stufe

Individuenvariablen

Definition 3.10
Eine Individuenvariable (auch: Variable erster Stufe; kurz: Variable) hat die
Form vi für ein i ∈ N.

Die Menge aller Variablen bezeichnen wir mit VAR, d.h.

VAR = {v0, v1, v2, v3, . . . } = {vi : i ∈ N}.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 181

Kapitel 3: Logik erster Stufe · Abschnitt 3.2: Terme der Logik erster Stufe

Terme der Logik erster Stufe

Definition 3.11
(a) Für eine Signatur σ sei Aσ-Terme das Alphabet, das aus allen Elementen in VAR,

allen Konstanten- und Funktionssymbolen in σ, den Klammern (,) und dem
Komma , besteht.

(b) Die Menge Tσ aller σ-Terme ist die wie folgt rekursiv definierte Teilmenge von
Aσ-Terme

∗:

Basisregeln:

• Für jedes Konstantensymbol c ∈ σ ist c ∈ Tσ.

• Für jede Variable x ∈ VAR ist x ∈ Tσ.

Rekursive Regel:

• Für jedes Funktionssymbol f ∈ σ und für k := ar(f) gilt:
Sind t1 ∈ Tσ, . . . , tk ∈ Tσ, so ist auch f (t1, . . . , tk) ∈ Tσ.

(c) Die Menge aller Terme der Logik der ersten Stufe ist T :=
⋃

σ Signatur

Tσ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 182

Kapitel 3: Logik erster Stufe · Abschnitt 3.2: Terme der Logik erster Stufe

Terme der Logik erster Stufe

Definition 3.11
(a) Für eine Signatur σ sei Aσ-Terme das Alphabet, das aus allen Elementen in VAR,

allen Konstanten- und Funktionssymbolen in σ, den Klammern (,) und dem
Komma , besteht.

(b) Die Menge Tσ aller σ-Terme ist die wie folgt rekursiv definierte Teilmenge von
Aσ-Terme

∗:

Basisregeln:

• Für jedes Konstantensymbol c ∈ σ ist c ∈ Tσ.

• Für jede Variable x ∈ VAR ist x ∈ Tσ.

Rekursive Regel:

• Für jedes Funktionssymbol f ∈ σ und für k := ar(f) gilt:
Sind t1 ∈ Tσ, . . . , tk ∈ Tσ, so ist auch f (t1, . . . , tk) ∈ Tσ.

(c) Die Menge aller Terme der Logik der ersten Stufe ist T :=
⋃

σ Signatur

Tσ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 182

Kapitel 3: Logik erster Stufe · Abschnitt 3.2: Terme der Logik erster Stufe

Terme der Logik erster Stufe

Definition 3.11
(a) Für eine Signatur σ sei Aσ-Terme das Alphabet, das aus allen Elementen in VAR,

allen Konstanten- und Funktionssymbolen in σ, den Klammern (,) und dem
Komma , besteht.

(b) Die Menge Tσ aller σ-Terme ist die wie folgt rekursiv definierte Teilmenge von
Aσ-Terme

∗:

Basisregeln:

• Für jedes Konstantensymbol c ∈ σ ist c ∈ Tσ.

• Für jede Variable x ∈ VAR ist x ∈ Tσ.

Rekursive Regel:

• Für jedes Funktionssymbol f ∈ σ und für k := ar(f) gilt:
Sind t1 ∈ Tσ, . . . , tk ∈ Tσ, so ist auch f (t1, . . . , tk) ∈ Tσ.

(c) Die Menge aller Terme der Logik der ersten Stufe ist T :=
⋃

σ Signatur

Tσ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 182

Kapitel 3: Logik erster Stufe · Abschnitt 3.2: Terme der Logik erster Stufe

Terme der Logik erster Stufe

Definition 3.11
(a) Für eine Signatur σ sei Aσ-Terme das Alphabet, das aus allen Elementen in VAR,

allen Konstanten- und Funktionssymbolen in σ, den Klammern (,) und dem
Komma , besteht.

(b) Die Menge Tσ aller σ-Terme ist die wie folgt rekursiv definierte Teilmenge von
Aσ-Terme

∗:

Basisregeln:

• Für jedes Konstantensymbol c ∈ σ ist c ∈ Tσ.

• Für jede Variable x ∈ VAR ist x ∈ Tσ.

Rekursive Regel:

• Für jedes Funktionssymbol f ∈ σ und für k := ar(f) gilt:
Sind t1 ∈ Tσ, . . . , tk ∈ Tσ, so ist auch f (t1, . . . , tk) ∈ Tσ.

(c) Die Menge aller Terme der Logik der ersten Stufe ist T :=
⋃

σ Signatur

Tσ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 182

Kapitel 3: Logik erster Stufe · Abschnitt 3.2: Terme der Logik erster Stufe

Terme der Logik erster Stufe

Definition 3.11
(a) Für eine Signatur σ sei Aσ-Terme das Alphabet, das aus allen Elementen in VAR,

allen Konstanten- und Funktionssymbolen in σ, den Klammern (,) und dem
Komma , besteht.

(b) Die Menge Tσ aller σ-Terme ist die wie folgt rekursiv definierte Teilmenge von
Aσ-Terme

∗:

Basisregeln:

• Für jedes Konstantensymbol c ∈ σ ist c ∈ Tσ.

• Für jede Variable x ∈ VAR ist x ∈ Tσ.

Rekursive Regel:

• Für jedes Funktionssymbol f ∈ σ und für k := ar(f) gilt:
Sind t1 ∈ Tσ, . . . , tk ∈ Tσ, so ist auch f (t1, . . . , tk) ∈ Tσ.

(c) Die Menge aller Terme der Logik der ersten Stufe ist T :=
⋃

σ Signatur

Tσ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 182

Kapitel 3: Logik erster Stufe · Abschnitt 3.2: Terme der Logik erster Stufe

Terme der Logik erster Stufe

Definition 3.11
(a) Für eine Signatur σ sei Aσ-Terme das Alphabet, das aus allen Elementen in VAR,

allen Konstanten- und Funktionssymbolen in σ, den Klammern (,) und dem
Komma , besteht.

(b) Die Menge Tσ aller σ-Terme ist die wie folgt rekursiv definierte Teilmenge von
Aσ-Terme

∗:

Basisregeln:

• Für jedes Konstantensymbol c ∈ σ ist c ∈ Tσ.

• Für jede Variable x ∈ VAR ist x ∈ Tσ.

Rekursive Regel:

• Für jedes Funktionssymbol f ∈ σ und für k := ar(f) gilt:
Sind t1 ∈ Tσ, . . . , tk ∈ Tσ, so ist auch f (t1, . . . , tk) ∈ Tσ.

(c) Die Menge aller Terme der Logik der ersten Stufe ist T :=
⋃

σ Signatur

Tσ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 182

Kapitel 3: Logik erster Stufe · Abschnitt 3.2: Terme der Logik erster Stufe

Beispiele

Sei σ := { f /2, c }.

Folgende Worte sind σ-Terme:

c , v4, f (c , c), f (c , f (c , v0)) .

Folgende Worte sind keine σ-Terme:

0, f (0, c), f (v0, c , v1), f A(2, 3) .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 183

Kapitel 3: Logik erster Stufe · Abschnitt 3.2: Terme der Logik erster Stufe

Beispiele

Sei σ := { f /2, c }.

Folgende Worte sind σ-Terme:

c ,

v4, f (c , c), f (c , f (c , v0)) .

Folgende Worte sind keine σ-Terme:

0, f (0, c), f (v0, c , v1), f A(2, 3) .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 183

Kapitel 3: Logik erster Stufe · Abschnitt 3.2: Terme der Logik erster Stufe

Beispiele

Sei σ := { f /2, c }.

Folgende Worte sind σ-Terme:

c , v4,

f (c , c), f (c , f (c , v0)) .

Folgende Worte sind keine σ-Terme:

0, f (0, c), f (v0, c , v1), f A(2, 3) .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 183

Kapitel 3: Logik erster Stufe · Abschnitt 3.2: Terme der Logik erster Stufe

Beispiele

Sei σ := { f /2, c }.

Folgende Worte sind σ-Terme:

c , v4, f (c , c),

f (c , f (c , v0)) .

Folgende Worte sind keine σ-Terme:

0, f (0, c), f (v0, c , v1), f A(2, 3) .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 183

Kapitel 3: Logik erster Stufe · Abschnitt 3.2: Terme der Logik erster Stufe

Beispiele

Sei σ := { f /2, c }.

Folgende Worte sind σ-Terme:

c , v4, f (c , c), f (c , f (c , v0)) .

Folgende Worte sind keine σ-Terme:

0, f (0, c), f (v0, c , v1), f A(2, 3) .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 183

Kapitel 3: Logik erster Stufe · Abschnitt 3.2: Terme der Logik erster Stufe

Beispiele

Sei σ := { f /2, c }.

Folgende Worte sind σ-Terme:

c , v4, f (c , c), f (c , f (c , v0)) .

Folgende Worte sind keine σ-Terme:

0, f (0, c), f (v0, c , v1), f A(2, 3) .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 183

Kapitel 3: Logik erster Stufe · Abschnitt 3.2: Terme der Logik erster Stufe

Beispiele

Sei σ := { f /2, c }.

Folgende Worte sind σ-Terme:

c , v4, f (c , c), f (c , f (c , v0)) .

Folgende Worte sind keine σ-Terme:

0,

f (0, c), f (v0, c , v1), f A(2, 3) .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 183

Kapitel 3: Logik erster Stufe · Abschnitt 3.2: Terme der Logik erster Stufe

Beispiele

Sei σ := { f /2, c }.

Folgende Worte sind σ-Terme:

c , v4, f (c , c), f (c , f (c , v0)) .

Folgende Worte sind keine σ-Terme:

0, f (0, c),

f (v0, c , v1), f A(2, 3) .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 183

Kapitel 3: Logik erster Stufe · Abschnitt 3.2: Terme der Logik erster Stufe

Beispiele

Sei σ := { f /2, c }.

Folgende Worte sind σ-Terme:

c , v4, f (c , c), f (c , f (c , v0)) .

Folgende Worte sind keine σ-Terme:

0, f (0, c), f (v0, c , v1),

f A(2, 3) .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 183

Kapitel 3: Logik erster Stufe · Abschnitt 3.2: Terme der Logik erster Stufe

Beispiele

Sei σ := { f /2, c }.

Folgende Worte sind σ-Terme:

c , v4, f (c , c), f (c , f (c , v0)) .

Folgende Worte sind keine σ-Terme:

0, f (0, c), f (v0, c , v1), f A(2, 3) .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 183

Kapitel 3: Logik erster Stufe · Abschnitt 3.2: Terme der Logik erster Stufe

Belegungen und Interpretationen

Definition 3.12
Sei σ eine Signatur.

(a) Eine Belegung in einer σ-Struktur A ist eine Abbildung β : VAR → A.

D.h.: β ordnet jeder Variablen x ∈ VAR ein Element β(x) aus dem
Universum von A zu.

(b) Eine σ-Interpretation ist ein Paar

I = (A, β) ,

bestehend aus einer σ-Struktur A und einer Belegung β in A.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 184

Kapitel 3: Logik erster Stufe · Abschnitt 3.2: Terme der Logik erster Stufe

Belegungen und Interpretationen

Definition 3.12
Sei σ eine Signatur.

(a) Eine Belegung in einer σ-Struktur A ist eine Abbildung β : VAR → A.

D.h.: β ordnet jeder Variablen x ∈ VAR ein Element β(x) aus dem
Universum von A zu.

(b) Eine σ-Interpretation ist ein Paar

I = (A, β) ,

bestehend aus einer σ-Struktur A und einer Belegung β in A.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 184

Kapitel 3: Logik erster Stufe · Abschnitt 3.2: Terme der Logik erster Stufe

Die Auswertung von Termen in Interpretationen

Wir wollen Terme nun in Interpretationen
”
auswerten“.

Die Auswertung von Term t in einer Interpretation I = (A, β) soll dasjenige
Element aus A liefern, das man erhält, wenn man

• die in t vorkommenden Variablen gemäß der Belegung β interpretiert,

• die in t vorkommenden Konstantensymbole c gemäß ihrer Interpretation
cA in A belegt,

• die in t vorkommenden Funktionssymbole f gemäß ihrer Interpretation f A

in A belegt

und dann nach und nach den resultierenden Term ausrechnet.

Dies wird in der folgenden Definition präzisiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 185

Kapitel 3: Logik erster Stufe · Abschnitt 3.2: Terme der Logik erster Stufe

Die Auswertung von Termen in Interpretationen

Wir wollen Terme nun in Interpretationen
”
auswerten“.

Die Auswertung von Term t in einer Interpretation I = (A, β) soll dasjenige
Element aus A liefern, das man erhält, wenn man

• die in t vorkommenden Variablen

gemäß der Belegung β interpretiert,

• die in t vorkommenden Konstantensymbole c gemäß ihrer Interpretation
cA in A belegt,

• die in t vorkommenden Funktionssymbole f gemäß ihrer Interpretation f A

in A belegt

und dann nach und nach den resultierenden Term ausrechnet.

Dies wird in der folgenden Definition präzisiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 185

Kapitel 3: Logik erster Stufe · Abschnitt 3.2: Terme der Logik erster Stufe

Die Auswertung von Termen in Interpretationen

Wir wollen Terme nun in Interpretationen
”
auswerten“.

Die Auswertung von Term t in einer Interpretation I = (A, β) soll dasjenige
Element aus A liefern, das man erhält, wenn man

• die in t vorkommenden Variablen gemäß der Belegung β interpretiert,

• die in t vorkommenden Konstantensymbole c gemäß ihrer Interpretation
cA in A belegt,

• die in t vorkommenden Funktionssymbole f gemäß ihrer Interpretation f A

in A belegt

und dann nach und nach den resultierenden Term ausrechnet.

Dies wird in der folgenden Definition präzisiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 185

Kapitel 3: Logik erster Stufe · Abschnitt 3.2: Terme der Logik erster Stufe

Die Auswertung von Termen in Interpretationen

Wir wollen Terme nun in Interpretationen
”
auswerten“.

Die Auswertung von Term t in einer Interpretation I = (A, β) soll dasjenige
Element aus A liefern, das man erhält, wenn man

• die in t vorkommenden Variablen gemäß der Belegung β interpretiert,

• die in t vorkommenden Konstantensymbole c

gemäß ihrer Interpretation
cA in A belegt,

• die in t vorkommenden Funktionssymbole f gemäß ihrer Interpretation f A

in A belegt

und dann nach und nach den resultierenden Term ausrechnet.

Dies wird in der folgenden Definition präzisiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 185

Kapitel 3: Logik erster Stufe · Abschnitt 3.2: Terme der Logik erster Stufe

Die Auswertung von Termen in Interpretationen

Wir wollen Terme nun in Interpretationen
”
auswerten“.

Die Auswertung von Term t in einer Interpretation I = (A, β) soll dasjenige
Element aus A liefern, das man erhält, wenn man

• die in t vorkommenden Variablen gemäß der Belegung β interpretiert,

• die in t vorkommenden Konstantensymbole c gemäß ihrer Interpretation
cA in A belegt,

• die in t vorkommenden Funktionssymbole f gemäß ihrer Interpretation f A

in A belegt

und dann nach und nach den resultierenden Term ausrechnet.

Dies wird in der folgenden Definition präzisiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 185

Kapitel 3: Logik erster Stufe · Abschnitt 3.2: Terme der Logik erster Stufe

Die Auswertung von Termen in Interpretationen

Wir wollen Terme nun in Interpretationen
”
auswerten“.

Die Auswertung von Term t in einer Interpretation I = (A, β) soll dasjenige
Element aus A liefern, das man erhält, wenn man

• die in t vorkommenden Variablen gemäß der Belegung β interpretiert,

• die in t vorkommenden Konstantensymbole c gemäß ihrer Interpretation
cA in A belegt,

• die in t vorkommenden Funktionssymbole f

gemäß ihrer Interpretation f A

in A belegt

und dann nach und nach den resultierenden Term ausrechnet.

Dies wird in der folgenden Definition präzisiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 185

Kapitel 3: Logik erster Stufe · Abschnitt 3.2: Terme der Logik erster Stufe

Die Auswertung von Termen in Interpretationen

Wir wollen Terme nun in Interpretationen
”
auswerten“.

Die Auswertung von Term t in einer Interpretation I = (A, β) soll dasjenige
Element aus A liefern, das man erhält, wenn man

• die in t vorkommenden Variablen gemäß der Belegung β interpretiert,

• die in t vorkommenden Konstantensymbole c gemäß ihrer Interpretation
cA in A belegt,

• die in t vorkommenden Funktionssymbole f gemäß ihrer Interpretation f A

in A belegt

und dann nach und nach den resultierenden Term ausrechnet.

Dies wird in der folgenden Definition präzisiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 185

Kapitel 3: Logik erster Stufe · Abschnitt 3.2: Terme der Logik erster Stufe

Die Auswertung von Termen in Interpretationen

Wir wollen Terme nun in Interpretationen
”
auswerten“.

Die Auswertung von Term t in einer Interpretation I = (A, β) soll dasjenige
Element aus A liefern, das man erhält, wenn man

• die in t vorkommenden Variablen gemäß der Belegung β interpretiert,

• die in t vorkommenden Konstantensymbole c gemäß ihrer Interpretation
cA in A belegt,

• die in t vorkommenden Funktionssymbole f gemäß ihrer Interpretation f A

in A belegt

und dann nach und nach den resultierenden Term ausrechnet.

Dies wird in der folgenden Definition präzisiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 185

Kapitel 3: Logik erster Stufe · Abschnitt 3.2: Terme der Logik erster Stufe

Semantik von σ-Termen

Definition 3.13
Sei σ eine Signatur. Rekursiv über den Aufbau von Tσ definieren wir eine
Funktion J·K·, die jedem σ-Term t und jeder σ-Interpretation I = (A, β) einen
Wert JtKI ∈ A zuordnet:

• Für alle x ∈ VAR ist JxKI :=

β(x).

• Für alle Konstantensymbole c ∈ σ ist JcKI := cA.

• Für alle Funktionssymbole f ∈ σ, für k := ar(f), und
für alle σ-Terme t1, . . . , tk ∈ Tσ gilt:

J f (t1, . . . , tk) KI := f A
(
Jt1K

I
, . . . , JtkK

I)
.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 186

Kapitel 3: Logik erster Stufe · Abschnitt 3.2: Terme der Logik erster Stufe

Semantik von σ-Termen

Definition 3.13
Sei σ eine Signatur. Rekursiv über den Aufbau von Tσ definieren wir eine
Funktion J·K·, die jedem σ-Term t und jeder σ-Interpretation I = (A, β) einen
Wert JtKI ∈ A zuordnet:

• Für alle x ∈ VAR ist JxKI := β(x).

• Für alle Konstantensymbole c ∈ σ ist JcKI := cA.

• Für alle Funktionssymbole f ∈ σ, für k := ar(f), und
für alle σ-Terme t1, . . . , tk ∈ Tσ gilt:

J f (t1, . . . , tk) KI := f A
(
Jt1K

I
, . . . , JtkK

I)
.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 186

Kapitel 3: Logik erster Stufe · Abschnitt 3.2: Terme der Logik erster Stufe

Semantik von σ-Termen

Definition 3.13
Sei σ eine Signatur. Rekursiv über den Aufbau von Tσ definieren wir eine
Funktion J·K·, die jedem σ-Term t und jeder σ-Interpretation I = (A, β) einen
Wert JtKI ∈ A zuordnet:

• Für alle x ∈ VAR ist JxKI := β(x).

• Für alle Konstantensymbole c ∈ σ ist JcKI :=

cA.

• Für alle Funktionssymbole f ∈ σ, für k := ar(f), und
für alle σ-Terme t1, . . . , tk ∈ Tσ gilt:

J f (t1, . . . , tk) KI := f A
(
Jt1K

I
, . . . , JtkK

I)
.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 186

Kapitel 3: Logik erster Stufe · Abschnitt 3.2: Terme der Logik erster Stufe

Semantik von σ-Termen

Definition 3.13
Sei σ eine Signatur. Rekursiv über den Aufbau von Tσ definieren wir eine
Funktion J·K·, die jedem σ-Term t und jeder σ-Interpretation I = (A, β) einen
Wert JtKI ∈ A zuordnet:

• Für alle x ∈ VAR ist JxKI := β(x).

• Für alle Konstantensymbole c ∈ σ ist JcKI := cA.

• Für alle Funktionssymbole f ∈ σ, für k := ar(f), und
für alle σ-Terme t1, . . . , tk ∈ Tσ gilt:

J f (t1, . . . , tk) KI := f A
(
Jt1K

I
, . . . , JtkK

I)
.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 186

Kapitel 3: Logik erster Stufe · Abschnitt 3.2: Terme der Logik erster Stufe

Semantik von σ-Termen

Definition 3.13
Sei σ eine Signatur. Rekursiv über den Aufbau von Tσ definieren wir eine
Funktion J·K·, die jedem σ-Term t und jeder σ-Interpretation I = (A, β) einen
Wert JtKI ∈ A zuordnet:

• Für alle x ∈ VAR ist JxKI := β(x).

• Für alle Konstantensymbole c ∈ σ ist JcKI := cA.

• Für alle Funktionssymbole f ∈ σ, für k := ar(f), und
für alle σ-Terme t1, . . . , tk ∈ Tσ gilt:

J f (t1, . . . , tk) KI :=

f A
(
Jt1K

I
, . . . , JtkK

I)
.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 186

Kapitel 3: Logik erster Stufe · Abschnitt 3.2: Terme der Logik erster Stufe

Semantik von σ-Termen

Definition 3.13
Sei σ eine Signatur. Rekursiv über den Aufbau von Tσ definieren wir eine
Funktion J·K·, die jedem σ-Term t und jeder σ-Interpretation I = (A, β) einen
Wert JtKI ∈ A zuordnet:

• Für alle x ∈ VAR ist JxKI := β(x).

• Für alle Konstantensymbole c ∈ σ ist JcKI := cA.

• Für alle Funktionssymbole f ∈ σ, für k := ar(f), und
für alle σ-Terme t1, . . . , tk ∈ Tσ gilt:

J f (t1, . . . , tk) KI := f A
(
Jt1K

I
, . . . , JtkK

I)
.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 186

Kapitel 3: Logik erster Stufe · Abschnitt 3.2: Terme der Logik erster Stufe

Beispiel

Sei σ = { f /2, c }, und sei A = (A, f A, cA) die σ-Struktur mit A = N,
f A = +AN (die Addition auf den natürlichen Zahlen) und cA = 0 (die
natürliche Zahl 0).

Sei β : VAR → A eine Belegung mit β(v1) = 1 und β(v2) = 7,
und sei I := (A, β).

Sei t der σ-Term f (v2, f (v1, c)). Dann gilt:

JtKI = f A
(
β(v2), f

A (
β(v1), c

A))
= f A

(
7, f A

(
1, 0

))
=

(
7 +

(
1 + 0

))
= 8.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 187

Kapitel 3: Logik erster Stufe · Abschnitt 3.2: Terme der Logik erster Stufe

Beispiel

Sei σ = { f /2, c }, und sei A = (A, f A, cA) die σ-Struktur mit A = N,
f A = +AN (die Addition auf den natürlichen Zahlen) und cA = 0 (die
natürliche Zahl 0).

Sei β : VAR → A eine Belegung mit β(v1) = 1 und β(v2) = 7

,
und sei I := (A, β).

Sei t der σ-Term f (v2, f (v1, c)). Dann gilt:

JtKI = f A
(
β(v2), f

A (
β(v1), c

A))
= f A

(
7, f A

(
1, 0

))
=

(
7 +

(
1 + 0

))
= 8.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 187

Kapitel 3: Logik erster Stufe · Abschnitt 3.2: Terme der Logik erster Stufe

Beispiel

Sei σ = { f /2, c }, und sei A = (A, f A, cA) die σ-Struktur mit A = N,
f A = +AN (die Addition auf den natürlichen Zahlen) und cA = 0 (die
natürliche Zahl 0).

Sei β : VAR → A eine Belegung mit β(v1) = 1 und β(v2) = 7,
und sei I := (A, β).

Sei t der σ-Term f (v2, f (v1, c)). Dann gilt:

JtKI =

f A
(
β(v2), f

A (
β(v1), c

A))
= f A

(
7, f A

(
1, 0

))
=

(
7 +

(
1 + 0

))
= 8.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 187

Kapitel 3: Logik erster Stufe · Abschnitt 3.2: Terme der Logik erster Stufe

Beispiel

Sei σ = { f /2, c }, und sei A = (A, f A, cA) die σ-Struktur mit A = N,
f A = +AN (die Addition auf den natürlichen Zahlen) und cA = 0 (die
natürliche Zahl 0).

Sei β : VAR → A eine Belegung mit β(v1) = 1 und β(v2) = 7,
und sei I := (A, β).

Sei t der σ-Term f (v2, f (v1, c)). Dann gilt:

JtKI = f A
(
β(v2), f

A (
β(v1), c

A))
=

f A
(
7, f A

(
1, 0

))
=

(
7 +

(
1 + 0

))
= 8.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 187

Kapitel 3: Logik erster Stufe · Abschnitt 3.2: Terme der Logik erster Stufe

Beispiel

Sei σ = { f /2, c }, und sei A = (A, f A, cA) die σ-Struktur mit A = N,
f A = +AN (die Addition auf den natürlichen Zahlen) und cA = 0 (die
natürliche Zahl 0).

Sei β : VAR → A eine Belegung mit β(v1) = 1 und β(v2) = 7,
und sei I := (A, β).

Sei t der σ-Term f (v2, f (v1, c)). Dann gilt:

JtKI = f A
(
β(v2), f

A (
β(v1), c

A))
= f A

(
7, f A

(
1, 0

))
=

(
7 +

(
1 + 0

))
= 8.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 187

Kapitel 3: Logik erster Stufe · Abschnitt 3.2: Terme der Logik erster Stufe

Beispiel

Sei σ = { f /2, c }, und sei A = (A, f A, cA) die σ-Struktur mit A = N,
f A = +AN (die Addition auf den natürlichen Zahlen) und cA = 0 (die
natürliche Zahl 0).

Sei β : VAR → A eine Belegung mit β(v1) = 1 und β(v2) = 7,
und sei I := (A, β).

Sei t der σ-Term f (v2, f (v1, c)). Dann gilt:

JtKI = f A
(
β(v2), f

A (
β(v1), c

A))
= f A

(
7, f A

(
1, 0

))
=

(
7 +

(
1 + 0

))
=

8.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 187

Kapitel 3: Logik erster Stufe · Abschnitt 3.2: Terme der Logik erster Stufe

Beispiel

Sei σ = { f /2, c }, und sei A = (A, f A, cA) die σ-Struktur mit A = N,
f A = +AN (die Addition auf den natürlichen Zahlen) und cA = 0 (die
natürliche Zahl 0).

Sei β : VAR → A eine Belegung mit β(v1) = 1 und β(v2) = 7,
und sei I := (A, β).

Sei t der σ-Term f (v2, f (v1, c)). Dann gilt:

JtKI = f A
(
β(v2), f

A (
β(v1), c

A))
= f A

(
7, f A

(
1, 0

))
=

(
7 +

(
1 + 0

))
= 8.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 187

Abschnitt 3.3:

Syntax der Logik erster Stufe

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Vergleich zwischen Aussagenlogik und Logik erster Stufe

Die Logik erster Stufe übernimmt, verändert und erweitert die Syntax der
Aussagenlogik.

• Was gleich bleibt:

• Die Junktoren ¬, ∧, ∨, → werden übernommen.

• Was sich verändert:

• Variablen stehen nicht mehr für
”
wahre“ oder

”
falsche“ Ausagen, sondern

für Elemente im Universum einer σ-Struktur.

• Variablen sind keine atomaren Formeln mehr.

• Was neu hinzukommt:

• Es gibt Quantoren ∃ und ∀ (für
”
es existiert“ und

”
für alle“).

• Es gibt Symbole für Elemente aus der Signatur σ.

• Es können σ-Terme benutzt werden, um Elemente im Universum einer
σ-Struktur zu bezeichnen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 188

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Vergleich zwischen Aussagenlogik und Logik erster Stufe

Die Logik erster Stufe übernimmt, verändert und erweitert die Syntax der
Aussagenlogik.

• Was gleich bleibt:

• Die Junktoren ¬, ∧, ∨, → werden übernommen.

• Was sich verändert:

• Variablen stehen nicht mehr für
”
wahre“ oder

”
falsche“ Ausagen, sondern

für Elemente im Universum einer σ-Struktur.

• Variablen sind keine atomaren Formeln mehr.

• Was neu hinzukommt:

• Es gibt Quantoren ∃ und ∀ (für
”
es existiert“ und

”
für alle“).

• Es gibt Symbole für Elemente aus der Signatur σ.

• Es können σ-Terme benutzt werden, um Elemente im Universum einer
σ-Struktur zu bezeichnen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 188

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Vergleich zwischen Aussagenlogik und Logik erster Stufe

Die Logik erster Stufe übernimmt, verändert und erweitert die Syntax der
Aussagenlogik.

• Was gleich bleibt:

• Die Junktoren ¬, ∧, ∨, → werden übernommen.

• Was sich verändert:

• Variablen stehen nicht mehr für
”
wahre“ oder

”
falsche“ Ausagen, sondern

für Elemente im Universum einer σ-Struktur.

• Variablen sind keine atomaren Formeln mehr.

• Was neu hinzukommt:

• Es gibt Quantoren ∃ und ∀ (für
”
es existiert“ und

”
für alle“).

• Es gibt Symbole für Elemente aus der Signatur σ.

• Es können σ-Terme benutzt werden, um Elemente im Universum einer
σ-Struktur zu bezeichnen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 188

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Vergleich zwischen Aussagenlogik und Logik erster Stufe

Die Logik erster Stufe übernimmt, verändert und erweitert die Syntax der
Aussagenlogik.

• Was gleich bleibt:

• Die Junktoren ¬, ∧, ∨, → werden übernommen.

• Was sich verändert:

• Variablen stehen nicht mehr für
”
wahre“ oder

”
falsche“ Ausagen, sondern

für Elemente im Universum einer σ-Struktur.

• Variablen sind keine atomaren Formeln mehr.

• Was neu hinzukommt:

• Es gibt Quantoren ∃ und ∀ (für
”
es existiert“ und

”
für alle“).

• Es gibt Symbole für Elemente aus der Signatur σ.

• Es können σ-Terme benutzt werden, um Elemente im Universum einer
σ-Struktur zu bezeichnen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 188

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Vergleich zwischen Aussagenlogik und Logik erster Stufe

Die Logik erster Stufe übernimmt, verändert und erweitert die Syntax der
Aussagenlogik.

• Was gleich bleibt:

• Die Junktoren ¬, ∧, ∨, → werden übernommen.

• Was sich verändert:

• Variablen stehen nicht mehr für
”
wahre“ oder

”
falsche“ Ausagen, sondern

für Elemente im Universum einer σ-Struktur.

• Variablen sind keine atomaren Formeln mehr.

• Was neu hinzukommt:

• Es gibt Quantoren ∃ und ∀ (für
”
es existiert“ und

”
für alle“).

• Es gibt Symbole für Elemente aus der Signatur σ.

• Es können σ-Terme benutzt werden, um Elemente im Universum einer
σ-Struktur zu bezeichnen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 188

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Vergleich zwischen Aussagenlogik und Logik erster Stufe

Die Logik erster Stufe übernimmt, verändert und erweitert die Syntax der
Aussagenlogik.

• Was gleich bleibt:

• Die Junktoren ¬, ∧, ∨, → werden übernommen.

• Was sich verändert:

• Variablen stehen nicht mehr für
”
wahre“ oder

”
falsche“ Ausagen, sondern

für Elemente im Universum einer σ-Struktur.

• Variablen sind keine atomaren Formeln mehr.

• Was neu hinzukommt:

• Es gibt Quantoren ∃ und ∀ (für
”
es existiert“ und

”
für alle“).

• Es gibt Symbole für Elemente aus der Signatur σ.

• Es können σ-Terme benutzt werden, um Elemente im Universum einer
σ-Struktur zu bezeichnen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 188

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Vergleich zwischen Aussagenlogik und Logik erster Stufe

Die Logik erster Stufe übernimmt, verändert und erweitert die Syntax der
Aussagenlogik.

• Was gleich bleibt:

• Die Junktoren ¬, ∧, ∨, → werden übernommen.

• Was sich verändert:

• Variablen stehen nicht mehr für
”
wahre“ oder

”
falsche“ Ausagen, sondern

für Elemente im Universum einer σ-Struktur.

• Variablen sind keine atomaren Formeln mehr.

• Was neu hinzukommt:

• Es gibt Quantoren ∃ und ∀ (für
”
es existiert“ und

”
für alle“).

• Es gibt Symbole für Elemente aus der Signatur σ.

• Es können σ-Terme benutzt werden, um Elemente im Universum einer
σ-Struktur zu bezeichnen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 188

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Das Alphabet der Logik erster Stufe

Definition 3.14
Sei σ eine Signatur.
Das Alphabet AFO[σ] der Logik erster Stufe über σ besteht aus

• allen Symbolen in Aσ-Terme,

• allen Symbolen in σ,

• den Quantoren ∃ (Existenzquantor) und ∀ (Allquantor),

• dem Gleichheitssymbol =,

• den Junktoren ¬,∧,∨,→.

D.h.:

AFO[σ] = VAR ∪ σ ∪ {∃,∀} ∪ {=} ∪ {¬,∧,∨,→} ∪ {(,)} ∪ {,}.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 189

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Das Alphabet der Logik erster Stufe

Definition 3.14
Sei σ eine Signatur.
Das Alphabet AFO[σ] der Logik erster Stufe über σ besteht aus

• allen Symbolen in Aσ-Terme,

• allen Symbolen in σ,

• den Quantoren ∃ (Existenzquantor) und ∀ (Allquantor),

• dem Gleichheitssymbol =,

• den Junktoren ¬,∧,∨,→.

D.h.:

AFO[σ] = VAR ∪ σ ∪ {∃,∀} ∪ {=} ∪ {¬,∧,∨,→} ∪ {(,)} ∪ {,}.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 189

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Das Alphabet der Logik erster Stufe

Definition 3.14
Sei σ eine Signatur.
Das Alphabet AFO[σ] der Logik erster Stufe über σ besteht aus

• allen Symbolen in Aσ-Terme,

• allen Symbolen in σ,

• den Quantoren ∃ (Existenzquantor) und ∀ (Allquantor),

• dem Gleichheitssymbol =,

• den Junktoren ¬,∧,∨,→.

D.h.:

AFO[σ] = VAR ∪ σ ∪ {∃,∀} ∪ {=} ∪ {¬,∧,∨,→} ∪ {(,)} ∪ {,}.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 189

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Das Alphabet der Logik erster Stufe

Definition 3.14
Sei σ eine Signatur.
Das Alphabet AFO[σ] der Logik erster Stufe über σ besteht aus

• allen Symbolen in Aσ-Terme,

• allen Symbolen in σ,

• den Quantoren ∃ (Existenzquantor) und ∀ (Allquantor),

• dem Gleichheitssymbol =,

• den Junktoren ¬,∧,∨,→.

D.h.:

AFO[σ] = VAR ∪ σ ∪ {∃,∀} ∪ {=} ∪ {¬,∧,∨,→} ∪ {(,)} ∪ {,}.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 189

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Das Alphabet der Logik erster Stufe

Definition 3.14
Sei σ eine Signatur.
Das Alphabet AFO[σ] der Logik erster Stufe über σ besteht aus

• allen Symbolen in Aσ-Terme,

• allen Symbolen in σ,

• den Quantoren ∃ (Existenzquantor) und ∀ (Allquantor),

• dem Gleichheitssymbol =,

• den Junktoren ¬,∧,∨,→.

D.h.:

AFO[σ] = VAR ∪ σ ∪ {∃,∀} ∪ {=} ∪ {¬,∧,∨,→} ∪ {(,)} ∪ {,}.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 189

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Das Alphabet der Logik erster Stufe

Definition 3.14
Sei σ eine Signatur.
Das Alphabet AFO[σ] der Logik erster Stufe über σ besteht aus

• allen Symbolen in Aσ-Terme,

• allen Symbolen in σ,

• den Quantoren ∃ (Existenzquantor) und ∀ (Allquantor),

• dem Gleichheitssymbol =,

• den Junktoren ¬,∧,∨,→.

D.h.:

AFO[σ] = VAR ∪ σ ∪ {∃,∀} ∪ {=} ∪ {¬,∧,∨,→} ∪ {(,)} ∪ {,}.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 189

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Syntax der Logik erster Stufe

Definition 3.15
Sei σ eine Signatur. Die Menge FO[σ] aller Formeln der Logik erster Stufe über
der Signatur σ (kurz: FO[σ]-Formeln;

”
FO“ steht für die englische Bezeichnung

der Logik erster Stufe: first-order logic) ist die folgendermaßen rekursiv
definierte Teilmenge von A∗

FO[σ]:

Basisregeln:

• Für alle σ-Terme t1 und t2 in Tσ gilt:

t1 = t2 ∈ FO[σ].

• Für jedes Relationssymbol R ∈ σ, für k := ar(R) und für alle σ-Terme
t1, . . . , tk in Tσ gilt:

R(t1, . . . , tk) ∈ FO[σ].

FO[σ]-Formeln der Form t1 = t2 oder R(t1, . . . , tk) heißen atomare σ-Formeln.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 190

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Syntax der Logik erster Stufe

Definition 3.15
Sei σ eine Signatur. Die Menge FO[σ] aller Formeln der Logik erster Stufe über
der Signatur σ (kurz: FO[σ]-Formeln;

”
FO“ steht für die englische Bezeichnung

der Logik erster Stufe: first-order logic) ist die folgendermaßen rekursiv
definierte Teilmenge von A∗

FO[σ]:

Basisregeln:

• Für alle σ-Terme t1 und t2 in Tσ gilt:

t1 = t2 ∈ FO[σ].

• Für jedes Relationssymbol R ∈ σ, für k := ar(R) und für alle σ-Terme
t1, . . . , tk in Tσ gilt:

R(t1, . . . , tk) ∈ FO[σ].

FO[σ]-Formeln der Form t1 = t2 oder R(t1, . . . , tk) heißen atomare σ-Formeln.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 190

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Syntax der Logik erster Stufe

Definition 3.15
Sei σ eine Signatur. Die Menge FO[σ] aller Formeln der Logik erster Stufe über
der Signatur σ (kurz: FO[σ]-Formeln;

”
FO“ steht für die englische Bezeichnung

der Logik erster Stufe: first-order logic) ist die folgendermaßen rekursiv
definierte Teilmenge von A∗

FO[σ]:

Basisregeln:

• Für alle σ-Terme t1 und t2 in Tσ gilt:

t1 = t2 ∈ FO[σ].

• Für jedes Relationssymbol R ∈ σ, für k := ar(R) und für alle σ-Terme
t1, . . . , tk in Tσ gilt:

R(t1, . . . , tk) ∈ FO[σ].

FO[σ]-Formeln der Form t1 = t2 oder R(t1, . . . , tk) heißen atomare σ-Formeln.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 190

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Syntax der Logik erster Stufe

Definition 3.15
Sei σ eine Signatur. Die Menge FO[σ] aller Formeln der Logik erster Stufe über
der Signatur σ (kurz: FO[σ]-Formeln;

”
FO“ steht für die englische Bezeichnung

der Logik erster Stufe: first-order logic) ist die folgendermaßen rekursiv
definierte Teilmenge von A∗

FO[σ]:

Basisregeln:

• Für alle σ-Terme t1 und t2 in Tσ gilt:

t1 = t2 ∈ FO[σ].

• Für jedes Relationssymbol R ∈ σ, für k := ar(R) und für alle σ-Terme
t1, . . . , tk in Tσ gilt:

R(t1, . . . , tk) ∈ FO[σ].

FO[σ]-Formeln der Form t1 = t2 oder R(t1, . . . , tk) heißen atomare σ-Formeln.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 190

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Rekursive Regeln:

• Ist φ ∈ FO[σ], so ist auch ¬φ ∈ FO[σ].

• Ist φ ∈ FO[σ] und ψ ∈ FO[σ], so ist auch

• (φ ∧ ψ) ∈ FO[σ],

• (φ ∨ ψ) ∈ FO[σ],

• (φ→ ψ) ∈ FO[σ].

• Ist φ ∈ FO[σ] und x ∈ VAR, so ist auch

• ∃x φ ∈ FO[σ],

• ∀x φ ∈ FO[σ].

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 191

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Rekursive Regeln:

• Ist φ ∈ FO[σ], so ist auch ¬φ ∈ FO[σ].

• Ist φ ∈ FO[σ] und ψ ∈ FO[σ], so ist auch

• (φ ∧ ψ) ∈ FO[σ],

• (φ ∨ ψ) ∈ FO[σ],

• (φ→ ψ) ∈ FO[σ].

• Ist φ ∈ FO[σ] und x ∈ VAR, so ist auch

• ∃x φ ∈ FO[σ],

• ∀x φ ∈ FO[σ].

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 191

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Rekursive Regeln:

• Ist φ ∈ FO[σ], so ist auch ¬φ ∈ FO[σ].

• Ist φ ∈ FO[σ] und ψ ∈ FO[σ], so ist auch

• (φ ∧ ψ) ∈ FO[σ],

• (φ ∨ ψ) ∈ FO[σ],

• (φ→ ψ) ∈ FO[σ].

• Ist φ ∈ FO[σ] und x ∈ VAR, so ist auch

• ∃x φ ∈ FO[σ],

• ∀x φ ∈ FO[σ].

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 191

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Rekursive Regeln:

• Ist φ ∈ FO[σ], so ist auch ¬φ ∈ FO[σ].

• Ist φ ∈ FO[σ] und ψ ∈ FO[σ], so ist auch

• (φ ∧ ψ) ∈ FO[σ],

• (φ ∨ ψ) ∈ FO[σ],

• (φ→ ψ) ∈ FO[σ].

• Ist φ ∈ FO[σ] und x ∈ VAR, so ist auch

• ∃x φ ∈ FO[σ],

• ∀x φ ∈ FO[σ].

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 191

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Rekursive Regeln:

• Ist φ ∈ FO[σ], so ist auch ¬φ ∈ FO[σ].

• Ist φ ∈ FO[σ] und ψ ∈ FO[σ], so ist auch

• (φ ∧ ψ) ∈ FO[σ],

• (φ ∨ ψ) ∈ FO[σ],

• (φ→ ψ) ∈ FO[σ].

• Ist φ ∈ FO[σ] und x ∈ VAR, so ist auch

• ∃x φ ∈ FO[σ],

• ∀x φ ∈ FO[σ].

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 191

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Rekursive Regeln:

• Ist φ ∈ FO[σ], so ist auch ¬φ ∈ FO[σ].

• Ist φ ∈ FO[σ] und ψ ∈ FO[σ], so ist auch

• (φ ∧ ψ) ∈ FO[σ],

• (φ ∨ ψ) ∈ FO[σ],

• (φ→ ψ) ∈ FO[σ].

• Ist φ ∈ FO[σ] und x ∈ VAR, so ist auch

• ∃x φ ∈ FO[σ],

• ∀x φ ∈ FO[σ].

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 191

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Rekursive Regeln:

• Ist φ ∈ FO[σ], so ist auch ¬φ ∈ FO[σ].

• Ist φ ∈ FO[σ] und ψ ∈ FO[σ], so ist auch

• (φ ∧ ψ) ∈ FO[σ],

• (φ ∨ ψ) ∈ FO[σ],

• (φ→ ψ) ∈ FO[σ].

• Ist φ ∈ FO[σ] und x ∈ VAR, so ist auch

• ∃x φ ∈ FO[σ],

• ∀x φ ∈ FO[σ].

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 191

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Beispiel 3.16
Sei σ = { f /2, c }.

Folgende Worte aus A∗
FO[σ] sind FO[σ]-Formeln:

• f (v0, v1) = c (atomare σ-Formel)

• ∀v2 f (v2, c) = v2

• ¬∃v3
(
f (v3, v3) = v3 ∧ ¬ v3=c

)
Folgende Worte sind keine FO[σ]-Formeln:

•
(
f (v0, v1) = c

)
•

(
∃v2 f (v2, c) = v2

)
• f (f (c , c), v1) (ist ein σ-Term, aber keine FO[σ]-Formel)

• ∃c f (v0, c) = v0

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 192

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Beispiel 3.16
Sei σ = { f /2, c }.

Folgende Worte aus A∗
FO[σ] sind FO[σ]-Formeln:

• f (v0, v1) = c (atomare σ-Formel)

• ∀v2 f (v2, c) = v2

• ¬∃v3
(
f (v3, v3) = v3 ∧ ¬ v3=c

)
Folgende Worte sind keine FO[σ]-Formeln:

•
(
f (v0, v1) = c

)
•

(
∃v2 f (v2, c) = v2

)
• f (f (c , c), v1) (ist ein σ-Term, aber keine FO[σ]-Formel)

• ∃c f (v0, c) = v0

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 192

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Beispiel 3.16
Sei σ = { f /2, c }.

Folgende Worte aus A∗
FO[σ] sind FO[σ]-Formeln:

• f (v0, v1) = c (atomare σ-Formel)

• ∀v2 f (v2, c) = v2

• ¬∃v3
(
f (v3, v3) = v3 ∧ ¬ v3=c

)
Folgende Worte sind keine FO[σ]-Formeln:

•
(
f (v0, v1) = c

)
•

(
∃v2 f (v2, c) = v2

)
• f (f (c , c), v1) (ist ein σ-Term, aber keine FO[σ]-Formel)

• ∃c f (v0, c) = v0

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 192

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Beispiel 3.16
Sei σ = { f /2, c }.

Folgende Worte aus A∗
FO[σ] sind FO[σ]-Formeln:

• f (v0, v1) = c (atomare σ-Formel)

• ∀v2 f (v2, c) = v2

• ¬∃v3
(
f (v3, v3) = v3 ∧ ¬ v3=c

)

Folgende Worte sind keine FO[σ]-Formeln:

•
(
f (v0, v1) = c

)
•

(
∃v2 f (v2, c) = v2

)
• f (f (c , c), v1) (ist ein σ-Term, aber keine FO[σ]-Formel)

• ∃c f (v0, c) = v0

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 192

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Beispiel 3.16
Sei σ = { f /2, c }.

Folgende Worte aus A∗
FO[σ] sind FO[σ]-Formeln:

• f (v0, v1) = c (atomare σ-Formel)

• ∀v2 f (v2, c) = v2

• ¬∃v3
(
f (v3, v3) = v3 ∧ ¬ v3=c

)
Folgende Worte sind keine FO[σ]-Formeln:

•
(
f (v0, v1) = c

)
•

(
∃v2 f (v2, c) = v2

)
• f (f (c , c), v1) (ist ein σ-Term, aber keine FO[σ]-Formel)

• ∃c f (v0, c) = v0

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 192

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Beispiel 3.16
Sei σ = { f /2, c }.

Folgende Worte aus A∗
FO[σ] sind FO[σ]-Formeln:

• f (v0, v1) = c (atomare σ-Formel)

• ∀v2 f (v2, c) = v2

• ¬∃v3
(
f (v3, v3) = v3 ∧ ¬ v3=c

)
Folgende Worte sind keine FO[σ]-Formeln:

•
(
f (v0, v1) = c

)

•
(
∃v2 f (v2, c) = v2

)
• f (f (c , c), v1) (ist ein σ-Term, aber keine FO[σ]-Formel)

• ∃c f (v0, c) = v0

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 192

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Beispiel 3.16
Sei σ = { f /2, c }.

Folgende Worte aus A∗
FO[σ] sind FO[σ]-Formeln:

• f (v0, v1) = c (atomare σ-Formel)

• ∀v2 f (v2, c) = v2

• ¬∃v3
(
f (v3, v3) = v3 ∧ ¬ v3=c

)
Folgende Worte sind keine FO[σ]-Formeln:

•
(
f (v0, v1) = c

)
•

(
∃v2 f (v2, c) = v2

)

• f (f (c , c), v1) (ist ein σ-Term, aber keine FO[σ]-Formel)

• ∃c f (v0, c) = v0

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 192

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Beispiel 3.16
Sei σ = { f /2, c }.

Folgende Worte aus A∗
FO[σ] sind FO[σ]-Formeln:

• f (v0, v1) = c (atomare σ-Formel)

• ∀v2 f (v2, c) = v2

• ¬∃v3
(
f (v3, v3) = v3 ∧ ¬ v3=c

)
Folgende Worte sind keine FO[σ]-Formeln:

•
(
f (v0, v1) = c

)
•

(
∃v2 f (v2, c) = v2

)
• f (f (c , c), v1) (ist ein σ-Term, aber keine FO[σ]-Formel)

• ∃c f (v0, c) = v0

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 192

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Beispiel 3.16
Sei σ = { f /2, c }.

Folgende Worte aus A∗
FO[σ] sind FO[σ]-Formeln:

• f (v0, v1) = c (atomare σ-Formel)

• ∀v2 f (v2, c) = v2

• ¬∃v3
(
f (v3, v3) = v3 ∧ ¬ v3=c

)
Folgende Worte sind keine FO[σ]-Formeln:

•
(
f (v0, v1) = c

)
•

(
∃v2 f (v2, c) = v2

)
• f (f (c , c), v1) (ist ein σ-Term, aber keine FO[σ]-Formel)

• ∃c f (v0, c) = v0

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 192

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Beispiel 3.17
Sei σ = {E/2}.
Folgendes ist eine FO[σ]-Formel:

∀v0 ∀v1
((

E (v0, v1) ∧ E (v1, v0)
)

→ v0 = v1
)

Intuition zur Semantik:
In einem gerichteten Graphen A = (A,EA) sagt diese Formel Folgendes aus:

”
Für alle Knoten a0 ∈ A und

für alle Knoten a1 ∈ A gilt:
falls (a0, a1) ∈ EA und (a1, a0) ∈ EA, so ist a0 = a1.“

Die Formel sagt in einem Digraph A = (A,EA) also aus, dass die
Kantenrelation EA antisymmetrisch ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 193

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Beispiel 3.17
Sei σ = {E/2}.
Folgendes ist eine FO[σ]-Formel:

∀v0 ∀v1
((

E (v0, v1) ∧ E (v1, v0)
)

→ v0 = v1
)

Intuition zur Semantik:
In einem gerichteten Graphen A = (A,EA) sagt diese Formel Folgendes aus:

”
Für alle Knoten a0 ∈ A und

für alle Knoten a1 ∈ A gilt:
falls (a0, a1) ∈ EA und (a1, a0) ∈ EA, so ist a0 = a1.“

Die Formel sagt in einem Digraph A = (A,EA) also aus, dass die
Kantenrelation EA antisymmetrisch ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 193

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Beispiel 3.17
Sei σ = {E/2}.
Folgendes ist eine FO[σ]-Formel:

∀v0 ∀v1
((

E (v0, v1) ∧ E (v1, v0)
)

→ v0 = v1
)

Intuition zur Semantik:
In einem gerichteten Graphen A = (A,EA) sagt diese Formel Folgendes aus:

”
Für alle Knoten a0 ∈ A

und
für alle Knoten a1 ∈ A gilt:

falls (a0, a1) ∈ EA und (a1, a0) ∈ EA, so ist a0 = a1.“

Die Formel sagt in einem Digraph A = (A,EA) also aus, dass die
Kantenrelation EA antisymmetrisch ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 193

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Beispiel 3.17
Sei σ = {E/2}.
Folgendes ist eine FO[σ]-Formel:

∀v0 ∀v1
((

E (v0, v1) ∧ E (v1, v0)
)

→ v0 = v1
)

Intuition zur Semantik:
In einem gerichteten Graphen A = (A,EA) sagt diese Formel Folgendes aus:

”
Für alle Knoten a0 ∈ A und

für alle Knoten a1 ∈ A gilt:

falls (a0, a1) ∈ EA und (a1, a0) ∈ EA, so ist a0 = a1.“

Die Formel sagt in einem Digraph A = (A,EA) also aus, dass die
Kantenrelation EA antisymmetrisch ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 193

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Beispiel 3.17
Sei σ = {E/2}.
Folgendes ist eine FO[σ]-Formel:

∀v0 ∀v1
((

E (v0, v1) ∧ E (v1, v0)
)

→ v0 = v1
)

Intuition zur Semantik:
In einem gerichteten Graphen A = (A,EA) sagt diese Formel Folgendes aus:

”
Für alle Knoten a0 ∈ A und

für alle Knoten a1 ∈ A gilt:
falls (a0, a1) ∈ EA und (a1, a0) ∈ EA, so ist a0 = a1.“

Die Formel sagt in einem Digraph A = (A,EA) also aus, dass die
Kantenrelation EA antisymmetrisch ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 193

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Beispiel 3.17
Sei σ = {E/2}.
Folgendes ist eine FO[σ]-Formel:

∀v0 ∀v1
((

E (v0, v1) ∧ E (v1, v0)
)

→ v0 = v1
)

Intuition zur Semantik:
In einem gerichteten Graphen A = (A,EA) sagt diese Formel Folgendes aus:

”
Für alle Knoten a0 ∈ A und

für alle Knoten a1 ∈ A gilt:
falls (a0, a1) ∈ EA und (a1, a0) ∈ EA, so ist a0 = a1.“

Die Formel sagt in einem Digraph A = (A,EA) also aus, dass

die
Kantenrelation EA antisymmetrisch ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 193

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Beispiel 3.17
Sei σ = {E/2}.
Folgendes ist eine FO[σ]-Formel:

∀v0 ∀v1
((

E (v0, v1) ∧ E (v1, v0)
)

→ v0 = v1
)

Intuition zur Semantik:
In einem gerichteten Graphen A = (A,EA) sagt diese Formel Folgendes aus:

”
Für alle Knoten a0 ∈ A und

für alle Knoten a1 ∈ A gilt:
falls (a0, a1) ∈ EA und (a1, a0) ∈ EA, so ist a0 = a1.“

Die Formel sagt in einem Digraph A = (A,EA) also aus, dass die
Kantenrelation EA antisymmetrisch ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 193

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Notation

• Statt mit v0, v1, v2, . . . bezeichnen wir Variablen oft auch mit x , y , z , . . .
oder mit Varianten wie x ′, y1, y2,

• Ähnlich wie bei der Aussagenlogik schreiben wir (φ↔ ψ) als Abkürzung
für die Formel

(
(φ→ ψ) ∧ (ψ → φ)

)
.

• Die Menge aller Formeln der Logik der ersten Stufe ist

FO :=
⋃

σ Signatur

FO[σ].

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 194

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Notation

• Statt mit v0, v1, v2, . . . bezeichnen wir Variablen oft auch mit x , y , z , . . .
oder mit Varianten wie x ′, y1, y2,

• Ähnlich wie bei der Aussagenlogik schreiben wir (φ↔ ψ) als Abkürzung
für die Formel

(
(φ→ ψ) ∧ (ψ → φ)

)
.

• Die Menge aller Formeln der Logik der ersten Stufe ist

FO :=
⋃

σ Signatur

FO[σ].

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 194

Kapitel 3: Logik erster Stufe · Abschnitt 3.3: Syntax der Logik erster Stufe

Notation

• Statt mit v0, v1, v2, . . . bezeichnen wir Variablen oft auch mit x , y , z , . . .
oder mit Varianten wie x ′, y1, y2,

• Ähnlich wie bei der Aussagenlogik schreiben wir (φ↔ ψ) als Abkürzung
für die Formel

(
(φ→ ψ) ∧ (ψ → φ)

)
.

• Die Menge aller Formeln der Logik der ersten Stufe ist

FO :=
⋃

σ Signatur

FO[σ].

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 194

Abschnitt 3.4:

Semantik der Logik erster Stufe

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Bevor wir die Semantik der Logik erster Stufe formal definieren, betrachten wir
zunächst einige Beispiele, um ein intuitives Verständnis der Semantik der Logik
erster Stufe zu erlangen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 195

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Beispiele zur Semantik der Logik erster Stufe

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Gerichtete Graphen

Beispiel 3.18
Sei σ = {E/2}.

(a) Die FO[σ]-Formel

φ := ∀x∀y
(
E (x , y) → E (y , x)

)
besagt:

”
Für alle Knoten x und für alle Knoten y gilt: Falls es eine Kante von
x nach y gibt, so gibt es auch eine Kante von y nach x .“

Für jeden Digraphen A = (A,EA) gilt daher:

A erfüllt φ ⇐⇒ EA ist symmetrisch.

Umgangssprachlich sagen wir auch:
”
Die Formel φ sagt in einem

Digraphen A aus, dass dessen Kantenrelation symmetrisch ist.“

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 196

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Gerichtete Graphen

Beispiel 3.18
Sei σ = {E/2}.

(a) Die FO[σ]-Formel

φ := ∀x∀y
(
E (x , y) → E (y , x)

)
besagt:

”
Für alle Knoten x und für alle Knoten y gilt: Falls es eine Kante von
x nach y gibt, so gibt es auch eine Kante von y nach x .“

Für jeden Digraphen A = (A,EA) gilt daher:

A erfüllt φ ⇐⇒ EA ist symmetrisch.

Umgangssprachlich sagen wir auch:
”
Die Formel φ sagt in einem

Digraphen A aus, dass dessen Kantenrelation symmetrisch ist.“

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 196

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Gerichtete Graphen

Beispiel 3.18
Sei σ = {E/2}.

(a) Die FO[σ]-Formel

φ := ∀x∀y
(
E (x , y) → E (y , x)

)
besagt:

”
Für alle Knoten x und für alle Knoten y gilt: Falls es eine Kante von
x nach y gibt, so gibt es auch eine Kante von y nach x .“

Für jeden Digraphen A = (A,EA) gilt daher:

A erfüllt φ ⇐⇒ EA ist

symmetrisch.

Umgangssprachlich sagen wir auch:
”
Die Formel φ sagt in einem

Digraphen A aus, dass dessen Kantenrelation symmetrisch ist.“

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 196

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Gerichtete Graphen

Beispiel 3.18
Sei σ = {E/2}.

(a) Die FO[σ]-Formel

φ := ∀x∀y
(
E (x , y) → E (y , x)

)
besagt:

”
Für alle Knoten x und für alle Knoten y gilt: Falls es eine Kante von
x nach y gibt, so gibt es auch eine Kante von y nach x .“

Für jeden Digraphen A = (A,EA) gilt daher:

A erfüllt φ ⇐⇒ EA ist symmetrisch.

Umgangssprachlich sagen wir auch:
”
Die Formel φ sagt in einem

Digraphen A aus, dass dessen Kantenrelation symmetrisch ist.“

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 196

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Gerichtete Graphen

Beispiel 3.18
Sei σ = {E/2}.

(a) Die FO[σ]-Formel

φ := ∀x∀y
(
E (x , y) → E (y , x)

)
besagt:

”
Für alle Knoten x und für alle Knoten y gilt: Falls es eine Kante von
x nach y gibt, so gibt es auch eine Kante von y nach x .“

Für jeden Digraphen A = (A,EA) gilt daher:

A erfüllt φ ⇐⇒ EA ist symmetrisch.

Umgangssprachlich sagen wir auch:
”
Die Formel φ sagt in einem

Digraphen A aus, dass dessen Kantenrelation symmetrisch ist.“

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 196

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

(b) Die folgende FO[σ]-Formel drückt aus, dass es von Knoten x zu Knoten y
einen Weg der Länge 3 gibt:

φ(x , y) := ∃z1 ∃z2
((

E (x , z1) ∧ E (z1, z2)
)
∧ E (z2, y)

)
.

(c) Die FO[σ]-Formel

∀x ∀y ∃z1 ∃z2
((

E (x , z1) ∧ E (z1, z2)
)
∧ E (z2, y)

)
sagt in einem Digraph A aus, dass es zwischen je 2 Knoten einen Weg der
Länge 3 gibt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 197

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

(b) Die folgende FO[σ]-Formel drückt aus, dass es von Knoten x zu Knoten y
einen Weg der Länge 3 gibt:

φ(x , y) := ∃z1 ∃z2
((

E (x , z1) ∧ E (z1, z2)
)
∧ E (z2, y)

)
.

(c) Die FO[σ]-Formel

∀x ∀y ∃z1 ∃z2
((

E (x , z1) ∧ E (z1, z2)
)
∧ E (z2, y)

)
sagt in einem Digraph A aus, dass es zwischen je 2 Knoten einen Weg der
Länge 3 gibt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 197

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

(b) Die folgende FO[σ]-Formel drückt aus, dass es von Knoten x zu Knoten y
einen Weg der Länge 3 gibt:

φ(x , y) := ∃z1 ∃z2
((

E (x , z1) ∧ E (z1, z2)
)
∧ E (z2, y)

)
.

(c) Die FO[σ]-Formel

∀x ∀y ∃z1 ∃z2
((

E (x , z1) ∧ E (z1, z2)
)
∧ E (z2, y)

)
sagt in einem Digraph A aus, dass

es zwischen je 2 Knoten einen Weg der
Länge 3 gibt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 197

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

(b) Die folgende FO[σ]-Formel drückt aus, dass es von Knoten x zu Knoten y
einen Weg der Länge 3 gibt:

φ(x , y) := ∃z1 ∃z2
((

E (x , z1) ∧ E (z1, z2)
)
∧ E (z2, y)

)
.

(c) Die FO[σ]-Formel

∀x ∀y ∃z1 ∃z2
((

E (x , z1) ∧ E (z1, z2)
)
∧ E (z2, y)

)
sagt in einem Digraph A aus, dass es zwischen je 2 Knoten einen Weg der
Länge 3 gibt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 197

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Verwandtschaftsbeziehungen
Wir betrachten eine Datensammlung, in der die Stammbäume von Pferden aus dem
Sport Dressurreiten verwaltet werden.
Um Verwandtschaftsbeziehungen zwischen den Pferden zu modellieren, können wir
eine Signatur σ nutzen, die aus den folgenden Symbolen besteht:

• 1-stellige Funktionssymbole Vater, Mutter

(Bedeutung: x=Mutter(y) besagt:
”
x ist die Mutter von y“.)

• 2-stellige Relationssymbole Geschwister, Vorfahr

(Bedeutung: Geschwister(x , y) besagt, dass x und y Geschwister sind;
Vorfahr(x , y) besagt, dass x ein Vorfahr von y ist.)

Generelles Wissen über Verwandtschaftsbeziehungen lässt sich durch Formeln der
Logik erster Stufe repräsentieren, z.B.:

•
”
Pferde mit gleichem Vater und gleicher Mutter sind Geschwister“:

∀x∀y
(((

Vater(x)=Vater(y) ∧ Mutter(x)=Mutter(y)
)
∧ ¬ x=y

)
→ Geschwister(x , y)

)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 198

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Verwandtschaftsbeziehungen
Wir betrachten eine Datensammlung, in der die Stammbäume von Pferden aus dem
Sport Dressurreiten verwaltet werden.
Um Verwandtschaftsbeziehungen zwischen den Pferden zu modellieren, können wir
eine Signatur σ nutzen, die aus den folgenden Symbolen besteht:

• 1-stellige Funktionssymbole Vater, Mutter

(Bedeutung: x=Mutter(y) besagt:
”
x ist die Mutter von y“.)

• 2-stellige Relationssymbole Geschwister, Vorfahr

(Bedeutung: Geschwister(x , y) besagt, dass x und y Geschwister sind;
Vorfahr(x , y) besagt, dass x ein Vorfahr von y ist.)

Generelles Wissen über Verwandtschaftsbeziehungen lässt sich durch Formeln der
Logik erster Stufe repräsentieren, z.B.:

•
”
Pferde mit gleichem Vater und gleicher Mutter sind Geschwister“:

∀x∀y
(((

Vater(x)=Vater(y) ∧ Mutter(x)=Mutter(y)
)
∧ ¬ x=y

)
→ Geschwister(x , y)

)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 198

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Verwandtschaftsbeziehungen
Wir betrachten eine Datensammlung, in der die Stammbäume von Pferden aus dem
Sport Dressurreiten verwaltet werden.
Um Verwandtschaftsbeziehungen zwischen den Pferden zu modellieren, können wir
eine Signatur σ nutzen, die aus den folgenden Symbolen besteht:

• 1-stellige Funktionssymbole Vater, Mutter

(Bedeutung: x=Mutter(y) besagt:
”
x ist die Mutter von y“.)

• 2-stellige Relationssymbole Geschwister, Vorfahr

(Bedeutung: Geschwister(x , y) besagt, dass x und y Geschwister sind;

Vorfahr(x , y) besagt, dass x ein Vorfahr von y ist.)

Generelles Wissen über Verwandtschaftsbeziehungen lässt sich durch Formeln der
Logik erster Stufe repräsentieren, z.B.:

•
”
Pferde mit gleichem Vater und gleicher Mutter sind Geschwister“:

∀x∀y
(((

Vater(x)=Vater(y) ∧ Mutter(x)=Mutter(y)
)
∧ ¬ x=y

)
→ Geschwister(x , y)

)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 198

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Verwandtschaftsbeziehungen
Wir betrachten eine Datensammlung, in der die Stammbäume von Pferden aus dem
Sport Dressurreiten verwaltet werden.
Um Verwandtschaftsbeziehungen zwischen den Pferden zu modellieren, können wir
eine Signatur σ nutzen, die aus den folgenden Symbolen besteht:

• 1-stellige Funktionssymbole Vater, Mutter

(Bedeutung: x=Mutter(y) besagt:
”
x ist die Mutter von y“.)

• 2-stellige Relationssymbole Geschwister, Vorfahr

(Bedeutung: Geschwister(x , y) besagt, dass x und y Geschwister sind;
Vorfahr(x , y) besagt, dass x ein Vorfahr von y ist.)

Generelles Wissen über Verwandtschaftsbeziehungen lässt sich durch Formeln der
Logik erster Stufe repräsentieren, z.B.:

•
”
Pferde mit gleichem Vater und gleicher Mutter sind Geschwister“:

∀x∀y
(((

Vater(x)=Vater(y) ∧ Mutter(x)=Mutter(y)
)
∧ ¬ x=y

)
→ Geschwister(x , y)

)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 198

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Verwandtschaftsbeziehungen
Wir betrachten eine Datensammlung, in der die Stammbäume von Pferden aus dem
Sport Dressurreiten verwaltet werden.
Um Verwandtschaftsbeziehungen zwischen den Pferden zu modellieren, können wir
eine Signatur σ nutzen, die aus den folgenden Symbolen besteht:

• 1-stellige Funktionssymbole Vater, Mutter

(Bedeutung: x=Mutter(y) besagt:
”
x ist die Mutter von y“.)

• 2-stellige Relationssymbole Geschwister, Vorfahr

(Bedeutung: Geschwister(x , y) besagt, dass x und y Geschwister sind;
Vorfahr(x , y) besagt, dass x ein Vorfahr von y ist.)

Generelles Wissen über Verwandtschaftsbeziehungen lässt sich durch Formeln der
Logik erster Stufe repräsentieren, z.B.:

•
”
Pferde mit gleichem Vater und gleicher Mutter sind Geschwister“:

∀x∀y
(((

Vater(x)=Vater(y) ∧ Mutter(x)=Mutter(y)
)
∧ ¬ x=y

)
→ Geschwister(x , y)

)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 198

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Verwandtschaftsbeziehungen
Wir betrachten eine Datensammlung, in der die Stammbäume von Pferden aus dem
Sport Dressurreiten verwaltet werden.
Um Verwandtschaftsbeziehungen zwischen den Pferden zu modellieren, können wir
eine Signatur σ nutzen, die aus den folgenden Symbolen besteht:

• 1-stellige Funktionssymbole Vater, Mutter

(Bedeutung: x=Mutter(y) besagt:
”
x ist die Mutter von y“.)

• 2-stellige Relationssymbole Geschwister, Vorfahr

(Bedeutung: Geschwister(x , y) besagt, dass x und y Geschwister sind;
Vorfahr(x , y) besagt, dass x ein Vorfahr von y ist.)

Generelles Wissen über Verwandtschaftsbeziehungen lässt sich durch Formeln der
Logik erster Stufe repräsentieren, z.B.:

•
”
Pferde mit gleichem Vater und gleicher Mutter sind Geschwister“:

∀x∀y
(((

Vater(x)=Vater(y) ∧ Mutter(x)=Mutter(y)
)
∧ ¬ x=y

)
→ Geschwister(x , y)

)
Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 198

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

•
”
Eltern sind gerade die unmittelbaren Vorfahren“:

∀x∀y
((

x=Vater(y) ∨ x=Mutter(y)
)

↔
(
Vorfahr(x , y) ∧ ¬∃z

(
Vorfahr(x , z) ∧ Vorfahr(z , y)

)))

•
”
Die Relation Vorfahr ist transitiv“:

∀x∀y∀z
((

Vorfahr(x , y) ∧ Vorfahr(y , z)
)

→ Vorfahr(x , z)
)

• Die folgende Formel φ(x , y) besagt
”
x ist Tante oder Onkel von y“:

φ(x , y) := ∃z
(
Geschwister(x , z) ∧

(
z=Mutter(y) ∨ z=Vater(y)

))

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 199

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

•
”
Eltern sind gerade die unmittelbaren Vorfahren“:

∀x∀y
((

x=Vater(y) ∨ x=Mutter(y)
)

↔
(
Vorfahr(x , y) ∧ ¬∃z

(
Vorfahr(x , z) ∧ Vorfahr(z , y)

)))

•
”
Die Relation Vorfahr ist transitiv“:

∀x∀y∀z
((

Vorfahr(x , y) ∧ Vorfahr(y , z)
)

→ Vorfahr(x , z)
)

• Die folgende Formel φ(x , y) besagt
”
x ist Tante oder Onkel von y“:

φ(x , y) := ∃z
(
Geschwister(x , z) ∧

(
z=Mutter(y) ∨ z=Vater(y)

))

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 199

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

•
”
Eltern sind gerade die unmittelbaren Vorfahren“:

∀x∀y
((

x=Vater(y) ∨ x=Mutter(y)
)

↔
(
Vorfahr(x , y) ∧ ¬∃z

(
Vorfahr(x , z) ∧ Vorfahr(z , y)

)))

•
”
Die Relation Vorfahr ist transitiv“:

∀x∀y∀z
((

Vorfahr(x , y) ∧ Vorfahr(y , z)
)

→ Vorfahr(x , z)
)

• Die folgende Formel φ(x , y) besagt
”
x ist Tante oder Onkel von y“:

φ(x , y) := ∃z
(
Geschwister(x , z) ∧

(
z=Mutter(y) ∨ z=Vater(y)

))

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 199

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

•
”
Eltern sind gerade die unmittelbaren Vorfahren“:

∀x∀y
((

x=Vater(y) ∨ x=Mutter(y)
)

↔
(
Vorfahr(x , y) ∧ ¬∃z

(
Vorfahr(x , z) ∧ Vorfahr(z , y)

)))

•
”
Die Relation Vorfahr ist transitiv“:

∀x∀y∀z
((

Vorfahr(x , y) ∧ Vorfahr(y , z)
)

→ Vorfahr(x , z)
)

• Die folgende Formel φ(x , y) besagt
”
x ist Tante oder Onkel von y“:

φ(x , y) := ∃z
(
Geschwister(x , z) ∧

(
z=Mutter(y) ∨ z=Vater(y)

))

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 199

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

•
”
Eltern sind gerade die unmittelbaren Vorfahren“:

∀x∀y
((

x=Vater(y) ∨ x=Mutter(y)
)

↔
(
Vorfahr(x , y) ∧ ¬∃z

(
Vorfahr(x , z) ∧ Vorfahr(z , y)

)))

•
”
Die Relation Vorfahr ist transitiv“:

∀x∀y∀z
((

Vorfahr(x , y) ∧ Vorfahr(y , z)
)

→ Vorfahr(x , z)
)

• Die folgende Formel φ(x , y) besagt
”
x ist Tante oder Onkel von y“:

φ(x , y) := ∃z
(
Geschwister(x , z) ∧

(
z=Mutter(y) ∨ z=Vater(y)

))

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 199

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

•
”
Eltern sind gerade die unmittelbaren Vorfahren“:

∀x∀y
((

x=Vater(y) ∨ x=Mutter(y)
)

↔
(
Vorfahr(x , y) ∧ ¬∃z

(
Vorfahr(x , z) ∧ Vorfahr(z , y)

)))

•
”
Die Relation Vorfahr ist transitiv“:

∀x∀y∀z
((

Vorfahr(x , y) ∧ Vorfahr(y , z)
)

→ Vorfahr(x , z)
)

• Die folgende Formel φ(x , y) besagt
”
x ist Tante oder Onkel von y“:

φ(x , y) := ∃z
(
Geschwister(x , z) ∧

(
z=Mutter(y) ∨ z=Vater(y)

))

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 199

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

• Die folgende Formel ψ(x) besagt
”
x ist Vater von genau 2 Kindern“:

ψ(x) := ∃y1∃y2
(((

x=Vater(y1) ∧ x=Vater(y2)
)
∧ ¬ y1=y2

)
∧ ∀z

(
x=Vater(z) →

(
z=y1 ∨ z=y2

)))

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 200

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

• Die folgende Formel ψ(x) besagt
”
x ist Vater von genau 2 Kindern“:

ψ(x) := ∃y1∃y2
(((

x=Vater(y1) ∧ x=Vater(y2)
)
∧ ¬ y1=y2

)
∧ ∀z

(
x=Vater(z) →

(
z=y1 ∨ z=y2

)))

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 200

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Formale Definition der Semantik der Logik erster Stufe

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Um die formale Definition der Semantik der Logik erster Stufe angeben zu
können, benötigen wir noch folgende Begriffe:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 201

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Notation

• Ist β eine Belegung in einer σ-Struktur A, ist x ∈ VAR und ist a ∈ A, so sei

β a
x

die Belegung mit β a
x (x) = a und β a

x (y) = β(y) für alle y ∈ VAR \ {x}.

• Ist I = (A, β) eine σ-Interpretation, ist x ∈ VAR und ist a ∈ A, so sei

I a
x := (A, β a

x).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 202

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Notation

• Ist β eine Belegung in einer σ-Struktur A, ist x ∈ VAR und ist a ∈ A, so sei

β a
x

die Belegung mit β a
x (x) = a und β a

x (y) = β(y) für alle y ∈ VAR \ {x}.

• Ist I = (A, β) eine σ-Interpretation, ist x ∈ VAR und ist a ∈ A, so sei

I a
x := (A, β a

x).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 202

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Semantik der Logik erster Stufe

Definition 3.19
Sei σ eine Signatur. Rekursiv über den Aufbau von FO[σ] definieren wir eine
Funktion J·K·, die jeder FO[σ]-Formel φ und jeder σ-Interpretation I = (A, β)
einen Wahrheitswert (kurz: Wert) JφKI ∈ {0, 1} zuordnet:

Rekursionsanfang:

• Für alle σ-Terme t1 und t2 in Tσ gilt:

Jt1=t2K
I :=

{
1, falls Jt1K

I = Jt2K
I

0, sonst.

• Für jedes Relationssymbol R ∈ σ, für k := ar(R) und für alle σ-Terme
t1, . . . , tk ∈ Tσ gilt:

JR(t1, . . . , tk)K
I :=

{
1, falls

(
Jt1K

I
, . . . , JtkK

I) ∈ RA

0, sonst.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 203

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Semantik der Logik erster Stufe

Definition 3.19
Sei σ eine Signatur. Rekursiv über den Aufbau von FO[σ] definieren wir eine
Funktion J·K·, die jeder FO[σ]-Formel φ und jeder σ-Interpretation I = (A, β)
einen Wahrheitswert (kurz: Wert) JφKI ∈ {0, 1} zuordnet:

Rekursionsanfang:

• Für alle σ-Terme t1 und t2 in Tσ gilt:

Jt1=t2K
I :=

{
1, falls Jt1K

I = Jt2K
I

0, sonst.

• Für jedes Relationssymbol R ∈ σ, für k := ar(R) und für alle σ-Terme
t1, . . . , tk ∈ Tσ gilt:

JR(t1, . . . , tk)K
I :=

{
1, falls

(
Jt1K

I
, . . . , JtkK

I) ∈ RA

0, sonst.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 203

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Semantik der Logik erster Stufe

Definition 3.19
Sei σ eine Signatur. Rekursiv über den Aufbau von FO[σ] definieren wir eine
Funktion J·K·, die jeder FO[σ]-Formel φ und jeder σ-Interpretation I = (A, β)
einen Wahrheitswert (kurz: Wert) JφKI ∈ {0, 1} zuordnet:

Rekursionsanfang:

• Für alle σ-Terme t1 und t2 in Tσ gilt:

Jt1=t2K
I :=

{
1, falls Jt1K

I = Jt2K
I

0, sonst.

• Für jedes Relationssymbol R ∈ σ, für k := ar(R) und für alle σ-Terme
t1, . . . , tk ∈ Tσ gilt:

JR(t1, . . . , tk)K
I :=

{
1, falls

(
Jt1K

I
, . . . , JtkK

I) ∈ RA

0, sonst.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 203

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Semantik der Logik erster Stufe

Definition 3.19
Sei σ eine Signatur. Rekursiv über den Aufbau von FO[σ] definieren wir eine
Funktion J·K·, die jeder FO[σ]-Formel φ und jeder σ-Interpretation I = (A, β)
einen Wahrheitswert (kurz: Wert) JφKI ∈ {0, 1} zuordnet:

Rekursionsanfang:

• Für alle σ-Terme t1 und t2 in Tσ gilt:

Jt1=t2K
I :=

{
1, falls Jt1K

I = Jt2K
I

0, sonst.

• Für jedes Relationssymbol R ∈ σ, für k := ar(R) und für alle σ-Terme
t1, . . . , tk ∈ Tσ gilt:

JR(t1, . . . , tk)K
I :=

{
1, falls

(
Jt1K

I
, . . . , JtkK

I) ∈ RA

0, sonst.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 203

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Semantik der Logik erster Stufe

Definition 3.19
Sei σ eine Signatur. Rekursiv über den Aufbau von FO[σ] definieren wir eine
Funktion J·K·, die jeder FO[σ]-Formel φ und jeder σ-Interpretation I = (A, β)
einen Wahrheitswert (kurz: Wert) JφKI ∈ {0, 1} zuordnet:

Rekursionsanfang:

• Für alle σ-Terme t1 und t2 in Tσ gilt:

Jt1=t2K
I :=

{
1, falls Jt1K

I = Jt2K
I

0, sonst.

• Für jedes Relationssymbol R ∈ σ, für k := ar(R) und für alle σ-Terme
t1, . . . , tk ∈ Tσ gilt:

JR(t1, . . . , tk)K
I :=

{
1, falls

(
Jt1K

I
, . . . , JtkK

I) ∈ RA

0, sonst.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 203

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Rekursionsschritt:

• Ist φ ∈ FO[σ] und ist x ∈ VAR, so ist

J∃x φKI :=

{
1, falls es (mind.) ein a ∈ A gibt, so dass JφKI

a
x = 1

0, sonst

J∀x φKI :=

{
1, falls für jedes a ∈ A gilt: JφKI

a
x = 1

0, sonst

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 204

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Rekursionsschritt:

• Ist φ ∈ FO[σ] und ist x ∈ VAR, so ist

J∃x φKI :=

{
1, falls es (mind.) ein a ∈ A gibt, so dass JφKI

a
x = 1

0, sonst

J∀x φKI :=

{
1, falls für jedes a ∈ A gilt: JφKI

a
x = 1

0, sonst

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 204

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Rekursionsschritt:

• Ist φ ∈ FO[σ] und ist x ∈ VAR, so ist

J∃x φKI :=

{
1, falls es (mind.) ein a ∈ A gibt, so dass JφKI

a
x = 1

0, sonst

J∀x φKI :=

{
1, falls für jedes a ∈ A gilt: JφKI

a
x = 1

0, sonst

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 204

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Rekursionsschritt:

• Ist φ ∈ FO[σ] und ist x ∈ VAR, so ist

J∃x φKI :=

{
1, falls es (mind.) ein a ∈ A gibt, so dass JφKI

a
x = 1

0, sonst

J∀x φKI :=

{
1, falls für jedes a ∈ A gilt: JφKI

a
x = 1

0, sonst

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 204

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

• Die Semantik der Junktoren ¬, ∧, ∨, → ist wie in der Aussagenlogik
definiert, d.h. für alle φ ∈ FO[σ] und ψ ∈ FO[σ] gilt:

J¬φKI :=

{
1, falls JφKI = 0

0, sonst

J(φ ∧ ψ)KI :=

{
1, falls JφKI = 1 und JψKI = 1

0, sonst

J(φ ∨ ψ)KI :=

{
0, falls JφKI = 0 und JψKI = 0

1, sonst

J(φ→ ψ)KI :=

{
0, falls JφKI = 1 und JψKI = 0

1, sonst

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 205

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

• Die Semantik der Junktoren ¬, ∧, ∨, → ist wie in der Aussagenlogik
definiert, d.h. für alle φ ∈ FO[σ] und ψ ∈ FO[σ] gilt:

J¬φKI :=

{
1, falls JφKI = 0

0, sonst

J(φ ∧ ψ)KI :=

{
1, falls JφKI = 1 und JψKI = 1

0, sonst

J(φ ∨ ψ)KI :=

{
0, falls JφKI = 0 und JψKI = 0

1, sonst

J(φ→ ψ)KI :=

{
0, falls JφKI = 1 und JψKI = 0

1, sonst

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 205

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

• Die Semantik der Junktoren ¬, ∧, ∨, → ist wie in der Aussagenlogik
definiert, d.h. für alle φ ∈ FO[σ] und ψ ∈ FO[σ] gilt:

J¬φKI :=

{
1, falls JφKI = 0

0, sonst

J(φ ∧ ψ)KI :=

{
1, falls JφKI = 1 und JψKI = 1

0, sonst

J(φ ∨ ψ)KI :=

{
0, falls JφKI = 0 und JψKI = 0

1, sonst

J(φ→ ψ)KI :=

{
0, falls JφKI = 1 und JψKI = 0

1, sonst

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 205

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

• Die Semantik der Junktoren ¬, ∧, ∨, → ist wie in der Aussagenlogik
definiert, d.h. für alle φ ∈ FO[σ] und ψ ∈ FO[σ] gilt:

J¬φKI :=

{
1, falls JφKI = 0

0, sonst

J(φ ∧ ψ)KI :=

{
1, falls JφKI = 1 und JψKI = 1

0, sonst

J(φ ∨ ψ)KI :=

{
0, falls JφKI = 0 und JψKI = 0

1, sonst

J(φ→ ψ)KI :=

{
0, falls JφKI = 1 und JψKI = 0

1, sonst

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 205

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

• Die Semantik der Junktoren ¬, ∧, ∨, → ist wie in der Aussagenlogik
definiert, d.h. für alle φ ∈ FO[σ] und ψ ∈ FO[σ] gilt:

J¬φKI :=

{
1, falls JφKI = 0

0, sonst

J(φ ∧ ψ)KI :=

{
1, falls JφKI = 1 und JψKI = 1

0, sonst

J(φ ∨ ψ)KI :=

{
0, falls JφKI = 0 und JψKI = 0

1, sonst

J(φ→ ψ)KI :=

{
0, falls JφKI = 1 und JψKI = 0

1, sonst

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 205

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Beispiel 3.20
Sei σ = {E/2}. Betrachte die FO[σ]-Formel

φ := ∀x∀y
(
E (x , y) → E (y , x)

)
Für jede σ-Interpretation I = (A, β) gilt:

JφKI = 1 ⇐⇒

für alle a ∈ A gilt: J∀y(E (x , y) → E (y , x))KI
a
x = 1

⇐⇒ für alle a ∈ A gilt: für alle b ∈ A gilt:

J(E (x , y) → E (y , x))KI
a
x

b
y = 1

⇐⇒ für alle a ∈ A und alle b ∈ A gilt:

Falls JE (x , y)KI
a
x

b
y = 1, so JE (y , x)KI

a
x

b
y = 1

⇐⇒ für alle a ∈ A und alle b ∈ B gilt:
Falls (a, b) ∈ EA, so (b, a) ∈ EA

⇐⇒ EA ist symmetrisch

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 206

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Beispiel 3.20
Sei σ = {E/2}. Betrachte die FO[σ]-Formel

φ := ∀x∀y
(
E (x , y) → E (y , x)

)
Für jede σ-Interpretation I = (A, β) gilt:

JφKI = 1 ⇐⇒ für alle a ∈ A gilt: J∀y(E (x , y) → E (y , x))KI
a
x = 1

⇐⇒ für alle a ∈ A gilt: für alle b ∈ A gilt:

J(E (x , y) → E (y , x))KI
a
x

b
y = 1

⇐⇒ für alle a ∈ A und alle b ∈ A gilt:

Falls JE (x , y)KI
a
x

b
y = 1, so JE (y , x)KI

a
x

b
y = 1

⇐⇒ für alle a ∈ A und alle b ∈ B gilt:
Falls (a, b) ∈ EA, so (b, a) ∈ EA

⇐⇒ EA ist symmetrisch

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 206

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Die Modellbeziehung

Definition 3.21
Sei σ eine Signatur.

(a) Eine σ-Interpretation I erfüllt eine Formel φ ∈ FO[σ] (wir schreiben:

I |= φ), wenn JφKI = 1.

(b) Eine σ-Interpretation I erfüllt eine Formelmenge Φ ⊆ FO[σ] (wir schreiben:
I |= Φ), wenn I |= φ für alle φ ∈ Φ gilt.

(c) Ein Modell einer Formel φ (bzw. einer Formelmenge Φ) ist eine
Interpretation I mit I |= φ (bzw. I |= Φ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 207

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Die Modellbeziehung

Definition 3.21
Sei σ eine Signatur.

(a) Eine σ-Interpretation I erfüllt eine Formel φ ∈ FO[σ] (wir schreiben:

I |= φ), wenn JφKI = 1.

(b) Eine σ-Interpretation I erfüllt eine Formelmenge Φ ⊆ FO[σ] (wir schreiben:
I |= Φ), wenn I |= φ für alle φ ∈ Φ gilt.

(c) Ein Modell einer Formel φ (bzw. einer Formelmenge Φ) ist eine
Interpretation I mit I |= φ (bzw. I |= Φ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 207

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Die Modellbeziehung

Definition 3.21
Sei σ eine Signatur.

(a) Eine σ-Interpretation I erfüllt eine Formel φ ∈ FO[σ] (wir schreiben:

I |= φ), wenn JφKI = 1.

(b) Eine σ-Interpretation I erfüllt eine Formelmenge Φ ⊆ FO[σ] (wir schreiben:
I |= Φ), wenn I |= φ für alle φ ∈ Φ gilt.

(c) Ein Modell einer Formel φ (bzw. einer Formelmenge Φ) ist eine
Interpretation I mit I |= φ (bzw. I |= Φ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 207

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Konventionen

• Terme bezeichnen wir mit t, s und Varianten s ′, t1, t2,

• Formeln bezeichnen wir mit φ,ψ, χ und Varianten ψ′, φ1, φ2,

• Formelmengen bezeichnen wir mit Φ,Ψ und Varianten Ψ′,Φ1,Φ2,

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 208

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Konventionen

• Terme bezeichnen wir mit t, s und Varianten s ′, t1, t2,

• Formeln bezeichnen wir mit φ,ψ, χ und Varianten ψ′, φ1, φ2,

• Formelmengen bezeichnen wir mit Φ,Ψ und Varianten Ψ′,Φ1,Φ2,

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 208

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Konventionen

• Terme bezeichnen wir mit t, s und Varianten s ′, t1, t2,

• Formeln bezeichnen wir mit φ,ψ, χ und Varianten ψ′, φ1, φ2,

• Formelmengen bezeichnen wir mit Φ,Ψ und Varianten Ψ′,Φ1,Φ2,

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 208

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Subformeln, Subterme und Syntaxbäume

• Eine Formel ψ ist Subformel einer Formel φ, wenn ψ als Teilwort in φ
vorkommt (insbes. ist jede Formel eine Subformel von sich selbst).

Beispiel: ψ := E (v0, v1) ist Subformel der Formel ∃v0∀v1 E (v0, v1)

• Ein Term s ist Subterm eines Terms t, wenn s als Teilwort in t vorkommt
(insbes. ist jeder Term ein Subterm von sich selbst).

Beispiel: f (c , c) ist Subterm des Terms f (v0, f (c , c)).

• Sei ξ ∈ T∪FO, d.h. ξ ist ein Term oder eine Formel der Logik erster Stufe.

• Ähnlich wie bei aussagenlogischen Formeln können wir einen Syntaxbaum
für ξ definieren.

• Das Lemma über die eindeutige Lesbarkeit von Termen und Formeln besagt,
dass jeder Term und jede Formel genau einen Syntaxbaum hat.

• Die Subterme von ξ (falls ξ ∈ T) bzw. Subformeln von ξ (falls ξ ∈ FO) sind
dann alle Terme bzw. Formeln, die im Syntaxbaum vorkommen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 209

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Subformeln, Subterme und Syntaxbäume

• Eine Formel ψ ist Subformel einer Formel φ, wenn ψ als Teilwort in φ
vorkommt (insbes. ist jede Formel eine Subformel von sich selbst).

Beispiel: ψ := E (v0, v1) ist Subformel der Formel ∃v0∀v1 E (v0, v1)

• Ein Term s ist Subterm eines Terms t, wenn s als Teilwort in t vorkommt
(insbes. ist jeder Term ein Subterm von sich selbst).

Beispiel: f (c , c) ist Subterm des Terms f (v0, f (c , c)).

• Sei ξ ∈ T∪FO, d.h. ξ ist ein Term oder eine Formel der Logik erster Stufe.

• Ähnlich wie bei aussagenlogischen Formeln können wir einen Syntaxbaum
für ξ definieren.

• Das Lemma über die eindeutige Lesbarkeit von Termen und Formeln besagt,
dass jeder Term und jede Formel genau einen Syntaxbaum hat.

• Die Subterme von ξ (falls ξ ∈ T) bzw. Subformeln von ξ (falls ξ ∈ FO) sind
dann alle Terme bzw. Formeln, die im Syntaxbaum vorkommen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 209

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Subformeln, Subterme und Syntaxbäume

• Eine Formel ψ ist Subformel einer Formel φ, wenn ψ als Teilwort in φ
vorkommt (insbes. ist jede Formel eine Subformel von sich selbst).

Beispiel: ψ := E (v0, v1) ist Subformel der Formel ∃v0∀v1 E (v0, v1)

• Ein Term s ist Subterm eines Terms t, wenn s als Teilwort in t vorkommt
(insbes. ist jeder Term ein Subterm von sich selbst).

Beispiel: f (c , c) ist Subterm des Terms f (v0, f (c , c)).

• Sei ξ ∈ T∪FO, d.h. ξ ist ein Term oder eine Formel der Logik erster Stufe.

• Ähnlich wie bei aussagenlogischen Formeln können wir einen Syntaxbaum
für ξ definieren.

• Das Lemma über die eindeutige Lesbarkeit von Termen und Formeln besagt,
dass jeder Term und jede Formel genau einen Syntaxbaum hat.

• Die Subterme von ξ (falls ξ ∈ T) bzw. Subformeln von ξ (falls ξ ∈ FO) sind
dann alle Terme bzw. Formeln, die im Syntaxbaum vorkommen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 209

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Subformeln, Subterme und Syntaxbäume

• Eine Formel ψ ist Subformel einer Formel φ, wenn ψ als Teilwort in φ
vorkommt (insbes. ist jede Formel eine Subformel von sich selbst).

Beispiel: ψ := E (v0, v1) ist Subformel der Formel ∃v0∀v1 E (v0, v1)

• Ein Term s ist Subterm eines Terms t, wenn s als Teilwort in t vorkommt
(insbes. ist jeder Term ein Subterm von sich selbst).

Beispiel: f (c , c) ist Subterm des Terms f (v0, f (c , c)).

• Sei ξ ∈ T∪FO, d.h. ξ ist ein Term oder eine Formel der Logik erster Stufe.

• Ähnlich wie bei aussagenlogischen Formeln können wir einen Syntaxbaum
für ξ definieren.

• Das Lemma über die eindeutige Lesbarkeit von Termen und Formeln besagt,
dass jeder Term und jede Formel genau einen Syntaxbaum hat.

• Die Subterme von ξ (falls ξ ∈ T) bzw. Subformeln von ξ (falls ξ ∈ FO) sind
dann alle Terme bzw. Formeln, die im Syntaxbaum vorkommen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 209

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Subformeln, Subterme und Syntaxbäume

• Eine Formel ψ ist Subformel einer Formel φ, wenn ψ als Teilwort in φ
vorkommt (insbes. ist jede Formel eine Subformel von sich selbst).

Beispiel: ψ := E (v0, v1) ist Subformel der Formel ∃v0∀v1 E (v0, v1)

• Ein Term s ist Subterm eines Terms t, wenn s als Teilwort in t vorkommt
(insbes. ist jeder Term ein Subterm von sich selbst).

Beispiel: f (c , c) ist Subterm des Terms f (v0, f (c , c)).

• Sei ξ ∈ T∪FO, d.h. ξ ist ein Term oder eine Formel der Logik erster Stufe.

• Ähnlich wie bei aussagenlogischen Formeln können wir einen Syntaxbaum
für ξ definieren.

• Das Lemma über die eindeutige Lesbarkeit von Termen und Formeln besagt,
dass jeder Term und jede Formel genau einen Syntaxbaum hat.

• Die Subterme von ξ (falls ξ ∈ T) bzw. Subformeln von ξ (falls ξ ∈ FO) sind
dann alle Terme bzw. Formeln, die im Syntaxbaum vorkommen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 209

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Das Isomorphielemma

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Das Isomorphielemma besagt, dass isomorphe Objekte (Strukturen bzw.
Interpretationen) dieselben Formeln der Logik erster Stufe erfüllen.

Um diese Aussage präzise formulieren zu können, benötigen wir die folgende
Notation.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 210

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Isomorphismen, Belegungen und Interpretationen

Definition 3.22
Sei σ eine Signatur, seien A,B isomorphe σ-Strukturen und sei π ein
Isomorphismus von A nach B (kurz: π : A ∼= B).

(a) Für jede Belegung β in A sei πβ die Belegung in B, so dass für alle
x ∈ VAR gilt:

πβ (x) = π
(
β(x)

)
.

(b) Für eine Interpretation I = (A, β) schreiben wir πI für die Interpretation

πI := (B, πβ).

Aus dieser Definition folgt direkt:

Lemma 3.23
Sei σ eine Signatur, seien A,B isomorphe σ-Strukturen, sei π : A ∼= B, sei β
eine Belegung in A und sei I := (A, β).
Für jedes x ∈ VAR, für jedes a ∈ A, für I ′ := I a

x und für b := π(a) gilt:

πI ′ = (πI) bx .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 211

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Isomorphismen, Belegungen und Interpretationen

Definition 3.22
Sei σ eine Signatur, seien A,B isomorphe σ-Strukturen und sei π ein
Isomorphismus von A nach B (kurz: π : A ∼= B).
(a) Für jede Belegung β in A sei πβ die Belegung in B, so dass für alle

x ∈ VAR gilt:
πβ (x) = π

(
β(x)

)
.

(b) Für eine Interpretation I = (A, β) schreiben wir πI für die Interpretation

πI := (B, πβ).

Aus dieser Definition folgt direkt:

Lemma 3.23
Sei σ eine Signatur, seien A,B isomorphe σ-Strukturen, sei π : A ∼= B, sei β
eine Belegung in A und sei I := (A, β).
Für jedes x ∈ VAR, für jedes a ∈ A, für I ′ := I a

x und für b := π(a) gilt:

πI ′ = (πI) bx .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 211

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Isomorphismen, Belegungen und Interpretationen

Definition 3.22
Sei σ eine Signatur, seien A,B isomorphe σ-Strukturen und sei π ein
Isomorphismus von A nach B (kurz: π : A ∼= B).
(a) Für jede Belegung β in A sei πβ die Belegung in B, so dass für alle

x ∈ VAR gilt:
πβ (x) = π

(
β(x)

)
.

(b) Für eine Interpretation I = (A, β) schreiben wir πI für die Interpretation

πI := (B, πβ).

Aus dieser Definition folgt direkt:

Lemma 3.23
Sei σ eine Signatur, seien A,B isomorphe σ-Strukturen, sei π : A ∼= B, sei β
eine Belegung in A und sei I := (A, β).
Für jedes x ∈ VAR, für jedes a ∈ A, für I ′ := I a

x und für b := π(a) gilt:

πI ′ = (πI) bx .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 211

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Isomorphismen, Belegungen und Interpretationen

Definition 3.22
Sei σ eine Signatur, seien A,B isomorphe σ-Strukturen und sei π ein
Isomorphismus von A nach B (kurz: π : A ∼= B).
(a) Für jede Belegung β in A sei πβ die Belegung in B, so dass für alle

x ∈ VAR gilt:
πβ (x) = π

(
β(x)

)
.

(b) Für eine Interpretation I = (A, β) schreiben wir πI für die Interpretation

πI := (B, πβ).

Aus dieser Definition folgt direkt:

Lemma 3.23
Sei σ eine Signatur, seien A,B isomorphe σ-Strukturen, sei π : A ∼= B, sei β
eine Belegung in A und sei I := (A, β).

Für jedes x ∈ VAR, für jedes a ∈ A, für I ′ := I a
x und für b := π(a) gilt:

πI ′ = (πI) bx .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 211

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Isomorphismen, Belegungen und Interpretationen

Definition 3.22
Sei σ eine Signatur, seien A,B isomorphe σ-Strukturen und sei π ein
Isomorphismus von A nach B (kurz: π : A ∼= B).
(a) Für jede Belegung β in A sei πβ die Belegung in B, so dass für alle

x ∈ VAR gilt:
πβ (x) = π

(
β(x)

)
.

(b) Für eine Interpretation I = (A, β) schreiben wir πI für die Interpretation

πI := (B, πβ).

Aus dieser Definition folgt direkt:

Lemma 3.23
Sei σ eine Signatur, seien A,B isomorphe σ-Strukturen, sei π : A ∼= B, sei β
eine Belegung in A und sei I := (A, β).
Für jedes x ∈ VAR, für jedes a ∈ A, für I ′ := I a

x und für b := π(a) gilt:

πI ′ = (πI) bx .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 211

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Isomorphismen, Belegungen und Interpretationen

Definition 3.22
Sei σ eine Signatur, seien A,B isomorphe σ-Strukturen und sei π ein
Isomorphismus von A nach B (kurz: π : A ∼= B).
(a) Für jede Belegung β in A sei πβ die Belegung in B, so dass für alle

x ∈ VAR gilt:
πβ (x) = π

(
β(x)

)
.

(b) Für eine Interpretation I = (A, β) schreiben wir πI für die Interpretation

πI := (B, πβ).

Aus dieser Definition folgt direkt:

Lemma 3.23
Sei σ eine Signatur, seien A,B isomorphe σ-Strukturen, sei π : A ∼= B, sei β
eine Belegung in A und sei I := (A, β).
Für jedes x ∈ VAR, für jedes a ∈ A, für I ′ := I a

x und für b := π(a) gilt:

πI ′ = (πI) bx .
Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 211

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Das Isomorphielemma

Satz 3.24 (Das Isomorphielemma der Logik erster Stufe)
Sei σ eine Signatur, seien A,B isomorphe σ-Strukturen und sei π : A ∼= B.

Für
jede Belegung β in A und die σ-Interpretation I := (A, β) gilt:
(a) Für jeden σ-Term t ∈ Tσ ist JtKπI = π

(
JtKI

)
.

(b) Für jede FO[σ]-Formel φ gilt: πI |= φ ⇐⇒ I |= φ.

Wir werden das Isomorphielemma per Induktion über den Aufbau von Termen
und Formeln beweisen. Hierzu zunächst ein kurzer Überblick darüber, wie solche
Induktionsbeweise prinzipiell aufgebaut sind.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 212

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Das Isomorphielemma

Satz 3.24 (Das Isomorphielemma der Logik erster Stufe)
Sei σ eine Signatur, seien A,B isomorphe σ-Strukturen und sei π : A ∼= B. Für
jede Belegung β in A und die σ-Interpretation I := (A, β) gilt:

(a) Für jeden σ-Term t ∈ Tσ ist JtKπI = π
(
JtKI

)
.

(b) Für jede FO[σ]-Formel φ gilt: πI |= φ ⇐⇒ I |= φ.

Wir werden das Isomorphielemma per Induktion über den Aufbau von Termen
und Formeln beweisen. Hierzu zunächst ein kurzer Überblick darüber, wie solche
Induktionsbeweise prinzipiell aufgebaut sind.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 212

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Das Isomorphielemma

Satz 3.24 (Das Isomorphielemma der Logik erster Stufe)
Sei σ eine Signatur, seien A,B isomorphe σ-Strukturen und sei π : A ∼= B. Für
jede Belegung β in A und die σ-Interpretation I := (A, β) gilt:
(a) Für jeden σ-Term t ∈ Tσ ist JtKπI = π

(
JtKI

)
.

(b) Für jede FO[σ]-Formel φ gilt: πI |= φ ⇐⇒ I |= φ.

Wir werden das Isomorphielemma per Induktion über den Aufbau von Termen
und Formeln beweisen. Hierzu zunächst ein kurzer Überblick darüber, wie solche
Induktionsbeweise prinzipiell aufgebaut sind.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 212

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Das Isomorphielemma

Satz 3.24 (Das Isomorphielemma der Logik erster Stufe)
Sei σ eine Signatur, seien A,B isomorphe σ-Strukturen und sei π : A ∼= B. Für
jede Belegung β in A und die σ-Interpretation I := (A, β) gilt:
(a) Für jeden σ-Term t ∈ Tσ ist JtKπI = π

(
JtKI

)
.

(b) Für jede FO[σ]-Formel φ gilt: πI |= φ ⇐⇒ I |= φ.

Wir werden das Isomorphielemma per Induktion über den Aufbau von Termen
und Formeln beweisen. Hierzu zunächst ein kurzer Überblick darüber, wie solche
Induktionsbeweise prinzipiell aufgebaut sind.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 212

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Das Isomorphielemma

Satz 3.24 (Das Isomorphielemma der Logik erster Stufe)
Sei σ eine Signatur, seien A,B isomorphe σ-Strukturen und sei π : A ∼= B. Für
jede Belegung β in A und die σ-Interpretation I := (A, β) gilt:
(a) Für jeden σ-Term t ∈ Tσ ist JtKπI = π

(
JtKI

)
.

(b) Für jede FO[σ]-Formel φ gilt: πI |= φ ⇐⇒ I |= φ.

Wir werden das Isomorphielemma per Induktion über den Aufbau von Termen
und Formeln beweisen. Hierzu zunächst ein kurzer Überblick darüber, wie solche
Induktionsbeweise prinzipiell aufgebaut sind.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 212

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Beweise per Induktion über den Aufbau von Termen und
Formeln

• Ähnlich wie Aussagen über die aussagenlogischen Formeln können wir
Aussagen über Terme und Formeln der Logik der erster Stufe per Induktion
über den Aufbau von Tσ bzw. FO[σ] beweisen.

• Im Induktionsanfang beweisen wir die Aussagen für die gemäß Basisregeln
definierten Terme bzw. Formeln. Im Induktionschritt schließen wir von den
Subtermen bzw. Subformeln auf den Term bzw. die Formel selbst.

• Wie bei der Aussagenlogik ist dieses Vorgehen gerechtfertigt, weil es sich
auch als vollständige Induktion über die Höhe des Syntaxbaums auffassen
lässt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 213

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Beweise per Induktion über den Aufbau von Termen und
Formeln

• Ähnlich wie Aussagen über die aussagenlogischen Formeln können wir
Aussagen über Terme und Formeln der Logik der erster Stufe per Induktion
über den Aufbau von Tσ bzw. FO[σ] beweisen.

• Im Induktionsanfang beweisen wir die Aussagen für die gemäß Basisregeln
definierten Terme bzw. Formeln.

Im Induktionschritt schließen wir von den
Subtermen bzw. Subformeln auf den Term bzw. die Formel selbst.

• Wie bei der Aussagenlogik ist dieses Vorgehen gerechtfertigt, weil es sich
auch als vollständige Induktion über die Höhe des Syntaxbaums auffassen
lässt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 213

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Beweise per Induktion über den Aufbau von Termen und
Formeln

• Ähnlich wie Aussagen über die aussagenlogischen Formeln können wir
Aussagen über Terme und Formeln der Logik der erster Stufe per Induktion
über den Aufbau von Tσ bzw. FO[σ] beweisen.

• Im Induktionsanfang beweisen wir die Aussagen für die gemäß Basisregeln
definierten Terme bzw. Formeln. Im Induktionschritt schließen wir von den
Subtermen bzw. Subformeln auf den Term bzw. die Formel selbst.

• Wie bei der Aussagenlogik ist dieses Vorgehen gerechtfertigt, weil es sich
auch als vollständige Induktion über die Höhe des Syntaxbaums auffassen
lässt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 213

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Beweise per Induktion über den Aufbau von Termen und
Formeln

• Ähnlich wie Aussagen über die aussagenlogischen Formeln können wir
Aussagen über Terme und Formeln der Logik der erster Stufe per Induktion
über den Aufbau von Tσ bzw. FO[σ] beweisen.

• Im Induktionsanfang beweisen wir die Aussagen für die gemäß Basisregeln
definierten Terme bzw. Formeln. Im Induktionschritt schließen wir von den
Subtermen bzw. Subformeln auf den Term bzw. die Formel selbst.

• Wie bei der Aussagenlogik ist dieses Vorgehen gerechtfertigt, weil es sich
auch als vollständige Induktion über die Höhe des Syntaxbaums auffassen
lässt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 213

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Beweise per Induktion über den Aufbau von Termen

Schematisch sieht der Beweis einer Aussage A(t) für alle Terme t ∈ Tσ wie
folgt aus:

Induktionsanfang:

• Beweise, dass für alle Konstantensymbole c ∈ σ die Aussage A(c) gilt.
• Beweise, dass für alle Variablen x ∈ VAR die Aussage A(x) gilt.

Induktionsschritt:

• Betrachte jedes Funktionssymbol f ∈ σ, sei k := ar(f), und seien t1, . . . , tk
beliebige σ-Terme. Beweise, dass A

(
f (t1, . . . , tk)

)
gilt, und verwende dazu

die Induktionsannahme, dass A(ti) für jedes i ∈ [k] gilt.

Mit dieser Vorgehensweise beweisen wir nun Teil (a) des Isomorphielemmas.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 214

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Beweise per Induktion über den Aufbau von Termen

Schematisch sieht der Beweis einer Aussage A(t) für alle Terme t ∈ Tσ wie
folgt aus:

Induktionsanfang:

• Beweise, dass für alle Konstantensymbole c ∈ σ die Aussage A(c) gilt.
• Beweise, dass für alle Variablen x ∈ VAR die Aussage A(x) gilt.

Induktionsschritt:

• Betrachte jedes Funktionssymbol f ∈ σ, sei k := ar(f), und seien t1, . . . , tk
beliebige σ-Terme. Beweise, dass A

(
f (t1, . . . , tk)

)
gilt, und verwende dazu

die Induktionsannahme, dass A(ti) für jedes i ∈ [k] gilt.

Mit dieser Vorgehensweise beweisen wir nun Teil (a) des Isomorphielemmas.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 214

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Beweise per Induktion über den Aufbau von Termen

Schematisch sieht der Beweis einer Aussage A(t) für alle Terme t ∈ Tσ wie
folgt aus:

Induktionsanfang:

• Beweise, dass für alle Konstantensymbole c ∈ σ die Aussage A(c) gilt.

• Beweise, dass für alle Variablen x ∈ VAR die Aussage A(x) gilt.

Induktionsschritt:

• Betrachte jedes Funktionssymbol f ∈ σ, sei k := ar(f), und seien t1, . . . , tk
beliebige σ-Terme. Beweise, dass A

(
f (t1, . . . , tk)

)
gilt, und verwende dazu

die Induktionsannahme, dass A(ti) für jedes i ∈ [k] gilt.

Mit dieser Vorgehensweise beweisen wir nun Teil (a) des Isomorphielemmas.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 214

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Beweise per Induktion über den Aufbau von Termen

Schematisch sieht der Beweis einer Aussage A(t) für alle Terme t ∈ Tσ wie
folgt aus:

Induktionsanfang:

• Beweise, dass für alle Konstantensymbole c ∈ σ die Aussage A(c) gilt.
• Beweise, dass für alle Variablen x ∈ VAR die Aussage A(x) gilt.

Induktionsschritt:

• Betrachte jedes Funktionssymbol f ∈ σ, sei k := ar(f), und seien t1, . . . , tk
beliebige σ-Terme. Beweise, dass A

(
f (t1, . . . , tk)

)
gilt, und verwende dazu

die Induktionsannahme, dass A(ti) für jedes i ∈ [k] gilt.

Mit dieser Vorgehensweise beweisen wir nun Teil (a) des Isomorphielemmas.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 214

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Beweise per Induktion über den Aufbau von Termen

Schematisch sieht der Beweis einer Aussage A(t) für alle Terme t ∈ Tσ wie
folgt aus:

Induktionsanfang:

• Beweise, dass für alle Konstantensymbole c ∈ σ die Aussage A(c) gilt.
• Beweise, dass für alle Variablen x ∈ VAR die Aussage A(x) gilt.

Induktionsschritt:

• Betrachte jedes Funktionssymbol f ∈ σ, sei k := ar(f), und seien t1, . . . , tk
beliebige σ-Terme. Beweise, dass A

(
f (t1, . . . , tk)

)
gilt, und verwende dazu

die Induktionsannahme, dass A(ti) für jedes i ∈ [k] gilt.

Mit dieser Vorgehensweise beweisen wir nun Teil (a) des Isomorphielemmas.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 214

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Beweise per Induktion über den Aufbau von Termen

Schematisch sieht der Beweis einer Aussage A(t) für alle Terme t ∈ Tσ wie
folgt aus:

Induktionsanfang:

• Beweise, dass für alle Konstantensymbole c ∈ σ die Aussage A(c) gilt.
• Beweise, dass für alle Variablen x ∈ VAR die Aussage A(x) gilt.

Induktionsschritt:

• Betrachte jedes Funktionssymbol f ∈ σ, sei k := ar(f), und seien t1, . . . , tk
beliebige σ-Terme. Beweise, dass A

(
f (t1, . . . , tk)

)
gilt, und verwende dazu

die Induktionsannahme, dass A(ti) für jedes i ∈ [k] gilt.

Mit dieser Vorgehensweise beweisen wir nun Teil (a) des Isomorphielemmas.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 214

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Teil (b) des Isomorphielemmas beweisen wir per Induktion über den Aufbau von
Formeln. Prinzipiell sind solche Induktionsbeweise wie folgt aufgebaut.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 215

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Beweise per Induktion über den Aufbau von Formeln

Schematisch sieht der Beweis einer Aussage A(φ) für alle FO[σ]-Formeln φ wie
folgt aus:

Induktionsanfang:

• Beweise, dass für alle σ-Terme t1, t2 ∈ Tσ die Aussage A(t1=t2) gilt.

• Beweise, dass für alle Relationssymbole R ∈ σ, für k := ar(R) und für alle
σ-Terme t1, . . . , tk ∈ Tσ die Aussage A

(
R(t1, . . . , tk)

)
gilt

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 216

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Beweise per Induktion über den Aufbau von Formeln

Schematisch sieht der Beweis einer Aussage A(φ) für alle FO[σ]-Formeln φ wie
folgt aus:

Induktionsanfang:

• Beweise, dass für alle σ-Terme t1, t2 ∈ Tσ die Aussage A(t1=t2) gilt.

• Beweise, dass für alle Relationssymbole R ∈ σ, für k := ar(R) und für alle
σ-Terme t1, . . . , tk ∈ Tσ die Aussage A

(
R(t1, . . . , tk)

)
gilt

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 216

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Beweise per Induktion über den Aufbau von Formeln

Schematisch sieht der Beweis einer Aussage A(φ) für alle FO[σ]-Formeln φ wie
folgt aus:

Induktionsanfang:

• Beweise, dass für alle σ-Terme t1, t2 ∈ Tσ die Aussage A(t1=t2) gilt.

• Beweise, dass für alle Relationssymbole R ∈ σ, für k := ar(R) und für alle
σ-Terme t1, . . . , tk ∈ Tσ die Aussage A

(
R(t1, . . . , tk)

)
gilt

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 216

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Beweise per Induktion über den Aufbau von Formeln

Schematisch sieht der Beweis einer Aussage A(φ) für alle FO[σ]-Formeln φ wie
folgt aus:

Induktionsanfang:

• Beweise, dass für alle σ-Terme t1, t2 ∈ Tσ die Aussage A(t1=t2) gilt.

• Beweise, dass für alle Relationssymbole R ∈ σ, für k := ar(R) und für alle
σ-Terme t1, . . . , tk ∈ Tσ die Aussage A

(
R(t1, . . . , tk)

)
gilt

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 216

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Induktionsschritt:

Seien φ und ψ beliebige FO[σ]-Formeln. Die Induktionsannahme besagt, dass
die Aussagen A(φ) und A(ψ) gelten.

Im Induktionsschritt muss dann gezeigt werden, dass

• für jede Variable x ∈ VAR die Aussage A(∃x φ) gilt,

• für jede Variable x ∈ VAR die Aussage A(∀x φ) gilt,

• die Aussage A(¬φ) gilt,

• die Aussage A
(
(φ ∧ ψ)

)
gilt,

• die Aussage A
(
(φ ∨ ψ)

)
gilt,

• die Aussage A
(
(φ→ ψ)

)
gilt.

Mit dieser Vorgehensweise beweisen wir nun Teil (b) des Isomorphielemmas.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 217

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Induktionsschritt:

Seien φ und ψ beliebige FO[σ]-Formeln. Die Induktionsannahme besagt, dass
die Aussagen A(φ) und A(ψ) gelten.

Im Induktionsschritt muss dann gezeigt werden, dass

• für jede Variable x ∈ VAR die Aussage A(∃x φ) gilt,

• für jede Variable x ∈ VAR die Aussage A(∀x φ) gilt,

• die Aussage A(¬φ) gilt,

• die Aussage A
(
(φ ∧ ψ)

)
gilt,

• die Aussage A
(
(φ ∨ ψ)

)
gilt,

• die Aussage A
(
(φ→ ψ)

)
gilt.

Mit dieser Vorgehensweise beweisen wir nun Teil (b) des Isomorphielemmas.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 217

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Induktionsschritt:

Seien φ und ψ beliebige FO[σ]-Formeln. Die Induktionsannahme besagt, dass
die Aussagen A(φ) und A(ψ) gelten.

Im Induktionsschritt muss dann gezeigt werden, dass

• für jede Variable x ∈ VAR die Aussage A(∃x φ) gilt,

• für jede Variable x ∈ VAR die Aussage A(∀x φ) gilt,

• die Aussage A(¬φ) gilt,

• die Aussage A
(
(φ ∧ ψ)

)
gilt,

• die Aussage A
(
(φ ∨ ψ)

)
gilt,

• die Aussage A
(
(φ→ ψ)

)
gilt.

Mit dieser Vorgehensweise beweisen wir nun Teil (b) des Isomorphielemmas.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 217

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Induktionsschritt:

Seien φ und ψ beliebige FO[σ]-Formeln. Die Induktionsannahme besagt, dass
die Aussagen A(φ) und A(ψ) gelten.

Im Induktionsschritt muss dann gezeigt werden, dass

• für jede Variable x ∈ VAR die Aussage A(∃x φ) gilt,

• für jede Variable x ∈ VAR die Aussage A(∀x φ) gilt,

• die Aussage A(¬φ) gilt,

• die Aussage A
(
(φ ∧ ψ)

)
gilt,

• die Aussage A
(
(φ ∨ ψ)

)
gilt,

• die Aussage A
(
(φ→ ψ)

)
gilt.

Mit dieser Vorgehensweise beweisen wir nun Teil (b) des Isomorphielemmas.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 217

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Induktionsschritt:

Seien φ und ψ beliebige FO[σ]-Formeln. Die Induktionsannahme besagt, dass
die Aussagen A(φ) und A(ψ) gelten.

Im Induktionsschritt muss dann gezeigt werden, dass

• für jede Variable x ∈ VAR die Aussage A(∃x φ) gilt,

• für jede Variable x ∈ VAR die Aussage A(∀x φ) gilt,

• die Aussage A(¬φ) gilt,

• die Aussage A
(
(φ ∧ ψ)

)
gilt,

• die Aussage A
(
(φ ∨ ψ)

)
gilt,

• die Aussage A
(
(φ→ ψ)

)
gilt.

Mit dieser Vorgehensweise beweisen wir nun Teil (b) des Isomorphielemmas.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 217

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Induktionsschritt:

Seien φ und ψ beliebige FO[σ]-Formeln. Die Induktionsannahme besagt, dass
die Aussagen A(φ) und A(ψ) gelten.

Im Induktionsschritt muss dann gezeigt werden, dass

• für jede Variable x ∈ VAR die Aussage A(∃x φ) gilt,

• für jede Variable x ∈ VAR die Aussage A(∀x φ) gilt,

• die Aussage A(¬φ) gilt,

• die Aussage A
(
(φ ∧ ψ)

)
gilt,

• die Aussage A
(
(φ ∨ ψ)

)
gilt,

• die Aussage A
(
(φ→ ψ)

)
gilt.

Mit dieser Vorgehensweise beweisen wir nun Teil (b) des Isomorphielemmas.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 217

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Das Koinzidenzlemma

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Ähnlich wie für die Aussagenlogik gilt auch für die Logik erster Stufe ein
Koinzidenzlemma, das besagt, dass

der Wert JtKI eines Terms t bzw. der Wert

JφKI einer Formel φ nur abhängt von

• denjenigen Bestandteilen von A, die explizit in t bzw. φ vorkommen, und

• den Belegungen β(x) derjenigen Variablen x , die in t vorkommen bzw. die
in φ vorkommen und nicht im Wirkungsbereich eines Quantors stehen.

Um diese Aussage präzise zu formulieren, sind folgende Begriffe nützlich.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 218

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Ähnlich wie für die Aussagenlogik gilt auch für die Logik erster Stufe ein
Koinzidenzlemma, das besagt, dass der Wert JtKI eines Terms t bzw. der Wert

JφKI einer Formel φ nur abhängt von

• denjenigen Bestandteilen von A, die explizit in t bzw. φ vorkommen, und

• den Belegungen β(x) derjenigen Variablen x , die in t vorkommen bzw. die
in φ vorkommen und nicht im Wirkungsbereich eines Quantors stehen.

Um diese Aussage präzise zu formulieren, sind folgende Begriffe nützlich.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 218

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Ähnlich wie für die Aussagenlogik gilt auch für die Logik erster Stufe ein
Koinzidenzlemma, das besagt, dass der Wert JtKI eines Terms t bzw. der Wert

JφKI einer Formel φ nur abhängt von

• denjenigen Bestandteilen von A, die explizit in t bzw. φ vorkommen,

und

• den Belegungen β(x) derjenigen Variablen x , die in t vorkommen bzw. die
in φ vorkommen und nicht im Wirkungsbereich eines Quantors stehen.

Um diese Aussage präzise zu formulieren, sind folgende Begriffe nützlich.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 218

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Ähnlich wie für die Aussagenlogik gilt auch für die Logik erster Stufe ein
Koinzidenzlemma, das besagt, dass der Wert JtKI eines Terms t bzw. der Wert

JφKI einer Formel φ nur abhängt von

• denjenigen Bestandteilen von A, die explizit in t bzw. φ vorkommen, und

• den Belegungen β(x) derjenigen Variablen x , die in t vorkommen

bzw. die
in φ vorkommen und nicht im Wirkungsbereich eines Quantors stehen.

Um diese Aussage präzise zu formulieren, sind folgende Begriffe nützlich.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 218

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Ähnlich wie für die Aussagenlogik gilt auch für die Logik erster Stufe ein
Koinzidenzlemma, das besagt, dass der Wert JtKI eines Terms t bzw. der Wert

JφKI einer Formel φ nur abhängt von

• denjenigen Bestandteilen von A, die explizit in t bzw. φ vorkommen, und

• den Belegungen β(x) derjenigen Variablen x , die in t vorkommen bzw. die
in φ vorkommen und nicht im Wirkungsbereich eines Quantors stehen.

Um diese Aussage präzise zu formulieren, sind folgende Begriffe nützlich.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 218

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Ähnlich wie für die Aussagenlogik gilt auch für die Logik erster Stufe ein
Koinzidenzlemma, das besagt, dass der Wert JtKI eines Terms t bzw. der Wert

JφKI einer Formel φ nur abhängt von

• denjenigen Bestandteilen von A, die explizit in t bzw. φ vorkommen, und

• den Belegungen β(x) derjenigen Variablen x , die in t vorkommen bzw. die
in φ vorkommen und nicht im Wirkungsbereich eines Quantors stehen.

Um diese Aussage präzise zu formulieren, sind folgende Begriffe nützlich.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 218

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Definition 3.25

(a) Ist ξ ein Term oder eine Formel der Logik erster Stufe, so schreiben wir

• σ(ξ), um die Menge aller Relations-, Funktions- und Konstantensymbole zu
bezeichnen, die in ξ vorkommen,

• var(ξ), um die Menge aller in ξ vorkommenden Variablen zu bezeichnen.

(b) Ist φ eine Formel und x eine Variable, so heißt jedes Vorkommen von x in
einer Subformel von φ, die von der Form ∃xψ oder ∀xψ ist, gebunden.
Jedes andere Vorkommen von x in φ heißt frei.

Beispiel:
φ :=

(
f (v0, c)=v3 ∧ ∃v0 f (v0, v1)=c

)
Das erste Vorkommen von v0 in φ ist frei, das zweite und dritte Vorkommen
von v0 in φ ist gebunden. Die Vorkommen von v1 und v3 in φ sind frei.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 219

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Definition 3.25

(a) Ist ξ ein Term oder eine Formel der Logik erster Stufe, so schreiben wir

• σ(ξ), um die Menge aller Relations-, Funktions- und Konstantensymbole zu
bezeichnen, die in ξ vorkommen,

• var(ξ), um die Menge aller in ξ vorkommenden Variablen zu bezeichnen.

(b) Ist φ eine Formel und x eine Variable, so heißt jedes Vorkommen von x in
einer Subformel von φ, die von der Form ∃xψ oder ∀xψ ist, gebunden.
Jedes andere Vorkommen von x in φ heißt frei.

Beispiel:
φ :=

(
f (v0, c)=v3 ∧ ∃v0 f (v0, v1)=c

)
Das erste Vorkommen von v0 in φ ist frei, das zweite und dritte Vorkommen
von v0 in φ ist gebunden. Die Vorkommen von v1 und v3 in φ sind frei.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 219

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Definition 3.25

(a) Ist ξ ein Term oder eine Formel der Logik erster Stufe, so schreiben wir

• σ(ξ), um die Menge aller Relations-, Funktions- und Konstantensymbole zu
bezeichnen, die in ξ vorkommen,

• var(ξ), um die Menge aller in ξ vorkommenden Variablen zu bezeichnen.

(b) Ist φ eine Formel und x eine Variable, so heißt jedes Vorkommen von x in
einer Subformel von φ, die von der Form ∃xψ oder ∀xψ ist, gebunden.

Jedes andere Vorkommen von x in φ heißt frei.

Beispiel:
φ :=

(
f (v0, c)=v3 ∧ ∃v0 f (v0, v1)=c

)
Das erste Vorkommen von v0 in φ ist frei, das zweite und dritte Vorkommen
von v0 in φ ist gebunden. Die Vorkommen von v1 und v3 in φ sind frei.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 219

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Definition 3.25

(a) Ist ξ ein Term oder eine Formel der Logik erster Stufe, so schreiben wir

• σ(ξ), um die Menge aller Relations-, Funktions- und Konstantensymbole zu
bezeichnen, die in ξ vorkommen,

• var(ξ), um die Menge aller in ξ vorkommenden Variablen zu bezeichnen.

(b) Ist φ eine Formel und x eine Variable, so heißt jedes Vorkommen von x in
einer Subformel von φ, die von der Form ∃xψ oder ∀xψ ist, gebunden.
Jedes andere Vorkommen von x in φ heißt frei.

Beispiel:
φ :=

(
f (v0, c)=v3 ∧ ∃v0 f (v0, v1)=c

)

Das erste Vorkommen von v0 in φ ist frei, das zweite und dritte Vorkommen
von v0 in φ ist gebunden. Die Vorkommen von v1 und v3 in φ sind frei.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 219

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Definition 3.25

(a) Ist ξ ein Term oder eine Formel der Logik erster Stufe, so schreiben wir

• σ(ξ), um die Menge aller Relations-, Funktions- und Konstantensymbole zu
bezeichnen, die in ξ vorkommen,

• var(ξ), um die Menge aller in ξ vorkommenden Variablen zu bezeichnen.

(b) Ist φ eine Formel und x eine Variable, so heißt jedes Vorkommen von x in
einer Subformel von φ, die von der Form ∃xψ oder ∀xψ ist, gebunden.
Jedes andere Vorkommen von x in φ heißt frei.

Beispiel:
φ :=

(
f (v0, c)=v3 ∧ ∃v0 f (v0, v1)=c

)
Das erste Vorkommen von v0 in φ ist frei, das zweite und dritte Vorkommen
von v0 in φ ist gebunden. Die Vorkommen von v1 und v3 in φ sind frei.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 219

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Freie Variablen

Definition 3.26
Die Menge frei(φ) aller freien Variablen einer Formel φ besteht aus allen
Variablen, die mindestens ein freies Vorkommen in φ haben.

Die Menge frei(φ) lässt sich rekursiv über den Aufbau von Formeln wie folgt
definieren:

frei(R(t1, . . . , tk)) := var(t1) ∪ · · · ∪ var(tk)

frei(t1=t2) := var(t1) ∪ var(t2)

frei(¬φ) := frei(φ)

frei((φ ∗ ψ)) := frei(φ) ∪ frei(ψ) für alle ∗ ∈ {∧,∨,→}
frei(∃x φ) := frei(∀x φ) := frei(φ) \ {x}.

Beispiele:

• frei(f (v0, c)=v3) = {v0, v3}
• frei(∃v0 f (v0, v1)=c) = {v1}
• frei(

(
f (v0, c)=v3 ∧ ∃v0 f (v0, v1)=c

)
) = {v0, v3, v1}

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 220

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Freie Variablen

Definition 3.26
Die Menge frei(φ) aller freien Variablen einer Formel φ besteht aus allen
Variablen, die mindestens ein freies Vorkommen in φ haben.
Die Menge frei(φ) lässt sich rekursiv über den Aufbau von Formeln wie folgt
definieren:

frei(R(t1, . . . , tk)) :=

var(t1) ∪ · · · ∪ var(tk)

frei(t1=t2) := var(t1) ∪ var(t2)

frei(¬φ) := frei(φ)

frei((φ ∗ ψ)) := frei(φ) ∪ frei(ψ) für alle ∗ ∈ {∧,∨,→}
frei(∃x φ) := frei(∀x φ) := frei(φ) \ {x}.

Beispiele:

• frei(f (v0, c)=v3) = {v0, v3}
• frei(∃v0 f (v0, v1)=c) = {v1}
• frei(

(
f (v0, c)=v3 ∧ ∃v0 f (v0, v1)=c

)
) = {v0, v3, v1}

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 220

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Freie Variablen

Definition 3.26
Die Menge frei(φ) aller freien Variablen einer Formel φ besteht aus allen
Variablen, die mindestens ein freies Vorkommen in φ haben.
Die Menge frei(φ) lässt sich rekursiv über den Aufbau von Formeln wie folgt
definieren:

frei(R(t1, . . . , tk)) := var(t1) ∪ · · · ∪ var(tk)

frei(t1=t2) := var(t1) ∪ var(t2)

frei(¬φ) := frei(φ)

frei((φ ∗ ψ)) := frei(φ) ∪ frei(ψ) für alle ∗ ∈ {∧,∨,→}
frei(∃x φ) := frei(∀x φ) := frei(φ) \ {x}.

Beispiele:

• frei(f (v0, c)=v3) = {v0, v3}
• frei(∃v0 f (v0, v1)=c) = {v1}
• frei(

(
f (v0, c)=v3 ∧ ∃v0 f (v0, v1)=c

)
) = {v0, v3, v1}

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 220

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Freie Variablen

Definition 3.26
Die Menge frei(φ) aller freien Variablen einer Formel φ besteht aus allen
Variablen, die mindestens ein freies Vorkommen in φ haben.
Die Menge frei(φ) lässt sich rekursiv über den Aufbau von Formeln wie folgt
definieren:

frei(R(t1, . . . , tk)) := var(t1) ∪ · · · ∪ var(tk)

frei(t1=t2) :=

var(t1) ∪ var(t2)

frei(¬φ) := frei(φ)

frei((φ ∗ ψ)) := frei(φ) ∪ frei(ψ) für alle ∗ ∈ {∧,∨,→}
frei(∃x φ) := frei(∀x φ) := frei(φ) \ {x}.

Beispiele:

• frei(f (v0, c)=v3) = {v0, v3}
• frei(∃v0 f (v0, v1)=c) = {v1}
• frei(

(
f (v0, c)=v3 ∧ ∃v0 f (v0, v1)=c

)
) = {v0, v3, v1}

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 220

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Freie Variablen

Definition 3.26
Die Menge frei(φ) aller freien Variablen einer Formel φ besteht aus allen
Variablen, die mindestens ein freies Vorkommen in φ haben.
Die Menge frei(φ) lässt sich rekursiv über den Aufbau von Formeln wie folgt
definieren:

frei(R(t1, . . . , tk)) := var(t1) ∪ · · · ∪ var(tk)

frei(t1=t2) := var(t1) ∪ var(t2)

frei(¬φ) := frei(φ)

frei((φ ∗ ψ)) := frei(φ) ∪ frei(ψ) für alle ∗ ∈ {∧,∨,→}
frei(∃x φ) := frei(∀x φ) := frei(φ) \ {x}.

Beispiele:

• frei(f (v0, c)=v3) = {v0, v3}
• frei(∃v0 f (v0, v1)=c) = {v1}
• frei(

(
f (v0, c)=v3 ∧ ∃v0 f (v0, v1)=c

)
) = {v0, v3, v1}

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 220

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Freie Variablen

Definition 3.26
Die Menge frei(φ) aller freien Variablen einer Formel φ besteht aus allen
Variablen, die mindestens ein freies Vorkommen in φ haben.
Die Menge frei(φ) lässt sich rekursiv über den Aufbau von Formeln wie folgt
definieren:

frei(R(t1, . . . , tk)) := var(t1) ∪ · · · ∪ var(tk)

frei(t1=t2) := var(t1) ∪ var(t2)

frei(¬φ) :=

frei(φ)

frei((φ ∗ ψ)) := frei(φ) ∪ frei(ψ) für alle ∗ ∈ {∧,∨,→}
frei(∃x φ) := frei(∀x φ) := frei(φ) \ {x}.

Beispiele:

• frei(f (v0, c)=v3) = {v0, v3}
• frei(∃v0 f (v0, v1)=c) = {v1}
• frei(

(
f (v0, c)=v3 ∧ ∃v0 f (v0, v1)=c

)
) = {v0, v3, v1}

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 220

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Freie Variablen

Definition 3.26
Die Menge frei(φ) aller freien Variablen einer Formel φ besteht aus allen
Variablen, die mindestens ein freies Vorkommen in φ haben.
Die Menge frei(φ) lässt sich rekursiv über den Aufbau von Formeln wie folgt
definieren:

frei(R(t1, . . . , tk)) := var(t1) ∪ · · · ∪ var(tk)

frei(t1=t2) := var(t1) ∪ var(t2)

frei(¬φ) := frei(φ)

frei((φ ∗ ψ)) := frei(φ) ∪ frei(ψ) für alle ∗ ∈ {∧,∨,→}
frei(∃x φ) := frei(∀x φ) := frei(φ) \ {x}.

Beispiele:

• frei(f (v0, c)=v3) = {v0, v3}
• frei(∃v0 f (v0, v1)=c) = {v1}
• frei(

(
f (v0, c)=v3 ∧ ∃v0 f (v0, v1)=c

)
) = {v0, v3, v1}

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 220

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Freie Variablen

Definition 3.26
Die Menge frei(φ) aller freien Variablen einer Formel φ besteht aus allen
Variablen, die mindestens ein freies Vorkommen in φ haben.
Die Menge frei(φ) lässt sich rekursiv über den Aufbau von Formeln wie folgt
definieren:

frei(R(t1, . . . , tk)) := var(t1) ∪ · · · ∪ var(tk)

frei(t1=t2) := var(t1) ∪ var(t2)

frei(¬φ) := frei(φ)

frei((φ ∗ ψ)) :=

frei(φ) ∪ frei(ψ) für alle ∗ ∈ {∧,∨,→}
frei(∃x φ) := frei(∀x φ) := frei(φ) \ {x}.

Beispiele:

• frei(f (v0, c)=v3) = {v0, v3}
• frei(∃v0 f (v0, v1)=c) = {v1}
• frei(

(
f (v0, c)=v3 ∧ ∃v0 f (v0, v1)=c

)
) = {v0, v3, v1}

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 220

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Freie Variablen

Definition 3.26
Die Menge frei(φ) aller freien Variablen einer Formel φ besteht aus allen
Variablen, die mindestens ein freies Vorkommen in φ haben.
Die Menge frei(φ) lässt sich rekursiv über den Aufbau von Formeln wie folgt
definieren:

frei(R(t1, . . . , tk)) := var(t1) ∪ · · · ∪ var(tk)

frei(t1=t2) := var(t1) ∪ var(t2)

frei(¬φ) := frei(φ)

frei((φ ∗ ψ)) := frei(φ) ∪ frei(ψ) für alle ∗ ∈ {∧,∨,→}

frei(∃x φ) := frei(∀x φ) := frei(φ) \ {x}.

Beispiele:

• frei(f (v0, c)=v3) = {v0, v3}
• frei(∃v0 f (v0, v1)=c) = {v1}
• frei(

(
f (v0, c)=v3 ∧ ∃v0 f (v0, v1)=c

)
) = {v0, v3, v1}

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 220

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Freie Variablen

Definition 3.26
Die Menge frei(φ) aller freien Variablen einer Formel φ besteht aus allen
Variablen, die mindestens ein freies Vorkommen in φ haben.
Die Menge frei(φ) lässt sich rekursiv über den Aufbau von Formeln wie folgt
definieren:

frei(R(t1, . . . , tk)) := var(t1) ∪ · · · ∪ var(tk)

frei(t1=t2) := var(t1) ∪ var(t2)

frei(¬φ) := frei(φ)

frei((φ ∗ ψ)) := frei(φ) ∪ frei(ψ) für alle ∗ ∈ {∧,∨,→}
frei(∃x φ) := frei(∀x φ) :=

frei(φ) \ {x}.

Beispiele:

• frei(f (v0, c)=v3) = {v0, v3}
• frei(∃v0 f (v0, v1)=c) = {v1}
• frei(

(
f (v0, c)=v3 ∧ ∃v0 f (v0, v1)=c

)
) = {v0, v3, v1}

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 220

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Freie Variablen

Definition 3.26
Die Menge frei(φ) aller freien Variablen einer Formel φ besteht aus allen
Variablen, die mindestens ein freies Vorkommen in φ haben.
Die Menge frei(φ) lässt sich rekursiv über den Aufbau von Formeln wie folgt
definieren:

frei(R(t1, . . . , tk)) := var(t1) ∪ · · · ∪ var(tk)

frei(t1=t2) := var(t1) ∪ var(t2)

frei(¬φ) := frei(φ)

frei((φ ∗ ψ)) := frei(φ) ∪ frei(ψ) für alle ∗ ∈ {∧,∨,→}
frei(∃x φ) := frei(∀x φ) := frei(φ) \ {x}.

Beispiele:

• frei(f (v0, c)=v3) = {v0, v3}
• frei(∃v0 f (v0, v1)=c) = {v1}
• frei(

(
f (v0, c)=v3 ∧ ∃v0 f (v0, v1)=c

)
) = {v0, v3, v1}

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 220

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Freie Variablen

Definition 3.26
Die Menge frei(φ) aller freien Variablen einer Formel φ besteht aus allen
Variablen, die mindestens ein freies Vorkommen in φ haben.
Die Menge frei(φ) lässt sich rekursiv über den Aufbau von Formeln wie folgt
definieren:

frei(R(t1, . . . , tk)) := var(t1) ∪ · · · ∪ var(tk)

frei(t1=t2) := var(t1) ∪ var(t2)

frei(¬φ) := frei(φ)

frei((φ ∗ ψ)) := frei(φ) ∪ frei(ψ) für alle ∗ ∈ {∧,∨,→}
frei(∃x φ) := frei(∀x φ) := frei(φ) \ {x}.

Beispiele:

• frei(f (v0, c)=v3) =

{v0, v3}
• frei(∃v0 f (v0, v1)=c) = {v1}
• frei(

(
f (v0, c)=v3 ∧ ∃v0 f (v0, v1)=c

)
) = {v0, v3, v1}

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 220

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Freie Variablen

Definition 3.26
Die Menge frei(φ) aller freien Variablen einer Formel φ besteht aus allen
Variablen, die mindestens ein freies Vorkommen in φ haben.
Die Menge frei(φ) lässt sich rekursiv über den Aufbau von Formeln wie folgt
definieren:

frei(R(t1, . . . , tk)) := var(t1) ∪ · · · ∪ var(tk)

frei(t1=t2) := var(t1) ∪ var(t2)

frei(¬φ) := frei(φ)

frei((φ ∗ ψ)) := frei(φ) ∪ frei(ψ) für alle ∗ ∈ {∧,∨,→}
frei(∃x φ) := frei(∀x φ) := frei(φ) \ {x}.

Beispiele:

• frei(f (v0, c)=v3) = {v0, v3}
• frei(∃v0 f (v0, v1)=c) =

{v1}
• frei(

(
f (v0, c)=v3 ∧ ∃v0 f (v0, v1)=c

)
) = {v0, v3, v1}

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 220

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Freie Variablen

Definition 3.26
Die Menge frei(φ) aller freien Variablen einer Formel φ besteht aus allen
Variablen, die mindestens ein freies Vorkommen in φ haben.
Die Menge frei(φ) lässt sich rekursiv über den Aufbau von Formeln wie folgt
definieren:

frei(R(t1, . . . , tk)) := var(t1) ∪ · · · ∪ var(tk)

frei(t1=t2) := var(t1) ∪ var(t2)

frei(¬φ) := frei(φ)

frei((φ ∗ ψ)) := frei(φ) ∪ frei(ψ) für alle ∗ ∈ {∧,∨,→}
frei(∃x φ) := frei(∀x φ) := frei(φ) \ {x}.

Beispiele:

• frei(f (v0, c)=v3) = {v0, v3}
• frei(∃v0 f (v0, v1)=c) = {v1}
• frei(

(
f (v0, c)=v3 ∧ ∃v0 f (v0, v1)=c

)
) =

{v0, v3, v1}

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 220

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Freie Variablen

Definition 3.26
Die Menge frei(φ) aller freien Variablen einer Formel φ besteht aus allen
Variablen, die mindestens ein freies Vorkommen in φ haben.
Die Menge frei(φ) lässt sich rekursiv über den Aufbau von Formeln wie folgt
definieren:

frei(R(t1, . . . , tk)) := var(t1) ∪ · · · ∪ var(tk)

frei(t1=t2) := var(t1) ∪ var(t2)

frei(¬φ) := frei(φ)

frei((φ ∗ ψ)) := frei(φ) ∪ frei(ψ) für alle ∗ ∈ {∧,∨,→}
frei(∃x φ) := frei(∀x φ) := frei(φ) \ {x}.

Beispiele:

• frei(f (v0, c)=v3) = {v0, v3}
• frei(∃v0 f (v0, v1)=c) = {v1}
• frei(

(
f (v0, c)=v3 ∧ ∃v0 f (v0, v1)=c

)
) = {v0, v3, v1}

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 220

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Das Koinzidenzlemma
Satz 3.27 (Koinzidenzlemma für Terme)
Sei I1 = (A1, β1) eine σ1-Interpretation und sei I2 = (A2, β2) eine σ2-Interpretation,
wobei σ1 und σ2 Signaturen seien.

Sei t ∈ T ein Term mit σ(t) ⊆ σ1∩σ2, so dass gilt:

1. A1|σ(t) = A2|σ(t)

(d.h., die σ(t)-Redukte von A1 und A2 sind identisch), und

2. β1(x) = β2(x), für alle x ∈ var(t).

Dann gilt: JtKI1 = JtKI2 .

Beweis: Per Induktion über den Aufbau von Termen. Details: Übung.

Satz 3.28 (Koinzidenzlemma für FO-Formeln)
Sei I1 = (A1, β1) eine σ1-Interpretation und sei I2 = (A2, β2) eine σ2-Interpretation,
wobei σ1 und σ2 Signaturen seien.
Sei φ ∈ FO eine Formel der Logik erster Stufe mit σ(φ) ⊆ σ1 ∩ σ2, so dass gilt:

1. A1|σ(φ) = A2|σ(φ), und

2. β1(x) = β2(x), für alle x ∈ frei(φ).

Dann gilt: I1 |= φ ⇐⇒ I2 |= φ.

Beweis: Per Induktion über den Aufbau von Formeln. Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 221

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Das Koinzidenzlemma
Satz 3.27 (Koinzidenzlemma für Terme)
Sei I1 = (A1, β1) eine σ1-Interpretation und sei I2 = (A2, β2) eine σ2-Interpretation,
wobei σ1 und σ2 Signaturen seien. Sei t ∈ T ein Term mit σ(t) ⊆ σ1∩σ2, so dass gilt:

1. A1|σ(t) = A2|σ(t)

(d.h., die σ(t)-Redukte von A1 und A2 sind identisch), und

2. β1(x) = β2(x), für alle x ∈ var(t).

Dann gilt: JtKI1 = JtKI2 .

Beweis: Per Induktion über den Aufbau von Termen. Details: Übung.

Satz 3.28 (Koinzidenzlemma für FO-Formeln)
Sei I1 = (A1, β1) eine σ1-Interpretation und sei I2 = (A2, β2) eine σ2-Interpretation,
wobei σ1 und σ2 Signaturen seien.
Sei φ ∈ FO eine Formel der Logik erster Stufe mit σ(φ) ⊆ σ1 ∩ σ2, so dass gilt:

1. A1|σ(φ) = A2|σ(φ), und

2. β1(x) = β2(x), für alle x ∈ frei(φ).

Dann gilt: I1 |= φ ⇐⇒ I2 |= φ.

Beweis: Per Induktion über den Aufbau von Formeln. Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 221

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Das Koinzidenzlemma
Satz 3.27 (Koinzidenzlemma für Terme)
Sei I1 = (A1, β1) eine σ1-Interpretation und sei I2 = (A2, β2) eine σ2-Interpretation,
wobei σ1 und σ2 Signaturen seien. Sei t ∈ T ein Term mit σ(t) ⊆ σ1∩σ2, so dass gilt:

1. A1|σ(t) = A2|σ(t)

(d.h., die σ(t)-Redukte von A1 und A2 sind identisch), und

2. β1(x) = β2(x), für alle x ∈ var(t).

Dann gilt: JtKI1 = JtKI2 .

Beweis: Per Induktion über den Aufbau von Termen. Details: Übung.

Satz 3.28 (Koinzidenzlemma für FO-Formeln)
Sei I1 = (A1, β1) eine σ1-Interpretation und sei I2 = (A2, β2) eine σ2-Interpretation,
wobei σ1 und σ2 Signaturen seien.
Sei φ ∈ FO eine Formel der Logik erster Stufe mit σ(φ) ⊆ σ1 ∩ σ2, so dass gilt:

1. A1|σ(φ) = A2|σ(φ), und

2. β1(x) = β2(x), für alle x ∈ frei(φ).

Dann gilt: I1 |= φ ⇐⇒ I2 |= φ.

Beweis: Per Induktion über den Aufbau von Formeln. Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 221

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Das Koinzidenzlemma
Satz 3.27 (Koinzidenzlemma für Terme)
Sei I1 = (A1, β1) eine σ1-Interpretation und sei I2 = (A2, β2) eine σ2-Interpretation,
wobei σ1 und σ2 Signaturen seien. Sei t ∈ T ein Term mit σ(t) ⊆ σ1∩σ2, so dass gilt:

1. A1|σ(t) = A2|σ(t)

(d.h., die σ(t)-Redukte von A1 und A2 sind identisch),

und

2. β1(x) = β2(x), für alle x ∈ var(t).

Dann gilt: JtKI1 = JtKI2 .

Beweis: Per Induktion über den Aufbau von Termen. Details: Übung.

Satz 3.28 (Koinzidenzlemma für FO-Formeln)
Sei I1 = (A1, β1) eine σ1-Interpretation und sei I2 = (A2, β2) eine σ2-Interpretation,
wobei σ1 und σ2 Signaturen seien.
Sei φ ∈ FO eine Formel der Logik erster Stufe mit σ(φ) ⊆ σ1 ∩ σ2, so dass gilt:

1. A1|σ(φ) = A2|σ(φ), und

2. β1(x) = β2(x), für alle x ∈ frei(φ).

Dann gilt: I1 |= φ ⇐⇒ I2 |= φ.

Beweis: Per Induktion über den Aufbau von Formeln. Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 221

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Das Koinzidenzlemma
Satz 3.27 (Koinzidenzlemma für Terme)
Sei I1 = (A1, β1) eine σ1-Interpretation und sei I2 = (A2, β2) eine σ2-Interpretation,
wobei σ1 und σ2 Signaturen seien. Sei t ∈ T ein Term mit σ(t) ⊆ σ1∩σ2, so dass gilt:

1. A1|σ(t) = A2|σ(t)

(d.h., die σ(t)-Redukte von A1 und A2 sind identisch), und

2. β1(x) = β2(x), für alle x ∈ var(t).

Dann gilt: JtKI1 = JtKI2 .

Beweis: Per Induktion über den Aufbau von Termen. Details: Übung.

Satz 3.28 (Koinzidenzlemma für FO-Formeln)
Sei I1 = (A1, β1) eine σ1-Interpretation und sei I2 = (A2, β2) eine σ2-Interpretation,
wobei σ1 und σ2 Signaturen seien.
Sei φ ∈ FO eine Formel der Logik erster Stufe mit σ(φ) ⊆ σ1 ∩ σ2, so dass gilt:

1. A1|σ(φ) = A2|σ(φ), und

2. β1(x) = β2(x), für alle x ∈ frei(φ).

Dann gilt: I1 |= φ ⇐⇒ I2 |= φ.

Beweis: Per Induktion über den Aufbau von Formeln. Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 221

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Das Koinzidenzlemma
Satz 3.27 (Koinzidenzlemma für Terme)
Sei I1 = (A1, β1) eine σ1-Interpretation und sei I2 = (A2, β2) eine σ2-Interpretation,
wobei σ1 und σ2 Signaturen seien. Sei t ∈ T ein Term mit σ(t) ⊆ σ1∩σ2, so dass gilt:

1. A1|σ(t) = A2|σ(t)

(d.h., die σ(t)-Redukte von A1 und A2 sind identisch), und

2. β1(x) = β2(x), für alle x ∈ var(t).

Dann gilt: JtKI1 = JtKI2 .

Beweis: Per Induktion über den Aufbau von Termen. Details: Übung.

Satz 3.28 (Koinzidenzlemma für FO-Formeln)
Sei I1 = (A1, β1) eine σ1-Interpretation und sei I2 = (A2, β2) eine σ2-Interpretation,
wobei σ1 und σ2 Signaturen seien.
Sei φ ∈ FO eine Formel der Logik erster Stufe mit σ(φ) ⊆ σ1 ∩ σ2, so dass gilt:

1. A1|σ(φ) = A2|σ(φ), und

2. β1(x) = β2(x), für alle x ∈ frei(φ).

Dann gilt: I1 |= φ ⇐⇒ I2 |= φ.

Beweis: Per Induktion über den Aufbau von Formeln. Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 221

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Das Koinzidenzlemma
Satz 3.27 (Koinzidenzlemma für Terme)
Sei I1 = (A1, β1) eine σ1-Interpretation und sei I2 = (A2, β2) eine σ2-Interpretation,
wobei σ1 und σ2 Signaturen seien. Sei t ∈ T ein Term mit σ(t) ⊆ σ1∩σ2, so dass gilt:

1. A1|σ(t) = A2|σ(t)

(d.h., die σ(t)-Redukte von A1 und A2 sind identisch), und

2. β1(x) = β2(x), für alle x ∈ var(t).

Dann gilt: JtKI1 = JtKI2 .

Beweis: Per Induktion über den Aufbau von Termen.

Details: Übung.

Satz 3.28 (Koinzidenzlemma für FO-Formeln)
Sei I1 = (A1, β1) eine σ1-Interpretation und sei I2 = (A2, β2) eine σ2-Interpretation,
wobei σ1 und σ2 Signaturen seien.
Sei φ ∈ FO eine Formel der Logik erster Stufe mit σ(φ) ⊆ σ1 ∩ σ2, so dass gilt:

1. A1|σ(φ) = A2|σ(φ), und

2. β1(x) = β2(x), für alle x ∈ frei(φ).

Dann gilt: I1 |= φ ⇐⇒ I2 |= φ.

Beweis: Per Induktion über den Aufbau von Formeln. Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 221

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Das Koinzidenzlemma
Satz 3.27 (Koinzidenzlemma für Terme)
Sei I1 = (A1, β1) eine σ1-Interpretation und sei I2 = (A2, β2) eine σ2-Interpretation,
wobei σ1 und σ2 Signaturen seien. Sei t ∈ T ein Term mit σ(t) ⊆ σ1∩σ2, so dass gilt:

1. A1|σ(t) = A2|σ(t)

(d.h., die σ(t)-Redukte von A1 und A2 sind identisch), und

2. β1(x) = β2(x), für alle x ∈ var(t).

Dann gilt: JtKI1 = JtKI2 .

Beweis: Per Induktion über den Aufbau von Termen. Details: Übung.

Satz 3.28 (Koinzidenzlemma für FO-Formeln)
Sei I1 = (A1, β1) eine σ1-Interpretation und sei I2 = (A2, β2) eine σ2-Interpretation,
wobei σ1 und σ2 Signaturen seien.
Sei φ ∈ FO eine Formel der Logik erster Stufe mit σ(φ) ⊆ σ1 ∩ σ2, so dass gilt:

1. A1|σ(φ) = A2|σ(φ), und

2. β1(x) = β2(x), für alle x ∈ frei(φ).

Dann gilt: I1 |= φ ⇐⇒ I2 |= φ.

Beweis: Per Induktion über den Aufbau von Formeln. Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 221

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Das Koinzidenzlemma
Satz 3.27 (Koinzidenzlemma für Terme)
Sei I1 = (A1, β1) eine σ1-Interpretation und sei I2 = (A2, β2) eine σ2-Interpretation,
wobei σ1 und σ2 Signaturen seien. Sei t ∈ T ein Term mit σ(t) ⊆ σ1∩σ2, so dass gilt:

1. A1|σ(t) = A2|σ(t)

(d.h., die σ(t)-Redukte von A1 und A2 sind identisch), und

2. β1(x) = β2(x), für alle x ∈ var(t).

Dann gilt: JtKI1 = JtKI2 .

Beweis: Per Induktion über den Aufbau von Termen. Details: Übung.

Satz 3.28 (Koinzidenzlemma für FO-Formeln)
Sei I1 = (A1, β1) eine σ1-Interpretation und sei I2 = (A2, β2) eine σ2-Interpretation,
wobei σ1 und σ2 Signaturen seien.
Sei φ ∈ FO eine Formel der Logik erster Stufe mit σ(φ) ⊆ σ1 ∩ σ2, so dass gilt:

1. A1|σ(φ) = A2|σ(φ), und

2. β1(x) = β2(x), für alle x ∈ frei(φ).

Dann gilt: I1 |= φ ⇐⇒ I2 |= φ.

Beweis: Per Induktion über den Aufbau von Formeln. Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 221

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Das Koinzidenzlemma
Satz 3.27 (Koinzidenzlemma für Terme)
Sei I1 = (A1, β1) eine σ1-Interpretation und sei I2 = (A2, β2) eine σ2-Interpretation,
wobei σ1 und σ2 Signaturen seien. Sei t ∈ T ein Term mit σ(t) ⊆ σ1∩σ2, so dass gilt:

1. A1|σ(t) = A2|σ(t)

(d.h., die σ(t)-Redukte von A1 und A2 sind identisch), und

2. β1(x) = β2(x), für alle x ∈ var(t).

Dann gilt: JtKI1 = JtKI2 .

Beweis: Per Induktion über den Aufbau von Termen. Details: Übung.

Satz 3.28 (Koinzidenzlemma für FO-Formeln)
Sei I1 = (A1, β1) eine σ1-Interpretation und sei I2 = (A2, β2) eine σ2-Interpretation,
wobei σ1 und σ2 Signaturen seien.
Sei φ ∈ FO eine Formel der Logik erster Stufe mit σ(φ) ⊆ σ1 ∩ σ2, so dass gilt:

1. A1|σ(φ) = A2|σ(φ)

, und

2. β1(x) = β2(x), für alle x ∈ frei(φ).

Dann gilt: I1 |= φ ⇐⇒ I2 |= φ.

Beweis: Per Induktion über den Aufbau von Formeln. Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 221

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Das Koinzidenzlemma
Satz 3.27 (Koinzidenzlemma für Terme)
Sei I1 = (A1, β1) eine σ1-Interpretation und sei I2 = (A2, β2) eine σ2-Interpretation,
wobei σ1 und σ2 Signaturen seien. Sei t ∈ T ein Term mit σ(t) ⊆ σ1∩σ2, so dass gilt:

1. A1|σ(t) = A2|σ(t)

(d.h., die σ(t)-Redukte von A1 und A2 sind identisch), und

2. β1(x) = β2(x), für alle x ∈ var(t).

Dann gilt: JtKI1 = JtKI2 .

Beweis: Per Induktion über den Aufbau von Termen. Details: Übung.

Satz 3.28 (Koinzidenzlemma für FO-Formeln)
Sei I1 = (A1, β1) eine σ1-Interpretation und sei I2 = (A2, β2) eine σ2-Interpretation,
wobei σ1 und σ2 Signaturen seien.
Sei φ ∈ FO eine Formel der Logik erster Stufe mit σ(φ) ⊆ σ1 ∩ σ2, so dass gilt:

1. A1|σ(φ) = A2|σ(φ), und

2. β1(x) = β2(x), für alle x ∈ frei(φ).

Dann gilt: I1 |= φ ⇐⇒ I2 |= φ.

Beweis: Per Induktion über den Aufbau von Formeln. Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 221

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Das Koinzidenzlemma
Satz 3.27 (Koinzidenzlemma für Terme)
Sei I1 = (A1, β1) eine σ1-Interpretation und sei I2 = (A2, β2) eine σ2-Interpretation,
wobei σ1 und σ2 Signaturen seien. Sei t ∈ T ein Term mit σ(t) ⊆ σ1∩σ2, so dass gilt:

1. A1|σ(t) = A2|σ(t)

(d.h., die σ(t)-Redukte von A1 und A2 sind identisch), und

2. β1(x) = β2(x), für alle x ∈ var(t).

Dann gilt: JtKI1 = JtKI2 .

Beweis: Per Induktion über den Aufbau von Termen. Details: Übung.

Satz 3.28 (Koinzidenzlemma für FO-Formeln)
Sei I1 = (A1, β1) eine σ1-Interpretation und sei I2 = (A2, β2) eine σ2-Interpretation,
wobei σ1 und σ2 Signaturen seien.
Sei φ ∈ FO eine Formel der Logik erster Stufe mit σ(φ) ⊆ σ1 ∩ σ2, so dass gilt:

1. A1|σ(φ) = A2|σ(φ), und

2. β1(x) = β2(x), für alle x ∈ frei(φ).

Dann gilt: I1 |= φ ⇐⇒ I2 |= φ.

Beweis: Per Induktion über den Aufbau von Formeln. Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 221

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Das Koinzidenzlemma
Satz 3.27 (Koinzidenzlemma für Terme)
Sei I1 = (A1, β1) eine σ1-Interpretation und sei I2 = (A2, β2) eine σ2-Interpretation,
wobei σ1 und σ2 Signaturen seien. Sei t ∈ T ein Term mit σ(t) ⊆ σ1∩σ2, so dass gilt:

1. A1|σ(t) = A2|σ(t)

(d.h., die σ(t)-Redukte von A1 und A2 sind identisch), und

2. β1(x) = β2(x), für alle x ∈ var(t).

Dann gilt: JtKI1 = JtKI2 .

Beweis: Per Induktion über den Aufbau von Termen. Details: Übung.

Satz 3.28 (Koinzidenzlemma für FO-Formeln)
Sei I1 = (A1, β1) eine σ1-Interpretation und sei I2 = (A2, β2) eine σ2-Interpretation,
wobei σ1 und σ2 Signaturen seien.
Sei φ ∈ FO eine Formel der Logik erster Stufe mit σ(φ) ⊆ σ1 ∩ σ2, so dass gilt:

1. A1|σ(φ) = A2|σ(φ), und

2. β1(x) = β2(x), für alle x ∈ frei(φ).

Dann gilt: I1 |= φ ⇐⇒ I2 |= φ.

Beweis: Per Induktion über den Aufbau von Formeln. Details: Übung.
Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 221

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Notation für Terme

• Für einen Term t ∈ Tσ schreiben wir t(x1, . . . , xn), um anzudeuten, dass
var(t) ⊆ {x1, . . . , xn}.

• Sei A eine σ-Struktur und seien a1, . . . , an ∈ A.
Auf Grund des Koinzidenzlemmas gilt

JtK(A,β) = JtK(A,β′)

für alle Belegungen β, β′ : VAR → A, so dass β(xi) = ai = β′(xi) für alle
i ∈ [n] gilt. Wir schreiben oft

tA[a1, . . . , an],

um das Element JtK(A,β) zu bezeichnen.

• Für Terme t ∈ Tσ, in denen keine Variable vorkommt, d.h. var(t) = ∅
(so genannte Grundterme), schreiben wir einfach tA.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 222

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Notation für Terme

• Für einen Term t ∈ Tσ schreiben wir t(x1, . . . , xn), um anzudeuten, dass
var(t) ⊆ {x1, . . . , xn}.

• Sei A eine σ-Struktur und seien a1, . . . , an ∈ A.
Auf Grund des Koinzidenzlemmas gilt

JtK(A,β) = JtK(A,β′)

für alle Belegungen β, β′ : VAR → A, so dass β(xi) = ai = β′(xi) für alle
i ∈ [n] gilt.

Wir schreiben oft

tA[a1, . . . , an],

um das Element JtK(A,β) zu bezeichnen.

• Für Terme t ∈ Tσ, in denen keine Variable vorkommt, d.h. var(t) = ∅
(so genannte Grundterme), schreiben wir einfach tA.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 222

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Notation für Terme

• Für einen Term t ∈ Tσ schreiben wir t(x1, . . . , xn), um anzudeuten, dass
var(t) ⊆ {x1, . . . , xn}.

• Sei A eine σ-Struktur und seien a1, . . . , an ∈ A.
Auf Grund des Koinzidenzlemmas gilt

JtK(A,β) = JtK(A,β′)

für alle Belegungen β, β′ : VAR → A, so dass β(xi) = ai = β′(xi) für alle
i ∈ [n] gilt. Wir schreiben oft

tA[a1, . . . , an],

um das Element JtK(A,β) zu bezeichnen.

• Für Terme t ∈ Tσ, in denen keine Variable vorkommt, d.h. var(t) = ∅
(so genannte Grundterme), schreiben wir einfach tA.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 222

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Notation für Terme

• Für einen Term t ∈ Tσ schreiben wir t(x1, . . . , xn), um anzudeuten, dass
var(t) ⊆ {x1, . . . , xn}.

• Sei A eine σ-Struktur und seien a1, . . . , an ∈ A.
Auf Grund des Koinzidenzlemmas gilt

JtK(A,β) = JtK(A,β′)

für alle Belegungen β, β′ : VAR → A, so dass β(xi) = ai = β′(xi) für alle
i ∈ [n] gilt. Wir schreiben oft

tA[a1, . . . , an],

um das Element JtK(A,β) zu bezeichnen.

• Für Terme t ∈ Tσ, in denen keine Variable vorkommt, d.h. var(t) = ∅
(so genannte Grundterme), schreiben wir einfach tA.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 222

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Notation für Formeln

• Für eine FO[σ]-Formel φ schreiben wir φ(x1, . . . , xn), um anzudeuten, dass
frei(φ) ⊆ {x1, . . . , xn}.

• Ist A eine σ-Struktur und sind a1, . . . , an ∈ A, so schreiben wir

A |= φ[a1, . . . , an]

wenn (A, β) |= φ für eine Belegung β : VAR → A mit β(xi) = ai für alle
i ∈ [n] gilt.

Auf Grund des Koinzidenzlemmas gilt dann auch für alle Belegungen
β′ : VAR → A mit β′(xi) = ai für alle i ∈ [n], dass (A, β′) |= φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 223

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Notation für Formeln

• Für eine FO[σ]-Formel φ schreiben wir φ(x1, . . . , xn), um anzudeuten, dass
frei(φ) ⊆ {x1, . . . , xn}.

• Ist A eine σ-Struktur und sind a1, . . . , an ∈ A, so schreiben wir

A |= φ[a1, . . . , an]

wenn (A, β) |= φ für eine Belegung β : VAR → A mit β(xi) = ai für alle
i ∈ [n] gilt.

Auf Grund des Koinzidenzlemmas gilt dann auch für alle Belegungen
β′ : VAR → A mit β′(xi) = ai für alle i ∈ [n], dass (A, β′) |= φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 223

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Notation für Formeln

• Für eine FO[σ]-Formel φ schreiben wir φ(x1, . . . , xn), um anzudeuten, dass
frei(φ) ⊆ {x1, . . . , xn}.

• Ist A eine σ-Struktur und sind a1, . . . , an ∈ A, so schreiben wir

A |= φ[a1, . . . , an]

wenn (A, β) |= φ für eine Belegung β : VAR → A mit β(xi) = ai für alle
i ∈ [n] gilt.

Auf Grund des Koinzidenzlemmas gilt dann auch für alle Belegungen
β′ : VAR → A mit β′(xi) = ai für alle i ∈ [n], dass (A, β′) |= φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 223

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Sätze der Logik erster Stufe

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Definition 3.29
Sei σ eine Signatur.

(a) Ein FO[σ]-Satz (kurz: Satz) ist eine FO[σ]-Formel φ mit frei(φ) = ∅.

(b) Wir schreiben Sσ, um die Menge aller FO[σ]-Sätze zu bezeichnen und
setzen

S :=
⋃

σ Signatur

Sσ.

(c) Für einen FO[σ]-Satz φ und eine σ-Struktur A schreiben wir A |= φ, um
auszudrücken, dass (A, β) |= φ für eine (und gemäß Koinzidenzlemma
daher für jede) Belegung β in A gilt.

(d) Für eine Menge Φ ⊆ Sσ von FO[σ]-Sätzen schreiben wir A |= Φ, falls
A |= φ für jedes φ ∈ Φ gilt.

Als direkte Folgerung aus dem Isomorphielemma erhalten wir, dass für
isomorphe σ-Strukturen A und B und für alle FO[σ]-Sätze φ gilt:

A |= φ ⇐⇒ B |= φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 224

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Definition 3.29
Sei σ eine Signatur.

(a) Ein FO[σ]-Satz (kurz: Satz) ist eine FO[σ]-Formel φ mit frei(φ) = ∅.

(b) Wir schreiben Sσ, um die Menge aller FO[σ]-Sätze zu bezeichnen und
setzen

S :=
⋃

σ Signatur

Sσ.

(c) Für einen FO[σ]-Satz φ und eine σ-Struktur A schreiben wir A |= φ, um
auszudrücken, dass (A, β) |= φ für eine (und gemäß Koinzidenzlemma
daher für jede) Belegung β in A gilt.

(d) Für eine Menge Φ ⊆ Sσ von FO[σ]-Sätzen schreiben wir A |= Φ, falls
A |= φ für jedes φ ∈ Φ gilt.

Als direkte Folgerung aus dem Isomorphielemma erhalten wir, dass für
isomorphe σ-Strukturen A und B und für alle FO[σ]-Sätze φ gilt:

A |= φ ⇐⇒ B |= φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 224

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Definition 3.29
Sei σ eine Signatur.

(a) Ein FO[σ]-Satz (kurz: Satz) ist eine FO[σ]-Formel φ mit frei(φ) = ∅.

(b) Wir schreiben Sσ, um die Menge aller FO[σ]-Sätze zu bezeichnen und
setzen

S :=
⋃

σ Signatur

Sσ.

(c) Für einen FO[σ]-Satz φ und eine σ-Struktur A schreiben wir A |= φ, um
auszudrücken, dass (A, β) |= φ für eine (und gemäß Koinzidenzlemma
daher für jede) Belegung β in A gilt.

(d) Für eine Menge Φ ⊆ Sσ von FO[σ]-Sätzen schreiben wir A |= Φ, falls
A |= φ für jedes φ ∈ Φ gilt.

Als direkte Folgerung aus dem Isomorphielemma erhalten wir, dass für
isomorphe σ-Strukturen A und B und für alle FO[σ]-Sätze φ gilt:

A |= φ ⇐⇒ B |= φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 224

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Definition 3.29
Sei σ eine Signatur.

(a) Ein FO[σ]-Satz (kurz: Satz) ist eine FO[σ]-Formel φ mit frei(φ) = ∅.

(b) Wir schreiben Sσ, um die Menge aller FO[σ]-Sätze zu bezeichnen und
setzen

S :=
⋃

σ Signatur

Sσ.

(c) Für einen FO[σ]-Satz φ und eine σ-Struktur A schreiben wir A |= φ, um
auszudrücken, dass (A, β) |= φ für eine (und gemäß Koinzidenzlemma
daher für jede) Belegung β in A gilt.

(d) Für eine Menge Φ ⊆ Sσ von FO[σ]-Sätzen schreiben wir A |= Φ, falls
A |= φ für jedes φ ∈ Φ gilt.

Als direkte Folgerung aus dem Isomorphielemma erhalten wir, dass für
isomorphe σ-Strukturen A und B und für alle FO[σ]-Sätze φ gilt:

A |= φ ⇐⇒ B |= φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 224

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Definition 3.29
Sei σ eine Signatur.

(a) Ein FO[σ]-Satz (kurz: Satz) ist eine FO[σ]-Formel φ mit frei(φ) = ∅.

(b) Wir schreiben Sσ, um die Menge aller FO[σ]-Sätze zu bezeichnen und
setzen

S :=
⋃

σ Signatur

Sσ.

(c) Für einen FO[σ]-Satz φ und eine σ-Struktur A schreiben wir A |= φ, um
auszudrücken, dass (A, β) |= φ für eine (und gemäß Koinzidenzlemma
daher für jede) Belegung β in A gilt.

(d) Für eine Menge Φ ⊆ Sσ von FO[σ]-Sätzen schreiben wir A |= Φ, falls
A |= φ für jedes φ ∈ Φ gilt.

Als direkte Folgerung aus dem Isomorphielemma erhalten wir, dass für
isomorphe σ-Strukturen A und B und für alle FO[σ]-Sätze φ gilt:

A |= φ ⇐⇒ B |= φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 224

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Modellklassen und Definierbarkeit

Definition 3.30
Sei σ eine Signatur und sei Φ ⊆ Sσ (d.h. Φ ist eine Menge von FO[σ]-Sätzen).

(a) Die Modellklasse von Φ ist die Klasse MODσ(Φ) aller σ-Strukturen A für
die gilt: A |= Φ.

(b) Für eine Klasse C von σ-Strukturen sagen wir

Φ definiert (oder axiomatisiert) C,

falls C = MODσ(Φ).

(c) Für einen FO[σ]-Satz φ setzen wir MODσ(φ) := MODσ({φ}) und sagen,
dass φ die Klasse C := MODσ(φ) definiert (bzw. axiomatisiert).

Als direkte Folgerung aus dem Isomorphielemma erhalten wir:

Korollar 3.31
Für jede Signatur σ und jedes Φ ⊆ Sσ ist MODσ(Φ) unter Isomorphie
abgeschlossen. D.h. für isomorphe σ-Strukturen A und B gilt:

A ∈ MODσ(Φ) ⇐⇒ B ∈ MODσ(Φ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 225

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Modellklassen und Definierbarkeit

Definition 3.30
Sei σ eine Signatur und sei Φ ⊆ Sσ (d.h. Φ ist eine Menge von FO[σ]-Sätzen).

(a) Die Modellklasse von Φ ist die Klasse MODσ(Φ) aller σ-Strukturen A für
die gilt: A |= Φ.

(b) Für eine Klasse C von σ-Strukturen sagen wir

Φ definiert (oder axiomatisiert) C,

falls C = MODσ(Φ).

(c) Für einen FO[σ]-Satz φ setzen wir MODσ(φ) := MODσ({φ}) und sagen,
dass φ die Klasse C := MODσ(φ) definiert (bzw. axiomatisiert).

Als direkte Folgerung aus dem Isomorphielemma erhalten wir:

Korollar 3.31
Für jede Signatur σ und jedes Φ ⊆ Sσ ist MODσ(Φ) unter Isomorphie
abgeschlossen. D.h. für isomorphe σ-Strukturen A und B gilt:

A ∈ MODσ(Φ) ⇐⇒ B ∈ MODσ(Φ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 225

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Modellklassen und Definierbarkeit

Definition 3.30
Sei σ eine Signatur und sei Φ ⊆ Sσ (d.h. Φ ist eine Menge von FO[σ]-Sätzen).

(a) Die Modellklasse von Φ ist die Klasse MODσ(Φ) aller σ-Strukturen A für
die gilt: A |= Φ.

(b) Für eine Klasse C von σ-Strukturen sagen wir

Φ definiert (oder axiomatisiert) C,

falls C = MODσ(Φ).

(c) Für einen FO[σ]-Satz φ setzen wir MODσ(φ) := MODσ({φ}) und sagen,
dass φ die Klasse C := MODσ(φ) definiert (bzw. axiomatisiert).

Als direkte Folgerung aus dem Isomorphielemma erhalten wir:

Korollar 3.31
Für jede Signatur σ und jedes Φ ⊆ Sσ ist MODσ(Φ) unter Isomorphie
abgeschlossen. D.h. für isomorphe σ-Strukturen A und B gilt:

A ∈ MODσ(Φ) ⇐⇒ B ∈ MODσ(Φ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 225

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Modellklassen und Definierbarkeit

Definition 3.30
Sei σ eine Signatur und sei Φ ⊆ Sσ (d.h. Φ ist eine Menge von FO[σ]-Sätzen).

(a) Die Modellklasse von Φ ist die Klasse MODσ(Φ) aller σ-Strukturen A für
die gilt: A |= Φ.

(b) Für eine Klasse C von σ-Strukturen sagen wir

Φ definiert (oder axiomatisiert) C,

falls C = MODσ(Φ).

(c) Für einen FO[σ]-Satz φ setzen wir MODσ(φ) := MODσ({φ})

und sagen,
dass φ die Klasse C := MODσ(φ) definiert (bzw. axiomatisiert).

Als direkte Folgerung aus dem Isomorphielemma erhalten wir:

Korollar 3.31
Für jede Signatur σ und jedes Φ ⊆ Sσ ist MODσ(Φ) unter Isomorphie
abgeschlossen. D.h. für isomorphe σ-Strukturen A und B gilt:

A ∈ MODσ(Φ) ⇐⇒ B ∈ MODσ(Φ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 225

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Modellklassen und Definierbarkeit

Definition 3.30
Sei σ eine Signatur und sei Φ ⊆ Sσ (d.h. Φ ist eine Menge von FO[σ]-Sätzen).

(a) Die Modellklasse von Φ ist die Klasse MODσ(Φ) aller σ-Strukturen A für
die gilt: A |= Φ.

(b) Für eine Klasse C von σ-Strukturen sagen wir

Φ definiert (oder axiomatisiert) C,

falls C = MODσ(Φ).

(c) Für einen FO[σ]-Satz φ setzen wir MODσ(φ) := MODσ({φ}) und sagen,
dass φ die Klasse C := MODσ(φ) definiert (bzw. axiomatisiert).

Als direkte Folgerung aus dem Isomorphielemma erhalten wir:

Korollar 3.31
Für jede Signatur σ und jedes Φ ⊆ Sσ ist MODσ(Φ) unter Isomorphie
abgeschlossen. D.h. für isomorphe σ-Strukturen A und B gilt:

A ∈ MODσ(Φ) ⇐⇒ B ∈ MODσ(Φ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 225

Kapitel 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Modellklassen und Definierbarkeit

Definition 3.30
Sei σ eine Signatur und sei Φ ⊆ Sσ (d.h. Φ ist eine Menge von FO[σ]-Sätzen).

(a) Die Modellklasse von Φ ist die Klasse MODσ(Φ) aller σ-Strukturen A für
die gilt: A |= Φ.

(b) Für eine Klasse C von σ-Strukturen sagen wir

Φ definiert (oder axiomatisiert) C,

falls C = MODσ(Φ).

(c) Für einen FO[σ]-Satz φ setzen wir MODσ(φ) := MODσ({φ}) und sagen,
dass φ die Klasse C := MODσ(φ) definiert (bzw. axiomatisiert).

Als direkte Folgerung aus dem Isomorphielemma erhalten wir:

Korollar 3.31
Für jede Signatur σ und jedes Φ ⊆ Sσ ist MODσ(Φ) unter Isomorphie
abgeschlossen. D.h. für isomorphe σ-Strukturen A und B gilt:

A ∈ MODσ(Φ) ⇐⇒ B ∈ MODσ(Φ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 225

Abschnitt 3.5:

Beispiele für Formeln der Logik erster
Stufe in verschiedenen
Anwendungsbereichen

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

Notation

• Ab jetzt verwenden wir für die Logik erster Stufe ähnliche
Klammerkonventionen wie bei der Aussagenlogik.

• Für gewisse zweistellige Funktionssymbole wie +, · und zweistellige
Relationssymbole wie ⩽ verwenden wir Infix- statt Präfixnotation. Dabei
setzen wir auf natürliche Weise Klammern, um die eindeutige Lesbarkeit zu
gewährleisten.

• Wir schreiben x < y als Abkürzung für die Formel
(
x ⩽ y ∧ ¬ x=y

)
.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 226

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

Notation

• Ab jetzt verwenden wir für die Logik erster Stufe ähnliche
Klammerkonventionen wie bei der Aussagenlogik.

• Für gewisse zweistellige Funktionssymbole wie +, · und zweistellige
Relationssymbole wie ⩽ verwenden wir Infix- statt Präfixnotation. Dabei
setzen wir auf natürliche Weise Klammern, um die eindeutige Lesbarkeit zu
gewährleisten.

• Wir schreiben x < y als Abkürzung für die Formel
(
x ⩽ y ∧ ¬ x=y

)
.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 226

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

Notation

• Ab jetzt verwenden wir für die Logik erster Stufe ähnliche
Klammerkonventionen wie bei der Aussagenlogik.

• Für gewisse zweistellige Funktionssymbole wie +, · und zweistellige
Relationssymbole wie ⩽ verwenden wir Infix- statt Präfixnotation. Dabei
setzen wir auf natürliche Weise Klammern, um die eindeutige Lesbarkeit zu
gewährleisten.

• Wir schreiben x < y als Abkürzung für die Formel
(
x ⩽ y ∧ ¬ x=y

)
.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 226

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

Ordnungen

Beispiel 3.32
Wir betrachten Strukturen und Formeln über der Signatur σ := {⩽}.

Zur Erinnerung: Eine σ-Struktur A = (A,⩽A) ist eine lineare Ordnung, falls
gilt:

(1) ⩽A ist reflexiv,

• d.h. für alle a ∈ A gilt: a ⩽A a

• d.h. A |= φrefl, wobei

φrefl := ∀x x ⩽ x

(2) ⩽A ist transitiv,

• d.h. für alle a, b, c ∈ A gilt: Wenn a ⩽A b und b ⩽A c, dann auch a ⩽A c

• d.h. A |= φtrans, wobei

φtrans := ∀x∀y∀z
((

x ⩽ y ∧ y ⩽ z
)

→ x ⩽ z
)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 227

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

Ordnungen

Beispiel 3.32
Wir betrachten Strukturen und Formeln über der Signatur σ := {⩽}.

Zur Erinnerung: Eine σ-Struktur A = (A,⩽A) ist eine lineare Ordnung, falls
gilt:

(1) ⩽A ist reflexiv,

• d.h. für alle a ∈ A gilt: a ⩽A a

• d.h. A |= φrefl, wobei

φrefl := ∀x x ⩽ x

(2) ⩽A ist transitiv,

• d.h. für alle a, b, c ∈ A gilt: Wenn a ⩽A b und b ⩽A c, dann auch a ⩽A c

• d.h. A |= φtrans, wobei

φtrans := ∀x∀y∀z
((

x ⩽ y ∧ y ⩽ z
)

→ x ⩽ z
)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 227

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

Ordnungen

Beispiel 3.32
Wir betrachten Strukturen und Formeln über der Signatur σ := {⩽}.

Zur Erinnerung: Eine σ-Struktur A = (A,⩽A) ist eine lineare Ordnung, falls
gilt:

(1) ⩽A ist reflexiv,

• d.h. für alle a ∈ A gilt: a ⩽A a

• d.h. A |= φrefl, wobei

φrefl := ∀x x ⩽ x

(2) ⩽A ist transitiv,

• d.h. für alle a, b, c ∈ A gilt: Wenn a ⩽A b und b ⩽A c, dann auch a ⩽A c

• d.h. A |= φtrans, wobei

φtrans := ∀x∀y∀z
((

x ⩽ y ∧ y ⩽ z
)

→ x ⩽ z
)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 227

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

Ordnungen

Beispiel 3.32
Wir betrachten Strukturen und Formeln über der Signatur σ := {⩽}.

Zur Erinnerung: Eine σ-Struktur A = (A,⩽A) ist eine lineare Ordnung, falls
gilt:

(1) ⩽A ist reflexiv,

• d.h. für alle a ∈ A gilt: a ⩽A a

• d.h. A |= φrefl, wobei

φrefl :=

∀x x ⩽ x

(2) ⩽A ist transitiv,

• d.h. für alle a, b, c ∈ A gilt: Wenn a ⩽A b und b ⩽A c, dann auch a ⩽A c

• d.h. A |= φtrans, wobei

φtrans := ∀x∀y∀z
((

x ⩽ y ∧ y ⩽ z
)

→ x ⩽ z
)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 227

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

Ordnungen

Beispiel 3.32
Wir betrachten Strukturen und Formeln über der Signatur σ := {⩽}.

Zur Erinnerung: Eine σ-Struktur A = (A,⩽A) ist eine lineare Ordnung, falls
gilt:

(1) ⩽A ist reflexiv,

• d.h. für alle a ∈ A gilt: a ⩽A a

• d.h. A |= φrefl, wobei

φrefl := ∀x x ⩽ x

(2) ⩽A ist transitiv,

• d.h. für alle a, b, c ∈ A gilt: Wenn a ⩽A b und b ⩽A c, dann auch a ⩽A c

• d.h. A |= φtrans, wobei

φtrans := ∀x∀y∀z
((

x ⩽ y ∧ y ⩽ z
)

→ x ⩽ z
)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 227

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

Ordnungen

Beispiel 3.32
Wir betrachten Strukturen und Formeln über der Signatur σ := {⩽}.

Zur Erinnerung: Eine σ-Struktur A = (A,⩽A) ist eine lineare Ordnung, falls
gilt:

(1) ⩽A ist reflexiv,

• d.h. für alle a ∈ A gilt: a ⩽A a

• d.h. A |= φrefl, wobei

φrefl := ∀x x ⩽ x

(2) ⩽A ist transitiv,

• d.h. für alle a, b, c ∈ A gilt: Wenn a ⩽A b und b ⩽A c, dann auch a ⩽A c

• d.h. A |= φtrans, wobei

φtrans := ∀x∀y∀z
((

x ⩽ y ∧ y ⩽ z
)

→ x ⩽ z
)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 227

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

Ordnungen

Beispiel 3.32
Wir betrachten Strukturen und Formeln über der Signatur σ := {⩽}.

Zur Erinnerung: Eine σ-Struktur A = (A,⩽A) ist eine lineare Ordnung, falls
gilt:

(1) ⩽A ist reflexiv,

• d.h. für alle a ∈ A gilt: a ⩽A a

• d.h. A |= φrefl, wobei

φrefl := ∀x x ⩽ x

(2) ⩽A ist transitiv,

• d.h. für alle a, b, c ∈ A gilt: Wenn a ⩽A b und b ⩽A c, dann auch a ⩽A c

• d.h. A |= φtrans, wobei

φtrans := ∀x∀y∀z
((

x ⩽ y ∧ y ⩽ z
)

→ x ⩽ z
)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 227

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

Ordnungen

Beispiel 3.32
Wir betrachten Strukturen und Formeln über der Signatur σ := {⩽}.

Zur Erinnerung: Eine σ-Struktur A = (A,⩽A) ist eine lineare Ordnung, falls
gilt:

(1) ⩽A ist reflexiv,

• d.h. für alle a ∈ A gilt: a ⩽A a

• d.h. A |= φrefl, wobei

φrefl := ∀x x ⩽ x

(2) ⩽A ist transitiv,

• d.h. für alle a, b, c ∈ A gilt: Wenn a ⩽A b und b ⩽A c, dann auch a ⩽A c

• d.h. A |= φtrans, wobei

φtrans :=

∀x∀y∀z
((

x ⩽ y ∧ y ⩽ z
)

→ x ⩽ z
)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 227

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

Ordnungen

Beispiel 3.32
Wir betrachten Strukturen und Formeln über der Signatur σ := {⩽}.

Zur Erinnerung: Eine σ-Struktur A = (A,⩽A) ist eine lineare Ordnung, falls
gilt:

(1) ⩽A ist reflexiv,

• d.h. für alle a ∈ A gilt: a ⩽A a

• d.h. A |= φrefl, wobei

φrefl := ∀x x ⩽ x

(2) ⩽A ist transitiv,

• d.h. für alle a, b, c ∈ A gilt: Wenn a ⩽A b und b ⩽A c, dann auch a ⩽A c

• d.h. A |= φtrans, wobei

φtrans := ∀x∀y∀z
((

x ⩽ y ∧ y ⩽ z
)

→ x ⩽ z
)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 227

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

(3) ⩽A ist antisymmetrisch,

• d.h. für alle a, b ∈ A mit a ̸= b gilt: Wenn a ⩽A b, dann b ̸⩽A a

• d.h. A |= φantisym, wobei

φantisym := ∀x∀y
(
¬ x = y →

(
x ⩽ y → ¬ y ⩽ x

))

(4) ⩽A ist konnex,

• d.h. für alle a, b ∈ A gilt: a ⩽A b oder b ⩽A a oder a = b

• d.h. A |= φkonnex, wobei

φkonnex := ∀x∀y
(
x ⩽ y ∨ y ⩽ x ∨ x = y

)

Insgesamt gilt für jede {⩽}-Struktur A = (A,⩽A):
A = (A,⩽A) ist eine lineare Ordnung ⇐⇒ A |= φlin.Ord, wobei

φlin.Ord := φrefl ∧ φantisym ∧ φtrans ∧ φkonnex

Der FO[σ]-Satz φlin.Ord definiert (bzw. axiomatisiert) also die Klasse aller
linearen Ordnungen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 228

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

(3) ⩽A ist antisymmetrisch,

• d.h. für alle a, b ∈ A mit a ̸= b gilt: Wenn a ⩽A b, dann b ̸⩽A a

• d.h. A |= φantisym, wobei

φantisym := ∀x∀y
(
¬ x = y →

(
x ⩽ y → ¬ y ⩽ x

))

(4) ⩽A ist konnex,

• d.h. für alle a, b ∈ A gilt: a ⩽A b oder b ⩽A a oder a = b

• d.h. A |= φkonnex, wobei

φkonnex := ∀x∀y
(
x ⩽ y ∨ y ⩽ x ∨ x = y

)

Insgesamt gilt für jede {⩽}-Struktur A = (A,⩽A):
A = (A,⩽A) ist eine lineare Ordnung ⇐⇒ A |= φlin.Ord, wobei

φlin.Ord := φrefl ∧ φantisym ∧ φtrans ∧ φkonnex

Der FO[σ]-Satz φlin.Ord definiert (bzw. axiomatisiert) also die Klasse aller
linearen Ordnungen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 228

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

(3) ⩽A ist antisymmetrisch,

• d.h. für alle a, b ∈ A mit a ̸= b gilt: Wenn a ⩽A b, dann b ̸⩽A a

• d.h. A |= φantisym, wobei

φantisym :=

∀x∀y
(
¬ x = y →

(
x ⩽ y → ¬ y ⩽ x

))

(4) ⩽A ist konnex,

• d.h. für alle a, b ∈ A gilt: a ⩽A b oder b ⩽A a oder a = b

• d.h. A |= φkonnex, wobei

φkonnex := ∀x∀y
(
x ⩽ y ∨ y ⩽ x ∨ x = y

)

Insgesamt gilt für jede {⩽}-Struktur A = (A,⩽A):
A = (A,⩽A) ist eine lineare Ordnung ⇐⇒ A |= φlin.Ord, wobei

φlin.Ord := φrefl ∧ φantisym ∧ φtrans ∧ φkonnex

Der FO[σ]-Satz φlin.Ord definiert (bzw. axiomatisiert) also die Klasse aller
linearen Ordnungen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 228

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

(3) ⩽A ist antisymmetrisch,

• d.h. für alle a, b ∈ A mit a ̸= b gilt: Wenn a ⩽A b, dann b ̸⩽A a

• d.h. A |= φantisym, wobei

φantisym := ∀x∀y
(
¬ x = y →

(
x ⩽ y → ¬ y ⩽ x

))

(4) ⩽A ist konnex,

• d.h. für alle a, b ∈ A gilt: a ⩽A b oder b ⩽A a oder a = b

• d.h. A |= φkonnex, wobei

φkonnex := ∀x∀y
(
x ⩽ y ∨ y ⩽ x ∨ x = y

)

Insgesamt gilt für jede {⩽}-Struktur A = (A,⩽A):
A = (A,⩽A) ist eine lineare Ordnung ⇐⇒ A |= φlin.Ord, wobei

φlin.Ord := φrefl ∧ φantisym ∧ φtrans ∧ φkonnex

Der FO[σ]-Satz φlin.Ord definiert (bzw. axiomatisiert) also die Klasse aller
linearen Ordnungen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 228

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

(3) ⩽A ist antisymmetrisch,

• d.h. für alle a, b ∈ A mit a ̸= b gilt: Wenn a ⩽A b, dann b ̸⩽A a

• d.h. A |= φantisym, wobei

φantisym := ∀x∀y
(
¬ x = y →

(
x ⩽ y → ¬ y ⩽ x

))

(4) ⩽A ist konnex,

• d.h. für alle a, b ∈ A gilt: a ⩽A b oder b ⩽A a oder a = b

• d.h. A |= φkonnex, wobei

φkonnex := ∀x∀y
(
x ⩽ y ∨ y ⩽ x ∨ x = y

)

Insgesamt gilt für jede {⩽}-Struktur A = (A,⩽A):
A = (A,⩽A) ist eine lineare Ordnung ⇐⇒ A |= φlin.Ord, wobei

φlin.Ord := φrefl ∧ φantisym ∧ φtrans ∧ φkonnex

Der FO[σ]-Satz φlin.Ord definiert (bzw. axiomatisiert) also die Klasse aller
linearen Ordnungen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 228

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

(3) ⩽A ist antisymmetrisch,

• d.h. für alle a, b ∈ A mit a ̸= b gilt: Wenn a ⩽A b, dann b ̸⩽A a

• d.h. A |= φantisym, wobei

φantisym := ∀x∀y
(
¬ x = y →

(
x ⩽ y → ¬ y ⩽ x

))

(4) ⩽A ist konnex,

• d.h. für alle a, b ∈ A gilt: a ⩽A b oder b ⩽A a oder a = b

• d.h. A |= φkonnex, wobei

φkonnex :=

∀x∀y
(
x ⩽ y ∨ y ⩽ x ∨ x = y

)

Insgesamt gilt für jede {⩽}-Struktur A = (A,⩽A):
A = (A,⩽A) ist eine lineare Ordnung ⇐⇒ A |= φlin.Ord, wobei

φlin.Ord := φrefl ∧ φantisym ∧ φtrans ∧ φkonnex

Der FO[σ]-Satz φlin.Ord definiert (bzw. axiomatisiert) also die Klasse aller
linearen Ordnungen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 228

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

(3) ⩽A ist antisymmetrisch,

• d.h. für alle a, b ∈ A mit a ̸= b gilt: Wenn a ⩽A b, dann b ̸⩽A a

• d.h. A |= φantisym, wobei

φantisym := ∀x∀y
(
¬ x = y →

(
x ⩽ y → ¬ y ⩽ x

))

(4) ⩽A ist konnex,

• d.h. für alle a, b ∈ A gilt: a ⩽A b oder b ⩽A a oder a = b

• d.h. A |= φkonnex, wobei

φkonnex := ∀x∀y
(
x ⩽ y ∨ y ⩽ x ∨ x = y

)

Insgesamt gilt für jede {⩽}-Struktur A = (A,⩽A):
A = (A,⩽A) ist eine lineare Ordnung ⇐⇒ A |= φlin.Ord, wobei

φlin.Ord := φrefl ∧ φantisym ∧ φtrans ∧ φkonnex

Der FO[σ]-Satz φlin.Ord definiert (bzw. axiomatisiert) also die Klasse aller
linearen Ordnungen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 228

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

(3) ⩽A ist antisymmetrisch,

• d.h. für alle a, b ∈ A mit a ̸= b gilt: Wenn a ⩽A b, dann b ̸⩽A a

• d.h. A |= φantisym, wobei

φantisym := ∀x∀y
(
¬ x = y →

(
x ⩽ y → ¬ y ⩽ x

))

(4) ⩽A ist konnex,

• d.h. für alle a, b ∈ A gilt: a ⩽A b oder b ⩽A a oder a = b

• d.h. A |= φkonnex, wobei

φkonnex := ∀x∀y
(
x ⩽ y ∨ y ⩽ x ∨ x = y

)

Insgesamt gilt für jede {⩽}-Struktur A = (A,⩽A):
A = (A,⩽A) ist eine lineare Ordnung ⇐⇒ A |= φlin.Ord, wobei

φlin.Ord :=

φrefl ∧ φantisym ∧ φtrans ∧ φkonnex

Der FO[σ]-Satz φlin.Ord definiert (bzw. axiomatisiert) also die Klasse aller
linearen Ordnungen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 228

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

(3) ⩽A ist antisymmetrisch,

• d.h. für alle a, b ∈ A mit a ̸= b gilt: Wenn a ⩽A b, dann b ̸⩽A a

• d.h. A |= φantisym, wobei

φantisym := ∀x∀y
(
¬ x = y →

(
x ⩽ y → ¬ y ⩽ x

))

(4) ⩽A ist konnex,

• d.h. für alle a, b ∈ A gilt: a ⩽A b oder b ⩽A a oder a = b

• d.h. A |= φkonnex, wobei

φkonnex := ∀x∀y
(
x ⩽ y ∨ y ⩽ x ∨ x = y

)

Insgesamt gilt für jede {⩽}-Struktur A = (A,⩽A):
A = (A,⩽A) ist eine lineare Ordnung ⇐⇒ A |= φlin.Ord, wobei

φlin.Ord := φrefl ∧ φantisym ∧ φtrans ∧ φkonnex

Der FO[σ]-Satz φlin.Ord definiert (bzw. axiomatisiert) also die Klasse aller
linearen Ordnungen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 228

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

(3) ⩽A ist antisymmetrisch,

• d.h. für alle a, b ∈ A mit a ̸= b gilt: Wenn a ⩽A b, dann b ̸⩽A a

• d.h. A |= φantisym, wobei

φantisym := ∀x∀y
(
¬ x = y →

(
x ⩽ y → ¬ y ⩽ x

))

(4) ⩽A ist konnex,

• d.h. für alle a, b ∈ A gilt: a ⩽A b oder b ⩽A a oder a = b

• d.h. A |= φkonnex, wobei

φkonnex := ∀x∀y
(
x ⩽ y ∨ y ⩽ x ∨ x = y

)

Insgesamt gilt für jede {⩽}-Struktur A = (A,⩽A):
A = (A,⩽A) ist eine lineare Ordnung ⇐⇒ A |= φlin.Ord, wobei

φlin.Ord := φrefl ∧ φantisym ∧ φtrans ∧ φkonnex

Der FO[σ]-Satz φlin.Ord definiert (bzw. axiomatisiert) also die Klasse aller
linearen Ordnungen.
Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 228

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

Arithmetik

Beispiel 3.33
Wir betrachten Formeln über der Signatur σ := {+, ·,⩽, 0, 1} und ihre
Bedeutung im Standardmodell AN der Arithmetik.

• Gesucht: Eine FO[σ]-Formel φ−(x , y , z), die besagt
”
x − y = z“.

Präzise: Für alle a, b, c ∈ N soll gelten:

AN |= φ−[a, b, c] ⇐⇒ a− b = c .

Lösung: φ−(x , y , z) := x = z + y

• Gesucht: Eine FO[σ]-Formel φ | (x , y), die besagt
”
x teilt y“.

Präzise: Für alle a, b ∈ N soll gelten:

AN |= φ | [a, b] ⇐⇒ es gibt ein c ∈ N, so dass a · c = b.

Lösung: φ | (x , y) := ∃z x · z = y

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 229

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

Arithmetik

Beispiel 3.33
Wir betrachten Formeln über der Signatur σ := {+, ·,⩽, 0, 1} und ihre
Bedeutung im Standardmodell AN der Arithmetik.

• Gesucht: Eine FO[σ]-Formel φ−(x , y , z), die besagt
”
x − y = z“.

Präzise: Für alle a, b, c ∈ N soll gelten:

AN |= φ−[a, b, c] ⇐⇒

a− b = c .

Lösung: φ−(x , y , z) := x = z + y

• Gesucht: Eine FO[σ]-Formel φ | (x , y), die besagt
”
x teilt y“.

Präzise: Für alle a, b ∈ N soll gelten:

AN |= φ | [a, b] ⇐⇒ es gibt ein c ∈ N, so dass a · c = b.

Lösung: φ | (x , y) := ∃z x · z = y

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 229

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

Arithmetik

Beispiel 3.33
Wir betrachten Formeln über der Signatur σ := {+, ·,⩽, 0, 1} und ihre
Bedeutung im Standardmodell AN der Arithmetik.

• Gesucht: Eine FO[σ]-Formel φ−(x , y , z), die besagt
”
x − y = z“.

Präzise: Für alle a, b, c ∈ N soll gelten:

AN |= φ−[a, b, c] ⇐⇒ a− b = c .

Lösung: φ−(x , y , z) := x = z + y

• Gesucht: Eine FO[σ]-Formel φ | (x , y), die besagt
”
x teilt y“.

Präzise: Für alle a, b ∈ N soll gelten:

AN |= φ | [a, b] ⇐⇒ es gibt ein c ∈ N, so dass a · c = b.

Lösung: φ | (x , y) := ∃z x · z = y

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 229

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

Arithmetik

Beispiel 3.33
Wir betrachten Formeln über der Signatur σ := {+, ·,⩽, 0, 1} und ihre
Bedeutung im Standardmodell AN der Arithmetik.

• Gesucht: Eine FO[σ]-Formel φ−(x , y , z), die besagt
”
x − y = z“.

Präzise: Für alle a, b, c ∈ N soll gelten:

AN |= φ−[a, b, c] ⇐⇒ a− b = c .

Lösung: φ−(x , y , z) :=

x = z + y

• Gesucht: Eine FO[σ]-Formel φ | (x , y), die besagt
”
x teilt y“.

Präzise: Für alle a, b ∈ N soll gelten:

AN |= φ | [a, b] ⇐⇒ es gibt ein c ∈ N, so dass a · c = b.

Lösung: φ | (x , y) := ∃z x · z = y

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 229

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

Arithmetik

Beispiel 3.33
Wir betrachten Formeln über der Signatur σ := {+, ·,⩽, 0, 1} und ihre
Bedeutung im Standardmodell AN der Arithmetik.

• Gesucht: Eine FO[σ]-Formel φ−(x , y , z), die besagt
”
x − y = z“.

Präzise: Für alle a, b, c ∈ N soll gelten:

AN |= φ−[a, b, c] ⇐⇒ a− b = c .

Lösung: φ−(x , y , z) := x = z + y

• Gesucht: Eine FO[σ]-Formel φ | (x , y), die besagt
”
x teilt y“.

Präzise: Für alle a, b ∈ N soll gelten:

AN |= φ | [a, b] ⇐⇒ es gibt ein c ∈ N, so dass a · c = b.

Lösung: φ | (x , y) := ∃z x · z = y

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 229

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

Arithmetik

Beispiel 3.33
Wir betrachten Formeln über der Signatur σ := {+, ·,⩽, 0, 1} und ihre
Bedeutung im Standardmodell AN der Arithmetik.

• Gesucht: Eine FO[σ]-Formel φ−(x , y , z), die besagt
”
x − y = z“.

Präzise: Für alle a, b, c ∈ N soll gelten:

AN |= φ−[a, b, c] ⇐⇒ a− b = c .

Lösung: φ−(x , y , z) := x = z + y

• Gesucht: Eine FO[σ]-Formel φ | (x , y), die besagt
”
x teilt y“.

Präzise: Für alle a, b ∈ N soll gelten:

AN |= φ | [a, b] ⇐⇒ es gibt ein c ∈ N, so dass a · c = b.

Lösung: φ | (x , y) := ∃z x · z = y

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 229

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

Arithmetik

Beispiel 3.33
Wir betrachten Formeln über der Signatur σ := {+, ·,⩽, 0, 1} und ihre
Bedeutung im Standardmodell AN der Arithmetik.

• Gesucht: Eine FO[σ]-Formel φ−(x , y , z), die besagt
”
x − y = z“.

Präzise: Für alle a, b, c ∈ N soll gelten:

AN |= φ−[a, b, c] ⇐⇒ a− b = c .

Lösung: φ−(x , y , z) := x = z + y

• Gesucht: Eine FO[σ]-Formel φ | (x , y), die besagt
”
x teilt y“.

Präzise: Für alle a, b ∈ N soll gelten:

AN |= φ | [a, b] ⇐⇒

es gibt ein c ∈ N, so dass a · c = b.

Lösung: φ | (x , y) := ∃z x · z = y

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 229

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

Arithmetik

Beispiel 3.33
Wir betrachten Formeln über der Signatur σ := {+, ·,⩽, 0, 1} und ihre
Bedeutung im Standardmodell AN der Arithmetik.

• Gesucht: Eine FO[σ]-Formel φ−(x , y , z), die besagt
”
x − y = z“.

Präzise: Für alle a, b, c ∈ N soll gelten:

AN |= φ−[a, b, c] ⇐⇒ a− b = c .

Lösung: φ−(x , y , z) := x = z + y

• Gesucht: Eine FO[σ]-Formel φ | (x , y), die besagt
”
x teilt y“.

Präzise: Für alle a, b ∈ N soll gelten:

AN |= φ | [a, b] ⇐⇒ es gibt ein c ∈ N, so dass a · c = b.

Lösung: φ | (x , y) := ∃z x · z = y

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 229

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

Arithmetik

Beispiel 3.33
Wir betrachten Formeln über der Signatur σ := {+, ·,⩽, 0, 1} und ihre
Bedeutung im Standardmodell AN der Arithmetik.

• Gesucht: Eine FO[σ]-Formel φ−(x , y , z), die besagt
”
x − y = z“.

Präzise: Für alle a, b, c ∈ N soll gelten:

AN |= φ−[a, b, c] ⇐⇒ a− b = c .

Lösung: φ−(x , y , z) := x = z + y

• Gesucht: Eine FO[σ]-Formel φ | (x , y), die besagt
”
x teilt y“.

Präzise: Für alle a, b ∈ N soll gelten:

AN |= φ | [a, b] ⇐⇒ es gibt ein c ∈ N, so dass a · c = b.

Lösung: φ | (x , y) :=

∃z x · z = y

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 229

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

Arithmetik

Beispiel 3.33
Wir betrachten Formeln über der Signatur σ := {+, ·,⩽, 0, 1} und ihre
Bedeutung im Standardmodell AN der Arithmetik.

• Gesucht: Eine FO[σ]-Formel φ−(x , y , z), die besagt
”
x − y = z“.

Präzise: Für alle a, b, c ∈ N soll gelten:

AN |= φ−[a, b, c] ⇐⇒ a− b = c .

Lösung: φ−(x , y , z) := x = z + y

• Gesucht: Eine FO[σ]-Formel φ | (x , y), die besagt
”
x teilt y“.

Präzise: Für alle a, b ∈ N soll gelten:

AN |= φ | [a, b] ⇐⇒ es gibt ein c ∈ N, so dass a · c = b.

Lösung: φ | (x , y) := ∃z x · z = y

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 229

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

• Gesucht: Eine FO[σ]-Formel φ≡(x , y , z), die besagt
”
x ≡ y (mod z)“.

Präzise: Für alle a, b, c ∈ N soll gelten:

AN |= φ≡[a, b, c] ⇐⇒ a ≡ b (mod c) d.h. c
∣∣ |a− b|

Lösung:

φ≡(x , y , z) := ∃w
((
φ−(x , y ,w) ∨ φ−(y , x ,w)

)︸ ︷︷ ︸
”
w = |x − y |“

∧ φ | (z ,w)︸ ︷︷ ︸
”
z |w“

)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 230

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

• Gesucht: Eine FO[σ]-Formel φ≡(x , y , z), die besagt
”
x ≡ y (mod z)“.

Präzise: Für alle a, b, c ∈ N soll gelten:

AN |= φ≡[a, b, c] ⇐⇒

a ≡ b (mod c) d.h. c
∣∣ |a− b|

Lösung:

φ≡(x , y , z) := ∃w
((
φ−(x , y ,w) ∨ φ−(y , x ,w)

)︸ ︷︷ ︸
”
w = |x − y |“

∧ φ | (z ,w)︸ ︷︷ ︸
”
z |w“

)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 230

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

• Gesucht: Eine FO[σ]-Formel φ≡(x , y , z), die besagt
”
x ≡ y (mod z)“.

Präzise: Für alle a, b, c ∈ N soll gelten:

AN |= φ≡[a, b, c] ⇐⇒ a ≡ b (mod c)

d.h. c
∣∣ |a− b|

Lösung:

φ≡(x , y , z) := ∃w
((
φ−(x , y ,w) ∨ φ−(y , x ,w)

)︸ ︷︷ ︸
”
w = |x − y |“

∧ φ | (z ,w)︸ ︷︷ ︸
”
z |w“

)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 230

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

• Gesucht: Eine FO[σ]-Formel φ≡(x , y , z), die besagt
”
x ≡ y (mod z)“.

Präzise: Für alle a, b, c ∈ N soll gelten:

AN |= φ≡[a, b, c] ⇐⇒ a ≡ b (mod c) d.h. c
∣∣ |a− b|

Lösung:

φ≡(x , y , z) := ∃w
((
φ−(x , y ,w) ∨ φ−(y , x ,w)

)︸ ︷︷ ︸
”
w = |x − y |“

∧ φ | (z ,w)︸ ︷︷ ︸
”
z |w“

)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 230

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

• Gesucht: Eine FO[σ]-Formel φ≡(x , y , z), die besagt
”
x ≡ y (mod z)“.

Präzise: Für alle a, b, c ∈ N soll gelten:

AN |= φ≡[a, b, c] ⇐⇒ a ≡ b (mod c) d.h. c
∣∣ |a− b|

Lösung:

φ≡(x , y , z) :=

∃w
((
φ−(x , y ,w) ∨ φ−(y , x ,w)

)︸ ︷︷ ︸
”
w = |x − y |“

∧ φ | (z ,w)︸ ︷︷ ︸
”
z |w“

)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 230

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

• Gesucht: Eine FO[σ]-Formel φ≡(x , y , z), die besagt
”
x ≡ y (mod z)“.

Präzise: Für alle a, b, c ∈ N soll gelten:

AN |= φ≡[a, b, c] ⇐⇒ a ≡ b (mod c) d.h. c
∣∣ |a− b|

Lösung:

φ≡(x , y , z) := ∃w
((
φ−(x , y ,w) ∨ φ−(y , x ,w)

)︸ ︷︷ ︸
”
w = |x − y |“

∧ φ | (z ,w)︸ ︷︷ ︸
”
z |w“

)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 230

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

• Gesucht: Eine FO[σ]-Formel φprim(x), die besagt
”
x ist eine Primzahl“.

Präzise: Für alle a ∈ N soll gelten:

AN |= φprim[a] ⇐⇒ a ist eine Primzahl

d.h. a ⩾ 2 und a ist nur durch sich selbst und
durch 1 teilbar.

Lösung:

φprim(x) := 1 + 1 ⩽ x︸ ︷︷ ︸
”
x ⩾ 2“

∧ ∀z
(
φ | (z , x)︸ ︷︷ ︸
”
z | x“

→
(
z = x ∨ z = 1

))

• Gesucht: Ein FO[σ]-Satz φ∞, der in AN besagt

”
Es gibt unendlich viele Primzahlen“.

Lösung:

φ∞ := ∀y ∃x
(
y ⩽ x ∧ φprim(x)

)
In AN besagt dieser Satz, dass es für jede natürliche Zahl b eine natürliche
Zahl a ⩾ b gibt, die eine Primzahl ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 231

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

• Gesucht: Eine FO[σ]-Formel φprim(x), die besagt
”
x ist eine Primzahl“.

Präzise: Für alle a ∈ N soll gelten:

AN |= φprim[a] ⇐⇒ a ist eine Primzahl

d.h. a ⩾ 2 und a ist nur durch sich selbst und
durch 1 teilbar.

Lösung:

φprim(x) := 1 + 1 ⩽ x︸ ︷︷ ︸
”
x ⩾ 2“

∧ ∀z
(
φ | (z , x)︸ ︷︷ ︸
”
z | x“

→
(
z = x ∨ z = 1

))

• Gesucht: Ein FO[σ]-Satz φ∞, der in AN besagt

”
Es gibt unendlich viele Primzahlen“.

Lösung:

φ∞ := ∀y ∃x
(
y ⩽ x ∧ φprim(x)

)
In AN besagt dieser Satz, dass es für jede natürliche Zahl b eine natürliche
Zahl a ⩾ b gibt, die eine Primzahl ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 231

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

• Gesucht: Eine FO[σ]-Formel φprim(x), die besagt
”
x ist eine Primzahl“.

Präzise: Für alle a ∈ N soll gelten:

AN |= φprim[a] ⇐⇒ a ist eine Primzahl

d.h. a ⩾ 2 und a ist nur durch sich selbst und
durch 1 teilbar.

Lösung:

φprim(x) := 1 + 1 ⩽ x︸ ︷︷ ︸
”
x ⩾ 2“

∧ ∀z
(
φ | (z , x)︸ ︷︷ ︸
”
z | x“

→
(
z = x ∨ z = 1

))

• Gesucht: Ein FO[σ]-Satz φ∞, der in AN besagt

”
Es gibt unendlich viele Primzahlen“.

Lösung:

φ∞ := ∀y ∃x
(
y ⩽ x ∧ φprim(x)

)
In AN besagt dieser Satz, dass es für jede natürliche Zahl b eine natürliche
Zahl a ⩾ b gibt, die eine Primzahl ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 231

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

• Gesucht: Eine FO[σ]-Formel φprim(x), die besagt
”
x ist eine Primzahl“.

Präzise: Für alle a ∈ N soll gelten:

AN |= φprim[a] ⇐⇒ a ist eine Primzahl

d.h. a ⩾ 2 und a ist nur durch sich selbst und
durch 1 teilbar.

Lösung:

φprim(x) := 1 + 1 ⩽ x︸ ︷︷ ︸
”
x ⩾ 2“

∧ ∀z
(
φ | (z , x)︸ ︷︷ ︸
”
z | x“

→
(
z = x ∨ z = 1

))

• Gesucht: Ein FO[σ]-Satz φ∞, der in AN besagt

”
Es gibt unendlich viele Primzahlen“.

Lösung:

φ∞ := ∀y ∃x
(
y ⩽ x ∧ φprim(x)

)
In AN besagt dieser Satz, dass es für jede natürliche Zahl b eine natürliche
Zahl a ⩾ b gibt, die eine Primzahl ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 231

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

• Gesucht: Eine FO[σ]-Formel φprim(x), die besagt
”
x ist eine Primzahl“.

Präzise: Für alle a ∈ N soll gelten:

AN |= φprim[a] ⇐⇒ a ist eine Primzahl

d.h. a ⩾ 2 und a ist nur durch sich selbst und
durch 1 teilbar.

Lösung:

φprim(x) :=

1 + 1 ⩽ x︸ ︷︷ ︸
”
x ⩾ 2“

∧ ∀z
(
φ | (z , x)︸ ︷︷ ︸
”
z | x“

→
(
z = x ∨ z = 1

))

• Gesucht: Ein FO[σ]-Satz φ∞, der in AN besagt

”
Es gibt unendlich viele Primzahlen“.

Lösung:

φ∞ := ∀y ∃x
(
y ⩽ x ∧ φprim(x)

)
In AN besagt dieser Satz, dass es für jede natürliche Zahl b eine natürliche
Zahl a ⩾ b gibt, die eine Primzahl ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 231

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

• Gesucht: Eine FO[σ]-Formel φprim(x), die besagt
”
x ist eine Primzahl“.

Präzise: Für alle a ∈ N soll gelten:

AN |= φprim[a] ⇐⇒ a ist eine Primzahl

d.h. a ⩾ 2 und a ist nur durch sich selbst und
durch 1 teilbar.

Lösung:

φprim(x) := 1 + 1 ⩽ x︸ ︷︷ ︸
”
x ⩾ 2“

∧ ∀z
(
φ | (z , x)︸ ︷︷ ︸
”
z | x“

→
(
z = x ∨ z = 1

))

• Gesucht: Ein FO[σ]-Satz φ∞, der in AN besagt

”
Es gibt unendlich viele Primzahlen“.

Lösung:

φ∞ := ∀y ∃x
(
y ⩽ x ∧ φprim(x)

)
In AN besagt dieser Satz, dass es für jede natürliche Zahl b eine natürliche
Zahl a ⩾ b gibt, die eine Primzahl ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 231

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

• Gesucht: Eine FO[σ]-Formel φprim(x), die besagt
”
x ist eine Primzahl“.

Präzise: Für alle a ∈ N soll gelten:

AN |= φprim[a] ⇐⇒ a ist eine Primzahl

d.h. a ⩾ 2 und a ist nur durch sich selbst und
durch 1 teilbar.

Lösung:

φprim(x) := 1 + 1 ⩽ x︸ ︷︷ ︸
”
x ⩾ 2“

∧ ∀z
(
φ | (z , x)︸ ︷︷ ︸
”
z | x“

→
(
z = x ∨ z = 1

))

• Gesucht: Ein FO[σ]-Satz φ∞, der in AN besagt

”
Es gibt unendlich viele Primzahlen“.

Lösung:

φ∞ :=

∀y ∃x
(
y ⩽ x ∧ φprim(x)

)
In AN besagt dieser Satz, dass es für jede natürliche Zahl b eine natürliche
Zahl a ⩾ b gibt, die eine Primzahl ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 231

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

• Gesucht: Eine FO[σ]-Formel φprim(x), die besagt
”
x ist eine Primzahl“.

Präzise: Für alle a ∈ N soll gelten:

AN |= φprim[a] ⇐⇒ a ist eine Primzahl

d.h. a ⩾ 2 und a ist nur durch sich selbst und
durch 1 teilbar.

Lösung:

φprim(x) := 1 + 1 ⩽ x︸ ︷︷ ︸
”
x ⩾ 2“

∧ ∀z
(
φ | (z , x)︸ ︷︷ ︸
”
z | x“

→
(
z = x ∨ z = 1

))

• Gesucht: Ein FO[σ]-Satz φ∞, der in AN besagt

”
Es gibt unendlich viele Primzahlen“.

Lösung:

φ∞ := ∀y ∃x
(
y ⩽ x ∧ φprim(x)

)
In AN besagt dieser Satz, dass es für jede natürliche Zahl b eine natürliche
Zahl a ⩾ b gibt, die eine Primzahl ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 231

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

Worte

Beispiel 3.34
Wir betrachten das Alphabet Σ := {a, b} und die Signatur σΣ = {⩽,Pa,Pb}.

Zur Erinnerung: Wir repräsentieren ein nicht-leeres Wort w ∈ Σ∗ durch die
σΣ-Struktur Aw , deren Universum aus der Menge {1, . . . , |w |} aller Positionen
in w besteht, und bei der PAw

a (bzw. PAw

b) aus allen Positionen besteht, an
denen der Buchstabe a (bzw. b) steht.

Gesucht: Ein FO[σΣ]-Satz φ, so dass für jedes nicht-leere Wort w ∈ Σ∗ gilt:

Aw |= φ ⇐⇒ w ist von der Form a∗b∗.

Lösung: Wir konstruieren eine Formel φ, die besagt, dass es eine Position x
gibt, so dass alle Positionen links von x den Buchstaben a tragen und alle
Positionen rechts von x den Buchstaben b tragen.

φ := ∃x ∀y
((

y < x → Pa(y)
)

∧
(
x < y → Pb(y)

))
Wie bereits vereinbart, schreiben wir hier

”
x < y“ als Abkürzung für die

Formel (x ⩽ y ∧ ¬ x = y).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 232

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

Worte

Beispiel 3.34
Wir betrachten das Alphabet Σ := {a, b} und die Signatur σΣ = {⩽,Pa,Pb}.
Zur Erinnerung: Wir repräsentieren ein nicht-leeres Wort w ∈ Σ∗ durch die
σΣ-Struktur Aw

, deren Universum aus der Menge {1, . . . , |w |} aller Positionen
in w besteht, und bei der PAw

a (bzw. PAw

b) aus allen Positionen besteht, an
denen der Buchstabe a (bzw. b) steht.

Gesucht: Ein FO[σΣ]-Satz φ, so dass für jedes nicht-leere Wort w ∈ Σ∗ gilt:

Aw |= φ ⇐⇒ w ist von der Form a∗b∗.

Lösung: Wir konstruieren eine Formel φ, die besagt, dass es eine Position x
gibt, so dass alle Positionen links von x den Buchstaben a tragen und alle
Positionen rechts von x den Buchstaben b tragen.

φ := ∃x ∀y
((

y < x → Pa(y)
)

∧
(
x < y → Pb(y)

))
Wie bereits vereinbart, schreiben wir hier

”
x < y“ als Abkürzung für die

Formel (x ⩽ y ∧ ¬ x = y).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 232

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

Worte

Beispiel 3.34
Wir betrachten das Alphabet Σ := {a, b} und die Signatur σΣ = {⩽,Pa,Pb}.
Zur Erinnerung: Wir repräsentieren ein nicht-leeres Wort w ∈ Σ∗ durch die
σΣ-Struktur Aw , deren Universum aus der Menge {1, . . . , |w |} aller Positionen
in w besteht, und bei der PAw

a (bzw. PAw

b) aus allen Positionen besteht, an
denen der Buchstabe a (bzw. b) steht.

Gesucht: Ein FO[σΣ]-Satz φ, so dass für jedes nicht-leere Wort w ∈ Σ∗ gilt:

Aw |= φ ⇐⇒ w ist von der Form a∗b∗.

Lösung: Wir konstruieren eine Formel φ, die besagt, dass es eine Position x
gibt, so dass alle Positionen links von x den Buchstaben a tragen und alle
Positionen rechts von x den Buchstaben b tragen.

φ := ∃x ∀y
((

y < x → Pa(y)
)

∧
(
x < y → Pb(y)

))
Wie bereits vereinbart, schreiben wir hier

”
x < y“ als Abkürzung für die

Formel (x ⩽ y ∧ ¬ x = y).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 232

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

Worte

Beispiel 3.34
Wir betrachten das Alphabet Σ := {a, b} und die Signatur σΣ = {⩽,Pa,Pb}.
Zur Erinnerung: Wir repräsentieren ein nicht-leeres Wort w ∈ Σ∗ durch die
σΣ-Struktur Aw , deren Universum aus der Menge {1, . . . , |w |} aller Positionen
in w besteht, und bei der PAw

a (bzw. PAw

b) aus allen Positionen besteht, an
denen der Buchstabe a (bzw. b) steht.

Gesucht: Ein FO[σΣ]-Satz φ, so dass für jedes nicht-leere Wort w ∈ Σ∗ gilt:

Aw |= φ ⇐⇒ w ist von der Form a∗b∗.

Lösung: Wir konstruieren eine Formel φ, die besagt, dass es eine Position x
gibt, so dass alle Positionen links von x den Buchstaben a tragen und alle
Positionen rechts von x den Buchstaben b tragen.

φ := ∃x ∀y
((

y < x → Pa(y)
)

∧
(
x < y → Pb(y)

))
Wie bereits vereinbart, schreiben wir hier

”
x < y“ als Abkürzung für die

Formel (x ⩽ y ∧ ¬ x = y).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 232

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

Worte

Beispiel 3.34
Wir betrachten das Alphabet Σ := {a, b} und die Signatur σΣ = {⩽,Pa,Pb}.
Zur Erinnerung: Wir repräsentieren ein nicht-leeres Wort w ∈ Σ∗ durch die
σΣ-Struktur Aw , deren Universum aus der Menge {1, . . . , |w |} aller Positionen
in w besteht, und bei der PAw

a (bzw. PAw

b) aus allen Positionen besteht, an
denen der Buchstabe a (bzw. b) steht.

Gesucht: Ein FO[σΣ]-Satz φ, so dass für jedes nicht-leere Wort w ∈ Σ∗ gilt:

Aw |= φ ⇐⇒ w ist von der Form a∗b∗.

Lösung:

Wir konstruieren eine Formel φ, die besagt, dass es eine Position x
gibt, so dass alle Positionen links von x den Buchstaben a tragen und alle
Positionen rechts von x den Buchstaben b tragen.

φ := ∃x ∀y
((

y < x → Pa(y)
)

∧
(
x < y → Pb(y)

))
Wie bereits vereinbart, schreiben wir hier

”
x < y“ als Abkürzung für die

Formel (x ⩽ y ∧ ¬ x = y).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 232

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

Worte

Beispiel 3.34
Wir betrachten das Alphabet Σ := {a, b} und die Signatur σΣ = {⩽,Pa,Pb}.
Zur Erinnerung: Wir repräsentieren ein nicht-leeres Wort w ∈ Σ∗ durch die
σΣ-Struktur Aw , deren Universum aus der Menge {1, . . . , |w |} aller Positionen
in w besteht, und bei der PAw

a (bzw. PAw

b) aus allen Positionen besteht, an
denen der Buchstabe a (bzw. b) steht.

Gesucht: Ein FO[σΣ]-Satz φ, so dass für jedes nicht-leere Wort w ∈ Σ∗ gilt:

Aw |= φ ⇐⇒ w ist von der Form a∗b∗.

Lösung: Wir konstruieren eine Formel φ, die besagt, dass es eine Position x
gibt, so dass alle Positionen links von x den Buchstaben a tragen und alle
Positionen rechts von x den Buchstaben b tragen.

φ :=

∃x ∀y
((

y < x → Pa(y)
)

∧
(
x < y → Pb(y)

))
Wie bereits vereinbart, schreiben wir hier

”
x < y“ als Abkürzung für die

Formel (x ⩽ y ∧ ¬ x = y).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 232

Kapitel 3: Logik erster Stufe · Abschnitt 3.5: Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

Worte

Beispiel 3.34
Wir betrachten das Alphabet Σ := {a, b} und die Signatur σΣ = {⩽,Pa,Pb}.
Zur Erinnerung: Wir repräsentieren ein nicht-leeres Wort w ∈ Σ∗ durch die
σΣ-Struktur Aw , deren Universum aus der Menge {1, . . . , |w |} aller Positionen
in w besteht, und bei der PAw

a (bzw. PAw

b) aus allen Positionen besteht, an
denen der Buchstabe a (bzw. b) steht.

Gesucht: Ein FO[σΣ]-Satz φ, so dass für jedes nicht-leere Wort w ∈ Σ∗ gilt:

Aw |= φ ⇐⇒ w ist von der Form a∗b∗.

Lösung: Wir konstruieren eine Formel φ, die besagt, dass es eine Position x
gibt, so dass alle Positionen links von x den Buchstaben a tragen und alle
Positionen rechts von x den Buchstaben b tragen.

φ := ∃x ∀y
((

y < x → Pa(y)
)

∧
(
x < y → Pb(y)

))
Wie bereits vereinbart, schreiben wir hier

”
x < y“ als Abkürzung für die

Formel (x ⩽ y ∧ ¬ x = y).
Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 232

Abschnitt 3.6:

Logik und Datenbanken

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Datenbanken

Zur Erinnerung: Wir repräsentieren eine Kinodatenbank, die Informationen über
Kinos, Filme und das aktuelle Programm enthält, durch eine Struktur über der
Signatur σKINO :=

{ RKino/4, RFilm/3, RProg/3 }

∪ { ‘c ’ : c ∈ ASCII∗ }

und können so z.B. die folgende Kinodatenbank als σKINO-Struktur D auffassen,
deren Universum D aus der Menge aller Worte über dem ASCII-Alphabet
besteht.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 233

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Datenbanken

Zur Erinnerung: Wir repräsentieren eine Kinodatenbank, die Informationen über
Kinos, Filme und das aktuelle Programm enthält, durch eine Struktur über der
Signatur σKINO :=

{ RKino/4, RFilm/3, RProg/3 } ∪ { ‘c ’ : c ∈ ASCII∗ }

und können so z.B. die folgende Kinodatenbank als σKINO-Struktur D auffassen,
deren Universum D aus der Menge aller Worte über dem ASCII-Alphabet
besteht.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 233

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Beispiel: Eine Kinodatenbank
Kino
Name Adresse Stadtteil Telefonnummer
Babylon Dresdner Str. 126 Kreuzberg 030 61 60 96 93
Casablanca Friedenstr. 12-13 Adlershof 030 67 75 75 2
Filmtheater am Friedrichshain Bötzowstr. 1-5 Prenzlauer Berg 030 42 84 51 88
Kino International Karl-Marx-Allee 33 Mitte 030 24 75 60 11
Moviemento Kotbusser Damm 22 Kreuzberg 030 692 47 85
Urania An der Urania 17 Schöneberg 030 21 89 09 1

Film
Name Regisseur Schauspieler
Alien Ridley Scott Sigourney Weaver
Blade Runner Ridley Scott Harrison Ford
Blade Runner Ridley Scott Sean Young
Brazil Terry Gilliam Jonathan Pryce
Brazil Terry Gilliam Kim Greist
Casablanca Michael Curtiz Humphrey Bogart
Casablanca Michael Curtiz Ingrid Bergmann
Gravity Alfonso Cuaron Sandra Bullock
Gravity Alfonso Cuaron George Clooney
Monuments Men George Clooney George Clooney
Monuments Men George Clooney Matt Damon
Resident Evil Paul Anderson Milla Jovovich
Terminator James Cameron Arnold Schwarzenegger
Terminator James Cameron Linda Hamilton
Terminator James Cameron Michael Biehn

· · · · · · · · ·

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 234

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Beispiel: Eine Kinodatenbank
Kino
Name Adresse Stadtteil Telefonnummer
Babylon Dresdner Str. 126 Kreuzberg 030 61 60 96 93
Casablanca Friedenstr. 12-13 Adlershof 030 67 75 75 2
Filmtheater am Friedrichshain Bötzowstr. 1-5 Prenzlauer Berg 030 42 84 51 88
Kino International Karl-Marx-Allee 33 Mitte 030 24 75 60 11
Moviemento Kotbusser Damm 22 Kreuzberg 030 692 47 85
Urania An der Urania 17 Schöneberg 030 21 89 09 1

Film
Name Regisseur Schauspieler
Alien Ridley Scott Sigourney Weaver
Blade Runner Ridley Scott Harrison Ford
Blade Runner Ridley Scott Sean Young
Brazil Terry Gilliam Jonathan Pryce
Brazil Terry Gilliam Kim Greist
Casablanca Michael Curtiz Humphrey Bogart
Casablanca Michael Curtiz Ingrid Bergmann
Gravity Alfonso Cuaron Sandra Bullock
Gravity Alfonso Cuaron George Clooney
Monuments Men George Clooney George Clooney
Monuments Men George Clooney Matt Damon
Resident Evil Paul Anderson Milla Jovovich
Terminator James Cameron Arnold Schwarzenegger
Terminator James Cameron Linda Hamilton
Terminator James Cameron Michael Biehn

· · · · · · · · ·

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 234

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Programm
Kino Film Zeit
Babylon Casablanca 17:30
Babylon Gravity 20:15
Casablanca Blade Runner 15:30
Casablanca Alien 18:15
Casablanca Blade Runner 20:30
Casablanca Resident Evil 20:30
Filmtheater am Friedrichshain Resident Evil 20:00
Filmtheater am Friedrichshain Resident Evil 21:30
Filmtheater am Friedrichshain Resident Evil 23:00
Kino International Casablanca 18:00
Kino International Brazil 20:00
Kino International Brazil 22:00
Moviemento Gravity 17:00
Moviemento Gravity 19:30
Moviemento Alien 22:00
Urania Monuments Men 17:00
Urania Monuments Men 20:00

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 235

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Die Kinodatenbank als Struktur

Signatur: σKINO := { RKino/4, RFilm/3, RProg/3 }

∪ { ‘c’ : c ∈ ASCII∗ }

Die Kinodatenbank wird dargestellt als σKINO-Struktur D.

Universum:

D := ASCII
∗ ⊇ { Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93,

Casablanca, . . . , 20:00}.

Relationen:

RD
Kino :=

{
(Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93),

(Casablanca, Friedenstr. 12-13, Adlershof, 030 67 75 75 2),

· · · ,

(Urania, An der Urania 17, Schöneberg, 030 21 89 09 1)
}

Konstanten: ‘c’D := c, für jedes c ∈ ASCII∗.

D.h.: jedes Konstantensymbol wird durch den zwischen den Hochkommas stehenden Text interpretiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 236

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Die Kinodatenbank als Struktur

Signatur: σKINO := { RKino/4, RFilm/3, RProg/3 } ∪ { ‘c’ : c ∈ ASCII∗ }

Die Kinodatenbank wird dargestellt als σKINO-Struktur D.

Universum:

D := ASCII
∗ ⊇ { Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93,

Casablanca, . . . , 20:00}.

Relationen:

RD
Kino :=

{
(Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93),

(Casablanca, Friedenstr. 12-13, Adlershof, 030 67 75 75 2),

· · · ,

(Urania, An der Urania 17, Schöneberg, 030 21 89 09 1)
}

Konstanten: ‘c’D := c, für jedes c ∈ ASCII∗.

D.h.: jedes Konstantensymbol wird durch den zwischen den Hochkommas stehenden Text interpretiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 236

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Die Kinodatenbank als Struktur

Signatur: σKINO := { RKino/4, RFilm/3, RProg/3 } ∪ { ‘c’ : c ∈ ASCII∗ }

Die Kinodatenbank wird dargestellt als σKINO-Struktur D.

Universum:

D := ASCII
∗ ⊇ { Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93,

Casablanca, . . . , 20:00}.

Relationen:

RD
Kino :=

{
(Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93),

(Casablanca, Friedenstr. 12-13, Adlershof, 030 67 75 75 2),

· · · ,

(Urania, An der Urania 17, Schöneberg, 030 21 89 09 1)
}

Konstanten: ‘c’D := c, für jedes c ∈ ASCII∗.

D.h.: jedes Konstantensymbol wird durch den zwischen den Hochkommas stehenden Text interpretiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 236

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Die Kinodatenbank als Struktur

Signatur: σKINO := { RKino/4, RFilm/3, RProg/3 } ∪ { ‘c’ : c ∈ ASCII∗ }

Die Kinodatenbank wird dargestellt als σKINO-Struktur D.

Universum:

D := ASCII
∗ ⊇ { Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93,

Casablanca, . . . , 20:00}.

Relationen:

RD
Kino :=

{
(Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93),

(Casablanca, Friedenstr. 12-13, Adlershof, 030 67 75 75 2),

· · · ,

(Urania, An der Urania 17, Schöneberg, 030 21 89 09 1)
}

Konstanten: ‘c’D := c, für jedes c ∈ ASCII∗.

D.h.: jedes Konstantensymbol wird durch den zwischen den Hochkommas stehenden Text interpretiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 236

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Die Kinodatenbank als Struktur
Signatur: σKINO := { RKino/4, RFilm/3, RProg/3 } ∪ { ‘c’ : c ∈ ASCII∗ }

Die Kinodatenbank wird dargestellt als σKINO-Struktur D.

Universum:

D := ASCII
∗ ⊇ { Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93,

Casablanca, . . . , 20:00}.

Relationen:

RD
Kino :=

{
(Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93),

(Casablanca, Friedenstr. 12-13, Adlershof, 030 67 75 75 2),

· · · ,

(Urania, An der Urania 17, Schöneberg, 030 21 89 09 1)
}

RD
Film :=

{
(Alien, Ridley Scott, Sigourney Weaver),

(Blade Runner, Ridley Scott, Harrison Ford), . . .
}

Konstanten: ‘c’D := c, für jedes c ∈ ASCII∗.

D.h.: jedes Konstantensymbol wird durch den zwischen den Hochkommas stehenden Text interpretiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 236

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Die Kinodatenbank als Struktur
Signatur: σKINO := { RKino/4, RFilm/3, RProg/3 } ∪ { ‘c’ : c ∈ ASCII∗ }

Die Kinodatenbank wird dargestellt als σKINO-Struktur D.

Universum:

D := ASCII
∗ ⊇ { Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93,

Casablanca, . . . , 20:00}.

Relationen:

RD
Kino :=

{
(Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93),

(Casablanca, Friedenstr. 12-13, Adlershof, 030 67 75 75 2),

· · · ,

(Urania, An der Urania 17, Schöneberg, 030 21 89 09 1)
}

RD
Film :=

{
(Alien, Ridley Scott, Sigourney Weaver),

(Blade Runner, Ridley Scott, Harrison Ford), . . .
}

RD
Prog :=

{
(Babylon, Casablanca, 17:30),

(Babylon, Gravity, 20:15), . . .
}
.

Konstanten: ‘c’D := c, für jedes c ∈ ASCII∗.

D.h.: jedes Konstantensymbol wird durch den zwischen den Hochkommas stehenden Text interpretiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 236

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Die Kinodatenbank als Struktur
Signatur: σKINO := { RKino/4, RFilm/3, RProg/3 } ∪ { ‘c’ : c ∈ ASCII∗ }

Die Kinodatenbank wird dargestellt als σKINO-Struktur D.

Universum:

D := ASCII
∗ ⊇ { Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93,

Casablanca, . . . , 20:00}.

Relationen:

RD
Kino :=

{
(Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93),

(Casablanca, Friedenstr. 12-13, Adlershof, 030 67 75 75 2),

· · · ,

(Urania, An der Urania 17, Schöneberg, 030 21 89 09 1)
}

RD
Film :=

{
(Alien, Ridley Scott, Sigourney Weaver),

(Blade Runner, Ridley Scott, Harrison Ford), . . .
}

RD
Prog :=

{
(Babylon, Casablanca, 17:30),

(Babylon, Gravity, 20:15), . . .
}
.

Konstanten: ‘c’D := c, für jedes c ∈ ASCII∗.

D.h.: jedes Konstantensymbol wird durch den zwischen den Hochkommas stehenden Text interpretiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 236

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Die Kinodatenbank als Struktur
Signatur: σKINO := { RKino/4, RFilm/3, RProg/3 } ∪ { ‘c’ : c ∈ ASCII∗ }

Die Kinodatenbank wird dargestellt als σKINO-Struktur D.

Universum:

D := ASCII
∗ ⊇ { Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93,

Casablanca, . . . , 20:00}.

Relationen:

RD
Kino :=

{
(Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93),

(Casablanca, Friedenstr. 12-13, Adlershof, 030 67 75 75 2),

· · · ,

(Urania, An der Urania 17, Schöneberg, 030 21 89 09 1)
}

RD
Film :=

{
(Alien, Ridley Scott, Sigourney Weaver),

(Blade Runner, Ridley Scott, Harrison Ford), . . .
}

RD
Prog :=

{
(Babylon, Casablanca, 17:30),

(Babylon, Gravity, 20:15), . . .
}
.

Konstanten:

‘c’D := c, für jedes c ∈ ASCII∗.

D.h.: jedes Konstantensymbol wird durch den zwischen den Hochkommas stehenden Text interpretiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 236

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Die Kinodatenbank als Struktur
Signatur: σKINO := { RKino/4, RFilm/3, RProg/3 } ∪ { ‘c’ : c ∈ ASCII∗ }

Die Kinodatenbank wird dargestellt als σKINO-Struktur D.

Universum:

D := ASCII
∗ ⊇ { Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93,

Casablanca, . . . , 20:00}.

Relationen:

RD
Kino :=

{
(Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93),

(Casablanca, Friedenstr. 12-13, Adlershof, 030 67 75 75 2),

· · · ,

(Urania, An der Urania 17, Schöneberg, 030 21 89 09 1)
}

RD
Film :=

{
(Alien, Ridley Scott, Sigourney Weaver),

(Blade Runner, Ridley Scott, Harrison Ford), . . .
}

RD
Prog :=

{
(Babylon, Casablanca, 17:30),

(Babylon, Gravity, 20:15), . . .
}
.

Konstanten: ‘c’D := c, für jedes c ∈ ASCII∗.

D.h.: jedes Konstantensymbol wird durch den zwischen den Hochkommas stehenden Text interpretiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 236

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Beispiel 3.35

(a) Die Anfrage

”
Gib die Titel aller Filme aus, die um 22:00 Uhr beginnen.“

lässt sich durch folgende FO[σKINO]-Formel φ1(xT) beschreiben:

φ1(xT) :=

∃xK RProg(xK , xT , ‘22:00’)

(b) Die Anfrage

”
Gib die Titel aller Filme aus, in denen George Clooney mitspielt oder
Regie führt“

lässt sich durch folgende FO[σKINO]-Formel beschreiben: φ2(xT) :=

∃xR RFilm(xT , xR , ‘George Clooney’) ∨ ∃xS RFilm(xT , ‘George Clooney’, xS)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 237

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Beispiel 3.35

(a) Die Anfrage

”
Gib die Titel aller Filme aus, die um 22:00 Uhr beginnen.“

lässt sich durch folgende FO[σKINO]-Formel φ1(xT) beschreiben:

φ1(xT) := ∃xK RProg(xK , xT , ‘22:00’)

(b) Die Anfrage

”
Gib die Titel aller Filme aus, in denen George Clooney mitspielt oder
Regie führt“

lässt sich durch folgende FO[σKINO]-Formel beschreiben: φ2(xT) :=

∃xR RFilm(xT , xR , ‘George Clooney’) ∨ ∃xS RFilm(xT , ‘George Clooney’, xS)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 237

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Beispiel 3.35

(a) Die Anfrage

”
Gib die Titel aller Filme aus, die um 22:00 Uhr beginnen.“

lässt sich durch folgende FO[σKINO]-Formel φ1(xT) beschreiben:

φ1(xT) := ∃xK RProg(xK , xT , ‘22:00’)

(b) Die Anfrage

”
Gib die Titel aller Filme aus, in denen George Clooney mitspielt oder
Regie führt“

lässt sich durch folgende FO[σKINO]-Formel beschreiben: φ2(xT) :=

∃xR RFilm(xT , xR , ‘George Clooney’) ∨ ∃xS RFilm(xT , ‘George Clooney’, xS)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 237

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Beispiel 3.35

(a) Die Anfrage

”
Gib die Titel aller Filme aus, die um 22:00 Uhr beginnen.“

lässt sich durch folgende FO[σKINO]-Formel φ1(xT) beschreiben:

φ1(xT) := ∃xK RProg(xK , xT , ‘22:00’)

(b) Die Anfrage

”
Gib die Titel aller Filme aus, in denen George Clooney mitspielt oder
Regie führt“

lässt sich durch folgende FO[σKINO]-Formel beschreiben: φ2(xT) :=

∃xR RFilm(xT , xR , ‘George Clooney’) ∨ ∃xS RFilm(xT , ‘George Clooney’, xS)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 237

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

(c) Die Anfrage

”
Gib Name und Stadtteil aller Kinos aus, in denen ein Film läuft, in dem
George Clooney mitspielt oder Regie führt“

lässt sich durch folgende FO[σKINO]-Formel beschreiben: φ3(xK , xSt) :=

∃xA ∃xTel RKino(xK , xA, xSt, xTel) ∧

∃xT ∃xZ
(
RProg(xK , xT , xZ) ∧(

∃xR RFilm(xT , xR , ‘George Clooney’) ∨ ∃xS RFilm(xT , ‘George Clooney’, xS)
))

Die erste Zeile der Formel stellt sicher, dass xK ein Kino und xS dessen
Stadtteil ist; die Zeilen 2 und 3 stellen sicher, dass im Kino xK ein Film
läuft, in dem George Clooney mitspielt oder Regie führt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 238

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

(c) Die Anfrage

”
Gib Name und Stadtteil aller Kinos aus, in denen ein Film läuft, in dem
George Clooney mitspielt oder Regie führt“

lässt sich durch folgende FO[σKINO]-Formel beschreiben: φ3(xK , xSt) :=

∃xA ∃xTel RKino(xK , xA, xSt, xTel) ∧

∃xT ∃xZ
(
RProg(xK , xT , xZ) ∧(

∃xR RFilm(xT , xR , ‘George Clooney’) ∨ ∃xS RFilm(xT , ‘George Clooney’, xS)
))

Die erste Zeile der Formel stellt sicher, dass xK ein Kino und xS dessen
Stadtteil ist; die Zeilen 2 und 3 stellen sicher, dass im Kino xK ein Film
läuft, in dem George Clooney mitspielt oder Regie führt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 238

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

(c) Die Anfrage

”
Gib Name und Stadtteil aller Kinos aus, in denen ein Film läuft, in dem
George Clooney mitspielt oder Regie führt“

lässt sich durch folgende FO[σKINO]-Formel beschreiben: φ3(xK , xSt) :=

∃xA ∃xTel RKino(xK , xA, xSt, xTel) ∧

∃xT ∃xZ
(
RProg(xK , xT , xZ) ∧(

∃xR RFilm(xT , xR , ‘George Clooney’) ∨ ∃xS RFilm(xT , ‘George Clooney’, xS)
))

Die erste Zeile der Formel stellt sicher, dass xK ein Kino und xS dessen
Stadtteil ist; die Zeilen 2 und 3 stellen sicher, dass im Kino xK ein Film
läuft, in dem George Clooney mitspielt oder Regie führt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 238

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Eine andere Sichtweise auf die Semantik

• Anstatt Wahrheitswerte in Interpretationen definieren Formeln der Logik
der ersten Stufe auch Relationen in Strukturen.

• Junktoren und Quantoren entsprechen dann algebraischen Operatoren auf
Relationen.

• Diese Sichtweise ist insbesondere in der Datenbanktheorie wichtig und
bildet die Grundlage effizienter Algorithmen zur Auswertung von
Datenbankanfragen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 239

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Eine andere Sichtweise auf die Semantik

• Anstatt Wahrheitswerte in Interpretationen definieren Formeln der Logik
der ersten Stufe auch Relationen in Strukturen.

• Junktoren und Quantoren entsprechen dann algebraischen Operatoren auf
Relationen.

• Diese Sichtweise ist insbesondere in der Datenbanktheorie wichtig und
bildet die Grundlage effizienter Algorithmen zur Auswertung von
Datenbankanfragen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 239

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Eine andere Sichtweise auf die Semantik

• Anstatt Wahrheitswerte in Interpretationen definieren Formeln der Logik
der ersten Stufe auch Relationen in Strukturen.

• Junktoren und Quantoren entsprechen dann algebraischen Operatoren auf
Relationen.

• Diese Sichtweise ist insbesondere in der Datenbanktheorie wichtig und
bildet die Grundlage effizienter Algorithmen zur Auswertung von
Datenbankanfragen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 239

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Definition 3.36
Sei σ eine Signatur, sei φ(x1, . . . , xn) eine FO[σ]-Formel und sei A eine
σ-Struktur.
Die von φ(x1, . . . , xn) in A definierte n-stellige Relation ist

Jφ(x1, . . . , xn)K
A := { (a1, . . . , an) ∈ An : A |= φ[a1, . . . , an] }.

Vorsicht: Die Relation Jφ(x1, . . . , xn)K
A hängt nicht nur von der Formel φ ab,

sondern auch von dem Tupel (x1, . . . , xn) ∈ VARn.

Beispiel 3.37
Die FO[σKINO]-Formeln φ2(xT) und φ3(xK , xSt) aus Beispiel 3.35 definieren in
unserer Beispiel-Datenbank D die Relationen

Jφ2(xT)KD =
{

(Gravity) ,
(Monuments Men)

}
und

Jφ3(xK , xSt)KD =
{

(Babylon, Kreuzberg) ,
(Moviemento, Kreuzberg) ,
(Urania, Schöneberg)

}

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 240

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Definition 3.36
Sei σ eine Signatur, sei φ(x1, . . . , xn) eine FO[σ]-Formel und sei A eine
σ-Struktur.
Die von φ(x1, . . . , xn) in A definierte n-stellige Relation ist

Jφ(x1, . . . , xn)K
A := { (a1, . . . , an) ∈ An : A |= φ[a1, . . . , an] }.

Vorsicht: Die Relation Jφ(x1, . . . , xn)K
A hängt nicht nur von der Formel φ ab,

sondern auch von dem Tupel (x1, . . . , xn) ∈ VARn.

Beispiel 3.37
Die FO[σKINO]-Formeln φ2(xT) und φ3(xK , xSt) aus Beispiel 3.35 definieren in
unserer Beispiel-Datenbank D die Relationen

Jφ2(xT)KD =
{

(Gravity) ,
(Monuments Men)

}
und

Jφ3(xK , xSt)KD =
{

(Babylon, Kreuzberg) ,
(Moviemento, Kreuzberg) ,
(Urania, Schöneberg)

}

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 240

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Definition 3.36
Sei σ eine Signatur, sei φ(x1, . . . , xn) eine FO[σ]-Formel und sei A eine
σ-Struktur.
Die von φ(x1, . . . , xn) in A definierte n-stellige Relation ist

Jφ(x1, . . . , xn)K
A := { (a1, . . . , an) ∈ An : A |= φ[a1, . . . , an] }.

Vorsicht: Die Relation Jφ(x1, . . . , xn)K
A hängt nicht nur von der Formel φ ab,

sondern auch von dem Tupel (x1, . . . , xn) ∈ VARn.

Beispiel 3.37
Die FO[σKINO]-Formeln φ2(xT) und φ3(xK , xSt) aus Beispiel 3.35 definieren in
unserer Beispiel-Datenbank D die Relationen

Jφ2(xT)KD =

{
(Gravity) ,
(Monuments Men)

}
und

Jφ3(xK , xSt)KD =
{

(Babylon, Kreuzberg) ,
(Moviemento, Kreuzberg) ,
(Urania, Schöneberg)

}

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 240

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Definition 3.36
Sei σ eine Signatur, sei φ(x1, . . . , xn) eine FO[σ]-Formel und sei A eine
σ-Struktur.
Die von φ(x1, . . . , xn) in A definierte n-stellige Relation ist

Jφ(x1, . . . , xn)K
A := { (a1, . . . , an) ∈ An : A |= φ[a1, . . . , an] }.

Vorsicht: Die Relation Jφ(x1, . . . , xn)K
A hängt nicht nur von der Formel φ ab,

sondern auch von dem Tupel (x1, . . . , xn) ∈ VARn.

Beispiel 3.37
Die FO[σKINO]-Formeln φ2(xT) und φ3(xK , xSt) aus Beispiel 3.35 definieren in
unserer Beispiel-Datenbank D die Relationen

Jφ2(xT)KD =
{

(Gravity) ,
(Monuments Men)

}
und

Jφ3(xK , xSt)KD =
{

(Babylon, Kreuzberg) ,
(Moviemento, Kreuzberg) ,
(Urania, Schöneberg)

}

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 240

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Definition 3.36
Sei σ eine Signatur, sei φ(x1, . . . , xn) eine FO[σ]-Formel und sei A eine
σ-Struktur.
Die von φ(x1, . . . , xn) in A definierte n-stellige Relation ist

Jφ(x1, . . . , xn)K
A := { (a1, . . . , an) ∈ An : A |= φ[a1, . . . , an] }.

Vorsicht: Die Relation Jφ(x1, . . . , xn)K
A hängt nicht nur von der Formel φ ab,

sondern auch von dem Tupel (x1, . . . , xn) ∈ VARn.

Beispiel 3.37
Die FO[σKINO]-Formeln φ2(xT) und φ3(xK , xSt) aus Beispiel 3.35 definieren in
unserer Beispiel-Datenbank D die Relationen

Jφ2(xT)KD =
{

(Gravity) ,
(Monuments Men)

}
und

Jφ3(xK , xSt)KD =

{
(Babylon, Kreuzberg) ,
(Moviemento, Kreuzberg) ,
(Urania, Schöneberg)

}

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 240

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Definition 3.36
Sei σ eine Signatur, sei φ(x1, . . . , xn) eine FO[σ]-Formel und sei A eine
σ-Struktur.
Die von φ(x1, . . . , xn) in A definierte n-stellige Relation ist

Jφ(x1, . . . , xn)K
A := { (a1, . . . , an) ∈ An : A |= φ[a1, . . . , an] }.

Vorsicht: Die Relation Jφ(x1, . . . , xn)K
A hängt nicht nur von der Formel φ ab,

sondern auch von dem Tupel (x1, . . . , xn) ∈ VARn.

Beispiel 3.37
Die FO[σKINO]-Formeln φ2(xT) und φ3(xK , xSt) aus Beispiel 3.35 definieren in
unserer Beispiel-Datenbank D die Relationen

Jφ2(xT)KD =
{

(Gravity) ,
(Monuments Men)

}
und

Jφ3(xK , xSt)KD =
{

(Babylon, Kreuzberg) ,
(Moviemento, Kreuzberg) ,
(Urania, Schöneberg)

}
Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 240

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Ändern der Variablen

Lemma 3.38
Sei σ eine Signatur, sei A eine σ-Struktur und sei φ(x1, . . . , xn) ∈ FO[σ].

(a) Für jede Permutation2 π von [n] ist

q
φ(xπ(1), . . . , xπ(n))

yA
=

{
(aπ(1), . . . , aπ(n)) :

(a1, . . . , an) ∈ Jφ(x1, . . . , xn)K
A }

.

(b) Für jede Variable y ∈ VAR \ {x1, . . . , xn} ist

Jφ(x1, . . . , xn, y)K
A = Jφ(x1, . . . , xn)K

A × A.

(c) Falls xn ̸∈ frei(φ), so ist

Jφ(x1, . . . , xn−1)K
A =

{
(a1, . . . , an−1) :

es gibt (mind.) ein a ∈ A so dass (a1, . . . , an−1, a) ∈ Jφ(x1, . . . , xn)K
A }

.

2Eine Permutation einer Menge M ist eine bijektive Abbildung von M nach M.
Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 241

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Ändern der Variablen

Lemma 3.38
Sei σ eine Signatur, sei A eine σ-Struktur und sei φ(x1, . . . , xn) ∈ FO[σ].

(a) Für jede Permutation2 π von [n] ist

q
φ(xπ(1), . . . , xπ(n))

yA
=

{
(aπ(1), . . . , aπ(n)) :

(a1, . . . , an) ∈ Jφ(x1, . . . , xn)K
A }

.

(b) Für jede Variable y ∈ VAR \ {x1, . . . , xn} ist

Jφ(x1, . . . , xn, y)K
A =

Jφ(x1, . . . , xn)K
A × A.

(c) Falls xn ̸∈ frei(φ), so ist

Jφ(x1, . . . , xn−1)K
A =

{
(a1, . . . , an−1) :

es gibt (mind.) ein a ∈ A so dass (a1, . . . , an−1, a) ∈ Jφ(x1, . . . , xn)K
A }

.

2Eine Permutation einer Menge M ist eine bijektive Abbildung von M nach M.
Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 241

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Ändern der Variablen

Lemma 3.38
Sei σ eine Signatur, sei A eine σ-Struktur und sei φ(x1, . . . , xn) ∈ FO[σ].

(a) Für jede Permutation2 π von [n] ist

q
φ(xπ(1), . . . , xπ(n))

yA
=

{
(aπ(1), . . . , aπ(n)) :

(a1, . . . , an) ∈ Jφ(x1, . . . , xn)K
A }

.

(b) Für jede Variable y ∈ VAR \ {x1, . . . , xn} ist

Jφ(x1, . . . , xn, y)K
A = Jφ(x1, . . . , xn)K

A × A.

(c) Falls xn ̸∈ frei(φ), so ist

Jφ(x1, . . . , xn−1)K
A =

{
(a1, . . . , an−1) :

es gibt (mind.) ein a ∈ A so dass (a1, . . . , an−1, a) ∈ Jφ(x1, . . . , xn)K
A }

.

2Eine Permutation einer Menge M ist eine bijektive Abbildung von M nach M.
Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 241

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Ändern der Variablen

Lemma 3.38
Sei σ eine Signatur, sei A eine σ-Struktur und sei φ(x1, . . . , xn) ∈ FO[σ].

(a) Für jede Permutation2 π von [n] ist

q
φ(xπ(1), . . . , xπ(n))

yA
=

{
(aπ(1), . . . , aπ(n)) :

(a1, . . . , an) ∈ Jφ(x1, . . . , xn)K
A }

.

(b) Für jede Variable y ∈ VAR \ {x1, . . . , xn} ist

Jφ(x1, . . . , xn, y)K
A = Jφ(x1, . . . , xn)K

A × A.

(c) Falls xn ̸∈ frei(φ), so ist

Jφ(x1, . . . , xn−1)K
A =

{
(a1, . . . , an−1) :

es gibt (mind.) ein a ∈ A so dass (a1, . . . , an−1, a) ∈ Jφ(x1, . . . , xn)K
A }

.

2Eine Permutation einer Menge M ist eine bijektive Abbildung von M nach M.
Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 241

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Rekursive Beschreibung von Jφ(x1, . . . , xn)K
A

Beobachtung 3.39
Ist σ eine Signatur und A eine σ-Struktur, so können wir für FO[σ]-Formeln φ und
Variablentupel (x1, . . . , xn) mit frei(φ) ⊆ {x1, . . . , xn} die Relation
Jφ(x1, . . . , xn)KA ⊆ An rekursiv wie folgt beschreiben:

• Falls φ von der Form t1 = t2 für σ-Terme t1, t2 ist, so ist

Jφ(x1, . . . , xn)KA =

{
(a1, . . . , an) ∈ An :

tA1 [a1, . . . , an] = tA2 [a1, . . . , an]
}

Zur Erinnerung: Für einen σ-Term t(x1, . . . , xn) schreiben wir tA[a1, . . . , an] um

das Element JtK(A,β) ∈ A zu bezeichnen, wobei β eine Belegung mit β(xi) = ai ,
für alle i ∈ [n], ist.

• Falls φ von der Form R(t1, . . . , tk) für ein R ∈ σ, für k := ar(R) und für σ-Terme
t1, . . . , tk ist, so ist

Jφ(x1, . . . , xn)KA =
{
(a1, . . . , an) ∈ An :(

tA1 [a1, . . . , an], . . . , t
A
k [a1, . . . , an]

)
∈ RA }

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 242

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Rekursive Beschreibung von Jφ(x1, . . . , xn)K
A

Beobachtung 3.39
Ist σ eine Signatur und A eine σ-Struktur, so können wir für FO[σ]-Formeln φ und
Variablentupel (x1, . . . , xn) mit frei(φ) ⊆ {x1, . . . , xn} die Relation
Jφ(x1, . . . , xn)KA ⊆ An rekursiv wie folgt beschreiben:

• Falls φ von der Form t1 = t2 für σ-Terme t1, t2 ist, so ist

Jφ(x1, . . . , xn)KA =
{
(a1, . . . , an) ∈ An :

tA1 [a1, . . . , an] = tA2 [a1, . . . , an]
}

Zur Erinnerung: Für einen σ-Term t(x1, . . . , xn) schreiben wir tA[a1, . . . , an] um

das Element JtK(A,β) ∈ A zu bezeichnen, wobei β eine Belegung mit β(xi) = ai ,
für alle i ∈ [n], ist.

• Falls φ von der Form R(t1, . . . , tk) für ein R ∈ σ, für k := ar(R) und für σ-Terme
t1, . . . , tk ist, so ist

Jφ(x1, . . . , xn)KA =
{
(a1, . . . , an) ∈ An :(

tA1 [a1, . . . , an], . . . , t
A
k [a1, . . . , an]

)
∈ RA }

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 242

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Rekursive Beschreibung von Jφ(x1, . . . , xn)K
A

Beobachtung 3.39
Ist σ eine Signatur und A eine σ-Struktur, so können wir für FO[σ]-Formeln φ und
Variablentupel (x1, . . . , xn) mit frei(φ) ⊆ {x1, . . . , xn} die Relation
Jφ(x1, . . . , xn)KA ⊆ An rekursiv wie folgt beschreiben:

• Falls φ von der Form t1 = t2 für σ-Terme t1, t2 ist, so ist

Jφ(x1, . . . , xn)KA =
{
(a1, . . . , an) ∈ An :

tA1 [a1, . . . , an] = tA2 [a1, . . . , an]
}

Zur Erinnerung: Für einen σ-Term t(x1, . . . , xn) schreiben wir tA[a1, . . . , an] um

das Element JtK(A,β) ∈ A zu bezeichnen, wobei β eine Belegung mit β(xi) = ai ,
für alle i ∈ [n], ist.

• Falls φ von der Form R(t1, . . . , tk) für ein R ∈ σ, für k := ar(R) und für σ-Terme
t1, . . . , tk ist, so ist

Jφ(x1, . . . , xn)KA =

{
(a1, . . . , an) ∈ An :(

tA1 [a1, . . . , an], . . . , t
A
k [a1, . . . , an]

)
∈ RA }

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 242

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Rekursive Beschreibung von Jφ(x1, . . . , xn)K
A

Beobachtung 3.39
Ist σ eine Signatur und A eine σ-Struktur, so können wir für FO[σ]-Formeln φ und
Variablentupel (x1, . . . , xn) mit frei(φ) ⊆ {x1, . . . , xn} die Relation
Jφ(x1, . . . , xn)KA ⊆ An rekursiv wie folgt beschreiben:

• Falls φ von der Form t1 = t2 für σ-Terme t1, t2 ist, so ist

Jφ(x1, . . . , xn)KA =
{
(a1, . . . , an) ∈ An :

tA1 [a1, . . . , an] = tA2 [a1, . . . , an]
}

Zur Erinnerung: Für einen σ-Term t(x1, . . . , xn) schreiben wir tA[a1, . . . , an] um

das Element JtK(A,β) ∈ A zu bezeichnen, wobei β eine Belegung mit β(xi) = ai ,
für alle i ∈ [n], ist.

• Falls φ von der Form R(t1, . . . , tk) für ein R ∈ σ, für k := ar(R) und für σ-Terme
t1, . . . , tk ist, so ist

Jφ(x1, . . . , xn)KA =
{
(a1, . . . , an) ∈ An :(

tA1 [a1, . . . , an], . . . , t
A
k [a1, . . . , an]

)
∈ RA }

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 242

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

• Falls φ von der Form ¬ψ ist, so ist

Jφ(x1, . . . , xn)K
A =

An \ Jψ(x1, . . . , xn)K
A

• Falls φ von der Form (ψ1 ∧ ψ2) ist, so ist

Jφ(x1, . . . , xn)K
A = Jψ1(x1, . . . , xn)K

A ∩ Jψ2(x1, . . . , xn)K
A

• Falls φ von der Form (ψ1 ∨ ψ2) ist, so ist

Jφ(x1, . . . , xn)K
A = Jψ1(x1, . . . , xn)K

A ∪ Jψ2(x1, . . . , xn)K
A

• Falls φ von der Form (ψ1 → ψ2) ist, so ist

Jφ(x1, . . . , xn)K
A = J¬ψ1(x1, . . . , xn)K

A ∪ Jψ2(x1, . . . , xn)K
A

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 243

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

• Falls φ von der Form ¬ψ ist, so ist

Jφ(x1, . . . , xn)K
A = An \ Jψ(x1, . . . , xn)K

A

• Falls φ von der Form (ψ1 ∧ ψ2) ist, so ist

Jφ(x1, . . . , xn)K
A = Jψ1(x1, . . . , xn)K

A ∩ Jψ2(x1, . . . , xn)K
A

• Falls φ von der Form (ψ1 ∨ ψ2) ist, so ist

Jφ(x1, . . . , xn)K
A = Jψ1(x1, . . . , xn)K

A ∪ Jψ2(x1, . . . , xn)K
A

• Falls φ von der Form (ψ1 → ψ2) ist, so ist

Jφ(x1, . . . , xn)K
A = J¬ψ1(x1, . . . , xn)K

A ∪ Jψ2(x1, . . . , xn)K
A

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 243

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

• Falls φ von der Form ¬ψ ist, so ist

Jφ(x1, . . . , xn)K
A = An \ Jψ(x1, . . . , xn)K

A

• Falls φ von der Form (ψ1 ∧ ψ2) ist, so ist

Jφ(x1, . . . , xn)K
A =

Jψ1(x1, . . . , xn)K
A ∩ Jψ2(x1, . . . , xn)K

A

• Falls φ von der Form (ψ1 ∨ ψ2) ist, so ist

Jφ(x1, . . . , xn)K
A = Jψ1(x1, . . . , xn)K

A ∪ Jψ2(x1, . . . , xn)K
A

• Falls φ von der Form (ψ1 → ψ2) ist, so ist

Jφ(x1, . . . , xn)K
A = J¬ψ1(x1, . . . , xn)K

A ∪ Jψ2(x1, . . . , xn)K
A

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 243

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

• Falls φ von der Form ¬ψ ist, so ist

Jφ(x1, . . . , xn)K
A = An \ Jψ(x1, . . . , xn)K

A

• Falls φ von der Form (ψ1 ∧ ψ2) ist, so ist

Jφ(x1, . . . , xn)K
A = Jψ1(x1, . . . , xn)K

A ∩ Jψ2(x1, . . . , xn)K
A

• Falls φ von der Form (ψ1 ∨ ψ2) ist, so ist

Jφ(x1, . . . , xn)K
A = Jψ1(x1, . . . , xn)K

A ∪ Jψ2(x1, . . . , xn)K
A

• Falls φ von der Form (ψ1 → ψ2) ist, so ist

Jφ(x1, . . . , xn)K
A = J¬ψ1(x1, . . . , xn)K

A ∪ Jψ2(x1, . . . , xn)K
A

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 243

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

• Falls φ von der Form ¬ψ ist, so ist

Jφ(x1, . . . , xn)K
A = An \ Jψ(x1, . . . , xn)K

A

• Falls φ von der Form (ψ1 ∧ ψ2) ist, so ist

Jφ(x1, . . . , xn)K
A = Jψ1(x1, . . . , xn)K

A ∩ Jψ2(x1, . . . , xn)K
A

• Falls φ von der Form (ψ1 ∨ ψ2) ist, so ist

Jφ(x1, . . . , xn)K
A =

Jψ1(x1, . . . , xn)K
A ∪ Jψ2(x1, . . . , xn)K

A

• Falls φ von der Form (ψ1 → ψ2) ist, so ist

Jφ(x1, . . . , xn)K
A = J¬ψ1(x1, . . . , xn)K

A ∪ Jψ2(x1, . . . , xn)K
A

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 243

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

• Falls φ von der Form ¬ψ ist, so ist

Jφ(x1, . . . , xn)K
A = An \ Jψ(x1, . . . , xn)K

A

• Falls φ von der Form (ψ1 ∧ ψ2) ist, so ist

Jφ(x1, . . . , xn)K
A = Jψ1(x1, . . . , xn)K

A ∩ Jψ2(x1, . . . , xn)K
A

• Falls φ von der Form (ψ1 ∨ ψ2) ist, so ist

Jφ(x1, . . . , xn)K
A = Jψ1(x1, . . . , xn)K

A ∪ Jψ2(x1, . . . , xn)K
A

• Falls φ von der Form (ψ1 → ψ2) ist, so ist

Jφ(x1, . . . , xn)K
A = J¬ψ1(x1, . . . , xn)K

A ∪ Jψ2(x1, . . . , xn)K
A

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 243

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

• Falls φ von der Form ¬ψ ist, so ist

Jφ(x1, . . . , xn)K
A = An \ Jψ(x1, . . . , xn)K

A

• Falls φ von der Form (ψ1 ∧ ψ2) ist, so ist

Jφ(x1, . . . , xn)K
A = Jψ1(x1, . . . , xn)K

A ∩ Jψ2(x1, . . . , xn)K
A

• Falls φ von der Form (ψ1 ∨ ψ2) ist, so ist

Jφ(x1, . . . , xn)K
A = Jψ1(x1, . . . , xn)K

A ∪ Jψ2(x1, . . . , xn)K
A

• Falls φ von der Form (ψ1 → ψ2) ist, so ist

Jφ(x1, . . . , xn)K
A =

J¬ψ1(x1, . . . , xn)K
A ∪ Jψ2(x1, . . . , xn)K

A

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 243

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

• Falls φ von der Form ¬ψ ist, so ist

Jφ(x1, . . . , xn)K
A = An \ Jψ(x1, . . . , xn)K

A

• Falls φ von der Form (ψ1 ∧ ψ2) ist, so ist

Jφ(x1, . . . , xn)K
A = Jψ1(x1, . . . , xn)K

A ∩ Jψ2(x1, . . . , xn)K
A

• Falls φ von der Form (ψ1 ∨ ψ2) ist, so ist

Jφ(x1, . . . , xn)K
A = Jψ1(x1, . . . , xn)K

A ∪ Jψ2(x1, . . . , xn)K
A

• Falls φ von der Form (ψ1 → ψ2) ist, so ist

Jφ(x1, . . . , xn)K
A = J¬ψ1(x1, . . . , xn)K

A ∪ Jψ2(x1, . . . , xn)K
A

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 243

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

• Falls φ von der Form ∃y ψ ist, so ist

Jφ(x1, . . . , xn)K
A =

{
(a1, . . . , an) ∈ An : es gibt (mind.) ein

b ∈ A mit (a1, . . . , an, b) ∈ Jψ(x1, . . . , xn, y)K
A }

Somit ist Jφ(x1, . . . , xn)K
A die Projektion von Jψ(x1, . . . , xn, y)K

A auf die
ersten n Stellen.

• Falls φ von der Form ∀y ψ ist, so ist

Jφ(x1, . . . , xn)K
A =

{
(a1, . . . , an) ∈ An :

für jedes b ∈ A ist (a1, . . . , an, b) ∈ Jψ(x1, . . . , xn, y)K
A }

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 244

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

• Falls φ von der Form ∃y ψ ist, so ist

Jφ(x1, . . . , xn)K
A =

{
(a1, . . . , an) ∈ An : es gibt (mind.) ein

b ∈ A mit (a1, . . . , an, b) ∈ Jψ(x1, . . . , xn, y)K
A }

Somit ist Jφ(x1, . . . , xn)K
A die Projektion von Jψ(x1, . . . , xn, y)K

A auf die
ersten n Stellen.

• Falls φ von der Form ∀y ψ ist, so ist

Jφ(x1, . . . , xn)K
A =

{
(a1, . . . , an) ∈ An :

für jedes b ∈ A ist (a1, . . . , an, b) ∈ Jψ(x1, . . . , xn, y)K
A }

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 244

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

• Falls φ von der Form ∃y ψ ist, so ist

Jφ(x1, . . . , xn)K
A =

{
(a1, . . . , an) ∈ An : es gibt (mind.) ein

b ∈ A mit (a1, . . . , an, b) ∈ Jψ(x1, . . . , xn, y)K
A }

Somit ist Jφ(x1, . . . , xn)K
A die Projektion von Jψ(x1, . . . , xn, y)K

A auf die
ersten n Stellen.

• Falls φ von der Form ∀y ψ ist, so ist

Jφ(x1, . . . , xn)K
A =

{
(a1, . . . , an) ∈ An :

für jedes b ∈ A ist (a1, . . . , an, b) ∈ Jψ(x1, . . . , xn, y)K
A }

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 244

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

• Falls φ von der Form ∃y ψ ist, so ist

Jφ(x1, . . . , xn)K
A =

{
(a1, . . . , an) ∈ An : es gibt (mind.) ein

b ∈ A mit (a1, . . . , an, b) ∈ Jψ(x1, . . . , xn, y)K
A }

Somit ist Jφ(x1, . . . , xn)K
A die Projektion von Jψ(x1, . . . , xn, y)K

A auf die
ersten n Stellen.

• Falls φ von der Form ∀y ψ ist, so ist

Jφ(x1, . . . , xn)K
A =

{
(a1, . . . , an) ∈ An :

für jedes b ∈ A ist (a1, . . . , an, b) ∈ Jψ(x1, . . . , xn, y)K
A }

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 244

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

• Falls φ von der Form ∃y ψ ist, so ist

Jφ(x1, . . . , xn)K
A =

{
(a1, . . . , an) ∈ An : es gibt (mind.) ein

b ∈ A mit (a1, . . . , an, b) ∈ Jψ(x1, . . . , xn, y)K
A }

Somit ist Jφ(x1, . . . , xn)K
A die Projektion von Jψ(x1, . . . , xn, y)K

A auf die
ersten n Stellen.

• Falls φ von der Form ∀y ψ ist, so ist

Jφ(x1, . . . , xn)K
A =

{
(a1, . . . , an) ∈ An :

für jedes b ∈ A ist (a1, . . . , an, b) ∈ Jψ(x1, . . . , xn, y)K
A }

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 244

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Das Auswertungsproblem für FO

Eingabe: Eine endliche Signatur σ,
eine σ-Struktur A

, deren Universum A endlich ist,
eine FO[σ]-Formel φ,
eine Zahl n ∈ N und
ein Variablentupel (x1, . . . , xn) ∈ VARn, so dass frei(φ) ⊆
{x1, . . . , xn} ist.

Aufgabe: Berechne Jφ(x1, . . . , xn)K
A.

Beobachtung 3.39 führt unmittelbar zu einem rekursiven Algorithmus, der das
Auswertungsproblem für FO löst.

Eine Laufzeitanalyse zeigt, dass Folgendes gilt:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 245

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Das Auswertungsproblem für FO

Eingabe: Eine endliche Signatur σ,
eine σ-Struktur A, deren Universum A endlich ist,

eine FO[σ]-Formel φ,
eine Zahl n ∈ N und
ein Variablentupel (x1, . . . , xn) ∈ VARn, so dass frei(φ) ⊆
{x1, . . . , xn} ist.

Aufgabe: Berechne Jφ(x1, . . . , xn)K
A.

Beobachtung 3.39 führt unmittelbar zu einem rekursiven Algorithmus, der das
Auswertungsproblem für FO löst.

Eine Laufzeitanalyse zeigt, dass Folgendes gilt:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 245

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Das Auswertungsproblem für FO

Eingabe: Eine endliche Signatur σ,
eine σ-Struktur A, deren Universum A endlich ist,
eine FO[σ]-Formel φ,

eine Zahl n ∈ N und
ein Variablentupel (x1, . . . , xn) ∈ VARn, so dass frei(φ) ⊆
{x1, . . . , xn} ist.

Aufgabe: Berechne Jφ(x1, . . . , xn)K
A.

Beobachtung 3.39 führt unmittelbar zu einem rekursiven Algorithmus, der das
Auswertungsproblem für FO löst.

Eine Laufzeitanalyse zeigt, dass Folgendes gilt:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 245

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Das Auswertungsproblem für FO

Eingabe: Eine endliche Signatur σ,
eine σ-Struktur A, deren Universum A endlich ist,
eine FO[σ]-Formel φ,
eine Zahl n ∈ N und
ein Variablentupel (x1, . . . , xn) ∈ VARn, so dass frei(φ) ⊆
{x1, . . . , xn} ist.

Aufgabe: Berechne Jφ(x1, . . . , xn)K
A.

Beobachtung 3.39 führt unmittelbar zu einem rekursiven Algorithmus, der das
Auswertungsproblem für FO löst.

Eine Laufzeitanalyse zeigt, dass Folgendes gilt:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 245

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Das Auswertungsproblem für FO

Eingabe: Eine endliche Signatur σ,
eine σ-Struktur A, deren Universum A endlich ist,
eine FO[σ]-Formel φ,
eine Zahl n ∈ N und
ein Variablentupel (x1, . . . , xn) ∈ VARn, so dass frei(φ) ⊆
{x1, . . . , xn} ist.

Aufgabe: Berechne Jφ(x1, . . . , xn)K
A.

Beobachtung 3.39 führt unmittelbar zu einem rekursiven Algorithmus, der das
Auswertungsproblem für FO löst.

Eine Laufzeitanalyse zeigt, dass Folgendes gilt:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 245

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Das Auswertungsproblem für FO

Eingabe: Eine endliche Signatur σ,
eine σ-Struktur A, deren Universum A endlich ist,
eine FO[σ]-Formel φ,
eine Zahl n ∈ N und
ein Variablentupel (x1, . . . , xn) ∈ VARn, so dass frei(φ) ⊆
{x1, . . . , xn} ist.

Aufgabe: Berechne Jφ(x1, . . . , xn)K
A.

Beobachtung 3.39 führt unmittelbar zu einem rekursiven Algorithmus, der das
Auswertungsproblem für FO löst.

Eine Laufzeitanalyse zeigt, dass Folgendes gilt:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 245

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Das Auswertungsproblem für FO

Eingabe: Eine endliche Signatur σ,
eine σ-Struktur A, deren Universum A endlich ist,
eine FO[σ]-Formel φ,
eine Zahl n ∈ N und
ein Variablentupel (x1, . . . , xn) ∈ VARn, so dass frei(φ) ⊆
{x1, . . . , xn} ist.

Aufgabe: Berechne Jφ(x1, . . . , xn)K
A.

Beobachtung 3.39 führt unmittelbar zu einem rekursiven Algorithmus, der das
Auswertungsproblem für FO löst.

Eine Laufzeitanalyse zeigt, dass Folgendes gilt:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 245

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Satz 3.40
Es gibt einen Algorithmus, der das Auswertungsproblem für FO bei Eingabe
einer Signatur σ, eine σ-Struktur A, einer FO[σ]-Formel φ, einer Zahl n und
eines Variablentupels (x1, . . . , xn) mit frei(φ) ⊆ {x1, . . . , xn} in Zeit

O (||φ|| + ||A|| + ||φ||·w ·||A||w)

löst

, wobei gilt:

• ||φ|| ist die Länge von φ, aufgefasst als Wort über dem Alphabet AFO[σ]

• w ist die maximale Anzahl freier Variablen in Subformeln von φ — die so
genannte Breite (engl.: width) von φ

• ||A|| ist ein Maß für die Größe einer geeigneten Repräsentation von A als
Eingabe für einen Algorithmus; präzise:

||A|| := |σ| + |A| +
∑
R∈σ

|RA|·ar(R) +
∑
f∈σ

|A|ar(f)·(ar(f)+1)

(Hier ohne Beweis)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 246

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Satz 3.40
Es gibt einen Algorithmus, der das Auswertungsproblem für FO bei Eingabe
einer Signatur σ, eine σ-Struktur A, einer FO[σ]-Formel φ, einer Zahl n und
eines Variablentupels (x1, . . . , xn) mit frei(φ) ⊆ {x1, . . . , xn} in Zeit

O (||φ|| + ||A|| + ||φ||·w ·||A||w)

löst, wobei gilt:

• ||φ||

ist die Länge von φ, aufgefasst als Wort über dem Alphabet AFO[σ]

• w ist die maximale Anzahl freier Variablen in Subformeln von φ — die so
genannte Breite (engl.: width) von φ

• ||A|| ist ein Maß für die Größe einer geeigneten Repräsentation von A als
Eingabe für einen Algorithmus; präzise:

||A|| := |σ| + |A| +
∑
R∈σ

|RA|·ar(R) +
∑
f∈σ

|A|ar(f)·(ar(f)+1)

(Hier ohne Beweis)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 246

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Satz 3.40
Es gibt einen Algorithmus, der das Auswertungsproblem für FO bei Eingabe
einer Signatur σ, eine σ-Struktur A, einer FO[σ]-Formel φ, einer Zahl n und
eines Variablentupels (x1, . . . , xn) mit frei(φ) ⊆ {x1, . . . , xn} in Zeit

O (||φ|| + ||A|| + ||φ||·w ·||A||w)

löst, wobei gilt:

• ||φ|| ist die Länge von φ, aufgefasst als Wort über dem Alphabet AFO[σ]

• w ist die maximale Anzahl freier Variablen in Subformeln von φ — die so
genannte Breite (engl.: width) von φ

• ||A|| ist ein Maß für die Größe einer geeigneten Repräsentation von A als
Eingabe für einen Algorithmus; präzise:

||A|| := |σ| + |A| +
∑
R∈σ

|RA|·ar(R) +
∑
f∈σ

|A|ar(f)·(ar(f)+1)

(Hier ohne Beweis)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 246

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Satz 3.40
Es gibt einen Algorithmus, der das Auswertungsproblem für FO bei Eingabe
einer Signatur σ, eine σ-Struktur A, einer FO[σ]-Formel φ, einer Zahl n und
eines Variablentupels (x1, . . . , xn) mit frei(φ) ⊆ {x1, . . . , xn} in Zeit

O (||φ|| + ||A|| + ||φ||·w ·||A||w)

löst, wobei gilt:

• ||φ|| ist die Länge von φ, aufgefasst als Wort über dem Alphabet AFO[σ]

• w

ist die maximale Anzahl freier Variablen in Subformeln von φ — die so
genannte Breite (engl.: width) von φ

• ||A|| ist ein Maß für die Größe einer geeigneten Repräsentation von A als
Eingabe für einen Algorithmus; präzise:

||A|| := |σ| + |A| +
∑
R∈σ

|RA|·ar(R) +
∑
f∈σ

|A|ar(f)·(ar(f)+1)

(Hier ohne Beweis)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 246

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Satz 3.40
Es gibt einen Algorithmus, der das Auswertungsproblem für FO bei Eingabe
einer Signatur σ, eine σ-Struktur A, einer FO[σ]-Formel φ, einer Zahl n und
eines Variablentupels (x1, . . . , xn) mit frei(φ) ⊆ {x1, . . . , xn} in Zeit

O (||φ|| + ||A|| + ||φ||·w ·||A||w)

löst, wobei gilt:

• ||φ|| ist die Länge von φ, aufgefasst als Wort über dem Alphabet AFO[σ]

• w ist die maximale Anzahl freier Variablen in Subformeln von φ

— die so
genannte Breite (engl.: width) von φ

• ||A|| ist ein Maß für die Größe einer geeigneten Repräsentation von A als
Eingabe für einen Algorithmus; präzise:

||A|| := |σ| + |A| +
∑
R∈σ

|RA|·ar(R) +
∑
f∈σ

|A|ar(f)·(ar(f)+1)

(Hier ohne Beweis)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 246

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Satz 3.40
Es gibt einen Algorithmus, der das Auswertungsproblem für FO bei Eingabe
einer Signatur σ, eine σ-Struktur A, einer FO[σ]-Formel φ, einer Zahl n und
eines Variablentupels (x1, . . . , xn) mit frei(φ) ⊆ {x1, . . . , xn} in Zeit

O (||φ|| + ||A|| + ||φ||·w ·||A||w)

löst, wobei gilt:

• ||φ|| ist die Länge von φ, aufgefasst als Wort über dem Alphabet AFO[σ]

• w ist die maximale Anzahl freier Variablen in Subformeln von φ — die so
genannte Breite (engl.: width) von φ

• ||A|| ist ein Maß für die Größe einer geeigneten Repräsentation von A als
Eingabe für einen Algorithmus; präzise:

||A|| := |σ| + |A| +
∑
R∈σ

|RA|·ar(R) +
∑
f∈σ

|A|ar(f)·(ar(f)+1)

(Hier ohne Beweis)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 246

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Satz 3.40
Es gibt einen Algorithmus, der das Auswertungsproblem für FO bei Eingabe
einer Signatur σ, eine σ-Struktur A, einer FO[σ]-Formel φ, einer Zahl n und
eines Variablentupels (x1, . . . , xn) mit frei(φ) ⊆ {x1, . . . , xn} in Zeit

O (||φ|| + ||A|| + ||φ||·w ·||A||w)

löst, wobei gilt:

• ||φ|| ist die Länge von φ, aufgefasst als Wort über dem Alphabet AFO[σ]

• w ist die maximale Anzahl freier Variablen in Subformeln von φ — die so
genannte Breite (engl.: width) von φ

• ||A||

ist ein Maß für die Größe einer geeigneten Repräsentation von A als
Eingabe für einen Algorithmus; präzise:

||A|| := |σ| + |A| +
∑
R∈σ

|RA|·ar(R) +
∑
f∈σ

|A|ar(f)·(ar(f)+1)

(Hier ohne Beweis)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 246

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Satz 3.40
Es gibt einen Algorithmus, der das Auswertungsproblem für FO bei Eingabe
einer Signatur σ, eine σ-Struktur A, einer FO[σ]-Formel φ, einer Zahl n und
eines Variablentupels (x1, . . . , xn) mit frei(φ) ⊆ {x1, . . . , xn} in Zeit

O (||φ|| + ||A|| + ||φ||·w ·||A||w)

löst, wobei gilt:

• ||φ|| ist die Länge von φ, aufgefasst als Wort über dem Alphabet AFO[σ]

• w ist die maximale Anzahl freier Variablen in Subformeln von φ — die so
genannte Breite (engl.: width) von φ

• ||A|| ist ein Maß für die Größe einer geeigneten Repräsentation von A als
Eingabe für einen Algorithmus

; präzise:

||A|| := |σ| + |A| +
∑
R∈σ

|RA|·ar(R) +
∑
f∈σ

|A|ar(f)·(ar(f)+1)

(Hier ohne Beweis)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 246

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Satz 3.40
Es gibt einen Algorithmus, der das Auswertungsproblem für FO bei Eingabe
einer Signatur σ, eine σ-Struktur A, einer FO[σ]-Formel φ, einer Zahl n und
eines Variablentupels (x1, . . . , xn) mit frei(φ) ⊆ {x1, . . . , xn} in Zeit

O (||φ|| + ||A|| + ||φ||·w ·||A||w)

löst, wobei gilt:

• ||φ|| ist die Länge von φ, aufgefasst als Wort über dem Alphabet AFO[σ]

• w ist die maximale Anzahl freier Variablen in Subformeln von φ — die so
genannte Breite (engl.: width) von φ

• ||A|| ist ein Maß für die Größe einer geeigneten Repräsentation von A als
Eingabe für einen Algorithmus; präzise:

||A|| := |σ| + |A| +
∑
R∈σ

|RA|·ar(R) +
∑
f∈σ

|A|ar(f)·(ar(f)+1)

(Hier ohne Beweis)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 246

Kapitel 3: Logik erster Stufe · Abschnitt 3.6: Logik und Datenbanken

Satz 3.40
Es gibt einen Algorithmus, der das Auswertungsproblem für FO bei Eingabe
einer Signatur σ, eine σ-Struktur A, einer FO[σ]-Formel φ, einer Zahl n und
eines Variablentupels (x1, . . . , xn) mit frei(φ) ⊆ {x1, . . . , xn} in Zeit

O (||φ|| + ||A|| + ||φ||·w ·||A||w)

löst, wobei gilt:

• ||φ|| ist die Länge von φ, aufgefasst als Wort über dem Alphabet AFO[σ]

• w ist die maximale Anzahl freier Variablen in Subformeln von φ — die so
genannte Breite (engl.: width) von φ

• ||A|| ist ein Maß für die Größe einer geeigneten Repräsentation von A als
Eingabe für einen Algorithmus; präzise:

||A|| := |σ| + |A| +
∑
R∈σ

|RA|·ar(R) +
∑
f∈σ

|A|ar(f)·(ar(f)+1)

(Hier ohne Beweis)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 246

Abschnitt 3.7:

Äquivalenz von Formeln der Logik erster
Stufe

Kapitel 3: Logik erster Stufe · Abschnitt 3.7: Äquivalenz von Formeln der Logik erster Stufe

Äquivalenz

Definition 3.41
Sei σ eine Signatur.

(a) Zwei FO[σ]-Formeln φ und ψ heißen äquivalent (kurz: φ ≡ ψ), wenn

für
jede σ-Interpretation I gilt:

I |= φ ⇐⇒ I |= ψ.

(b) Zwei Formelmengen Φ,Ψ ⊆ FO[σ] heißen äquivalent (kurz: Φ ≡ Ψ), wenn
für jede σ-Interpretation I gilt:3

I |= Φ ⇐⇒ I |= Ψ.

3Zur Erinnerung: I |= Φ bedeutet, dass I |= φ für jede Formel φ ∈ Φ gilt.
Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 247

Kapitel 3: Logik erster Stufe · Abschnitt 3.7: Äquivalenz von Formeln der Logik erster Stufe

Äquivalenz

Definition 3.41
Sei σ eine Signatur.

(a) Zwei FO[σ]-Formeln φ und ψ heißen äquivalent (kurz: φ ≡ ψ), wenn für
jede σ-Interpretation I gilt:

I |= φ ⇐⇒ I |= ψ.

(b) Zwei Formelmengen Φ,Ψ ⊆ FO[σ] heißen äquivalent (kurz: Φ ≡ Ψ), wenn
für jede σ-Interpretation I gilt:3

I |= Φ ⇐⇒ I |= Ψ.

3Zur Erinnerung: I |= Φ bedeutet, dass I |= φ für jede Formel φ ∈ Φ gilt.
Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 247

Kapitel 3: Logik erster Stufe · Abschnitt 3.7: Äquivalenz von Formeln der Logik erster Stufe

Äquivalenz

Definition 3.41
Sei σ eine Signatur.

(a) Zwei FO[σ]-Formeln φ und ψ heißen äquivalent (kurz: φ ≡ ψ), wenn für
jede σ-Interpretation I gilt:

I |= φ ⇐⇒ I |= ψ.

(b) Zwei Formelmengen Φ,Ψ ⊆ FO[σ] heißen äquivalent (kurz: Φ ≡ Ψ), wenn

für jede σ-Interpretation I gilt:3

I |= Φ ⇐⇒ I |= Ψ.

3Zur Erinnerung: I |= Φ bedeutet, dass I |= φ für jede Formel φ ∈ Φ gilt.
Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 247

Kapitel 3: Logik erster Stufe · Abschnitt 3.7: Äquivalenz von Formeln der Logik erster Stufe

Äquivalenz

Definition 3.41
Sei σ eine Signatur.

(a) Zwei FO[σ]-Formeln φ und ψ heißen äquivalent (kurz: φ ≡ ψ), wenn für
jede σ-Interpretation I gilt:

I |= φ ⇐⇒ I |= ψ.

(b) Zwei Formelmengen Φ,Ψ ⊆ FO[σ] heißen äquivalent (kurz: Φ ≡ Ψ), wenn
für jede σ-Interpretation I gilt:3

I |= Φ ⇐⇒ I |= Ψ.

3Zur Erinnerung: I |= Φ bedeutet, dass I |= φ für jede Formel φ ∈ Φ gilt.
Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 247

Kapitel 3: Logik erster Stufe · Abschnitt 3.7: Äquivalenz von Formeln der Logik erster Stufe

Beispiel 3.42
Welche der folgenden Formeln sind äquivalent, welche nicht?

• φ1 := ∃y E (x , y)

• φ2 := ∃z E (x , z)

• φ3 := ∃z E (y , z)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 248

Kapitel 3: Logik erster Stufe · Abschnitt 3.7: Äquivalenz von Formeln der Logik erster Stufe

Aussagenlogische Äquivalenzen

Lemma 3.43
Ersetzt man in äquivalenten aussagenlogischen Formeln alle Aussagenymbole
durch FO[σ]-Formeln, so erhält man äquivalente FO[σ]-Formeln.

Beispiel
Aus der aussagenlogische Äquivalenz (X → Y) ≡ ¬X ∨ Y folgt, dass

(φ→ ψ) ≡ ¬φ ∨ ψ

für alle FO[σ]-Formeln φ und ψ gilt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 249

Kapitel 3: Logik erster Stufe · Abschnitt 3.7: Äquivalenz von Formeln der Logik erster Stufe

Aussagenlogische Äquivalenzen

Lemma 3.43
Ersetzt man in äquivalenten aussagenlogischen Formeln alle Aussagenymbole
durch FO[σ]-Formeln, so erhält man äquivalente FO[σ]-Formeln.

Beispiel
Aus der aussagenlogische Äquivalenz (X → Y) ≡ ¬X ∨ Y folgt, dass

(φ→ ψ) ≡ ¬φ ∨ ψ

für alle FO[σ]-Formeln φ und ψ gilt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 249

Kapitel 3: Logik erster Stufe · Abschnitt 3.7: Äquivalenz von Formeln der Logik erster Stufe

Quantoren und Negation

Man sieht leicht, dass Folgendes gilt:

Lemma 3.44
Für alle FO[σ]-Formeln φ und alle Variablen x ∈ VAR gilt:

¬∃x φ ≡

∀x ¬φ und ¬∀x φ ≡ ∃x ¬φ.

Beweis: Folgt direkt aus der Definition der Semantik (Details: Übung).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 250

Kapitel 3: Logik erster Stufe · Abschnitt 3.7: Äquivalenz von Formeln der Logik erster Stufe

Quantoren und Negation

Man sieht leicht, dass Folgendes gilt:

Lemma 3.44
Für alle FO[σ]-Formeln φ und alle Variablen x ∈ VAR gilt:

¬∃x φ ≡ ∀x ¬φ

und ¬∀x φ ≡ ∃x ¬φ.

Beweis: Folgt direkt aus der Definition der Semantik (Details: Übung).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 250

Kapitel 3: Logik erster Stufe · Abschnitt 3.7: Äquivalenz von Formeln der Logik erster Stufe

Quantoren und Negation

Man sieht leicht, dass Folgendes gilt:

Lemma 3.44
Für alle FO[σ]-Formeln φ und alle Variablen x ∈ VAR gilt:

¬∃x φ ≡ ∀x ¬φ und ¬∀x φ ≡

∃x ¬φ.

Beweis: Folgt direkt aus der Definition der Semantik (Details: Übung).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 250

Kapitel 3: Logik erster Stufe · Abschnitt 3.7: Äquivalenz von Formeln der Logik erster Stufe

Quantoren und Negation

Man sieht leicht, dass Folgendes gilt:

Lemma 3.44
Für alle FO[σ]-Formeln φ und alle Variablen x ∈ VAR gilt:

¬∃x φ ≡ ∀x ¬φ und ¬∀x φ ≡ ∃x ¬φ.

Beweis: Folgt direkt aus der Definition der Semantik (Details: Übung).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 250

Kapitel 3: Logik erster Stufe · Abschnitt 3.7: Äquivalenz von Formeln der Logik erster Stufe

Quantoren und Negation

Man sieht leicht, dass Folgendes gilt:

Lemma 3.44
Für alle FO[σ]-Formeln φ und alle Variablen x ∈ VAR gilt:

¬∃x φ ≡ ∀x ¬φ und ¬∀x φ ≡ ∃x ¬φ.

Beweis: Folgt direkt aus der Definition der Semantik (Details: Übung).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 250

Kapitel 3: Logik erster Stufe · Abschnitt 3.7: Äquivalenz von Formeln der Logik erster Stufe

Das Ersetzungslemma

Lemma 3.45
Sei σ eine beliebige Signatur und sei φ eine FO[σ]-Formel.
Ist φ′ eine FO[σ]-Formel, die aus φ entsteht, indem man eine Subformel ψ von
φ durch eine zu ψ äquivalente FO[σ]-Formel ψ′ ersetzt, so ist φ ≡ φ′.

Beweis: Übung.

Satz 3.46
Jede FO[σ]-Formel ist äquivalent zu einer FO[σ]-Formel, in der

(a) keiner der Junktoren {∧,→} vorkommt
(d.h., es kommen nur die Junktoren ¬,∨ und die Quantoren ∃,∀ vor).

(b) nur Existenzquantoren und die Junktoren ¬,∨ vorkommen.

(c) nur Existenzquantoren und die Junktoren ¬,∧ vorkommen.

(d) nur Allquantoren und die Junktoren ¬,∨ vorkommen.

(e) nur Allquantoren und die Junktoren ¬,∧ vorkommen.

Daher genügt es, bei Beweisen per Induktion über den Aufbau von Formeln von
nun an im Induktionsschritt i.d.R. nur noch die Fälle für ∃, ¬, ∨ zu betrachten.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 251

Kapitel 3: Logik erster Stufe · Abschnitt 3.7: Äquivalenz von Formeln der Logik erster Stufe

Das Ersetzungslemma

Lemma 3.45
Sei σ eine beliebige Signatur und sei φ eine FO[σ]-Formel.
Ist φ′ eine FO[σ]-Formel, die aus φ entsteht, indem man eine Subformel ψ von
φ durch eine zu ψ äquivalente FO[σ]-Formel ψ′ ersetzt, so ist φ ≡ φ′.

Beweis: Übung.

Satz 3.46
Jede FO[σ]-Formel ist äquivalent zu einer FO[σ]-Formel, in der

(a) keiner der Junktoren {∧,→} vorkommt
(d.h., es kommen nur die Junktoren ¬,∨ und die Quantoren ∃,∀ vor).

(b) nur Existenzquantoren und die Junktoren ¬,∨ vorkommen.

(c) nur Existenzquantoren und die Junktoren ¬,∧ vorkommen.

(d) nur Allquantoren und die Junktoren ¬,∨ vorkommen.

(e) nur Allquantoren und die Junktoren ¬,∧ vorkommen.

Daher genügt es, bei Beweisen per Induktion über den Aufbau von Formeln von
nun an im Induktionsschritt i.d.R. nur noch die Fälle für ∃, ¬, ∨ zu betrachten.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 251

Kapitel 3: Logik erster Stufe · Abschnitt 3.7: Äquivalenz von Formeln der Logik erster Stufe

Das Ersetzungslemma

Lemma 3.45
Sei σ eine beliebige Signatur und sei φ eine FO[σ]-Formel.
Ist φ′ eine FO[σ]-Formel, die aus φ entsteht, indem man eine Subformel ψ von
φ durch eine zu ψ äquivalente FO[σ]-Formel ψ′ ersetzt, so ist φ ≡ φ′.

Beweis: Übung.

Satz 3.46
Jede FO[σ]-Formel ist äquivalent zu einer FO[σ]-Formel, in der

(a) keiner der Junktoren {∧,→} vorkommt
(d.h., es kommen nur die Junktoren ¬,∨ und die Quantoren ∃,∀ vor).

(b) nur Existenzquantoren und die Junktoren ¬,∨ vorkommen.

(c) nur Existenzquantoren und die Junktoren ¬,∧ vorkommen.

(d) nur Allquantoren und die Junktoren ¬,∨ vorkommen.

(e) nur Allquantoren und die Junktoren ¬,∧ vorkommen.

Daher genügt es, bei Beweisen per Induktion über den Aufbau von Formeln von
nun an im Induktionsschritt i.d.R. nur noch die Fälle für ∃, ¬, ∨ zu betrachten.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 251

Kapitel 3: Logik erster Stufe · Abschnitt 3.7: Äquivalenz von Formeln der Logik erster Stufe

Das Ersetzungslemma

Lemma 3.45
Sei σ eine beliebige Signatur und sei φ eine FO[σ]-Formel.
Ist φ′ eine FO[σ]-Formel, die aus φ entsteht, indem man eine Subformel ψ von
φ durch eine zu ψ äquivalente FO[σ]-Formel ψ′ ersetzt, so ist φ ≡ φ′.

Beweis: Übung.

Satz 3.46
Jede FO[σ]-Formel ist äquivalent zu einer FO[σ]-Formel, in der

(a) keiner der Junktoren {∧,→} vorkommt
(d.h., es kommen nur die Junktoren ¬,∨ und die Quantoren ∃,∀ vor).

(b) nur Existenzquantoren und die Junktoren ¬,∨ vorkommen.

(c) nur Existenzquantoren und die Junktoren ¬,∧ vorkommen.

(d) nur Allquantoren und die Junktoren ¬,∨ vorkommen.

(e) nur Allquantoren und die Junktoren ¬,∧ vorkommen.

Daher genügt es, bei Beweisen per Induktion über den Aufbau von Formeln von
nun an im Induktionsschritt i.d.R. nur noch die Fälle für ∃, ¬, ∨ zu betrachten.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 251

Kapitel 3: Logik erster Stufe · Abschnitt 3.7: Äquivalenz von Formeln der Logik erster Stufe

Das Ersetzungslemma

Lemma 3.45
Sei σ eine beliebige Signatur und sei φ eine FO[σ]-Formel.
Ist φ′ eine FO[σ]-Formel, die aus φ entsteht, indem man eine Subformel ψ von
φ durch eine zu ψ äquivalente FO[σ]-Formel ψ′ ersetzt, so ist φ ≡ φ′.

Beweis: Übung.

Satz 3.46
Jede FO[σ]-Formel ist äquivalent zu einer FO[σ]-Formel, in der

(a) keiner der Junktoren {∧,→} vorkommt
(d.h., es kommen nur die Junktoren ¬,∨ und die Quantoren ∃,∀ vor).

(b) nur Existenzquantoren und die Junktoren ¬,∨ vorkommen.

(c) nur Existenzquantoren und die Junktoren ¬,∧ vorkommen.

(d) nur Allquantoren und die Junktoren ¬,∨ vorkommen.

(e) nur Allquantoren und die Junktoren ¬,∧ vorkommen.

Daher genügt es, bei Beweisen per Induktion über den Aufbau von Formeln von
nun an im Induktionsschritt i.d.R. nur noch die Fälle für ∃, ¬, ∨ zu betrachten.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 251

Kapitel 3: Logik erster Stufe · Abschnitt 3.7: Äquivalenz von Formeln der Logik erster Stufe

Das Ersetzungslemma

Lemma 3.45
Sei σ eine beliebige Signatur und sei φ eine FO[σ]-Formel.
Ist φ′ eine FO[σ]-Formel, die aus φ entsteht, indem man eine Subformel ψ von
φ durch eine zu ψ äquivalente FO[σ]-Formel ψ′ ersetzt, so ist φ ≡ φ′.

Beweis: Übung.

Satz 3.46
Jede FO[σ]-Formel ist äquivalent zu einer FO[σ]-Formel, in der

(a) keiner der Junktoren {∧,→} vorkommt
(d.h., es kommen nur die Junktoren ¬,∨ und die Quantoren ∃,∀ vor).

(b) nur Existenzquantoren und die Junktoren ¬,∨ vorkommen.

(c) nur Existenzquantoren und die Junktoren ¬,∧ vorkommen.

(d) nur Allquantoren und die Junktoren ¬,∨ vorkommen.

(e) nur Allquantoren und die Junktoren ¬,∧ vorkommen.

Daher genügt es, bei Beweisen per Induktion über den Aufbau von Formeln von
nun an im Induktionsschritt i.d.R. nur noch die Fälle für ∃, ¬, ∨ zu betrachten.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 251

Kapitel 3: Logik erster Stufe · Abschnitt 3.7: Äquivalenz von Formeln der Logik erster Stufe

Das Ersetzungslemma

Lemma 3.45
Sei σ eine beliebige Signatur und sei φ eine FO[σ]-Formel.
Ist φ′ eine FO[σ]-Formel, die aus φ entsteht, indem man eine Subformel ψ von
φ durch eine zu ψ äquivalente FO[σ]-Formel ψ′ ersetzt, so ist φ ≡ φ′.

Beweis: Übung.

Satz 3.46
Jede FO[σ]-Formel ist äquivalent zu einer FO[σ]-Formel, in der

(a) keiner der Junktoren {∧,→} vorkommt
(d.h., es kommen nur die Junktoren ¬,∨ und die Quantoren ∃,∀ vor).

(b) nur Existenzquantoren und die Junktoren ¬,∨ vorkommen.

(c) nur Existenzquantoren und die Junktoren ¬,∧ vorkommen.

(d) nur Allquantoren und die Junktoren ¬,∨ vorkommen.

(e) nur Allquantoren und die Junktoren ¬,∧ vorkommen.

Daher genügt es, bei Beweisen per Induktion über den Aufbau von Formeln von
nun an im Induktionsschritt i.d.R. nur noch die Fälle für ∃, ¬, ∨ zu betrachten.
Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 251

Abschnitt 3.8:

Ehrenfeucht-Fräıssé-Spiele

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

In diesem Abschnitt werden Ehrenfeucht-Fräıssé-Spiele (kurz: EF-Spiele)
eingeführt. Diese liefern ein Werkzeug, mit dessen Hilfe man zeigen kann, dass
bestimmte Anfragen oder Klassen von Strukturen nicht in Logik erster Stufe
definiert werden können.

Der Einfachheit halber betrachten wir hier nur Signaturen, die keine
Funktionssymbole und keine Konstantensymbole enthalten. Solche Signaturen
werden im Folgenden relationale Signaturen genannt.

Außerdem werden wir im Folgenden bei zwei gegebenen Strukturen A und B
immer o.B.d.A. annehmen, dass ihre Universen disjunkt sind, d.h. A ∩ B = ∅.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 252

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

In diesem Abschnitt werden Ehrenfeucht-Fräıssé-Spiele (kurz: EF-Spiele)
eingeführt. Diese liefern ein Werkzeug, mit dessen Hilfe man zeigen kann, dass
bestimmte Anfragen oder Klassen von Strukturen nicht in Logik erster Stufe
definiert werden können.

Der Einfachheit halber betrachten wir hier nur Signaturen, die keine
Funktionssymbole und keine Konstantensymbole enthalten. Solche Signaturen
werden im Folgenden relationale Signaturen genannt.

Außerdem werden wir im Folgenden bei zwei gegebenen Strukturen A und B
immer o.B.d.A. annehmen, dass ihre Universen disjunkt sind, d.h. A ∩ B = ∅.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 252

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

In diesem Abschnitt werden Ehrenfeucht-Fräıssé-Spiele (kurz: EF-Spiele)
eingeführt. Diese liefern ein Werkzeug, mit dessen Hilfe man zeigen kann, dass
bestimmte Anfragen oder Klassen von Strukturen nicht in Logik erster Stufe
definiert werden können.

Der Einfachheit halber betrachten wir hier nur Signaturen, die keine
Funktionssymbole und keine Konstantensymbole enthalten. Solche Signaturen
werden im Folgenden relationale Signaturen genannt.

Außerdem werden wir im Folgenden bei zwei gegebenen Strukturen A und B
immer o.B.d.A. annehmen, dass ihre Universen disjunkt sind, d.h. A ∩ B = ∅.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 252

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Das m-Runden EF-Spiel

Sei σ eine relationale Signatur und seien A,B zwei σ-Strukturen.

Für k ∈ N seien a := a1, . . . , ak ∈ A und b := b1, . . . , bk ∈ B Folgen der Länge
k von Elementen aus A bzw. B.

Sei m ∈ N.

Das m-Runden EF-Spiel auf (A, a) und (B, b) (bzw. auf A und B, falls k = 0
ist) wird gemäß folgender Spielregeln gespielt:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 253

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Das m-Runden EF-Spiel

Sei σ eine relationale Signatur und seien A,B zwei σ-Strukturen.

Für k ∈ N seien a := a1, . . . , ak ∈ A und b := b1, . . . , bk ∈ B Folgen der Länge
k von Elementen aus A bzw. B.

Sei m ∈ N.

Das m-Runden EF-Spiel auf (A, a) und (B, b) (bzw. auf A und B, falls k = 0
ist) wird gemäß folgender Spielregeln gespielt:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 253

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Das m-Runden EF-Spiel

Sei σ eine relationale Signatur und seien A,B zwei σ-Strukturen.

Für k ∈ N seien a := a1, . . . , ak ∈ A und b := b1, . . . , bk ∈ B Folgen der Länge
k von Elementen aus A bzw. B.

Sei m ∈ N.

Das m-Runden EF-Spiel auf (A, a) und (B, b) (bzw. auf A und B, falls k = 0
ist) wird gemäß folgender Spielregeln gespielt:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 253

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Das m-Runden EF-Spiel

Sei σ eine relationale Signatur und seien A,B zwei σ-Strukturen.

Für k ∈ N seien a := a1, . . . , ak ∈ A und b := b1, . . . , bk ∈ B Folgen der Länge
k von Elementen aus A bzw. B.

Sei m ∈ N.

Das m-Runden EF-Spiel auf (A, a) und (B, b)

(bzw. auf A und B, falls k = 0
ist) wird gemäß folgender Spielregeln gespielt:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 253

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Das m-Runden EF-Spiel

Sei σ eine relationale Signatur und seien A,B zwei σ-Strukturen.

Für k ∈ N seien a := a1, . . . , ak ∈ A und b := b1, . . . , bk ∈ B Folgen der Länge
k von Elementen aus A bzw. B.

Sei m ∈ N.

Das m-Runden EF-Spiel auf (A, a) und (B, b) (bzw. auf A und B, falls k = 0
ist) wird gemäß folgender Spielregeln gespielt:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 253

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Spielregeln des m-Runden EF-Spiels auf (A, a) und (B, b)
• Es gibt 2 Spieler

, genannt Spoiler (kurz: Sp) und Duplicator (kurz: Dupl).

• Das Spielbrett besteht aus (A, a) und (B, b).

• Eine Partie des Spiels besteht aus m Runden.

In jeder Runde i ∈ {1, . . . ,m} geschieht Folgendes:

1. Zunächst wählt Spoiler entweder ein Element in A, das im Folgenden
mit ak+i bezeichnet wird, oder er wählt ein Element in B, das im
Folgenden mit bk+i bezeichnet wird.
Beachte: Insbes. kann Spoiler in jeder Runde neu entscheiden, in welcher der

beiden Strukturen er ein Element wählen möchte.

2. Danach antwortet Duplicator mit einem Element aus dem Universum
der anderen Struktur, d.h. er wählt ein bk+i ∈ B, falls Spoiler ein
ak+i ∈ A gewählt hat, bzw. ein Element ak+i ∈ A, falls Spoiler ein
bk+i ∈ B gewählt hat.

Nach Runde m ist die Partie beendet und der Gewinner wird wie folgt
ermittelt:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 254

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Spielregeln des m-Runden EF-Spiels auf (A, a) und (B, b)
• Es gibt 2 Spieler, genannt Spoiler (kurz: Sp) und Duplicator (kurz: Dupl).

• Das Spielbrett besteht aus (A, a) und (B, b).

• Eine Partie des Spiels besteht aus m Runden.

In jeder Runde i ∈ {1, . . . ,m} geschieht Folgendes:

1. Zunächst wählt Spoiler entweder ein Element in A, das im Folgenden
mit ak+i bezeichnet wird, oder er wählt ein Element in B, das im
Folgenden mit bk+i bezeichnet wird.
Beachte: Insbes. kann Spoiler in jeder Runde neu entscheiden, in welcher der

beiden Strukturen er ein Element wählen möchte.

2. Danach antwortet Duplicator mit einem Element aus dem Universum
der anderen Struktur, d.h. er wählt ein bk+i ∈ B, falls Spoiler ein
ak+i ∈ A gewählt hat, bzw. ein Element ak+i ∈ A, falls Spoiler ein
bk+i ∈ B gewählt hat.

Nach Runde m ist die Partie beendet und der Gewinner wird wie folgt
ermittelt:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 254

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Spielregeln des m-Runden EF-Spiels auf (A, a) und (B, b)
• Es gibt 2 Spieler, genannt Spoiler (kurz: Sp) und Duplicator (kurz: Dupl).

• Das Spielbrett besteht aus (A, a) und (B, b).

• Eine Partie des Spiels besteht aus m Runden.

In jeder Runde i ∈ {1, . . . ,m} geschieht Folgendes:

1. Zunächst wählt Spoiler entweder ein Element in A, das im Folgenden
mit ak+i bezeichnet wird, oder er wählt ein Element in B, das im
Folgenden mit bk+i bezeichnet wird.
Beachte: Insbes. kann Spoiler in jeder Runde neu entscheiden, in welcher der

beiden Strukturen er ein Element wählen möchte.

2. Danach antwortet Duplicator mit einem Element aus dem Universum
der anderen Struktur, d.h. er wählt ein bk+i ∈ B, falls Spoiler ein
ak+i ∈ A gewählt hat, bzw. ein Element ak+i ∈ A, falls Spoiler ein
bk+i ∈ B gewählt hat.

Nach Runde m ist die Partie beendet und der Gewinner wird wie folgt
ermittelt:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 254

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Spielregeln des m-Runden EF-Spiels auf (A, a) und (B, b)
• Es gibt 2 Spieler, genannt Spoiler (kurz: Sp) und Duplicator (kurz: Dupl).

• Das Spielbrett besteht aus (A, a) und (B, b).

• Eine Partie des Spiels besteht aus m Runden.

In jeder Runde i ∈ {1, . . . ,m} geschieht Folgendes:

1. Zunächst wählt Spoiler entweder ein Element in A

, das im Folgenden
mit ak+i bezeichnet wird, oder er wählt ein Element in B, das im
Folgenden mit bk+i bezeichnet wird.
Beachte: Insbes. kann Spoiler in jeder Runde neu entscheiden, in welcher der

beiden Strukturen er ein Element wählen möchte.

2. Danach antwortet Duplicator mit einem Element aus dem Universum
der anderen Struktur, d.h. er wählt ein bk+i ∈ B, falls Spoiler ein
ak+i ∈ A gewählt hat, bzw. ein Element ak+i ∈ A, falls Spoiler ein
bk+i ∈ B gewählt hat.

Nach Runde m ist die Partie beendet und der Gewinner wird wie folgt
ermittelt:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 254

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Spielregeln des m-Runden EF-Spiels auf (A, a) und (B, b)
• Es gibt 2 Spieler, genannt Spoiler (kurz: Sp) und Duplicator (kurz: Dupl).

• Das Spielbrett besteht aus (A, a) und (B, b).

• Eine Partie des Spiels besteht aus m Runden.

In jeder Runde i ∈ {1, . . . ,m} geschieht Folgendes:

1. Zunächst wählt Spoiler entweder ein Element in A, das im Folgenden
mit ak+i bezeichnet wird

, oder er wählt ein Element in B, das im
Folgenden mit bk+i bezeichnet wird.
Beachte: Insbes. kann Spoiler in jeder Runde neu entscheiden, in welcher der

beiden Strukturen er ein Element wählen möchte.

2. Danach antwortet Duplicator mit einem Element aus dem Universum
der anderen Struktur, d.h. er wählt ein bk+i ∈ B, falls Spoiler ein
ak+i ∈ A gewählt hat, bzw. ein Element ak+i ∈ A, falls Spoiler ein
bk+i ∈ B gewählt hat.

Nach Runde m ist die Partie beendet und der Gewinner wird wie folgt
ermittelt:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 254

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Spielregeln des m-Runden EF-Spiels auf (A, a) und (B, b)
• Es gibt 2 Spieler, genannt Spoiler (kurz: Sp) und Duplicator (kurz: Dupl).

• Das Spielbrett besteht aus (A, a) und (B, b).

• Eine Partie des Spiels besteht aus m Runden.

In jeder Runde i ∈ {1, . . . ,m} geschieht Folgendes:

1. Zunächst wählt Spoiler entweder ein Element in A, das im Folgenden
mit ak+i bezeichnet wird, oder er wählt ein Element in B

, das im
Folgenden mit bk+i bezeichnet wird.
Beachte: Insbes. kann Spoiler in jeder Runde neu entscheiden, in welcher der

beiden Strukturen er ein Element wählen möchte.

2. Danach antwortet Duplicator mit einem Element aus dem Universum
der anderen Struktur, d.h. er wählt ein bk+i ∈ B, falls Spoiler ein
ak+i ∈ A gewählt hat, bzw. ein Element ak+i ∈ A, falls Spoiler ein
bk+i ∈ B gewählt hat.

Nach Runde m ist die Partie beendet und der Gewinner wird wie folgt
ermittelt:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 254

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Spielregeln des m-Runden EF-Spiels auf (A, a) und (B, b)
• Es gibt 2 Spieler, genannt Spoiler (kurz: Sp) und Duplicator (kurz: Dupl).

• Das Spielbrett besteht aus (A, a) und (B, b).

• Eine Partie des Spiels besteht aus m Runden.

In jeder Runde i ∈ {1, . . . ,m} geschieht Folgendes:

1. Zunächst wählt Spoiler entweder ein Element in A, das im Folgenden
mit ak+i bezeichnet wird, oder er wählt ein Element in B, das im
Folgenden mit bk+i bezeichnet wird.

Beachte: Insbes. kann Spoiler in jeder Runde neu entscheiden, in welcher der

beiden Strukturen er ein Element wählen möchte.

2. Danach antwortet Duplicator mit einem Element aus dem Universum
der anderen Struktur, d.h. er wählt ein bk+i ∈ B, falls Spoiler ein
ak+i ∈ A gewählt hat, bzw. ein Element ak+i ∈ A, falls Spoiler ein
bk+i ∈ B gewählt hat.

Nach Runde m ist die Partie beendet und der Gewinner wird wie folgt
ermittelt:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 254

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Spielregeln des m-Runden EF-Spiels auf (A, a) und (B, b)
• Es gibt 2 Spieler, genannt Spoiler (kurz: Sp) und Duplicator (kurz: Dupl).

• Das Spielbrett besteht aus (A, a) und (B, b).

• Eine Partie des Spiels besteht aus m Runden.

In jeder Runde i ∈ {1, . . . ,m} geschieht Folgendes:

1. Zunächst wählt Spoiler entweder ein Element in A, das im Folgenden
mit ak+i bezeichnet wird, oder er wählt ein Element in B, das im
Folgenden mit bk+i bezeichnet wird.
Beachte: Insbes. kann Spoiler in jeder Runde neu entscheiden, in welcher der

beiden Strukturen er ein Element wählen möchte.

2. Danach antwortet Duplicator mit einem Element aus dem Universum
der anderen Struktur, d.h. er wählt ein bk+i ∈ B, falls Spoiler ein
ak+i ∈ A gewählt hat, bzw. ein Element ak+i ∈ A, falls Spoiler ein
bk+i ∈ B gewählt hat.

Nach Runde m ist die Partie beendet und der Gewinner wird wie folgt
ermittelt:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 254

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Spielregeln des m-Runden EF-Spiels auf (A, a) und (B, b)
• Es gibt 2 Spieler, genannt Spoiler (kurz: Sp) und Duplicator (kurz: Dupl).

• Das Spielbrett besteht aus (A, a) und (B, b).

• Eine Partie des Spiels besteht aus m Runden.

In jeder Runde i ∈ {1, . . . ,m} geschieht Folgendes:

1. Zunächst wählt Spoiler entweder ein Element in A, das im Folgenden
mit ak+i bezeichnet wird, oder er wählt ein Element in B, das im
Folgenden mit bk+i bezeichnet wird.
Beachte: Insbes. kann Spoiler in jeder Runde neu entscheiden, in welcher der

beiden Strukturen er ein Element wählen möchte.

2. Danach antwortet Duplicator mit einem Element aus dem Universum
der anderen Struktur

, d.h. er wählt ein bk+i ∈ B, falls Spoiler ein
ak+i ∈ A gewählt hat, bzw. ein Element ak+i ∈ A, falls Spoiler ein
bk+i ∈ B gewählt hat.

Nach Runde m ist die Partie beendet und der Gewinner wird wie folgt
ermittelt:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 254

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Spielregeln des m-Runden EF-Spiels auf (A, a) und (B, b)
• Es gibt 2 Spieler, genannt Spoiler (kurz: Sp) und Duplicator (kurz: Dupl).

• Das Spielbrett besteht aus (A, a) und (B, b).

• Eine Partie des Spiels besteht aus m Runden.

In jeder Runde i ∈ {1, . . . ,m} geschieht Folgendes:

1. Zunächst wählt Spoiler entweder ein Element in A, das im Folgenden
mit ak+i bezeichnet wird, oder er wählt ein Element in B, das im
Folgenden mit bk+i bezeichnet wird.
Beachte: Insbes. kann Spoiler in jeder Runde neu entscheiden, in welcher der

beiden Strukturen er ein Element wählen möchte.

2. Danach antwortet Duplicator mit einem Element aus dem Universum
der anderen Struktur, d.h. er wählt ein bk+i ∈ B, falls Spoiler ein
ak+i ∈ A gewählt hat

, bzw. ein Element ak+i ∈ A, falls Spoiler ein
bk+i ∈ B gewählt hat.

Nach Runde m ist die Partie beendet und der Gewinner wird wie folgt
ermittelt:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 254

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Spielregeln des m-Runden EF-Spiels auf (A, a) und (B, b)
• Es gibt 2 Spieler, genannt Spoiler (kurz: Sp) und Duplicator (kurz: Dupl).

• Das Spielbrett besteht aus (A, a) und (B, b).

• Eine Partie des Spiels besteht aus m Runden.

In jeder Runde i ∈ {1, . . . ,m} geschieht Folgendes:

1. Zunächst wählt Spoiler entweder ein Element in A, das im Folgenden
mit ak+i bezeichnet wird, oder er wählt ein Element in B, das im
Folgenden mit bk+i bezeichnet wird.
Beachte: Insbes. kann Spoiler in jeder Runde neu entscheiden, in welcher der

beiden Strukturen er ein Element wählen möchte.

2. Danach antwortet Duplicator mit einem Element aus dem Universum
der anderen Struktur, d.h. er wählt ein bk+i ∈ B, falls Spoiler ein
ak+i ∈ A gewählt hat, bzw. ein Element ak+i ∈ A, falls Spoiler ein
bk+i ∈ B gewählt hat.

Nach Runde m ist die Partie beendet und der Gewinner wird wie folgt
ermittelt:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 254

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Spielregeln des m-Runden EF-Spiels auf (A, a) und (B, b)
• Es gibt 2 Spieler, genannt Spoiler (kurz: Sp) und Duplicator (kurz: Dupl).

• Das Spielbrett besteht aus (A, a) und (B, b).

• Eine Partie des Spiels besteht aus m Runden.

In jeder Runde i ∈ {1, . . . ,m} geschieht Folgendes:

1. Zunächst wählt Spoiler entweder ein Element in A, das im Folgenden
mit ak+i bezeichnet wird, oder er wählt ein Element in B, das im
Folgenden mit bk+i bezeichnet wird.
Beachte: Insbes. kann Spoiler in jeder Runde neu entscheiden, in welcher der

beiden Strukturen er ein Element wählen möchte.

2. Danach antwortet Duplicator mit einem Element aus dem Universum
der anderen Struktur, d.h. er wählt ein bk+i ∈ B, falls Spoiler ein
ak+i ∈ A gewählt hat, bzw. ein Element ak+i ∈ A, falls Spoiler ein
bk+i ∈ B gewählt hat.

Nach Runde m ist die Partie beendet und der Gewinner wird wie folgt
ermittelt:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 254

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Gewinnbedingung
Duplicator hat gewonnen, falls die beiden folgenden Bedingungen erfüllt sind.

(1) Für alle j , j ′ ∈ {1, . . . , k+m} gilt: aj = aj′ ⇐⇒ bj = bj′ .

(2) Die Abbildung π : {a1, . . . , ak+m} → {b1, . . . , bk+m} mit

π(aj) := bj , für jedes j ∈ {1, . . . , k+m}

ist ein partieller Isomorphismus von A nach B (siehe Definition 3.47).

Spoiler hat gewonnen, falls mindestens eine der beiden obigen Bedingungen
verletzt ist.

Definition 3.47 (partieller Isomorphismus)
Sei σ eine relationale Signatur, seien A,B zwei σ-Strukturen, sei X ⊆ A. Eine
Abbildung π : X → B heißt partieller Isomorphismus von A nach B, falls gilt:
(1) π ist injektiv und

(2) für jedes R ∈ σ, für r := ar(R) und für alle (x1, . . . , xr) ∈ X r gilt:(
x1, . . . , xr

)
∈ RA ⇐⇒

(
π(x1), . . . , π(xr)

)
∈ RB.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 255

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Gewinnbedingung
Duplicator hat gewonnen, falls die beiden folgenden Bedingungen erfüllt sind.

(1) Für alle j , j ′ ∈ {1, . . . , k+m} gilt: aj = aj′ ⇐⇒ bj = bj′ .
(2) Die Abbildung π : {a1, . . . , ak+m} → {b1, . . . , bk+m} mit

π(aj) := bj , für jedes j ∈ {1, . . . , k+m}

ist

ein partieller Isomorphismus von A nach B (siehe Definition 3.47).

Spoiler hat gewonnen, falls mindestens eine der beiden obigen Bedingungen
verletzt ist.

Definition 3.47 (partieller Isomorphismus)
Sei σ eine relationale Signatur, seien A,B zwei σ-Strukturen, sei X ⊆ A. Eine
Abbildung π : X → B heißt partieller Isomorphismus von A nach B, falls gilt:
(1) π ist injektiv und

(2) für jedes R ∈ σ, für r := ar(R) und für alle (x1, . . . , xr) ∈ X r gilt:(
x1, . . . , xr

)
∈ RA ⇐⇒

(
π(x1), . . . , π(xr)

)
∈ RB.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 255

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Gewinnbedingung
Duplicator hat gewonnen, falls die beiden folgenden Bedingungen erfüllt sind.

(1) Für alle j , j ′ ∈ {1, . . . , k+m} gilt: aj = aj′ ⇐⇒ bj = bj′ .
(2) Die Abbildung π : {a1, . . . , ak+m} → {b1, . . . , bk+m} mit

π(aj) := bj , für jedes j ∈ {1, . . . , k+m}

ist ein partieller Isomorphismus von A nach B (siehe Definition 3.47).

Spoiler hat gewonnen, falls mindestens eine der beiden obigen Bedingungen
verletzt ist.

Definition 3.47 (partieller Isomorphismus)
Sei σ eine relationale Signatur, seien A,B zwei σ-Strukturen, sei X ⊆ A. Eine
Abbildung π : X → B heißt partieller Isomorphismus von A nach B, falls gilt:
(1) π ist injektiv und

(2) für jedes R ∈ σ, für r := ar(R) und für alle (x1, . . . , xr) ∈ X r gilt:(
x1, . . . , xr

)
∈ RA ⇐⇒

(
π(x1), . . . , π(xr)

)
∈ RB.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 255

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Gewinnbedingung
Duplicator hat gewonnen, falls die beiden folgenden Bedingungen erfüllt sind.

(1) Für alle j , j ′ ∈ {1, . . . , k+m} gilt: aj = aj′ ⇐⇒ bj = bj′ .
(2) Die Abbildung π : {a1, . . . , ak+m} → {b1, . . . , bk+m} mit

π(aj) := bj , für jedes j ∈ {1, . . . , k+m}

ist ein partieller Isomorphismus von A nach B (siehe Definition 3.47).

Spoiler hat gewonnen, falls mindestens eine der beiden obigen Bedingungen
verletzt ist.

Definition 3.47 (partieller Isomorphismus)
Sei σ eine relationale Signatur, seien A,B zwei σ-Strukturen, sei X ⊆ A. Eine
Abbildung π : X → B heißt partieller Isomorphismus von A nach B, falls gilt:
(1) π ist injektiv und

(2) für jedes R ∈ σ, für r := ar(R) und für alle (x1, . . . , xr) ∈ X r gilt:(
x1, . . . , xr

)
∈ RA ⇐⇒

(
π(x1), . . . , π(xr)

)
∈ RB.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 255

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Gewinnbedingung
Duplicator hat gewonnen, falls die beiden folgenden Bedingungen erfüllt sind.

(1) Für alle j , j ′ ∈ {1, . . . , k+m} gilt: aj = aj′ ⇐⇒ bj = bj′ .
(2) Die Abbildung π : {a1, . . . , ak+m} → {b1, . . . , bk+m} mit

π(aj) := bj , für jedes j ∈ {1, . . . , k+m}

ist ein partieller Isomorphismus von A nach B (siehe Definition 3.47).

Spoiler hat gewonnen, falls mindestens eine der beiden obigen Bedingungen
verletzt ist.

Definition 3.47 (partieller Isomorphismus)
Sei σ eine relationale Signatur, seien A,B zwei σ-Strukturen, sei X ⊆ A. Eine
Abbildung π : X → B heißt partieller Isomorphismus von A nach B, falls gilt:

(1) π ist injektiv und

(2) für jedes R ∈ σ, für r := ar(R) und für alle (x1, . . . , xr) ∈ X r gilt:(
x1, . . . , xr

)
∈ RA ⇐⇒

(
π(x1), . . . , π(xr)

)
∈ RB.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 255

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Gewinnbedingung
Duplicator hat gewonnen, falls die beiden folgenden Bedingungen erfüllt sind.

(1) Für alle j , j ′ ∈ {1, . . . , k+m} gilt: aj = aj′ ⇐⇒ bj = bj′ .
(2) Die Abbildung π : {a1, . . . , ak+m} → {b1, . . . , bk+m} mit

π(aj) := bj , für jedes j ∈ {1, . . . , k+m}

ist ein partieller Isomorphismus von A nach B (siehe Definition 3.47).

Spoiler hat gewonnen, falls mindestens eine der beiden obigen Bedingungen
verletzt ist.

Definition 3.47 (partieller Isomorphismus)
Sei σ eine relationale Signatur, seien A,B zwei σ-Strukturen, sei X ⊆ A. Eine
Abbildung π : X → B heißt partieller Isomorphismus von A nach B, falls gilt:
(1) π ist injektiv und

(2) für jedes R ∈ σ, für r := ar(R) und für alle (x1, . . . , xr) ∈ X r gilt:(
x1, . . . , xr

)
∈ RA ⇐⇒

(
π(x1), . . . , π(xr)

)
∈ RB.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 255

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Gewinnbedingung
Duplicator hat gewonnen, falls die beiden folgenden Bedingungen erfüllt sind.

(1) Für alle j , j ′ ∈ {1, . . . , k+m} gilt: aj = aj′ ⇐⇒ bj = bj′ .
(2) Die Abbildung π : {a1, . . . , ak+m} → {b1, . . . , bk+m} mit

π(aj) := bj , für jedes j ∈ {1, . . . , k+m}

ist ein partieller Isomorphismus von A nach B (siehe Definition 3.47).

Spoiler hat gewonnen, falls mindestens eine der beiden obigen Bedingungen
verletzt ist.

Definition 3.47 (partieller Isomorphismus)
Sei σ eine relationale Signatur, seien A,B zwei σ-Strukturen, sei X ⊆ A. Eine
Abbildung π : X → B heißt partieller Isomorphismus von A nach B, falls gilt:
(1) π ist injektiv und

(2) für jedes R ∈ σ, für r := ar(R) und für alle (x1, . . . , xr) ∈ X r gilt:(
x1, . . . , xr

)
∈ RA ⇐⇒

(
π(x1), . . . , π(xr)

)
∈ RB.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 255

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Beispiel 3.48
Sei σ := {E/2 } und sei k := 0.

In den folgenden Darstellungen von Graphen repräsentiert jede ungerichtete
Kante zwischen Knoten x , y die beiden gerichteten Kanten (x , y) und (y , x).

(a) Betrachte die folgenden beiden Graphen A,B.

A : B :

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 256

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Beispiel 3.48
Sei σ := {E/2 } und sei k := 0.

In den folgenden Darstellungen von Graphen repräsentiert jede ungerichtete
Kante zwischen Knoten x , y die beiden gerichteten Kanten (x , y) und (y , x).

(a) Betrachte die folgenden beiden Graphen A,B.

A : B :

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 256

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

(b) Betrachte die beiden folgenden Graphen A,B.

A : B :

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 257

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Die Ziele von Spoiler und Duplicator

Die Gewinnbedingung im EF-Spiel ist so gewählt, dass die Ziele von Spoiler und
Duplicator anschaulich folgendermaßen beschrieben werden können:

• Spoilers Ziel ist es,

zu zeigen, dass die beiden Strukturen (A, a) und (B, b)
verschieden sind.

• Duplicators Ziel ist es, einen etwaigen Unterschied zwischen den beiden
Strukturen zu vertuschen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 258

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Die Ziele von Spoiler und Duplicator

Die Gewinnbedingung im EF-Spiel ist so gewählt, dass die Ziele von Spoiler und
Duplicator anschaulich folgendermaßen beschrieben werden können:

• Spoilers Ziel ist es, zu zeigen, dass die beiden Strukturen (A, a) und (B, b)
verschieden sind.

• Duplicators Ziel ist es, einen etwaigen Unterschied zwischen den beiden
Strukturen zu vertuschen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 258

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Die Ziele von Spoiler und Duplicator

Die Gewinnbedingung im EF-Spiel ist so gewählt, dass die Ziele von Spoiler und
Duplicator anschaulich folgendermaßen beschrieben werden können:

• Spoilers Ziel ist es, zu zeigen, dass die beiden Strukturen (A, a) und (B, b)
verschieden sind.

• Duplicators Ziel ist es,

einen etwaigen Unterschied zwischen den beiden
Strukturen zu vertuschen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 258

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Die Ziele von Spoiler und Duplicator

Die Gewinnbedingung im EF-Spiel ist so gewählt, dass die Ziele von Spoiler und
Duplicator anschaulich folgendermaßen beschrieben werden können:

• Spoilers Ziel ist es, zu zeigen, dass die beiden Strukturen (A, a) und (B, b)
verschieden sind.

• Duplicators Ziel ist es, einen etwaigen Unterschied zwischen den beiden
Strukturen zu vertuschen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 258

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Gewinnstrategien

Eine Strategie für einen der beiden Spieler im m-Runden EF-Spiel auf (A, a)
und (B, b) ist eine Vorschrift, die ihm sagt, welchen Zug er als Nächstes machen
soll.

Formal:

• Eine Strategie für Spoiler ist eine Abbildung

fSp :
m−1⋃
i=0

(A× B)i −→ A ∪ B.

Sind ak+1, . . . , ak+i ∈ A und bk+1, . . . , bk+i ∈ B die in den ersten i Runden
gewählten Elemente, so gibt

fSp(ak+1, bk+1, . . . , ak+i , bk+i)

an, welches Element Spoiler in der (i+1)-ten Runde wählen soll.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 259

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Gewinnstrategien

Eine Strategie für einen der beiden Spieler im m-Runden EF-Spiel auf (A, a)
und (B, b) ist eine Vorschrift, die ihm sagt, welchen Zug er als Nächstes machen
soll. Formal:

• Eine Strategie für Spoiler ist eine Abbildung

fSp :
m−1⋃
i=0

(A× B)i −→ A ∪ B.

Sind ak+1, . . . , ak+i ∈ A und bk+1, . . . , bk+i ∈ B die in den ersten i Runden
gewählten Elemente, so gibt

fSp(ak+1, bk+1, . . . , ak+i , bk+i)

an, welches Element Spoiler in der (i+1)-ten Runde wählen soll.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 259

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Gewinnstrategien

Eine Strategie für einen der beiden Spieler im m-Runden EF-Spiel auf (A, a)
und (B, b) ist eine Vorschrift, die ihm sagt, welchen Zug er als Nächstes machen
soll. Formal:

• Eine Strategie für Spoiler ist eine Abbildung

fSp :
m−1⋃
i=0

(A× B)i −→ A ∪ B.

Sind ak+1, . . . , ak+i ∈ A und bk+1, . . . , bk+i ∈ B die in den ersten i Runden
gewählten Elemente, so gibt

fSp(ak+1, bk+1, . . . , ak+i , bk+i)

an, welches Element Spoiler in der (i+1)-ten Runde wählen soll.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 259

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

• Eine Strategie für Duplicator ist eine Abbildung

fDupl :
m−1⋃
i=0

(A× B)i × (A ∪ B) −→ B ∪ A,

so dass für alle i ∈ {0, . . . ,m−1}, alle ak+1, . . . , ak+i ∈ A, alle
bk+1, . . . , bk+i ∈ B und alle ck+i+1 ∈ A ∪ B gilt:

ck+i+1 ∈ A ⇐⇒ fDupl(ak+1, bk+1, . . . , ak+i , bk+i , ck+i+1) ∈ B.

Sind ak+1, . . . , ak+i ∈ A und bk+1, . . . , bk+i ∈ B die in den ersten i Runden
und ist ck+i+1 ∈ A ∪ B das von Spoiler in Runde i+1 gewählte Element, so
gibt

fDupl(ak+1, bk+1, . . . , ak+i , bk+i , ck+i+1)

an, welches Element Duplicator in der (i+1)-ten Runde wählen soll.

• Eine Gewinnstrategie ist eine Strategie für einen der beiden Spieler, mit der
er jede Partie des m-Runden EF-Spiels auf (A, a) und (B, b) gewinnt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 260

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

• Eine Strategie für Duplicator ist eine Abbildung

fDupl :
m−1⋃
i=0

(A× B)i × (A ∪ B) −→ B ∪ A,

so dass für alle i ∈ {0, . . . ,m−1}, alle ak+1, . . . , ak+i ∈ A, alle
bk+1, . . . , bk+i ∈ B und alle ck+i+1 ∈ A ∪ B gilt:

ck+i+1 ∈ A ⇐⇒ fDupl(ak+1, bk+1, . . . , ak+i , bk+i , ck+i+1) ∈ B.

Sind ak+1, . . . , ak+i ∈ A und bk+1, . . . , bk+i ∈ B die in den ersten i Runden
und ist ck+i+1 ∈ A ∪ B das von Spoiler in Runde i+1 gewählte Element, so
gibt

fDupl(ak+1, bk+1, . . . , ak+i , bk+i , ck+i+1)

an, welches Element Duplicator in der (i+1)-ten Runde wählen soll.

• Eine Gewinnstrategie ist eine Strategie für einen der beiden Spieler, mit der
er jede Partie des m-Runden EF-Spiels auf (A, a) und (B, b) gewinnt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 260

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

• Eine Strategie für Duplicator ist eine Abbildung

fDupl :
m−1⋃
i=0

(A× B)i × (A ∪ B) −→ B ∪ A,

so dass für alle i ∈ {0, . . . ,m−1}, alle ak+1, . . . , ak+i ∈ A, alle
bk+1, . . . , bk+i ∈ B und alle ck+i+1 ∈ A ∪ B gilt:

ck+i+1 ∈ A ⇐⇒ fDupl(ak+1, bk+1, . . . , ak+i , bk+i , ck+i+1) ∈ B.

Sind ak+1, . . . , ak+i ∈ A und bk+1, . . . , bk+i ∈ B die in den ersten i Runden
und ist ck+i+1 ∈ A ∪ B das von Spoiler in Runde i+1 gewählte Element, so
gibt

fDupl(ak+1, bk+1, . . . , ak+i , bk+i , ck+i+1)

an, welches Element Duplicator in der (i+1)-ten Runde wählen soll.

• Eine Gewinnstrategie ist eine Strategie für einen der beiden Spieler, mit der
er jede Partie des m-Runden EF-Spiels auf (A, a) und (B, b) gewinnt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 260

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

• Eine Strategie für Duplicator ist eine Abbildung

fDupl :
m−1⋃
i=0

(A× B)i × (A ∪ B) −→ B ∪ A,

so dass für alle i ∈ {0, . . . ,m−1}, alle ak+1, . . . , ak+i ∈ A, alle
bk+1, . . . , bk+i ∈ B und alle ck+i+1 ∈ A ∪ B gilt:

ck+i+1 ∈ A ⇐⇒ fDupl(ak+1, bk+1, . . . , ak+i , bk+i , ck+i+1) ∈ B.

Sind ak+1, . . . , ak+i ∈ A und bk+1, . . . , bk+i ∈ B die in den ersten i Runden
und ist ck+i+1 ∈ A ∪ B das von Spoiler in Runde i+1 gewählte Element, so
gibt

fDupl(ak+1, bk+1, . . . , ak+i , bk+i , ck+i+1)

an, welches Element Duplicator in der (i+1)-ten Runde wählen soll.

• Eine Gewinnstrategie ist eine Strategie für einen der beiden Spieler, mit der
er jede Partie des m-Runden EF-Spiels auf (A, a) und (B, b) gewinnt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 260

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Der Satz von Ehrenfeucht

Sei σ eine relationale Signatur, seien A,B zwei σ-Strukturen, sei m ∈ N, sei
k ∈ N, sei a = a1, . . . , ak ∈ A und b = b1, . . . , bk ∈ B.

Der Satz von Ehrenfeucht besagt, dass die beiden folgenden Aussagen
äquivalent sind:

(1) Duplicator hat eine Gewinnstrategie im m-Runden EF-Spiel auf (A, a) und
(B, b).

(2) Für jede FO[σ]-Formel φ(x1, . . . , xk) der Quantorentiefe ⩽ m gilt:

A |= φ[a1, . . . , ak] ⇐⇒ B |= φ[b1, . . . , bk].

Anschaulich bedeutet dies, dass (A, a) und (B, b) aus Perspektive von
FO[σ]-Formeln der Quantorentiefe ⩽ m

”
gleich“ aussehen, d.h. dass (A, a)

und (B, b) von solchen Formeln nicht unterschieden werden können.

Die Quantorentiefe einer Formel φ ist dabei die maximale Anzahl von ineinander
geschachtelten Quantoren, die in φ vorkommen:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 261

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Der Satz von Ehrenfeucht

Sei σ eine relationale Signatur, seien A,B zwei σ-Strukturen, sei m ∈ N, sei
k ∈ N, sei a = a1, . . . , ak ∈ A und b = b1, . . . , bk ∈ B.

Der Satz von Ehrenfeucht besagt, dass die beiden folgenden Aussagen
äquivalent sind:

(1) Duplicator hat eine Gewinnstrategie im m-Runden EF-Spiel auf (A, a) und
(B, b).

(2) Für jede FO[σ]-Formel φ(x1, . . . , xk) der Quantorentiefe ⩽ m gilt:

A |= φ[a1, . . . , ak] ⇐⇒ B |= φ[b1, . . . , bk].

Anschaulich bedeutet dies, dass (A, a) und (B, b) aus Perspektive von
FO[σ]-Formeln der Quantorentiefe ⩽ m

”
gleich“ aussehen, d.h. dass (A, a)

und (B, b) von solchen Formeln nicht unterschieden werden können.

Die Quantorentiefe einer Formel φ ist dabei die maximale Anzahl von ineinander
geschachtelten Quantoren, die in φ vorkommen:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 261

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Der Satz von Ehrenfeucht

Sei σ eine relationale Signatur, seien A,B zwei σ-Strukturen, sei m ∈ N, sei
k ∈ N, sei a = a1, . . . , ak ∈ A und b = b1, . . . , bk ∈ B.

Der Satz von Ehrenfeucht besagt, dass die beiden folgenden Aussagen
äquivalent sind:

(1) Duplicator hat eine Gewinnstrategie im m-Runden EF-Spiel auf (A, a) und
(B, b).

(2) Für jede FO[σ]-Formel φ(x1, . . . , xk) der Quantorentiefe ⩽ m gilt:

A |= φ[a1, . . . , ak] ⇐⇒ B |= φ[b1, . . . , bk].

Anschaulich bedeutet dies, dass (A, a) und (B, b) aus Perspektive von
FO[σ]-Formeln der Quantorentiefe ⩽ m

”
gleich“ aussehen, d.h. dass (A, a)

und (B, b) von solchen Formeln nicht unterschieden werden können.

Die Quantorentiefe einer Formel φ ist dabei die maximale Anzahl von ineinander
geschachtelten Quantoren, die in φ vorkommen:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 261

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Der Satz von Ehrenfeucht

Sei σ eine relationale Signatur, seien A,B zwei σ-Strukturen, sei m ∈ N, sei
k ∈ N, sei a = a1, . . . , ak ∈ A und b = b1, . . . , bk ∈ B.

Der Satz von Ehrenfeucht besagt, dass die beiden folgenden Aussagen
äquivalent sind:

(1) Duplicator hat eine Gewinnstrategie im m-Runden EF-Spiel auf (A, a) und
(B, b).

(2) Für jede FO[σ]-Formel φ(x1, . . . , xk) der Quantorentiefe ⩽ m gilt:

A |= φ[a1, . . . , ak] ⇐⇒ B |= φ[b1, . . . , bk].

Anschaulich bedeutet dies, dass (A, a) und (B, b) aus Perspektive von
FO[σ]-Formeln der Quantorentiefe ⩽ m

”
gleich“ aussehen, d.h. dass (A, a)

und (B, b) von solchen Formeln nicht unterschieden werden können.

Die Quantorentiefe einer Formel φ ist dabei die maximale Anzahl von ineinander
geschachtelten Quantoren, die in φ vorkommen:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 261

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Definition 3.49
Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) qr(φ) einer
FO[σ]-Formel φ ist rekursiv wie folgt definiert:

• Ist φ atomar, so ist qr(φ) :=

0.

• Ist φ von der Form ¬ψ, so ist qr(φ) := qr(ψ).

• Ist φ von der Form (ψ1 ∗ ψ2) mit ∗ ∈ {∧,∨,→}, so ist
qr(φ) := max{qr(ψ1), qr(ψ2)}.

• Ist φ von der Form ∃x ψ oder ∀x ψ, so ist qr(φ) := qr(ψ) + 1.

Beispiele:

• qr
(
∃x∀y

(
x=y ∨ E(x , y)

))
= 2.

• qr
(
∃x

(
E(x , x) ∨ ∀y ¬E(x , y)

))
= 2.

• qr
((
∃x E(x , x) ∨ ∀y ¬E(x , y)

))
= 1.

Bemerkung 3.50
Gemäß Satz 3.46 ist jede FO[σ]-Formel φ äquivalent zu einer FO[σ]-Formel φ′, in der
nur Existenzquantoren und die Junktoren ¬,∨ vorkommen (d.h.: in φ′ kommt keins
der Symbole ∀,∧,→ vor). Man sieht leicht, dass φ′ sogar so gewählt werden kann,
dass gilt: qr(φ′) = qr(φ) und frei(φ′) = frei(φ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 262

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Definition 3.49
Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) qr(φ) einer
FO[σ]-Formel φ ist rekursiv wie folgt definiert:

• Ist φ atomar, so ist qr(φ) := 0.

• Ist φ von der Form ¬ψ, so ist qr(φ) := qr(ψ).

• Ist φ von der Form (ψ1 ∗ ψ2) mit ∗ ∈ {∧,∨,→}, so ist
qr(φ) := max{qr(ψ1), qr(ψ2)}.

• Ist φ von der Form ∃x ψ oder ∀x ψ, so ist qr(φ) := qr(ψ) + 1.

Beispiele:

• qr
(
∃x∀y

(
x=y ∨ E(x , y)

))
= 2.

• qr
(
∃x

(
E(x , x) ∨ ∀y ¬E(x , y)

))
= 2.

• qr
((
∃x E(x , x) ∨ ∀y ¬E(x , y)

))
= 1.

Bemerkung 3.50
Gemäß Satz 3.46 ist jede FO[σ]-Formel φ äquivalent zu einer FO[σ]-Formel φ′, in der
nur Existenzquantoren und die Junktoren ¬,∨ vorkommen (d.h.: in φ′ kommt keins
der Symbole ∀,∧,→ vor). Man sieht leicht, dass φ′ sogar so gewählt werden kann,
dass gilt: qr(φ′) = qr(φ) und frei(φ′) = frei(φ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 262

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Definition 3.49
Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) qr(φ) einer
FO[σ]-Formel φ ist rekursiv wie folgt definiert:

• Ist φ atomar, so ist qr(φ) := 0.

• Ist φ von der Form ¬ψ, so ist qr(φ) :=

qr(ψ).

• Ist φ von der Form (ψ1 ∗ ψ2) mit ∗ ∈ {∧,∨,→}, so ist
qr(φ) := max{qr(ψ1), qr(ψ2)}.

• Ist φ von der Form ∃x ψ oder ∀x ψ, so ist qr(φ) := qr(ψ) + 1.

Beispiele:

• qr
(
∃x∀y

(
x=y ∨ E(x , y)

))
= 2.

• qr
(
∃x

(
E(x , x) ∨ ∀y ¬E(x , y)

))
= 2.

• qr
((
∃x E(x , x) ∨ ∀y ¬E(x , y)

))
= 1.

Bemerkung 3.50
Gemäß Satz 3.46 ist jede FO[σ]-Formel φ äquivalent zu einer FO[σ]-Formel φ′, in der
nur Existenzquantoren und die Junktoren ¬,∨ vorkommen (d.h.: in φ′ kommt keins
der Symbole ∀,∧,→ vor). Man sieht leicht, dass φ′ sogar so gewählt werden kann,
dass gilt: qr(φ′) = qr(φ) und frei(φ′) = frei(φ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 262

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Definition 3.49
Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) qr(φ) einer
FO[σ]-Formel φ ist rekursiv wie folgt definiert:

• Ist φ atomar, so ist qr(φ) := 0.

• Ist φ von der Form ¬ψ, so ist qr(φ) := qr(ψ).

• Ist φ von der Form (ψ1 ∗ ψ2) mit ∗ ∈ {∧,∨,→}, so ist
qr(φ) := max{qr(ψ1), qr(ψ2)}.

• Ist φ von der Form ∃x ψ oder ∀x ψ, so ist qr(φ) := qr(ψ) + 1.

Beispiele:

• qr
(
∃x∀y

(
x=y ∨ E(x , y)

))
= 2.

• qr
(
∃x

(
E(x , x) ∨ ∀y ¬E(x , y)

))
= 2.

• qr
((
∃x E(x , x) ∨ ∀y ¬E(x , y)

))
= 1.

Bemerkung 3.50
Gemäß Satz 3.46 ist jede FO[σ]-Formel φ äquivalent zu einer FO[σ]-Formel φ′, in der
nur Existenzquantoren und die Junktoren ¬,∨ vorkommen (d.h.: in φ′ kommt keins
der Symbole ∀,∧,→ vor). Man sieht leicht, dass φ′ sogar so gewählt werden kann,
dass gilt: qr(φ′) = qr(φ) und frei(φ′) = frei(φ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 262

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Definition 3.49
Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) qr(φ) einer
FO[σ]-Formel φ ist rekursiv wie folgt definiert:

• Ist φ atomar, so ist qr(φ) := 0.

• Ist φ von der Form ¬ψ, so ist qr(φ) := qr(ψ).

• Ist φ von der Form (ψ1 ∗ ψ2) mit ∗ ∈ {∧,∨,→}, so ist
qr(φ) :=

max{qr(ψ1), qr(ψ2)}.
• Ist φ von der Form ∃x ψ oder ∀x ψ, so ist qr(φ) := qr(ψ) + 1.

Beispiele:

• qr
(
∃x∀y

(
x=y ∨ E(x , y)

))
= 2.

• qr
(
∃x

(
E(x , x) ∨ ∀y ¬E(x , y)

))
= 2.

• qr
((
∃x E(x , x) ∨ ∀y ¬E(x , y)

))
= 1.

Bemerkung 3.50
Gemäß Satz 3.46 ist jede FO[σ]-Formel φ äquivalent zu einer FO[σ]-Formel φ′, in der
nur Existenzquantoren und die Junktoren ¬,∨ vorkommen (d.h.: in φ′ kommt keins
der Symbole ∀,∧,→ vor). Man sieht leicht, dass φ′ sogar so gewählt werden kann,
dass gilt: qr(φ′) = qr(φ) und frei(φ′) = frei(φ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 262

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Definition 3.49
Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) qr(φ) einer
FO[σ]-Formel φ ist rekursiv wie folgt definiert:

• Ist φ atomar, so ist qr(φ) := 0.

• Ist φ von der Form ¬ψ, so ist qr(φ) := qr(ψ).

• Ist φ von der Form (ψ1 ∗ ψ2) mit ∗ ∈ {∧,∨,→}, so ist
qr(φ) := max{qr(ψ1), qr(ψ2)}.

• Ist φ von der Form ∃x ψ oder ∀x ψ, so ist qr(φ) := qr(ψ) + 1.

Beispiele:

• qr
(
∃x∀y

(
x=y ∨ E(x , y)

))
= 2.

• qr
(
∃x

(
E(x , x) ∨ ∀y ¬E(x , y)

))
= 2.

• qr
((
∃x E(x , x) ∨ ∀y ¬E(x , y)

))
= 1.

Bemerkung 3.50
Gemäß Satz 3.46 ist jede FO[σ]-Formel φ äquivalent zu einer FO[σ]-Formel φ′, in der
nur Existenzquantoren und die Junktoren ¬,∨ vorkommen (d.h.: in φ′ kommt keins
der Symbole ∀,∧,→ vor). Man sieht leicht, dass φ′ sogar so gewählt werden kann,
dass gilt: qr(φ′) = qr(φ) und frei(φ′) = frei(φ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 262

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Definition 3.49
Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) qr(φ) einer
FO[σ]-Formel φ ist rekursiv wie folgt definiert:

• Ist φ atomar, so ist qr(φ) := 0.

• Ist φ von der Form ¬ψ, so ist qr(φ) := qr(ψ).

• Ist φ von der Form (ψ1 ∗ ψ2) mit ∗ ∈ {∧,∨,→}, so ist
qr(φ) := max{qr(ψ1), qr(ψ2)}.

• Ist φ von der Form ∃x ψ oder ∀x ψ, so ist qr(φ) :=

qr(ψ) + 1.

Beispiele:

• qr
(
∃x∀y

(
x=y ∨ E(x , y)

))
= 2.

• qr
(
∃x

(
E(x , x) ∨ ∀y ¬E(x , y)

))
= 2.

• qr
((
∃x E(x , x) ∨ ∀y ¬E(x , y)

))
= 1.

Bemerkung 3.50
Gemäß Satz 3.46 ist jede FO[σ]-Formel φ äquivalent zu einer FO[σ]-Formel φ′, in der
nur Existenzquantoren und die Junktoren ¬,∨ vorkommen (d.h.: in φ′ kommt keins
der Symbole ∀,∧,→ vor). Man sieht leicht, dass φ′ sogar so gewählt werden kann,
dass gilt: qr(φ′) = qr(φ) und frei(φ′) = frei(φ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 262

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Definition 3.49
Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) qr(φ) einer
FO[σ]-Formel φ ist rekursiv wie folgt definiert:

• Ist φ atomar, so ist qr(φ) := 0.

• Ist φ von der Form ¬ψ, so ist qr(φ) := qr(ψ).

• Ist φ von der Form (ψ1 ∗ ψ2) mit ∗ ∈ {∧,∨,→}, so ist
qr(φ) := max{qr(ψ1), qr(ψ2)}.

• Ist φ von der Form ∃x ψ oder ∀x ψ, so ist qr(φ) := qr(ψ) + 1.

Beispiele:

• qr
(
∃x∀y

(
x=y ∨ E(x , y)

))
= 2.

• qr
(
∃x

(
E(x , x) ∨ ∀y ¬E(x , y)

))
= 2.

• qr
((
∃x E(x , x) ∨ ∀y ¬E(x , y)

))
= 1.

Bemerkung 3.50
Gemäß Satz 3.46 ist jede FO[σ]-Formel φ äquivalent zu einer FO[σ]-Formel φ′, in der
nur Existenzquantoren und die Junktoren ¬,∨ vorkommen (d.h.: in φ′ kommt keins
der Symbole ∀,∧,→ vor). Man sieht leicht, dass φ′ sogar so gewählt werden kann,
dass gilt: qr(φ′) = qr(φ) und frei(φ′) = frei(φ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 262

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Definition 3.49
Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) qr(φ) einer
FO[σ]-Formel φ ist rekursiv wie folgt definiert:

• Ist φ atomar, so ist qr(φ) := 0.

• Ist φ von der Form ¬ψ, so ist qr(φ) := qr(ψ).

• Ist φ von der Form (ψ1 ∗ ψ2) mit ∗ ∈ {∧,∨,→}, so ist
qr(φ) := max{qr(ψ1), qr(ψ2)}.

• Ist φ von der Form ∃x ψ oder ∀x ψ, so ist qr(φ) := qr(ψ) + 1.

Beispiele:

• qr
(
∃x∀y

(
x=y ∨ E(x , y)

))
=

2.

• qr
(
∃x

(
E(x , x) ∨ ∀y ¬E(x , y)

))
= 2.

• qr
((
∃x E(x , x) ∨ ∀y ¬E(x , y)

))
= 1.

Bemerkung 3.50
Gemäß Satz 3.46 ist jede FO[σ]-Formel φ äquivalent zu einer FO[σ]-Formel φ′, in der
nur Existenzquantoren und die Junktoren ¬,∨ vorkommen (d.h.: in φ′ kommt keins
der Symbole ∀,∧,→ vor). Man sieht leicht, dass φ′ sogar so gewählt werden kann,
dass gilt: qr(φ′) = qr(φ) und frei(φ′) = frei(φ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 262

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Definition 3.49
Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) qr(φ) einer
FO[σ]-Formel φ ist rekursiv wie folgt definiert:

• Ist φ atomar, so ist qr(φ) := 0.

• Ist φ von der Form ¬ψ, so ist qr(φ) := qr(ψ).

• Ist φ von der Form (ψ1 ∗ ψ2) mit ∗ ∈ {∧,∨,→}, so ist
qr(φ) := max{qr(ψ1), qr(ψ2)}.

• Ist φ von der Form ∃x ψ oder ∀x ψ, so ist qr(φ) := qr(ψ) + 1.

Beispiele:

• qr
(
∃x∀y

(
x=y ∨ E(x , y)

))
= 2.

• qr
(
∃x

(
E(x , x) ∨ ∀y ¬E(x , y)

))
= 2.

• qr
((
∃x E(x , x) ∨ ∀y ¬E(x , y)

))
= 1.

Bemerkung 3.50
Gemäß Satz 3.46 ist jede FO[σ]-Formel φ äquivalent zu einer FO[σ]-Formel φ′, in der
nur Existenzquantoren und die Junktoren ¬,∨ vorkommen (d.h.: in φ′ kommt keins
der Symbole ∀,∧,→ vor). Man sieht leicht, dass φ′ sogar so gewählt werden kann,
dass gilt: qr(φ′) = qr(φ) und frei(φ′) = frei(φ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 262

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Definition 3.49
Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) qr(φ) einer
FO[σ]-Formel φ ist rekursiv wie folgt definiert:

• Ist φ atomar, so ist qr(φ) := 0.

• Ist φ von der Form ¬ψ, so ist qr(φ) := qr(ψ).

• Ist φ von der Form (ψ1 ∗ ψ2) mit ∗ ∈ {∧,∨,→}, so ist
qr(φ) := max{qr(ψ1), qr(ψ2)}.

• Ist φ von der Form ∃x ψ oder ∀x ψ, so ist qr(φ) := qr(ψ) + 1.

Beispiele:

• qr
(
∃x∀y

(
x=y ∨ E(x , y)

))
= 2.

• qr
(
∃x

(
E(x , x) ∨ ∀y ¬E(x , y)

))
=

2.

• qr
((
∃x E(x , x) ∨ ∀y ¬E(x , y)

))
= 1.

Bemerkung 3.50
Gemäß Satz 3.46 ist jede FO[σ]-Formel φ äquivalent zu einer FO[σ]-Formel φ′, in der
nur Existenzquantoren und die Junktoren ¬,∨ vorkommen (d.h.: in φ′ kommt keins
der Symbole ∀,∧,→ vor). Man sieht leicht, dass φ′ sogar so gewählt werden kann,
dass gilt: qr(φ′) = qr(φ) und frei(φ′) = frei(φ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 262

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Definition 3.49
Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) qr(φ) einer
FO[σ]-Formel φ ist rekursiv wie folgt definiert:

• Ist φ atomar, so ist qr(φ) := 0.

• Ist φ von der Form ¬ψ, so ist qr(φ) := qr(ψ).

• Ist φ von der Form (ψ1 ∗ ψ2) mit ∗ ∈ {∧,∨,→}, so ist
qr(φ) := max{qr(ψ1), qr(ψ2)}.

• Ist φ von der Form ∃x ψ oder ∀x ψ, so ist qr(φ) := qr(ψ) + 1.

Beispiele:

• qr
(
∃x∀y

(
x=y ∨ E(x , y)

))
= 2.

• qr
(
∃x

(
E(x , x) ∨ ∀y ¬E(x , y)

))
= 2.

• qr
((
∃x E(x , x) ∨ ∀y ¬E(x , y)

))
= 1.

Bemerkung 3.50
Gemäß Satz 3.46 ist jede FO[σ]-Formel φ äquivalent zu einer FO[σ]-Formel φ′, in der
nur Existenzquantoren und die Junktoren ¬,∨ vorkommen (d.h.: in φ′ kommt keins
der Symbole ∀,∧,→ vor). Man sieht leicht, dass φ′ sogar so gewählt werden kann,
dass gilt: qr(φ′) = qr(φ) und frei(φ′) = frei(φ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 262

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Definition 3.49
Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) qr(φ) einer
FO[σ]-Formel φ ist rekursiv wie folgt definiert:

• Ist φ atomar, so ist qr(φ) := 0.

• Ist φ von der Form ¬ψ, so ist qr(φ) := qr(ψ).

• Ist φ von der Form (ψ1 ∗ ψ2) mit ∗ ∈ {∧,∨,→}, so ist
qr(φ) := max{qr(ψ1), qr(ψ2)}.

• Ist φ von der Form ∃x ψ oder ∀x ψ, so ist qr(φ) := qr(ψ) + 1.

Beispiele:

• qr
(
∃x∀y

(
x=y ∨ E(x , y)

))
= 2.

• qr
(
∃x

(
E(x , x) ∨ ∀y ¬E(x , y)

))
= 2.

• qr
((
∃x E(x , x) ∨ ∀y ¬E(x , y)

))
=

1.

Bemerkung 3.50
Gemäß Satz 3.46 ist jede FO[σ]-Formel φ äquivalent zu einer FO[σ]-Formel φ′, in der
nur Existenzquantoren und die Junktoren ¬,∨ vorkommen (d.h.: in φ′ kommt keins
der Symbole ∀,∧,→ vor). Man sieht leicht, dass φ′ sogar so gewählt werden kann,
dass gilt: qr(φ′) = qr(φ) und frei(φ′) = frei(φ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 262

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Definition 3.49
Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) qr(φ) einer
FO[σ]-Formel φ ist rekursiv wie folgt definiert:

• Ist φ atomar, so ist qr(φ) := 0.

• Ist φ von der Form ¬ψ, so ist qr(φ) := qr(ψ).

• Ist φ von der Form (ψ1 ∗ ψ2) mit ∗ ∈ {∧,∨,→}, so ist
qr(φ) := max{qr(ψ1), qr(ψ2)}.

• Ist φ von der Form ∃x ψ oder ∀x ψ, so ist qr(φ) := qr(ψ) + 1.

Beispiele:

• qr
(
∃x∀y

(
x=y ∨ E(x , y)

))
= 2.

• qr
(
∃x

(
E(x , x) ∨ ∀y ¬E(x , y)

))
= 2.

• qr
((
∃x E(x , x) ∨ ∀y ¬E(x , y)

))
= 1.

Bemerkung 3.50
Gemäß Satz 3.46 ist jede FO[σ]-Formel φ äquivalent zu einer FO[σ]-Formel φ′, in der
nur Existenzquantoren und die Junktoren ¬,∨ vorkommen (d.h.: in φ′ kommt keins
der Symbole ∀,∧,→ vor). Man sieht leicht, dass φ′ sogar so gewählt werden kann,
dass gilt: qr(φ′) = qr(φ) und frei(φ′) = frei(φ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 262

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Definition 3.49
Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) qr(φ) einer
FO[σ]-Formel φ ist rekursiv wie folgt definiert:

• Ist φ atomar, so ist qr(φ) := 0.

• Ist φ von der Form ¬ψ, so ist qr(φ) := qr(ψ).

• Ist φ von der Form (ψ1 ∗ ψ2) mit ∗ ∈ {∧,∨,→}, so ist
qr(φ) := max{qr(ψ1), qr(ψ2)}.

• Ist φ von der Form ∃x ψ oder ∀x ψ, so ist qr(φ) := qr(ψ) + 1.

Beispiele:

• qr
(
∃x∀y

(
x=y ∨ E(x , y)

))
= 2.

• qr
(
∃x

(
E(x , x) ∨ ∀y ¬E(x , y)

))
= 2.

• qr
((
∃x E(x , x) ∨ ∀y ¬E(x , y)

))
= 1.

Bemerkung 3.50
Gemäß Satz 3.46 ist jede FO[σ]-Formel φ äquivalent zu einer FO[σ]-Formel φ′, in der
nur Existenzquantoren und die Junktoren ¬,∨ vorkommen (d.h.: in φ′ kommt keins
der Symbole ∀,∧,→ vor).

Man sieht leicht, dass φ′ sogar so gewählt werden kann,
dass gilt: qr(φ′) = qr(φ) und frei(φ′) = frei(φ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 262

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Definition 3.49
Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) qr(φ) einer
FO[σ]-Formel φ ist rekursiv wie folgt definiert:

• Ist φ atomar, so ist qr(φ) := 0.

• Ist φ von der Form ¬ψ, so ist qr(φ) := qr(ψ).

• Ist φ von der Form (ψ1 ∗ ψ2) mit ∗ ∈ {∧,∨,→}, so ist
qr(φ) := max{qr(ψ1), qr(ψ2)}.

• Ist φ von der Form ∃x ψ oder ∀x ψ, so ist qr(φ) := qr(ψ) + 1.

Beispiele:

• qr
(
∃x∀y

(
x=y ∨ E(x , y)

))
= 2.

• qr
(
∃x

(
E(x , x) ∨ ∀y ¬E(x , y)

))
= 2.

• qr
((
∃x E(x , x) ∨ ∀y ¬E(x , y)

))
= 1.

Bemerkung 3.50
Gemäß Satz 3.46 ist jede FO[σ]-Formel φ äquivalent zu einer FO[σ]-Formel φ′, in der
nur Existenzquantoren und die Junktoren ¬,∨ vorkommen (d.h.: in φ′ kommt keins
der Symbole ∀,∧,→ vor). Man sieht leicht, dass φ′ sogar so gewählt werden kann,
dass gilt: qr(φ′) = qr(φ) und frei(φ′) = frei(φ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 262

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Wir beweisen hier nur die Richtung
”
(1) =⇒ (2)“ des Satzes von Ehrenfeucht,

deren Kontraposition in folgendem Satz formuliert wird.

Satz 3.51 (Satz von Ehrenfeucht, einfache Version)
Sei σ eine relationale Signatur und seien A,B zwei σ-Strukturen, sei m ∈ N, sei
k ∈ N, sei a = a1, . . . , ak ∈ A und sei b = b1, . . . , bk ∈ B.

Falls es eine FO[σ]-Formel φ(x1, . . . , xk) mit frei(φ) ⊆ {x1, . . . , xk} und
qr(φ) ⩽ m gibt, so dass

A |= φ[a1, . . . , ak] und B ̸|= φ[b1, . . . , bk] ,

so hat Spoiler eine Gewinnstrategie im m-Runden EF-Spiel auf (A, a) und (B, b).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 263

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Wir beweisen hier nur die Richtung
”
(1) =⇒ (2)“ des Satzes von Ehrenfeucht,

deren Kontraposition in folgendem Satz formuliert wird.

Satz 3.51 (Satz von Ehrenfeucht, einfache Version)
Sei σ eine relationale Signatur und seien A,B zwei σ-Strukturen,

sei m ∈ N, sei
k ∈ N, sei a = a1, . . . , ak ∈ A und sei b = b1, . . . , bk ∈ B.

Falls es eine FO[σ]-Formel φ(x1, . . . , xk) mit frei(φ) ⊆ {x1, . . . , xk} und
qr(φ) ⩽ m gibt, so dass

A |= φ[a1, . . . , ak] und B ̸|= φ[b1, . . . , bk] ,

so hat Spoiler eine Gewinnstrategie im m-Runden EF-Spiel auf (A, a) und (B, b).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 263

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Wir beweisen hier nur die Richtung
”
(1) =⇒ (2)“ des Satzes von Ehrenfeucht,

deren Kontraposition in folgendem Satz formuliert wird.

Satz 3.51 (Satz von Ehrenfeucht, einfache Version)
Sei σ eine relationale Signatur und seien A,B zwei σ-Strukturen, sei m ∈ N,

sei
k ∈ N, sei a = a1, . . . , ak ∈ A und sei b = b1, . . . , bk ∈ B.

Falls es eine FO[σ]-Formel φ(x1, . . . , xk) mit frei(φ) ⊆ {x1, . . . , xk} und
qr(φ) ⩽ m gibt, so dass

A |= φ[a1, . . . , ak] und B ̸|= φ[b1, . . . , bk] ,

so hat Spoiler eine Gewinnstrategie im m-Runden EF-Spiel auf (A, a) und (B, b).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 263

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Wir beweisen hier nur die Richtung
”
(1) =⇒ (2)“ des Satzes von Ehrenfeucht,

deren Kontraposition in folgendem Satz formuliert wird.

Satz 3.51 (Satz von Ehrenfeucht, einfache Version)
Sei σ eine relationale Signatur und seien A,B zwei σ-Strukturen, sei m ∈ N, sei
k ∈ N, sei a = a1, . . . , ak ∈ A und sei b = b1, . . . , bk ∈ B.

Falls es eine FO[σ]-Formel φ(x1, . . . , xk) mit frei(φ) ⊆ {x1, . . . , xk} und
qr(φ) ⩽ m gibt, so dass

A |= φ[a1, . . . , ak] und B ̸|= φ[b1, . . . , bk] ,

so hat Spoiler eine Gewinnstrategie im m-Runden EF-Spiel auf (A, a) und (B, b).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 263

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Wir beweisen hier nur die Richtung
”
(1) =⇒ (2)“ des Satzes von Ehrenfeucht,

deren Kontraposition in folgendem Satz formuliert wird.

Satz 3.51 (Satz von Ehrenfeucht, einfache Version)
Sei σ eine relationale Signatur und seien A,B zwei σ-Strukturen, sei m ∈ N, sei
k ∈ N, sei a = a1, . . . , ak ∈ A und sei b = b1, . . . , bk ∈ B.

Falls es eine FO[σ]-Formel φ(x1, . . . , xk) mit frei(φ) ⊆ {x1, . . . , xk} und
qr(φ) ⩽ m gibt, so dass

A |= φ[a1, . . . , ak] und B ̸|= φ[b1, . . . , bk] ,

so hat Spoiler eine Gewinnstrategie im m-Runden EF-Spiel auf (A, a) und (B, b).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 263

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Beweisidee

Zunächst illustrieren wir die Beweisidee an einem Beispiel. Betrachte dazu die
Formel

φ := ∃x1 ∀x2
(
x1=x2 ∨ E (x1, x2)

)
und die beiden Graphen A,B aus Beispiel 3.48(a).

A : B :

Es gilt: A |= φ und B ̸|= φ, d.h. B |= ¬φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 264

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Beweis von Satz 3.51:
Per Induktion über den Aufbau von Formeln.

Es seien eine relationale Signatur
σ und zwei σ-Strukturen A und B gegeben. Die Aussage A(φ), die wir für alle
FO[σ]-Formeln φ beweisen wollen, besagt Folgendes:

Für alle m, k ∈ N, alle a = a1, . . . , ak ∈ A und alle b = b1, . . . , bk ∈
B gilt:

Falls qr(φ) ⩽ m und | frei(φ)| ⩽ k und

A |= φ[a1, . . . , ak] ⇐⇒ B ̸|= φ[b1, . . . , bk] ,

so hat Spoiler eine Gewinnstrategie im m-Runden EF-Spiel auf (A, a)
und (B, b).

Um A(φ) für eine gegebene Formel φ zu beweisen, seien im Folgenden
m, k ∈ N, a = a1, . . . , ak ∈ A und b = b1, . . . , bk ∈ B beliebig gewählt.
Es genügt, den Fall zu betrachten, in dem gilt:

(∗): m ⩾ qr(φ), k ⩾ | frei(φ)| und A |= φ[a] ⇐⇒ B ̸|= φ[b] ,

denn andernfalls muss gemäß der Formulierung von A(φ) nichts gezeigt werden.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 265

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Beweis von Satz 3.51:
Per Induktion über den Aufbau von Formeln. Es seien eine relationale Signatur
σ und zwei σ-Strukturen A und B gegeben. Die Aussage A(φ), die wir für alle
FO[σ]-Formeln φ beweisen wollen, besagt Folgendes:

Für alle m, k ∈ N, alle a = a1, . . . , ak ∈ A und alle b = b1, . . . , bk ∈
B gilt:

Falls qr(φ) ⩽ m und | frei(φ)| ⩽ k und

A |= φ[a1, . . . , ak] ⇐⇒ B ̸|= φ[b1, . . . , bk] ,

so hat Spoiler eine Gewinnstrategie im m-Runden EF-Spiel auf (A, a)
und (B, b).

Um A(φ) für eine gegebene Formel φ zu beweisen, seien im Folgenden
m, k ∈ N, a = a1, . . . , ak ∈ A und b = b1, . . . , bk ∈ B beliebig gewählt.
Es genügt, den Fall zu betrachten, in dem gilt:

(∗): m ⩾ qr(φ), k ⩾ | frei(φ)| und A |= φ[a] ⇐⇒ B ̸|= φ[b] ,

denn andernfalls muss gemäß der Formulierung von A(φ) nichts gezeigt werden.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 265

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Beweis von Satz 3.51:
Per Induktion über den Aufbau von Formeln. Es seien eine relationale Signatur
σ und zwei σ-Strukturen A und B gegeben. Die Aussage A(φ), die wir für alle
FO[σ]-Formeln φ beweisen wollen, besagt Folgendes:

Für alle m, k ∈ N, alle a = a1, . . . , ak ∈ A und alle b = b1, . . . , bk ∈
B gilt:

Falls qr(φ) ⩽ m

und | frei(φ)| ⩽ k und

A |= φ[a1, . . . , ak] ⇐⇒ B ̸|= φ[b1, . . . , bk] ,

so hat Spoiler eine Gewinnstrategie im m-Runden EF-Spiel auf (A, a)
und (B, b).

Um A(φ) für eine gegebene Formel φ zu beweisen, seien im Folgenden
m, k ∈ N, a = a1, . . . , ak ∈ A und b = b1, . . . , bk ∈ B beliebig gewählt.
Es genügt, den Fall zu betrachten, in dem gilt:

(∗): m ⩾ qr(φ), k ⩾ | frei(φ)| und A |= φ[a] ⇐⇒ B ̸|= φ[b] ,

denn andernfalls muss gemäß der Formulierung von A(φ) nichts gezeigt werden.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 265

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Beweis von Satz 3.51:
Per Induktion über den Aufbau von Formeln. Es seien eine relationale Signatur
σ und zwei σ-Strukturen A und B gegeben. Die Aussage A(φ), die wir für alle
FO[σ]-Formeln φ beweisen wollen, besagt Folgendes:

Für alle m, k ∈ N, alle a = a1, . . . , ak ∈ A und alle b = b1, . . . , bk ∈
B gilt:

Falls qr(φ) ⩽ m und | frei(φ)| ⩽ k

und

A |= φ[a1, . . . , ak] ⇐⇒ B ̸|= φ[b1, . . . , bk] ,

so hat Spoiler eine Gewinnstrategie im m-Runden EF-Spiel auf (A, a)
und (B, b).

Um A(φ) für eine gegebene Formel φ zu beweisen, seien im Folgenden
m, k ∈ N, a = a1, . . . , ak ∈ A und b = b1, . . . , bk ∈ B beliebig gewählt.
Es genügt, den Fall zu betrachten, in dem gilt:

(∗): m ⩾ qr(φ), k ⩾ | frei(φ)| und A |= φ[a] ⇐⇒ B ̸|= φ[b] ,

denn andernfalls muss gemäß der Formulierung von A(φ) nichts gezeigt werden.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 265

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Beweis von Satz 3.51:
Per Induktion über den Aufbau von Formeln. Es seien eine relationale Signatur
σ und zwei σ-Strukturen A und B gegeben. Die Aussage A(φ), die wir für alle
FO[σ]-Formeln φ beweisen wollen, besagt Folgendes:

Für alle m, k ∈ N, alle a = a1, . . . , ak ∈ A und alle b = b1, . . . , bk ∈
B gilt:

Falls qr(φ) ⩽ m und | frei(φ)| ⩽ k und

A |= φ[a1, . . . , ak] ⇐⇒ B ̸|= φ[b1, . . . , bk] ,

so hat Spoiler eine Gewinnstrategie im m-Runden EF-Spiel auf (A, a)
und (B, b).

Um A(φ) für eine gegebene Formel φ zu beweisen, seien im Folgenden
m, k ∈ N, a = a1, . . . , ak ∈ A und b = b1, . . . , bk ∈ B beliebig gewählt.
Es genügt, den Fall zu betrachten, in dem gilt:

(∗): m ⩾ qr(φ), k ⩾ | frei(φ)| und A |= φ[a] ⇐⇒ B ̸|= φ[b] ,

denn andernfalls muss gemäß der Formulierung von A(φ) nichts gezeigt werden.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 265

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Beweis von Satz 3.51:
Per Induktion über den Aufbau von Formeln. Es seien eine relationale Signatur
σ und zwei σ-Strukturen A und B gegeben. Die Aussage A(φ), die wir für alle
FO[σ]-Formeln φ beweisen wollen, besagt Folgendes:

Für alle m, k ∈ N, alle a = a1, . . . , ak ∈ A und alle b = b1, . . . , bk ∈
B gilt:

Falls qr(φ) ⩽ m und | frei(φ)| ⩽ k und

A |= φ[a1, . . . , ak] ⇐⇒ B ̸|= φ[b1, . . . , bk] ,

so hat Spoiler eine Gewinnstrategie im m-Runden EF-Spiel auf (A, a)
und (B, b).

Um A(φ) für eine gegebene Formel φ zu beweisen, seien im Folgenden
m, k ∈ N, a = a1, . . . , ak ∈ A und b = b1, . . . , bk ∈ B beliebig gewählt.
Es genügt, den Fall zu betrachten, in dem gilt:

(∗): m ⩾ qr(φ), k ⩾ | frei(φ)| und A |= φ[a] ⇐⇒ B ̸|= φ[b] ,

denn andernfalls muss gemäß der Formulierung von A(φ) nichts gezeigt werden.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 265

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Beweis von Satz 3.51:
Per Induktion über den Aufbau von Formeln. Es seien eine relationale Signatur
σ und zwei σ-Strukturen A und B gegeben. Die Aussage A(φ), die wir für alle
FO[σ]-Formeln φ beweisen wollen, besagt Folgendes:

Für alle m, k ∈ N, alle a = a1, . . . , ak ∈ A und alle b = b1, . . . , bk ∈
B gilt:

Falls qr(φ) ⩽ m und | frei(φ)| ⩽ k und

A |= φ[a1, . . . , ak] ⇐⇒ B ̸|= φ[b1, . . . , bk] ,

so hat Spoiler eine Gewinnstrategie im m-Runden EF-Spiel auf (A, a)
und (B, b).

Um A(φ) für eine gegebene Formel φ zu beweisen, seien im Folgenden
m, k ∈ N, a = a1, . . . , ak ∈ A und b = b1, . . . , bk ∈ B beliebig gewählt.

Es genügt, den Fall zu betrachten, in dem gilt:

(∗): m ⩾ qr(φ), k ⩾ | frei(φ)| und A |= φ[a] ⇐⇒ B ̸|= φ[b] ,

denn andernfalls muss gemäß der Formulierung von A(φ) nichts gezeigt werden.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 265

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Beweis von Satz 3.51:
Per Induktion über den Aufbau von Formeln. Es seien eine relationale Signatur
σ und zwei σ-Strukturen A und B gegeben. Die Aussage A(φ), die wir für alle
FO[σ]-Formeln φ beweisen wollen, besagt Folgendes:

Für alle m, k ∈ N, alle a = a1, . . . , ak ∈ A und alle b = b1, . . . , bk ∈
B gilt:

Falls qr(φ) ⩽ m und | frei(φ)| ⩽ k und

A |= φ[a1, . . . , ak] ⇐⇒ B ̸|= φ[b1, . . . , bk] ,

so hat Spoiler eine Gewinnstrategie im m-Runden EF-Spiel auf (A, a)
und (B, b).

Um A(φ) für eine gegebene Formel φ zu beweisen, seien im Folgenden
m, k ∈ N, a = a1, . . . , ak ∈ A und b = b1, . . . , bk ∈ B beliebig gewählt.
Es genügt, den Fall zu betrachten, in dem gilt:

(∗): m ⩾ qr(φ), k ⩾ | frei(φ)| und A |= φ[a] ⇐⇒ B ̸|= φ[b] ,

denn andernfalls muss gemäß der Formulierung von A(φ) nichts gezeigt werden.
Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 265

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Folgerung aus dem Satz von Ehrenfeucht

Notation 3.52
Eine Klasse C von σ-Strukturen heißt FO-definierbar, falls es einen FO[σ]-Satz φ gibt,
der C definiert.

Zur Erinnerung:
Für einen FO[σ]-Satz φ und eine Klasse C von σ-Strukturen sagen wir

”
φ definiert C“,

falls für jede σ-Struktur A gilt: A ∈ C ⇐⇒ A |= φ.

Um für eine gegebene Klasse C von σ-Strukturen zu zeigen, dass sie nicht
FO-definierbar ist, können wir das folgende Korollar nutzen, das wir als eine einfache
Folgerung aus Satz 3.51 erhalten.

Korollar 3.53
Sei σ eine relationale Signatur und sei C eine Klasse von σ-Strukturen.
Falls es für jedes m ⩾ 1 zwei σ-Strukturen Am und Bm gibt, so dass gilt:

1. Am ∈ C und

2. Bm ̸∈ C und

3. Duplicator hat eine Gewinnstrategie im m-Runden EF-Spiel auf Am

und Bm,

dann ist C nicht FO-definierbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 266

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Folgerung aus dem Satz von Ehrenfeucht

Notation 3.52
Eine Klasse C von σ-Strukturen heißt FO-definierbar, falls es einen FO[σ]-Satz φ gibt,
der C definiert.

Zur Erinnerung:
Für einen FO[σ]-Satz φ und eine Klasse C von σ-Strukturen sagen wir

”
φ definiert C“,

falls für jede σ-Struktur A gilt: A ∈ C ⇐⇒ A |= φ.

Um für eine gegebene Klasse C von σ-Strukturen zu zeigen, dass sie nicht
FO-definierbar ist, können wir das folgende Korollar nutzen, das wir als eine einfache
Folgerung aus Satz 3.51 erhalten.

Korollar 3.53
Sei σ eine relationale Signatur und sei C eine Klasse von σ-Strukturen.
Falls es für jedes m ⩾ 1 zwei σ-Strukturen Am und Bm gibt, so dass gilt:

1. Am ∈ C und

2. Bm ̸∈ C und

3. Duplicator hat eine Gewinnstrategie im m-Runden EF-Spiel auf Am

und Bm,

dann ist C nicht FO-definierbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 266

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Folgerung aus dem Satz von Ehrenfeucht

Notation 3.52
Eine Klasse C von σ-Strukturen heißt FO-definierbar, falls es einen FO[σ]-Satz φ gibt,
der C definiert.

Zur Erinnerung:
Für einen FO[σ]-Satz φ und eine Klasse C von σ-Strukturen sagen wir

”
φ definiert C“,

falls für jede σ-Struktur A gilt: A ∈ C ⇐⇒ A |= φ.

Um für eine gegebene Klasse C von σ-Strukturen zu zeigen, dass sie nicht
FO-definierbar ist, können wir das folgende Korollar nutzen, das wir als eine einfache
Folgerung aus Satz 3.51 erhalten.

Korollar 3.53
Sei σ eine relationale Signatur und sei C eine Klasse von σ-Strukturen.
Falls es für jedes m ⩾ 1 zwei σ-Strukturen Am und Bm gibt, so dass gilt:

1. Am ∈ C und

2. Bm ̸∈ C und

3. Duplicator hat eine Gewinnstrategie im m-Runden EF-Spiel auf Am

und Bm,

dann ist C nicht FO-definierbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 266

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Folgerung aus dem Satz von Ehrenfeucht

Notation 3.52
Eine Klasse C von σ-Strukturen heißt FO-definierbar, falls es einen FO[σ]-Satz φ gibt,
der C definiert.

Zur Erinnerung:
Für einen FO[σ]-Satz φ und eine Klasse C von σ-Strukturen sagen wir

”
φ definiert C“,

falls für jede σ-Struktur A gilt: A ∈ C ⇐⇒ A |= φ.

Um für eine gegebene Klasse C von σ-Strukturen zu zeigen, dass sie nicht
FO-definierbar ist, können wir das folgende Korollar nutzen, das wir als eine einfache
Folgerung aus Satz 3.51 erhalten.

Korollar 3.53
Sei σ eine relationale Signatur und sei C eine Klasse von σ-Strukturen.

Falls es für jedes m ⩾ 1 zwei σ-Strukturen Am und Bm gibt, so dass gilt:

1. Am ∈ C und

2. Bm ̸∈ C und

3. Duplicator hat eine Gewinnstrategie im m-Runden EF-Spiel auf Am

und Bm,

dann ist C nicht FO-definierbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 266

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Folgerung aus dem Satz von Ehrenfeucht

Notation 3.52
Eine Klasse C von σ-Strukturen heißt FO-definierbar, falls es einen FO[σ]-Satz φ gibt,
der C definiert.

Zur Erinnerung:
Für einen FO[σ]-Satz φ und eine Klasse C von σ-Strukturen sagen wir

”
φ definiert C“,

falls für jede σ-Struktur A gilt: A ∈ C ⇐⇒ A |= φ.

Um für eine gegebene Klasse C von σ-Strukturen zu zeigen, dass sie nicht
FO-definierbar ist, können wir das folgende Korollar nutzen, das wir als eine einfache
Folgerung aus Satz 3.51 erhalten.

Korollar 3.53
Sei σ eine relationale Signatur und sei C eine Klasse von σ-Strukturen.
Falls es für jedes m ⩾ 1 zwei σ-Strukturen Am und Bm gibt, so dass gilt:

1. Am ∈ C und

2. Bm ̸∈ C

und

3. Duplicator hat eine Gewinnstrategie im m-Runden EF-Spiel auf Am

und Bm,

dann ist C nicht FO-definierbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 266

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Folgerung aus dem Satz von Ehrenfeucht

Notation 3.52
Eine Klasse C von σ-Strukturen heißt FO-definierbar, falls es einen FO[σ]-Satz φ gibt,
der C definiert.

Zur Erinnerung:
Für einen FO[σ]-Satz φ und eine Klasse C von σ-Strukturen sagen wir

”
φ definiert C“,

falls für jede σ-Struktur A gilt: A ∈ C ⇐⇒ A |= φ.

Um für eine gegebene Klasse C von σ-Strukturen zu zeigen, dass sie nicht
FO-definierbar ist, können wir das folgende Korollar nutzen, das wir als eine einfache
Folgerung aus Satz 3.51 erhalten.

Korollar 3.53
Sei σ eine relationale Signatur und sei C eine Klasse von σ-Strukturen.
Falls es für jedes m ⩾ 1 zwei σ-Strukturen Am und Bm gibt, so dass gilt:

1. Am ∈ C und

2. Bm ̸∈ C und

3. Duplicator hat eine Gewinnstrategie im m-Runden EF-Spiel auf Am

und Bm,

dann ist C nicht FO-definierbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 266

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Folgerung aus dem Satz von Ehrenfeucht

Notation 3.52
Eine Klasse C von σ-Strukturen heißt FO-definierbar, falls es einen FO[σ]-Satz φ gibt,
der C definiert.

Zur Erinnerung:
Für einen FO[σ]-Satz φ und eine Klasse C von σ-Strukturen sagen wir

”
φ definiert C“,

falls für jede σ-Struktur A gilt: A ∈ C ⇐⇒ A |= φ.

Um für eine gegebene Klasse C von σ-Strukturen zu zeigen, dass sie nicht
FO-definierbar ist, können wir das folgende Korollar nutzen, das wir als eine einfache
Folgerung aus Satz 3.51 erhalten.

Korollar 3.53
Sei σ eine relationale Signatur und sei C eine Klasse von σ-Strukturen.
Falls es für jedes m ⩾ 1 zwei σ-Strukturen Am und Bm gibt, so dass gilt:

1. Am ∈ C und

2. Bm ̸∈ C und

3. Duplicator hat eine Gewinnstrategie im m-Runden EF-Spiel auf Am

und Bm,

dann ist C nicht FO-definierbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 266

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Lineare Ordnungen gerader Kardinalität

Wir werden nun Korollar 3.53 anwenden, um folgenden Satz zu zeigen.

Satz 3.54
Die Klasse EVEN⩽, die aus allen linearen Ordnungen A = (A,⩽A) gerader
Kardinalität besteht (d.h., A ist endlich und |A| ist durch 2 teilbar), ist
nicht FO-definierbar.

Um diesen Satz zu beweisen, genügt es gemäß Korollar 3.53, für jede
Rundenzahl m ⩾ 1 eine lineare Ordnung Am gerader Kardinalität und eine
lineare Ordnung Bm ungerader Kardinalität anzugeben, für die wir zeigen
können, dass Duplicator eine Gewinnstrategie im m-Runden EF-Spiel auf Am

und Bm hat.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 267

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Lineare Ordnungen gerader Kardinalität

Wir werden nun Korollar 3.53 anwenden, um folgenden Satz zu zeigen.

Satz 3.54
Die Klasse EVEN⩽, die aus allen linearen Ordnungen A = (A,⩽A) gerader
Kardinalität besteht

(d.h., A ist endlich und |A| ist durch 2 teilbar), ist
nicht FO-definierbar.

Um diesen Satz zu beweisen, genügt es gemäß Korollar 3.53, für jede
Rundenzahl m ⩾ 1 eine lineare Ordnung Am gerader Kardinalität und eine
lineare Ordnung Bm ungerader Kardinalität anzugeben, für die wir zeigen
können, dass Duplicator eine Gewinnstrategie im m-Runden EF-Spiel auf Am

und Bm hat.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 267

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Lineare Ordnungen gerader Kardinalität

Wir werden nun Korollar 3.53 anwenden, um folgenden Satz zu zeigen.

Satz 3.54
Die Klasse EVEN⩽, die aus allen linearen Ordnungen A = (A,⩽A) gerader
Kardinalität besteht (d.h., A ist endlich und |A| ist durch 2 teilbar),

ist
nicht FO-definierbar.

Um diesen Satz zu beweisen, genügt es gemäß Korollar 3.53, für jede
Rundenzahl m ⩾ 1 eine lineare Ordnung Am gerader Kardinalität und eine
lineare Ordnung Bm ungerader Kardinalität anzugeben, für die wir zeigen
können, dass Duplicator eine Gewinnstrategie im m-Runden EF-Spiel auf Am

und Bm hat.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 267

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Lineare Ordnungen gerader Kardinalität

Wir werden nun Korollar 3.53 anwenden, um folgenden Satz zu zeigen.

Satz 3.54
Die Klasse EVEN⩽, die aus allen linearen Ordnungen A = (A,⩽A) gerader
Kardinalität besteht (d.h., A ist endlich und |A| ist durch 2 teilbar), ist
nicht FO-definierbar.

Um diesen Satz zu beweisen, genügt es gemäß Korollar 3.53, für jede
Rundenzahl m ⩾ 1 eine lineare Ordnung Am gerader Kardinalität und eine
lineare Ordnung Bm ungerader Kardinalität anzugeben, für die wir zeigen
können, dass Duplicator eine Gewinnstrategie im m-Runden EF-Spiel auf Am

und Bm hat.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 267

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Lineare Ordnungen gerader Kardinalität

Wir werden nun Korollar 3.53 anwenden, um folgenden Satz zu zeigen.

Satz 3.54
Die Klasse EVEN⩽, die aus allen linearen Ordnungen A = (A,⩽A) gerader
Kardinalität besteht (d.h., A ist endlich und |A| ist durch 2 teilbar), ist
nicht FO-definierbar.

Um diesen Satz zu beweisen, genügt es gemäß Korollar 3.53,

für jede
Rundenzahl m ⩾ 1 eine lineare Ordnung Am gerader Kardinalität und eine
lineare Ordnung Bm ungerader Kardinalität anzugeben, für die wir zeigen
können, dass Duplicator eine Gewinnstrategie im m-Runden EF-Spiel auf Am

und Bm hat.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 267

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Lineare Ordnungen gerader Kardinalität

Wir werden nun Korollar 3.53 anwenden, um folgenden Satz zu zeigen.

Satz 3.54
Die Klasse EVEN⩽, die aus allen linearen Ordnungen A = (A,⩽A) gerader
Kardinalität besteht (d.h., A ist endlich und |A| ist durch 2 teilbar), ist
nicht FO-definierbar.

Um diesen Satz zu beweisen, genügt es gemäß Korollar 3.53, für jede
Rundenzahl m ⩾ 1

eine lineare Ordnung Am gerader Kardinalität und eine
lineare Ordnung Bm ungerader Kardinalität anzugeben, für die wir zeigen
können, dass Duplicator eine Gewinnstrategie im m-Runden EF-Spiel auf Am

und Bm hat.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 267

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Lineare Ordnungen gerader Kardinalität

Wir werden nun Korollar 3.53 anwenden, um folgenden Satz zu zeigen.

Satz 3.54
Die Klasse EVEN⩽, die aus allen linearen Ordnungen A = (A,⩽A) gerader
Kardinalität besteht (d.h., A ist endlich und |A| ist durch 2 teilbar), ist
nicht FO-definierbar.

Um diesen Satz zu beweisen, genügt es gemäß Korollar 3.53, für jede
Rundenzahl m ⩾ 1 eine lineare Ordnung Am gerader Kardinalität und

eine
lineare Ordnung Bm ungerader Kardinalität anzugeben, für die wir zeigen
können, dass Duplicator eine Gewinnstrategie im m-Runden EF-Spiel auf Am

und Bm hat.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 267

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Lineare Ordnungen gerader Kardinalität

Wir werden nun Korollar 3.53 anwenden, um folgenden Satz zu zeigen.

Satz 3.54
Die Klasse EVEN⩽, die aus allen linearen Ordnungen A = (A,⩽A) gerader
Kardinalität besteht (d.h., A ist endlich und |A| ist durch 2 teilbar), ist
nicht FO-definierbar.

Um diesen Satz zu beweisen, genügt es gemäß Korollar 3.53, für jede
Rundenzahl m ⩾ 1 eine lineare Ordnung Am gerader Kardinalität und eine
lineare Ordnung Bm ungerader Kardinalität anzugeben,

für die wir zeigen
können, dass Duplicator eine Gewinnstrategie im m-Runden EF-Spiel auf Am

und Bm hat.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 267

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Lineare Ordnungen gerader Kardinalität

Wir werden nun Korollar 3.53 anwenden, um folgenden Satz zu zeigen.

Satz 3.54
Die Klasse EVEN⩽, die aus allen linearen Ordnungen A = (A,⩽A) gerader
Kardinalität besteht (d.h., A ist endlich und |A| ist durch 2 teilbar), ist
nicht FO-definierbar.

Um diesen Satz zu beweisen, genügt es gemäß Korollar 3.53, für jede
Rundenzahl m ⩾ 1 eine lineare Ordnung Am gerader Kardinalität und eine
lineare Ordnung Bm ungerader Kardinalität anzugeben, für die wir zeigen
können, dass

Duplicator eine Gewinnstrategie im m-Runden EF-Spiel auf Am

und Bm hat.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 267

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Lineare Ordnungen gerader Kardinalität

Wir werden nun Korollar 3.53 anwenden, um folgenden Satz zu zeigen.

Satz 3.54
Die Klasse EVEN⩽, die aus allen linearen Ordnungen A = (A,⩽A) gerader
Kardinalität besteht (d.h., A ist endlich und |A| ist durch 2 teilbar), ist
nicht FO-definierbar.

Um diesen Satz zu beweisen, genügt es gemäß Korollar 3.53, für jede
Rundenzahl m ⩾ 1 eine lineare Ordnung Am gerader Kardinalität und eine
lineare Ordnung Bm ungerader Kardinalität anzugeben, für die wir zeigen
können, dass Duplicator eine Gewinnstrategie im m-Runden EF-Spiel auf Am

und Bm hat.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 267

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Als Vorbereitung dazu betrachten wir zunächst ein Beispiel.

Beispiel 3.55
Betrachte die linearen Ordnungen A = (A,⩽A) und B = (B,⩽B) mit
A = {1, . . . , 8} und B = {1, . . . , 9}, wobei ⩽A und ⩽B die natürlichen linearen
Ordnungen auf A und B sind.

Seien außerdem k := 2 und a := a1, a2 und b := b1, b2 mit a1 = b1 = 1 und
a2 = 8 und b2 = 9 vorgegeben.

Frage: Was ist die größte Zahl m, so dass Duplicator eine Gewinnstrategie im
m-Runden EF-Spiel auf (A, a) und (B, b) hat?

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 268

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Als Vorbereitung dazu betrachten wir zunächst ein Beispiel.

Beispiel 3.55
Betrachte die linearen Ordnungen A = (A,⩽A) und B = (B,⩽B) mit
A = {1, . . . , 8} und B = {1, . . . , 9}, wobei ⩽A und ⩽B die natürlichen linearen
Ordnungen auf A und B sind.

Seien außerdem k := 2 und a := a1, a2 und b := b1, b2 mit a1 = b1 = 1 und
a2 = 8 und b2 = 9 vorgegeben.

Frage: Was ist die größte Zahl m, so dass Duplicator eine Gewinnstrategie im
m-Runden EF-Spiel auf (A, a) und (B, b) hat?

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 268

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Als Vorbereitung dazu betrachten wir zunächst ein Beispiel.

Beispiel 3.55
Betrachte die linearen Ordnungen A = (A,⩽A) und B = (B,⩽B) mit
A = {1, . . . , 8} und B = {1, . . . , 9}, wobei ⩽A und ⩽B die natürlichen linearen
Ordnungen auf A und B sind.

Seien außerdem k := 2 und a := a1, a2 und b := b1, b2 mit a1 = b1 = 1 und
a2 = 8 und b2 = 9 vorgegeben.

Frage: Was ist die größte Zahl m, so dass Duplicator eine Gewinnstrategie im
m-Runden EF-Spiel auf (A, a) und (B, b) hat?

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 268

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Die Gewinnstrategie für Duplicator lässt sich zu folgendem Resultat
verallgemeinern.

Lemma 3.56
Seien A und B endliche lineare Ordnungen,

sei k := 2, und sei a := a1, a2 und
b := b1, b2, wobei a1, b1 die kleinsten und a2, b2 die größten Elemente in A
und B bezüglich ⩽A und ⩽B sind.

Für jedes m ⩾ 1 gilt: Falls |A|, |B| > 2m oder |A| = |B|, so hat
Duplicator eine Gewinnstrategie im m-Runden EF-Spiel auf (A, a) und (B, b).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 269

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Die Gewinnstrategie für Duplicator lässt sich zu folgendem Resultat
verallgemeinern.

Lemma 3.56
Seien A und B endliche lineare Ordnungen, sei k := 2, und sei a := a1, a2 und
b := b1, b2, wobei a1, b1 die kleinsten und a2, b2 die größten Elemente in A
und B bezüglich ⩽A und ⩽B sind.

Für jedes m ⩾ 1 gilt: Falls |A|, |B| > 2m oder |A| = |B|, so hat
Duplicator eine Gewinnstrategie im m-Runden EF-Spiel auf (A, a) und (B, b).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 269

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Die Gewinnstrategie für Duplicator lässt sich zu folgendem Resultat
verallgemeinern.

Lemma 3.56
Seien A und B endliche lineare Ordnungen, sei k := 2, und sei a := a1, a2 und
b := b1, b2, wobei a1, b1 die kleinsten und a2, b2 die größten Elemente in A
und B bezüglich ⩽A und ⩽B sind.

Für jedes m ⩾ 1 gilt: Falls |A|, |B| > 2m oder |A| = |B|,

so hat
Duplicator eine Gewinnstrategie im m-Runden EF-Spiel auf (A, a) und (B, b).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 269

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Die Gewinnstrategie für Duplicator lässt sich zu folgendem Resultat
verallgemeinern.

Lemma 3.56
Seien A und B endliche lineare Ordnungen, sei k := 2, und sei a := a1, a2 und
b := b1, b2, wobei a1, b1 die kleinsten und a2, b2 die größten Elemente in A
und B bezüglich ⩽A und ⩽B sind.

Für jedes m ⩾ 1 gilt: Falls |A|, |B| > 2m oder |A| = |B|, so hat
Duplicator eine Gewinnstrategie im m-Runden EF-Spiel auf (A, a) und (B, b).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 269

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Wir zeigen nun, dass Duplicator so spielen kann, dass für jedes i ∈ {0, 1, . . . ,m}
die folgende Invariante (∗)i erfüllt ist:

(∗)i : Sind a2+1, . . . , a2+i und b2+1, . . . , b2+i die in den Runden 1, . . . , i
gewählten Elemente in A und B, so gilt für alle j , j ′ ∈ {1, . . . , 2+i}:

1. aj ⩽A aj′ ⇐⇒ bj ⩽B bj′ und

2. Dist(aj , aj′) = Dist(bj , bj′) oder Dist(aj , aj′),Dist(bj , bj′) ⩾ 2m−i .

Der Beweis folgt per Induktion nach i .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 270

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Wir zeigen nun, dass Duplicator so spielen kann, dass für jedes i ∈ {0, 1, . . . ,m}
die folgende Invariante (∗)i erfüllt ist:

(∗)i : Sind a2+1, . . . , a2+i und b2+1, . . . , b2+i die in den Runden 1, . . . , i
gewählten Elemente in A und B,

so gilt für alle j , j ′ ∈ {1, . . . , 2+i}:

1. aj ⩽A aj′ ⇐⇒ bj ⩽B bj′ und

2. Dist(aj , aj′) = Dist(bj , bj′) oder Dist(aj , aj′),Dist(bj , bj′) ⩾ 2m−i .

Der Beweis folgt per Induktion nach i .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 270

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Wir zeigen nun, dass Duplicator so spielen kann, dass für jedes i ∈ {0, 1, . . . ,m}
die folgende Invariante (∗)i erfüllt ist:

(∗)i : Sind a2+1, . . . , a2+i und b2+1, . . . , b2+i die in den Runden 1, . . . , i
gewählten Elemente in A und B, so gilt für alle j , j ′ ∈ {1, . . . , 2+i}:

1. aj ⩽A aj′ ⇐⇒ bj ⩽B bj′ und

2. Dist(aj , aj′) = Dist(bj , bj′) oder Dist(aj , aj′),Dist(bj , bj′) ⩾ 2m−i .

Der Beweis folgt per Induktion nach i .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 270

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Wir zeigen nun, dass Duplicator so spielen kann, dass für jedes i ∈ {0, 1, . . . ,m}
die folgende Invariante (∗)i erfüllt ist:

(∗)i : Sind a2+1, . . . , a2+i und b2+1, . . . , b2+i die in den Runden 1, . . . , i
gewählten Elemente in A und B, so gilt für alle j , j ′ ∈ {1, . . . , 2+i}:

1. aj ⩽A aj′ ⇐⇒ bj ⩽B bj′

und

2. Dist(aj , aj′) = Dist(bj , bj′) oder Dist(aj , aj′),Dist(bj , bj′) ⩾ 2m−i .

Der Beweis folgt per Induktion nach i .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 270

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Wir zeigen nun, dass Duplicator so spielen kann, dass für jedes i ∈ {0, 1, . . . ,m}
die folgende Invariante (∗)i erfüllt ist:

(∗)i : Sind a2+1, . . . , a2+i und b2+1, . . . , b2+i die in den Runden 1, . . . , i
gewählten Elemente in A und B, so gilt für alle j , j ′ ∈ {1, . . . , 2+i}:

1. aj ⩽A aj′ ⇐⇒ bj ⩽B bj′ und

2. Dist(aj , aj′) = Dist(bj , bj′)

oder Dist(aj , aj′),Dist(bj , bj′) ⩾ 2m−i .

Der Beweis folgt per Induktion nach i .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 270

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Wir zeigen nun, dass Duplicator so spielen kann, dass für jedes i ∈ {0, 1, . . . ,m}
die folgende Invariante (∗)i erfüllt ist:

(∗)i : Sind a2+1, . . . , a2+i und b2+1, . . . , b2+i die in den Runden 1, . . . , i
gewählten Elemente in A und B, so gilt für alle j , j ′ ∈ {1, . . . , 2+i}:

1. aj ⩽A aj′ ⇐⇒ bj ⩽B bj′ und

2. Dist(aj , aj′) = Dist(bj , bj′) oder Dist(aj , aj′),Dist(bj , bj′) ⩾ 2m−i .

Der Beweis folgt per Induktion nach i .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 270

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Wir zeigen nun, dass Duplicator so spielen kann, dass für jedes i ∈ {0, 1, . . . ,m}
die folgende Invariante (∗)i erfüllt ist:

(∗)i : Sind a2+1, . . . , a2+i und b2+1, . . . , b2+i die in den Runden 1, . . . , i
gewählten Elemente in A und B, so gilt für alle j , j ′ ∈ {1, . . . , 2+i}:

1. aj ⩽A aj′ ⇐⇒ bj ⩽B bj′ und

2. Dist(aj , aj′) = Dist(bj , bj′) oder Dist(aj , aj′),Dist(bj , bj′) ⩾ 2m−i .

Der Beweis folgt per Induktion nach i .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 270

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Satz 3.54 folgt nun direkt aus Korollar 3.53 und Lemma 3.56.

Beweis von Satz 3.54.
Um nachzuweisen, dass die Klasse EVEN⩽ nicht FO-definierbar ist, genügt es
laut Korollar 3.53, für jede Zahl m ⩾ 1 eine endliche lineare Ordnung Am

gerader Kardinalität und eine endliche lineare Ordnung Bm ungerader
Kardinalität zu finden, so dass Duplicator eine Gewinnstrategie im m-Runden
EF-Spiel auf Am und Bm besitzt.

Wir wählen für Am die natürliche lineare Ordnung mit Universum
Am := {1, . . . , 2m+2}, und für Bm die natürliche lineare Ordnung mit
Universum Bm := {1, . . . , 2m+1}.

Gemäß Lemma 3.56 hat Duplicator eine Gewinnstrategie im m-Runden EF-Spiel
auf (Am, a) und (Bm, b), wobei a = a1, a2 und b = b1, b2 jeweils aus dem
kleinsten und dem größten Element der beiden linearen Ordnungen bestehen.

Offensichtlicherweise ist diese Gewinnstrategie auch eine Gewinnstrategie für
Duplicator im m-Runden EF-Spiel auf Am und Bm.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 271

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Satz 3.54 folgt nun direkt aus Korollar 3.53 und Lemma 3.56.

Beweis von Satz 3.54.
Um nachzuweisen, dass die Klasse EVEN⩽ nicht FO-definierbar ist, genügt es
laut Korollar 3.53,

für jede Zahl m ⩾ 1 eine endliche lineare Ordnung Am

gerader Kardinalität und eine endliche lineare Ordnung Bm ungerader
Kardinalität zu finden, so dass Duplicator eine Gewinnstrategie im m-Runden
EF-Spiel auf Am und Bm besitzt.

Wir wählen für Am die natürliche lineare Ordnung mit Universum
Am := {1, . . . , 2m+2}, und für Bm die natürliche lineare Ordnung mit
Universum Bm := {1, . . . , 2m+1}.

Gemäß Lemma 3.56 hat Duplicator eine Gewinnstrategie im m-Runden EF-Spiel
auf (Am, a) und (Bm, b), wobei a = a1, a2 und b = b1, b2 jeweils aus dem
kleinsten und dem größten Element der beiden linearen Ordnungen bestehen.

Offensichtlicherweise ist diese Gewinnstrategie auch eine Gewinnstrategie für
Duplicator im m-Runden EF-Spiel auf Am und Bm.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 271

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Satz 3.54 folgt nun direkt aus Korollar 3.53 und Lemma 3.56.

Beweis von Satz 3.54.
Um nachzuweisen, dass die Klasse EVEN⩽ nicht FO-definierbar ist, genügt es
laut Korollar 3.53, für jede Zahl m ⩾ 1 eine endliche lineare Ordnung Am

gerader Kardinalität und eine endliche lineare Ordnung Bm ungerader
Kardinalität zu finden, so dass Duplicator eine Gewinnstrategie im m-Runden
EF-Spiel auf Am und Bm besitzt.

Wir wählen für Am die natürliche lineare Ordnung mit Universum
Am := {1, . . . , 2m+2}, und für Bm die natürliche lineare Ordnung mit
Universum Bm := {1, . . . , 2m+1}.

Gemäß Lemma 3.56 hat Duplicator eine Gewinnstrategie im m-Runden EF-Spiel
auf (Am, a) und (Bm, b), wobei a = a1, a2 und b = b1, b2 jeweils aus dem
kleinsten und dem größten Element der beiden linearen Ordnungen bestehen.

Offensichtlicherweise ist diese Gewinnstrategie auch eine Gewinnstrategie für
Duplicator im m-Runden EF-Spiel auf Am und Bm.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 271

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Satz 3.54 folgt nun direkt aus Korollar 3.53 und Lemma 3.56.

Beweis von Satz 3.54.
Um nachzuweisen, dass die Klasse EVEN⩽ nicht FO-definierbar ist, genügt es
laut Korollar 3.53, für jede Zahl m ⩾ 1 eine endliche lineare Ordnung Am

gerader Kardinalität und eine endliche lineare Ordnung Bm ungerader
Kardinalität zu finden, so dass Duplicator eine Gewinnstrategie im m-Runden
EF-Spiel auf Am und Bm besitzt.

Wir wählen für Am

die natürliche lineare Ordnung mit Universum
Am := {1, . . . , 2m+2}, und für Bm die natürliche lineare Ordnung mit
Universum Bm := {1, . . . , 2m+1}.

Gemäß Lemma 3.56 hat Duplicator eine Gewinnstrategie im m-Runden EF-Spiel
auf (Am, a) und (Bm, b), wobei a = a1, a2 und b = b1, b2 jeweils aus dem
kleinsten und dem größten Element der beiden linearen Ordnungen bestehen.

Offensichtlicherweise ist diese Gewinnstrategie auch eine Gewinnstrategie für
Duplicator im m-Runden EF-Spiel auf Am und Bm.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 271

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Satz 3.54 folgt nun direkt aus Korollar 3.53 und Lemma 3.56.

Beweis von Satz 3.54.
Um nachzuweisen, dass die Klasse EVEN⩽ nicht FO-definierbar ist, genügt es
laut Korollar 3.53, für jede Zahl m ⩾ 1 eine endliche lineare Ordnung Am

gerader Kardinalität und eine endliche lineare Ordnung Bm ungerader
Kardinalität zu finden, so dass Duplicator eine Gewinnstrategie im m-Runden
EF-Spiel auf Am und Bm besitzt.

Wir wählen für Am die natürliche lineare Ordnung mit Universum
Am := {1, . . . , 2m+2}, und für Bm

die natürliche lineare Ordnung mit
Universum Bm := {1, . . . , 2m+1}.

Gemäß Lemma 3.56 hat Duplicator eine Gewinnstrategie im m-Runden EF-Spiel
auf (Am, a) und (Bm, b), wobei a = a1, a2 und b = b1, b2 jeweils aus dem
kleinsten und dem größten Element der beiden linearen Ordnungen bestehen.

Offensichtlicherweise ist diese Gewinnstrategie auch eine Gewinnstrategie für
Duplicator im m-Runden EF-Spiel auf Am und Bm.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 271

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Satz 3.54 folgt nun direkt aus Korollar 3.53 und Lemma 3.56.

Beweis von Satz 3.54.
Um nachzuweisen, dass die Klasse EVEN⩽ nicht FO-definierbar ist, genügt es
laut Korollar 3.53, für jede Zahl m ⩾ 1 eine endliche lineare Ordnung Am

gerader Kardinalität und eine endliche lineare Ordnung Bm ungerader
Kardinalität zu finden, so dass Duplicator eine Gewinnstrategie im m-Runden
EF-Spiel auf Am und Bm besitzt.

Wir wählen für Am die natürliche lineare Ordnung mit Universum
Am := {1, . . . , 2m+2}, und für Bm die natürliche lineare Ordnung mit
Universum Bm := {1, . . . , 2m+1}.

Gemäß Lemma 3.56 hat Duplicator eine Gewinnstrategie im m-Runden EF-Spiel
auf (Am, a) und (Bm, b), wobei a = a1, a2 und b = b1, b2 jeweils aus dem
kleinsten und dem größten Element der beiden linearen Ordnungen bestehen.

Offensichtlicherweise ist diese Gewinnstrategie auch eine Gewinnstrategie für
Duplicator im m-Runden EF-Spiel auf Am und Bm.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 271

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Satz 3.54 folgt nun direkt aus Korollar 3.53 und Lemma 3.56.

Beweis von Satz 3.54.
Um nachzuweisen, dass die Klasse EVEN⩽ nicht FO-definierbar ist, genügt es
laut Korollar 3.53, für jede Zahl m ⩾ 1 eine endliche lineare Ordnung Am

gerader Kardinalität und eine endliche lineare Ordnung Bm ungerader
Kardinalität zu finden, so dass Duplicator eine Gewinnstrategie im m-Runden
EF-Spiel auf Am und Bm besitzt.

Wir wählen für Am die natürliche lineare Ordnung mit Universum
Am := {1, . . . , 2m+2}, und für Bm die natürliche lineare Ordnung mit
Universum Bm := {1, . . . , 2m+1}.

Gemäß Lemma 3.56 hat Duplicator eine Gewinnstrategie im m-Runden EF-Spiel
auf (Am, a) und (Bm, b),

wobei a = a1, a2 und b = b1, b2 jeweils aus dem
kleinsten und dem größten Element der beiden linearen Ordnungen bestehen.

Offensichtlicherweise ist diese Gewinnstrategie auch eine Gewinnstrategie für
Duplicator im m-Runden EF-Spiel auf Am und Bm.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 271

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Satz 3.54 folgt nun direkt aus Korollar 3.53 und Lemma 3.56.

Beweis von Satz 3.54.
Um nachzuweisen, dass die Klasse EVEN⩽ nicht FO-definierbar ist, genügt es
laut Korollar 3.53, für jede Zahl m ⩾ 1 eine endliche lineare Ordnung Am

gerader Kardinalität und eine endliche lineare Ordnung Bm ungerader
Kardinalität zu finden, so dass Duplicator eine Gewinnstrategie im m-Runden
EF-Spiel auf Am und Bm besitzt.

Wir wählen für Am die natürliche lineare Ordnung mit Universum
Am := {1, . . . , 2m+2}, und für Bm die natürliche lineare Ordnung mit
Universum Bm := {1, . . . , 2m+1}.

Gemäß Lemma 3.56 hat Duplicator eine Gewinnstrategie im m-Runden EF-Spiel
auf (Am, a) und (Bm, b), wobei a = a1, a2 und b = b1, b2 jeweils aus dem
kleinsten und dem größten Element der beiden linearen Ordnungen bestehen.

Offensichtlicherweise ist diese Gewinnstrategie auch eine Gewinnstrategie für
Duplicator im m-Runden EF-Spiel auf Am und Bm.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 271

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Satz 3.54 folgt nun direkt aus Korollar 3.53 und Lemma 3.56.

Beweis von Satz 3.54.
Um nachzuweisen, dass die Klasse EVEN⩽ nicht FO-definierbar ist, genügt es
laut Korollar 3.53, für jede Zahl m ⩾ 1 eine endliche lineare Ordnung Am

gerader Kardinalität und eine endliche lineare Ordnung Bm ungerader
Kardinalität zu finden, so dass Duplicator eine Gewinnstrategie im m-Runden
EF-Spiel auf Am und Bm besitzt.

Wir wählen für Am die natürliche lineare Ordnung mit Universum
Am := {1, . . . , 2m+2}, und für Bm die natürliche lineare Ordnung mit
Universum Bm := {1, . . . , 2m+1}.

Gemäß Lemma 3.56 hat Duplicator eine Gewinnstrategie im m-Runden EF-Spiel
auf (Am, a) und (Bm, b), wobei a = a1, a2 und b = b1, b2 jeweils aus dem
kleinsten und dem größten Element der beiden linearen Ordnungen bestehen.

Offensichtlicherweise ist diese Gewinnstrategie auch eine Gewinnstrategie für
Duplicator im m-Runden EF-Spiel auf Am und Bm.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 271

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Bemerkung 3.57
Der obige Beweis zeigt nicht nur, dass die Klasse EVEN⩽ nicht FO-definierbar
ist, sondern sogar die folgende stärkere Aussage:

Für jedes n ∈ N gilt: Es gibt keinen FO[{⩽}]-Satz ψ, so dass für je-
de endliche lineare Ordnung B mit |B| ⩾ n gilt: B |= ψ ⇐⇒
|B| ist gerade.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 272

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Graph-Zusammenhang und Erreichbarkeit sind
nicht FO-definierbar

Wir können die Aussage von Bemerkung 3.57 nutzen, um Folgendes zu zeigen.

Satz 3.58
Sei σ := {E/2}.

(a)
”
Graph-Zusammenhang ist nicht FO-definierbar.“
D.h.: Es gibt keinen FO[σ]-Satz φConn, so dass für jeden endlichen
ungerichteten Graphen G = (V G ,EG) und die zugehörige σ-Struktur
A = (A,EA) gilt: A |= φConn ⇐⇒ G ist zusammenhängend.

(b)
”
Erreichbarkeit ist nicht FO-definierbar.“
D.h.: Es gibt keine FO[σ]-Formel φReach(x , y), so dass für alle endlichen
gerichteten Graphen A = (A,EA) und alle Knoten a, b ∈ A gilt:
A |= φReach[a, b] ⇐⇒ es gibt in A einen Weg von Knoten a zu Knoten b.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 273

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Graph-Zusammenhang und Erreichbarkeit sind
nicht FO-definierbar

Wir können die Aussage von Bemerkung 3.57 nutzen, um Folgendes zu zeigen.

Satz 3.58
Sei σ := {E/2}.

(a)
”
Graph-Zusammenhang ist nicht FO-definierbar.“
D.h.: Es gibt keinen FO[σ]-Satz φConn, so dass für jeden endlichen
ungerichteten Graphen G = (V G ,EG) und die zugehörige σ-Struktur
A = (A,EA) gilt: A |= φConn ⇐⇒ G ist zusammenhängend.

(b)
”
Erreichbarkeit ist nicht FO-definierbar.“
D.h.: Es gibt keine FO[σ]-Formel φReach(x , y), so dass für alle endlichen
gerichteten Graphen A = (A,EA) und alle Knoten a, b ∈ A gilt:
A |= φReach[a, b] ⇐⇒ es gibt in A einen Weg von Knoten a zu Knoten b.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 273

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

(b) folgt direkt aus (a), denn:

Angenommen φReach(x , y) wäre eine FO[σ]-Formel, so dass für alle gerichteten
Graphen A = (A,EA) und alle Knoten a, b ∈ A gilt: A |= φReach[a, b] ⇐⇒ es
gibt in A einen Weg von Knoten a zu Knoten b.

Dann ist
φConn := ∀x ∀y φReach(x , y)

ein FO[σ]-Satz, der in einem gerichteten Graphen A genau dann erfüllt ist,
wenn A stark zusammenhängend ist.

Insbesondere gilt dann für jeden ungerichteten Graphen G und die zu G
gehörende σ-Struktur A: A |= φConn ⇐⇒ G ist zusammenhängend.

Dies ist ein Widerspruch zu (a).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 274

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

(b) folgt direkt aus (a), denn:

Angenommen φReach(x , y) wäre eine FO[σ]-Formel, so dass für alle gerichteten
Graphen A = (A,EA) und alle Knoten a, b ∈ A gilt: A |= φReach[a, b] ⇐⇒ es
gibt in A einen Weg von Knoten a zu Knoten b.

Dann ist
φConn := ∀x ∀y φReach(x , y)

ein FO[σ]-Satz, der in einem gerichteten Graphen A genau dann erfüllt ist,
wenn A stark zusammenhängend ist.

Insbesondere gilt dann für jeden ungerichteten Graphen G und die zu G
gehörende σ-Struktur A: A |= φConn ⇐⇒ G ist zusammenhängend.

Dies ist ein Widerspruch zu (a).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 274

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

(b) folgt direkt aus (a), denn:

Angenommen φReach(x , y) wäre eine FO[σ]-Formel, so dass für alle gerichteten
Graphen A = (A,EA) und alle Knoten a, b ∈ A gilt: A |= φReach[a, b] ⇐⇒ es
gibt in A einen Weg von Knoten a zu Knoten b.

Dann ist
φConn :=

∀x ∀y φReach(x , y)

ein FO[σ]-Satz, der in einem gerichteten Graphen A genau dann erfüllt ist,
wenn A stark zusammenhängend ist.

Insbesondere gilt dann für jeden ungerichteten Graphen G und die zu G
gehörende σ-Struktur A: A |= φConn ⇐⇒ G ist zusammenhängend.

Dies ist ein Widerspruch zu (a).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 274

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

(b) folgt direkt aus (a), denn:

Angenommen φReach(x , y) wäre eine FO[σ]-Formel, so dass für alle gerichteten
Graphen A = (A,EA) und alle Knoten a, b ∈ A gilt: A |= φReach[a, b] ⇐⇒ es
gibt in A einen Weg von Knoten a zu Knoten b.

Dann ist
φConn := ∀x ∀y φReach(x , y)

ein FO[σ]-Satz, der in einem gerichteten Graphen A genau dann erfüllt ist,
wenn

A stark zusammenhängend ist.

Insbesondere gilt dann für jeden ungerichteten Graphen G und die zu G
gehörende σ-Struktur A: A |= φConn ⇐⇒ G ist zusammenhängend.

Dies ist ein Widerspruch zu (a).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 274

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

(b) folgt direkt aus (a), denn:

Angenommen φReach(x , y) wäre eine FO[σ]-Formel, so dass für alle gerichteten
Graphen A = (A,EA) und alle Knoten a, b ∈ A gilt: A |= φReach[a, b] ⇐⇒ es
gibt in A einen Weg von Knoten a zu Knoten b.

Dann ist
φConn := ∀x ∀y φReach(x , y)

ein FO[σ]-Satz, der in einem gerichteten Graphen A genau dann erfüllt ist,
wenn A stark zusammenhängend ist.

Insbesondere gilt dann für jeden ungerichteten Graphen G und die zu G
gehörende σ-Struktur A: A |= φConn ⇐⇒ G ist zusammenhängend.

Dies ist ein Widerspruch zu (a).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 274

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

(b) folgt direkt aus (a), denn:

Angenommen φReach(x , y) wäre eine FO[σ]-Formel, so dass für alle gerichteten
Graphen A = (A,EA) und alle Knoten a, b ∈ A gilt: A |= φReach[a, b] ⇐⇒ es
gibt in A einen Weg von Knoten a zu Knoten b.

Dann ist
φConn := ∀x ∀y φReach(x , y)

ein FO[σ]-Satz, der in einem gerichteten Graphen A genau dann erfüllt ist,
wenn A stark zusammenhängend ist.

Insbesondere gilt dann für jeden ungerichteten Graphen G und die zu G
gehörende σ-Struktur A: A |= φConn ⇐⇒ G ist zusammenhängend.

Dies ist ein Widerspruch zu (a).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 274

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

(b) folgt direkt aus (a), denn:

Angenommen φReach(x , y) wäre eine FO[σ]-Formel, so dass für alle gerichteten
Graphen A = (A,EA) und alle Knoten a, b ∈ A gilt: A |= φReach[a, b] ⇐⇒ es
gibt in A einen Weg von Knoten a zu Knoten b.

Dann ist
φConn := ∀x ∀y φReach(x , y)

ein FO[σ]-Satz, der in einem gerichteten Graphen A genau dann erfüllt ist,
wenn A stark zusammenhängend ist.

Insbesondere gilt dann für jeden ungerichteten Graphen G und die zu G
gehörende σ-Struktur A: A |= φConn ⇐⇒ G ist zusammenhängend.

Dies ist ein Widerspruch zu (a).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 274

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Logische Reduktionen

Bemerkung 3.59
Die im Beweis von Satz 3.58 benutzte Vorgehensweise ist unter dem Begriff
logische Reduktion (oder Transduktionen) bekannt.

Im Beweis von Teil (b) wurde gezeigt: Falls es eine FO[{E}]-Formel gibt, die
ausdrückt, dass Knoten y von Knoten x aus erreichbar ist, dann gibt es auch
eine FO[{E}]-Formel, die Graph-Zusammenhang definiert.

Somit wurde das Problem, einen FO[{E}]-Satz zu finden, der
Graph-Zusammenhang definiert, auf das Problem reduziert, eine
FO[{E}]-Formel zu finden, die ausdrückt, dass Knoten y von Knoten x aus
erreichbar ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 275

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Logische Reduktionen

Bemerkung 3.59
Die im Beweis von Satz 3.58 benutzte Vorgehensweise ist unter dem Begriff
logische Reduktion (oder Transduktionen) bekannt.

Im Beweis von Teil (b) wurde gezeigt:

Falls es eine FO[{E}]-Formel gibt, die
ausdrückt, dass Knoten y von Knoten x aus erreichbar ist, dann gibt es auch
eine FO[{E}]-Formel, die Graph-Zusammenhang definiert.

Somit wurde das Problem, einen FO[{E}]-Satz zu finden, der
Graph-Zusammenhang definiert, auf das Problem reduziert, eine
FO[{E}]-Formel zu finden, die ausdrückt, dass Knoten y von Knoten x aus
erreichbar ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 275

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Logische Reduktionen

Bemerkung 3.59
Die im Beweis von Satz 3.58 benutzte Vorgehensweise ist unter dem Begriff
logische Reduktion (oder Transduktionen) bekannt.

Im Beweis von Teil (b) wurde gezeigt: Falls es eine FO[{E}]-Formel gibt, die
ausdrückt, dass Knoten y von Knoten x aus erreichbar ist, dann

gibt es auch
eine FO[{E}]-Formel, die Graph-Zusammenhang definiert.

Somit wurde das Problem, einen FO[{E}]-Satz zu finden, der
Graph-Zusammenhang definiert, auf das Problem reduziert, eine
FO[{E}]-Formel zu finden, die ausdrückt, dass Knoten y von Knoten x aus
erreichbar ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 275

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Logische Reduktionen

Bemerkung 3.59
Die im Beweis von Satz 3.58 benutzte Vorgehensweise ist unter dem Begriff
logische Reduktion (oder Transduktionen) bekannt.

Im Beweis von Teil (b) wurde gezeigt: Falls es eine FO[{E}]-Formel gibt, die
ausdrückt, dass Knoten y von Knoten x aus erreichbar ist, dann gibt es auch
eine FO[{E}]-Formel, die Graph-Zusammenhang definiert.

Somit wurde das Problem, einen FO[{E}]-Satz zu finden, der
Graph-Zusammenhang definiert, auf das Problem reduziert, eine
FO[{E}]-Formel zu finden, die ausdrückt, dass Knoten y von Knoten x aus
erreichbar ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 275

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Logische Reduktionen

Bemerkung 3.59
Die im Beweis von Satz 3.58 benutzte Vorgehensweise ist unter dem Begriff
logische Reduktion (oder Transduktionen) bekannt.

Im Beweis von Teil (b) wurde gezeigt: Falls es eine FO[{E}]-Formel gibt, die
ausdrückt, dass Knoten y von Knoten x aus erreichbar ist, dann gibt es auch
eine FO[{E}]-Formel, die Graph-Zusammenhang definiert.

Somit wurde das Problem, einen FO[{E}]-Satz zu finden, der
Graph-Zusammenhang definiert, auf das Problem reduziert, eine
FO[{E}]-Formel zu finden, die ausdrückt, dass Knoten y von Knoten x aus
erreichbar ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 275

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Im Beweis von Teil (a) wurde das Problem, einen FO[{⩽}]-Satz zu finden, der
ausdrückt, dass eine endliche lineare Ordnung eine gerade Kardinalität besitzt,

auf das Problem reduziert, einen FO[{E}]-Satz zu finden, der
Graph-Zusammenhang definiert.

D.h. es wurde gezeigt: Falls Graph-Zusammenhang FO-definierbar ist, so ist
auch die Aussage

”
eine endliche lineare Ordnung besitzt eine gerade

Kardinalität“ FO-definierbar.

Dies wurde dadurch erreicht, dass man innerhalb einer linearen Ordnung einen
geeigneten Graphen

”
simuliert“ (bzw. “interpretiert“), indem man die

Kantenrelation des Graphen durch eine FO[{⩽}]-Formel beschreibt.

Generell ist diese Methode der logischen Reduktionen oft nützlich, um bereits
bekannte Nicht-Definierbarkeits-Resultate auf neue
Nicht-Definierbarkeits-Resultate zu übertragen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 276

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Im Beweis von Teil (a) wurde das Problem, einen FO[{⩽}]-Satz zu finden, der
ausdrückt, dass eine endliche lineare Ordnung eine gerade Kardinalität besitzt,
auf das Problem reduziert, einen FO[{E}]-Satz zu finden, der
Graph-Zusammenhang definiert.

D.h. es wurde gezeigt: Falls Graph-Zusammenhang FO-definierbar ist, so ist
auch die Aussage

”
eine endliche lineare Ordnung besitzt eine gerade

Kardinalität“ FO-definierbar.

Dies wurde dadurch erreicht, dass man innerhalb einer linearen Ordnung einen
geeigneten Graphen

”
simuliert“ (bzw. “interpretiert“), indem man die

Kantenrelation des Graphen durch eine FO[{⩽}]-Formel beschreibt.

Generell ist diese Methode der logischen Reduktionen oft nützlich, um bereits
bekannte Nicht-Definierbarkeits-Resultate auf neue
Nicht-Definierbarkeits-Resultate zu übertragen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 276

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Im Beweis von Teil (a) wurde das Problem, einen FO[{⩽}]-Satz zu finden, der
ausdrückt, dass eine endliche lineare Ordnung eine gerade Kardinalität besitzt,
auf das Problem reduziert, einen FO[{E}]-Satz zu finden, der
Graph-Zusammenhang definiert.

D.h. es wurde gezeigt:

Falls Graph-Zusammenhang FO-definierbar ist, so ist
auch die Aussage

”
eine endliche lineare Ordnung besitzt eine gerade

Kardinalität“ FO-definierbar.

Dies wurde dadurch erreicht, dass man innerhalb einer linearen Ordnung einen
geeigneten Graphen

”
simuliert“ (bzw. “interpretiert“), indem man die

Kantenrelation des Graphen durch eine FO[{⩽}]-Formel beschreibt.

Generell ist diese Methode der logischen Reduktionen oft nützlich, um bereits
bekannte Nicht-Definierbarkeits-Resultate auf neue
Nicht-Definierbarkeits-Resultate zu übertragen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 276

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Im Beweis von Teil (a) wurde das Problem, einen FO[{⩽}]-Satz zu finden, der
ausdrückt, dass eine endliche lineare Ordnung eine gerade Kardinalität besitzt,
auf das Problem reduziert, einen FO[{E}]-Satz zu finden, der
Graph-Zusammenhang definiert.

D.h. es wurde gezeigt: Falls Graph-Zusammenhang FO-definierbar ist, so ist
auch

die Aussage
”
eine endliche lineare Ordnung besitzt eine gerade

Kardinalität“ FO-definierbar.

Dies wurde dadurch erreicht, dass man innerhalb einer linearen Ordnung einen
geeigneten Graphen

”
simuliert“ (bzw. “interpretiert“), indem man die

Kantenrelation des Graphen durch eine FO[{⩽}]-Formel beschreibt.

Generell ist diese Methode der logischen Reduktionen oft nützlich, um bereits
bekannte Nicht-Definierbarkeits-Resultate auf neue
Nicht-Definierbarkeits-Resultate zu übertragen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 276

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Im Beweis von Teil (a) wurde das Problem, einen FO[{⩽}]-Satz zu finden, der
ausdrückt, dass eine endliche lineare Ordnung eine gerade Kardinalität besitzt,
auf das Problem reduziert, einen FO[{E}]-Satz zu finden, der
Graph-Zusammenhang definiert.

D.h. es wurde gezeigt: Falls Graph-Zusammenhang FO-definierbar ist, so ist
auch die Aussage

”
eine endliche lineare Ordnung besitzt eine gerade

Kardinalität“ FO-definierbar.

Dies wurde dadurch erreicht, dass man innerhalb einer linearen Ordnung einen
geeigneten Graphen

”
simuliert“ (bzw. “interpretiert“), indem man die

Kantenrelation des Graphen durch eine FO[{⩽}]-Formel beschreibt.

Generell ist diese Methode der logischen Reduktionen oft nützlich, um bereits
bekannte Nicht-Definierbarkeits-Resultate auf neue
Nicht-Definierbarkeits-Resultate zu übertragen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 276

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Im Beweis von Teil (a) wurde das Problem, einen FO[{⩽}]-Satz zu finden, der
ausdrückt, dass eine endliche lineare Ordnung eine gerade Kardinalität besitzt,
auf das Problem reduziert, einen FO[{E}]-Satz zu finden, der
Graph-Zusammenhang definiert.

D.h. es wurde gezeigt: Falls Graph-Zusammenhang FO-definierbar ist, so ist
auch die Aussage

”
eine endliche lineare Ordnung besitzt eine gerade

Kardinalität“ FO-definierbar.

Dies wurde dadurch erreicht, dass man

innerhalb einer linearen Ordnung einen
geeigneten Graphen

”
simuliert“ (bzw. “interpretiert“), indem man die

Kantenrelation des Graphen durch eine FO[{⩽}]-Formel beschreibt.

Generell ist diese Methode der logischen Reduktionen oft nützlich, um bereits
bekannte Nicht-Definierbarkeits-Resultate auf neue
Nicht-Definierbarkeits-Resultate zu übertragen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 276

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Im Beweis von Teil (a) wurde das Problem, einen FO[{⩽}]-Satz zu finden, der
ausdrückt, dass eine endliche lineare Ordnung eine gerade Kardinalität besitzt,
auf das Problem reduziert, einen FO[{E}]-Satz zu finden, der
Graph-Zusammenhang definiert.

D.h. es wurde gezeigt: Falls Graph-Zusammenhang FO-definierbar ist, so ist
auch die Aussage

”
eine endliche lineare Ordnung besitzt eine gerade

Kardinalität“ FO-definierbar.

Dies wurde dadurch erreicht, dass man innerhalb einer linearen Ordnung einen
geeigneten Graphen

”
simuliert“

(bzw. “interpretiert“), indem man die
Kantenrelation des Graphen durch eine FO[{⩽}]-Formel beschreibt.

Generell ist diese Methode der logischen Reduktionen oft nützlich, um bereits
bekannte Nicht-Definierbarkeits-Resultate auf neue
Nicht-Definierbarkeits-Resultate zu übertragen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 276

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Im Beweis von Teil (a) wurde das Problem, einen FO[{⩽}]-Satz zu finden, der
ausdrückt, dass eine endliche lineare Ordnung eine gerade Kardinalität besitzt,
auf das Problem reduziert, einen FO[{E}]-Satz zu finden, der
Graph-Zusammenhang definiert.

D.h. es wurde gezeigt: Falls Graph-Zusammenhang FO-definierbar ist, so ist
auch die Aussage

”
eine endliche lineare Ordnung besitzt eine gerade

Kardinalität“ FO-definierbar.

Dies wurde dadurch erreicht, dass man innerhalb einer linearen Ordnung einen
geeigneten Graphen

”
simuliert“ (bzw. “interpretiert“),

indem man die
Kantenrelation des Graphen durch eine FO[{⩽}]-Formel beschreibt.

Generell ist diese Methode der logischen Reduktionen oft nützlich, um bereits
bekannte Nicht-Definierbarkeits-Resultate auf neue
Nicht-Definierbarkeits-Resultate zu übertragen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 276

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Im Beweis von Teil (a) wurde das Problem, einen FO[{⩽}]-Satz zu finden, der
ausdrückt, dass eine endliche lineare Ordnung eine gerade Kardinalität besitzt,
auf das Problem reduziert, einen FO[{E}]-Satz zu finden, der
Graph-Zusammenhang definiert.

D.h. es wurde gezeigt: Falls Graph-Zusammenhang FO-definierbar ist, so ist
auch die Aussage

”
eine endliche lineare Ordnung besitzt eine gerade

Kardinalität“ FO-definierbar.

Dies wurde dadurch erreicht, dass man innerhalb einer linearen Ordnung einen
geeigneten Graphen

”
simuliert“ (bzw. “interpretiert“), indem man die

Kantenrelation des Graphen durch eine FO[{⩽}]-Formel beschreibt.

Generell ist diese Methode der logischen Reduktionen oft nützlich, um bereits
bekannte Nicht-Definierbarkeits-Resultate auf neue
Nicht-Definierbarkeits-Resultate zu übertragen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 276

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Im Beweis von Teil (a) wurde das Problem, einen FO[{⩽}]-Satz zu finden, der
ausdrückt, dass eine endliche lineare Ordnung eine gerade Kardinalität besitzt,
auf das Problem reduziert, einen FO[{E}]-Satz zu finden, der
Graph-Zusammenhang definiert.

D.h. es wurde gezeigt: Falls Graph-Zusammenhang FO-definierbar ist, so ist
auch die Aussage

”
eine endliche lineare Ordnung besitzt eine gerade

Kardinalität“ FO-definierbar.

Dies wurde dadurch erreicht, dass man innerhalb einer linearen Ordnung einen
geeigneten Graphen

”
simuliert“ (bzw. “interpretiert“), indem man die

Kantenrelation des Graphen durch eine FO[{⩽}]-Formel beschreibt.

Generell ist diese Methode der logischen Reduktionen oft nützlich, um

bereits
bekannte Nicht-Definierbarkeits-Resultate auf neue
Nicht-Definierbarkeits-Resultate zu übertragen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 276

Kapitel 3: Logik erster Stufe · Abschnitt 3.8: Ehrenfeucht-Fräıssé-Spiele

Im Beweis von Teil (a) wurde das Problem, einen FO[{⩽}]-Satz zu finden, der
ausdrückt, dass eine endliche lineare Ordnung eine gerade Kardinalität besitzt,
auf das Problem reduziert, einen FO[{E}]-Satz zu finden, der
Graph-Zusammenhang definiert.

D.h. es wurde gezeigt: Falls Graph-Zusammenhang FO-definierbar ist, so ist
auch die Aussage

”
eine endliche lineare Ordnung besitzt eine gerade

Kardinalität“ FO-definierbar.

Dies wurde dadurch erreicht, dass man innerhalb einer linearen Ordnung einen
geeigneten Graphen

”
simuliert“ (bzw. “interpretiert“), indem man die

Kantenrelation des Graphen durch eine FO[{⩽}]-Formel beschreibt.

Generell ist diese Methode der logischen Reduktionen oft nützlich, um bereits
bekannte Nicht-Definierbarkeits-Resultate auf neue
Nicht-Definierbarkeits-Resultate zu übertragen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 276

Abschnitt 3.9:

Erfüllbarkeit, Allgemeingültigkeit und die
Folgerungsbeziehung

Kapitel 3: Logik erster Stufe · Abschnitt 3.9: Erfüllbarkeit, Allgemeingültigkeit und die Folgerungsbeziehung

Die im Folgenden eingeführten Begriffe der Erfüllbarkeit, Allgemeingültigkeit
und der Folgerungsbeziehung sind für die Logik erster Stufe ähnlich definiert wie
für die Aussagenlogik.

Im Folgenden sei σ stets eine beliebige Signatur.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 277

Kapitel 3: Logik erster Stufe · Abschnitt 3.9: Erfüllbarkeit, Allgemeingültigkeit und die Folgerungsbeziehung

Die im Folgenden eingeführten Begriffe der Erfüllbarkeit, Allgemeingültigkeit
und der Folgerungsbeziehung sind für die Logik erster Stufe ähnlich definiert wie
für die Aussagenlogik.

Im Folgenden sei σ stets eine beliebige Signatur.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 277

Kapitel 3: Logik erster Stufe · Abschnitt 3.9: Erfüllbarkeit, Allgemeingültigkeit und die Folgerungsbeziehung

Erfüllbarkeit und Allgemeingültigkeit

Definition 3.60
Eine FO[σ]-Formel φ (bzw. eine Formelmenge Φ ⊆ FO[σ]) heißt erfüllbar, wenn

es eine σ-Interpretation gibt, die φ (bzw. Φ) erfüllt.

Eine Formel oder Formelmenge, die nicht erfüllbar ist, nennen wir unerfüllbar.

Definition 3.61
Eine FO[σ]-Formel φ heißt allgemeingültig, wenn jede σ-Interpretation die
Formel φ erfüllt.

Wir schreiben kurz |= φ um auszudrücken, dass φ allgemeingültig ist.

Offensichtlicherweise gilt für alle FO[σ]-Formeln φ:

φ ist allgemeingültig ⇐⇒ ¬φ ist unerfüllbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 278

Kapitel 3: Logik erster Stufe · Abschnitt 3.9: Erfüllbarkeit, Allgemeingültigkeit und die Folgerungsbeziehung

Erfüllbarkeit und Allgemeingültigkeit

Definition 3.60
Eine FO[σ]-Formel φ (bzw. eine Formelmenge Φ ⊆ FO[σ]) heißt erfüllbar, wenn
es eine σ-Interpretation gibt, die φ (bzw. Φ) erfüllt.

Eine Formel oder Formelmenge, die nicht erfüllbar ist, nennen wir unerfüllbar.

Definition 3.61
Eine FO[σ]-Formel φ heißt allgemeingültig, wenn jede σ-Interpretation die
Formel φ erfüllt.

Wir schreiben kurz |= φ um auszudrücken, dass φ allgemeingültig ist.

Offensichtlicherweise gilt für alle FO[σ]-Formeln φ:

φ ist allgemeingültig ⇐⇒ ¬φ ist unerfüllbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 278

Kapitel 3: Logik erster Stufe · Abschnitt 3.9: Erfüllbarkeit, Allgemeingültigkeit und die Folgerungsbeziehung

Erfüllbarkeit und Allgemeingültigkeit

Definition 3.60
Eine FO[σ]-Formel φ (bzw. eine Formelmenge Φ ⊆ FO[σ]) heißt erfüllbar, wenn
es eine σ-Interpretation gibt, die φ (bzw. Φ) erfüllt.

Eine Formel oder Formelmenge, die nicht erfüllbar ist, nennen wir unerfüllbar.

Definition 3.61
Eine FO[σ]-Formel φ heißt allgemeingültig, wenn jede σ-Interpretation die
Formel φ erfüllt.

Wir schreiben kurz |= φ um auszudrücken, dass φ allgemeingültig ist.

Offensichtlicherweise gilt für alle FO[σ]-Formeln φ:

φ ist allgemeingültig ⇐⇒ ¬φ ist unerfüllbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 278

Kapitel 3: Logik erster Stufe · Abschnitt 3.9: Erfüllbarkeit, Allgemeingültigkeit und die Folgerungsbeziehung

Erfüllbarkeit und Allgemeingültigkeit

Definition 3.60
Eine FO[σ]-Formel φ (bzw. eine Formelmenge Φ ⊆ FO[σ]) heißt erfüllbar, wenn
es eine σ-Interpretation gibt, die φ (bzw. Φ) erfüllt.

Eine Formel oder Formelmenge, die nicht erfüllbar ist, nennen wir unerfüllbar.

Definition 3.61
Eine FO[σ]-Formel φ heißt allgemeingültig, wenn

jede σ-Interpretation die
Formel φ erfüllt.

Wir schreiben kurz |= φ um auszudrücken, dass φ allgemeingültig ist.

Offensichtlicherweise gilt für alle FO[σ]-Formeln φ:

φ ist allgemeingültig ⇐⇒ ¬φ ist unerfüllbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 278

Kapitel 3: Logik erster Stufe · Abschnitt 3.9: Erfüllbarkeit, Allgemeingültigkeit und die Folgerungsbeziehung

Erfüllbarkeit und Allgemeingültigkeit

Definition 3.60
Eine FO[σ]-Formel φ (bzw. eine Formelmenge Φ ⊆ FO[σ]) heißt erfüllbar, wenn
es eine σ-Interpretation gibt, die φ (bzw. Φ) erfüllt.

Eine Formel oder Formelmenge, die nicht erfüllbar ist, nennen wir unerfüllbar.

Definition 3.61
Eine FO[σ]-Formel φ heißt allgemeingültig, wenn jede σ-Interpretation die
Formel φ erfüllt.

Wir schreiben kurz |= φ um auszudrücken, dass φ allgemeingültig ist.

Offensichtlicherweise gilt für alle FO[σ]-Formeln φ:

φ ist allgemeingültig ⇐⇒ ¬φ ist unerfüllbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 278

Kapitel 3: Logik erster Stufe · Abschnitt 3.9: Erfüllbarkeit, Allgemeingültigkeit und die Folgerungsbeziehung

Erfüllbarkeit und Allgemeingültigkeit

Definition 3.60
Eine FO[σ]-Formel φ (bzw. eine Formelmenge Φ ⊆ FO[σ]) heißt erfüllbar, wenn
es eine σ-Interpretation gibt, die φ (bzw. Φ) erfüllt.

Eine Formel oder Formelmenge, die nicht erfüllbar ist, nennen wir unerfüllbar.

Definition 3.61
Eine FO[σ]-Formel φ heißt allgemeingültig, wenn jede σ-Interpretation die
Formel φ erfüllt.

Wir schreiben kurz |= φ um auszudrücken, dass φ allgemeingültig ist.

Offensichtlicherweise gilt für alle FO[σ]-Formeln φ:

φ ist allgemeingültig ⇐⇒ ¬φ ist unerfüllbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 278

Kapitel 3: Logik erster Stufe · Abschnitt 3.9: Erfüllbarkeit, Allgemeingültigkeit und die Folgerungsbeziehung

Erfüllbarkeit und Allgemeingültigkeit

Definition 3.60
Eine FO[σ]-Formel φ (bzw. eine Formelmenge Φ ⊆ FO[σ]) heißt erfüllbar, wenn
es eine σ-Interpretation gibt, die φ (bzw. Φ) erfüllt.

Eine Formel oder Formelmenge, die nicht erfüllbar ist, nennen wir unerfüllbar.

Definition 3.61
Eine FO[σ]-Formel φ heißt allgemeingültig, wenn jede σ-Interpretation die
Formel φ erfüllt.

Wir schreiben kurz |= φ um auszudrücken, dass φ allgemeingültig ist.

Offensichtlicherweise gilt für alle FO[σ]-Formeln φ:

φ ist allgemeingültig ⇐⇒ ¬φ ist unerfüllbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 278

Kapitel 3: Logik erster Stufe · Abschnitt 3.9: Erfüllbarkeit, Allgemeingültigkeit und die Folgerungsbeziehung

Verum (⊤) und Falsum (⊥)

Beispiele:

• Die FO[σ]-Formel

∀v0 v0=v0

ist allgemeingültig.

• Die FO[σ]-Formel

∃v0 ¬ v0=v0

ist unerfüllbar.

Notation 3.62
Wir schreiben ⊤ (in Worten: Verum), um die allgemeingültige FO-Formel
∀v0 v0=v0 zu bezeichnen.

Wir schreiben ⊥ (in Worten: Falsum), um die unerfüllbare FO-Formel
∃v0 ¬ v0=v0 zu bezeichnen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 279

Kapitel 3: Logik erster Stufe · Abschnitt 3.9: Erfüllbarkeit, Allgemeingültigkeit und die Folgerungsbeziehung

Verum (⊤) und Falsum (⊥)

Beispiele:

• Die FO[σ]-Formel ∀v0 v0=v0 ist allgemeingültig.

• Die FO[σ]-Formel

∃v0 ¬ v0=v0

ist unerfüllbar.

Notation 3.62
Wir schreiben ⊤ (in Worten: Verum), um die allgemeingültige FO-Formel
∀v0 v0=v0 zu bezeichnen.

Wir schreiben ⊥ (in Worten: Falsum), um die unerfüllbare FO-Formel
∃v0 ¬ v0=v0 zu bezeichnen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 279

Kapitel 3: Logik erster Stufe · Abschnitt 3.9: Erfüllbarkeit, Allgemeingültigkeit und die Folgerungsbeziehung

Verum (⊤) und Falsum (⊥)

Beispiele:

• Die FO[σ]-Formel ∀v0 v0=v0 ist allgemeingültig.

• Die FO[σ]-Formel

∃v0 ¬ v0=v0

ist unerfüllbar.

Notation 3.62
Wir schreiben ⊤ (in Worten: Verum), um die allgemeingültige FO-Formel
∀v0 v0=v0 zu bezeichnen.

Wir schreiben ⊥ (in Worten: Falsum), um die unerfüllbare FO-Formel
∃v0 ¬ v0=v0 zu bezeichnen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 279

Kapitel 3: Logik erster Stufe · Abschnitt 3.9: Erfüllbarkeit, Allgemeingültigkeit und die Folgerungsbeziehung

Verum (⊤) und Falsum (⊥)

Beispiele:

• Die FO[σ]-Formel ∀v0 v0=v0 ist allgemeingültig.

• Die FO[σ]-Formel ∃v0 ¬ v0=v0 ist unerfüllbar.

Notation 3.62
Wir schreiben ⊤ (in Worten: Verum), um die allgemeingültige FO-Formel
∀v0 v0=v0 zu bezeichnen.

Wir schreiben ⊥ (in Worten: Falsum), um die unerfüllbare FO-Formel
∃v0 ¬ v0=v0 zu bezeichnen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 279

Kapitel 3: Logik erster Stufe · Abschnitt 3.9: Erfüllbarkeit, Allgemeingültigkeit und die Folgerungsbeziehung

Verum (⊤) und Falsum (⊥)

Beispiele:

• Die FO[σ]-Formel ∀v0 v0=v0 ist allgemeingültig.

• Die FO[σ]-Formel ∃v0 ¬ v0=v0 ist unerfüllbar.

Notation 3.62
Wir schreiben ⊤ (in Worten: Verum), um die allgemeingültige FO-Formel
∀v0 v0=v0 zu bezeichnen.

Wir schreiben ⊥ (in Worten: Falsum), um die unerfüllbare FO-Formel
∃v0 ¬ v0=v0 zu bezeichnen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 279

Kapitel 3: Logik erster Stufe · Abschnitt 3.9: Erfüllbarkeit, Allgemeingültigkeit und die Folgerungsbeziehung

Verum (⊤) und Falsum (⊥)

Beispiele:

• Die FO[σ]-Formel ∀v0 v0=v0 ist allgemeingültig.

• Die FO[σ]-Formel ∃v0 ¬ v0=v0 ist unerfüllbar.

Notation 3.62
Wir schreiben ⊤ (in Worten: Verum), um die allgemeingültige FO-Formel
∀v0 v0=v0 zu bezeichnen.

Wir schreiben ⊥ (in Worten: Falsum), um die unerfüllbare FO-Formel
∃v0 ¬ v0=v0 zu bezeichnen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 279

Kapitel 3: Logik erster Stufe · Abschnitt 3.9: Erfüllbarkeit, Allgemeingültigkeit und die Folgerungsbeziehung

Die Folgerungsbeziehung

Definition 3.63
Eine FO[σ]-Formel ψ folgt aus einer Formelmenge Φ ⊆ FO[σ] (wir schreiben:
Φ |= ψ), wenn

für jede σ-Interpretation I gilt:
Falls I |= Φ, so gilt auch I |= ψ.

Notation
Für zwei FO[σ]-Formeln φ,ψ schreiben wir kurz φ |= ψ an Stelle von {φ} |= ψ
und sagen, dass die Formel ψ aus der Formel φ folgt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 280

Kapitel 3: Logik erster Stufe · Abschnitt 3.9: Erfüllbarkeit, Allgemeingültigkeit und die Folgerungsbeziehung

Die Folgerungsbeziehung

Definition 3.63
Eine FO[σ]-Formel ψ folgt aus einer Formelmenge Φ ⊆ FO[σ] (wir schreiben:
Φ |= ψ), wenn für jede σ-Interpretation I gilt:
Falls I |= Φ, so gilt auch I |= ψ.

Notation
Für zwei FO[σ]-Formeln φ,ψ schreiben wir kurz φ |= ψ an Stelle von {φ} |= ψ
und sagen, dass die Formel ψ aus der Formel φ folgt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 280

Kapitel 3: Logik erster Stufe · Abschnitt 3.9: Erfüllbarkeit, Allgemeingültigkeit und die Folgerungsbeziehung

Die Folgerungsbeziehung

Definition 3.63
Eine FO[σ]-Formel ψ folgt aus einer Formelmenge Φ ⊆ FO[σ] (wir schreiben:
Φ |= ψ), wenn für jede σ-Interpretation I gilt:
Falls I |= Φ, so gilt auch I |= ψ.

Notation
Für zwei FO[σ]-Formeln φ,ψ schreiben wir kurz φ |= ψ an Stelle von {φ} |= ψ
und sagen, dass die Formel ψ aus der Formel φ folgt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 280

Kapitel 3: Logik erster Stufe · Abschnitt 3.9: Erfüllbarkeit, Allgemeingültigkeit und die Folgerungsbeziehung

Zusammenhänge
Es bestehen ähnliche Zusammenhänge wie bei der Aussagenlogik:

Lemma 3.64 (Allgemeingültigkeit, Unerfüllbarkeit und Folgerung)
Für jede FO[σ]-Formel φ gilt:

(a) φ ist allgemeingültig ⇐⇒

φ ≡ ⊤ ⇐⇒ ⊤ |= φ.

(b) φ ist unerfüllbar ⇐⇒ φ ≡ ⊥ ⇐⇒ φ |= ⊥.

(c) |= φ ⇐⇒ ∅ |= φ.

D.h.: φ ist allgemeingültig ⇐⇒ φ folgt aus der leeren Menge.

Lemma 3.65 (Erfüllbarkeit und die Folgerungsbeziehung)

(a) Für alle Formelmengen Φ ⊆ FO[σ] und alle FO[σ]-Formeln ψ gilt:

Φ |= ψ ⇐⇒ Φ ∪ {¬ψ} ist unerfüllbar.

(b) Für alle FO[σ]-Formeln φ,ψ gilt: φ ≡ ψ ⇐⇒ |= (φ↔ ψ).

Beweis der beiden Lemmas: Analog zu den Beweisen der entsprechenden Resultate in
der Aussagenlogik. Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 281

Kapitel 3: Logik erster Stufe · Abschnitt 3.9: Erfüllbarkeit, Allgemeingültigkeit und die Folgerungsbeziehung

Zusammenhänge
Es bestehen ähnliche Zusammenhänge wie bei der Aussagenlogik:

Lemma 3.64 (Allgemeingültigkeit, Unerfüllbarkeit und Folgerung)
Für jede FO[σ]-Formel φ gilt:

(a) φ ist allgemeingültig ⇐⇒ φ ≡ ⊤

⇐⇒ ⊤ |= φ.

(b) φ ist unerfüllbar ⇐⇒ φ ≡ ⊥ ⇐⇒ φ |= ⊥.

(c) |= φ ⇐⇒ ∅ |= φ.

D.h.: φ ist allgemeingültig ⇐⇒ φ folgt aus der leeren Menge.

Lemma 3.65 (Erfüllbarkeit und die Folgerungsbeziehung)

(a) Für alle Formelmengen Φ ⊆ FO[σ] und alle FO[σ]-Formeln ψ gilt:

Φ |= ψ ⇐⇒ Φ ∪ {¬ψ} ist unerfüllbar.

(b) Für alle FO[σ]-Formeln φ,ψ gilt: φ ≡ ψ ⇐⇒ |= (φ↔ ψ).

Beweis der beiden Lemmas: Analog zu den Beweisen der entsprechenden Resultate in
der Aussagenlogik. Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 281

Kapitel 3: Logik erster Stufe · Abschnitt 3.9: Erfüllbarkeit, Allgemeingültigkeit und die Folgerungsbeziehung

Zusammenhänge
Es bestehen ähnliche Zusammenhänge wie bei der Aussagenlogik:

Lemma 3.64 (Allgemeingültigkeit, Unerfüllbarkeit und Folgerung)
Für jede FO[σ]-Formel φ gilt:

(a) φ ist allgemeingültig ⇐⇒ φ ≡ ⊤ ⇐⇒ ⊤ |= φ.

(b) φ ist unerfüllbar ⇐⇒ φ ≡ ⊥ ⇐⇒ φ |= ⊥.

(c) |= φ ⇐⇒ ∅ |= φ.

D.h.: φ ist allgemeingültig ⇐⇒ φ folgt aus der leeren Menge.

Lemma 3.65 (Erfüllbarkeit und die Folgerungsbeziehung)

(a) Für alle Formelmengen Φ ⊆ FO[σ] und alle FO[σ]-Formeln ψ gilt:

Φ |= ψ ⇐⇒ Φ ∪ {¬ψ} ist unerfüllbar.

(b) Für alle FO[σ]-Formeln φ,ψ gilt: φ ≡ ψ ⇐⇒ |= (φ↔ ψ).

Beweis der beiden Lemmas: Analog zu den Beweisen der entsprechenden Resultate in
der Aussagenlogik. Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 281

Kapitel 3: Logik erster Stufe · Abschnitt 3.9: Erfüllbarkeit, Allgemeingültigkeit und die Folgerungsbeziehung

Zusammenhänge
Es bestehen ähnliche Zusammenhänge wie bei der Aussagenlogik:

Lemma 3.64 (Allgemeingültigkeit, Unerfüllbarkeit und Folgerung)
Für jede FO[σ]-Formel φ gilt:

(a) φ ist allgemeingültig ⇐⇒ φ ≡ ⊤ ⇐⇒ ⊤ |= φ.

(b) φ ist unerfüllbar ⇐⇒

φ ≡ ⊥ ⇐⇒ φ |= ⊥.

(c) |= φ ⇐⇒ ∅ |= φ.

D.h.: φ ist allgemeingültig ⇐⇒ φ folgt aus der leeren Menge.

Lemma 3.65 (Erfüllbarkeit und die Folgerungsbeziehung)

(a) Für alle Formelmengen Φ ⊆ FO[σ] und alle FO[σ]-Formeln ψ gilt:

Φ |= ψ ⇐⇒ Φ ∪ {¬ψ} ist unerfüllbar.

(b) Für alle FO[σ]-Formeln φ,ψ gilt: φ ≡ ψ ⇐⇒ |= (φ↔ ψ).

Beweis der beiden Lemmas: Analog zu den Beweisen der entsprechenden Resultate in
der Aussagenlogik. Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 281

Kapitel 3: Logik erster Stufe · Abschnitt 3.9: Erfüllbarkeit, Allgemeingültigkeit und die Folgerungsbeziehung

Zusammenhänge
Es bestehen ähnliche Zusammenhänge wie bei der Aussagenlogik:

Lemma 3.64 (Allgemeingültigkeit, Unerfüllbarkeit und Folgerung)
Für jede FO[σ]-Formel φ gilt:

(a) φ ist allgemeingültig ⇐⇒ φ ≡ ⊤ ⇐⇒ ⊤ |= φ.

(b) φ ist unerfüllbar ⇐⇒ φ ≡ ⊥

⇐⇒ φ |= ⊥.

(c) |= φ ⇐⇒ ∅ |= φ.

D.h.: φ ist allgemeingültig ⇐⇒ φ folgt aus der leeren Menge.

Lemma 3.65 (Erfüllbarkeit und die Folgerungsbeziehung)

(a) Für alle Formelmengen Φ ⊆ FO[σ] und alle FO[σ]-Formeln ψ gilt:

Φ |= ψ ⇐⇒ Φ ∪ {¬ψ} ist unerfüllbar.

(b) Für alle FO[σ]-Formeln φ,ψ gilt: φ ≡ ψ ⇐⇒ |= (φ↔ ψ).

Beweis der beiden Lemmas: Analog zu den Beweisen der entsprechenden Resultate in
der Aussagenlogik. Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 281

Kapitel 3: Logik erster Stufe · Abschnitt 3.9: Erfüllbarkeit, Allgemeingültigkeit und die Folgerungsbeziehung

Zusammenhänge
Es bestehen ähnliche Zusammenhänge wie bei der Aussagenlogik:

Lemma 3.64 (Allgemeingültigkeit, Unerfüllbarkeit und Folgerung)
Für jede FO[σ]-Formel φ gilt:

(a) φ ist allgemeingültig ⇐⇒ φ ≡ ⊤ ⇐⇒ ⊤ |= φ.

(b) φ ist unerfüllbar ⇐⇒ φ ≡ ⊥ ⇐⇒ φ |= ⊥.

(c) |= φ ⇐⇒ ∅ |= φ.

D.h.: φ ist allgemeingültig ⇐⇒ φ folgt aus der leeren Menge.

Lemma 3.65 (Erfüllbarkeit und die Folgerungsbeziehung)

(a) Für alle Formelmengen Φ ⊆ FO[σ] und alle FO[σ]-Formeln ψ gilt:

Φ |= ψ ⇐⇒ Φ ∪ {¬ψ} ist unerfüllbar.

(b) Für alle FO[σ]-Formeln φ,ψ gilt: φ ≡ ψ ⇐⇒ |= (φ↔ ψ).

Beweis der beiden Lemmas: Analog zu den Beweisen der entsprechenden Resultate in
der Aussagenlogik. Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 281

Kapitel 3: Logik erster Stufe · Abschnitt 3.9: Erfüllbarkeit, Allgemeingültigkeit und die Folgerungsbeziehung

Zusammenhänge
Es bestehen ähnliche Zusammenhänge wie bei der Aussagenlogik:

Lemma 3.64 (Allgemeingültigkeit, Unerfüllbarkeit und Folgerung)
Für jede FO[σ]-Formel φ gilt:

(a) φ ist allgemeingültig ⇐⇒ φ ≡ ⊤ ⇐⇒ ⊤ |= φ.

(b) φ ist unerfüllbar ⇐⇒ φ ≡ ⊥ ⇐⇒ φ |= ⊥.

(c) |= φ ⇐⇒ ∅ |= φ.

D.h.: φ ist allgemeingültig ⇐⇒ φ folgt aus der leeren Menge.

Lemma 3.65 (Erfüllbarkeit und die Folgerungsbeziehung)

(a) Für alle Formelmengen Φ ⊆ FO[σ] und alle FO[σ]-Formeln ψ gilt:

Φ |= ψ ⇐⇒ Φ ∪ {¬ψ} ist unerfüllbar.

(b) Für alle FO[σ]-Formeln φ,ψ gilt: φ ≡ ψ ⇐⇒ |= (φ↔ ψ).

Beweis der beiden Lemmas: Analog zu den Beweisen der entsprechenden Resultate in
der Aussagenlogik. Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 281

Kapitel 3: Logik erster Stufe · Abschnitt 3.9: Erfüllbarkeit, Allgemeingültigkeit und die Folgerungsbeziehung

Zusammenhänge
Es bestehen ähnliche Zusammenhänge wie bei der Aussagenlogik:

Lemma 3.64 (Allgemeingültigkeit, Unerfüllbarkeit und Folgerung)
Für jede FO[σ]-Formel φ gilt:

(a) φ ist allgemeingültig ⇐⇒ φ ≡ ⊤ ⇐⇒ ⊤ |= φ.

(b) φ ist unerfüllbar ⇐⇒ φ ≡ ⊥ ⇐⇒ φ |= ⊥.

(c) |= φ ⇐⇒ ∅ |= φ.

D.h.: φ ist allgemeingültig ⇐⇒ φ folgt aus der leeren Menge.

Lemma 3.65 (Erfüllbarkeit und die Folgerungsbeziehung)

(a) Für alle Formelmengen Φ ⊆ FO[σ] und alle FO[σ]-Formeln ψ gilt:

Φ |= ψ ⇐⇒

Φ ∪ {¬ψ} ist unerfüllbar.

(b) Für alle FO[σ]-Formeln φ,ψ gilt: φ ≡ ψ ⇐⇒ |= (φ↔ ψ).

Beweis der beiden Lemmas: Analog zu den Beweisen der entsprechenden Resultate in
der Aussagenlogik. Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 281

Kapitel 3: Logik erster Stufe · Abschnitt 3.9: Erfüllbarkeit, Allgemeingültigkeit und die Folgerungsbeziehung

Zusammenhänge
Es bestehen ähnliche Zusammenhänge wie bei der Aussagenlogik:

Lemma 3.64 (Allgemeingültigkeit, Unerfüllbarkeit und Folgerung)
Für jede FO[σ]-Formel φ gilt:

(a) φ ist allgemeingültig ⇐⇒ φ ≡ ⊤ ⇐⇒ ⊤ |= φ.

(b) φ ist unerfüllbar ⇐⇒ φ ≡ ⊥ ⇐⇒ φ |= ⊥.

(c) |= φ ⇐⇒ ∅ |= φ.

D.h.: φ ist allgemeingültig ⇐⇒ φ folgt aus der leeren Menge.

Lemma 3.65 (Erfüllbarkeit und die Folgerungsbeziehung)

(a) Für alle Formelmengen Φ ⊆ FO[σ] und alle FO[σ]-Formeln ψ gilt:

Φ |= ψ ⇐⇒ Φ ∪ {¬ψ} ist unerfüllbar.

(b) Für alle FO[σ]-Formeln φ,ψ gilt: φ ≡ ψ ⇐⇒ |= (φ↔ ψ).

Beweis der beiden Lemmas: Analog zu den Beweisen der entsprechenden Resultate in
der Aussagenlogik. Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 281

Kapitel 3: Logik erster Stufe · Abschnitt 3.9: Erfüllbarkeit, Allgemeingültigkeit und die Folgerungsbeziehung

Zusammenhänge
Es bestehen ähnliche Zusammenhänge wie bei der Aussagenlogik:

Lemma 3.64 (Allgemeingültigkeit, Unerfüllbarkeit und Folgerung)
Für jede FO[σ]-Formel φ gilt:

(a) φ ist allgemeingültig ⇐⇒ φ ≡ ⊤ ⇐⇒ ⊤ |= φ.

(b) φ ist unerfüllbar ⇐⇒ φ ≡ ⊥ ⇐⇒ φ |= ⊥.

(c) |= φ ⇐⇒ ∅ |= φ.

D.h.: φ ist allgemeingültig ⇐⇒ φ folgt aus der leeren Menge.

Lemma 3.65 (Erfüllbarkeit und die Folgerungsbeziehung)

(a) Für alle Formelmengen Φ ⊆ FO[σ] und alle FO[σ]-Formeln ψ gilt:

Φ |= ψ ⇐⇒ Φ ∪ {¬ψ} ist unerfüllbar.

(b) Für alle FO[σ]-Formeln φ,ψ gilt: φ ≡ ψ ⇐⇒

|= (φ↔ ψ).

Beweis der beiden Lemmas: Analog zu den Beweisen der entsprechenden Resultate in
der Aussagenlogik. Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 281

Kapitel 3: Logik erster Stufe · Abschnitt 3.9: Erfüllbarkeit, Allgemeingültigkeit und die Folgerungsbeziehung

Zusammenhänge
Es bestehen ähnliche Zusammenhänge wie bei der Aussagenlogik:

Lemma 3.64 (Allgemeingültigkeit, Unerfüllbarkeit und Folgerung)
Für jede FO[σ]-Formel φ gilt:

(a) φ ist allgemeingültig ⇐⇒ φ ≡ ⊤ ⇐⇒ ⊤ |= φ.

(b) φ ist unerfüllbar ⇐⇒ φ ≡ ⊥ ⇐⇒ φ |= ⊥.

(c) |= φ ⇐⇒ ∅ |= φ.

D.h.: φ ist allgemeingültig ⇐⇒ φ folgt aus der leeren Menge.

Lemma 3.65 (Erfüllbarkeit und die Folgerungsbeziehung)

(a) Für alle Formelmengen Φ ⊆ FO[σ] und alle FO[σ]-Formeln ψ gilt:

Φ |= ψ ⇐⇒ Φ ∪ {¬ψ} ist unerfüllbar.

(b) Für alle FO[σ]-Formeln φ,ψ gilt: φ ≡ ψ ⇐⇒ |= (φ↔ ψ).

Beweis der beiden Lemmas: Analog zu den Beweisen der entsprechenden Resultate in
der Aussagenlogik. Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 281

Kapitel 3: Logik erster Stufe · Abschnitt 3.9: Erfüllbarkeit, Allgemeingültigkeit und die Folgerungsbeziehung

Zusammenhänge
Es bestehen ähnliche Zusammenhänge wie bei der Aussagenlogik:

Lemma 3.64 (Allgemeingültigkeit, Unerfüllbarkeit und Folgerung)
Für jede FO[σ]-Formel φ gilt:

(a) φ ist allgemeingültig ⇐⇒ φ ≡ ⊤ ⇐⇒ ⊤ |= φ.

(b) φ ist unerfüllbar ⇐⇒ φ ≡ ⊥ ⇐⇒ φ |= ⊥.

(c) |= φ ⇐⇒ ∅ |= φ.

D.h.: φ ist allgemeingültig ⇐⇒ φ folgt aus der leeren Menge.

Lemma 3.65 (Erfüllbarkeit und die Folgerungsbeziehung)

(a) Für alle Formelmengen Φ ⊆ FO[σ] und alle FO[σ]-Formeln ψ gilt:

Φ |= ψ ⇐⇒ Φ ∪ {¬ψ} ist unerfüllbar.

(b) Für alle FO[σ]-Formeln φ,ψ gilt: φ ≡ ψ ⇐⇒ |= (φ↔ ψ).

Beweis der beiden Lemmas: Analog zu den Beweisen der entsprechenden Resultate in
der Aussagenlogik. Details: Übung.
Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 281

Abschnitt 3.10:

Normalformen

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Negationsnormalform

Die Negationsnormalform für Formeln der Logik erster Stufe ist ähnlich definiert
wie die Negationsnormalform der Aussagenlogik.

Definition 3.66
Sei σ eine beliebige Signatur. Eine FO[σ]-Formel φ ist in Negationsnormalform
(kurz: NNF), wenn Negationszeichen in φ nur unmittelbar vor atomaren
Subformeln auftreten und φ den Junktor

”
→“ nicht enthält.

Satz 3.67
Jede FO[σ]-Formel φ ist äquivalent zu einer Formel in NNF.

Beweis.
Gemäß Satz 3.46 können wir o.B.d.A. annehmen, dass φ den Junktor

”
→“ nicht

enthält.
Ähnlich wie für die Aussagenlogik definieren wir per Induktion über den Aufbau
zu jeder FO[σ]-Formel φ zwei FO[σ]-Formeln φ′ und φ′′ in NNF, so dass gilt:
φ ≡ φ′ und ¬φ ≡ φ′′. Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 282

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Negationsnormalform

Die Negationsnormalform für Formeln der Logik erster Stufe ist ähnlich definiert
wie die Negationsnormalform der Aussagenlogik.

Definition 3.66
Sei σ eine beliebige Signatur. Eine FO[σ]-Formel φ ist in Negationsnormalform
(kurz: NNF), wenn

Negationszeichen in φ nur unmittelbar vor atomaren
Subformeln auftreten und φ den Junktor

”
→“ nicht enthält.

Satz 3.67
Jede FO[σ]-Formel φ ist äquivalent zu einer Formel in NNF.

Beweis.
Gemäß Satz 3.46 können wir o.B.d.A. annehmen, dass φ den Junktor

”
→“ nicht

enthält.
Ähnlich wie für die Aussagenlogik definieren wir per Induktion über den Aufbau
zu jeder FO[σ]-Formel φ zwei FO[σ]-Formeln φ′ und φ′′ in NNF, so dass gilt:
φ ≡ φ′ und ¬φ ≡ φ′′. Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 282

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Negationsnormalform

Die Negationsnormalform für Formeln der Logik erster Stufe ist ähnlich definiert
wie die Negationsnormalform der Aussagenlogik.

Definition 3.66
Sei σ eine beliebige Signatur. Eine FO[σ]-Formel φ ist in Negationsnormalform
(kurz: NNF), wenn Negationszeichen in φ nur unmittelbar vor atomaren
Subformeln auftreten

und φ den Junktor
”
→“ nicht enthält.

Satz 3.67
Jede FO[σ]-Formel φ ist äquivalent zu einer Formel in NNF.

Beweis.
Gemäß Satz 3.46 können wir o.B.d.A. annehmen, dass φ den Junktor

”
→“ nicht

enthält.
Ähnlich wie für die Aussagenlogik definieren wir per Induktion über den Aufbau
zu jeder FO[σ]-Formel φ zwei FO[σ]-Formeln φ′ und φ′′ in NNF, so dass gilt:
φ ≡ φ′ und ¬φ ≡ φ′′. Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 282

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Negationsnormalform

Die Negationsnormalform für Formeln der Logik erster Stufe ist ähnlich definiert
wie die Negationsnormalform der Aussagenlogik.

Definition 3.66
Sei σ eine beliebige Signatur. Eine FO[σ]-Formel φ ist in Negationsnormalform
(kurz: NNF), wenn Negationszeichen in φ nur unmittelbar vor atomaren
Subformeln auftreten und φ den Junktor

”
→“ nicht enthält.

Satz 3.67
Jede FO[σ]-Formel φ ist äquivalent zu einer Formel in NNF.

Beweis.
Gemäß Satz 3.46 können wir o.B.d.A. annehmen, dass φ den Junktor

”
→“ nicht

enthält.
Ähnlich wie für die Aussagenlogik definieren wir per Induktion über den Aufbau
zu jeder FO[σ]-Formel φ zwei FO[σ]-Formeln φ′ und φ′′ in NNF, so dass gilt:
φ ≡ φ′ und ¬φ ≡ φ′′. Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 282

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Negationsnormalform

Die Negationsnormalform für Formeln der Logik erster Stufe ist ähnlich definiert
wie die Negationsnormalform der Aussagenlogik.

Definition 3.66
Sei σ eine beliebige Signatur. Eine FO[σ]-Formel φ ist in Negationsnormalform
(kurz: NNF), wenn Negationszeichen in φ nur unmittelbar vor atomaren
Subformeln auftreten und φ den Junktor

”
→“ nicht enthält.

Satz 3.67
Jede FO[σ]-Formel φ ist äquivalent zu einer Formel in NNF.

Beweis.
Gemäß Satz 3.46 können wir o.B.d.A. annehmen, dass φ den Junktor

”
→“ nicht

enthält.
Ähnlich wie für die Aussagenlogik definieren wir per Induktion über den Aufbau
zu jeder FO[σ]-Formel φ zwei FO[σ]-Formeln φ′ und φ′′ in NNF, so dass gilt:
φ ≡ φ′ und ¬φ ≡ φ′′. Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 282

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Negationsnormalform

Die Negationsnormalform für Formeln der Logik erster Stufe ist ähnlich definiert
wie die Negationsnormalform der Aussagenlogik.

Definition 3.66
Sei σ eine beliebige Signatur. Eine FO[σ]-Formel φ ist in Negationsnormalform
(kurz: NNF), wenn Negationszeichen in φ nur unmittelbar vor atomaren
Subformeln auftreten und φ den Junktor

”
→“ nicht enthält.

Satz 3.67
Jede FO[σ]-Formel φ ist äquivalent zu einer Formel in NNF.

Beweis.
Gemäß Satz 3.46 können wir o.B.d.A. annehmen, dass φ den Junktor

”
→“ nicht

enthält.

Ähnlich wie für die Aussagenlogik definieren wir per Induktion über den Aufbau
zu jeder FO[σ]-Formel φ zwei FO[σ]-Formeln φ′ und φ′′ in NNF, so dass gilt:
φ ≡ φ′ und ¬φ ≡ φ′′. Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 282

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Negationsnormalform

Die Negationsnormalform für Formeln der Logik erster Stufe ist ähnlich definiert
wie die Negationsnormalform der Aussagenlogik.

Definition 3.66
Sei σ eine beliebige Signatur. Eine FO[σ]-Formel φ ist in Negationsnormalform
(kurz: NNF), wenn Negationszeichen in φ nur unmittelbar vor atomaren
Subformeln auftreten und φ den Junktor

”
→“ nicht enthält.

Satz 3.67
Jede FO[σ]-Formel φ ist äquivalent zu einer Formel in NNF.

Beweis.
Gemäß Satz 3.46 können wir o.B.d.A. annehmen, dass φ den Junktor

”
→“ nicht

enthält.
Ähnlich wie für die Aussagenlogik definieren wir per Induktion über den Aufbau
zu jeder FO[σ]-Formel φ

zwei FO[σ]-Formeln φ′ und φ′′ in NNF, so dass gilt:
φ ≡ φ′ und ¬φ ≡ φ′′. Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 282

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Negationsnormalform

Die Negationsnormalform für Formeln der Logik erster Stufe ist ähnlich definiert
wie die Negationsnormalform der Aussagenlogik.

Definition 3.66
Sei σ eine beliebige Signatur. Eine FO[σ]-Formel φ ist in Negationsnormalform
(kurz: NNF), wenn Negationszeichen in φ nur unmittelbar vor atomaren
Subformeln auftreten und φ den Junktor

”
→“ nicht enthält.

Satz 3.67
Jede FO[σ]-Formel φ ist äquivalent zu einer Formel in NNF.

Beweis.
Gemäß Satz 3.46 können wir o.B.d.A. annehmen, dass φ den Junktor

”
→“ nicht

enthält.
Ähnlich wie für die Aussagenlogik definieren wir per Induktion über den Aufbau
zu jeder FO[σ]-Formel φ zwei FO[σ]-Formeln φ′ und φ′′ in NNF, so dass gilt:
φ ≡ φ′ und ¬φ ≡ φ′′.

Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 282

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Negationsnormalform

Die Negationsnormalform für Formeln der Logik erster Stufe ist ähnlich definiert
wie die Negationsnormalform der Aussagenlogik.

Definition 3.66
Sei σ eine beliebige Signatur. Eine FO[σ]-Formel φ ist in Negationsnormalform
(kurz: NNF), wenn Negationszeichen in φ nur unmittelbar vor atomaren
Subformeln auftreten und φ den Junktor

”
→“ nicht enthält.

Satz 3.67
Jede FO[σ]-Formel φ ist äquivalent zu einer Formel in NNF.

Beweis.
Gemäß Satz 3.46 können wir o.B.d.A. annehmen, dass φ den Junktor

”
→“ nicht

enthält.
Ähnlich wie für die Aussagenlogik definieren wir per Induktion über den Aufbau
zu jeder FO[σ]-Formel φ zwei FO[σ]-Formeln φ′ und φ′′ in NNF, so dass gilt:
φ ≡ φ′ und ¬φ ≡ φ′′. Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 282

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Pränexe Normalform

Definition 3.68
Sei σ eine beliebige Signatur.

(a) Eine FO[σ]-Formel heißt quantorenfrei, falls in ihr keins der Symbole ∃,∀
vorkommt.

Die Menge aller quantorenfreien FO[σ]-Formeln bezeichnen wir mit QFσ.

(b) Eine FO[σ]-Formel φ ist in pränexer Normalform (bzw. Pränex-Normalform,
kurz: PNF), wenn sie von der Form

Q1x1 · · ·Qnxn χ

ist, wobei n ⩾ 0, Q1, . . . ,Qn ∈ {∃,∀}, x1, . . . , xn ∈ VAR und χ ∈ QFσ.

Q1x1 · · ·Qnxn wird Quantoren-Präfix von φ genannt;

χ heißt Kern (bzw. Matrix) von φ.

Satz 3.69
Jede FO[σ]-Formel φ ist äquivalent zu einer FO[σ]-Formel φ′ in pränexer
Normalform mit frei(φ′) = frei(φ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 283

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Pränexe Normalform

Definition 3.68
Sei σ eine beliebige Signatur.

(a) Eine FO[σ]-Formel heißt quantorenfrei, falls in ihr keins der Symbole ∃,∀
vorkommt.
Die Menge aller quantorenfreien FO[σ]-Formeln bezeichnen wir mit QFσ.

(b) Eine FO[σ]-Formel φ ist in pränexer Normalform (bzw. Pränex-Normalform,
kurz: PNF), wenn sie von der Form

Q1x1 · · ·Qnxn χ

ist, wobei n ⩾ 0, Q1, . . . ,Qn ∈ {∃,∀}, x1, . . . , xn ∈ VAR und χ ∈ QFσ.

Q1x1 · · ·Qnxn wird Quantoren-Präfix von φ genannt;

χ heißt Kern (bzw. Matrix) von φ.

Satz 3.69
Jede FO[σ]-Formel φ ist äquivalent zu einer FO[σ]-Formel φ′ in pränexer
Normalform mit frei(φ′) = frei(φ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 283

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Pränexe Normalform

Definition 3.68
Sei σ eine beliebige Signatur.

(a) Eine FO[σ]-Formel heißt quantorenfrei, falls in ihr keins der Symbole ∃,∀
vorkommt.
Die Menge aller quantorenfreien FO[σ]-Formeln bezeichnen wir mit QFσ.

(b) Eine FO[σ]-Formel φ ist in pränexer Normalform (bzw. Pränex-Normalform,
kurz: PNF), wenn sie von der Form

Q1x1 · · ·Qnxn χ

ist,

wobei n ⩾ 0, Q1, . . . ,Qn ∈ {∃,∀}, x1, . . . , xn ∈ VAR und χ ∈ QFσ.

Q1x1 · · ·Qnxn wird Quantoren-Präfix von φ genannt;

χ heißt Kern (bzw. Matrix) von φ.

Satz 3.69
Jede FO[σ]-Formel φ ist äquivalent zu einer FO[σ]-Formel φ′ in pränexer
Normalform mit frei(φ′) = frei(φ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 283

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Pränexe Normalform

Definition 3.68
Sei σ eine beliebige Signatur.

(a) Eine FO[σ]-Formel heißt quantorenfrei, falls in ihr keins der Symbole ∃,∀
vorkommt.
Die Menge aller quantorenfreien FO[σ]-Formeln bezeichnen wir mit QFσ.

(b) Eine FO[σ]-Formel φ ist in pränexer Normalform (bzw. Pränex-Normalform,
kurz: PNF), wenn sie von der Form

Q1x1 · · ·Qnxn χ

ist, wobei n ⩾ 0,

Q1, . . . ,Qn ∈ {∃,∀}, x1, . . . , xn ∈ VAR und χ ∈ QFσ.

Q1x1 · · ·Qnxn wird Quantoren-Präfix von φ genannt;

χ heißt Kern (bzw. Matrix) von φ.

Satz 3.69
Jede FO[σ]-Formel φ ist äquivalent zu einer FO[σ]-Formel φ′ in pränexer
Normalform mit frei(φ′) = frei(φ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 283

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Pränexe Normalform

Definition 3.68
Sei σ eine beliebige Signatur.

(a) Eine FO[σ]-Formel heißt quantorenfrei, falls in ihr keins der Symbole ∃,∀
vorkommt.
Die Menge aller quantorenfreien FO[σ]-Formeln bezeichnen wir mit QFσ.

(b) Eine FO[σ]-Formel φ ist in pränexer Normalform (bzw. Pränex-Normalform,
kurz: PNF), wenn sie von der Form

Q1x1 · · ·Qnxn χ

ist, wobei n ⩾ 0, Q1, . . . ,Qn ∈ {∃,∀},

x1, . . . , xn ∈ VAR und χ ∈ QFσ.

Q1x1 · · ·Qnxn wird Quantoren-Präfix von φ genannt;

χ heißt Kern (bzw. Matrix) von φ.

Satz 3.69
Jede FO[σ]-Formel φ ist äquivalent zu einer FO[σ]-Formel φ′ in pränexer
Normalform mit frei(φ′) = frei(φ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 283

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Pränexe Normalform

Definition 3.68
Sei σ eine beliebige Signatur.

(a) Eine FO[σ]-Formel heißt quantorenfrei, falls in ihr keins der Symbole ∃,∀
vorkommt.
Die Menge aller quantorenfreien FO[σ]-Formeln bezeichnen wir mit QFσ.

(b) Eine FO[σ]-Formel φ ist in pränexer Normalform (bzw. Pränex-Normalform,
kurz: PNF), wenn sie von der Form

Q1x1 · · ·Qnxn χ

ist, wobei n ⩾ 0, Q1, . . . ,Qn ∈ {∃,∀}, x1, . . . , xn ∈ VAR

und χ ∈ QFσ.

Q1x1 · · ·Qnxn wird Quantoren-Präfix von φ genannt;

χ heißt Kern (bzw. Matrix) von φ.

Satz 3.69
Jede FO[σ]-Formel φ ist äquivalent zu einer FO[σ]-Formel φ′ in pränexer
Normalform mit frei(φ′) = frei(φ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 283

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Pränexe Normalform

Definition 3.68
Sei σ eine beliebige Signatur.

(a) Eine FO[σ]-Formel heißt quantorenfrei, falls in ihr keins der Symbole ∃,∀
vorkommt.
Die Menge aller quantorenfreien FO[σ]-Formeln bezeichnen wir mit QFσ.

(b) Eine FO[σ]-Formel φ ist in pränexer Normalform (bzw. Pränex-Normalform,
kurz: PNF), wenn sie von der Form

Q1x1 · · ·Qnxn χ

ist, wobei n ⩾ 0, Q1, . . . ,Qn ∈ {∃,∀}, x1, . . . , xn ∈ VAR und χ ∈ QFσ.

Q1x1 · · ·Qnxn wird Quantoren-Präfix von φ genannt;

χ heißt Kern (bzw. Matrix) von φ.

Satz 3.69
Jede FO[σ]-Formel φ ist äquivalent zu einer FO[σ]-Formel φ′ in pränexer
Normalform mit frei(φ′) = frei(φ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 283

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Pränexe Normalform

Definition 3.68
Sei σ eine beliebige Signatur.

(a) Eine FO[σ]-Formel heißt quantorenfrei, falls in ihr keins der Symbole ∃,∀
vorkommt.
Die Menge aller quantorenfreien FO[σ]-Formeln bezeichnen wir mit QFσ.

(b) Eine FO[σ]-Formel φ ist in pränexer Normalform (bzw. Pränex-Normalform,
kurz: PNF), wenn sie von der Form

Q1x1 · · ·Qnxn χ

ist, wobei n ⩾ 0, Q1, . . . ,Qn ∈ {∃,∀}, x1, . . . , xn ∈ VAR und χ ∈ QFσ.

Q1x1 · · ·Qnxn wird Quantoren-Präfix von φ genannt;

χ heißt Kern (bzw. Matrix) von φ.

Satz 3.69
Jede FO[σ]-Formel φ ist äquivalent zu einer FO[σ]-Formel φ′ in pränexer
Normalform mit frei(φ′) = frei(φ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 283

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Pränexe Normalform

Definition 3.68
Sei σ eine beliebige Signatur.

(a) Eine FO[σ]-Formel heißt quantorenfrei, falls in ihr keins der Symbole ∃,∀
vorkommt.
Die Menge aller quantorenfreien FO[σ]-Formeln bezeichnen wir mit QFσ.

(b) Eine FO[σ]-Formel φ ist in pränexer Normalform (bzw. Pränex-Normalform,
kurz: PNF), wenn sie von der Form

Q1x1 · · ·Qnxn χ

ist, wobei n ⩾ 0, Q1, . . . ,Qn ∈ {∃,∀}, x1, . . . , xn ∈ VAR und χ ∈ QFσ.

Q1x1 · · ·Qnxn wird Quantoren-Präfix von φ genannt;

χ heißt Kern (bzw. Matrix) von φ.

Satz 3.69
Jede FO[σ]-Formel φ ist äquivalent zu einer FO[σ]-Formel φ′ in pränexer
Normalform mit frei(φ′) = frei(φ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 283

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Pränexe Normalform

Definition 3.68
Sei σ eine beliebige Signatur.

(a) Eine FO[σ]-Formel heißt quantorenfrei, falls in ihr keins der Symbole ∃,∀
vorkommt.
Die Menge aller quantorenfreien FO[σ]-Formeln bezeichnen wir mit QFσ.

(b) Eine FO[σ]-Formel φ ist in pränexer Normalform (bzw. Pränex-Normalform,
kurz: PNF), wenn sie von der Form

Q1x1 · · ·Qnxn χ

ist, wobei n ⩾ 0, Q1, . . . ,Qn ∈ {∃,∀}, x1, . . . , xn ∈ VAR und χ ∈ QFσ.

Q1x1 · · ·Qnxn wird Quantoren-Präfix von φ genannt;

χ heißt Kern (bzw. Matrix) von φ.

Satz 3.69
Jede FO[σ]-Formel φ ist äquivalent zu einer FO[σ]-Formel φ′ in pränexer
Normalform

mit frei(φ′) = frei(φ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 283

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Pränexe Normalform

Definition 3.68
Sei σ eine beliebige Signatur.

(a) Eine FO[σ]-Formel heißt quantorenfrei, falls in ihr keins der Symbole ∃,∀
vorkommt.
Die Menge aller quantorenfreien FO[σ]-Formeln bezeichnen wir mit QFσ.

(b) Eine FO[σ]-Formel φ ist in pränexer Normalform (bzw. Pränex-Normalform,
kurz: PNF), wenn sie von der Form

Q1x1 · · ·Qnxn χ

ist, wobei n ⩾ 0, Q1, . . . ,Qn ∈ {∃,∀}, x1, . . . , xn ∈ VAR und χ ∈ QFσ.

Q1x1 · · ·Qnxn wird Quantoren-Präfix von φ genannt;

χ heißt Kern (bzw. Matrix) von φ.

Satz 3.69
Jede FO[σ]-Formel φ ist äquivalent zu einer FO[σ]-Formel φ′ in pränexer
Normalform mit frei(φ′) = frei(φ).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 283

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Bevor wir Satz 3.69 beweisen, betrachten wir zunächst ein Beispiel.

Beispiel 3.70
Sei

φ(y) := ∀x ¬
(
∃y E (x , y) → ∃x E (x , y)

)
.

Umformung in eine äquvivalente Formel in Pränex-Normalform:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 284

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Beweis von Satz 3.69:

Wir zeigen zunächst drei Lemmas und schließen danach den Beweis ab.

Lemma 3.71
Sei ψ := Q1x1 · · ·Qnxn χ, wobei n ⩾ 0, Q1, . . . ,Qn ∈ {∃,∀} und
χ ∈ FO[σ]. Für jedes Q ∈ {∃,∀} sei

Q̃ :=

{
∀ falls Q = ∃ ,
∃ falls Q = ∀ .

Dann gilt: ¬ψ ≡ Q̃1x1 · · · Q̃nxn ¬χ.

Beweis.
Einfaches Nachrechnen per Induktion nach n unter Verwendung der Tatsache,
dass ¬∃x φ ≡ ∀x ¬φ und ¬∀x φ ≡ ∃x ¬φ (Lemma 3.44).
Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 285

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Beweis von Satz 3.69:

Wir zeigen zunächst drei Lemmas und schließen danach den Beweis ab.

Lemma 3.71
Sei ψ := Q1x1 · · ·Qnxn χ, wobei n ⩾ 0, Q1, . . . ,Qn ∈ {∃,∀} und
χ ∈ FO[σ].

Für jedes Q ∈ {∃,∀} sei

Q̃ :=

{
∀ falls Q = ∃ ,
∃ falls Q = ∀ .

Dann gilt: ¬ψ ≡ Q̃1x1 · · · Q̃nxn ¬χ.

Beweis.
Einfaches Nachrechnen per Induktion nach n unter Verwendung der Tatsache,
dass ¬∃x φ ≡ ∀x ¬φ und ¬∀x φ ≡ ∃x ¬φ (Lemma 3.44).
Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 285

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Beweis von Satz 3.69:

Wir zeigen zunächst drei Lemmas und schließen danach den Beweis ab.

Lemma 3.71
Sei ψ := Q1x1 · · ·Qnxn χ, wobei n ⩾ 0, Q1, . . . ,Qn ∈ {∃,∀} und
χ ∈ FO[σ]. Für jedes Q ∈ {∃,∀} sei

Q̃ :=

{
∀ falls Q = ∃ ,
∃ falls Q = ∀ .

Dann gilt: ¬ψ ≡ Q̃1x1 · · · Q̃nxn ¬χ.

Beweis.
Einfaches Nachrechnen per Induktion nach n unter Verwendung der Tatsache,
dass ¬∃x φ ≡ ∀x ¬φ und ¬∀x φ ≡ ∃x ¬φ (Lemma 3.44).
Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 285

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Beweis von Satz 3.69:

Wir zeigen zunächst drei Lemmas und schließen danach den Beweis ab.

Lemma 3.71
Sei ψ := Q1x1 · · ·Qnxn χ, wobei n ⩾ 0, Q1, . . . ,Qn ∈ {∃,∀} und
χ ∈ FO[σ]. Für jedes Q ∈ {∃,∀} sei

Q̃ :=

{
∀ falls Q = ∃ ,
∃ falls Q = ∀ .

Dann gilt: ¬ψ ≡

Q̃1x1 · · · Q̃nxn ¬χ.

Beweis.
Einfaches Nachrechnen per Induktion nach n unter Verwendung der Tatsache,
dass ¬∃x φ ≡ ∀x ¬φ und ¬∀x φ ≡ ∃x ¬φ (Lemma 3.44).
Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 285

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Beweis von Satz 3.69:

Wir zeigen zunächst drei Lemmas und schließen danach den Beweis ab.

Lemma 3.71
Sei ψ := Q1x1 · · ·Qnxn χ, wobei n ⩾ 0, Q1, . . . ,Qn ∈ {∃,∀} und
χ ∈ FO[σ]. Für jedes Q ∈ {∃,∀} sei

Q̃ :=

{
∀ falls Q = ∃ ,
∃ falls Q = ∀ .

Dann gilt: ¬ψ ≡ Q̃1x1 · · · Q̃nxn ¬χ.

Beweis.
Einfaches Nachrechnen per Induktion nach n unter Verwendung der Tatsache,
dass ¬∃x φ ≡ ∀x ¬φ und ¬∀x φ ≡ ∃x ¬φ (Lemma 3.44).
Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 285

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Beweis von Satz 3.69:

Wir zeigen zunächst drei Lemmas und schließen danach den Beweis ab.

Lemma 3.71
Sei ψ := Q1x1 · · ·Qnxn χ, wobei n ⩾ 0, Q1, . . . ,Qn ∈ {∃,∀} und
χ ∈ FO[σ]. Für jedes Q ∈ {∃,∀} sei

Q̃ :=

{
∀ falls Q = ∃ ,
∃ falls Q = ∀ .

Dann gilt: ¬ψ ≡ Q̃1x1 · · · Q̃nxn ¬χ.

Beweis.
Einfaches Nachrechnen per Induktion nach n unter Verwendung der Tatsache,
dass ¬∃x φ ≡ ∀x ¬φ und ¬∀x φ ≡ ∃x ¬φ (Lemma 3.44).
Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 285

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Lemma 3.72
Für alle FO[σ]-Formeln φ und ψ und für alle Variablen x ∈ VAR \ frei(φ) gilt:(

φ ∧ ∃x ψ
)

≡

∃x
(
φ ∧ ψ

)
,

(
φ ∧ ∀x ψ

)
≡ ∀x

(
φ ∧ ψ

)
,(

φ ∨ ∃x ψ
)

≡ ∃x
(
φ ∨ ψ

)
,

(
φ ∨ ∀x ψ

)
≡ ∀x

(
φ ∨ ψ

)
.

Beweis. Die Beweise aller vier Äquivalenzen sind ähnlich. Wir beweisen hier nur
die erste: (

φ ∧ ∃x ψ
)

≡ ∃x
(
φ ∧ ψ

)
. (1)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 286

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Lemma 3.72
Für alle FO[σ]-Formeln φ und ψ und für alle Variablen x ∈ VAR \ frei(φ) gilt:(

φ ∧ ∃x ψ
)

≡ ∃x
(
φ ∧ ψ

)

,
(
φ ∧ ∀x ψ

)
≡ ∀x

(
φ ∧ ψ

)
,(

φ ∨ ∃x ψ
)

≡ ∃x
(
φ ∨ ψ

)
,

(
φ ∨ ∀x ψ

)
≡ ∀x

(
φ ∨ ψ

)
.

Beweis. Die Beweise aller vier Äquivalenzen sind ähnlich. Wir beweisen hier nur
die erste: (

φ ∧ ∃x ψ
)

≡ ∃x
(
φ ∧ ψ

)
. (1)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 286

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Lemma 3.72
Für alle FO[σ]-Formeln φ und ψ und für alle Variablen x ∈ VAR \ frei(φ) gilt:(

φ ∧ ∃x ψ
)

≡ ∃x
(
φ ∧ ψ

)
,

(
φ ∧ ∀x ψ

)
≡ ∀x

(
φ ∧ ψ

)

,(
φ ∨ ∃x ψ

)
≡ ∃x

(
φ ∨ ψ

)
,

(
φ ∨ ∀x ψ

)
≡ ∀x

(
φ ∨ ψ

)
.

Beweis. Die Beweise aller vier Äquivalenzen sind ähnlich. Wir beweisen hier nur
die erste: (

φ ∧ ∃x ψ
)

≡ ∃x
(
φ ∧ ψ

)
. (1)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 286

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Lemma 3.72
Für alle FO[σ]-Formeln φ und ψ und für alle Variablen x ∈ VAR \ frei(φ) gilt:(

φ ∧ ∃x ψ
)

≡ ∃x
(
φ ∧ ψ

)
,

(
φ ∧ ∀x ψ

)
≡ ∀x

(
φ ∧ ψ

)
,(

φ ∨ ∃x ψ
)

≡ ∃x
(
φ ∨ ψ

)

,
(
φ ∨ ∀x ψ

)
≡ ∀x

(
φ ∨ ψ

)
.

Beweis. Die Beweise aller vier Äquivalenzen sind ähnlich. Wir beweisen hier nur
die erste: (

φ ∧ ∃x ψ
)

≡ ∃x
(
φ ∧ ψ

)
. (1)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 286

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Lemma 3.72
Für alle FO[σ]-Formeln φ und ψ und für alle Variablen x ∈ VAR \ frei(φ) gilt:(

φ ∧ ∃x ψ
)

≡ ∃x
(
φ ∧ ψ

)
,

(
φ ∧ ∀x ψ

)
≡ ∀x

(
φ ∧ ψ

)
,(

φ ∨ ∃x ψ
)

≡ ∃x
(
φ ∨ ψ

)
,

(
φ ∨ ∀x ψ

)
≡ ∀x

(
φ ∨ ψ

)
.

Beweis. Die Beweise aller vier Äquivalenzen sind ähnlich. Wir beweisen hier nur
die erste: (

φ ∧ ∃x ψ
)

≡ ∃x
(
φ ∧ ψ

)
. (1)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 286

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Lemma 3.72
Für alle FO[σ]-Formeln φ und ψ und für alle Variablen x ∈ VAR \ frei(φ) gilt:(

φ ∧ ∃x ψ
)

≡ ∃x
(
φ ∧ ψ

)
,

(
φ ∧ ∀x ψ

)
≡ ∀x

(
φ ∧ ψ

)
,(

φ ∨ ∃x ψ
)

≡ ∃x
(
φ ∨ ψ

)
,

(
φ ∨ ∀x ψ

)
≡ ∀x

(
φ ∨ ψ

)
.

Beweis. Die Beweise aller vier Äquivalenzen sind ähnlich. Wir beweisen hier nur
die erste: (

φ ∧ ∃x ψ
)

≡ ∃x
(
φ ∧ ψ

)
. (1)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 286

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Lemma 3.73
Seien

ψ1 := Q1x1 · · ·Qℓxℓ χ1 und ψ2 := Q ′
1y1 · · ·Q ′

mym χ2 ,

wobei ℓ,m ⩾ 0, Q1, . . . ,Qℓ, Q
′
1, . . . ,Q

′
m ∈ {∃,∀},

x1, . . . , xℓ, y1, . . . , ym ∈ VAR, χ1, χ2 ∈ FO[σ].

Es gelte: {x1, . . . , xℓ} ∩ frei(ψ2) = ∅ und {y1, . . . , ym} ∩ frei(χ1) = ∅.

Dann gilt für ∗ ∈ {∧,∨}, dass(
ψ1 ∗ ψ2

)
≡ Q1x1 · · ·Qℓxℓ Q

′
1y1 · · ·Q ′

mym
(
χ1 ∗ χ2

)
.

Beweis.
Zwei Induktionen über ℓ bzw. m unter Verwendung von Lemma 3.72.
Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 287

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Lemma 3.73
Seien

ψ1 := Q1x1 · · ·Qℓxℓ χ1 und ψ2 := Q ′
1y1 · · ·Q ′

mym χ2 ,

wobei ℓ,m ⩾ 0,

Q1, . . . ,Qℓ, Q
′
1, . . . ,Q

′
m ∈ {∃,∀},

x1, . . . , xℓ, y1, . . . , ym ∈ VAR, χ1, χ2 ∈ FO[σ].

Es gelte: {x1, . . . , xℓ} ∩ frei(ψ2) = ∅ und {y1, . . . , ym} ∩ frei(χ1) = ∅.

Dann gilt für ∗ ∈ {∧,∨}, dass(
ψ1 ∗ ψ2

)
≡ Q1x1 · · ·Qℓxℓ Q

′
1y1 · · ·Q ′

mym
(
χ1 ∗ χ2

)
.

Beweis.
Zwei Induktionen über ℓ bzw. m unter Verwendung von Lemma 3.72.
Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 287

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Lemma 3.73
Seien

ψ1 := Q1x1 · · ·Qℓxℓ χ1 und ψ2 := Q ′
1y1 · · ·Q ′

mym χ2 ,

wobei ℓ,m ⩾ 0, Q1, . . . ,Qℓ, Q
′
1, . . . ,Q

′
m ∈ {∃,∀},

x1, . . . , xℓ, y1, . . . , ym ∈ VAR, χ1, χ2 ∈ FO[σ].

Es gelte: {x1, . . . , xℓ} ∩ frei(ψ2) = ∅ und {y1, . . . , ym} ∩ frei(χ1) = ∅.

Dann gilt für ∗ ∈ {∧,∨}, dass(
ψ1 ∗ ψ2

)
≡ Q1x1 · · ·Qℓxℓ Q

′
1y1 · · ·Q ′

mym
(
χ1 ∗ χ2

)
.

Beweis.
Zwei Induktionen über ℓ bzw. m unter Verwendung von Lemma 3.72.
Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 287

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Lemma 3.73
Seien

ψ1 := Q1x1 · · ·Qℓxℓ χ1 und ψ2 := Q ′
1y1 · · ·Q ′

mym χ2 ,

wobei ℓ,m ⩾ 0, Q1, . . . ,Qℓ, Q
′
1, . . . ,Q

′
m ∈ {∃,∀},

x1, . . . , xℓ, y1, . . . , ym ∈ VAR,

χ1, χ2 ∈ FO[σ].

Es gelte: {x1, . . . , xℓ} ∩ frei(ψ2) = ∅ und {y1, . . . , ym} ∩ frei(χ1) = ∅.

Dann gilt für ∗ ∈ {∧,∨}, dass(
ψ1 ∗ ψ2

)
≡ Q1x1 · · ·Qℓxℓ Q

′
1y1 · · ·Q ′

mym
(
χ1 ∗ χ2

)
.

Beweis.
Zwei Induktionen über ℓ bzw. m unter Verwendung von Lemma 3.72.
Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 287

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Lemma 3.73
Seien

ψ1 := Q1x1 · · ·Qℓxℓ χ1 und ψ2 := Q ′
1y1 · · ·Q ′

mym χ2 ,

wobei ℓ,m ⩾ 0, Q1, . . . ,Qℓ, Q
′
1, . . . ,Q

′
m ∈ {∃,∀},

x1, . . . , xℓ, y1, . . . , ym ∈ VAR, χ1, χ2 ∈ FO[σ].

Es gelte: {x1, . . . , xℓ} ∩ frei(ψ2) = ∅ und {y1, . . . , ym} ∩ frei(χ1) = ∅.

Dann gilt für ∗ ∈ {∧,∨}, dass(
ψ1 ∗ ψ2

)
≡ Q1x1 · · ·Qℓxℓ Q

′
1y1 · · ·Q ′

mym
(
χ1 ∗ χ2

)
.

Beweis.
Zwei Induktionen über ℓ bzw. m unter Verwendung von Lemma 3.72.
Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 287

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Lemma 3.73
Seien

ψ1 := Q1x1 · · ·Qℓxℓ χ1 und ψ2 := Q ′
1y1 · · ·Q ′

mym χ2 ,

wobei ℓ,m ⩾ 0, Q1, . . . ,Qℓ, Q
′
1, . . . ,Q

′
m ∈ {∃,∀},

x1, . . . , xℓ, y1, . . . , ym ∈ VAR, χ1, χ2 ∈ FO[σ].

Es gelte: {x1, . . . , xℓ} ∩ frei(ψ2) = ∅

und {y1, . . . , ym} ∩ frei(χ1) = ∅.

Dann gilt für ∗ ∈ {∧,∨}, dass(
ψ1 ∗ ψ2

)
≡ Q1x1 · · ·Qℓxℓ Q

′
1y1 · · ·Q ′

mym
(
χ1 ∗ χ2

)
.

Beweis.
Zwei Induktionen über ℓ bzw. m unter Verwendung von Lemma 3.72.
Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 287

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Lemma 3.73
Seien

ψ1 := Q1x1 · · ·Qℓxℓ χ1 und ψ2 := Q ′
1y1 · · ·Q ′

mym χ2 ,

wobei ℓ,m ⩾ 0, Q1, . . . ,Qℓ, Q
′
1, . . . ,Q

′
m ∈ {∃,∀},

x1, . . . , xℓ, y1, . . . , ym ∈ VAR, χ1, χ2 ∈ FO[σ].

Es gelte: {x1, . . . , xℓ} ∩ frei(ψ2) = ∅ und {y1, . . . , ym} ∩ frei(χ1) = ∅.

Dann gilt für ∗ ∈ {∧,∨}, dass(
ψ1 ∗ ψ2

)
≡ Q1x1 · · ·Qℓxℓ Q

′
1y1 · · ·Q ′

mym
(
χ1 ∗ χ2

)
.

Beweis.
Zwei Induktionen über ℓ bzw. m unter Verwendung von Lemma 3.72.
Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 287

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Lemma 3.73
Seien

ψ1 := Q1x1 · · ·Qℓxℓ χ1 und ψ2 := Q ′
1y1 · · ·Q ′

mym χ2 ,

wobei ℓ,m ⩾ 0, Q1, . . . ,Qℓ, Q
′
1, . . . ,Q

′
m ∈ {∃,∀},

x1, . . . , xℓ, y1, . . . , ym ∈ VAR, χ1, χ2 ∈ FO[σ].

Es gelte: {x1, . . . , xℓ} ∩ frei(ψ2) = ∅ und {y1, . . . , ym} ∩ frei(χ1) = ∅.

Dann gilt für ∗ ∈ {∧,∨}, dass(
ψ1 ∗ ψ2

)
≡

Q1x1 · · ·Qℓxℓ Q
′
1y1 · · ·Q ′

mym
(
χ1 ∗ χ2

)
.

Beweis.
Zwei Induktionen über ℓ bzw. m unter Verwendung von Lemma 3.72.
Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 287

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Lemma 3.73
Seien

ψ1 := Q1x1 · · ·Qℓxℓ χ1 und ψ2 := Q ′
1y1 · · ·Q ′

mym χ2 ,

wobei ℓ,m ⩾ 0, Q1, . . . ,Qℓ, Q
′
1, . . . ,Q

′
m ∈ {∃,∀},

x1, . . . , xℓ, y1, . . . , ym ∈ VAR, χ1, χ2 ∈ FO[σ].

Es gelte: {x1, . . . , xℓ} ∩ frei(ψ2) = ∅ und {y1, . . . , ym} ∩ frei(χ1) = ∅.

Dann gilt für ∗ ∈ {∧,∨}, dass(
ψ1 ∗ ψ2

)
≡ Q1x1 · · ·Qℓxℓ Q

′
1y1 · · ·Q ′

mym
(
χ1 ∗ χ2

)
.

Beweis.
Zwei Induktionen über ℓ bzw. m unter Verwendung von Lemma 3.72.
Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 287

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Lemma 3.73
Seien

ψ1 := Q1x1 · · ·Qℓxℓ χ1 und ψ2 := Q ′
1y1 · · ·Q ′

mym χ2 ,

wobei ℓ,m ⩾ 0, Q1, . . . ,Qℓ, Q
′
1, . . . ,Q

′
m ∈ {∃,∀},

x1, . . . , xℓ, y1, . . . , ym ∈ VAR, χ1, χ2 ∈ FO[σ].

Es gelte: {x1, . . . , xℓ} ∩ frei(ψ2) = ∅ und {y1, . . . , ym} ∩ frei(χ1) = ∅.

Dann gilt für ∗ ∈ {∧,∨}, dass(
ψ1 ∗ ψ2

)
≡ Q1x1 · · ·Qℓxℓ Q

′
1y1 · · ·Q ′

mym
(
χ1 ∗ χ2

)
.

Beweis.
Zwei Induktionen über ℓ bzw. m unter Verwendung von Lemma 3.72.
Details: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 287

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Abschluss des Beweises von Satz 3.69:

Sei φ eine FO[σ]-Formel.

Gemäß Satz 3.46 können wir o.B.d.A. annehmen, dass φ den Junktor
”
→“ nicht

enthält.

Per Induktion über den Aufbau von φ zeigen wir, dass es eine zu φ äquivalente
Formel φ′ in PNF gibt mit frei(φ′) = frei(φ).

Induktionsanfang: Atomare Formeln sind quantorenfrei und daher insbesondere
in PNF.

Induktionsschritt:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 288

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Abschluss des Beweises von Satz 3.69:

Sei φ eine FO[σ]-Formel.

Gemäß Satz 3.46 können wir o.B.d.A. annehmen, dass φ den Junktor
”
→“ nicht

enthält.

Per Induktion über den Aufbau von φ zeigen wir, dass es eine zu φ äquivalente
Formel φ′ in PNF gibt mit frei(φ′) = frei(φ).

Induktionsanfang: Atomare Formeln sind quantorenfrei und daher insbesondere
in PNF.

Induktionsschritt:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 288

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Abschluss des Beweises von Satz 3.69:

Sei φ eine FO[σ]-Formel.

Gemäß Satz 3.46 können wir o.B.d.A. annehmen, dass φ den Junktor
”
→“ nicht

enthält.

Per Induktion über den Aufbau von φ zeigen wir, dass es eine zu φ äquivalente
Formel φ′ in PNF gibt mit frei(φ′) = frei(φ).

Induktionsanfang: Atomare Formeln

sind quantorenfrei und daher insbesondere
in PNF.

Induktionsschritt:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 288

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Abschluss des Beweises von Satz 3.69:

Sei φ eine FO[σ]-Formel.

Gemäß Satz 3.46 können wir o.B.d.A. annehmen, dass φ den Junktor
”
→“ nicht

enthält.

Per Induktion über den Aufbau von φ zeigen wir, dass es eine zu φ äquivalente
Formel φ′ in PNF gibt mit frei(φ′) = frei(φ).

Induktionsanfang: Atomare Formeln sind quantorenfrei

und daher insbesondere
in PNF.

Induktionsschritt:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 288

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Abschluss des Beweises von Satz 3.69:

Sei φ eine FO[σ]-Formel.

Gemäß Satz 3.46 können wir o.B.d.A. annehmen, dass φ den Junktor
”
→“ nicht

enthält.

Per Induktion über den Aufbau von φ zeigen wir, dass es eine zu φ äquivalente
Formel φ′ in PNF gibt mit frei(φ′) = frei(φ).

Induktionsanfang: Atomare Formeln sind quantorenfrei und daher insbesondere
in PNF.

Induktionsschritt:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 288

Kapitel 3: Logik erster Stufe · Abschnitt 3.10: Normalformen

Abschluss des Beweises von Satz 3.69:

Sei φ eine FO[σ]-Formel.

Gemäß Satz 3.46 können wir o.B.d.A. annehmen, dass φ den Junktor
”
→“ nicht

enthält.

Per Induktion über den Aufbau von φ zeigen wir, dass es eine zu φ äquivalente
Formel φ′ in PNF gibt mit frei(φ′) = frei(φ).

Induktionsanfang: Atomare Formeln sind quantorenfrei und daher insbesondere
in PNF.

Induktionsschritt:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 288

Kapitel 4:

Grundlagen des automatischen
Schließens

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.0:

Ziel: Automatisches Schließen

• In typischen Anwendungen der Logik beschreibt man mit Hilfe einer
Formelmenge das Wissen über ein Anwendungsszenario und will aus diesem
Wissen dann, möglichst automatisch, Folgerungen ziehen.

• In diesem Kapitel werden wir untersuchen, inwieweit sich für die Logik
erster Stufe das Folgern automatiseren lässt.

• Wir werden einen syntaktischen Beweisbegriff einführen, der genau dem
semantischen Folgerungsbegriff entspricht (Vollständigkeitssatz).

• Dadurch werden wir einen Algorithmus erhalten, der nach und nach alle
allgemeingültigen Sätze der Logik erster Stufe aufzählt.

• Andererseits werden wir zeigen, dass es keinen Algorithmus gibt, der bei
Eingabe eines beliebigen Satzes der Logik erster Stufe entscheidet, ob der
Satz allgemeingültig ist.

• Als Folgerung aus dem Vollständigkeitssatz werden wir auch den
Endlichkeitssatz für die Logik erster Stufe erhalten.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 289

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.0:

Ziel: Automatisches Schließen

• In typischen Anwendungen der Logik beschreibt man mit Hilfe einer
Formelmenge das Wissen über ein Anwendungsszenario und will aus diesem
Wissen dann, möglichst automatisch, Folgerungen ziehen.

• In diesem Kapitel werden wir untersuchen, inwieweit sich für die Logik
erster Stufe das Folgern automatiseren lässt.

• Wir werden einen syntaktischen Beweisbegriff einführen, der genau dem
semantischen Folgerungsbegriff entspricht (Vollständigkeitssatz).

• Dadurch werden wir einen Algorithmus erhalten, der nach und nach alle
allgemeingültigen Sätze der Logik erster Stufe aufzählt.

• Andererseits werden wir zeigen, dass es keinen Algorithmus gibt, der bei
Eingabe eines beliebigen Satzes der Logik erster Stufe entscheidet, ob der
Satz allgemeingültig ist.

• Als Folgerung aus dem Vollständigkeitssatz werden wir auch den
Endlichkeitssatz für die Logik erster Stufe erhalten.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 289

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.0:

Ziel: Automatisches Schließen

• In typischen Anwendungen der Logik beschreibt man mit Hilfe einer
Formelmenge das Wissen über ein Anwendungsszenario und will aus diesem
Wissen dann, möglichst automatisch, Folgerungen ziehen.

• In diesem Kapitel werden wir untersuchen, inwieweit sich für die Logik
erster Stufe das Folgern automatiseren lässt.

• Wir werden einen syntaktischen Beweisbegriff einführen, der genau dem
semantischen Folgerungsbegriff entspricht (Vollständigkeitssatz).

• Dadurch werden wir einen Algorithmus erhalten, der nach und nach alle
allgemeingültigen Sätze der Logik erster Stufe aufzählt.

• Andererseits werden wir zeigen, dass es keinen Algorithmus gibt, der bei
Eingabe eines beliebigen Satzes der Logik erster Stufe entscheidet, ob der
Satz allgemeingültig ist.

• Als Folgerung aus dem Vollständigkeitssatz werden wir auch den
Endlichkeitssatz für die Logik erster Stufe erhalten.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 289

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.0:

Ziel: Automatisches Schließen

• In typischen Anwendungen der Logik beschreibt man mit Hilfe einer
Formelmenge das Wissen über ein Anwendungsszenario und will aus diesem
Wissen dann, möglichst automatisch, Folgerungen ziehen.

• In diesem Kapitel werden wir untersuchen, inwieweit sich für die Logik
erster Stufe das Folgern automatiseren lässt.

• Wir werden einen syntaktischen Beweisbegriff einführen, der genau dem
semantischen Folgerungsbegriff entspricht (Vollständigkeitssatz).

• Dadurch werden wir einen Algorithmus erhalten, der nach und nach alle
allgemeingültigen Sätze der Logik erster Stufe aufzählt.

• Andererseits werden wir zeigen, dass es keinen Algorithmus gibt, der bei
Eingabe eines beliebigen Satzes der Logik erster Stufe entscheidet, ob der
Satz allgemeingültig ist.

• Als Folgerung aus dem Vollständigkeitssatz werden wir auch den
Endlichkeitssatz für die Logik erster Stufe erhalten.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 289

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.0:

Ziel: Automatisches Schließen

• In typischen Anwendungen der Logik beschreibt man mit Hilfe einer
Formelmenge das Wissen über ein Anwendungsszenario und will aus diesem
Wissen dann, möglichst automatisch, Folgerungen ziehen.

• In diesem Kapitel werden wir untersuchen, inwieweit sich für die Logik
erster Stufe das Folgern automatiseren lässt.

• Wir werden einen syntaktischen Beweisbegriff einführen, der genau dem
semantischen Folgerungsbegriff entspricht (Vollständigkeitssatz).

• Dadurch werden wir einen Algorithmus erhalten, der nach und nach alle
allgemeingültigen Sätze der Logik erster Stufe aufzählt.

• Andererseits werden wir zeigen, dass es keinen Algorithmus gibt, der bei
Eingabe eines beliebigen Satzes der Logik erster Stufe entscheidet, ob der
Satz allgemeingültig ist.

• Als Folgerung aus dem Vollständigkeitssatz werden wir auch den
Endlichkeitssatz für die Logik erster Stufe erhalten.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 289

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.0:

Ziel: Automatisches Schließen

• In typischen Anwendungen der Logik beschreibt man mit Hilfe einer
Formelmenge das Wissen über ein Anwendungsszenario und will aus diesem
Wissen dann, möglichst automatisch, Folgerungen ziehen.

• In diesem Kapitel werden wir untersuchen, inwieweit sich für die Logik
erster Stufe das Folgern automatiseren lässt.

• Wir werden einen syntaktischen Beweisbegriff einführen, der genau dem
semantischen Folgerungsbegriff entspricht (Vollständigkeitssatz).

• Dadurch werden wir einen Algorithmus erhalten, der nach und nach alle
allgemeingültigen Sätze der Logik erster Stufe aufzählt.

• Andererseits werden wir zeigen, dass es keinen Algorithmus gibt, der bei
Eingabe eines beliebigen Satzes der Logik erster Stufe entscheidet, ob der
Satz allgemeingültig ist.

• Als Folgerung aus dem Vollständigkeitssatz werden wir auch den
Endlichkeitssatz für die Logik erster Stufe erhalten.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 289

Abschnitt 4.1:

Kalküle und Ableitungen

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Ableitungsregeln und Kalküle

Definition 4.1
Sei M eine beliebige Menge.

(a) Eine Ableitungsregel über M (kurz: Regel) hat die Form

a1 · · · an
b

wobei n ⩾ 0 und a1, . . . , an, b ∈ M.

Wir bezeichnen a1, . . . , an als die Voraussetzungen der Regel und b als die
Konsequenz.

Ableitungsregeln ohne Voraussetzungen (also mit n = 0) bezeichnen wir als
Axiome.

(b) Ein Kalkül über M ist eine Menge von Ableitungsregeln über M.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 290

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Ableitungsregeln und Kalküle

Definition 4.1
Sei M eine beliebige Menge.

(a) Eine Ableitungsregel über M (kurz: Regel) hat die Form

a1 · · · an
b

wobei n ⩾ 0 und a1, . . . , an, b ∈ M.

Wir bezeichnen a1, . . . , an als die Voraussetzungen der Regel und b als die
Konsequenz.

Ableitungsregeln ohne Voraussetzungen (also mit n = 0) bezeichnen wir als
Axiome.

(b) Ein Kalkül über M ist eine Menge von Ableitungsregeln über M.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 290

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Ableitungsregeln und Kalküle

Definition 4.1
Sei M eine beliebige Menge.

(a) Eine Ableitungsregel über M (kurz: Regel) hat die Form

a1 · · · an
b

wobei n ⩾ 0 und a1, . . . , an, b ∈ M.

Wir bezeichnen a1, . . . , an als die Voraussetzungen der Regel und b als die
Konsequenz.

Ableitungsregeln ohne Voraussetzungen (also mit n = 0) bezeichnen wir als
Axiome.

(b) Ein Kalkül über M ist eine Menge von Ableitungsregeln über M.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 290

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Ableitungsregeln und Kalküle

Definition 4.1
Sei M eine beliebige Menge.

(a) Eine Ableitungsregel über M (kurz: Regel) hat die Form

a1 · · · an
b

wobei n ⩾ 0 und a1, . . . , an, b ∈ M.

Wir bezeichnen a1, . . . , an als die Voraussetzungen der Regel und b als die
Konsequenz.

Ableitungsregeln ohne Voraussetzungen (also mit n = 0) bezeichnen wir als
Axiome.

(b) Ein Kalkül über M ist eine Menge von Ableitungsregeln über M.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 290

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Ableitungen

Definition 4.2
Sei K ein Kalkül über einer Menge M, sei V ⊆ M und sei a ∈ M.

(a) Eine Ableitung von a aus V in K ist

eine endliche Folge (a1, . . . , aℓ) ∈ Mℓ, so
dass ℓ ⩾ 1, aℓ = a und für alle i ∈ {1, . . . , ℓ} gilt:

• ai ∈ V oder

•
ai

ist ein Axiom in K oder

• es gibt in K eine Ableitungsregel b1 ··· bn
ai

so dass

b1, . . . , bn ∈ {a1, . . . , ai−1}.

Der besseren Lesbarkeit halber schreiben wir in konkreten Beispielen Ableitungen
der Form (a1, . . . , aℓ) oft zeilenweise, also

(1) a1
(2) a2
...

(ℓ) aℓ

und geben am Ende jeder Zeile eine kurze Begründung an.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 291

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Ableitungen

Definition 4.2
Sei K ein Kalkül über einer Menge M, sei V ⊆ M und sei a ∈ M.

(a) Eine Ableitung von a aus V in K ist eine endliche Folge (a1, . . . , aℓ) ∈ Mℓ, so
dass

ℓ ⩾ 1, aℓ = a und für alle i ∈ {1, . . . , ℓ} gilt:

• ai ∈ V oder

•
ai

ist ein Axiom in K oder

• es gibt in K eine Ableitungsregel b1 ··· bn
ai

so dass

b1, . . . , bn ∈ {a1, . . . , ai−1}.

Der besseren Lesbarkeit halber schreiben wir in konkreten Beispielen Ableitungen
der Form (a1, . . . , aℓ) oft zeilenweise, also

(1) a1
(2) a2
...

(ℓ) aℓ

und geben am Ende jeder Zeile eine kurze Begründung an.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 291

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Ableitungen

Definition 4.2
Sei K ein Kalkül über einer Menge M, sei V ⊆ M und sei a ∈ M.

(a) Eine Ableitung von a aus V in K ist eine endliche Folge (a1, . . . , aℓ) ∈ Mℓ, so
dass ℓ ⩾ 1,

aℓ = a und für alle i ∈ {1, . . . , ℓ} gilt:

• ai ∈ V oder

•
ai

ist ein Axiom in K oder

• es gibt in K eine Ableitungsregel b1 ··· bn
ai

so dass

b1, . . . , bn ∈ {a1, . . . , ai−1}.

Der besseren Lesbarkeit halber schreiben wir in konkreten Beispielen Ableitungen
der Form (a1, . . . , aℓ) oft zeilenweise, also

(1) a1
(2) a2
...

(ℓ) aℓ

und geben am Ende jeder Zeile eine kurze Begründung an.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 291

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Ableitungen

Definition 4.2
Sei K ein Kalkül über einer Menge M, sei V ⊆ M und sei a ∈ M.

(a) Eine Ableitung von a aus V in K ist eine endliche Folge (a1, . . . , aℓ) ∈ Mℓ, so
dass ℓ ⩾ 1, aℓ = a

und für alle i ∈ {1, . . . , ℓ} gilt:

• ai ∈ V oder

•
ai

ist ein Axiom in K oder

• es gibt in K eine Ableitungsregel b1 ··· bn
ai

so dass

b1, . . . , bn ∈ {a1, . . . , ai−1}.

Der besseren Lesbarkeit halber schreiben wir in konkreten Beispielen Ableitungen
der Form (a1, . . . , aℓ) oft zeilenweise, also

(1) a1
(2) a2
...

(ℓ) aℓ

und geben am Ende jeder Zeile eine kurze Begründung an.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 291

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Ableitungen

Definition 4.2
Sei K ein Kalkül über einer Menge M, sei V ⊆ M und sei a ∈ M.

(a) Eine Ableitung von a aus V in K ist eine endliche Folge (a1, . . . , aℓ) ∈ Mℓ, so
dass ℓ ⩾ 1, aℓ = a und für alle i ∈ {1, . . . , ℓ} gilt:

• ai ∈ V

oder

•
ai

ist ein Axiom in K oder

• es gibt in K eine Ableitungsregel b1 ··· bn
ai

so dass

b1, . . . , bn ∈ {a1, . . . , ai−1}.

Der besseren Lesbarkeit halber schreiben wir in konkreten Beispielen Ableitungen
der Form (a1, . . . , aℓ) oft zeilenweise, also

(1) a1
(2) a2
...

(ℓ) aℓ

und geben am Ende jeder Zeile eine kurze Begründung an.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 291

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Ableitungen

Definition 4.2
Sei K ein Kalkül über einer Menge M, sei V ⊆ M und sei a ∈ M.

(a) Eine Ableitung von a aus V in K ist eine endliche Folge (a1, . . . , aℓ) ∈ Mℓ, so
dass ℓ ⩾ 1, aℓ = a und für alle i ∈ {1, . . . , ℓ} gilt:

• ai ∈ V oder

•
ai

ist ein Axiom in K

oder

• es gibt in K eine Ableitungsregel b1 ··· bn
ai

so dass

b1, . . . , bn ∈ {a1, . . . , ai−1}.

Der besseren Lesbarkeit halber schreiben wir in konkreten Beispielen Ableitungen
der Form (a1, . . . , aℓ) oft zeilenweise, also

(1) a1
(2) a2
...

(ℓ) aℓ

und geben am Ende jeder Zeile eine kurze Begründung an.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 291

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Ableitungen

Definition 4.2
Sei K ein Kalkül über einer Menge M, sei V ⊆ M und sei a ∈ M.

(a) Eine Ableitung von a aus V in K ist eine endliche Folge (a1, . . . , aℓ) ∈ Mℓ, so
dass ℓ ⩾ 1, aℓ = a und für alle i ∈ {1, . . . , ℓ} gilt:

• ai ∈ V oder

•
ai

ist ein Axiom in K oder

• es gibt in K eine Ableitungsregel b1 ··· bn
ai

so dass

b1, . . . , bn ∈ {a1, . . . , ai−1}.

Der besseren Lesbarkeit halber schreiben wir in konkreten Beispielen Ableitungen
der Form (a1, . . . , aℓ) oft zeilenweise, also

(1) a1
(2) a2
...

(ℓ) aℓ

und geben am Ende jeder Zeile eine kurze Begründung an.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 291

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Ableitungen

Definition 4.2
Sei K ein Kalkül über einer Menge M, sei V ⊆ M und sei a ∈ M.

(a) Eine Ableitung von a aus V in K ist eine endliche Folge (a1, . . . , aℓ) ∈ Mℓ, so
dass ℓ ⩾ 1, aℓ = a und für alle i ∈ {1, . . . , ℓ} gilt:

• ai ∈ V oder

•
ai

ist ein Axiom in K oder

• es gibt in K eine Ableitungsregel b1 ··· bn
ai

so dass

b1, . . . , bn ∈ {a1, . . . , ai−1}.

Der besseren Lesbarkeit halber schreiben wir in konkreten Beispielen Ableitungen
der Form (a1, . . . , aℓ) oft zeilenweise, also

(1) a1
(2) a2
...

(ℓ) aℓ

und geben am Ende jeder Zeile eine kurze Begründung an.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 291

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

(b) Ein Element a ∈ M ist aus V in K ableitbar, wenn es eine Ableitung von a
aus V in K gibt.

(c) Wir schreiben ablK(V), um die Menge aller aus V in K ableitbaren
Elemente zu bezeichnen.

(d) Für V = ∅ nutzen wir folgende Notationen:

Eine Ableitung von a in K ist eine Ableitung von a aus ∅ in K.

Ein Element a ∈ M heißt ableitbar aus K, falls es eine Ableitung von a in K
gibt.

Die Menge aller in K ableitbaren Elemente bezeichnen wir mit ablK, d.h.:
ablK := ablK(∅).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 292

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

(b) Ein Element a ∈ M ist aus V in K ableitbar, wenn es eine Ableitung von a
aus V in K gibt.

(c) Wir schreiben ablK(V), um die Menge aller aus V in K ableitbaren
Elemente zu bezeichnen.

(d) Für V = ∅ nutzen wir folgende Notationen:

Eine Ableitung von a in K ist eine Ableitung von a aus ∅ in K.

Ein Element a ∈ M heißt ableitbar aus K, falls es eine Ableitung von a in K
gibt.

Die Menge aller in K ableitbaren Elemente bezeichnen wir mit ablK, d.h.:
ablK := ablK(∅).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 292

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

(b) Ein Element a ∈ M ist aus V in K ableitbar, wenn es eine Ableitung von a
aus V in K gibt.

(c) Wir schreiben ablK(V), um die Menge aller aus V in K ableitbaren
Elemente zu bezeichnen.

(d) Für V = ∅ nutzen wir folgende Notationen:

Eine Ableitung von a in K ist eine Ableitung von a aus ∅ in K.

Ein Element a ∈ M heißt ableitbar aus K, falls es eine Ableitung von a in K
gibt.

Die Menge aller in K ableitbaren Elemente bezeichnen wir mit ablK, d.h.:
ablK := ablK(∅).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 292

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

(b) Ein Element a ∈ M ist aus V in K ableitbar, wenn es eine Ableitung von a
aus V in K gibt.

(c) Wir schreiben ablK(V), um die Menge aller aus V in K ableitbaren
Elemente zu bezeichnen.

(d) Für V = ∅ nutzen wir folgende Notationen:

Eine Ableitung von a in K ist eine Ableitung von a aus ∅ in K.

Ein Element a ∈ M heißt ableitbar aus K, falls es eine Ableitung von a in K
gibt.

Die Menge aller in K ableitbaren Elemente bezeichnen wir mit ablK, d.h.:
ablK := ablK(∅).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 292

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

(b) Ein Element a ∈ M ist aus V in K ableitbar, wenn es eine Ableitung von a
aus V in K gibt.

(c) Wir schreiben ablK(V), um die Menge aller aus V in K ableitbaren
Elemente zu bezeichnen.

(d) Für V = ∅ nutzen wir folgende Notationen:

Eine Ableitung von a in K ist eine Ableitung von a aus ∅ in K.

Ein Element a ∈ M heißt ableitbar aus K, falls es eine Ableitung von a in K
gibt.

Die Menge aller in K ableitbaren Elemente bezeichnen wir mit ablK, d.h.:
ablK := ablK(∅).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 292

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

(b) Ein Element a ∈ M ist aus V in K ableitbar, wenn es eine Ableitung von a
aus V in K gibt.

(c) Wir schreiben ablK(V), um die Menge aller aus V in K ableitbaren
Elemente zu bezeichnen.

(d) Für V = ∅ nutzen wir folgende Notationen:

Eine Ableitung von a in K ist eine Ableitung von a aus ∅ in K.

Ein Element a ∈ M heißt ableitbar aus K, falls es eine Ableitung von a in K
gibt.

Die Menge aller in K ableitbaren Elemente bezeichnen wir mit ablK, d.h.:
ablK := ablK(∅).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 292

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Wir werden Kalküle nutzen, um auf elegante Art rekursive Definitionen
bestimmter Mengen anzugeben:

Um eine bestimmte Teilmenge A einer Menge M rekursiv zu definieren, genügt
es, einen Kalkül K über M anzugeben, für den gilt: ablK = A.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 293

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Beispiel: Mengen natürlicher Zahlen

Beispiel 4.3
Sei K der Kalkül über M := N mit folgenden Ableitungsregeln:

• Axiom:
1

• Weitere Regeln:
n

2n
, für jedes n ∈ N.

Fragen:

• Was ist ablK ?

• Was ist ablK(V) für V := {3} ?

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 294

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Beispiel: Mengen natürlicher Zahlen

Beispiel 4.3
Sei K der Kalkül über M := N mit folgenden Ableitungsregeln:

• Axiom:
1

• Weitere Regeln:
n

2n
, für jedes n ∈ N.

Fragen:

• Was ist ablK ?

• Was ist ablK(V) für V := {3} ?

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 294

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Beispiel: Aussagenlogik

Beispiel 4.4
Sei Σ := AAL das Alphabet der Aussagenlogik, d.h.

Σ = AS ∪ { ¬, ∧, ∨, →, 0, 1, (,) } ,

wobei AS = {Ai : i ∈ N} die Menge aller Aussagensymbole ist.

Gesucht: Ein Kalkül K über M := Σ∗, aus dem genau die syntaktisch
korrekten aussagenlogischen Formeln ableitbar sind, d.h. ablK = AL.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 295

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Beispiel: Aussagenlogik

Beispiel 4.4
Sei Σ := AAL das Alphabet der Aussagenlogik, d.h.

Σ = AS ∪ { ¬, ∧, ∨, →, 0, 1, (,) } ,

wobei AS = {Ai : i ∈ N} die Menge aller Aussagensymbole ist.

Gesucht: Ein Kalkül K über M := Σ∗, aus dem genau die syntaktisch
korrekten aussagenlogischen Formeln ableitbar sind

, d.h. ablK = AL.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 295

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Beispiel: Aussagenlogik

Beispiel 4.4
Sei Σ := AAL das Alphabet der Aussagenlogik, d.h.

Σ = AS ∪ { ¬, ∧, ∨, →, 0, 1, (,) } ,

wobei AS = {Ai : i ∈ N} die Menge aller Aussagensymbole ist.

Gesucht: Ein Kalkül K über M := Σ∗, aus dem genau die syntaktisch
korrekten aussagenlogischen Formeln ableitbar sind, d.h. ablK = AL.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 295

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Beispiel: Resolution

Die Kalkül-Schreibweise lässt sich auch dazu nutzen, eine elegante Darstellung
der Resolutionswiderlegungen zu anzugeben.

Zur Erinnerung:

• Eine Klausel ist eine endliche Menge von Literalen.

Ein Literal ist eine aussagenlogische Formel der Form X oder ¬X , wobei
X ∈ AS.

• Wir haben in Satz 2.59 gezeigt, dass für jede Menge Γ von Klauseln gilt:

Γ ist unerfüllbar ⇐⇒ Γ ⊢R ∅.

Hierbei ist ∅ die leere Klausel.

”
Γ ⊢R ∅“ bedeutet, dass es eine Resolutionswiderlegung von Γ gibt.

Zur Erinnerung hier die Definition des Begriffs der
Resolutionswiderlegungen:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 296

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Beispiel: Resolution

Die Kalkül-Schreibweise lässt sich auch dazu nutzen, eine elegante Darstellung
der Resolutionswiderlegungen zu anzugeben.

Zur Erinnerung:

• Eine Klausel ist eine endliche Menge von Literalen.

Ein Literal ist eine aussagenlogische Formel der Form X oder ¬X , wobei
X ∈ AS.

• Wir haben in Satz 2.59 gezeigt, dass für jede Menge Γ von Klauseln gilt:

Γ ist unerfüllbar ⇐⇒ Γ ⊢R ∅.

Hierbei ist ∅ die leere Klausel.

”
Γ ⊢R ∅“ bedeutet, dass es eine Resolutionswiderlegung von Γ gibt.

Zur Erinnerung hier die Definition des Begriffs der
Resolutionswiderlegungen:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 296

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Beispiel: Resolution

Die Kalkül-Schreibweise lässt sich auch dazu nutzen, eine elegante Darstellung
der Resolutionswiderlegungen zu anzugeben.

Zur Erinnerung:

• Eine Klausel ist eine endliche Menge von Literalen.

Ein Literal ist eine aussagenlogische Formel der Form X oder ¬X , wobei
X ∈ AS.

• Wir haben in Satz 2.59 gezeigt, dass für jede Menge Γ von Klauseln gilt:

Γ ist unerfüllbar ⇐⇒ Γ ⊢R ∅.

Hierbei ist ∅ die leere Klausel.

”
Γ ⊢R ∅“ bedeutet, dass es eine Resolutionswiderlegung von Γ gibt.

Zur Erinnerung hier die Definition des Begriffs der
Resolutionswiderlegungen:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 296

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Beispiel: Resolution

Die Kalkül-Schreibweise lässt sich auch dazu nutzen, eine elegante Darstellung
der Resolutionswiderlegungen zu anzugeben.

Zur Erinnerung:

• Eine Klausel ist eine endliche Menge von Literalen.

Ein Literal ist eine aussagenlogische Formel der Form X oder ¬X , wobei
X ∈ AS.

• Wir haben in Satz 2.59 gezeigt, dass für jede Menge Γ von Klauseln gilt:

Γ ist unerfüllbar ⇐⇒ Γ ⊢R ∅.

Hierbei ist ∅ die leere Klausel.

”
Γ ⊢R ∅“ bedeutet, dass es eine Resolutionswiderlegung von Γ gibt.

Zur Erinnerung hier die Definition des Begriffs der
Resolutionswiderlegungen:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 296

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Beispiel: Resolution

Die Kalkül-Schreibweise lässt sich auch dazu nutzen, eine elegante Darstellung
der Resolutionswiderlegungen zu anzugeben.

Zur Erinnerung:

• Eine Klausel ist eine endliche Menge von Literalen.

Ein Literal ist eine aussagenlogische Formel der Form X oder ¬X , wobei
X ∈ AS.

• Wir haben in Satz 2.59 gezeigt, dass für jede Menge Γ von Klauseln gilt:

Γ ist unerfüllbar ⇐⇒ Γ ⊢R ∅.

Hierbei ist ∅ die leere Klausel.

”
Γ ⊢R ∅“ bedeutet, dass es eine Resolutionswiderlegung von Γ gibt.

Zur Erinnerung hier die Definition des Begriffs der
Resolutionswiderlegungen:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 296

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Beispiel: Resolution

Die Kalkül-Schreibweise lässt sich auch dazu nutzen, eine elegante Darstellung
der Resolutionswiderlegungen zu anzugeben.

Zur Erinnerung:

• Eine Klausel ist eine endliche Menge von Literalen.

Ein Literal ist eine aussagenlogische Formel der Form X oder ¬X , wobei
X ∈ AS.

• Wir haben in Satz 2.59 gezeigt, dass für jede Menge Γ von Klauseln gilt:

Γ ist unerfüllbar ⇐⇒ Γ ⊢R ∅.

Hierbei ist ∅ die leere Klausel.

”
Γ ⊢R ∅“ bedeutet, dass es eine Resolutionswiderlegung von Γ gibt.

Zur Erinnerung hier die Definition des Begriffs der
Resolutionswiderlegungen:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 296

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Beispiel: Resolution

Die Kalkül-Schreibweise lässt sich auch dazu nutzen, eine elegante Darstellung
der Resolutionswiderlegungen zu anzugeben.

Zur Erinnerung:

• Eine Klausel ist eine endliche Menge von Literalen.

Ein Literal ist eine aussagenlogische Formel der Form X oder ¬X , wobei
X ∈ AS.

• Wir haben in Satz 2.59 gezeigt, dass für jede Menge Γ von Klauseln gilt:

Γ ist unerfüllbar ⇐⇒ Γ ⊢R ∅.

Hierbei ist ∅ die leere Klausel.

”
Γ ⊢R ∅“ bedeutet, dass es eine Resolutionswiderlegung von Γ gibt.

Zur Erinnerung hier die Definition des Begriffs der
Resolutionswiderlegungen:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 296

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Resolutionsableitungen und -widerlegungen

Definition 2.56
Sei Γ eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel δ aus Γ ist

ein Tupel (δ1, . . . , δℓ)
von Klauseln, so dass gilt: ℓ ⩾ 1, δℓ = δ, und für alle i ∈ [ℓ] ist

• δi ∈ Γ, oder

• es gibt j , k ∈ [i−1], so dass δi eine Resolvente von δj und δk ist.

(b) Eine Resolutionswiderlegung von Γ ist eine Resolutionsableitung der
leeren Klausel aus Γ.

Zur Erinnerung:
Eine Klausel δ ist genau dann eine Resolvente zweier Klauseln γ1 und γ2, wenn
es ein Literal λ gibt, so dass gilt:

λ ∈ γ1, λ ∈ γ2 und δ =
(
γ1 \ {λ}

)
∪

(
γ2 \ {λ }

)
.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 297

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Resolutionsableitungen und -widerlegungen

Definition 2.56
Sei Γ eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel δ aus Γ ist ein Tupel (δ1, . . . , δℓ)
von Klauseln, so dass gilt: ℓ ⩾ 1,

δℓ = δ, und für alle i ∈ [ℓ] ist

• δi ∈ Γ, oder

• es gibt j , k ∈ [i−1], so dass δi eine Resolvente von δj und δk ist.

(b) Eine Resolutionswiderlegung von Γ ist eine Resolutionsableitung der
leeren Klausel aus Γ.

Zur Erinnerung:
Eine Klausel δ ist genau dann eine Resolvente zweier Klauseln γ1 und γ2, wenn
es ein Literal λ gibt, so dass gilt:

λ ∈ γ1, λ ∈ γ2 und δ =
(
γ1 \ {λ}

)
∪

(
γ2 \ {λ }

)
.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 297

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Resolutionsableitungen und -widerlegungen

Definition 2.56
Sei Γ eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel δ aus Γ ist ein Tupel (δ1, . . . , δℓ)
von Klauseln, so dass gilt: ℓ ⩾ 1, δℓ = δ,

und für alle i ∈ [ℓ] ist

• δi ∈ Γ, oder

• es gibt j , k ∈ [i−1], so dass δi eine Resolvente von δj und δk ist.

(b) Eine Resolutionswiderlegung von Γ ist eine Resolutionsableitung der
leeren Klausel aus Γ.

Zur Erinnerung:
Eine Klausel δ ist genau dann eine Resolvente zweier Klauseln γ1 und γ2, wenn
es ein Literal λ gibt, so dass gilt:

λ ∈ γ1, λ ∈ γ2 und δ =
(
γ1 \ {λ}

)
∪

(
γ2 \ {λ }

)
.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 297

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Resolutionsableitungen und -widerlegungen

Definition 2.56
Sei Γ eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel δ aus Γ ist ein Tupel (δ1, . . . , δℓ)
von Klauseln, so dass gilt: ℓ ⩾ 1, δℓ = δ, und für alle i ∈ [ℓ] ist

• δi ∈ Γ, oder

• es gibt j , k ∈ [i−1], so dass δi eine Resolvente von δj und δk ist.

(b) Eine Resolutionswiderlegung von Γ ist eine Resolutionsableitung der
leeren Klausel aus Γ.

Zur Erinnerung:
Eine Klausel δ ist genau dann eine Resolvente zweier Klauseln γ1 und γ2, wenn
es ein Literal λ gibt, so dass gilt:

λ ∈ γ1, λ ∈ γ2 und δ =
(
γ1 \ {λ}

)
∪

(
γ2 \ {λ }

)
.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 297

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Resolutionsableitungen und -widerlegungen

Definition 2.56
Sei Γ eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel δ aus Γ ist ein Tupel (δ1, . . . , δℓ)
von Klauseln, so dass gilt: ℓ ⩾ 1, δℓ = δ, und für alle i ∈ [ℓ] ist

• δi ∈ Γ, oder

• es gibt j , k ∈ [i−1], so dass δi eine Resolvente von δj und δk ist.

(b) Eine Resolutionswiderlegung von Γ ist eine Resolutionsableitung der
leeren Klausel aus Γ.

Zur Erinnerung:
Eine Klausel δ ist genau dann eine Resolvente zweier Klauseln γ1 und γ2, wenn
es ein Literal λ gibt, so dass gilt:

λ ∈ γ1, λ ∈ γ2 und δ =
(
γ1 \ {λ}

)
∪

(
γ2 \ {λ }

)
.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 297

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Resolutionsableitungen und -widerlegungen

Definition 2.56
Sei Γ eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel δ aus Γ ist ein Tupel (δ1, . . . , δℓ)
von Klauseln, so dass gilt: ℓ ⩾ 1, δℓ = δ, und für alle i ∈ [ℓ] ist

• δi ∈ Γ, oder

• es gibt j , k ∈ [i−1], so dass δi eine Resolvente von δj und δk ist.

(b) Eine Resolutionswiderlegung von Γ ist eine Resolutionsableitung der
leeren Klausel aus Γ.

Zur Erinnerung:
Eine Klausel δ ist genau dann eine Resolvente zweier Klauseln γ1 und γ2, wenn
es ein Literal λ gibt, so dass gilt:

λ ∈ γ1, λ ∈ γ2 und δ =
(
γ1 \ {λ}

)
∪

(
γ2 \ {λ }

)
.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 297

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Resolutionsableitungen und -widerlegungen

Definition 2.56
Sei Γ eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel δ aus Γ ist ein Tupel (δ1, . . . , δℓ)
von Klauseln, so dass gilt: ℓ ⩾ 1, δℓ = δ, und für alle i ∈ [ℓ] ist

• δi ∈ Γ, oder

• es gibt j , k ∈ [i−1], so dass δi eine Resolvente von δj und δk ist.

(b) Eine Resolutionswiderlegung von Γ ist eine Resolutionsableitung der
leeren Klausel aus Γ.

Zur Erinnerung:
Eine Klausel δ ist genau dann eine Resolvente zweier Klauseln γ1 und γ2, wenn

es ein Literal λ gibt, so dass gilt:

λ ∈ γ1, λ ∈ γ2 und δ =
(
γ1 \ {λ}

)
∪

(
γ2 \ {λ }

)
.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 297

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Resolutionsableitungen und -widerlegungen

Definition 2.56
Sei Γ eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel δ aus Γ ist ein Tupel (δ1, . . . , δℓ)
von Klauseln, so dass gilt: ℓ ⩾ 1, δℓ = δ, und für alle i ∈ [ℓ] ist

• δi ∈ Γ, oder

• es gibt j , k ∈ [i−1], so dass δi eine Resolvente von δj und δk ist.

(b) Eine Resolutionswiderlegung von Γ ist eine Resolutionsableitung der
leeren Klausel aus Γ.

Zur Erinnerung:
Eine Klausel δ ist genau dann eine Resolvente zweier Klauseln γ1 und γ2, wenn
es ein Literal λ gibt, so dass gilt:

λ ∈ γ1, λ ∈ γ2 und δ =

(
γ1 \ {λ}

)
∪

(
γ2 \ {λ }

)
.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 297

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Resolutionsableitungen und -widerlegungen

Definition 2.56
Sei Γ eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel δ aus Γ ist ein Tupel (δ1, . . . , δℓ)
von Klauseln, so dass gilt: ℓ ⩾ 1, δℓ = δ, und für alle i ∈ [ℓ] ist

• δi ∈ Γ, oder

• es gibt j , k ∈ [i−1], so dass δi eine Resolvente von δj und δk ist.

(b) Eine Resolutionswiderlegung von Γ ist eine Resolutionsableitung der
leeren Klausel aus Γ.

Zur Erinnerung:
Eine Klausel δ ist genau dann eine Resolvente zweier Klauseln γ1 und γ2, wenn
es ein Literal λ gibt, so dass gilt:

λ ∈ γ1, λ ∈ γ2 und δ =
(
γ1 \ {λ}

)
∪

(
γ2 \ {λ }

)
.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 297

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Der Resolutionskalkül der Aussagenlogik

Gesucht: Ein Kalkül KR über der Menge aller Klauseln, so dass für jede
Klauselmenge Γ und jede Klausel δ gilt:

δ ∈ ablKR
(Γ) ⇐⇒ Γ ⊢R δ

d.h.: δ ist genau dann aus Γ in KR ableitbar, wenn es eine Resolutionsableitung
von δ aus Γ gibt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 298

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Der Kalkül KR wird Resolutionskalkül der Aussagenlogik genannt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 299

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Kalküle und abgeschlossene Mengen

Definition 4.5
Sei K ein Kalkül über einer Menge M.
Eine Menge A ⊆ M heißt abgeschlossen unter K, wenn für jede Ableitungsregel

a1 · · · an
b

in K gilt: Falls a1, . . . , an ∈ A, so ist auch b ∈ A.

Satz 4.6
Sei K ein Kalkül über einer Menge M und sei V ⊆ M.
Dann ist ablK(V) die bzgl.

”
⊆“ kleinste unter K abgeschlossene Menge, die V enthält.

D.h. es gilt:

(a) V ⊆ ablK(V).

(b) ablK(V) ist abgeschlossen unter K.

(c) Für jede Menge A mit V ⊆ A ⊆ M gilt:
Falls A abgeschlossen ist unter K, so ist ablK(V) ⊆ A.

(d) ablK(V) =
⋂

V⊆A⊆M,

A abgeschlossen unter K

A .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 300

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Kalküle und abgeschlossene Mengen

Definition 4.5
Sei K ein Kalkül über einer Menge M.
Eine Menge A ⊆ M heißt abgeschlossen unter K, wenn für jede Ableitungsregel

a1 · · · an
b

in K gilt: Falls a1, . . . , an ∈ A, so ist auch b ∈ A.

Satz 4.6
Sei K ein Kalkül über einer Menge M und sei V ⊆ M.
Dann ist ablK(V) die bzgl.

”
⊆“ kleinste unter K abgeschlossene Menge, die V enthält.

D.h. es gilt:

(a) V ⊆ ablK(V).

(b) ablK(V) ist abgeschlossen unter K.

(c) Für jede Menge A mit V ⊆ A ⊆ M gilt:
Falls A abgeschlossen ist unter K, so ist ablK(V) ⊆ A.

(d) ablK(V) =
⋂

V⊆A⊆M,

A abgeschlossen unter K

A .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 300

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Kalküle und abgeschlossene Mengen

Definition 4.5
Sei K ein Kalkül über einer Menge M.
Eine Menge A ⊆ M heißt abgeschlossen unter K, wenn für jede Ableitungsregel

a1 · · · an
b

in K gilt: Falls a1, . . . , an ∈ A, so ist auch b ∈ A.

Satz 4.6
Sei K ein Kalkül über einer Menge M und sei V ⊆ M.
Dann ist ablK(V) die bzgl.

”
⊆“ kleinste unter K abgeschlossene Menge, die V enthält.

D.h. es gilt:

(a) V ⊆ ablK(V).

(b) ablK(V) ist abgeschlossen unter K.

(c) Für jede Menge A mit V ⊆ A ⊆ M gilt:
Falls A abgeschlossen ist unter K, so ist ablK(V) ⊆ A.

(d) ablK(V) =
⋂

V⊆A⊆M,

A abgeschlossen unter K

A .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 300

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Kalküle und abgeschlossene Mengen

Definition 4.5
Sei K ein Kalkül über einer Menge M.
Eine Menge A ⊆ M heißt abgeschlossen unter K, wenn für jede Ableitungsregel

a1 · · · an
b

in K gilt: Falls a1, . . . , an ∈ A, so ist auch b ∈ A.

Satz 4.6
Sei K ein Kalkül über einer Menge M und sei V ⊆ M.
Dann ist ablK(V) die bzgl.

”
⊆“ kleinste unter K abgeschlossene Menge, die V enthält.

D.h. es gilt:

(a) V ⊆ ablK(V).

(b) ablK(V) ist abgeschlossen unter K.

(c) Für jede Menge A mit V ⊆ A ⊆ M gilt:
Falls A abgeschlossen ist unter K, so ist ablK(V) ⊆ A.

(d) ablK(V) =
⋂

V⊆A⊆M,

A abgeschlossen unter K

A .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 300

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Kalküle und abgeschlossene Mengen

Definition 4.5
Sei K ein Kalkül über einer Menge M.
Eine Menge A ⊆ M heißt abgeschlossen unter K, wenn für jede Ableitungsregel

a1 · · · an
b

in K gilt: Falls a1, . . . , an ∈ A, so ist auch b ∈ A.

Satz 4.6
Sei K ein Kalkül über einer Menge M und sei V ⊆ M.
Dann ist ablK(V) die bzgl.

”
⊆“ kleinste unter K abgeschlossene Menge, die V enthält.

D.h. es gilt:

(a) V ⊆ ablK(V).

(b) ablK(V) ist abgeschlossen unter K.

(c) Für jede Menge A mit V ⊆ A ⊆ M gilt:
Falls A abgeschlossen ist unter K, so ist ablK(V) ⊆ A.

(d) ablK(V) =
⋂

V⊆A⊆M,

A abgeschlossen unter K

A .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 300

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Induktionsprinzip für die ableitbaren Elemente eines Kalküls

Sei K ein Kalkül über einer Menge M und sei V ⊆ M. Um zu zeigen, dass eine
bestimmte Aussage A(a) für alle aus V in K ableitbaren Elemente a gilt, können wir
das Induktionsprinzip nutzen und einfach Folgendes zeigen:

(1) Die Aussage A(a) gilt für jedes a ∈ V , und

(2) für jede Ableitungsregel
a1 · · · an

b

in K gilt: Falls A(ai) für jedes i ∈ [n] gilt, so gilt auch A(b).
Daraus folgt laut dem nächsten Lemma dann, dass A(a) für jedes a ∈ ablK(V) gilt.

Lemma 4.7
Sei K ein Kalkül über einer Menge M und sei V ⊆ M. Falls

(1) eine Aussage A(a) für jedes a ∈ V gilt und

(2) für jede Ableitungsregel
a1 · · · an

b

in K gilt: falls A(ai) für jedes i ∈ [n] gilt, so gilt auch A(b),
dann gilt die Aussage A(a) für jedes a ∈ ablK(V).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 301

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Induktionsprinzip für die ableitbaren Elemente eines Kalküls

Sei K ein Kalkül über einer Menge M und sei V ⊆ M. Um zu zeigen, dass eine
bestimmte Aussage A(a) für alle aus V in K ableitbaren Elemente a gilt, können wir
das Induktionsprinzip nutzen und einfach Folgendes zeigen:

(1) Die Aussage A(a) gilt für jedes a ∈ V ,

und

(2) für jede Ableitungsregel
a1 · · · an

b

in K gilt: Falls A(ai) für jedes i ∈ [n] gilt, so gilt auch A(b).
Daraus folgt laut dem nächsten Lemma dann, dass A(a) für jedes a ∈ ablK(V) gilt.

Lemma 4.7
Sei K ein Kalkül über einer Menge M und sei V ⊆ M. Falls

(1) eine Aussage A(a) für jedes a ∈ V gilt und

(2) für jede Ableitungsregel
a1 · · · an

b

in K gilt: falls A(ai) für jedes i ∈ [n] gilt, so gilt auch A(b),
dann gilt die Aussage A(a) für jedes a ∈ ablK(V).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 301

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Induktionsprinzip für die ableitbaren Elemente eines Kalküls

Sei K ein Kalkül über einer Menge M und sei V ⊆ M. Um zu zeigen, dass eine
bestimmte Aussage A(a) für alle aus V in K ableitbaren Elemente a gilt, können wir
das Induktionsprinzip nutzen und einfach Folgendes zeigen:

(1) Die Aussage A(a) gilt für jedes a ∈ V , und

(2) für jede Ableitungsregel
a1 · · · an

b

in K gilt:

Falls A(ai) für jedes i ∈ [n] gilt, so gilt auch A(b).
Daraus folgt laut dem nächsten Lemma dann, dass A(a) für jedes a ∈ ablK(V) gilt.

Lemma 4.7
Sei K ein Kalkül über einer Menge M und sei V ⊆ M. Falls

(1) eine Aussage A(a) für jedes a ∈ V gilt und

(2) für jede Ableitungsregel
a1 · · · an

b

in K gilt: falls A(ai) für jedes i ∈ [n] gilt, so gilt auch A(b),
dann gilt die Aussage A(a) für jedes a ∈ ablK(V).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 301

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Induktionsprinzip für die ableitbaren Elemente eines Kalküls

Sei K ein Kalkül über einer Menge M und sei V ⊆ M. Um zu zeigen, dass eine
bestimmte Aussage A(a) für alle aus V in K ableitbaren Elemente a gilt, können wir
das Induktionsprinzip nutzen und einfach Folgendes zeigen:

(1) Die Aussage A(a) gilt für jedes a ∈ V , und

(2) für jede Ableitungsregel
a1 · · · an

b

in K gilt: Falls A(ai) für jedes i ∈ [n] gilt, so gilt auch A(b).

Daraus folgt laut dem nächsten Lemma dann, dass A(a) für jedes a ∈ ablK(V) gilt.

Lemma 4.7
Sei K ein Kalkül über einer Menge M und sei V ⊆ M. Falls

(1) eine Aussage A(a) für jedes a ∈ V gilt und

(2) für jede Ableitungsregel
a1 · · · an

b

in K gilt: falls A(ai) für jedes i ∈ [n] gilt, so gilt auch A(b),
dann gilt die Aussage A(a) für jedes a ∈ ablK(V).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 301

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Induktionsprinzip für die ableitbaren Elemente eines Kalküls

Sei K ein Kalkül über einer Menge M und sei V ⊆ M. Um zu zeigen, dass eine
bestimmte Aussage A(a) für alle aus V in K ableitbaren Elemente a gilt, können wir
das Induktionsprinzip nutzen und einfach Folgendes zeigen:

(1) Die Aussage A(a) gilt für jedes a ∈ V , und

(2) für jede Ableitungsregel
a1 · · · an

b

in K gilt: Falls A(ai) für jedes i ∈ [n] gilt, so gilt auch A(b).
Daraus folgt laut dem nächsten Lemma dann, dass A(a) für jedes a ∈ ablK(V) gilt.

Lemma 4.7
Sei K ein Kalkül über einer Menge M und sei V ⊆ M. Falls

(1) eine Aussage A(a) für jedes a ∈ V gilt und

(2) für jede Ableitungsregel
a1 · · · an

b

in K gilt: falls A(ai) für jedes i ∈ [n] gilt, so gilt auch A(b),
dann gilt die Aussage A(a) für jedes a ∈ ablK(V).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 301

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Induktionsprinzip für die ableitbaren Elemente eines Kalküls

Sei K ein Kalkül über einer Menge M und sei V ⊆ M. Um zu zeigen, dass eine
bestimmte Aussage A(a) für alle aus V in K ableitbaren Elemente a gilt, können wir
das Induktionsprinzip nutzen und einfach Folgendes zeigen:

(1) Die Aussage A(a) gilt für jedes a ∈ V , und

(2) für jede Ableitungsregel
a1 · · · an

b

in K gilt: Falls A(ai) für jedes i ∈ [n] gilt, so gilt auch A(b).
Daraus folgt laut dem nächsten Lemma dann, dass A(a) für jedes a ∈ ablK(V) gilt.

Lemma 4.7
Sei K ein Kalkül über einer Menge M und sei V ⊆ M. Falls

(1) eine Aussage A(a) für jedes a ∈ V gilt

und

(2) für jede Ableitungsregel
a1 · · · an

b

in K gilt: falls A(ai) für jedes i ∈ [n] gilt, so gilt auch A(b),
dann gilt die Aussage A(a) für jedes a ∈ ablK(V).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 301

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Induktionsprinzip für die ableitbaren Elemente eines Kalküls

Sei K ein Kalkül über einer Menge M und sei V ⊆ M. Um zu zeigen, dass eine
bestimmte Aussage A(a) für alle aus V in K ableitbaren Elemente a gilt, können wir
das Induktionsprinzip nutzen und einfach Folgendes zeigen:

(1) Die Aussage A(a) gilt für jedes a ∈ V , und

(2) für jede Ableitungsregel
a1 · · · an

b

in K gilt: Falls A(ai) für jedes i ∈ [n] gilt, so gilt auch A(b).
Daraus folgt laut dem nächsten Lemma dann, dass A(a) für jedes a ∈ ablK(V) gilt.

Lemma 4.7
Sei K ein Kalkül über einer Menge M und sei V ⊆ M. Falls

(1) eine Aussage A(a) für jedes a ∈ V gilt und

(2) für jede Ableitungsregel
a1 · · · an

b

in K gilt: falls A(ai) für jedes i ∈ [n] gilt, so gilt auch A(b),

dann gilt die Aussage A(a) für jedes a ∈ ablK(V).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 301

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Induktionsprinzip für die ableitbaren Elemente eines Kalküls

Sei K ein Kalkül über einer Menge M und sei V ⊆ M. Um zu zeigen, dass eine
bestimmte Aussage A(a) für alle aus V in K ableitbaren Elemente a gilt, können wir
das Induktionsprinzip nutzen und einfach Folgendes zeigen:

(1) Die Aussage A(a) gilt für jedes a ∈ V , und

(2) für jede Ableitungsregel
a1 · · · an

b

in K gilt: Falls A(ai) für jedes i ∈ [n] gilt, so gilt auch A(b).
Daraus folgt laut dem nächsten Lemma dann, dass A(a) für jedes a ∈ ablK(V) gilt.

Lemma 4.7
Sei K ein Kalkül über einer Menge M und sei V ⊆ M. Falls

(1) eine Aussage A(a) für jedes a ∈ V gilt und

(2) für jede Ableitungsregel
a1 · · · an

b

in K gilt: falls A(ai) für jedes i ∈ [n] gilt, so gilt auch A(b),
dann gilt die Aussage A(a) für jedes a ∈ ablK(V).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 301

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Beweis.

Es seien (1) und (2) erfüllt.

Betrachte die Menge

A := { a ∈ M : die Aussage A(a) gilt } .

Wegen (1) ist V ⊆ A.

Wegen (2) ist A abgeschlossen unter K.

Aus Satz 4.6 folgt daher: ablK(V) ⊆ A.

Somit gilt die Aussage A(a) für jedes a ∈ ablK(V).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 302

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Beweis.

Es seien (1) und (2) erfüllt.

Betrachte die Menge

A := { a ∈ M : die Aussage A(a) gilt } .

Wegen (1) ist V ⊆ A.

Wegen (2) ist A abgeschlossen unter K.

Aus Satz 4.6 folgt daher: ablK(V) ⊆ A.

Somit gilt die Aussage A(a) für jedes a ∈ ablK(V).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 302

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Beweis.

Es seien (1) und (2) erfüllt.

Betrachte die Menge

A := { a ∈ M : die Aussage A(a) gilt } .

Wegen (1) ist V ⊆ A.

Wegen (2) ist A abgeschlossen unter K.

Aus Satz 4.6 folgt daher: ablK(V) ⊆ A.

Somit gilt die Aussage A(a) für jedes a ∈ ablK(V).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 302

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Beweis.

Es seien (1) und (2) erfüllt.

Betrachte die Menge

A := { a ∈ M : die Aussage A(a) gilt } .

Wegen (1) ist V ⊆ A.

Wegen (2) ist A abgeschlossen unter K.

Aus Satz 4.6 folgt daher: ablK(V) ⊆ A.

Somit gilt die Aussage A(a) für jedes a ∈ ablK(V).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 302

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.1: Kalküle und Ableitungen

Beweis.

Es seien (1) und (2) erfüllt.

Betrachte die Menge

A := { a ∈ M : die Aussage A(a) gilt } .

Wegen (1) ist V ⊆ A.

Wegen (2) ist A abgeschlossen unter K.

Aus Satz 4.6 folgt daher: ablK(V) ⊆ A.

Somit gilt die Aussage A(a) für jedes a ∈ ablK(V).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 302

Abschnitt 4.2:

Ein Beweiskalkül für die Logik erster
Stufe — der Vollständigkeitssatz

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Notation

• In diesem Kapitel sei σ eine beliebige fest gewählte Signatur.

• Der Einfachheit halber werden wir o.B.d.A. in diesem Kapitel nur FO[σ]-Formeln
betrachten, in denen das Symbol

”
→“ nicht vorkommt.

• t, u, t1, t2, t
′, u′, u′′, . . . bezeichnen immer σ-Terme.

• φ,ψ, χ, . . . bezeichnen immer FO[σ]-Formeln.

• Φ,Ψ,Φ1,Φ2,Ψ
′, . . . bezeichnen immer Mengen von FO[σ]-Formeln.

• Γ,∆, Γ′,∆1,∆2, . . . bezeichnen immer endliche Mengen von FO[σ]-Formeln.

• Für Φ ⊆ FO[σ] ist frei(Φ) :=
⋃
φ∈Φ

frei(φ).

Manchmal schreiben wir auch frei(Φ, φ) an Stelle von frei(Φ ∪ {φ}).

• Ist M eine Menge, so schreiben wir L ⊆e M, um auszudrücken, dass L eine
endliche Teilmenge von M ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 303

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Notation

• In diesem Kapitel sei σ eine beliebige fest gewählte Signatur.

• Der Einfachheit halber werden wir o.B.d.A. in diesem Kapitel nur FO[σ]-Formeln
betrachten, in denen das Symbol

”
→“ nicht vorkommt.

• t, u, t1, t2, t
′, u′, u′′, . . . bezeichnen immer σ-Terme.

• φ,ψ, χ, . . . bezeichnen immer FO[σ]-Formeln.

• Φ,Ψ,Φ1,Φ2,Ψ
′, . . . bezeichnen immer Mengen von FO[σ]-Formeln.

• Γ,∆, Γ′,∆1,∆2, . . . bezeichnen immer endliche Mengen von FO[σ]-Formeln.

• Für Φ ⊆ FO[σ] ist frei(Φ) :=
⋃
φ∈Φ

frei(φ).

Manchmal schreiben wir auch frei(Φ, φ) an Stelle von frei(Φ ∪ {φ}).

• Ist M eine Menge, so schreiben wir L ⊆e M, um auszudrücken, dass L eine
endliche Teilmenge von M ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 303

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Notation

• In diesem Kapitel sei σ eine beliebige fest gewählte Signatur.

• Der Einfachheit halber werden wir o.B.d.A. in diesem Kapitel nur FO[σ]-Formeln
betrachten, in denen das Symbol

”
→“ nicht vorkommt.

• t, u, t1, t2, t
′, u′, u′′, . . . bezeichnen immer σ-Terme.

• φ,ψ, χ, . . . bezeichnen immer FO[σ]-Formeln.

• Φ,Ψ,Φ1,Φ2,Ψ
′, . . . bezeichnen immer Mengen von FO[σ]-Formeln.

• Γ,∆, Γ′,∆1,∆2, . . . bezeichnen immer endliche Mengen von FO[σ]-Formeln.

• Für Φ ⊆ FO[σ] ist frei(Φ) :=
⋃
φ∈Φ

frei(φ).

Manchmal schreiben wir auch frei(Φ, φ) an Stelle von frei(Φ ∪ {φ}).

• Ist M eine Menge, so schreiben wir L ⊆e M, um auszudrücken, dass L eine
endliche Teilmenge von M ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 303

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Notation

• In diesem Kapitel sei σ eine beliebige fest gewählte Signatur.

• Der Einfachheit halber werden wir o.B.d.A. in diesem Kapitel nur FO[σ]-Formeln
betrachten, in denen das Symbol

”
→“ nicht vorkommt.

• t, u, t1, t2, t
′, u′, u′′, . . . bezeichnen immer σ-Terme.

• φ,ψ, χ, . . . bezeichnen immer FO[σ]-Formeln.

• Φ,Ψ,Φ1,Φ2,Ψ
′, . . . bezeichnen immer Mengen von FO[σ]-Formeln.

• Γ,∆, Γ′,∆1,∆2, . . . bezeichnen immer endliche Mengen von FO[σ]-Formeln.

• Für Φ ⊆ FO[σ] ist frei(Φ) :=
⋃
φ∈Φ

frei(φ).

Manchmal schreiben wir auch frei(Φ, φ) an Stelle von frei(Φ ∪ {φ}).

• Ist M eine Menge, so schreiben wir L ⊆e M, um auszudrücken, dass L eine
endliche Teilmenge von M ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 303

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Notation

• In diesem Kapitel sei σ eine beliebige fest gewählte Signatur.

• Der Einfachheit halber werden wir o.B.d.A. in diesem Kapitel nur FO[σ]-Formeln
betrachten, in denen das Symbol

”
→“ nicht vorkommt.

• t, u, t1, t2, t
′, u′, u′′, . . . bezeichnen immer σ-Terme.

• φ,ψ, χ, . . . bezeichnen immer FO[σ]-Formeln.

• Φ,Ψ,Φ1,Φ2,Ψ
′, . . . bezeichnen immer Mengen von FO[σ]-Formeln.

• Γ,∆, Γ′,∆1,∆2, . . . bezeichnen immer endliche Mengen von FO[σ]-Formeln.

• Für Φ ⊆ FO[σ] ist frei(Φ) :=
⋃
φ∈Φ

frei(φ).

Manchmal schreiben wir auch frei(Φ, φ) an Stelle von frei(Φ ∪ {φ}).

• Ist M eine Menge, so schreiben wir L ⊆e M, um auszudrücken, dass L eine
endliche Teilmenge von M ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 303

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Notation

• In diesem Kapitel sei σ eine beliebige fest gewählte Signatur.

• Der Einfachheit halber werden wir o.B.d.A. in diesem Kapitel nur FO[σ]-Formeln
betrachten, in denen das Symbol

”
→“ nicht vorkommt.

• t, u, t1, t2, t
′, u′, u′′, . . . bezeichnen immer σ-Terme.

• φ,ψ, χ, . . . bezeichnen immer FO[σ]-Formeln.

• Φ,Ψ,Φ1,Φ2,Ψ
′, . . . bezeichnen immer Mengen von FO[σ]-Formeln.

• Γ,∆, Γ′,∆1,∆2, . . . bezeichnen immer endliche Mengen von FO[σ]-Formeln.

• Für Φ ⊆ FO[σ] ist frei(Φ) :=
⋃
φ∈Φ

frei(φ).

Manchmal schreiben wir auch frei(Φ, φ) an Stelle von frei(Φ ∪ {φ}).

• Ist M eine Menge, so schreiben wir L ⊆e M, um auszudrücken, dass L eine
endliche Teilmenge von M ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 303

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Notation

• In diesem Kapitel sei σ eine beliebige fest gewählte Signatur.

• Der Einfachheit halber werden wir o.B.d.A. in diesem Kapitel nur FO[σ]-Formeln
betrachten, in denen das Symbol

”
→“ nicht vorkommt.

• t, u, t1, t2, t
′, u′, u′′, . . . bezeichnen immer σ-Terme.

• φ,ψ, χ, . . . bezeichnen immer FO[σ]-Formeln.

• Φ,Ψ,Φ1,Φ2,Ψ
′, . . . bezeichnen immer Mengen von FO[σ]-Formeln.

• Γ,∆, Γ′,∆1,∆2, . . . bezeichnen immer endliche Mengen von FO[σ]-Formeln.

• Für Φ ⊆ FO[σ] ist frei(Φ) :=
⋃
φ∈Φ

frei(φ).

Manchmal schreiben wir auch frei(Φ, φ) an Stelle von frei(Φ ∪ {φ}).

• Ist M eine Menge, so schreiben wir L ⊆e M, um auszudrücken, dass L eine
endliche Teilmenge von M ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 303

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Notation

• In diesem Kapitel sei σ eine beliebige fest gewählte Signatur.

• Der Einfachheit halber werden wir o.B.d.A. in diesem Kapitel nur FO[σ]-Formeln
betrachten, in denen das Symbol

”
→“ nicht vorkommt.

• t, u, t1, t2, t
′, u′, u′′, . . . bezeichnen immer σ-Terme.

• φ,ψ, χ, . . . bezeichnen immer FO[σ]-Formeln.

• Φ,Ψ,Φ1,Φ2,Ψ
′, . . . bezeichnen immer Mengen von FO[σ]-Formeln.

• Γ,∆, Γ′,∆1,∆2, . . . bezeichnen immer endliche Mengen von FO[σ]-Formeln.

• Für Φ ⊆ FO[σ] ist frei(Φ) :=
⋃
φ∈Φ

frei(φ).

Manchmal schreiben wir auch frei(Φ, φ) an Stelle von frei(Φ ∪ {φ}).

• Ist M eine Menge, so schreiben wir L ⊆e M, um auszudrücken, dass L eine
endliche Teilmenge von M ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 303

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Notation

• In diesem Kapitel sei σ eine beliebige fest gewählte Signatur.

• Der Einfachheit halber werden wir o.B.d.A. in diesem Kapitel nur FO[σ]-Formeln
betrachten, in denen das Symbol

”
→“ nicht vorkommt.

• t, u, t1, t2, t
′, u′, u′′, . . . bezeichnen immer σ-Terme.

• φ,ψ, χ, . . . bezeichnen immer FO[σ]-Formeln.

• Φ,Ψ,Φ1,Φ2,Ψ
′, . . . bezeichnen immer Mengen von FO[σ]-Formeln.

• Γ,∆, Γ′,∆1,∆2, . . . bezeichnen immer endliche Mengen von FO[σ]-Formeln.

• Für Φ ⊆ FO[σ] ist frei(Φ) :=
⋃
φ∈Φ

frei(φ).

Manchmal schreiben wir auch frei(Φ, φ) an Stelle von frei(Φ ∪ {φ}).

• Ist M eine Menge, so schreiben wir L ⊆e M, um auszudrücken, dass L eine
endliche Teilmenge von M ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 303

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Sequenzen

Definition 4.8

(a) Eine Sequenz ist ein Ausdruck der Form

Γ ⊢ ψ

wobei ψ ∈ FO[σ] und Γ ⊆e FO[σ] (d.h., Γ ist eine endliche Menge von
FO[σ]-Formeln).

Wir bezeichnen Γ als das Antezedens und ψ als das Sukzedens der Sequenz
Γ ⊢ ψ.

(b) Wir schreiben MS um die Menge aller Sequenzen zu bezeichnen, d.h.:

MS := { Γ ⊢ ψ : Γ ⊆e FO[σ], ψ ∈ FO[σ] }.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 304

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Sequenzen

Definition 4.8

(a) Eine Sequenz ist ein Ausdruck der Form

Γ ⊢ ψ

wobei ψ ∈ FO[σ] und Γ ⊆e FO[σ] (d.h., Γ ist eine endliche Menge von
FO[σ]-Formeln).

Wir bezeichnen Γ als das Antezedens

und ψ als das Sukzedens der Sequenz
Γ ⊢ ψ.

(b) Wir schreiben MS um die Menge aller Sequenzen zu bezeichnen, d.h.:

MS := { Γ ⊢ ψ : Γ ⊆e FO[σ], ψ ∈ FO[σ] }.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 304

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Sequenzen

Definition 4.8

(a) Eine Sequenz ist ein Ausdruck der Form

Γ ⊢ ψ

wobei ψ ∈ FO[σ] und Γ ⊆e FO[σ] (d.h., Γ ist eine endliche Menge von
FO[σ]-Formeln).

Wir bezeichnen Γ als das Antezedens und ψ als das Sukzedens der Sequenz
Γ ⊢ ψ.

(b) Wir schreiben MS um die Menge aller Sequenzen zu bezeichnen, d.h.:

MS := { Γ ⊢ ψ : Γ ⊆e FO[σ], ψ ∈ FO[σ] }.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 304

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Sequenzen

Definition 4.8

(a) Eine Sequenz ist ein Ausdruck der Form

Γ ⊢ ψ

wobei ψ ∈ FO[σ] und Γ ⊆e FO[σ] (d.h., Γ ist eine endliche Menge von
FO[σ]-Formeln).

Wir bezeichnen Γ als das Antezedens und ψ als das Sukzedens der Sequenz
Γ ⊢ ψ.

(b) Wir schreiben MS um die Menge aller Sequenzen zu bezeichnen, d.h.:

MS := { Γ ⊢ ψ : Γ ⊆e FO[σ], ψ ∈ FO[σ] }.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 304

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Korrektheit einer Sequenz

Definition 4.9
Eine Sequenz Γ ⊢ ψ heißt korrekt, falls gilt: Γ |=ψ.

Zur Erinnerung: Γ |=ψ bedeutet:

Für jede σ-Interpretation I gilt: Falls I |=Γ, so auch I |=ψ.

Beispiel:
Welche der folgenden Sequenzen sind korrekt für alle φ,ψ ∈ FO[σ] und alle
x , y ∈ VAR; welche sind nicht korrekt?

(1) { (¬φ ∨ ψ) , φ } ⊢ ψ

(2) ∅ ⊢ (φ ∨ ¬φ)

(3) { ∃x ∀y φ } ⊢ ∀y ∃x φ

(4) { ∀y ∃x x=y } ⊢ ∃x ∀y x=y

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 305

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Korrektheit einer Sequenz

Definition 4.9
Eine Sequenz Γ ⊢ ψ heißt korrekt, falls gilt: Γ |=ψ.

Zur Erinnerung: Γ |=ψ bedeutet:

Für jede σ-Interpretation I gilt: Falls I |=Γ, so auch I |=ψ.

Beispiel:
Welche der folgenden Sequenzen sind korrekt für alle φ,ψ ∈ FO[σ] und alle
x , y ∈ VAR; welche sind nicht korrekt?

(1) { (¬φ ∨ ψ) , φ } ⊢ ψ

(2) ∅ ⊢ (φ ∨ ¬φ)

(3) { ∃x ∀y φ } ⊢ ∀y ∃x φ

(4) { ∀y ∃x x=y } ⊢ ∃x ∀y x=y

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 305

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Korrektheit einer Sequenz

Definition 4.9
Eine Sequenz Γ ⊢ ψ heißt korrekt, falls gilt: Γ |=ψ.

Zur Erinnerung: Γ |=ψ bedeutet:

Für jede σ-Interpretation I gilt: Falls I |=Γ, so auch I |=ψ.

Beispiel:
Welche der folgenden Sequenzen sind korrekt für alle φ,ψ ∈ FO[σ] und alle
x , y ∈ VAR; welche sind nicht korrekt?

(1) { (¬φ ∨ ψ) , φ } ⊢ ψ

(2) ∅ ⊢ (φ ∨ ¬φ)

(3) { ∃x ∀y φ } ⊢ ∀y ∃x φ

(4) { ∀y ∃x x=y } ⊢ ∃x ∀y x=y

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 305

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Korrektheit einer Sequenz

Definition 4.9
Eine Sequenz Γ ⊢ ψ heißt korrekt, falls gilt: Γ |=ψ.

Zur Erinnerung: Γ |=ψ bedeutet:

Für jede σ-Interpretation I gilt: Falls I |=Γ, so auch I |=ψ.

Beispiel:
Welche der folgenden Sequenzen sind korrekt für alle φ,ψ ∈ FO[σ] und alle
x , y ∈ VAR; welche sind nicht korrekt?

(1) { (¬φ ∨ ψ) , φ } ⊢ ψ

(2) ∅ ⊢ (φ ∨ ¬φ)

(3) { ∃x ∀y φ } ⊢ ∀y ∃x φ

(4) { ∀y ∃x x=y } ⊢ ∃x ∀y x=y

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 305

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Korrektheit einer Sequenz

Definition 4.9
Eine Sequenz Γ ⊢ ψ heißt korrekt, falls gilt: Γ |=ψ.

Zur Erinnerung: Γ |=ψ bedeutet:

Für jede σ-Interpretation I gilt: Falls I |=Γ, so auch I |=ψ.

Beispiel:
Welche der folgenden Sequenzen sind korrekt für alle φ,ψ ∈ FO[σ] und alle
x , y ∈ VAR; welche sind nicht korrekt?

(1) { (¬φ ∨ ψ) , φ } ⊢ ψ

(2) ∅ ⊢ (φ ∨ ¬φ)

(3) { ∃x ∀y φ } ⊢ ∀y ∃x φ

(4) { ∀y ∃x x=y } ⊢ ∃x ∀y x=y

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 305

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Korrektheit einer Sequenz

Definition 4.9
Eine Sequenz Γ ⊢ ψ heißt korrekt, falls gilt: Γ |=ψ.

Zur Erinnerung: Γ |=ψ bedeutet:

Für jede σ-Interpretation I gilt: Falls I |=Γ, so auch I |=ψ.

Beispiel:
Welche der folgenden Sequenzen sind korrekt für alle φ,ψ ∈ FO[σ] und alle
x , y ∈ VAR; welche sind nicht korrekt?

(1) { (¬φ ∨ ψ) , φ } ⊢ ψ

(2) ∅ ⊢ (φ ∨ ¬φ)

(3) { ∃x ∀y φ } ⊢ ∀y ∃x φ

(4) { ∀y ∃x x=y } ⊢ ∃x ∀y x=y

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 305

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Ziel

Wir wollen im Folgenden einen Kalkül K über MS angeben, so dass gilt:

(1) K ist korrekt,

d.h. jede in K ableitbare Sequenz ist korrekt.

(2) K ist vollständig, d.h. jede korrekte Sequenz ist in K ableitbar.

(3) K ist effektiv, d.h. es gibt einen Algorithmus, der nach und nach genau die aus K
ableitbaren Sequenzen aufzählt.

Dies liefert dann insbesondere einen Algorithmus, der nach und nach alle
allgemeingültigen FO[σ]-Formeln aufzählt: Dazu lasse den gemäß (3) existierenden
Algorithmus laufen, und immer wenn dieser eine Sequenz der Form Γ ⊢ ψ mit Γ = ∅
ausgeben will, gib ψ aus.

Wegen (1) ist die Sequenz dann korrekt, d.h. es gilt ∅ |= ψ, und daher ist ψ
allgemeingültig.

Wegen (2) werden tatsächlich alle allgemeingültigen FO[σ]-Formeln aufgezählt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 306

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Ziel

Wir wollen im Folgenden einen Kalkül K über MS angeben, so dass gilt:

(1) K ist korrekt, d.h. jede in K ableitbare Sequenz ist korrekt.

(2) K ist vollständig, d.h. jede korrekte Sequenz ist in K ableitbar.

(3) K ist effektiv, d.h. es gibt einen Algorithmus, der nach und nach genau die aus K
ableitbaren Sequenzen aufzählt.

Dies liefert dann insbesondere einen Algorithmus, der nach und nach alle
allgemeingültigen FO[σ]-Formeln aufzählt: Dazu lasse den gemäß (3) existierenden
Algorithmus laufen, und immer wenn dieser eine Sequenz der Form Γ ⊢ ψ mit Γ = ∅
ausgeben will, gib ψ aus.

Wegen (1) ist die Sequenz dann korrekt, d.h. es gilt ∅ |= ψ, und daher ist ψ
allgemeingültig.

Wegen (2) werden tatsächlich alle allgemeingültigen FO[σ]-Formeln aufgezählt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 306

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Ziel

Wir wollen im Folgenden einen Kalkül K über MS angeben, so dass gilt:

(1) K ist korrekt, d.h. jede in K ableitbare Sequenz ist korrekt.

(2) K ist vollständig,

d.h. jede korrekte Sequenz ist in K ableitbar.

(3) K ist effektiv, d.h. es gibt einen Algorithmus, der nach und nach genau die aus K
ableitbaren Sequenzen aufzählt.

Dies liefert dann insbesondere einen Algorithmus, der nach und nach alle
allgemeingültigen FO[σ]-Formeln aufzählt: Dazu lasse den gemäß (3) existierenden
Algorithmus laufen, und immer wenn dieser eine Sequenz der Form Γ ⊢ ψ mit Γ = ∅
ausgeben will, gib ψ aus.

Wegen (1) ist die Sequenz dann korrekt, d.h. es gilt ∅ |= ψ, und daher ist ψ
allgemeingültig.

Wegen (2) werden tatsächlich alle allgemeingültigen FO[σ]-Formeln aufgezählt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 306

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Ziel

Wir wollen im Folgenden einen Kalkül K über MS angeben, so dass gilt:

(1) K ist korrekt, d.h. jede in K ableitbare Sequenz ist korrekt.

(2) K ist vollständig, d.h. jede korrekte Sequenz ist in K ableitbar.

(3) K ist effektiv, d.h. es gibt einen Algorithmus, der nach und nach genau die aus K
ableitbaren Sequenzen aufzählt.

Dies liefert dann insbesondere einen Algorithmus, der nach und nach alle
allgemeingültigen FO[σ]-Formeln aufzählt: Dazu lasse den gemäß (3) existierenden
Algorithmus laufen, und immer wenn dieser eine Sequenz der Form Γ ⊢ ψ mit Γ = ∅
ausgeben will, gib ψ aus.

Wegen (1) ist die Sequenz dann korrekt, d.h. es gilt ∅ |= ψ, und daher ist ψ
allgemeingültig.

Wegen (2) werden tatsächlich alle allgemeingültigen FO[σ]-Formeln aufgezählt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 306

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Ziel

Wir wollen im Folgenden einen Kalkül K über MS angeben, so dass gilt:

(1) K ist korrekt, d.h. jede in K ableitbare Sequenz ist korrekt.

(2) K ist vollständig, d.h. jede korrekte Sequenz ist in K ableitbar.

(3) K ist effektiv,

d.h. es gibt einen Algorithmus, der nach und nach genau die aus K
ableitbaren Sequenzen aufzählt.

Dies liefert dann insbesondere einen Algorithmus, der nach und nach alle
allgemeingültigen FO[σ]-Formeln aufzählt: Dazu lasse den gemäß (3) existierenden
Algorithmus laufen, und immer wenn dieser eine Sequenz der Form Γ ⊢ ψ mit Γ = ∅
ausgeben will, gib ψ aus.

Wegen (1) ist die Sequenz dann korrekt, d.h. es gilt ∅ |= ψ, und daher ist ψ
allgemeingültig.

Wegen (2) werden tatsächlich alle allgemeingültigen FO[σ]-Formeln aufgezählt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 306

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Ziel

Wir wollen im Folgenden einen Kalkül K über MS angeben, so dass gilt:

(1) K ist korrekt, d.h. jede in K ableitbare Sequenz ist korrekt.

(2) K ist vollständig, d.h. jede korrekte Sequenz ist in K ableitbar.

(3) K ist effektiv, d.h. es gibt einen Algorithmus, der nach und nach genau die aus K
ableitbaren Sequenzen aufzählt.

Dies liefert dann insbesondere einen Algorithmus, der nach und nach alle
allgemeingültigen FO[σ]-Formeln aufzählt: Dazu lasse den gemäß (3) existierenden
Algorithmus laufen, und immer wenn dieser eine Sequenz der Form Γ ⊢ ψ mit Γ = ∅
ausgeben will, gib ψ aus.

Wegen (1) ist die Sequenz dann korrekt, d.h. es gilt ∅ |= ψ, und daher ist ψ
allgemeingültig.

Wegen (2) werden tatsächlich alle allgemeingültigen FO[σ]-Formeln aufgezählt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 306

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Ziel

Wir wollen im Folgenden einen Kalkül K über MS angeben, so dass gilt:

(1) K ist korrekt, d.h. jede in K ableitbare Sequenz ist korrekt.

(2) K ist vollständig, d.h. jede korrekte Sequenz ist in K ableitbar.

(3) K ist effektiv, d.h. es gibt einen Algorithmus, der nach und nach genau die aus K
ableitbaren Sequenzen aufzählt.

Dies liefert dann insbesondere einen Algorithmus, der nach und nach alle
allgemeingültigen FO[σ]-Formeln aufzählt:

Dazu lasse den gemäß (3) existierenden
Algorithmus laufen, und immer wenn dieser eine Sequenz der Form Γ ⊢ ψ mit Γ = ∅
ausgeben will, gib ψ aus.

Wegen (1) ist die Sequenz dann korrekt, d.h. es gilt ∅ |= ψ, und daher ist ψ
allgemeingültig.

Wegen (2) werden tatsächlich alle allgemeingültigen FO[σ]-Formeln aufgezählt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 306

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Ziel

Wir wollen im Folgenden einen Kalkül K über MS angeben, so dass gilt:

(1) K ist korrekt, d.h. jede in K ableitbare Sequenz ist korrekt.

(2) K ist vollständig, d.h. jede korrekte Sequenz ist in K ableitbar.

(3) K ist effektiv, d.h. es gibt einen Algorithmus, der nach und nach genau die aus K
ableitbaren Sequenzen aufzählt.

Dies liefert dann insbesondere einen Algorithmus, der nach und nach alle
allgemeingültigen FO[σ]-Formeln aufzählt: Dazu lasse den gemäß (3) existierenden
Algorithmus laufen, und immer wenn dieser eine Sequenz der Form Γ ⊢ ψ mit Γ = ∅
ausgeben will, gib ψ aus.

Wegen (1) ist die Sequenz dann korrekt, d.h. es gilt ∅ |= ψ, und daher ist ψ
allgemeingültig.

Wegen (2) werden tatsächlich alle allgemeingültigen FO[σ]-Formeln aufgezählt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 306

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Ziel

Wir wollen im Folgenden einen Kalkül K über MS angeben, so dass gilt:

(1) K ist korrekt, d.h. jede in K ableitbare Sequenz ist korrekt.

(2) K ist vollständig, d.h. jede korrekte Sequenz ist in K ableitbar.

(3) K ist effektiv, d.h. es gibt einen Algorithmus, der nach und nach genau die aus K
ableitbaren Sequenzen aufzählt.

Dies liefert dann insbesondere einen Algorithmus, der nach und nach alle
allgemeingültigen FO[σ]-Formeln aufzählt: Dazu lasse den gemäß (3) existierenden
Algorithmus laufen, und immer wenn dieser eine Sequenz der Form Γ ⊢ ψ mit Γ = ∅
ausgeben will, gib ψ aus.

Wegen (1) ist die Sequenz dann korrekt, d.h. es gilt ∅ |= ψ, und daher ist ψ
allgemeingültig.

Wegen (2) werden tatsächlich alle allgemeingültigen FO[σ]-Formeln aufgezählt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 306

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Ziel

Wir wollen im Folgenden einen Kalkül K über MS angeben, so dass gilt:

(1) K ist korrekt, d.h. jede in K ableitbare Sequenz ist korrekt.

(2) K ist vollständig, d.h. jede korrekte Sequenz ist in K ableitbar.

(3) K ist effektiv, d.h. es gibt einen Algorithmus, der nach und nach genau die aus K
ableitbaren Sequenzen aufzählt.

Dies liefert dann insbesondere einen Algorithmus, der nach und nach alle
allgemeingültigen FO[σ]-Formeln aufzählt: Dazu lasse den gemäß (3) existierenden
Algorithmus laufen, und immer wenn dieser eine Sequenz der Form Γ ⊢ ψ mit Γ = ∅
ausgeben will, gib ψ aus.

Wegen (1) ist die Sequenz dann korrekt, d.h. es gilt ∅ |= ψ, und daher ist ψ
allgemeingültig.

Wegen (2) werden tatsächlich alle allgemeingültigen FO[σ]-Formeln aufgezählt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 306

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Notationen für Sequenzen

Wir schreiben kurz

• Γ, φ ⊢ ψ , um die Sequenz Γ ∪ {φ} ⊢ ψ zu bezeichnen.

• φ1, . . . , φn ⊢ ψ , um die Sequenz {φ1, . . . , φn} ⊢ ψ zu bezeichnen.

• ⊢ ψ , um die Sequenz ∅ ⊢ ψ zu bezeichnen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 307

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Notationen für Sequenzen

Wir schreiben kurz

• Γ, φ ⊢ ψ , um die Sequenz Γ ∪ {φ} ⊢ ψ zu bezeichnen.

• φ1, . . . , φn ⊢ ψ , um die Sequenz {φ1, . . . , φn} ⊢ ψ zu bezeichnen.

• ⊢ ψ , um die Sequenz ∅ ⊢ ψ zu bezeichnen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 307

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Notationen für Sequenzen

Wir schreiben kurz

• Γ, φ ⊢ ψ , um die Sequenz Γ ∪ {φ} ⊢ ψ zu bezeichnen.

• φ1, . . . , φn ⊢ ψ , um die Sequenz {φ1, . . . , φn} ⊢ ψ zu bezeichnen.

• ⊢ ψ , um die Sequenz ∅ ⊢ ψ zu bezeichnen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 307

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Sequenzenregeln

Eine Sequenzenregel ist eine Ableitungsregel über MS .

Sequenzenregeln der Form
a1 · · · an

b

schreiben wir meistens zeilenweise, als

a1
...
an
b

wobei jedes ai eine Sequenz der Form Γi ⊢ ψi ist,

und b eine Sequenz der Form ∆ ⊢ φ ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 308

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Sequenzenregeln

Eine Sequenzenregel ist eine Ableitungsregel über MS .

Sequenzenregeln der Form
a1 · · · an

b

schreiben wir meistens zeilenweise, als

a1
...
an
b

wobei jedes ai eine Sequenz der Form Γi ⊢ ψi ist,

und b eine Sequenz der Form ∆ ⊢ φ ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 308

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Sequenzenregeln

Eine Sequenzenregel ist eine Ableitungsregel über MS .

Sequenzenregeln der Form
a1 · · · an

b

schreiben wir meistens zeilenweise, als

a1
...
an
b

wobei jedes ai eine Sequenz der Form Γi ⊢ ψi ist,

und b eine Sequenz der Form ∆ ⊢ φ ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 308

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Sequenzenregeln

Eine Sequenzenregel ist eine Ableitungsregel über MS .

Sequenzenregeln der Form
a1 · · · an

b

schreiben wir meistens zeilenweise, als

a1
...
an
b

wobei jedes ai eine Sequenz der Form Γi ⊢ ψi ist,

und b eine Sequenz der Form ∆ ⊢ φ ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 308

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Definition 4.10

Eine Sequenzenregel
Γ1 ⊢ ψ1

...
Γn ⊢ ψn

∆ ⊢ φ

heißt korrekt, wenn Folgendes gilt:

Sind die Sequenzen Γi ⊢ ψi für alle
i ∈ {1, . . . , n} korrekt, so ist auch die Sequenz ∆ ⊢ φ korrekt.

Aus dem Induktionsprinzip für Kalküle (Lemma 4.7) folgt direkt:

Lemma 4.11
Ein Kalkül K über MS ist korrekt, falls jede Sequenzenregel in K korrekt ist.

Wir werden nun eine Reihe von korrekten Sequenzenregeln zusammentragen, die
alle zusammen dann den von uns gesuchten korrekten, vollständigen und
effektiven Kalkül über MS bilden werden.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 309

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Definition 4.10

Eine Sequenzenregel
Γ1 ⊢ ψ1

...
Γn ⊢ ψn

∆ ⊢ φ

heißt korrekt, wenn Folgendes gilt: Sind die Sequenzen Γi ⊢ ψi für alle
i ∈ {1, . . . , n} korrekt, so

ist auch die Sequenz ∆ ⊢ φ korrekt.

Aus dem Induktionsprinzip für Kalküle (Lemma 4.7) folgt direkt:

Lemma 4.11
Ein Kalkül K über MS ist korrekt, falls jede Sequenzenregel in K korrekt ist.

Wir werden nun eine Reihe von korrekten Sequenzenregeln zusammentragen, die
alle zusammen dann den von uns gesuchten korrekten, vollständigen und
effektiven Kalkül über MS bilden werden.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 309

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Definition 4.10

Eine Sequenzenregel
Γ1 ⊢ ψ1

...
Γn ⊢ ψn

∆ ⊢ φ

heißt korrekt, wenn Folgendes gilt: Sind die Sequenzen Γi ⊢ ψi für alle
i ∈ {1, . . . , n} korrekt, so ist auch die Sequenz ∆ ⊢ φ korrekt.

Aus dem Induktionsprinzip für Kalküle (Lemma 4.7) folgt direkt:

Lemma 4.11
Ein Kalkül K über MS ist korrekt, falls jede Sequenzenregel in K korrekt ist.

Wir werden nun eine Reihe von korrekten Sequenzenregeln zusammentragen, die
alle zusammen dann den von uns gesuchten korrekten, vollständigen und
effektiven Kalkül über MS bilden werden.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 309

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Definition 4.10

Eine Sequenzenregel
Γ1 ⊢ ψ1

...
Γn ⊢ ψn

∆ ⊢ φ

heißt korrekt, wenn Folgendes gilt: Sind die Sequenzen Γi ⊢ ψi für alle
i ∈ {1, . . . , n} korrekt, so ist auch die Sequenz ∆ ⊢ φ korrekt.

Aus dem Induktionsprinzip für Kalküle (Lemma 4.7) folgt direkt:

Lemma 4.11
Ein Kalkül K über MS ist korrekt, falls jede Sequenzenregel in K korrekt ist.

Wir werden nun eine Reihe von korrekten Sequenzenregeln zusammentragen, die
alle zusammen dann den von uns gesuchten korrekten, vollständigen und
effektiven Kalkül über MS bilden werden.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 309

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Definition 4.10

Eine Sequenzenregel
Γ1 ⊢ ψ1

...
Γn ⊢ ψn

∆ ⊢ φ

heißt korrekt, wenn Folgendes gilt: Sind die Sequenzen Γi ⊢ ψi für alle
i ∈ {1, . . . , n} korrekt, so ist auch die Sequenz ∆ ⊢ φ korrekt.

Aus dem Induktionsprinzip für Kalküle (Lemma 4.7) folgt direkt:

Lemma 4.11
Ein Kalkül K über MS ist korrekt, falls jede Sequenzenregel in K korrekt ist.

Wir werden nun eine Reihe von korrekten Sequenzenregeln zusammentragen, die
alle zusammen dann den von uns gesuchten korrekten, vollständigen und
effektiven Kalkül über MS bilden werden.
Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 309

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Grundregeln:

Für alle Γ, Γ′ ⊆e FO[σ] und alle φ ∈ FO[σ] betrachten wir die folgenden
Sequenzenregeln:

• Voraussetzungsregel (V):
Γ, φ ⊢ φ

• Erweiterungsregel (E):

Γ ⊢ φ
Γ′ ⊢ φ

falls Γ ⊆ Γ′

Lemma 4.12
Jede der Grundregeln (V) bzw. (E) ist korrekt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 310

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Grundregeln:

Für alle Γ, Γ′ ⊆e FO[σ] und alle φ ∈ FO[σ] betrachten wir die folgenden
Sequenzenregeln:

• Voraussetzungsregel (V):
Γ, φ ⊢ φ

• Erweiterungsregel (E):

Γ ⊢ φ
Γ′ ⊢ φ

falls Γ ⊆ Γ′

Lemma 4.12
Jede der Grundregeln (V) bzw. (E) ist korrekt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 310

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Grundregeln:

Für alle Γ, Γ′ ⊆e FO[σ] und alle φ ∈ FO[σ] betrachten wir die folgenden
Sequenzenregeln:

• Voraussetzungsregel (V):
Γ, φ ⊢ φ

• Erweiterungsregel (E):

Γ ⊢ φ
Γ′ ⊢ φ

falls Γ ⊆ Γ′

Lemma 4.12
Jede der Grundregeln (V) bzw. (E) ist korrekt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 310

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Grundregeln:

Für alle Γ, Γ′ ⊆e FO[σ] und alle φ ∈ FO[σ] betrachten wir die folgenden
Sequenzenregeln:

• Voraussetzungsregel (V):
Γ, φ ⊢ φ

• Erweiterungsregel (E):

Γ ⊢ φ
Γ′ ⊢ φ

falls Γ ⊆ Γ′

Lemma 4.12
Jede der Grundregeln (V) bzw. (E) ist korrekt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 310

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Ausagenlogische Regeln:

Für alle Γ ⊆e FO[σ] und alle φ,ψ, χ ∈ FO[σ] betrachten wir die folgenden
Sequenzenregeln:

• Fallunterscheidungsregel (FU):

Γ, ψ ⊢ φ
Γ,¬ψ ⊢ φ
Γ ⊢ φ

• Widerspruchsregel (W):

Γ ⊢ ψ
Γ ⊢ ¬ψ
Γ ⊢ φ

(für alle φ ∈ FO[σ])

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 311

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Ausagenlogische Regeln:

Für alle Γ ⊆e FO[σ] und alle φ,ψ, χ ∈ FO[σ] betrachten wir die folgenden
Sequenzenregeln:

• Fallunterscheidungsregel (FU):

Γ, ψ ⊢ φ
Γ,¬ψ ⊢ φ
Γ ⊢ φ

• Widerspruchsregel (W):

Γ ⊢ ψ
Γ ⊢ ¬ψ
Γ ⊢ φ

(für alle φ ∈ FO[σ])

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 311

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Ausagenlogische Regeln:

Für alle Γ ⊆e FO[σ] und alle φ,ψ, χ ∈ FO[σ] betrachten wir die folgenden
Sequenzenregeln:

• Fallunterscheidungsregel (FU):

Γ, ψ ⊢ φ
Γ,¬ψ ⊢ φ
Γ ⊢ φ

• Widerspruchsregel (W):

Γ ⊢ ψ
Γ ⊢ ¬ψ
Γ ⊢ φ

(für alle φ ∈ FO[σ])

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 311

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

• ∧-Einführung im Antezedens (∧A1), (∧A2):

Γ, φ ⊢ χ
Γ, (φ ∧ ψ) ⊢ χ

Γ, ψ ⊢ χ
Γ, (φ ∧ ψ) ⊢ χ

• ∧-Einführung im Sukzedens (∧S):

Γ ⊢ φ
Γ ⊢ ψ
Γ ⊢ (φ ∧ ψ)

• ∨-Einführung im Antezedens (∨A):

Γ, φ ⊢ χ
Γ, ψ ⊢ χ
Γ, (φ ∨ ψ) ⊢ χ

• ∨-Einführung im Sukzedens (∨S1), (∨S2):

Γ ⊢ φ
Γ ⊢ (φ ∨ ψ)

Γ ⊢ ψ
Γ ⊢ (φ ∨ ψ)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 312

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

• ∧-Einführung im Antezedens (∧A1), (∧A2):

Γ, φ ⊢ χ
Γ, (φ ∧ ψ) ⊢ χ

Γ, ψ ⊢ χ
Γ, (φ ∧ ψ) ⊢ χ

• ∧-Einführung im Sukzedens (∧S):

Γ ⊢ φ
Γ ⊢ ψ
Γ ⊢ (φ ∧ ψ)

• ∨-Einführung im Antezedens (∨A):

Γ, φ ⊢ χ
Γ, ψ ⊢ χ
Γ, (φ ∨ ψ) ⊢ χ

• ∨-Einführung im Sukzedens (∨S1), (∨S2):

Γ ⊢ φ
Γ ⊢ (φ ∨ ψ)

Γ ⊢ ψ
Γ ⊢ (φ ∨ ψ)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 312

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

• ∧-Einführung im Antezedens (∧A1), (∧A2):

Γ, φ ⊢ χ
Γ, (φ ∧ ψ) ⊢ χ

Γ, ψ ⊢ χ
Γ, (φ ∧ ψ) ⊢ χ

• ∧-Einführung im Sukzedens (∧S):

Γ ⊢ φ
Γ ⊢ ψ
Γ ⊢ (φ ∧ ψ)

• ∨-Einführung im Antezedens (∨A):

Γ, φ ⊢ χ
Γ, ψ ⊢ χ
Γ, (φ ∨ ψ) ⊢ χ

• ∨-Einführung im Sukzedens (∨S1), (∨S2):

Γ ⊢ φ
Γ ⊢ (φ ∨ ψ)

Γ ⊢ ψ
Γ ⊢ (φ ∨ ψ)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 312

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

• ∧-Einführung im Antezedens (∧A1), (∧A2):

Γ, φ ⊢ χ
Γ, (φ ∧ ψ) ⊢ χ

Γ, ψ ⊢ χ
Γ, (φ ∧ ψ) ⊢ χ

• ∧-Einführung im Sukzedens (∧S):

Γ ⊢ φ
Γ ⊢ ψ
Γ ⊢ (φ ∧ ψ)

• ∨-Einführung im Antezedens (∨A):

Γ, φ ⊢ χ
Γ, ψ ⊢ χ
Γ, (φ ∨ ψ) ⊢ χ

• ∨-Einführung im Sukzedens (∨S1), (∨S2):

Γ ⊢ φ
Γ ⊢ (φ ∨ ψ)

Γ ⊢ ψ
Γ ⊢ (φ ∨ ψ)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 312

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Lemma 4.13
Jede der aussagenlogischen Regeln (FU), (W), (∧A1), (∧A2), (∧S), (∨A),
(∨S1), (∨S2) ist korrekt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 313

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Substitutionen

Um weitere wichtige Sequenzenregeln einführen zu können, benötigen wir eine
Möglichkeit, für eine Variable x ∈ VAR und einen σ-Term t ∈ Tσ eine
FO[σ]-Formel φ so zu einer FO[σ]-Formel φ t

x abzuändern, dass gilt:

Die Formel φ t
x sagt über den Term t dasselbe aus, wie

die Formel φ über die Variable x.

Präzise: Es soll für jede σ-Interpretation I gelten:

I |= φ t
x ⇐⇒ I t

x |= φ. (2)

Dabei ist die σ-Interpretation I t
x für I = (A, β) wie folgt definiert:

I t
x := (A, β a

x), für a := JtKI .

Außerdem soll gelten:
φ x

x = φ. (3)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 314

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Substitutionen

Um weitere wichtige Sequenzenregeln einführen zu können, benötigen wir eine
Möglichkeit, für eine Variable x ∈ VAR und einen σ-Term t ∈ Tσ eine
FO[σ]-Formel φ so zu einer FO[σ]-Formel φ t

x abzuändern, dass gilt:

Die Formel φ t
x sagt über den Term t dasselbe aus, wie

die Formel φ über die Variable x.

Präzise: Es soll für jede σ-Interpretation I gelten:

I |= φ t
x ⇐⇒ I t

x |= φ. (2)

Dabei ist die σ-Interpretation I t
x für I = (A, β) wie folgt definiert:

I t
x := (A, β a

x), für a := JtKI .

Außerdem soll gelten:
φ x

x = φ. (3)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 314

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Substitutionen

Um weitere wichtige Sequenzenregeln einführen zu können, benötigen wir eine
Möglichkeit, für eine Variable x ∈ VAR und einen σ-Term t ∈ Tσ eine
FO[σ]-Formel φ so zu einer FO[σ]-Formel φ t

x abzuändern, dass gilt:

Die Formel φ t
x sagt über den Term t dasselbe aus, wie

die Formel φ über die Variable x.

Präzise: Es soll für jede σ-Interpretation I gelten:

I |= φ t
x ⇐⇒ I t

x |= φ. (2)

Dabei ist die σ-Interpretation I t
x für I = (A, β) wie folgt definiert:

I t
x := (A, β a

x), für a := JtKI .

Außerdem soll gelten:
φ x

x = φ. (3)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 314

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Substitutionen

Um weitere wichtige Sequenzenregeln einführen zu können, benötigen wir eine
Möglichkeit, für eine Variable x ∈ VAR und einen σ-Term t ∈ Tσ eine
FO[σ]-Formel φ so zu einer FO[σ]-Formel φ t

x abzuändern, dass gilt:

Die Formel φ t
x sagt über den Term t dasselbe aus, wie

die Formel φ über die Variable x.

Präzise: Es soll für jede σ-Interpretation I gelten:

I |= φ t
x ⇐⇒ I t

x |= φ. (2)

Dabei ist die σ-Interpretation I t
x für I = (A, β) wie folgt definiert:

I t
x := (A, β a

x), für a := JtKI .

Außerdem soll gelten:
φ x

x = φ. (3)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 314

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Um zu gewährleisten, dass (2) und (3) gilt, wählen wir zu gegebenem φ, t und
x die Formel φ t

x wie folgt:

• Falls t = x , so setze φ t
x := φ. Andernfalls gehe wie folgt vor:

• Sei y1, . . . , yℓ eine Liste aller Variablen aus var(t) ∪ {x}, die gebundene
Vorkommen in φ besitzen.

• Sei z1, . . . , zℓ eine Liste von Variablen ̸= x , die nicht in φ oder t
vorkommen.

• Sei φ′ die Formel, die aus φ entsteht, indem für jedes i ∈ {1, . . . , ℓ} jedes
gebundene Vorkommen der Variablen yi ersetzt wird durch die Variable zi .

• Sei φ t
x die Formel, die aus φ′ entsteht, indem jedes Vorkommen der

Variablen x durch den Term t ersetzt wird.

Lemma 4.14 (Substitutionslemma)
Für jede FO[σ]-Formel φ, jeden σ-Term t, jede Variable x ∈ VAR und jede
σ-Interpretation I gilt:

I |= φ t
x ⇐⇒ I t

x |= φ.

Beweis.
Übung.

Wir können nun weitere wichtige Sequenzenregeln formulieren:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 315

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Um zu gewährleisten, dass (2) und (3) gilt, wählen wir zu gegebenem φ, t und
x die Formel φ t

x wie folgt:
• Falls t = x , so

setze φ t
x := φ. Andernfalls gehe wie folgt vor:

• Sei y1, . . . , yℓ eine Liste aller Variablen aus var(t) ∪ {x}, die gebundene
Vorkommen in φ besitzen.

• Sei z1, . . . , zℓ eine Liste von Variablen ̸= x , die nicht in φ oder t
vorkommen.

• Sei φ′ die Formel, die aus φ entsteht, indem für jedes i ∈ {1, . . . , ℓ} jedes
gebundene Vorkommen der Variablen yi ersetzt wird durch die Variable zi .

• Sei φ t
x die Formel, die aus φ′ entsteht, indem jedes Vorkommen der

Variablen x durch den Term t ersetzt wird.

Lemma 4.14 (Substitutionslemma)
Für jede FO[σ]-Formel φ, jeden σ-Term t, jede Variable x ∈ VAR und jede
σ-Interpretation I gilt:

I |= φ t
x ⇐⇒ I t

x |= φ.

Beweis.
Übung.

Wir können nun weitere wichtige Sequenzenregeln formulieren:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 315

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Um zu gewährleisten, dass (2) und (3) gilt, wählen wir zu gegebenem φ, t und
x die Formel φ t

x wie folgt:
• Falls t = x , so setze φ t

x := φ.

Andernfalls gehe wie folgt vor:
• Sei y1, . . . , yℓ eine Liste aller Variablen aus var(t) ∪ {x}, die gebundene

Vorkommen in φ besitzen.
• Sei z1, . . . , zℓ eine Liste von Variablen ̸= x , die nicht in φ oder t

vorkommen.
• Sei φ′ die Formel, die aus φ entsteht, indem für jedes i ∈ {1, . . . , ℓ} jedes

gebundene Vorkommen der Variablen yi ersetzt wird durch die Variable zi .
• Sei φ t

x die Formel, die aus φ′ entsteht, indem jedes Vorkommen der
Variablen x durch den Term t ersetzt wird.

Lemma 4.14 (Substitutionslemma)
Für jede FO[σ]-Formel φ, jeden σ-Term t, jede Variable x ∈ VAR und jede
σ-Interpretation I gilt:

I |= φ t
x ⇐⇒ I t

x |= φ.

Beweis.
Übung.

Wir können nun weitere wichtige Sequenzenregeln formulieren:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 315

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Um zu gewährleisten, dass (2) und (3) gilt, wählen wir zu gegebenem φ, t und
x die Formel φ t

x wie folgt:
• Falls t = x , so setze φ t

x := φ. Andernfalls gehe wie folgt vor:
• Sei y1, . . . , yℓ eine Liste aller Variablen aus var(t) ∪ {x}, die gebundene
Vorkommen in φ besitzen.

• Sei z1, . . . , zℓ eine Liste von Variablen ̸= x , die nicht in φ oder t
vorkommen.

• Sei φ′ die Formel, die aus φ entsteht, indem für jedes i ∈ {1, . . . , ℓ} jedes
gebundene Vorkommen der Variablen yi ersetzt wird durch die Variable zi .

• Sei φ t
x die Formel, die aus φ′ entsteht, indem jedes Vorkommen der

Variablen x durch den Term t ersetzt wird.

Lemma 4.14 (Substitutionslemma)
Für jede FO[σ]-Formel φ, jeden σ-Term t, jede Variable x ∈ VAR und jede
σ-Interpretation I gilt:

I |= φ t
x ⇐⇒ I t

x |= φ.

Beweis.
Übung.

Wir können nun weitere wichtige Sequenzenregeln formulieren:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 315

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Um zu gewährleisten, dass (2) und (3) gilt, wählen wir zu gegebenem φ, t und
x die Formel φ t

x wie folgt:
• Falls t = x , so setze φ t

x := φ. Andernfalls gehe wie folgt vor:
• Sei y1, . . . , yℓ eine Liste aller Variablen aus var(t) ∪ {x}, die gebundene
Vorkommen in φ besitzen.

• Sei z1, . . . , zℓ eine Liste von Variablen ̸= x , die nicht in φ oder t
vorkommen.

• Sei φ′ die Formel, die aus φ entsteht, indem für jedes i ∈ {1, . . . , ℓ} jedes
gebundene Vorkommen der Variablen yi ersetzt wird durch die Variable zi .

• Sei φ t
x die Formel, die aus φ′ entsteht, indem jedes Vorkommen der

Variablen x durch den Term t ersetzt wird.

Lemma 4.14 (Substitutionslemma)
Für jede FO[σ]-Formel φ, jeden σ-Term t, jede Variable x ∈ VAR und jede
σ-Interpretation I gilt:

I |= φ t
x ⇐⇒ I t

x |= φ.

Beweis.
Übung.

Wir können nun weitere wichtige Sequenzenregeln formulieren:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 315

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Um zu gewährleisten, dass (2) und (3) gilt, wählen wir zu gegebenem φ, t und
x die Formel φ t

x wie folgt:
• Falls t = x , so setze φ t

x := φ. Andernfalls gehe wie folgt vor:
• Sei y1, . . . , yℓ eine Liste aller Variablen aus var(t) ∪ {x}, die gebundene
Vorkommen in φ besitzen.

• Sei z1, . . . , zℓ eine Liste von Variablen ̸= x , die nicht in φ oder t
vorkommen.

• Sei φ′ die Formel, die aus φ entsteht, indem für jedes i ∈ {1, . . . , ℓ} jedes
gebundene Vorkommen der Variablen yi ersetzt wird durch die Variable zi .

• Sei φ t
x die Formel, die aus φ′ entsteht, indem jedes Vorkommen der

Variablen x durch den Term t ersetzt wird.

Lemma 4.14 (Substitutionslemma)
Für jede FO[σ]-Formel φ, jeden σ-Term t, jede Variable x ∈ VAR und jede
σ-Interpretation I gilt:

I |= φ t
x ⇐⇒ I t

x |= φ.

Beweis.
Übung.

Wir können nun weitere wichtige Sequenzenregeln formulieren:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 315

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Um zu gewährleisten, dass (2) und (3) gilt, wählen wir zu gegebenem φ, t und
x die Formel φ t

x wie folgt:
• Falls t = x , so setze φ t

x := φ. Andernfalls gehe wie folgt vor:
• Sei y1, . . . , yℓ eine Liste aller Variablen aus var(t) ∪ {x}, die gebundene
Vorkommen in φ besitzen.

• Sei z1, . . . , zℓ eine Liste von Variablen ̸= x , die nicht in φ oder t
vorkommen.

• Sei φ′ die Formel, die aus φ entsteht, indem für jedes i ∈ {1, . . . , ℓ} jedes
gebundene Vorkommen der Variablen yi ersetzt wird durch die Variable zi .

• Sei φ t
x die Formel, die aus φ′ entsteht, indem jedes Vorkommen der

Variablen x durch den Term t ersetzt wird.

Lemma 4.14 (Substitutionslemma)
Für jede FO[σ]-Formel φ, jeden σ-Term t, jede Variable x ∈ VAR und jede
σ-Interpretation I gilt:

I |= φ t
x ⇐⇒ I t

x |= φ.

Beweis.
Übung.

Wir können nun weitere wichtige Sequenzenregeln formulieren:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 315

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Um zu gewährleisten, dass (2) und (3) gilt, wählen wir zu gegebenem φ, t und
x die Formel φ t

x wie folgt:
• Falls t = x , so setze φ t

x := φ. Andernfalls gehe wie folgt vor:
• Sei y1, . . . , yℓ eine Liste aller Variablen aus var(t) ∪ {x}, die gebundene
Vorkommen in φ besitzen.

• Sei z1, . . . , zℓ eine Liste von Variablen ̸= x , die nicht in φ oder t
vorkommen.

• Sei φ′ die Formel, die aus φ entsteht, indem für jedes i ∈ {1, . . . , ℓ} jedes
gebundene Vorkommen der Variablen yi ersetzt wird durch die Variable zi .

• Sei φ t
x die Formel, die aus φ′ entsteht, indem jedes Vorkommen der

Variablen x durch den Term t ersetzt wird.

Lemma 4.14 (Substitutionslemma)
Für jede FO[σ]-Formel φ, jeden σ-Term t, jede Variable x ∈ VAR und jede
σ-Interpretation I gilt:

I |= φ t
x ⇐⇒ I t

x |= φ.

Beweis.
Übung.

Wir können nun weitere wichtige Sequenzenregeln formulieren:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 315

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Um zu gewährleisten, dass (2) und (3) gilt, wählen wir zu gegebenem φ, t und
x die Formel φ t

x wie folgt:
• Falls t = x , so setze φ t

x := φ. Andernfalls gehe wie folgt vor:
• Sei y1, . . . , yℓ eine Liste aller Variablen aus var(t) ∪ {x}, die gebundene
Vorkommen in φ besitzen.

• Sei z1, . . . , zℓ eine Liste von Variablen ̸= x , die nicht in φ oder t
vorkommen.

• Sei φ′ die Formel, die aus φ entsteht, indem für jedes i ∈ {1, . . . , ℓ} jedes
gebundene Vorkommen der Variablen yi ersetzt wird durch die Variable zi .

• Sei φ t
x die Formel, die aus φ′ entsteht, indem jedes Vorkommen der

Variablen x durch den Term t ersetzt wird.

Lemma 4.14 (Substitutionslemma)
Für jede FO[σ]-Formel φ, jeden σ-Term t, jede Variable x ∈ VAR und jede
σ-Interpretation I gilt:

I |= φ t
x ⇐⇒ I t

x |= φ.

Beweis.
Übung.

Wir können nun weitere wichtige Sequenzenregeln formulieren:
Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 315

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Quantorenregeln:
Für alle Γ ⊆e FO[σ], alle φ,ψ ∈ FO[σ], alle x , y ∈ VAR und alle t ∈ Tσ

betrachten wir die folgenden Sequenzenregeln:
• ∀-Einführung im Antezedens (∀A):

Γ, φ t
x ⊢ ψ

Γ,∀xφ ⊢ ψ

• ∀-Einführung im Sukzedens (∀S):
Γ ⊢ φ y

x

Γ ⊢ ∀xφ falls y ̸∈ frei(Γ,∀xφ)

• ∃-Einführung im Antezedens (∃A):
Γ, φ y

x ⊢ ψ
Γ,∃xφ ⊢ ψ

falls y ̸∈ frei(Γ, ∃xφ, ψ)

• ∃-Einführung im Sukzedens (∃S):
Γ ⊢ φ t

x

Γ ⊢ ∃xφ

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 316

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Quantorenregeln:
Für alle Γ ⊆e FO[σ], alle φ,ψ ∈ FO[σ], alle x , y ∈ VAR und alle t ∈ Tσ

betrachten wir die folgenden Sequenzenregeln:
• ∀-Einführung im Antezedens (∀A):

Γ, φ t
x ⊢ ψ

Γ,∀xφ ⊢ ψ

• ∀-Einführung im Sukzedens (∀S):
Γ ⊢ φ y

x

Γ ⊢ ∀xφ falls y ̸∈ frei(Γ,∀xφ)

• ∃-Einführung im Antezedens (∃A):
Γ, φ y

x ⊢ ψ
Γ,∃xφ ⊢ ψ

falls y ̸∈ frei(Γ, ∃xφ, ψ)

• ∃-Einführung im Sukzedens (∃S):
Γ ⊢ φ t

x

Γ ⊢ ∃xφ

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 316

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Quantorenregeln:
Für alle Γ ⊆e FO[σ], alle φ,ψ ∈ FO[σ], alle x , y ∈ VAR und alle t ∈ Tσ

betrachten wir die folgenden Sequenzenregeln:
• ∀-Einführung im Antezedens (∀A):

Γ, φ t
x ⊢ ψ

Γ,∀xφ ⊢ ψ

• ∀-Einführung im Sukzedens (∀S):
Γ ⊢ φ y

x

Γ ⊢ ∀xφ falls y ̸∈ frei(Γ,∀xφ)

• ∃-Einführung im Antezedens (∃A):
Γ, φ y

x ⊢ ψ
Γ,∃xφ ⊢ ψ

falls y ̸∈ frei(Γ, ∃xφ, ψ)

• ∃-Einführung im Sukzedens (∃S):
Γ ⊢ φ t

x

Γ ⊢ ∃xφ

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 316

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Quantorenregeln:
Für alle Γ ⊆e FO[σ], alle φ,ψ ∈ FO[σ], alle x , y ∈ VAR und alle t ∈ Tσ

betrachten wir die folgenden Sequenzenregeln:
• ∀-Einführung im Antezedens (∀A):

Γ, φ t
x ⊢ ψ

Γ,∀xφ ⊢ ψ

• ∀-Einführung im Sukzedens (∀S):
Γ ⊢ φ y

x

Γ ⊢ ∀xφ falls y ̸∈ frei(Γ,∀xφ)

• ∃-Einführung im Antezedens (∃A):
Γ, φ y

x ⊢ ψ
Γ,∃xφ ⊢ ψ

falls y ̸∈ frei(Γ, ∃xφ, ψ)

• ∃-Einführung im Sukzedens (∃S):
Γ ⊢ φ t

x

Γ ⊢ ∃xφ
Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 316

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Lemma 4.15
Jede der Quantorenregeln (∀A), (∀S), (∃A), (∃S) ist korrekt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 317

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Gleichheitsregeln:

Für alle Γ ⊆e FO[σ], alle φ ∈ FO[σ], alle x ∈ VAR und alle t, u ∈ Tσ betrachten
wir die folgenden Sequenzenregeln:

• Reflexivität der Gleichheit (G):

Γ ⊢ t=t

• Substitutionsregel (S):
Γ ⊢ φ t

x

Γ, t=u ⊢ φ u
x

Lemma 4.16
Jede der Gleichheitsregeln (G) bzw. (S) ist korrekt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 318

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Gleichheitsregeln:

Für alle Γ ⊆e FO[σ], alle φ ∈ FO[σ], alle x ∈ VAR und alle t, u ∈ Tσ betrachten
wir die folgenden Sequenzenregeln:

• Reflexivität der Gleichheit (G):

Γ ⊢ t=t

• Substitutionsregel (S):
Γ ⊢ φ t

x

Γ, t=u ⊢ φ u
x

Lemma 4.16
Jede der Gleichheitsregeln (G) bzw. (S) ist korrekt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 318

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Gleichheitsregeln:

Für alle Γ ⊆e FO[σ], alle φ ∈ FO[σ], alle x ∈ VAR und alle t, u ∈ Tσ betrachten
wir die folgenden Sequenzenregeln:

• Reflexivität der Gleichheit (G):

Γ ⊢ t=t

• Substitutionsregel (S):
Γ ⊢ φ t

x

Γ, t=u ⊢ φ u
x

Lemma 4.16
Jede der Gleichheitsregeln (G) bzw. (S) ist korrekt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 318

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Der Sequenzenkalkül KS für die Logik erster Stufe

Definition 4.17
Der Sequenzenkalkül KS ist der Kalkül über der Menge MS aller Sequenzen, der
für alle Γ, Γ′ ⊆e FO[σ], alle φ,ψ, χ ∈ FO[σ], alle t, u ∈ Tσ und alle
x , y ∈ VAR aus

• den Grundregeln (V), (E),

• den aussagenlogischen Regeln

(FU), (W), (∧A1), (∧A2), (∧S), (∨A), (∨S1), (∨S2),
• den Quantorenregeln (∀A), (∀S), (∃A), (∃S)
• und den Gleichheitsregeln (G), (S)

besteht.

Aus der Korrektheit der Regeln des Sequenzenkalküls (Lemmas 4.12, 4.13, 4.15,
4.16) folgt mit Lemma 4.11:

Satz 4.18
Der Sequenzenkalkül KS ist korrekt,
d.h. jede in KS ableitbare Sequenz ist korrekt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 319

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Der Sequenzenkalkül KS für die Logik erster Stufe

Definition 4.17
Der Sequenzenkalkül KS ist der Kalkül über der Menge MS aller Sequenzen, der
für alle Γ, Γ′ ⊆e FO[σ], alle φ,ψ, χ ∈ FO[σ], alle t, u ∈ Tσ und alle
x , y ∈ VAR aus

• den Grundregeln (V), (E),

• den aussagenlogischen Regeln

(FU), (W), (∧A1), (∧A2), (∧S), (∨A), (∨S1), (∨S2),

• den Quantorenregeln (∀A), (∀S), (∃A), (∃S)
• und den Gleichheitsregeln (G), (S)

besteht.

Aus der Korrektheit der Regeln des Sequenzenkalküls (Lemmas 4.12, 4.13, 4.15,
4.16) folgt mit Lemma 4.11:

Satz 4.18
Der Sequenzenkalkül KS ist korrekt,
d.h. jede in KS ableitbare Sequenz ist korrekt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 319

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Der Sequenzenkalkül KS für die Logik erster Stufe

Definition 4.17
Der Sequenzenkalkül KS ist der Kalkül über der Menge MS aller Sequenzen, der
für alle Γ, Γ′ ⊆e FO[σ], alle φ,ψ, χ ∈ FO[σ], alle t, u ∈ Tσ und alle
x , y ∈ VAR aus

• den Grundregeln (V), (E),

• den aussagenlogischen Regeln

(FU), (W), (∧A1), (∧A2), (∧S), (∨A), (∨S1), (∨S2),
• den Quantorenregeln (∀A), (∀S), (∃A), (∃S)

• und den Gleichheitsregeln (G), (S)

besteht.

Aus der Korrektheit der Regeln des Sequenzenkalküls (Lemmas 4.12, 4.13, 4.15,
4.16) folgt mit Lemma 4.11:

Satz 4.18
Der Sequenzenkalkül KS ist korrekt,
d.h. jede in KS ableitbare Sequenz ist korrekt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 319

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Der Sequenzenkalkül KS für die Logik erster Stufe

Definition 4.17
Der Sequenzenkalkül KS ist der Kalkül über der Menge MS aller Sequenzen, der
für alle Γ, Γ′ ⊆e FO[σ], alle φ,ψ, χ ∈ FO[σ], alle t, u ∈ Tσ und alle
x , y ∈ VAR aus

• den Grundregeln (V), (E),

• den aussagenlogischen Regeln

(FU), (W), (∧A1), (∧A2), (∧S), (∨A), (∨S1), (∨S2),
• den Quantorenregeln (∀A), (∀S), (∃A), (∃S)
• und den Gleichheitsregeln (G), (S)

besteht.

Aus der Korrektheit der Regeln des Sequenzenkalküls (Lemmas 4.12, 4.13, 4.15,
4.16) folgt mit Lemma 4.11:

Satz 4.18
Der Sequenzenkalkül KS ist korrekt,
d.h. jede in KS ableitbare Sequenz ist korrekt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 319

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Der Sequenzenkalkül KS für die Logik erster Stufe

Definition 4.17
Der Sequenzenkalkül KS ist der Kalkül über der Menge MS aller Sequenzen, der
für alle Γ, Γ′ ⊆e FO[σ], alle φ,ψ, χ ∈ FO[σ], alle t, u ∈ Tσ und alle
x , y ∈ VAR aus

• den Grundregeln (V), (E),

• den aussagenlogischen Regeln

(FU), (W), (∧A1), (∧A2), (∧S), (∨A), (∨S1), (∨S2),
• den Quantorenregeln (∀A), (∀S), (∃A), (∃S)
• und den Gleichheitsregeln (G), (S)

besteht.

Aus der Korrektheit der Regeln des Sequenzenkalküls (Lemmas 4.12, 4.13, 4.15,
4.16) folgt mit Lemma 4.11:

Satz 4.18
Der Sequenzenkalkül KS ist korrekt

,
d.h. jede in KS ableitbare Sequenz ist korrekt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 319

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Der Sequenzenkalkül KS für die Logik erster Stufe

Definition 4.17
Der Sequenzenkalkül KS ist der Kalkül über der Menge MS aller Sequenzen, der
für alle Γ, Γ′ ⊆e FO[σ], alle φ,ψ, χ ∈ FO[σ], alle t, u ∈ Tσ und alle
x , y ∈ VAR aus

• den Grundregeln (V), (E),

• den aussagenlogischen Regeln

(FU), (W), (∧A1), (∧A2), (∧S), (∨A), (∨S1), (∨S2),
• den Quantorenregeln (∀A), (∀S), (∃A), (∃S)
• und den Gleichheitsregeln (G), (S)

besteht.

Aus der Korrektheit der Regeln des Sequenzenkalküls (Lemmas 4.12, 4.13, 4.15,
4.16) folgt mit Lemma 4.11:

Satz 4.18
Der Sequenzenkalkül KS ist korrekt,
d.h. jede in KS ableitbare Sequenz ist korrekt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 319

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Außerdem sieht man anhand der Definition der einzelnen Regeln leicht, dass es
einen Algorithmus gibt, der bei Eingabe einer Zahl ℓ ⩾ 1 und einer Folge
(a1, . . . , aℓ) ∈ Mℓ

S entscheidet, ob (a1, . . . , aℓ) eine Ableitung in KS ist.

Für abzählbare Signaturen σ kann man außerdem einen Algorithmus angeben,
der nach und nach alle Folgen in {(a1, . . . , aℓ) ∈ Mℓ

S : ℓ ⩾ 1} ausgibt.

Beides zusammen liefert für abzählbare Signaturen σ, dass der Sequenzenkalkül
KS effektiv ist.
Details: Übung.

Unser nächstes Ziel ist, zu zeigen, dass der Sequenzenkalkül KS auch vollständig
ist, d.h. dass es für jede korrekte Sequenz eine Ableitung in KS gibt.

Dazu betrachten wir zunächst einige Beispiele für Ableitungen im
Sequenzenkalkül KS .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 320

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Außerdem sieht man anhand der Definition der einzelnen Regeln leicht, dass es
einen Algorithmus gibt, der bei Eingabe einer Zahl ℓ ⩾ 1 und einer Folge
(a1, . . . , aℓ) ∈ Mℓ

S entscheidet, ob (a1, . . . , aℓ) eine Ableitung in KS ist.

Für abzählbare Signaturen σ kann man außerdem einen Algorithmus angeben,
der nach und nach alle Folgen in {(a1, . . . , aℓ) ∈ Mℓ

S : ℓ ⩾ 1} ausgibt.

Beides zusammen liefert für abzählbare Signaturen σ, dass der Sequenzenkalkül
KS effektiv ist.
Details: Übung.

Unser nächstes Ziel ist, zu zeigen, dass der Sequenzenkalkül KS auch vollständig
ist, d.h. dass es für jede korrekte Sequenz eine Ableitung in KS gibt.

Dazu betrachten wir zunächst einige Beispiele für Ableitungen im
Sequenzenkalkül KS .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 320

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Außerdem sieht man anhand der Definition der einzelnen Regeln leicht, dass es
einen Algorithmus gibt, der bei Eingabe einer Zahl ℓ ⩾ 1 und einer Folge
(a1, . . . , aℓ) ∈ Mℓ

S entscheidet, ob (a1, . . . , aℓ) eine Ableitung in KS ist.

Für abzählbare Signaturen σ kann man außerdem einen Algorithmus angeben,
der nach und nach alle Folgen in {(a1, . . . , aℓ) ∈ Mℓ

S : ℓ ⩾ 1} ausgibt.

Beides zusammen liefert für abzählbare Signaturen σ, dass der Sequenzenkalkül
KS effektiv ist.

Details: Übung.

Unser nächstes Ziel ist, zu zeigen, dass der Sequenzenkalkül KS auch vollständig
ist, d.h. dass es für jede korrekte Sequenz eine Ableitung in KS gibt.

Dazu betrachten wir zunächst einige Beispiele für Ableitungen im
Sequenzenkalkül KS .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 320

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Außerdem sieht man anhand der Definition der einzelnen Regeln leicht, dass es
einen Algorithmus gibt, der bei Eingabe einer Zahl ℓ ⩾ 1 und einer Folge
(a1, . . . , aℓ) ∈ Mℓ

S entscheidet, ob (a1, . . . , aℓ) eine Ableitung in KS ist.

Für abzählbare Signaturen σ kann man außerdem einen Algorithmus angeben,
der nach und nach alle Folgen in {(a1, . . . , aℓ) ∈ Mℓ

S : ℓ ⩾ 1} ausgibt.

Beides zusammen liefert für abzählbare Signaturen σ, dass der Sequenzenkalkül
KS effektiv ist.
Details: Übung.

Unser nächstes Ziel ist, zu zeigen, dass der Sequenzenkalkül KS auch vollständig
ist, d.h. dass es für jede korrekte Sequenz eine Ableitung in KS gibt.

Dazu betrachten wir zunächst einige Beispiele für Ableitungen im
Sequenzenkalkül KS .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 320

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Außerdem sieht man anhand der Definition der einzelnen Regeln leicht, dass es
einen Algorithmus gibt, der bei Eingabe einer Zahl ℓ ⩾ 1 und einer Folge
(a1, . . . , aℓ) ∈ Mℓ

S entscheidet, ob (a1, . . . , aℓ) eine Ableitung in KS ist.

Für abzählbare Signaturen σ kann man außerdem einen Algorithmus angeben,
der nach und nach alle Folgen in {(a1, . . . , aℓ) ∈ Mℓ

S : ℓ ⩾ 1} ausgibt.

Beides zusammen liefert für abzählbare Signaturen σ, dass der Sequenzenkalkül
KS effektiv ist.
Details: Übung.

Unser nächstes Ziel ist, zu zeigen, dass der Sequenzenkalkül KS auch vollständig
ist, d.h. dass es für jede korrekte Sequenz eine Ableitung in KS gibt.

Dazu betrachten wir zunächst einige Beispiele für Ableitungen im
Sequenzenkalkül KS .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 320

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Außerdem sieht man anhand der Definition der einzelnen Regeln leicht, dass es
einen Algorithmus gibt, der bei Eingabe einer Zahl ℓ ⩾ 1 und einer Folge
(a1, . . . , aℓ) ∈ Mℓ

S entscheidet, ob (a1, . . . , aℓ) eine Ableitung in KS ist.

Für abzählbare Signaturen σ kann man außerdem einen Algorithmus angeben,
der nach und nach alle Folgen in {(a1, . . . , aℓ) ∈ Mℓ

S : ℓ ⩾ 1} ausgibt.

Beides zusammen liefert für abzählbare Signaturen σ, dass der Sequenzenkalkül
KS effektiv ist.
Details: Übung.

Unser nächstes Ziel ist, zu zeigen, dass der Sequenzenkalkül KS auch vollständig
ist, d.h. dass es für jede korrekte Sequenz eine Ableitung in KS gibt.

Dazu betrachten wir zunächst einige Beispiele für Ableitungen im
Sequenzenkalkül KS .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 320

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Darstellung von Ableitungen

Am Anfang des Kapitels haben wir bereits vereinbart, dass wir ähnlich wie bei
Resolutionsableitungen auch allgemein für einen Kalkül K über einer Menge M
Ableitungen (a1, . . . , aℓ) der besseren Lesbarkeit halber oft zeilenweise
schreiben, also

(1) a1
(2) a2
...

(ℓ) aℓ

und am Ende jeder Zeile eine kurze Begründung angeben.

Im Folgenden betrachten wir einige Beispiele für Ableitungen im
Sequenzenkalkül KS .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 321

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Darstellung von Ableitungen

Am Anfang des Kapitels haben wir bereits vereinbart, dass wir ähnlich wie bei
Resolutionsableitungen auch allgemein für einen Kalkül K über einer Menge M
Ableitungen (a1, . . . , aℓ) der besseren Lesbarkeit halber oft zeilenweise
schreiben, also

(1) a1
(2) a2
...

(ℓ) aℓ

und am Ende jeder Zeile eine kurze Begründung angeben.

Im Folgenden betrachten wir einige Beispiele für Ableitungen im
Sequenzenkalkül KS .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 321

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Beispiele 4.19

(a) Für jedes Γ ⊆e FO[σ] und jedes φ ∈ FO[σ] ist die Sequenz
Γ ⊢ (φ ∨ ¬φ) ableitbar in KS :

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 322

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Beweisbarkeit: Φ ⊢KS
φ

Definition 4.20
Sei Φ ⊆ FO[σ] und sei φ ∈ FO[σ].
Die Formel φ heißt beweisbar aus Φ (kurz: Φ ⊢KS

φ), wenn es ein Γ ⊆e Φ gibt,
so dass die Sequenz Γ ⊢ φ in KS ableitbar ist.

Ein Beweis von φ aus Φ ist eine Ableitung einer Sequenz Γ ⊢ φ in KS , wobei
Γ ⊆e Φ ist.

Notation
An Stelle von ∅ ⊢KS

φ schreiben wir auch kurz: ⊢KS
φ.

Aus der Korrektheit des Sequenzenkalküls KS (Satz 4.18) folgt:

Korollar 4.21
Für jede FO[σ]-Formel φ und für jede Formelmenge Φ ⊆ FO[σ] gilt:

Φ ⊢KS
φ =⇒ Φ |= φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 323

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Beweisbarkeit: Φ ⊢KS
φ

Definition 4.20
Sei Φ ⊆ FO[σ] und sei φ ∈ FO[σ].
Die Formel φ heißt beweisbar aus Φ (kurz: Φ ⊢KS

φ), wenn es ein Γ ⊆e Φ gibt,
so dass die Sequenz Γ ⊢ φ in KS ableitbar ist.

Ein Beweis von φ aus Φ ist eine Ableitung einer Sequenz Γ ⊢ φ in KS , wobei
Γ ⊆e Φ ist.

Notation
An Stelle von ∅ ⊢KS

φ schreiben wir auch kurz: ⊢KS
φ.

Aus der Korrektheit des Sequenzenkalküls KS (Satz 4.18) folgt:

Korollar 4.21
Für jede FO[σ]-Formel φ und für jede Formelmenge Φ ⊆ FO[σ] gilt:

Φ ⊢KS
φ =⇒ Φ |= φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 323

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Beweisbarkeit: Φ ⊢KS
φ

Definition 4.20
Sei Φ ⊆ FO[σ] und sei φ ∈ FO[σ].
Die Formel φ heißt beweisbar aus Φ (kurz: Φ ⊢KS

φ), wenn es ein Γ ⊆e Φ gibt,
so dass die Sequenz Γ ⊢ φ in KS ableitbar ist.

Ein Beweis von φ aus Φ ist eine Ableitung einer Sequenz Γ ⊢ φ in KS , wobei
Γ ⊆e Φ ist.

Notation
An Stelle von ∅ ⊢KS

φ schreiben wir auch kurz: ⊢KS
φ.

Aus der Korrektheit des Sequenzenkalküls KS (Satz 4.18) folgt:

Korollar 4.21
Für jede FO[σ]-Formel φ und für jede Formelmenge Φ ⊆ FO[σ] gilt:

Φ ⊢KS
φ =⇒ Φ |= φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 323

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Beweisbarkeit: Φ ⊢KS
φ

Definition 4.20
Sei Φ ⊆ FO[σ] und sei φ ∈ FO[σ].
Die Formel φ heißt beweisbar aus Φ (kurz: Φ ⊢KS

φ), wenn es ein Γ ⊆e Φ gibt,
so dass die Sequenz Γ ⊢ φ in KS ableitbar ist.

Ein Beweis von φ aus Φ ist eine Ableitung einer Sequenz Γ ⊢ φ in KS , wobei
Γ ⊆e Φ ist.

Notation
An Stelle von ∅ ⊢KS

φ schreiben wir auch kurz: ⊢KS
φ.

Aus der Korrektheit des Sequenzenkalküls KS (Satz 4.18) folgt:

Korollar 4.21
Für jede FO[σ]-Formel φ und für jede Formelmenge Φ ⊆ FO[σ] gilt:

Φ ⊢KS
φ =⇒ Φ |= φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 323

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Widerspruchsfreiheit

In der Mathematik nennen wir eine Menge von Aussagen widerspruchsvoll, falls
sich daraus ein Widerspruch (d.h. eine bestimmte Aussage und deren Negat)
herleiten lässt.

Wenn wir unter
”
herleiten“ einen Beweis im Sequenzenkalkül KS verstehen,

ergibt sich folgender Begriff:

Definition 4.22
Sei Φ ⊆ FO[σ].

(a) Φ heißt widerspruchsvoll, falls es eine FO[σ]-Formel φ gibt, so dass
Φ ⊢KS

φ und Φ ⊢KS
¬φ.

(b) Φ heißt widerspruchsfrei, falls Φ nicht widerspruchsvoll ist.

Aus der Korrektheit des Sequenzenkalküls folgt, dass erfüllbare Formelmengen
widerspruchsfrei sind:

Korollar 4.23
Für alle Φ ⊆ FO[σ] gilt: Φ erfüllbar =⇒ Φ widerspruchsfrei.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 324

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Widerspruchsfreiheit

In der Mathematik nennen wir eine Menge von Aussagen widerspruchsvoll, falls
sich daraus ein Widerspruch (d.h. eine bestimmte Aussage und deren Negat)
herleiten lässt.
Wenn wir unter

”
herleiten“ einen Beweis im Sequenzenkalkül KS verstehen,

ergibt sich folgender Begriff:

Definition 4.22
Sei Φ ⊆ FO[σ].

(a) Φ heißt widerspruchsvoll, falls es eine FO[σ]-Formel φ gibt, so dass
Φ ⊢KS

φ und Φ ⊢KS
¬φ.

(b) Φ heißt widerspruchsfrei, falls Φ nicht widerspruchsvoll ist.

Aus der Korrektheit des Sequenzenkalküls folgt, dass erfüllbare Formelmengen
widerspruchsfrei sind:

Korollar 4.23
Für alle Φ ⊆ FO[σ] gilt: Φ erfüllbar =⇒ Φ widerspruchsfrei.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 324

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Widerspruchsfreiheit

In der Mathematik nennen wir eine Menge von Aussagen widerspruchsvoll, falls
sich daraus ein Widerspruch (d.h. eine bestimmte Aussage und deren Negat)
herleiten lässt.
Wenn wir unter

”
herleiten“ einen Beweis im Sequenzenkalkül KS verstehen,

ergibt sich folgender Begriff:

Definition 4.22
Sei Φ ⊆ FO[σ].

(a) Φ heißt widerspruchsvoll, falls es eine FO[σ]-Formel φ gibt, so dass
Φ ⊢KS

φ und Φ ⊢KS
¬φ.

(b) Φ heißt widerspruchsfrei, falls Φ nicht widerspruchsvoll ist.

Aus der Korrektheit des Sequenzenkalküls folgt, dass erfüllbare Formelmengen
widerspruchsfrei sind:

Korollar 4.23
Für alle Φ ⊆ FO[σ] gilt: Φ erfüllbar =⇒ Φ widerspruchsfrei.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 324

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Widerspruchsfreiheit

In der Mathematik nennen wir eine Menge von Aussagen widerspruchsvoll, falls
sich daraus ein Widerspruch (d.h. eine bestimmte Aussage und deren Negat)
herleiten lässt.
Wenn wir unter

”
herleiten“ einen Beweis im Sequenzenkalkül KS verstehen,

ergibt sich folgender Begriff:

Definition 4.22
Sei Φ ⊆ FO[σ].

(a) Φ heißt widerspruchsvoll, falls es eine FO[σ]-Formel φ gibt, so dass
Φ ⊢KS

φ und Φ ⊢KS
¬φ.

(b) Φ heißt widerspruchsfrei, falls Φ nicht widerspruchsvoll ist.

Aus der Korrektheit des Sequenzenkalküls folgt, dass erfüllbare Formelmengen
widerspruchsfrei sind:

Korollar 4.23
Für alle Φ ⊆ FO[σ] gilt: Φ erfüllbar =⇒ Φ widerspruchsfrei.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 324

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Widerspruchsfreiheit

In der Mathematik nennen wir eine Menge von Aussagen widerspruchsvoll, falls
sich daraus ein Widerspruch (d.h. eine bestimmte Aussage und deren Negat)
herleiten lässt.
Wenn wir unter

”
herleiten“ einen Beweis im Sequenzenkalkül KS verstehen,

ergibt sich folgender Begriff:

Definition 4.22
Sei Φ ⊆ FO[σ].

(a) Φ heißt widerspruchsvoll, falls es eine FO[σ]-Formel φ gibt, so dass
Φ ⊢KS

φ und Φ ⊢KS
¬φ.

(b) Φ heißt widerspruchsfrei, falls Φ nicht widerspruchsvoll ist.

Aus der Korrektheit des Sequenzenkalküls folgt, dass erfüllbare Formelmengen
widerspruchsfrei sind:

Korollar 4.23
Für alle Φ ⊆ FO[σ] gilt: Φ erfüllbar =⇒ Φ widerspruchsfrei.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 324

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Widerspruchsfreiheit

In der Mathematik nennen wir eine Menge von Aussagen widerspruchsvoll, falls
sich daraus ein Widerspruch (d.h. eine bestimmte Aussage und deren Negat)
herleiten lässt.
Wenn wir unter

”
herleiten“ einen Beweis im Sequenzenkalkül KS verstehen,

ergibt sich folgender Begriff:

Definition 4.22
Sei Φ ⊆ FO[σ].

(a) Φ heißt widerspruchsvoll, falls es eine FO[σ]-Formel φ gibt, so dass
Φ ⊢KS

φ und Φ ⊢KS
¬φ.

(b) Φ heißt widerspruchsfrei, falls Φ nicht widerspruchsvoll ist.

Aus der Korrektheit des Sequenzenkalküls folgt, dass erfüllbare Formelmengen
widerspruchsfrei sind:

Korollar 4.23
Für alle Φ ⊆ FO[σ] gilt: Φ erfüllbar =⇒ Φ widerspruchsfrei.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 324

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Eigenschaften widerspruchsvoller Mengen

Lemma 4.24
Für jede Formelmenge Φ ⊆ FO[σ] sind folgende Aussagen äquivalent:

(a) Φ ist widerspruchsvoll.

(b) Für jede FO[σ]-Formel ψ gilt: Φ ⊢KS
ψ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 325

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Der Vollständigkeitssatz

Satz 4.25
Für alle Signaturen σ, alle Formelmengen Φ ⊆ FO[σ] und alle Formeln
φ ∈ FO[σ] gilt:

(1) Φ ⊢KS
φ ⇐⇒ Φ |= φ.

(2) Φ ist widerspruchsfrei ⇐⇒ Φ ist erfüllbar.

Die Richtung
”
=⇒“ von (1) und die Richung

”
⇐=“ von (2) haben wir bereits

in Korollar 4.21 und Korollar 4.23 bewiesen.

Die Richtung
”
=⇒“ von (2) wird von dem folgenden, schwer zu beweisenden

Erfüllbarkeitslemma bereitgestellt:

Lemma 4.26 (Erfüllbarkeitslemma)
Jede widerspruchsfreie Menge Φ ⊆ FO[σ] ist erfüllbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 326

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Der Vollständigkeitssatz

Satz 4.25
Für alle Signaturen σ, alle Formelmengen Φ ⊆ FO[σ] und alle Formeln
φ ∈ FO[σ] gilt:

(1) Φ ⊢KS
φ ⇐⇒ Φ |= φ.

(2) Φ ist widerspruchsfrei ⇐⇒ Φ ist erfüllbar.

Die Richtung
”
=⇒“ von (1) und die Richung

”
⇐=“ von (2) haben wir bereits

in Korollar 4.21 und Korollar 4.23 bewiesen.

Die Richtung
”
=⇒“ von (2) wird von dem folgenden, schwer zu beweisenden

Erfüllbarkeitslemma bereitgestellt:

Lemma 4.26 (Erfüllbarkeitslemma)
Jede widerspruchsfreie Menge Φ ⊆ FO[σ] ist erfüllbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 326

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Der Vollständigkeitssatz

Satz 4.25
Für alle Signaturen σ, alle Formelmengen Φ ⊆ FO[σ] und alle Formeln
φ ∈ FO[σ] gilt:

(1) Φ ⊢KS
φ ⇐⇒ Φ |= φ.

(2) Φ ist widerspruchsfrei ⇐⇒ Φ ist erfüllbar.

Die Richtung
”
=⇒“ von (1) und die Richung

”
⇐=“ von (2) haben wir bereits

in Korollar 4.21 und Korollar 4.23 bewiesen.

Die Richtung
”
=⇒“ von (2) wird von dem folgenden, schwer zu beweisenden

Erfüllbarkeitslemma bereitgestellt:

Lemma 4.26 (Erfüllbarkeitslemma)
Jede widerspruchsfreie Menge Φ ⊆ FO[σ] ist erfüllbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 326

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Der Vollständigkeitssatz

Satz 4.25
Für alle Signaturen σ, alle Formelmengen Φ ⊆ FO[σ] und alle Formeln
φ ∈ FO[σ] gilt:

(1) Φ ⊢KS
φ ⇐⇒ Φ |= φ.

(2) Φ ist widerspruchsfrei ⇐⇒ Φ ist erfüllbar.

Die Richtung
”
=⇒“ von (1) und die Richung

”
⇐=“ von (2) haben wir bereits

in Korollar 4.21 und Korollar 4.23 bewiesen.

Die Richtung
”
=⇒“ von (2) wird von dem folgenden, schwer zu beweisenden

Erfüllbarkeitslemma bereitgestellt:

Lemma 4.26 (Erfüllbarkeitslemma)
Jede widerspruchsfreie Menge Φ ⊆ FO[σ] ist erfüllbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 326

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Der Vollständigkeitssatz

Satz 4.25
Für alle Signaturen σ, alle Formelmengen Φ ⊆ FO[σ] und alle Formeln
φ ∈ FO[σ] gilt:

(1) Φ ⊢KS
φ ⇐⇒ Φ |= φ.

(2) Φ ist widerspruchsfrei ⇐⇒ Φ ist erfüllbar.

Die Richtung
”
=⇒“ von (1) und die Richung

”
⇐=“ von (2) haben wir bereits

in Korollar 4.21 und Korollar 4.23 bewiesen.

Die Richtung
”
=⇒“ von (2) wird von dem folgenden, schwer zu beweisenden

Erfüllbarkeitslemma bereitgestellt:

Lemma 4.26 (Erfüllbarkeitslemma)
Jede widerspruchsfreie Menge Φ ⊆ FO[σ] ist erfüllbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 326

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Beweis des Vollständigkeitssatzes unter Verwendung des
Erfüllbarkeitslemmas:

Unter Verwendung des Erfüllbarkeitslemmas (Lemma 4.26) erhalten wir
zusammen mit Korollar 4.23, dass Teil (2) des Vollständigkeitssatzes korrekt ist.

D.h. für jede Formelmenge Φ ⊆ FO[σ] gilt:

(2) Φ ist widerspruchsfrei ⇐⇒ Φ ist erfüllbar.

Die Richtung
”
=⇒“ von (1) haben wir bereits in Korollar 4.21 gezeigt.

Die Richtung
”
⇐=“ von Teil (1) des Vollständigkeitssatzes lässt sich wie folgt

beweisen:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 327

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Beweis des Vollständigkeitssatzes unter Verwendung des
Erfüllbarkeitslemmas:

Unter Verwendung des Erfüllbarkeitslemmas (Lemma 4.26) erhalten wir
zusammen mit Korollar 4.23, dass Teil (2) des Vollständigkeitssatzes korrekt ist.
D.h. für jede Formelmenge Φ ⊆ FO[σ] gilt:

(2) Φ ist widerspruchsfrei ⇐⇒ Φ ist erfüllbar.

Die Richtung
”
=⇒“ von (1) haben wir bereits in Korollar 4.21 gezeigt.

Die Richtung
”
⇐=“ von Teil (1) des Vollständigkeitssatzes lässt sich wie folgt

beweisen:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 327

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Beweis des Vollständigkeitssatzes unter Verwendung des
Erfüllbarkeitslemmas:

Unter Verwendung des Erfüllbarkeitslemmas (Lemma 4.26) erhalten wir
zusammen mit Korollar 4.23, dass Teil (2) des Vollständigkeitssatzes korrekt ist.
D.h. für jede Formelmenge Φ ⊆ FO[σ] gilt:

(2) Φ ist widerspruchsfrei ⇐⇒ Φ ist erfüllbar.

Die Richtung
”
=⇒“ von (1) haben wir bereits in Korollar 4.21 gezeigt.

Die Richtung
”
⇐=“ von Teil (1) des Vollständigkeitssatzes lässt sich wie folgt

beweisen:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 327

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Beweis des Vollständigkeitssatzes unter Verwendung des
Erfüllbarkeitslemmas:

Unter Verwendung des Erfüllbarkeitslemmas (Lemma 4.26) erhalten wir
zusammen mit Korollar 4.23, dass Teil (2) des Vollständigkeitssatzes korrekt ist.
D.h. für jede Formelmenge Φ ⊆ FO[σ] gilt:

(2) Φ ist widerspruchsfrei ⇐⇒ Φ ist erfüllbar.

Die Richtung
”
=⇒“ von (1) haben wir bereits in Korollar 4.21 gezeigt.

Die Richtung
”
⇐=“ von Teil (1) des Vollständigkeitssatzes lässt sich wie folgt

beweisen:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 327

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Zum Beweis des Erfüllbarkeitslemmas:
Zur Erinnerung: Das Erfüllbarkeitslemma besagt:

Jede widerspruchsfreie Formelmenge Φ ⊆ FO[σ] ist erfüllbar.

Beweisidee:
Konstruiere eine σ-Interpretation IΦ = (A, β), so dass gilt:

• Das Universum A von A ist die Menge Tσ aller σ-Terme.

• Für jeden σ-Term t gilt: JtKI = t.

• Für jedes Relationssymbol R ∈ σ, für k := ar(R), und für alle σ-Terme t1, . . . , tk
gilt:

(t1, . . . , tk) ∈ RA ⇐⇒ Φ ⊢KS R(t1, . . . , tk)

Diese Interpretation IΦ wird Terminterpretation von Φ genannt.
Gemäß Definition erfüllt IΦ alle atomaren Formeln der Form R(t1, . . . , tk) in Φ.
Im Allgemeinen gilt jedoch noch nicht IΦ |= Φ (betrachte dazu beispielsweise die
Formelmenge Φ := {v0=v1}, die offensichtlicherweise erfüllbar ist, für die aber gilt:
IΦ ̸|= Φ).

Aber nach einigen anspruchsvollen Modifikationen von IΦ erhält man eine
Interpretation I′Φ mit I′Φ |= Φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 328

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Zum Beweis des Erfüllbarkeitslemmas:
Zur Erinnerung: Das Erfüllbarkeitslemma besagt:

Jede widerspruchsfreie Formelmenge Φ ⊆ FO[σ] ist erfüllbar.

Beweisidee:
Konstruiere eine σ-Interpretation IΦ = (A, β), so dass gilt:

• Das Universum A von A ist die Menge Tσ aller σ-Terme.

• Für jeden σ-Term t gilt: JtKI = t.

• Für jedes Relationssymbol R ∈ σ, für k := ar(R), und für alle σ-Terme t1, . . . , tk
gilt:

(t1, . . . , tk) ∈ RA ⇐⇒ Φ ⊢KS R(t1, . . . , tk)

Diese Interpretation IΦ wird Terminterpretation von Φ genannt.
Gemäß Definition erfüllt IΦ alle atomaren Formeln der Form R(t1, . . . , tk) in Φ.
Im Allgemeinen gilt jedoch noch nicht IΦ |= Φ (betrachte dazu beispielsweise die
Formelmenge Φ := {v0=v1}, die offensichtlicherweise erfüllbar ist, für die aber gilt:
IΦ ̸|= Φ).

Aber nach einigen anspruchsvollen Modifikationen von IΦ erhält man eine
Interpretation I′Φ mit I′Φ |= Φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 328

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Zum Beweis des Erfüllbarkeitslemmas:
Zur Erinnerung: Das Erfüllbarkeitslemma besagt:

Jede widerspruchsfreie Formelmenge Φ ⊆ FO[σ] ist erfüllbar.

Beweisidee:
Konstruiere eine σ-Interpretation IΦ = (A, β), so dass gilt:

• Das Universum A von A ist die Menge Tσ aller σ-Terme.

• Für jeden σ-Term t gilt: JtKI = t.

• Für jedes Relationssymbol R ∈ σ, für k := ar(R), und für alle σ-Terme t1, . . . , tk
gilt:

(t1, . . . , tk) ∈ RA ⇐⇒ Φ ⊢KS R(t1, . . . , tk)

Diese Interpretation IΦ wird Terminterpretation von Φ genannt.
Gemäß Definition erfüllt IΦ alle atomaren Formeln der Form R(t1, . . . , tk) in Φ.
Im Allgemeinen gilt jedoch noch nicht IΦ |= Φ (betrachte dazu beispielsweise die
Formelmenge Φ := {v0=v1}, die offensichtlicherweise erfüllbar ist, für die aber gilt:
IΦ ̸|= Φ).

Aber nach einigen anspruchsvollen Modifikationen von IΦ erhält man eine
Interpretation I′Φ mit I′Φ |= Φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 328

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Zum Beweis des Erfüllbarkeitslemmas:
Zur Erinnerung: Das Erfüllbarkeitslemma besagt:

Jede widerspruchsfreie Formelmenge Φ ⊆ FO[σ] ist erfüllbar.

Beweisidee:
Konstruiere eine σ-Interpretation IΦ = (A, β), so dass gilt:

• Das Universum A von A ist die Menge Tσ aller σ-Terme.

• Für jeden σ-Term t gilt: JtKI = t.

• Für jedes Relationssymbol R ∈ σ, für k := ar(R), und für alle σ-Terme t1, . . . , tk
gilt:

(t1, . . . , tk) ∈ RA ⇐⇒ Φ ⊢KS R(t1, . . . , tk)

Diese Interpretation IΦ wird Terminterpretation von Φ genannt.
Gemäß Definition erfüllt IΦ alle atomaren Formeln der Form R(t1, . . . , tk) in Φ.
Im Allgemeinen gilt jedoch noch nicht IΦ |= Φ (betrachte dazu beispielsweise die
Formelmenge Φ := {v0=v1}, die offensichtlicherweise erfüllbar ist, für die aber gilt:
IΦ ̸|= Φ).

Aber nach einigen anspruchsvollen Modifikationen von IΦ erhält man eine
Interpretation I′Φ mit I′Φ |= Φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 328

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Zum Beweis des Erfüllbarkeitslemmas:
Zur Erinnerung: Das Erfüllbarkeitslemma besagt:

Jede widerspruchsfreie Formelmenge Φ ⊆ FO[σ] ist erfüllbar.

Beweisidee:
Konstruiere eine σ-Interpretation IΦ = (A, β), so dass gilt:

• Das Universum A von A ist die Menge Tσ aller σ-Terme.

• Für jeden σ-Term t gilt: JtKI = t.

• Für jedes Relationssymbol R ∈ σ, für k := ar(R), und für alle σ-Terme t1, . . . , tk
gilt:

(t1, . . . , tk) ∈ RA ⇐⇒

Φ ⊢KS R(t1, . . . , tk)

Diese Interpretation IΦ wird Terminterpretation von Φ genannt.
Gemäß Definition erfüllt IΦ alle atomaren Formeln der Form R(t1, . . . , tk) in Φ.
Im Allgemeinen gilt jedoch noch nicht IΦ |= Φ (betrachte dazu beispielsweise die
Formelmenge Φ := {v0=v1}, die offensichtlicherweise erfüllbar ist, für die aber gilt:
IΦ ̸|= Φ).

Aber nach einigen anspruchsvollen Modifikationen von IΦ erhält man eine
Interpretation I′Φ mit I′Φ |= Φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 328

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Zum Beweis des Erfüllbarkeitslemmas:
Zur Erinnerung: Das Erfüllbarkeitslemma besagt:

Jede widerspruchsfreie Formelmenge Φ ⊆ FO[σ] ist erfüllbar.

Beweisidee:
Konstruiere eine σ-Interpretation IΦ = (A, β), so dass gilt:

• Das Universum A von A ist die Menge Tσ aller σ-Terme.

• Für jeden σ-Term t gilt: JtKI = t.

• Für jedes Relationssymbol R ∈ σ, für k := ar(R), und für alle σ-Terme t1, . . . , tk
gilt:

(t1, . . . , tk) ∈ RA ⇐⇒ Φ ⊢KS R(t1, . . . , tk)

Diese Interpretation IΦ wird Terminterpretation von Φ genannt.
Gemäß Definition erfüllt IΦ alle atomaren Formeln der Form R(t1, . . . , tk) in Φ.
Im Allgemeinen gilt jedoch noch nicht IΦ |= Φ (betrachte dazu beispielsweise die
Formelmenge Φ := {v0=v1}, die offensichtlicherweise erfüllbar ist, für die aber gilt:
IΦ ̸|= Φ).

Aber nach einigen anspruchsvollen Modifikationen von IΦ erhält man eine
Interpretation I′Φ mit I′Φ |= Φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 328

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Zum Beweis des Erfüllbarkeitslemmas:
Zur Erinnerung: Das Erfüllbarkeitslemma besagt:

Jede widerspruchsfreie Formelmenge Φ ⊆ FO[σ] ist erfüllbar.

Beweisidee:
Konstruiere eine σ-Interpretation IΦ = (A, β), so dass gilt:

• Das Universum A von A ist die Menge Tσ aller σ-Terme.

• Für jeden σ-Term t gilt: JtKI = t.

• Für jedes Relationssymbol R ∈ σ, für k := ar(R), und für alle σ-Terme t1, . . . , tk
gilt:

(t1, . . . , tk) ∈ RA ⇐⇒ Φ ⊢KS R(t1, . . . , tk)

Diese Interpretation IΦ wird Terminterpretation von Φ genannt.
Gemäß Definition erfüllt IΦ alle atomaren Formeln der Form R(t1, . . . , tk) in Φ.
Im Allgemeinen gilt jedoch noch nicht IΦ |= Φ (betrachte dazu beispielsweise die
Formelmenge Φ := {v0=v1}, die offensichtlicherweise erfüllbar ist, für die aber gilt:
IΦ ̸|= Φ).

Aber nach einigen anspruchsvollen Modifikationen von IΦ erhält man eine
Interpretation I′Φ mit I′Φ |= Φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 328

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.2: Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Zum Beweis des Erfüllbarkeitslemmas:
Zur Erinnerung: Das Erfüllbarkeitslemma besagt:

Jede widerspruchsfreie Formelmenge Φ ⊆ FO[σ] ist erfüllbar.

Beweisidee:
Konstruiere eine σ-Interpretation IΦ = (A, β), so dass gilt:

• Das Universum A von A ist die Menge Tσ aller σ-Terme.

• Für jeden σ-Term t gilt: JtKI = t.

• Für jedes Relationssymbol R ∈ σ, für k := ar(R), und für alle σ-Terme t1, . . . , tk
gilt:

(t1, . . . , tk) ∈ RA ⇐⇒ Φ ⊢KS R(t1, . . . , tk)

Diese Interpretation IΦ wird Terminterpretation von Φ genannt.
Gemäß Definition erfüllt IΦ alle atomaren Formeln der Form R(t1, . . . , tk) in Φ.
Im Allgemeinen gilt jedoch noch nicht IΦ |= Φ (betrachte dazu beispielsweise die
Formelmenge Φ := {v0=v1}, die offensichtlicherweise erfüllbar ist, für die aber gilt:
IΦ ̸|= Φ).

Aber nach einigen anspruchsvollen Modifikationen von IΦ erhält man eine
Interpretation I′Φ mit I′Φ |= Φ.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 328

Abschnitt 4.3:

Der Endlichkeitssatz

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.3: Der Endlichkeitssatz

Zur Erinnerung:

Wir haben bereits den Endlichkeitssatz der Aussagenlogik kennen gelernt, der
besagt, dass Folgendes für jede Menge Φ ⊆ AL

und jede Formel ψ ∈ AL

gilt:

(1) Φ ist erfüllbar ⇐⇒ Jede endliche Teilmenge von Φ ist erfüllbar.

(2) Φ |= ψ ⇐⇒

Es gibt eine endliche Teilmenge Γ von Φ, so dass Γ |= ψ.

Der Endlichkeitssatz gilt auch für die Logik erster Stufe, d.h. die Aussagen (1)
und (2) gelten auch für alle Mengen Φ ⊆ FO[σ] und alle ψ ∈ FO[σ].

Zum Beweis der Endlichkeitssatzes der Logik erster Stufe nutzen wir den
Vollständigkeitssatz sowie das folgende Lemma.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 329

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.3: Der Endlichkeitssatz

Zur Erinnerung:

Wir haben bereits den Endlichkeitssatz der Aussagenlogik kennen gelernt, der
besagt, dass Folgendes für jede Menge Φ ⊆ AL

und jede Formel ψ ∈ AL

gilt:

(1) Φ ist erfüllbar ⇐⇒

Jede endliche Teilmenge von Φ ist erfüllbar.

(2) Φ |= ψ ⇐⇒

Es gibt eine endliche Teilmenge Γ von Φ, so dass Γ |= ψ.

Der Endlichkeitssatz gilt auch für die Logik erster Stufe, d.h. die Aussagen (1)
und (2) gelten auch für alle Mengen Φ ⊆ FO[σ] und alle ψ ∈ FO[σ].

Zum Beweis der Endlichkeitssatzes der Logik erster Stufe nutzen wir den
Vollständigkeitssatz sowie das folgende Lemma.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 329

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.3: Der Endlichkeitssatz

Zur Erinnerung:

Wir haben bereits den Endlichkeitssatz der Aussagenlogik kennen gelernt, der
besagt, dass Folgendes für jede Menge Φ ⊆ AL

und jede Formel ψ ∈ AL

gilt:

(1) Φ ist erfüllbar ⇐⇒ Jede endliche Teilmenge von Φ ist erfüllbar.

(2) Φ |= ψ ⇐⇒

Es gibt eine endliche Teilmenge Γ von Φ, so dass Γ |= ψ.

Der Endlichkeitssatz gilt auch für die Logik erster Stufe, d.h. die Aussagen (1)
und (2) gelten auch für alle Mengen Φ ⊆ FO[σ] und alle ψ ∈ FO[σ].

Zum Beweis der Endlichkeitssatzes der Logik erster Stufe nutzen wir den
Vollständigkeitssatz sowie das folgende Lemma.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 329

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.3: Der Endlichkeitssatz

Zur Erinnerung:

Wir haben bereits den Endlichkeitssatz der Aussagenlogik kennen gelernt, der
besagt, dass Folgendes für jede Menge Φ ⊆ AL und jede Formel ψ ∈ AL gilt:

(1) Φ ist erfüllbar ⇐⇒ Jede endliche Teilmenge von Φ ist erfüllbar.

(2) Φ |= ψ ⇐⇒

Es gibt eine endliche Teilmenge Γ von Φ, so dass Γ |= ψ.

Der Endlichkeitssatz gilt auch für die Logik erster Stufe, d.h. die Aussagen (1)
und (2) gelten auch für alle Mengen Φ ⊆ FO[σ] und alle ψ ∈ FO[σ].

Zum Beweis der Endlichkeitssatzes der Logik erster Stufe nutzen wir den
Vollständigkeitssatz sowie das folgende Lemma.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 329

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.3: Der Endlichkeitssatz

Zur Erinnerung:

Wir haben bereits den Endlichkeitssatz der Aussagenlogik kennen gelernt, der
besagt, dass Folgendes für jede Menge Φ ⊆ AL und jede Formel ψ ∈ AL gilt:

(1) Φ ist erfüllbar ⇐⇒ Jede endliche Teilmenge von Φ ist erfüllbar.

(2) Φ |= ψ ⇐⇒ Es gibt eine endliche Teilmenge Γ von Φ, so dass Γ |= ψ.

Der Endlichkeitssatz gilt auch für die Logik erster Stufe, d.h. die Aussagen (1)
und (2) gelten auch für alle Mengen Φ ⊆ FO[σ] und alle ψ ∈ FO[σ].

Zum Beweis der Endlichkeitssatzes der Logik erster Stufe nutzen wir den
Vollständigkeitssatz sowie das folgende Lemma.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 329

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.3: Der Endlichkeitssatz

Zur Erinnerung:

Wir haben bereits den Endlichkeitssatz der Aussagenlogik kennen gelernt, der
besagt, dass Folgendes für jede Menge Φ ⊆ AL und jede Formel ψ ∈ AL gilt:

(1) Φ ist erfüllbar ⇐⇒ Jede endliche Teilmenge von Φ ist erfüllbar.

(2) Φ |= ψ ⇐⇒ Es gibt eine endliche Teilmenge Γ von Φ, so dass Γ |= ψ.

Der Endlichkeitssatz gilt auch für die Logik erster Stufe,

d.h. die Aussagen (1)
und (2) gelten auch für alle Mengen Φ ⊆ FO[σ] und alle ψ ∈ FO[σ].

Zum Beweis der Endlichkeitssatzes der Logik erster Stufe nutzen wir den
Vollständigkeitssatz sowie das folgende Lemma.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 329

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.3: Der Endlichkeitssatz

Zur Erinnerung:

Wir haben bereits den Endlichkeitssatz der Aussagenlogik kennen gelernt, der
besagt, dass Folgendes für jede Menge Φ ⊆ AL und jede Formel ψ ∈ AL gilt:

(1) Φ ist erfüllbar ⇐⇒ Jede endliche Teilmenge von Φ ist erfüllbar.

(2) Φ |= ψ ⇐⇒ Es gibt eine endliche Teilmenge Γ von Φ, so dass Γ |= ψ.

Der Endlichkeitssatz gilt auch für die Logik erster Stufe, d.h. die Aussagen (1)
und (2) gelten auch für alle Mengen Φ ⊆ FO[σ] und alle ψ ∈ FO[σ].

Zum Beweis der Endlichkeitssatzes der Logik erster Stufe nutzen wir den
Vollständigkeitssatz sowie das folgende Lemma.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 329

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.3: Der Endlichkeitssatz

Zur Erinnerung:

Wir haben bereits den Endlichkeitssatz der Aussagenlogik kennen gelernt, der
besagt, dass Folgendes für jede Menge Φ ⊆ AL und jede Formel ψ ∈ AL gilt:

(1) Φ ist erfüllbar ⇐⇒ Jede endliche Teilmenge von Φ ist erfüllbar.

(2) Φ |= ψ ⇐⇒ Es gibt eine endliche Teilmenge Γ von Φ, so dass Γ |= ψ.

Der Endlichkeitssatz gilt auch für die Logik erster Stufe, d.h. die Aussagen (1)
und (2) gelten auch für alle Mengen Φ ⊆ FO[σ] und alle ψ ∈ FO[σ].

Zum Beweis der Endlichkeitssatzes der Logik erster Stufe nutzen wir den
Vollständigkeitssatz sowie das folgende Lemma.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 329

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.3: Der Endlichkeitssatz

Das syntaktische Endlichkeitslemma

Lemma 4.27
Für jede Signatur σ und jede Formelmenge Φ ⊆ FO[σ] gilt:

Φ ist widerspruchsfrei ⇐⇒ Jede endliche Teilmenge von Φ ist wider-
spruchsfrei.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 330

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.3: Der Endlichkeitssatz

Der Endlichkeitssatz (auch bekannt als Kompaktheitssatz)

Satz 4.28
Für jede Signatur σ, jede Formelmenge Φ ⊆ FO[σ] und jede Formel ψ ∈ FO[σ]
gilt:

(1) Φ ist erfüllbar ⇐⇒ Jede endliche Teilmenge von Φ ist erfüllbar.

(2) Φ |= ψ ⇐⇒ Es gibt eine endliche Teilmenge Γ von Φ, so dass Γ |= ψ.

Beachte: Die Aussage des Endlichkeitssatzes ist nur für unendliche
Formelmengen Φ interessant (für endliche Mengen Φ ist sie trivial).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 331

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.3: Der Endlichkeitssatz

Der Endlichkeitssatz (auch bekannt als Kompaktheitssatz)

Satz 4.28
Für jede Signatur σ, jede Formelmenge Φ ⊆ FO[σ] und jede Formel ψ ∈ FO[σ]
gilt:

(1) Φ ist erfüllbar ⇐⇒ Jede endliche Teilmenge von Φ ist erfüllbar.

(2) Φ |= ψ ⇐⇒ Es gibt eine endliche Teilmenge Γ von Φ, so dass Γ |= ψ.

Beachte: Die Aussage des Endlichkeitssatzes ist nur für unendliche
Formelmengen Φ interessant (für endliche Mengen Φ ist sie trivial).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 331

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.3: Der Endlichkeitssatz

Der Endlichkeitssatz (auch bekannt als Kompaktheitssatz)

Satz 4.28
Für jede Signatur σ, jede Formelmenge Φ ⊆ FO[σ] und jede Formel ψ ∈ FO[σ]
gilt:

(1) Φ ist erfüllbar ⇐⇒ Jede endliche Teilmenge von Φ ist erfüllbar.

(2) Φ |= ψ ⇐⇒ Es gibt eine endliche Teilmenge Γ von Φ, so dass Γ |= ψ.

Beachte: Die Aussage des Endlichkeitssatzes ist nur für unendliche
Formelmengen Φ interessant (für endliche Mengen Φ ist sie trivial).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 331

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.3: Der Endlichkeitssatz

Erststufige Axiomatisierbarkeit

Definition 4.29
Eine Klasse C von σ-Strukturen heißt erststufig axiomatisierbar, falls es eine Menge Φ
von FO[σ]-Sätzen gibt, so dass gilt: C = MODσ(Φ).

Zur Erinnerung:
MODσ(Φ) ist die Klasse aller σ-Strukturen A, für die gilt: A |= Φ.

Definition 4.30
Die Mächtigkeit einer σ-Struktur ist die Mächtigkeit ihres Universums.
Eine σ-Struktur heißt endlich, unendlich, abzählbar, bzw. überabzählbar, wenn ihr
Universum die entsprechende Mächtigkeit besitzt.

Beispiel 4.31
Die Klasse aller unendlichen σ-Strukturen ist erststufig axiomatisierbar.

Wir können den Endlichkeitssatz anwenden, um zu zeigen, dass bestimmte Klassen
von Strukturen nicht erststufig axiomatisierbar sind.
Im Folgenden betrachten wir dazu zwei Beispiele: die Nicht-Axiomatisierbarkeit der

”
Endlichkeit“ von Strukturen und die Nicht-Axiomatisierbarkeit von

”
Graph-Zusammenhang“.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 332

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.3: Der Endlichkeitssatz

Erststufige Axiomatisierbarkeit

Definition 4.29
Eine Klasse C von σ-Strukturen heißt erststufig axiomatisierbar, falls es eine Menge Φ
von FO[σ]-Sätzen gibt, so dass gilt: C = MODσ(Φ).

Zur Erinnerung:
MODσ(Φ) ist die Klasse aller σ-Strukturen A, für die gilt: A |= Φ.

Definition 4.30
Die Mächtigkeit einer σ-Struktur ist die Mächtigkeit ihres Universums.
Eine σ-Struktur heißt endlich, unendlich, abzählbar, bzw. überabzählbar, wenn ihr
Universum die entsprechende Mächtigkeit besitzt.

Beispiel 4.31
Die Klasse aller unendlichen σ-Strukturen ist erststufig axiomatisierbar.

Wir können den Endlichkeitssatz anwenden, um zu zeigen, dass bestimmte Klassen
von Strukturen nicht erststufig axiomatisierbar sind.
Im Folgenden betrachten wir dazu zwei Beispiele: die Nicht-Axiomatisierbarkeit der

”
Endlichkeit“ von Strukturen und die Nicht-Axiomatisierbarkeit von

”
Graph-Zusammenhang“.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 332

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.3: Der Endlichkeitssatz

Erststufige Axiomatisierbarkeit

Definition 4.29
Eine Klasse C von σ-Strukturen heißt erststufig axiomatisierbar, falls es eine Menge Φ
von FO[σ]-Sätzen gibt, so dass gilt: C = MODσ(Φ).

Zur Erinnerung:
MODσ(Φ) ist die Klasse aller σ-Strukturen A, für die gilt: A |= Φ.

Definition 4.30
Die Mächtigkeit einer σ-Struktur ist die Mächtigkeit ihres Universums.

Eine σ-Struktur heißt endlich, unendlich, abzählbar, bzw. überabzählbar, wenn ihr
Universum die entsprechende Mächtigkeit besitzt.

Beispiel 4.31
Die Klasse aller unendlichen σ-Strukturen ist erststufig axiomatisierbar.

Wir können den Endlichkeitssatz anwenden, um zu zeigen, dass bestimmte Klassen
von Strukturen nicht erststufig axiomatisierbar sind.
Im Folgenden betrachten wir dazu zwei Beispiele: die Nicht-Axiomatisierbarkeit der

”
Endlichkeit“ von Strukturen und die Nicht-Axiomatisierbarkeit von

”
Graph-Zusammenhang“.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 332

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.3: Der Endlichkeitssatz

Erststufige Axiomatisierbarkeit

Definition 4.29
Eine Klasse C von σ-Strukturen heißt erststufig axiomatisierbar, falls es eine Menge Φ
von FO[σ]-Sätzen gibt, so dass gilt: C = MODσ(Φ).

Zur Erinnerung:
MODσ(Φ) ist die Klasse aller σ-Strukturen A, für die gilt: A |= Φ.

Definition 4.30
Die Mächtigkeit einer σ-Struktur ist die Mächtigkeit ihres Universums.
Eine σ-Struktur heißt endlich, unendlich, abzählbar, bzw. überabzählbar, wenn ihr
Universum die entsprechende Mächtigkeit besitzt.

Beispiel 4.31
Die Klasse aller unendlichen σ-Strukturen ist erststufig axiomatisierbar.

Wir können den Endlichkeitssatz anwenden, um zu zeigen, dass bestimmte Klassen
von Strukturen nicht erststufig axiomatisierbar sind.
Im Folgenden betrachten wir dazu zwei Beispiele: die Nicht-Axiomatisierbarkeit der

”
Endlichkeit“ von Strukturen und die Nicht-Axiomatisierbarkeit von

”
Graph-Zusammenhang“.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 332

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.3: Der Endlichkeitssatz

Erststufige Axiomatisierbarkeit

Definition 4.29
Eine Klasse C von σ-Strukturen heißt erststufig axiomatisierbar, falls es eine Menge Φ
von FO[σ]-Sätzen gibt, so dass gilt: C = MODσ(Φ).

Zur Erinnerung:
MODσ(Φ) ist die Klasse aller σ-Strukturen A, für die gilt: A |= Φ.

Definition 4.30
Die Mächtigkeit einer σ-Struktur ist die Mächtigkeit ihres Universums.
Eine σ-Struktur heißt endlich, unendlich, abzählbar, bzw. überabzählbar, wenn ihr
Universum die entsprechende Mächtigkeit besitzt.

Beispiel 4.31
Die Klasse aller unendlichen σ-Strukturen ist erststufig axiomatisierbar.

Wir können den Endlichkeitssatz anwenden, um zu zeigen, dass bestimmte Klassen
von Strukturen nicht erststufig axiomatisierbar sind.
Im Folgenden betrachten wir dazu zwei Beispiele: die Nicht-Axiomatisierbarkeit der

”
Endlichkeit“ von Strukturen und die Nicht-Axiomatisierbarkeit von

”
Graph-Zusammenhang“.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 332

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.3: Der Endlichkeitssatz

Erststufige Axiomatisierbarkeit

Definition 4.29
Eine Klasse C von σ-Strukturen heißt erststufig axiomatisierbar, falls es eine Menge Φ
von FO[σ]-Sätzen gibt, so dass gilt: C = MODσ(Φ).

Zur Erinnerung:
MODσ(Φ) ist die Klasse aller σ-Strukturen A, für die gilt: A |= Φ.

Definition 4.30
Die Mächtigkeit einer σ-Struktur ist die Mächtigkeit ihres Universums.
Eine σ-Struktur heißt endlich, unendlich, abzählbar, bzw. überabzählbar, wenn ihr
Universum die entsprechende Mächtigkeit besitzt.

Beispiel 4.31
Die Klasse aller unendlichen σ-Strukturen ist erststufig axiomatisierbar.

Wir können den Endlichkeitssatz anwenden, um zu zeigen, dass bestimmte Klassen
von Strukturen nicht erststufig axiomatisierbar sind.

Im Folgenden betrachten wir dazu zwei Beispiele: die Nicht-Axiomatisierbarkeit der

”
Endlichkeit“ von Strukturen und die Nicht-Axiomatisierbarkeit von

”
Graph-Zusammenhang“.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 332

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.3: Der Endlichkeitssatz

Erststufige Axiomatisierbarkeit

Definition 4.29
Eine Klasse C von σ-Strukturen heißt erststufig axiomatisierbar, falls es eine Menge Φ
von FO[σ]-Sätzen gibt, so dass gilt: C = MODσ(Φ).

Zur Erinnerung:
MODσ(Φ) ist die Klasse aller σ-Strukturen A, für die gilt: A |= Φ.

Definition 4.30
Die Mächtigkeit einer σ-Struktur ist die Mächtigkeit ihres Universums.
Eine σ-Struktur heißt endlich, unendlich, abzählbar, bzw. überabzählbar, wenn ihr
Universum die entsprechende Mächtigkeit besitzt.

Beispiel 4.31
Die Klasse aller unendlichen σ-Strukturen ist erststufig axiomatisierbar.

Wir können den Endlichkeitssatz anwenden, um zu zeigen, dass bestimmte Klassen
von Strukturen nicht erststufig axiomatisierbar sind.
Im Folgenden betrachten wir dazu zwei Beispiele: die Nicht-Axiomatisierbarkeit der

”
Endlichkeit“ von Strukturen

und die Nicht-Axiomatisierbarkeit von

”
Graph-Zusammenhang“.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 332

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.3: Der Endlichkeitssatz

Erststufige Axiomatisierbarkeit

Definition 4.29
Eine Klasse C von σ-Strukturen heißt erststufig axiomatisierbar, falls es eine Menge Φ
von FO[σ]-Sätzen gibt, so dass gilt: C = MODσ(Φ).

Zur Erinnerung:
MODσ(Φ) ist die Klasse aller σ-Strukturen A, für die gilt: A |= Φ.

Definition 4.30
Die Mächtigkeit einer σ-Struktur ist die Mächtigkeit ihres Universums.
Eine σ-Struktur heißt endlich, unendlich, abzählbar, bzw. überabzählbar, wenn ihr
Universum die entsprechende Mächtigkeit besitzt.

Beispiel 4.31
Die Klasse aller unendlichen σ-Strukturen ist erststufig axiomatisierbar.

Wir können den Endlichkeitssatz anwenden, um zu zeigen, dass bestimmte Klassen
von Strukturen nicht erststufig axiomatisierbar sind.
Im Folgenden betrachten wir dazu zwei Beispiele: die Nicht-Axiomatisierbarkeit der

”
Endlichkeit“ von Strukturen und die Nicht-Axiomatisierbarkeit von

”
Graph-Zusammenhang“.
Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 332

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.3: Der Endlichkeitssatz

Nicht-Axiomatisierbarkeit der
”
Endlichkeit“ von

Strukturen

Lemma 4.32
Sei Φ eine Menge von FO[σ]-Sätzen. Falls Φ beliebig große endliche Modelle
besitzt (d.h. für jedes n ∈ N gibt es eine endliche σ-Struktur A mit |A| ⩾ n und
A |= Φ), so besitzt Φ ein unendliches Modell.

Satz 4.33
Die Klasse aller endlichen σ-Strukturen ist nicht erststufig axiomatisierbar.

Korollar 4.34
Es gibt keine endliche Menge von FO[σ]-Sätzen, die die Klasse aller unendlichen
σ-Strukturen erststufig axiomatisiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 333

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.3: Der Endlichkeitssatz

Nicht-Axiomatisierbarkeit der
”
Endlichkeit“ von

Strukturen

Lemma 4.32
Sei Φ eine Menge von FO[σ]-Sätzen. Falls Φ beliebig große endliche Modelle
besitzt (d.h. für jedes n ∈ N gibt es eine endliche σ-Struktur A mit |A| ⩾ n und
A |= Φ), so besitzt Φ ein unendliches Modell.

Satz 4.33
Die Klasse aller endlichen σ-Strukturen ist nicht erststufig axiomatisierbar.

Korollar 4.34
Es gibt keine endliche Menge von FO[σ]-Sätzen, die die Klasse aller unendlichen
σ-Strukturen erststufig axiomatisiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 333

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.3: Der Endlichkeitssatz

Nicht-Axiomatisierbarkeit der
”
Endlichkeit“ von

Strukturen

Lemma 4.32
Sei Φ eine Menge von FO[σ]-Sätzen. Falls Φ beliebig große endliche Modelle
besitzt (d.h. für jedes n ∈ N gibt es eine endliche σ-Struktur A mit |A| ⩾ n und
A |= Φ), so besitzt Φ ein unendliches Modell.

Satz 4.33
Die Klasse aller endlichen σ-Strukturen ist nicht erststufig axiomatisierbar.

Korollar 4.34
Es gibt keine endliche Menge von FO[σ]-Sätzen, die die Klasse aller unendlichen
σ-Strukturen erststufig axiomatisiert.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 333

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.3: Der Endlichkeitssatz

Nicht-Axiomatisierbarkeit von
”
Graph-Zusammenhang“

Satz 4.35
Die Klasse aller zusammenhängenden Graphen ist nicht erststufig
axiomatisierbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 334

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.3: Der Endlichkeitssatz

Der Satz von Löwenheim und Skolem

Unter Verwendung von Teilergebnissen, die beim (in dieser Vorlesung nicht im
Detail behandelten) Beweis des Erfüllbarkeitslemmas anfallen, erhält man das
folgende Resultat.

Satz 4.36 (Der Satz von Löwenheim und Skolem)
Sei σ eine abzählbare Signatur. Dann hat jede erfüllbare Formelmenge
Φ ⊆ FO[σ] ein höchstens abzählbares Modell.

(Hier ohne Beweis)

Als direkte Folgerung aus dem Satz von Löwenheim und Skolem erhalten wir:

Korollar 4.37
Sei σ eine abzählbare Signatur. Dann ist die Klasse aller überabzählbaren
σ-Strukturen nicht erststufig axiomatisierbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 335

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.3: Der Endlichkeitssatz

Der Satz von Löwenheim und Skolem

Unter Verwendung von Teilergebnissen, die beim (in dieser Vorlesung nicht im
Detail behandelten) Beweis des Erfüllbarkeitslemmas anfallen, erhält man das
folgende Resultat.

Satz 4.36 (Der Satz von Löwenheim und Skolem)
Sei σ eine abzählbare Signatur. Dann hat jede erfüllbare Formelmenge
Φ ⊆ FO[σ] ein höchstens abzählbares Modell.

(Hier ohne Beweis)

Als direkte Folgerung aus dem Satz von Löwenheim und Skolem erhalten wir:

Korollar 4.37
Sei σ eine abzählbare Signatur. Dann ist die Klasse aller überabzählbaren
σ-Strukturen nicht erststufig axiomatisierbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 335

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.3: Der Endlichkeitssatz

Der Satz von Löwenheim und Skolem

Unter Verwendung von Teilergebnissen, die beim (in dieser Vorlesung nicht im
Detail behandelten) Beweis des Erfüllbarkeitslemmas anfallen, erhält man das
folgende Resultat.

Satz 4.36 (Der Satz von Löwenheim und Skolem)
Sei σ eine abzählbare Signatur. Dann hat jede erfüllbare Formelmenge
Φ ⊆ FO[σ] ein höchstens abzählbares Modell.

(Hier ohne Beweis)

Als direkte Folgerung aus dem Satz von Löwenheim und Skolem erhalten wir:

Korollar 4.37
Sei σ eine abzählbare Signatur. Dann ist die Klasse aller überabzählbaren
σ-Strukturen nicht erststufig axiomatisierbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 335

Abschnitt 4.4:

Die Grenzen der Berechenbarkeit

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Zur Erinnerung:
Einige Begriffe zum Thema (Un)Entscheidbarkeit

Entscheidungsprobleme sind Probleme, die mit
”
ja“ oder

”
nein“ beantwortet

werden können. Genauer:

• Sei M eine abzählbar unendliche Menge, zum Beispiel
• die Menge Σ∗ aller Worte über einem endlichen Alphabet Σ, oder

• die Menge aller Graphen, deren Knotenmenge eine endliche Teilmenge der
natürlichen Zahlen ist.

• Das Entscheidungsproblem für eine Menge L ⊆ M ist das folgende
Berechnungsproblem:

Das Entscheidungsproblem für L ⊆ M

Eingabe: Ein Element m ∈ M.

Frage: Ist m ∈ L ?

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 336

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Zur Erinnerung:
Einige Begriffe zum Thema (Un)Entscheidbarkeit

Entscheidungsprobleme sind Probleme, die mit
”
ja“ oder

”
nein“ beantwortet

werden können. Genauer:

• Sei M eine abzählbar unendliche Menge,

zum Beispiel
• die Menge Σ∗ aller Worte über einem endlichen Alphabet Σ, oder

• die Menge aller Graphen, deren Knotenmenge eine endliche Teilmenge der
natürlichen Zahlen ist.

• Das Entscheidungsproblem für eine Menge L ⊆ M ist das folgende
Berechnungsproblem:

Das Entscheidungsproblem für L ⊆ M

Eingabe: Ein Element m ∈ M.

Frage: Ist m ∈ L ?

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 336

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Zur Erinnerung:
Einige Begriffe zum Thema (Un)Entscheidbarkeit

Entscheidungsprobleme sind Probleme, die mit
”
ja“ oder

”
nein“ beantwortet

werden können. Genauer:

• Sei M eine abzählbar unendliche Menge, zum Beispiel
• die Menge Σ∗ aller Worte über einem endlichen Alphabet Σ,

oder

• die Menge aller Graphen, deren Knotenmenge eine endliche Teilmenge der
natürlichen Zahlen ist.

• Das Entscheidungsproblem für eine Menge L ⊆ M ist das folgende
Berechnungsproblem:

Das Entscheidungsproblem für L ⊆ M

Eingabe: Ein Element m ∈ M.

Frage: Ist m ∈ L ?

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 336

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Zur Erinnerung:
Einige Begriffe zum Thema (Un)Entscheidbarkeit

Entscheidungsprobleme sind Probleme, die mit
”
ja“ oder

”
nein“ beantwortet

werden können. Genauer:

• Sei M eine abzählbar unendliche Menge, zum Beispiel
• die Menge Σ∗ aller Worte über einem endlichen Alphabet Σ, oder

• die Menge aller Graphen, deren Knotenmenge eine endliche Teilmenge der
natürlichen Zahlen ist.

• Das Entscheidungsproblem für eine Menge L ⊆ M ist das folgende
Berechnungsproblem:

Das Entscheidungsproblem für L ⊆ M

Eingabe: Ein Element m ∈ M.

Frage: Ist m ∈ L ?

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 336

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Zur Erinnerung:
Einige Begriffe zum Thema (Un)Entscheidbarkeit

Entscheidungsprobleme sind Probleme, die mit
”
ja“ oder

”
nein“ beantwortet

werden können. Genauer:

• Sei M eine abzählbar unendliche Menge, zum Beispiel
• die Menge Σ∗ aller Worte über einem endlichen Alphabet Σ, oder

• die Menge aller Graphen, deren Knotenmenge eine endliche Teilmenge der
natürlichen Zahlen ist.

• Das Entscheidungsproblem für eine Menge L ⊆ M ist das folgende
Berechnungsproblem:

Das Entscheidungsproblem für L ⊆ M

Eingabe: Ein Element m ∈ M.

Frage: Ist m ∈ L ?

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 336

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Beispiele für Entscheidungsprobleme

• Graphzusammenhang ist das Entscheidungsproblem für L ⊆ M, wobei

M

die Menge aller ungerichteten Graphen ist, deren Knotenmenge eine endliche
Teilmenge von N ist und

L die Menge aller zusammenhängenden Graphen aus M ist.

• Das Halteproblem ist das Entscheidungsproblem für L ⊆ M, wobei

M die Menge aller Worte w#x mit w , x ∈ {0, 1}∗ ist und

L die Menge aller Worte w#x ist, so dass w eine deterministische
Turingmaschine beschreibt, die bei Eingabe x nach endlich vielen Schritten
anhält.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 337

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Beispiele für Entscheidungsprobleme

• Graphzusammenhang ist das Entscheidungsproblem für L ⊆ M, wobei

M die Menge aller ungerichteten Graphen ist, deren Knotenmenge eine endliche
Teilmenge von N ist

und

L die Menge aller zusammenhängenden Graphen aus M ist.

• Das Halteproblem ist das Entscheidungsproblem für L ⊆ M, wobei

M die Menge aller Worte w#x mit w , x ∈ {0, 1}∗ ist und

L die Menge aller Worte w#x ist, so dass w eine deterministische
Turingmaschine beschreibt, die bei Eingabe x nach endlich vielen Schritten
anhält.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 337

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Beispiele für Entscheidungsprobleme

• Graphzusammenhang ist das Entscheidungsproblem für L ⊆ M, wobei

M die Menge aller ungerichteten Graphen ist, deren Knotenmenge eine endliche
Teilmenge von N ist und

L

die Menge aller zusammenhängenden Graphen aus M ist.

• Das Halteproblem ist das Entscheidungsproblem für L ⊆ M, wobei

M die Menge aller Worte w#x mit w , x ∈ {0, 1}∗ ist und

L die Menge aller Worte w#x ist, so dass w eine deterministische
Turingmaschine beschreibt, die bei Eingabe x nach endlich vielen Schritten
anhält.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 337

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Beispiele für Entscheidungsprobleme

• Graphzusammenhang ist das Entscheidungsproblem für L ⊆ M, wobei

M die Menge aller ungerichteten Graphen ist, deren Knotenmenge eine endliche
Teilmenge von N ist und

L die Menge aller zusammenhängenden Graphen aus M ist.

• Das Halteproblem ist das Entscheidungsproblem für L ⊆ M, wobei

M die Menge aller Worte w#x mit w , x ∈ {0, 1}∗ ist und

L die Menge aller Worte w#x ist, so dass w eine deterministische
Turingmaschine beschreibt, die bei Eingabe x nach endlich vielen Schritten
anhält.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 337

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Beispiele für Entscheidungsprobleme

• Graphzusammenhang ist das Entscheidungsproblem für L ⊆ M, wobei

M die Menge aller ungerichteten Graphen ist, deren Knotenmenge eine endliche
Teilmenge von N ist und

L die Menge aller zusammenhängenden Graphen aus M ist.

• Das Halteproblem ist das Entscheidungsproblem für L ⊆ M, wobei

M

die Menge aller Worte w#x mit w , x ∈ {0, 1}∗ ist und

L die Menge aller Worte w#x ist, so dass w eine deterministische
Turingmaschine beschreibt, die bei Eingabe x nach endlich vielen Schritten
anhält.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 337

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Beispiele für Entscheidungsprobleme

• Graphzusammenhang ist das Entscheidungsproblem für L ⊆ M, wobei

M die Menge aller ungerichteten Graphen ist, deren Knotenmenge eine endliche
Teilmenge von N ist und

L die Menge aller zusammenhängenden Graphen aus M ist.

• Das Halteproblem ist das Entscheidungsproblem für L ⊆ M, wobei

M die Menge aller Worte w#x mit w , x ∈ {0, 1}∗ ist

und

L die Menge aller Worte w#x ist, so dass w eine deterministische
Turingmaschine beschreibt, die bei Eingabe x nach endlich vielen Schritten
anhält.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 337

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Beispiele für Entscheidungsprobleme

• Graphzusammenhang ist das Entscheidungsproblem für L ⊆ M, wobei

M die Menge aller ungerichteten Graphen ist, deren Knotenmenge eine endliche
Teilmenge von N ist und

L die Menge aller zusammenhängenden Graphen aus M ist.

• Das Halteproblem ist das Entscheidungsproblem für L ⊆ M, wobei

M die Menge aller Worte w#x mit w , x ∈ {0, 1}∗ ist und

L

die Menge aller Worte w#x ist, so dass w eine deterministische
Turingmaschine beschreibt, die bei Eingabe x nach endlich vielen Schritten
anhält.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 337

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Beispiele für Entscheidungsprobleme

• Graphzusammenhang ist das Entscheidungsproblem für L ⊆ M, wobei

M die Menge aller ungerichteten Graphen ist, deren Knotenmenge eine endliche
Teilmenge von N ist und

L die Menge aller zusammenhängenden Graphen aus M ist.

• Das Halteproblem ist das Entscheidungsproblem für L ⊆ M, wobei

M die Menge aller Worte w#x mit w , x ∈ {0, 1}∗ ist und

L die Menge aller Worte w#x ist, so dass w eine deterministische
Turingmaschine beschreibt, die bei Eingabe x nach endlich vielen Schritten
anhält.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 337

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Entscheidungsprobleme für die Logik erster Stufe

Allgemeingültigkeitsproblem für FO[σ]

Eingabe: Eine FO[σ]-Formel φ

Frage: Ist φ allgemeingültig?

Formal:

M ist die Menge aller Worte über dem Alphabet AFO[σ] und

L ist die Menge {φ ∈ FO[σ] : φ ist allgemeingültig}

Erfüllbarkeitsproblem für FO[σ]

Eingabe: FO[σ]-Formel φ

Frage: Ist φ erfüllbar?

Unerfüllbarkeitsproblem für FO[σ]

Eingabe: FO[σ]-Formel φ

Frage: Ist φ unerfüllbar?

Folgerungsproblem für FO[σ]

Eingabe: Zwei FO[σ]-Formeln φ, ψ

Frage: Gilt φ |= ψ ?

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 338

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Entscheidungsprobleme für die Logik erster Stufe

Allgemeingültigkeitsproblem für FO[σ]

Eingabe: Eine FO[σ]-Formel φ

Frage: Ist φ allgemeingültig?

Formal:

M

ist die Menge aller Worte über dem Alphabet AFO[σ] und

L ist die Menge {φ ∈ FO[σ] : φ ist allgemeingültig}

Erfüllbarkeitsproblem für FO[σ]

Eingabe: FO[σ]-Formel φ

Frage: Ist φ erfüllbar?

Unerfüllbarkeitsproblem für FO[σ]

Eingabe: FO[σ]-Formel φ

Frage: Ist φ unerfüllbar?

Folgerungsproblem für FO[σ]

Eingabe: Zwei FO[σ]-Formeln φ, ψ

Frage: Gilt φ |= ψ ?

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 338

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Entscheidungsprobleme für die Logik erster Stufe

Allgemeingültigkeitsproblem für FO[σ]

Eingabe: Eine FO[σ]-Formel φ

Frage: Ist φ allgemeingültig?

Formal:

M ist die Menge aller Worte über dem Alphabet AFO[σ]

und

L ist die Menge {φ ∈ FO[σ] : φ ist allgemeingültig}

Erfüllbarkeitsproblem für FO[σ]

Eingabe: FO[σ]-Formel φ

Frage: Ist φ erfüllbar?

Unerfüllbarkeitsproblem für FO[σ]

Eingabe: FO[σ]-Formel φ

Frage: Ist φ unerfüllbar?

Folgerungsproblem für FO[σ]

Eingabe: Zwei FO[σ]-Formeln φ, ψ

Frage: Gilt φ |= ψ ?

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 338

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Entscheidungsprobleme für die Logik erster Stufe

Allgemeingültigkeitsproblem für FO[σ]

Eingabe: Eine FO[σ]-Formel φ

Frage: Ist φ allgemeingültig?

Formal:

M ist die Menge aller Worte über dem Alphabet AFO[σ] und

L

ist die Menge {φ ∈ FO[σ] : φ ist allgemeingültig}

Erfüllbarkeitsproblem für FO[σ]

Eingabe: FO[σ]-Formel φ

Frage: Ist φ erfüllbar?

Unerfüllbarkeitsproblem für FO[σ]

Eingabe: FO[σ]-Formel φ

Frage: Ist φ unerfüllbar?

Folgerungsproblem für FO[σ]

Eingabe: Zwei FO[σ]-Formeln φ, ψ

Frage: Gilt φ |= ψ ?

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 338

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Entscheidungsprobleme für die Logik erster Stufe

Allgemeingültigkeitsproblem für FO[σ]

Eingabe: Eine FO[σ]-Formel φ

Frage: Ist φ allgemeingültig?

Formal:

M ist die Menge aller Worte über dem Alphabet AFO[σ] und

L ist die Menge {φ ∈ FO[σ] : φ ist allgemeingültig}

Erfüllbarkeitsproblem für FO[σ]

Eingabe: FO[σ]-Formel φ

Frage: Ist φ erfüllbar?

Unerfüllbarkeitsproblem für FO[σ]

Eingabe: FO[σ]-Formel φ

Frage: Ist φ unerfüllbar?

Folgerungsproblem für FO[σ]

Eingabe: Zwei FO[σ]-Formeln φ, ψ

Frage: Gilt φ |= ψ ?

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 338

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Entscheidungsprobleme für die Logik erster Stufe

Allgemeingültigkeitsproblem für FO[σ]

Eingabe: Eine FO[σ]-Formel φ

Frage: Ist φ allgemeingültig?

Formal:

M ist die Menge aller Worte über dem Alphabet AFO[σ] und

L ist die Menge {φ ∈ FO[σ] : φ ist allgemeingültig}

Erfüllbarkeitsproblem für FO[σ]

Eingabe: FO[σ]-Formel φ

Frage: Ist φ erfüllbar?

Unerfüllbarkeitsproblem für FO[σ]

Eingabe: FO[σ]-Formel φ

Frage: Ist φ unerfüllbar?

Folgerungsproblem für FO[σ]

Eingabe: Zwei FO[σ]-Formeln φ, ψ

Frage: Gilt φ |= ψ ?

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 338

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Entscheidungsprobleme für die Logik erster Stufe

Allgemeingültigkeitsproblem für FO[σ]

Eingabe: Eine FO[σ]-Formel φ

Frage: Ist φ allgemeingültig?

Formal:

M ist die Menge aller Worte über dem Alphabet AFO[σ] und

L ist die Menge {φ ∈ FO[σ] : φ ist allgemeingültig}

Erfüllbarkeitsproblem für FO[σ]

Eingabe: FO[σ]-Formel φ

Frage: Ist φ erfüllbar?

Unerfüllbarkeitsproblem für FO[σ]

Eingabe: FO[σ]-Formel φ

Frage: Ist φ unerfüllbar?

Folgerungsproblem für FO[σ]

Eingabe: Zwei FO[σ]-Formeln φ, ψ

Frage: Gilt φ |= ψ ?

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 338

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Entscheidungsprobleme für die Logik erster Stufe

Allgemeingültigkeitsproblem für FO[σ]

Eingabe: Eine FO[σ]-Formel φ

Frage: Ist φ allgemeingültig?

Formal:

M ist die Menge aller Worte über dem Alphabet AFO[σ] und

L ist die Menge {φ ∈ FO[σ] : φ ist allgemeingültig}

Erfüllbarkeitsproblem für FO[σ]

Eingabe: FO[σ]-Formel φ

Frage: Ist φ erfüllbar?

Unerfüllbarkeitsproblem für FO[σ]

Eingabe: FO[σ]-Formel φ

Frage: Ist φ unerfüllbar?

Folgerungsproblem für FO[σ]

Eingabe: Zwei FO[σ]-Formeln φ, ψ

Frage: Gilt φ |= ψ ?

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 338

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Entscheidbarkeit und Semi-Entscheidbarkeit

Definition 4.38
Sei M eine abzählbar unendliche Menge.

(a) Eine Menge L ⊆ M heißt entscheidbar, falls

es einen Algorithmus gibt, der
bei Eingabe eines m ∈ M nach endlich vielen Schritten anhält und
•

”
ja“ ausgibt, falls m ∈ L

•
”
nein“ ausgibt, falls m ̸∈ L.

(b) L ⊆ M heißt semi-entscheidbar, falls es einen Algorithmus gibt, der bei
Eingabe eines m ∈ M
• nach endlich vielen Schritten anhält und

”
ja“ ausgibt, falls m ∈ L

• nie anhält, falls m ̸∈ L.

Beispiele:

• Graphzusammenhang ist entscheidbar (z.B. durch Tiefen- oder Breitensuche).

• Das Halteproblem ist semi-entscheidbar (bei Eingabe von w#x konstruiere die
von w repräsentierte deterministische Turingmaschine und lasse diese mit
Eingabe x laufen).
Ist es auch entscheidbar? Nein! — Das Halteproblem ist das Paradebeispiel eines
nicht entscheidbaren Problems.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 339

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Entscheidbarkeit und Semi-Entscheidbarkeit

Definition 4.38
Sei M eine abzählbar unendliche Menge.

(a) Eine Menge L ⊆ M heißt entscheidbar, falls es einen Algorithmus gibt, der
bei Eingabe eines m ∈ M nach endlich vielen Schritten anhält und
•

”
ja“ ausgibt, falls m ∈ L

•
”
nein“ ausgibt, falls m ̸∈ L.

(b) L ⊆ M heißt semi-entscheidbar, falls es einen Algorithmus gibt, der bei
Eingabe eines m ∈ M
• nach endlich vielen Schritten anhält und

”
ja“ ausgibt, falls m ∈ L

• nie anhält, falls m ̸∈ L.

Beispiele:

• Graphzusammenhang ist entscheidbar (z.B. durch Tiefen- oder Breitensuche).

• Das Halteproblem ist semi-entscheidbar (bei Eingabe von w#x konstruiere die
von w repräsentierte deterministische Turingmaschine und lasse diese mit
Eingabe x laufen).
Ist es auch entscheidbar? Nein! — Das Halteproblem ist das Paradebeispiel eines
nicht entscheidbaren Problems.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 339

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Entscheidbarkeit und Semi-Entscheidbarkeit

Definition 4.38
Sei M eine abzählbar unendliche Menge.

(a) Eine Menge L ⊆ M heißt entscheidbar, falls es einen Algorithmus gibt, der
bei Eingabe eines m ∈ M nach endlich vielen Schritten anhält und
•

”
ja“ ausgibt, falls m ∈ L

•
”
nein“ ausgibt, falls m ̸∈ L.

(b) L ⊆ M heißt semi-entscheidbar, falls

es einen Algorithmus gibt, der bei
Eingabe eines m ∈ M
• nach endlich vielen Schritten anhält und

”
ja“ ausgibt, falls m ∈ L

• nie anhält, falls m ̸∈ L.

Beispiele:

• Graphzusammenhang ist entscheidbar (z.B. durch Tiefen- oder Breitensuche).

• Das Halteproblem ist semi-entscheidbar (bei Eingabe von w#x konstruiere die
von w repräsentierte deterministische Turingmaschine und lasse diese mit
Eingabe x laufen).
Ist es auch entscheidbar? Nein! — Das Halteproblem ist das Paradebeispiel eines
nicht entscheidbaren Problems.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 339

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Entscheidbarkeit und Semi-Entscheidbarkeit

Definition 4.38
Sei M eine abzählbar unendliche Menge.

(a) Eine Menge L ⊆ M heißt entscheidbar, falls es einen Algorithmus gibt, der
bei Eingabe eines m ∈ M nach endlich vielen Schritten anhält und
•

”
ja“ ausgibt, falls m ∈ L

•
”
nein“ ausgibt, falls m ̸∈ L.

(b) L ⊆ M heißt semi-entscheidbar, falls es einen Algorithmus gibt, der bei
Eingabe eines m ∈ M
• nach endlich vielen Schritten anhält und

”
ja“ ausgibt, falls m ∈ L

• nie anhält, falls m ̸∈ L.

Beispiele:

• Graphzusammenhang ist entscheidbar (z.B. durch Tiefen- oder Breitensuche).

• Das Halteproblem ist semi-entscheidbar (bei Eingabe von w#x konstruiere die
von w repräsentierte deterministische Turingmaschine und lasse diese mit
Eingabe x laufen).
Ist es auch entscheidbar? Nein! — Das Halteproblem ist das Paradebeispiel eines
nicht entscheidbaren Problems.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 339

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Entscheidbarkeit und Semi-Entscheidbarkeit

Definition 4.38
Sei M eine abzählbar unendliche Menge.

(a) Eine Menge L ⊆ M heißt entscheidbar, falls es einen Algorithmus gibt, der
bei Eingabe eines m ∈ M nach endlich vielen Schritten anhält und
•

”
ja“ ausgibt, falls m ∈ L

•
”
nein“ ausgibt, falls m ̸∈ L.

(b) L ⊆ M heißt semi-entscheidbar, falls es einen Algorithmus gibt, der bei
Eingabe eines m ∈ M
• nach endlich vielen Schritten anhält und

”
ja“ ausgibt, falls m ∈ L

• nie anhält, falls m ̸∈ L.

Beispiele:

• Graphzusammenhang ist

entscheidbar (z.B. durch Tiefen- oder Breitensuche).

• Das Halteproblem ist semi-entscheidbar (bei Eingabe von w#x konstruiere die
von w repräsentierte deterministische Turingmaschine und lasse diese mit
Eingabe x laufen).
Ist es auch entscheidbar? Nein! — Das Halteproblem ist das Paradebeispiel eines
nicht entscheidbaren Problems.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 339

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Entscheidbarkeit und Semi-Entscheidbarkeit

Definition 4.38
Sei M eine abzählbar unendliche Menge.

(a) Eine Menge L ⊆ M heißt entscheidbar, falls es einen Algorithmus gibt, der
bei Eingabe eines m ∈ M nach endlich vielen Schritten anhält und
•

”
ja“ ausgibt, falls m ∈ L

•
”
nein“ ausgibt, falls m ̸∈ L.

(b) L ⊆ M heißt semi-entscheidbar, falls es einen Algorithmus gibt, der bei
Eingabe eines m ∈ M
• nach endlich vielen Schritten anhält und

”
ja“ ausgibt, falls m ∈ L

• nie anhält, falls m ̸∈ L.

Beispiele:

• Graphzusammenhang ist entscheidbar (z.B. durch Tiefen- oder Breitensuche).

• Das Halteproblem ist semi-entscheidbar (bei Eingabe von w#x konstruiere die
von w repräsentierte deterministische Turingmaschine und lasse diese mit
Eingabe x laufen).
Ist es auch entscheidbar? Nein! — Das Halteproblem ist das Paradebeispiel eines
nicht entscheidbaren Problems.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 339

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Entscheidbarkeit und Semi-Entscheidbarkeit

Definition 4.38
Sei M eine abzählbar unendliche Menge.

(a) Eine Menge L ⊆ M heißt entscheidbar, falls es einen Algorithmus gibt, der
bei Eingabe eines m ∈ M nach endlich vielen Schritten anhält und
•

”
ja“ ausgibt, falls m ∈ L

•
”
nein“ ausgibt, falls m ̸∈ L.

(b) L ⊆ M heißt semi-entscheidbar, falls es einen Algorithmus gibt, der bei
Eingabe eines m ∈ M
• nach endlich vielen Schritten anhält und

”
ja“ ausgibt, falls m ∈ L

• nie anhält, falls m ̸∈ L.

Beispiele:

• Graphzusammenhang ist entscheidbar (z.B. durch Tiefen- oder Breitensuche).

• Das Halteproblem ist

semi-entscheidbar (bei Eingabe von w#x konstruiere die
von w repräsentierte deterministische Turingmaschine und lasse diese mit
Eingabe x laufen).
Ist es auch entscheidbar? Nein! — Das Halteproblem ist das Paradebeispiel eines
nicht entscheidbaren Problems.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 339

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Entscheidbarkeit und Semi-Entscheidbarkeit

Definition 4.38
Sei M eine abzählbar unendliche Menge.

(a) Eine Menge L ⊆ M heißt entscheidbar, falls es einen Algorithmus gibt, der
bei Eingabe eines m ∈ M nach endlich vielen Schritten anhält und
•

”
ja“ ausgibt, falls m ∈ L

•
”
nein“ ausgibt, falls m ̸∈ L.

(b) L ⊆ M heißt semi-entscheidbar, falls es einen Algorithmus gibt, der bei
Eingabe eines m ∈ M
• nach endlich vielen Schritten anhält und

”
ja“ ausgibt, falls m ∈ L

• nie anhält, falls m ̸∈ L.

Beispiele:

• Graphzusammenhang ist entscheidbar (z.B. durch Tiefen- oder Breitensuche).

• Das Halteproblem ist semi-entscheidbar

(bei Eingabe von w#x konstruiere die
von w repräsentierte deterministische Turingmaschine und lasse diese mit
Eingabe x laufen).
Ist es auch entscheidbar? Nein! — Das Halteproblem ist das Paradebeispiel eines
nicht entscheidbaren Problems.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 339

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Entscheidbarkeit und Semi-Entscheidbarkeit

Definition 4.38
Sei M eine abzählbar unendliche Menge.

(a) Eine Menge L ⊆ M heißt entscheidbar, falls es einen Algorithmus gibt, der
bei Eingabe eines m ∈ M nach endlich vielen Schritten anhält und
•

”
ja“ ausgibt, falls m ∈ L

•
”
nein“ ausgibt, falls m ̸∈ L.

(b) L ⊆ M heißt semi-entscheidbar, falls es einen Algorithmus gibt, der bei
Eingabe eines m ∈ M
• nach endlich vielen Schritten anhält und

”
ja“ ausgibt, falls m ∈ L

• nie anhält, falls m ̸∈ L.

Beispiele:

• Graphzusammenhang ist entscheidbar (z.B. durch Tiefen- oder Breitensuche).

• Das Halteproblem ist semi-entscheidbar (bei Eingabe von w#x konstruiere die
von w repräsentierte deterministische Turingmaschine und lasse diese mit
Eingabe x laufen).

Ist es auch entscheidbar? Nein! — Das Halteproblem ist das Paradebeispiel eines
nicht entscheidbaren Problems.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 339

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Entscheidbarkeit und Semi-Entscheidbarkeit

Definition 4.38
Sei M eine abzählbar unendliche Menge.

(a) Eine Menge L ⊆ M heißt entscheidbar, falls es einen Algorithmus gibt, der
bei Eingabe eines m ∈ M nach endlich vielen Schritten anhält und
•

”
ja“ ausgibt, falls m ∈ L

•
”
nein“ ausgibt, falls m ̸∈ L.

(b) L ⊆ M heißt semi-entscheidbar, falls es einen Algorithmus gibt, der bei
Eingabe eines m ∈ M
• nach endlich vielen Schritten anhält und

”
ja“ ausgibt, falls m ∈ L

• nie anhält, falls m ̸∈ L.

Beispiele:

• Graphzusammenhang ist entscheidbar (z.B. durch Tiefen- oder Breitensuche).

• Das Halteproblem ist semi-entscheidbar (bei Eingabe von w#x konstruiere die
von w repräsentierte deterministische Turingmaschine und lasse diese mit
Eingabe x laufen).
Ist es auch entscheidbar?

Nein! — Das Halteproblem ist das Paradebeispiel eines
nicht entscheidbaren Problems.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 339

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Entscheidbarkeit und Semi-Entscheidbarkeit

Definition 4.38
Sei M eine abzählbar unendliche Menge.

(a) Eine Menge L ⊆ M heißt entscheidbar, falls es einen Algorithmus gibt, der
bei Eingabe eines m ∈ M nach endlich vielen Schritten anhält und
•

”
ja“ ausgibt, falls m ∈ L

•
”
nein“ ausgibt, falls m ̸∈ L.

(b) L ⊆ M heißt semi-entscheidbar, falls es einen Algorithmus gibt, der bei
Eingabe eines m ∈ M
• nach endlich vielen Schritten anhält und

”
ja“ ausgibt, falls m ∈ L

• nie anhält, falls m ̸∈ L.

Beispiele:

• Graphzusammenhang ist entscheidbar (z.B. durch Tiefen- oder Breitensuche).

• Das Halteproblem ist semi-entscheidbar (bei Eingabe von w#x konstruiere die
von w repräsentierte deterministische Turingmaschine und lasse diese mit
Eingabe x laufen).
Ist es auch entscheidbar? Nein! — Das Halteproblem ist das Paradebeispiel eines
nicht entscheidbaren Problems.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 339

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Einfache Beobachtungen

• Jede entscheidbare Menge L ⊆ M ist auch semi-entscheidbar

(anstatt

”
nein“ auszugeben und anzuhalten, gehen wir einfach in eine
Endlosschleife)

• Für jede entscheidbare Menge L ⊆ M ist auch die Menge L := (M \ L) ⊆ M
entscheidbar (vertausche einfach die Antworten

”
ja“ und

”
nein“)

• Wenn sowohl L ⊆ M als auch L := (M \ L) ⊆ M semi-entscheidbar sind,
dann ist L ⊆ M sogar entscheidbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 340

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Einfache Beobachtungen

• Jede entscheidbare Menge L ⊆ M ist auch semi-entscheidbar (anstatt

”
nein“ auszugeben und anzuhalten, gehen wir einfach in eine
Endlosschleife)

• Für jede entscheidbare Menge L ⊆ M ist auch die Menge L := (M \ L) ⊆ M
entscheidbar (vertausche einfach die Antworten

”
ja“ und

”
nein“)

• Wenn sowohl L ⊆ M als auch L := (M \ L) ⊆ M semi-entscheidbar sind,
dann ist L ⊆ M sogar entscheidbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 340

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Einfache Beobachtungen

• Jede entscheidbare Menge L ⊆ M ist auch semi-entscheidbar (anstatt

”
nein“ auszugeben und anzuhalten, gehen wir einfach in eine
Endlosschleife)

• Für jede entscheidbare Menge L ⊆ M ist auch die Menge L := (M \ L) ⊆ M
entscheidbar

(vertausche einfach die Antworten
”
ja“ und

”
nein“)

• Wenn sowohl L ⊆ M als auch L := (M \ L) ⊆ M semi-entscheidbar sind,
dann ist L ⊆ M sogar entscheidbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 340

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Einfache Beobachtungen

• Jede entscheidbare Menge L ⊆ M ist auch semi-entscheidbar (anstatt

”
nein“ auszugeben und anzuhalten, gehen wir einfach in eine
Endlosschleife)

• Für jede entscheidbare Menge L ⊆ M ist auch die Menge L := (M \ L) ⊆ M
entscheidbar (vertausche einfach die Antworten

”
ja“ und

”
nein“)

• Wenn sowohl L ⊆ M als auch L := (M \ L) ⊆ M semi-entscheidbar sind,
dann ist L ⊆ M sogar entscheidbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 340

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Einfache Beobachtungen

• Jede entscheidbare Menge L ⊆ M ist auch semi-entscheidbar (anstatt

”
nein“ auszugeben und anzuhalten, gehen wir einfach in eine
Endlosschleife)

• Für jede entscheidbare Menge L ⊆ M ist auch die Menge L := (M \ L) ⊆ M
entscheidbar (vertausche einfach die Antworten

”
ja“ und

”
nein“)

• Wenn sowohl L ⊆ M als auch L := (M \ L) ⊆ M semi-entscheidbar sind,
dann ist L ⊆ M sogar entscheidbar.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 340

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Semi-Entscheidbarkeit einiger Logik-Probleme

Satz 4.39
Sei σ eine höchstens abzählbare Signatur.
Jedes der folgenden Probleme ist semi-enscheidbar:

(a) das Allgemeingültigkeitsproblem für FO[σ],

(b) das Unerfüllbarkeitsproblem für FO[σ],

(c) das Folgerungsproblem für FO[σ].

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 341

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Semi-Entscheidbarkeit einiger Logik-Probleme

Satz 4.39
Sei σ eine höchstens abzählbare Signatur.
Jedes der folgenden Probleme ist semi-enscheidbar:

(a) das Allgemeingültigkeitsproblem für FO[σ],

(b) das Unerfüllbarkeitsproblem für FO[σ],

(c) das Folgerungsproblem für FO[σ].

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 341

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Semi-Entscheidbarkeit einiger Logik-Probleme

Satz 4.39
Sei σ eine höchstens abzählbare Signatur.
Jedes der folgenden Probleme ist semi-enscheidbar:

(a) das Allgemeingültigkeitsproblem für FO[σ],

(b) das Unerfüllbarkeitsproblem für FO[σ],

(c) das Folgerungsproblem für FO[σ].

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 341

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Semi-Entscheidbarkeit einiger Logik-Probleme

Satz 4.39
Sei σ eine höchstens abzählbare Signatur.
Jedes der folgenden Probleme ist semi-enscheidbar:

(a) das Allgemeingültigkeitsproblem für FO[σ],

(b) das Unerfüllbarkeitsproblem für FO[σ],

(c) das Folgerungsproblem für FO[σ].

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 341

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Unentscheidbarkeit einiger Logik-Probleme
Unser nächstes Ziel ist, zu zeigen, dass für bestimmte Signaturen σ gilt:

• Das Allgemeingültigkeitsproblem für FO[σ],

• das Unerfüllbarkeitsproblem für FO[σ],

• das Erfüllbarkeitsproblem für FO[σ] und

• das Folgerungsproblem für FO[σ]

ist nicht entscheidbar.

Wir werden dazu wie folgt vorgehen:

1. Wir nutzen das bekannte Resultat, das besagt, dass das Postsche
Korrespondenzproblem unentscheidbar ist.

2. Wir zeigen, wie das Postsche Korrespondenzproblem unter Zuhilfenahme eines
Entscheidungs-Algorithmus für das Allgemeingültigkeitsproblem für FO[σ] (für
eine geeignete Signatur σ) gelöst werden könnte.

Dadurch erhalten wir, dass das Allgemeingültigkeitsproblem für FO[σ]
unentscheidbar ist.

3. Die Unentscheidbarkeit des Unerfüllbarkeitsproblems, des Erfüllbarkeitsproblems
und des Folgerungsproblems für FO[σ] folgen dann leicht aus der
Unentscheidbarkeit des Allgemeingültigkeitsproblems für FO[σ].

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 342

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Unentscheidbarkeit einiger Logik-Probleme
Unser nächstes Ziel ist, zu zeigen, dass für bestimmte Signaturen σ gilt:

• Das Allgemeingültigkeitsproblem für FO[σ],

• das Unerfüllbarkeitsproblem für FO[σ],

• das Erfüllbarkeitsproblem für FO[σ] und

• das Folgerungsproblem für FO[σ]

ist nicht entscheidbar.

Wir werden dazu wie folgt vorgehen:

1. Wir nutzen das bekannte Resultat, das besagt, dass das Postsche
Korrespondenzproblem unentscheidbar ist.

2. Wir zeigen, wie das Postsche Korrespondenzproblem unter Zuhilfenahme eines
Entscheidungs-Algorithmus für das Allgemeingültigkeitsproblem für FO[σ] (für
eine geeignete Signatur σ) gelöst werden könnte.

Dadurch erhalten wir, dass das Allgemeingültigkeitsproblem für FO[σ]
unentscheidbar ist.

3. Die Unentscheidbarkeit des Unerfüllbarkeitsproblems, des Erfüllbarkeitsproblems
und des Folgerungsproblems für FO[σ] folgen dann leicht aus der
Unentscheidbarkeit des Allgemeingültigkeitsproblems für FO[σ].

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 342

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Unentscheidbarkeit einiger Logik-Probleme
Unser nächstes Ziel ist, zu zeigen, dass für bestimmte Signaturen σ gilt:

• Das Allgemeingültigkeitsproblem für FO[σ],

• das Unerfüllbarkeitsproblem für FO[σ],

• das Erfüllbarkeitsproblem für FO[σ] und

• das Folgerungsproblem für FO[σ]

ist nicht entscheidbar.

Wir werden dazu wie folgt vorgehen:

1. Wir nutzen das bekannte Resultat, das besagt, dass das Postsche
Korrespondenzproblem unentscheidbar ist.

2. Wir zeigen, wie das Postsche Korrespondenzproblem unter Zuhilfenahme eines
Entscheidungs-Algorithmus für das Allgemeingültigkeitsproblem für FO[σ] (für
eine geeignete Signatur σ) gelöst werden könnte.

Dadurch erhalten wir, dass das Allgemeingültigkeitsproblem für FO[σ]
unentscheidbar ist.

3. Die Unentscheidbarkeit des Unerfüllbarkeitsproblems, des Erfüllbarkeitsproblems
und des Folgerungsproblems für FO[σ] folgen dann leicht aus der
Unentscheidbarkeit des Allgemeingültigkeitsproblems für FO[σ].

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 342

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Unentscheidbarkeit einiger Logik-Probleme
Unser nächstes Ziel ist, zu zeigen, dass für bestimmte Signaturen σ gilt:

• Das Allgemeingültigkeitsproblem für FO[σ],

• das Unerfüllbarkeitsproblem für FO[σ],

• das Erfüllbarkeitsproblem für FO[σ] und

• das Folgerungsproblem für FO[σ]

ist nicht entscheidbar.

Wir werden dazu wie folgt vorgehen:

1. Wir nutzen das bekannte Resultat, das besagt, dass das Postsche
Korrespondenzproblem unentscheidbar ist.

2. Wir zeigen, wie das Postsche Korrespondenzproblem unter Zuhilfenahme eines
Entscheidungs-Algorithmus für das Allgemeingültigkeitsproblem für FO[σ] (für
eine geeignete Signatur σ) gelöst werden könnte.

Dadurch erhalten wir, dass das Allgemeingültigkeitsproblem für FO[σ]
unentscheidbar ist.

3. Die Unentscheidbarkeit des Unerfüllbarkeitsproblems, des Erfüllbarkeitsproblems
und des Folgerungsproblems für FO[σ] folgen dann leicht aus der
Unentscheidbarkeit des Allgemeingültigkeitsproblems für FO[σ].

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 342

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Unentscheidbarkeit einiger Logik-Probleme
Unser nächstes Ziel ist, zu zeigen, dass für bestimmte Signaturen σ gilt:

• Das Allgemeingültigkeitsproblem für FO[σ],

• das Unerfüllbarkeitsproblem für FO[σ],

• das Erfüllbarkeitsproblem für FO[σ] und

• das Folgerungsproblem für FO[σ]

ist nicht entscheidbar.

Wir werden dazu wie folgt vorgehen:

1. Wir nutzen das bekannte Resultat, das besagt, dass das Postsche
Korrespondenzproblem unentscheidbar ist.

2. Wir zeigen, wie das Postsche Korrespondenzproblem unter Zuhilfenahme eines
Entscheidungs-Algorithmus für das Allgemeingültigkeitsproblem für FO[σ] (für
eine geeignete Signatur σ) gelöst werden könnte.

Dadurch erhalten wir, dass das Allgemeingültigkeitsproblem für FO[σ]
unentscheidbar ist.

3. Die Unentscheidbarkeit des Unerfüllbarkeitsproblems, des Erfüllbarkeitsproblems
und des Folgerungsproblems für FO[σ] folgen dann leicht aus der
Unentscheidbarkeit des Allgemeingültigkeitsproblems für FO[σ].

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 342

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Das Postsche Korrespondenzproblem

Das Postsche Korrespondenzproblem (PKP)

Eingabe: Eine Zahl k ⩾ 1 und k Paare (x1, y1), (x2, y2), . . . , (xk , yk)
mit x1, y1, . . . , xk , yk ∈ {0, 1}∗.

Frage: Gibt es ein n ⩾ 1 und Indizes i1, . . . , in ∈ {1, . . . , k}, so dass
gilt: xi1xi2 · · · xin = yi1yi2 · · · yin ?

Beispiel:
Das PKP mit Eingabe k = 3 und

(x1, y1) = (1, 111), (x2, y2) = (10111, 10), (x3, y3) = (10, 0).

hat eine Lösung mit n = 4 und i1 = 2, i2 = 1, i3 = 1, i4 = 3, denn:

x2 x1 x1 x3 = 10111 1 1 10

y2 y1 y1 y3 = 10 111 111 0.

Bekannt:
• Das PKP ist semi-entscheidbar. (Dies sieht man leicht.)
• Das PKP ist nicht entscheidbar.

(Dies wurde in der
”
Einführung in die Theoretische Informatik“ bewiesen.)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 343

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Das Postsche Korrespondenzproblem

Das Postsche Korrespondenzproblem (PKP)

Eingabe: Eine Zahl k ⩾ 1 und k Paare (x1, y1), (x2, y2), . . . , (xk , yk)
mit x1, y1, . . . , xk , yk ∈ {0, 1}∗.

Frage: Gibt es ein n ⩾ 1 und Indizes i1, . . . , in ∈ {1, . . . , k}, so dass
gilt: xi1xi2 · · · xin = yi1yi2 · · · yin ?

Beispiel:
Das PKP mit Eingabe k = 3 und

(x1, y1) = (1, 111), (x2, y2) = (10111, 10), (x3, y3) = (10, 0).

hat eine Lösung mit n = 4 und i1 = 2, i2 = 1, i3 = 1, i4 = 3, denn:

x2 x1 x1 x3 = 10111 1 1 10

y2 y1 y1 y3 = 10 111 111 0.

Bekannt:
• Das PKP ist semi-entscheidbar. (Dies sieht man leicht.)
• Das PKP ist nicht entscheidbar.

(Dies wurde in der
”
Einführung in die Theoretische Informatik“ bewiesen.)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 343

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Das Postsche Korrespondenzproblem

Das Postsche Korrespondenzproblem (PKP)

Eingabe: Eine Zahl k ⩾ 1 und k Paare (x1, y1), (x2, y2), . . . , (xk , yk)
mit x1, y1, . . . , xk , yk ∈ {0, 1}∗.

Frage: Gibt es ein n ⩾ 1 und Indizes i1, . . . , in ∈ {1, . . . , k}, so dass
gilt: xi1xi2 · · · xin = yi1yi2 · · · yin ?

Beispiel:
Das PKP mit Eingabe k = 3 und

(x1, y1) = (1, 111), (x2, y2) = (10111, 10), (x3, y3) = (10, 0).

hat eine Lösung mit n = 4 und i1 = 2, i2 = 1, i3 = 1, i4 = 3, denn:

x2 x1 x1 x3 = 10111 1 1 10

y2 y1 y1 y3 = 10 111 111 0.

Bekannt:
• Das PKP ist semi-entscheidbar. (Dies sieht man leicht.)
• Das PKP ist nicht entscheidbar.

(Dies wurde in der
”
Einführung in die Theoretische Informatik“ bewiesen.)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 343

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Das Postsche Korrespondenzproblem

Das Postsche Korrespondenzproblem (PKP)

Eingabe: Eine Zahl k ⩾ 1 und k Paare (x1, y1), (x2, y2), . . . , (xk , yk)
mit x1, y1, . . . , xk , yk ∈ {0, 1}∗.

Frage: Gibt es ein n ⩾ 1 und Indizes i1, . . . , in ∈ {1, . . . , k}, so dass
gilt: xi1xi2 · · · xin = yi1yi2 · · · yin ?

Beispiel:
Das PKP mit Eingabe k = 3 und

(x1, y1) = (1, 111), (x2, y2) = (10111, 10), (x3, y3) = (10, 0).

hat eine Lösung mit n = 4 und i1 = 2, i2 = 1, i3 = 1, i4 = 3, denn:

x2 x1 x1 x3 = 10111 1 1 10

y2 y1 y1 y3 = 10 111 111 0.

Bekannt:

• Das PKP ist semi-entscheidbar. (Dies sieht man leicht.)
• Das PKP ist nicht entscheidbar.

(Dies wurde in der
”
Einführung in die Theoretische Informatik“ bewiesen.)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 343

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Das Postsche Korrespondenzproblem

Das Postsche Korrespondenzproblem (PKP)

Eingabe: Eine Zahl k ⩾ 1 und k Paare (x1, y1), (x2, y2), . . . , (xk , yk)
mit x1, y1, . . . , xk , yk ∈ {0, 1}∗.

Frage: Gibt es ein n ⩾ 1 und Indizes i1, . . . , in ∈ {1, . . . , k}, so dass
gilt: xi1xi2 · · · xin = yi1yi2 · · · yin ?

Beispiel:
Das PKP mit Eingabe k = 3 und

(x1, y1) = (1, 111), (x2, y2) = (10111, 10), (x3, y3) = (10, 0).

hat eine Lösung mit n = 4 und i1 = 2, i2 = 1, i3 = 1, i4 = 3, denn:

x2 x1 x1 x3 = 10111 1 1 10

y2 y1 y1 y3 = 10 111 111 0.

Bekannt:
• Das PKP ist semi-entscheidbar. (Dies sieht man leicht.)

• Das PKP ist nicht entscheidbar.
(Dies wurde in der

”
Einführung in die Theoretische Informatik“ bewiesen.)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 343

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Das Postsche Korrespondenzproblem

Das Postsche Korrespondenzproblem (PKP)

Eingabe: Eine Zahl k ⩾ 1 und k Paare (x1, y1), (x2, y2), . . . , (xk , yk)
mit x1, y1, . . . , xk , yk ∈ {0, 1}∗.

Frage: Gibt es ein n ⩾ 1 und Indizes i1, . . . , in ∈ {1, . . . , k}, so dass
gilt: xi1xi2 · · · xin = yi1yi2 · · · yin ?

Beispiel:
Das PKP mit Eingabe k = 3 und

(x1, y1) = (1, 111), (x2, y2) = (10111, 10), (x3, y3) = (10, 0).

hat eine Lösung mit n = 4 und i1 = 2, i2 = 1, i3 = 1, i4 = 3, denn:

x2 x1 x1 x3 = 10111 1 1 10

y2 y1 y1 y3 = 10 111 111 0.

Bekannt:
• Das PKP ist semi-entscheidbar. (Dies sieht man leicht.)
• Das PKP ist nicht entscheidbar.

(Dies wurde in der
”
Einführung in die Theoretische Informatik“ bewiesen.)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 343

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Die Unentscheidbarkeit der Logik erster Stufe

Satz 4.40
Sei σ := {R, f0, f1, c}, wobei c ein Konstantensymbol, R ein 2-stelliges
Relationssymbol und f0, f1 zwei 1-stellige Funktionssymbole sind.

Das Allgemeingültigkeitsproblem für FO[σ] ist nicht entscheidbar.

Beweis: Auf Grund der Unentscheidbarkeit des PKP reicht es, eine Reduktion
vom PKP zum Allgemeingültigkeitsproblem für FO[σ] anzugeben. D.h. wir
zeigen, dass bei Eingabe eines Tupels I =

(
k, (x1, y1), . . . , (xk , yk)

)
, das eine

Eingabe für’s PKP repräsentiert, eine FO[σ]-Formel φI konstruiert werden kann,
die genau dann allgemeingültig ist, wenn I eine

”
ja“-Instanz für’s PKP ist (d.h.

es gibt n ⩾ 1 und i1, . . . , in ∈ [k], so dass xi1 · · · xin = yi1 · · · yin).
Wenn das Allgemeingültigkeitsproblem für FO[σ] entscheidbar wäre, wäre daher
auch das PKP entscheidbar.

Zur Konstruktion der Formel φI gehen wir in mehreren Schritten vor.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 344

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Die Unentscheidbarkeit der Logik erster Stufe

Satz 4.40
Sei σ := {R, f0, f1, c}, wobei c ein Konstantensymbol, R ein 2-stelliges
Relationssymbol und f0, f1 zwei 1-stellige Funktionssymbole sind.

Das Allgemeingültigkeitsproblem für FO[σ] ist nicht entscheidbar.

Beweis: Auf Grund der Unentscheidbarkeit des PKP reicht es, eine Reduktion
vom PKP zum Allgemeingültigkeitsproblem für FO[σ] anzugeben.

D.h. wir
zeigen, dass bei Eingabe eines Tupels I =

(
k, (x1, y1), . . . , (xk , yk)

)
, das eine

Eingabe für’s PKP repräsentiert, eine FO[σ]-Formel φI konstruiert werden kann,
die genau dann allgemeingültig ist, wenn I eine

”
ja“-Instanz für’s PKP ist (d.h.

es gibt n ⩾ 1 und i1, . . . , in ∈ [k], so dass xi1 · · · xin = yi1 · · · yin).
Wenn das Allgemeingültigkeitsproblem für FO[σ] entscheidbar wäre, wäre daher
auch das PKP entscheidbar.

Zur Konstruktion der Formel φI gehen wir in mehreren Schritten vor.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 344

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Die Unentscheidbarkeit der Logik erster Stufe

Satz 4.40
Sei σ := {R, f0, f1, c}, wobei c ein Konstantensymbol, R ein 2-stelliges
Relationssymbol und f0, f1 zwei 1-stellige Funktionssymbole sind.

Das Allgemeingültigkeitsproblem für FO[σ] ist nicht entscheidbar.

Beweis: Auf Grund der Unentscheidbarkeit des PKP reicht es, eine Reduktion
vom PKP zum Allgemeingültigkeitsproblem für FO[σ] anzugeben. D.h. wir
zeigen, dass bei Eingabe eines Tupels I =

(
k , (x1, y1), . . . , (xk , yk)

)
, das eine

Eingabe für’s PKP repräsentiert, eine FO[σ]-Formel φI konstruiert werden kann,
die genau dann allgemeingültig ist, wenn I eine

”
ja“-Instanz für’s PKP ist

(d.h.
es gibt n ⩾ 1 und i1, . . . , in ∈ [k], so dass xi1 · · · xin = yi1 · · · yin).
Wenn das Allgemeingültigkeitsproblem für FO[σ] entscheidbar wäre, wäre daher
auch das PKP entscheidbar.

Zur Konstruktion der Formel φI gehen wir in mehreren Schritten vor.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 344

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Die Unentscheidbarkeit der Logik erster Stufe

Satz 4.40
Sei σ := {R, f0, f1, c}, wobei c ein Konstantensymbol, R ein 2-stelliges
Relationssymbol und f0, f1 zwei 1-stellige Funktionssymbole sind.

Das Allgemeingültigkeitsproblem für FO[σ] ist nicht entscheidbar.

Beweis: Auf Grund der Unentscheidbarkeit des PKP reicht es, eine Reduktion
vom PKP zum Allgemeingültigkeitsproblem für FO[σ] anzugeben. D.h. wir
zeigen, dass bei Eingabe eines Tupels I =

(
k , (x1, y1), . . . , (xk , yk)

)
, das eine

Eingabe für’s PKP repräsentiert, eine FO[σ]-Formel φI konstruiert werden kann,
die genau dann allgemeingültig ist, wenn I eine

”
ja“-Instanz für’s PKP ist (d.h.

es gibt n ⩾ 1 und i1, . . . , in ∈ [k], so dass xi1 · · · xin = yi1 · · · yin).

Wenn das Allgemeingültigkeitsproblem für FO[σ] entscheidbar wäre, wäre daher
auch das PKP entscheidbar.

Zur Konstruktion der Formel φI gehen wir in mehreren Schritten vor.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 344

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Die Unentscheidbarkeit der Logik erster Stufe

Satz 4.40
Sei σ := {R, f0, f1, c}, wobei c ein Konstantensymbol, R ein 2-stelliges
Relationssymbol und f0, f1 zwei 1-stellige Funktionssymbole sind.

Das Allgemeingültigkeitsproblem für FO[σ] ist nicht entscheidbar.

Beweis: Auf Grund der Unentscheidbarkeit des PKP reicht es, eine Reduktion
vom PKP zum Allgemeingültigkeitsproblem für FO[σ] anzugeben. D.h. wir
zeigen, dass bei Eingabe eines Tupels I =

(
k , (x1, y1), . . . , (xk , yk)

)
, das eine

Eingabe für’s PKP repräsentiert, eine FO[σ]-Formel φI konstruiert werden kann,
die genau dann allgemeingültig ist, wenn I eine

”
ja“-Instanz für’s PKP ist (d.h.

es gibt n ⩾ 1 und i1, . . . , in ∈ [k], so dass xi1 · · · xin = yi1 · · · yin).
Wenn das Allgemeingültigkeitsproblem für FO[σ] entscheidbar wäre, wäre daher
auch das PKP entscheidbar.

Zur Konstruktion der Formel φI gehen wir in mehreren Schritten vor.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 344

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Die Unentscheidbarkeit der Logik erster Stufe

Satz 4.40
Sei σ := {R, f0, f1, c}, wobei c ein Konstantensymbol, R ein 2-stelliges
Relationssymbol und f0, f1 zwei 1-stellige Funktionssymbole sind.

Das Allgemeingültigkeitsproblem für FO[σ] ist nicht entscheidbar.

Beweis: Auf Grund der Unentscheidbarkeit des PKP reicht es, eine Reduktion
vom PKP zum Allgemeingültigkeitsproblem für FO[σ] anzugeben. D.h. wir
zeigen, dass bei Eingabe eines Tupels I =

(
k , (x1, y1), . . . , (xk , yk)

)
, das eine

Eingabe für’s PKP repräsentiert, eine FO[σ]-Formel φI konstruiert werden kann,
die genau dann allgemeingültig ist, wenn I eine

”
ja“-Instanz für’s PKP ist (d.h.

es gibt n ⩾ 1 und i1, . . . , in ∈ [k], so dass xi1 · · · xin = yi1 · · · yin).
Wenn das Allgemeingültigkeitsproblem für FO[σ] entscheidbar wäre, wäre daher
auch das PKP entscheidbar.

Zur Konstruktion der Formel φI gehen wir in mehreren Schritten vor.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 344

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Schritt 1: Für jede Eingabe I =
(
k , (x1, y1), . . . , (xk , yk)

)
für das PKP

definiere eine σ-Struktur AI , so dass gilt:

AI |= ∃z R(z , z) ⇐⇒ I ist eine
”
ja“-Instanz für’s PKP, d.h. es gibt

n ⩾ 1 und i1, . . . , in ∈ [k], so dass xi1 · · · xin =
yi1 · · · yin .

Dazu wählen wir AI wie folgt:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 345

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Schritt 1: Für jede Eingabe I =
(
k , (x1, y1), . . . , (xk , yk)

)
für das PKP

definiere eine σ-Struktur AI , so dass gilt:

AI |= ∃z R(z , z) ⇐⇒ I ist eine
”
ja“-Instanz für’s PKP

, d.h. es gibt
n ⩾ 1 und i1, . . . , in ∈ [k], so dass xi1 · · · xin =
yi1 · · · yin .

Dazu wählen wir AI wie folgt:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 345

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Schritt 1: Für jede Eingabe I =
(
k , (x1, y1), . . . , (xk , yk)

)
für das PKP

definiere eine σ-Struktur AI , so dass gilt:

AI |= ∃z R(z , z) ⇐⇒ I ist eine
”
ja“-Instanz für’s PKP, d.h. es gibt

n ⩾ 1 und i1, . . . , in ∈ [k], so dass xi1 · · · xin =
yi1 · · · yin .

Dazu wählen wir AI wie folgt:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 345

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Schritt 1: Für jede Eingabe I =
(
k , (x1, y1), . . . , (xk , yk)

)
für das PKP

definiere eine σ-Struktur AI , so dass gilt:

AI |= ∃z R(z , z) ⇐⇒ I ist eine
”
ja“-Instanz für’s PKP, d.h. es gibt

n ⩾ 1 und i1, . . . , in ∈ [k], so dass xi1 · · · xin =
yi1 · · · yin .

Dazu wählen wir AI wie folgt:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 345

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Schritt 2: Konstruiere FO[σ]-Formeln ψStart
I und ψSchritt

I , die AI hinreichend
genau beschreiben.

Die Formel ψStart
I soll besagen, dass die Relation RAI die Tupel (xj , yj) für alle

j ∈ [k] enthält.

Die Formel ψSchritt
I soll besagen, dass die Relation RAI abgeschlossen ist unter

Konkatenation mit (xj , yj); d.h.: Ist (u, v) ∈ RAI und j ∈ [k], so ist auch
(uxj , vyj) ∈ RAI .

Um dies durch FO[σ]-Formeln zu formulieren, nutzen wir folgende
Schreibweisen:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 346

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Schritt 2: Konstruiere FO[σ]-Formeln ψStart
I und ψSchritt

I , die AI hinreichend
genau beschreiben.

Die Formel ψStart
I soll besagen, dass die Relation RAI die Tupel (xj , yj) für alle

j ∈ [k] enthält.

Die Formel ψSchritt
I soll besagen, dass die Relation RAI abgeschlossen ist unter

Konkatenation mit (xj , yj); d.h.: Ist (u, v) ∈ RAI und j ∈ [k], so ist auch
(uxj , vyj) ∈ RAI .

Um dies durch FO[σ]-Formeln zu formulieren, nutzen wir folgende
Schreibweisen:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 346

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Schritt 2: Konstruiere FO[σ]-Formeln ψStart
I und ψSchritt

I , die AI hinreichend
genau beschreiben.

Die Formel ψStart
I soll besagen, dass die Relation RAI die Tupel (xj , yj) für alle

j ∈ [k] enthält.

Die Formel ψSchritt
I soll besagen, dass die Relation RAI abgeschlossen ist unter

Konkatenation mit (xj , yj); d.h.: Ist (u, v) ∈ RAI und j ∈ [k], so ist auch
(uxj , vyj) ∈ RAI .

Um dies durch FO[σ]-Formeln zu formulieren, nutzen wir folgende
Schreibweisen:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 346

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Schritt 2: Konstruiere FO[σ]-Formeln ψStart
I und ψSchritt

I , die AI hinreichend
genau beschreiben.

Die Formel ψStart
I soll besagen, dass die Relation RAI die Tupel (xj , yj) für alle

j ∈ [k] enthält.

Die Formel ψSchritt
I soll besagen, dass die Relation RAI abgeschlossen ist unter

Konkatenation mit (xj , yj); d.h.: Ist (u, v) ∈ RAI und j ∈ [k], so ist auch
(uxj , vyj) ∈ RAI .

Um dies durch FO[σ]-Formeln zu formulieren, nutzen wir folgende
Schreibweisen:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 346

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Schritt 3: Setze φI :=
((

ψStart
I ∧ ψSchritt

I

)
→ ∃z R(z , z)

)
Klar: Es gibt einen Algorithmus, der bei Eingabe von I die Formel φI

konstruiert.

Behauptung 1:

φI ist allgemeingültig ⇐⇒ I ist eine
”
ja“-Instanz für’s PKP.

Behauptung 2: Für alle (u, v) ∈ RAI gilt:
(
h(u), h(v)

)
∈ RB.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 347

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Schritt 3: Setze φI :=
((

ψStart
I ∧ ψSchritt

I

)
→ ∃z R(z , z)

)
Klar: Es gibt einen Algorithmus, der bei Eingabe von I die Formel φI

konstruiert.

Behauptung 1:

φI ist allgemeingültig ⇐⇒ I ist eine
”
ja“-Instanz für’s PKP.

Behauptung 2: Für alle (u, v) ∈ RAI gilt:
(
h(u), h(v)

)
∈ RB.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 347

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Aus Satz 4.39, Satz 4.40 und den bekannten Zusammenhängen zwischen
semi-entscheidbaren und entscheidbaren Problemen, sowie den Korrespondenzen
zwischen Allgemeingültigkeit, (Un)Erfüllbarkeit und logischer Folgerung, erhält
man leicht:

Korollar 4.41
Sei σ die Signatur aus Satz 4.40. Dann gilt:

(a) Das Allgemeingültigkeitsproblem für FO[σ] ist

semi-entscheidbar aber
nicht entscheidbar.

(b) Das Folgerungsproblem für FO[σ] ist semi-entscheidbar
aber nicht entscheidbar.

(c) Das Unerfüllbarkeitsproblem für FO[σ] ist
semi-entscheidbar aber nicht entscheidbar.

(d) Das Erfüllbarkeitsproblem für FO[σ] ist
nicht semi-entscheidbar.

Beweis: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 348

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Aus Satz 4.39, Satz 4.40 und den bekannten Zusammenhängen zwischen
semi-entscheidbaren und entscheidbaren Problemen, sowie den Korrespondenzen
zwischen Allgemeingültigkeit, (Un)Erfüllbarkeit und logischer Folgerung, erhält
man leicht:

Korollar 4.41
Sei σ die Signatur aus Satz 4.40. Dann gilt:

(a) Das Allgemeingültigkeitsproblem für FO[σ] ist semi-entscheidbar

aber
nicht entscheidbar.

(b) Das Folgerungsproblem für FO[σ] ist semi-entscheidbar
aber nicht entscheidbar.

(c) Das Unerfüllbarkeitsproblem für FO[σ] ist
semi-entscheidbar aber nicht entscheidbar.

(d) Das Erfüllbarkeitsproblem für FO[σ] ist
nicht semi-entscheidbar.

Beweis: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 348

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Aus Satz 4.39, Satz 4.40 und den bekannten Zusammenhängen zwischen
semi-entscheidbaren und entscheidbaren Problemen, sowie den Korrespondenzen
zwischen Allgemeingültigkeit, (Un)Erfüllbarkeit und logischer Folgerung, erhält
man leicht:

Korollar 4.41
Sei σ die Signatur aus Satz 4.40. Dann gilt:

(a) Das Allgemeingültigkeitsproblem für FO[σ] ist semi-entscheidbar aber
nicht entscheidbar.

(b) Das Folgerungsproblem für FO[σ] ist semi-entscheidbar
aber nicht entscheidbar.

(c) Das Unerfüllbarkeitsproblem für FO[σ] ist
semi-entscheidbar aber nicht entscheidbar.

(d) Das Erfüllbarkeitsproblem für FO[σ] ist
nicht semi-entscheidbar.

Beweis: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 348

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Aus Satz 4.39, Satz 4.40 und den bekannten Zusammenhängen zwischen
semi-entscheidbaren und entscheidbaren Problemen, sowie den Korrespondenzen
zwischen Allgemeingültigkeit, (Un)Erfüllbarkeit und logischer Folgerung, erhält
man leicht:

Korollar 4.41
Sei σ die Signatur aus Satz 4.40. Dann gilt:

(a) Das Allgemeingültigkeitsproblem für FO[σ] ist semi-entscheidbar aber
nicht entscheidbar.

(b) Das Folgerungsproblem für FO[σ] ist

semi-entscheidbar
aber nicht entscheidbar.

(c) Das Unerfüllbarkeitsproblem für FO[σ] ist
semi-entscheidbar aber nicht entscheidbar.

(d) Das Erfüllbarkeitsproblem für FO[σ] ist
nicht semi-entscheidbar.

Beweis: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 348

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Aus Satz 4.39, Satz 4.40 und den bekannten Zusammenhängen zwischen
semi-entscheidbaren und entscheidbaren Problemen, sowie den Korrespondenzen
zwischen Allgemeingültigkeit, (Un)Erfüllbarkeit und logischer Folgerung, erhält
man leicht:

Korollar 4.41
Sei σ die Signatur aus Satz 4.40. Dann gilt:

(a) Das Allgemeingültigkeitsproblem für FO[σ] ist semi-entscheidbar aber
nicht entscheidbar.

(b) Das Folgerungsproblem für FO[σ] ist semi-entscheidbar

aber nicht entscheidbar.

(c) Das Unerfüllbarkeitsproblem für FO[σ] ist
semi-entscheidbar aber nicht entscheidbar.

(d) Das Erfüllbarkeitsproblem für FO[σ] ist
nicht semi-entscheidbar.

Beweis: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 348

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Aus Satz 4.39, Satz 4.40 und den bekannten Zusammenhängen zwischen
semi-entscheidbaren und entscheidbaren Problemen, sowie den Korrespondenzen
zwischen Allgemeingültigkeit, (Un)Erfüllbarkeit und logischer Folgerung, erhält
man leicht:

Korollar 4.41
Sei σ die Signatur aus Satz 4.40. Dann gilt:

(a) Das Allgemeingültigkeitsproblem für FO[σ] ist semi-entscheidbar aber
nicht entscheidbar.

(b) Das Folgerungsproblem für FO[σ] ist semi-entscheidbar
aber nicht entscheidbar.

(c) Das Unerfüllbarkeitsproblem für FO[σ] ist
semi-entscheidbar aber nicht entscheidbar.

(d) Das Erfüllbarkeitsproblem für FO[σ] ist
nicht semi-entscheidbar.

Beweis: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 348

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Aus Satz 4.39, Satz 4.40 und den bekannten Zusammenhängen zwischen
semi-entscheidbaren und entscheidbaren Problemen, sowie den Korrespondenzen
zwischen Allgemeingültigkeit, (Un)Erfüllbarkeit und logischer Folgerung, erhält
man leicht:

Korollar 4.41
Sei σ die Signatur aus Satz 4.40. Dann gilt:

(a) Das Allgemeingültigkeitsproblem für FO[σ] ist semi-entscheidbar aber
nicht entscheidbar.

(b) Das Folgerungsproblem für FO[σ] ist semi-entscheidbar
aber nicht entscheidbar.

(c) Das Unerfüllbarkeitsproblem für FO[σ] ist

semi-entscheidbar aber nicht entscheidbar.

(d) Das Erfüllbarkeitsproblem für FO[σ] ist
nicht semi-entscheidbar.

Beweis: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 348

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Aus Satz 4.39, Satz 4.40 und den bekannten Zusammenhängen zwischen
semi-entscheidbaren und entscheidbaren Problemen, sowie den Korrespondenzen
zwischen Allgemeingültigkeit, (Un)Erfüllbarkeit und logischer Folgerung, erhält
man leicht:

Korollar 4.41
Sei σ die Signatur aus Satz 4.40. Dann gilt:

(a) Das Allgemeingültigkeitsproblem für FO[σ] ist semi-entscheidbar aber
nicht entscheidbar.

(b) Das Folgerungsproblem für FO[σ] ist semi-entscheidbar
aber nicht entscheidbar.

(c) Das Unerfüllbarkeitsproblem für FO[σ] ist
semi-entscheidbar

aber nicht entscheidbar.

(d) Das Erfüllbarkeitsproblem für FO[σ] ist
nicht semi-entscheidbar.

Beweis: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 348

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Aus Satz 4.39, Satz 4.40 und den bekannten Zusammenhängen zwischen
semi-entscheidbaren und entscheidbaren Problemen, sowie den Korrespondenzen
zwischen Allgemeingültigkeit, (Un)Erfüllbarkeit und logischer Folgerung, erhält
man leicht:

Korollar 4.41
Sei σ die Signatur aus Satz 4.40. Dann gilt:

(a) Das Allgemeingültigkeitsproblem für FO[σ] ist semi-entscheidbar aber
nicht entscheidbar.

(b) Das Folgerungsproblem für FO[σ] ist semi-entscheidbar
aber nicht entscheidbar.

(c) Das Unerfüllbarkeitsproblem für FO[σ] ist
semi-entscheidbar aber nicht entscheidbar.

(d) Das Erfüllbarkeitsproblem für FO[σ] ist
nicht semi-entscheidbar.

Beweis: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 348

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Aus Satz 4.39, Satz 4.40 und den bekannten Zusammenhängen zwischen
semi-entscheidbaren und entscheidbaren Problemen, sowie den Korrespondenzen
zwischen Allgemeingültigkeit, (Un)Erfüllbarkeit und logischer Folgerung, erhält
man leicht:

Korollar 4.41
Sei σ die Signatur aus Satz 4.40. Dann gilt:

(a) Das Allgemeingültigkeitsproblem für FO[σ] ist semi-entscheidbar aber
nicht entscheidbar.

(b) Das Folgerungsproblem für FO[σ] ist semi-entscheidbar
aber nicht entscheidbar.

(c) Das Unerfüllbarkeitsproblem für FO[σ] ist
semi-entscheidbar aber nicht entscheidbar.

(d) Das Erfüllbarkeitsproblem für FO[σ] ist

nicht semi-entscheidbar.

Beweis: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 348

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Aus Satz 4.39, Satz 4.40 und den bekannten Zusammenhängen zwischen
semi-entscheidbaren und entscheidbaren Problemen, sowie den Korrespondenzen
zwischen Allgemeingültigkeit, (Un)Erfüllbarkeit und logischer Folgerung, erhält
man leicht:

Korollar 4.41
Sei σ die Signatur aus Satz 4.40. Dann gilt:

(a) Das Allgemeingültigkeitsproblem für FO[σ] ist semi-entscheidbar aber
nicht entscheidbar.

(b) Das Folgerungsproblem für FO[σ] ist semi-entscheidbar
aber nicht entscheidbar.

(c) Das Unerfüllbarkeitsproblem für FO[σ] ist
semi-entscheidbar aber nicht entscheidbar.

(d) Das Erfüllbarkeitsproblem für FO[σ] ist
nicht semi-entscheidbar.

Beweis: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 348

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Aus Satz 4.39, Satz 4.40 und den bekannten Zusammenhängen zwischen
semi-entscheidbaren und entscheidbaren Problemen, sowie den Korrespondenzen
zwischen Allgemeingültigkeit, (Un)Erfüllbarkeit und logischer Folgerung, erhält
man leicht:

Korollar 4.41
Sei σ die Signatur aus Satz 4.40. Dann gilt:

(a) Das Allgemeingültigkeitsproblem für FO[σ] ist semi-entscheidbar aber
nicht entscheidbar.

(b) Das Folgerungsproblem für FO[σ] ist semi-entscheidbar
aber nicht entscheidbar.

(c) Das Unerfüllbarkeitsproblem für FO[σ] ist
semi-entscheidbar aber nicht entscheidbar.

(d) Das Erfüllbarkeitsproblem für FO[σ] ist
nicht semi-entscheidbar.

Beweis: Übung.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 348

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Bemerkung 4.42
Man kann zeigen, dass

(1) Korollar 4.41 für jede Signatur σ gilt, die mindestens ein Relationssymbol
der Stelligkeit ⩾ 2 enthält

(2) für Signaturen σ, die ausschließlich aus Konstantensymbolen und
Relationssymbolen der Stelligkeit 1 bestehen, jedes der in Korollar 4.41
betrachteten Probleme entscheidbar ist.

(Hier ohne Beweis)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 349

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Bemerkung 4.42
Man kann zeigen, dass

(1) Korollar 4.41 für jede Signatur σ gilt, die mindestens ein Relationssymbol
der Stelligkeit ⩾ 2 enthält

(2) für Signaturen σ, die ausschließlich aus Konstantensymbolen und
Relationssymbolen der Stelligkeit 1 bestehen, jedes der in Korollar 4.41
betrachteten Probleme entscheidbar ist.

(Hier ohne Beweis)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 349

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Bemerkung 4.42
Man kann zeigen, dass

(1) Korollar 4.41 für jede Signatur σ gilt, die mindestens ein Relationssymbol
der Stelligkeit ⩾ 2 enthält

(2) für Signaturen σ, die ausschließlich aus Konstantensymbolen und
Relationssymbolen der Stelligkeit 1 bestehen, jedes der in Korollar 4.41
betrachteten Probleme entscheidbar ist.

(Hier ohne Beweis)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 349

Abschnitt 4.5:

Der Satz von Herbrand

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

• Im letzten Abschnitt haben wir gesehen, dass es keinen Algorithmus gibt, der das
Erfüllbarkeitsproblem und das Allgemeingültigkeitsproblem der Logik erster Stufe
löst und stets terminiert.

• Trotzdem möchte man für verschiedene Anwendungsbereiche Verfahren haben,
die das Erfüllbarkeits- oder das Allgemeingültigkeitsproblem der Logik erster Stufe

”
so gut wie möglich“ lösen.

• Einen Ansatz für die Entwicklung solcher, in der Praxis nutzbarer, Verfahren
liefert die Herbrand-Theorie, die nach dem französischen Logiker Jacques
Herbrand (1908–1931) benannt ist.

• Ziel dieses Abschnitts ist, den Satz von Herbrand vorzustellen, der das
Allgemeingültigkeits- bzw. das Erfüllbarkeitsproblem der Logik erster Stufe auf
das entsprechende Problem der Aussagenlogik zurückführt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 350

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

• Im letzten Abschnitt haben wir gesehen, dass es keinen Algorithmus gibt, der das
Erfüllbarkeitsproblem und das Allgemeingültigkeitsproblem der Logik erster Stufe
löst und stets terminiert.

• Trotzdem möchte man für verschiedene Anwendungsbereiche Verfahren haben,
die das Erfüllbarkeits- oder das Allgemeingültigkeitsproblem der Logik erster Stufe

”
so gut wie möglich“ lösen.

• Einen Ansatz für die Entwicklung solcher, in der Praxis nutzbarer, Verfahren
liefert die Herbrand-Theorie, die nach dem französischen Logiker Jacques
Herbrand (1908–1931) benannt ist.

• Ziel dieses Abschnitts ist, den Satz von Herbrand vorzustellen, der das
Allgemeingültigkeits- bzw. das Erfüllbarkeitsproblem der Logik erster Stufe auf
das entsprechende Problem der Aussagenlogik zurückführt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 350

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

• Im letzten Abschnitt haben wir gesehen, dass es keinen Algorithmus gibt, der das
Erfüllbarkeitsproblem und das Allgemeingültigkeitsproblem der Logik erster Stufe
löst und stets terminiert.

• Trotzdem möchte man für verschiedene Anwendungsbereiche Verfahren haben,
die das Erfüllbarkeits- oder das Allgemeingültigkeitsproblem der Logik erster Stufe

”
so gut wie möglich“ lösen.

• Einen Ansatz für die Entwicklung solcher, in der Praxis nutzbarer, Verfahren
liefert die Herbrand-Theorie, die nach dem französischen Logiker Jacques
Herbrand (1908–1931) benannt ist.

• Ziel dieses Abschnitts ist, den Satz von Herbrand vorzustellen, der das
Allgemeingültigkeits- bzw. das Erfüllbarkeitsproblem der Logik erster Stufe auf
das entsprechende Problem der Aussagenlogik zurückführt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 350

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

• Im letzten Abschnitt haben wir gesehen, dass es keinen Algorithmus gibt, der das
Erfüllbarkeitsproblem und das Allgemeingültigkeitsproblem der Logik erster Stufe
löst und stets terminiert.

• Trotzdem möchte man für verschiedene Anwendungsbereiche Verfahren haben,
die das Erfüllbarkeits- oder das Allgemeingültigkeitsproblem der Logik erster Stufe

”
so gut wie möglich“ lösen.

• Einen Ansatz für die Entwicklung solcher, in der Praxis nutzbarer, Verfahren
liefert die Herbrand-Theorie, die nach dem französischen Logiker Jacques
Herbrand (1908–1931) benannt ist.

• Ziel dieses Abschnitts ist, den Satz von Herbrand vorzustellen, der das
Allgemeingültigkeits- bzw. das Erfüllbarkeitsproblem der Logik erster Stufe auf
das entsprechende Problem der Aussagenlogik zurückführt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 350

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Notationen
• In diesem Abschnitt bezeichnet σ stets eine endliche oder abzählbare Signatur,

die mindestens ein Konstantensymbol enthält.

• Die Menge aller quantorenfreien FO[σ]-Formeln bezeichnen wir mit QFσ.

• Ein Grundterm über σ ist ein variablenfreier σ-Term, d.h., ein σ-Term, der keine
Variable enthält.
Die Menge aller Grundterme über σ bezeichnen wir mit GTσ.

Beispiele:

(a) Sei σ := { c, f /1, g/2, R/2 }.
Grundterme über σ sind dann z.B.

c, f (c), g(c, c), f (f (c)), f (g(c, c)), g(c, f (c)), g(f (c), c), . . .

(b) Sei σ := { c, R/2 }.
Dann ist c der einzige Grundterm über σ. D.h.

GTσ = { c }.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 351

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Notationen
• In diesem Abschnitt bezeichnet σ stets eine endliche oder abzählbare Signatur,

die mindestens ein Konstantensymbol enthält.

• Die Menge aller quantorenfreien FO[σ]-Formeln bezeichnen wir mit QFσ.

• Ein Grundterm über σ ist ein variablenfreier σ-Term, d.h., ein σ-Term, der keine
Variable enthält.
Die Menge aller Grundterme über σ bezeichnen wir mit GTσ.

Beispiele:

(a) Sei σ := { c, f /1, g/2, R/2 }.
Grundterme über σ sind dann z.B.

c, f (c), g(c, c), f (f (c)), f (g(c, c)), g(c, f (c)), g(f (c), c), . . .

(b) Sei σ := { c, R/2 }.
Dann ist c der einzige Grundterm über σ. D.h.

GTσ = { c }.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 351

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Notationen
• In diesem Abschnitt bezeichnet σ stets eine endliche oder abzählbare Signatur,

die mindestens ein Konstantensymbol enthält.

• Die Menge aller quantorenfreien FO[σ]-Formeln bezeichnen wir mit QFσ.

• Ein Grundterm über σ ist ein variablenfreier σ-Term, d.h., ein σ-Term, der keine
Variable enthält.

Die Menge aller Grundterme über σ bezeichnen wir mit GTσ.

Beispiele:

(a) Sei σ := { c, f /1, g/2, R/2 }.
Grundterme über σ sind dann z.B.

c, f (c), g(c, c), f (f (c)), f (g(c, c)), g(c, f (c)), g(f (c), c), . . .

(b) Sei σ := { c, R/2 }.
Dann ist c der einzige Grundterm über σ. D.h.

GTσ = { c }.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 351

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Notationen
• In diesem Abschnitt bezeichnet σ stets eine endliche oder abzählbare Signatur,

die mindestens ein Konstantensymbol enthält.

• Die Menge aller quantorenfreien FO[σ]-Formeln bezeichnen wir mit QFσ.

• Ein Grundterm über σ ist ein variablenfreier σ-Term, d.h., ein σ-Term, der keine
Variable enthält.
Die Menge aller Grundterme über σ bezeichnen wir mit GTσ.

Beispiele:

(a) Sei σ := { c, f /1, g/2, R/2 }.
Grundterme über σ sind dann z.B.

c, f (c), g(c, c), f (f (c)), f (g(c, c)), g(c, f (c)), g(f (c), c), . . .

(b) Sei σ := { c, R/2 }.
Dann ist c der einzige Grundterm über σ. D.h.

GTσ = { c }.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 351

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Notationen
• In diesem Abschnitt bezeichnet σ stets eine endliche oder abzählbare Signatur,

die mindestens ein Konstantensymbol enthält.

• Die Menge aller quantorenfreien FO[σ]-Formeln bezeichnen wir mit QFσ.

• Ein Grundterm über σ ist ein variablenfreier σ-Term, d.h., ein σ-Term, der keine
Variable enthält.
Die Menge aller Grundterme über σ bezeichnen wir mit GTσ.

Beispiele:

(a) Sei σ := { c, f /1, g/2, R/2 }.
Grundterme über σ sind dann z.B.

c, f (c), g(c, c), f (f (c)), f (g(c, c)), g(c, f (c)), g(f (c), c), . . .

(b) Sei σ := { c, R/2 }.
Dann ist c der einzige Grundterm über σ. D.h.

GTσ = { c }.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 351

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Notationen
• In diesem Abschnitt bezeichnet σ stets eine endliche oder abzählbare Signatur,

die mindestens ein Konstantensymbol enthält.

• Die Menge aller quantorenfreien FO[σ]-Formeln bezeichnen wir mit QFσ.

• Ein Grundterm über σ ist ein variablenfreier σ-Term, d.h., ein σ-Term, der keine
Variable enthält.
Die Menge aller Grundterme über σ bezeichnen wir mit GTσ.

Beispiele:

(a) Sei σ := { c, f /1, g/2, R/2 }.
Grundterme über σ sind dann z.B.

c, f (c), g(c, c), f (f (c)), f (g(c, c)), g(c, f (c)), g(f (c), c), . . .

(b) Sei σ := { c, R/2 }.
Dann ist c der einzige Grundterm über σ. D.h.

GTσ = { c }.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 351

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Notationen
• In diesem Abschnitt bezeichnet σ stets eine endliche oder abzählbare Signatur,

die mindestens ein Konstantensymbol enthält.

• Die Menge aller quantorenfreien FO[σ]-Formeln bezeichnen wir mit QFσ.

• Ein Grundterm über σ ist ein variablenfreier σ-Term, d.h., ein σ-Term, der keine
Variable enthält.
Die Menge aller Grundterme über σ bezeichnen wir mit GTσ.

Beispiele:

(a) Sei σ := { c, f /1, g/2, R/2 }.
Grundterme über σ sind dann z.B.

c, f (c), g(c, c), f (f (c)), f (g(c, c)), g(c, f (c)), g(f (c), c), . . .

(b) Sei σ := { c, R/2 }.

Dann ist c der einzige Grundterm über σ. D.h.

GTσ = { c }.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 351

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Notationen
• In diesem Abschnitt bezeichnet σ stets eine endliche oder abzählbare Signatur,

die mindestens ein Konstantensymbol enthält.

• Die Menge aller quantorenfreien FO[σ]-Formeln bezeichnen wir mit QFσ.

• Ein Grundterm über σ ist ein variablenfreier σ-Term, d.h., ein σ-Term, der keine
Variable enthält.
Die Menge aller Grundterme über σ bezeichnen wir mit GTσ.

Beispiele:

(a) Sei σ := { c, f /1, g/2, R/2 }.
Grundterme über σ sind dann z.B.

c, f (c), g(c, c), f (f (c)), f (g(c, c)), g(c, f (c)), g(f (c), c), . . .

(b) Sei σ := { c, R/2 }.
Dann ist c der einzige Grundterm über σ. D.h.

GTσ = { c }.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 351

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Herbrandstrukturen

Definition 4.43
Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält.
Eine σ-Herbrandstruktur ist eine σ-Struktur A mit folgenden Eigenschaften:

• Das Universum A von A ist genau die Menge GTσ aller Grundterme über σ (d.h.
aller variablenfreien σ-Terme).

• Für jedes Konstantensymbol c ∈ σ ist cA = c.

• Für jedes Funktionssymbol f ∈ σ, für k := ar(f), und für alle variablenfreien
σ-Terme t1, . . . , tk ∈ A ist

f A(t1, . . . , tk) = f (t1, . . . , tk).

Beachte: Alle σ-Herbrandstrukturen haben dasselbe Universum und dieselbe
Interpretation der Konstanten- und Funktionssymbole.

Lediglich die Interpretation der Relationssymbole kann in σ-Herbrandstrukturen frei
gewählt werden.

Zur Angabe einer konkreten σ-Herbrandstruktur A genügt es also, die Interpretation
der Relationssymbole anzugeben, d.h. für jedes Relationssymbol R ∈ σ die Relation
RA anzugeben.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 352

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Herbrandstrukturen

Definition 4.43
Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält.
Eine σ-Herbrandstruktur ist eine σ-Struktur A mit folgenden Eigenschaften:

• Das Universum A von A ist genau die Menge GTσ aller Grundterme über σ (d.h.
aller variablenfreien σ-Terme).

• Für jedes Konstantensymbol c ∈ σ ist cA = c.

• Für jedes Funktionssymbol f ∈ σ, für k := ar(f), und für alle variablenfreien
σ-Terme t1, . . . , tk ∈ A ist

f A(t1, . . . , tk) = f (t1, . . . , tk).

Beachte: Alle σ-Herbrandstrukturen haben dasselbe Universum und dieselbe
Interpretation der Konstanten- und Funktionssymbole.

Lediglich die Interpretation der Relationssymbole kann in σ-Herbrandstrukturen frei
gewählt werden.

Zur Angabe einer konkreten σ-Herbrandstruktur A genügt es also, die Interpretation
der Relationssymbole anzugeben, d.h. für jedes Relationssymbol R ∈ σ die Relation
RA anzugeben.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 352

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Herbrandstrukturen

Definition 4.43
Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält.
Eine σ-Herbrandstruktur ist eine σ-Struktur A mit folgenden Eigenschaften:

• Das Universum A von A ist genau die Menge GTσ aller Grundterme über σ (d.h.
aller variablenfreien σ-Terme).

• Für jedes Konstantensymbol c ∈ σ ist cA =

c.

• Für jedes Funktionssymbol f ∈ σ, für k := ar(f), und für alle variablenfreien
σ-Terme t1, . . . , tk ∈ A ist

f A(t1, . . . , tk) = f (t1, . . . , tk).

Beachte: Alle σ-Herbrandstrukturen haben dasselbe Universum und dieselbe
Interpretation der Konstanten- und Funktionssymbole.

Lediglich die Interpretation der Relationssymbole kann in σ-Herbrandstrukturen frei
gewählt werden.

Zur Angabe einer konkreten σ-Herbrandstruktur A genügt es also, die Interpretation
der Relationssymbole anzugeben, d.h. für jedes Relationssymbol R ∈ σ die Relation
RA anzugeben.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 352

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Herbrandstrukturen

Definition 4.43
Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält.
Eine σ-Herbrandstruktur ist eine σ-Struktur A mit folgenden Eigenschaften:

• Das Universum A von A ist genau die Menge GTσ aller Grundterme über σ (d.h.
aller variablenfreien σ-Terme).

• Für jedes Konstantensymbol c ∈ σ ist cA = c.

• Für jedes Funktionssymbol f ∈ σ, für k := ar(f), und für alle variablenfreien
σ-Terme t1, . . . , tk ∈ A ist

f A(t1, . . . , tk) = f (t1, . . . , tk).

Beachte: Alle σ-Herbrandstrukturen haben dasselbe Universum und dieselbe
Interpretation der Konstanten- und Funktionssymbole.

Lediglich die Interpretation der Relationssymbole kann in σ-Herbrandstrukturen frei
gewählt werden.

Zur Angabe einer konkreten σ-Herbrandstruktur A genügt es also, die Interpretation
der Relationssymbole anzugeben, d.h. für jedes Relationssymbol R ∈ σ die Relation
RA anzugeben.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 352

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Herbrandstrukturen

Definition 4.43
Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält.
Eine σ-Herbrandstruktur ist eine σ-Struktur A mit folgenden Eigenschaften:

• Das Universum A von A ist genau die Menge GTσ aller Grundterme über σ (d.h.
aller variablenfreien σ-Terme).

• Für jedes Konstantensymbol c ∈ σ ist cA = c.

• Für jedes Funktionssymbol f ∈ σ, für k := ar(f), und für alle variablenfreien
σ-Terme t1, . . . , tk ∈ A ist

f A(t1, . . . , tk) =

f (t1, . . . , tk).

Beachte: Alle σ-Herbrandstrukturen haben dasselbe Universum und dieselbe
Interpretation der Konstanten- und Funktionssymbole.

Lediglich die Interpretation der Relationssymbole kann in σ-Herbrandstrukturen frei
gewählt werden.

Zur Angabe einer konkreten σ-Herbrandstruktur A genügt es also, die Interpretation
der Relationssymbole anzugeben, d.h. für jedes Relationssymbol R ∈ σ die Relation
RA anzugeben.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 352

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Herbrandstrukturen

Definition 4.43
Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält.
Eine σ-Herbrandstruktur ist eine σ-Struktur A mit folgenden Eigenschaften:

• Das Universum A von A ist genau die Menge GTσ aller Grundterme über σ (d.h.
aller variablenfreien σ-Terme).

• Für jedes Konstantensymbol c ∈ σ ist cA = c.

• Für jedes Funktionssymbol f ∈ σ, für k := ar(f), und für alle variablenfreien
σ-Terme t1, . . . , tk ∈ A ist

f A(t1, . . . , tk) = f (t1, . . . , tk).

Beachte: Alle σ-Herbrandstrukturen haben dasselbe Universum und dieselbe
Interpretation der Konstanten- und Funktionssymbole.

Lediglich die Interpretation der Relationssymbole kann in σ-Herbrandstrukturen frei
gewählt werden.

Zur Angabe einer konkreten σ-Herbrandstruktur A genügt es also, die Interpretation
der Relationssymbole anzugeben, d.h. für jedes Relationssymbol R ∈ σ die Relation
RA anzugeben.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 352

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Herbrandstrukturen

Definition 4.43
Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält.
Eine σ-Herbrandstruktur ist eine σ-Struktur A mit folgenden Eigenschaften:

• Das Universum A von A ist genau die Menge GTσ aller Grundterme über σ (d.h.
aller variablenfreien σ-Terme).

• Für jedes Konstantensymbol c ∈ σ ist cA = c.

• Für jedes Funktionssymbol f ∈ σ, für k := ar(f), und für alle variablenfreien
σ-Terme t1, . . . , tk ∈ A ist

f A(t1, . . . , tk) = f (t1, . . . , tk).

Beachte: Alle σ-Herbrandstrukturen haben dasselbe Universum und dieselbe
Interpretation der Konstanten- und Funktionssymbole.

Lediglich die Interpretation der Relationssymbole kann in σ-Herbrandstrukturen frei
gewählt werden.

Zur Angabe einer konkreten σ-Herbrandstruktur A genügt es also, die Interpretation
der Relationssymbole anzugeben, d.h. für jedes Relationssymbol R ∈ σ die Relation
RA anzugeben.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 352

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Herbrandstrukturen

Definition 4.43
Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält.
Eine σ-Herbrandstruktur ist eine σ-Struktur A mit folgenden Eigenschaften:

• Das Universum A von A ist genau die Menge GTσ aller Grundterme über σ (d.h.
aller variablenfreien σ-Terme).

• Für jedes Konstantensymbol c ∈ σ ist cA = c.

• Für jedes Funktionssymbol f ∈ σ, für k := ar(f), und für alle variablenfreien
σ-Terme t1, . . . , tk ∈ A ist

f A(t1, . . . , tk) = f (t1, . . . , tk).

Beachte: Alle σ-Herbrandstrukturen haben dasselbe Universum und dieselbe
Interpretation der Konstanten- und Funktionssymbole.

Lediglich die Interpretation der Relationssymbole kann in σ-Herbrandstrukturen frei
gewählt werden.

Zur Angabe einer konkreten σ-Herbrandstruktur A genügt es also, die Interpretation
der Relationssymbole anzugeben, d.h. für jedes Relationssymbol R ∈ σ die Relation
RA anzugeben.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 352

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Herbrandstrukturen

Definition 4.43
Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält.
Eine σ-Herbrandstruktur ist eine σ-Struktur A mit folgenden Eigenschaften:

• Das Universum A von A ist genau die Menge GTσ aller Grundterme über σ (d.h.
aller variablenfreien σ-Terme).

• Für jedes Konstantensymbol c ∈ σ ist cA = c.

• Für jedes Funktionssymbol f ∈ σ, für k := ar(f), und für alle variablenfreien
σ-Terme t1, . . . , tk ∈ A ist

f A(t1, . . . , tk) = f (t1, . . . , tk).

Beachte: Alle σ-Herbrandstrukturen haben dasselbe Universum und dieselbe
Interpretation der Konstanten- und Funktionssymbole.

Lediglich die Interpretation der Relationssymbole kann in σ-Herbrandstrukturen frei
gewählt werden.

Zur Angabe einer konkreten σ-Herbrandstruktur A genügt es also, die Interpretation
der Relationssymbole anzugeben, d.h. für jedes Relationssymbol R ∈ σ die Relation
RA anzugeben.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 352

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Beispiel

Sei σ := { c, R/2 }.
Frage: Wie sehen σ-Herbrandstrukturen aus?

Antwort: Für jede σ-Herbrandstruktur A gilt:

• Universum: A = { c }
• cA = c

• RA ⊆ {c}2, d.h.

RA = ∅ oder RA = { (c, c) }.

Somit gibt es genau 2 verschiedene σ-Herbrandstrukturen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 353

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Beispiel

Sei σ := { c, R/2 }.
Frage: Wie sehen σ-Herbrandstrukturen aus?

Antwort: Für jede σ-Herbrandstruktur A gilt:

• Universum: A = { c }
• cA = c

• RA ⊆ {c}2, d.h.

RA = ∅ oder RA = { (c, c) }.

Somit gibt es genau 2 verschiedene σ-Herbrandstrukturen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 353

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Bemerkung 4.44
Sei A eine σ-Herbrandstruktur.
Man sieht leicht, dass Folgendes gilt:

• Für jeden variablenfreien σ-Term t (d.h. für jedes t ∈ GTσ = A) gilt:

JtKA =

t .

• Für jede quantorenfreie FO[σ]-Formel ψ gilt:
Ist var(ψ) ⊆ {x1, . . . , xn} und sind t1, . . . , tn ∈ GTσ, so gilt:

A |= ψ[t1, . . . , tn] ⇐⇒ A |= ψ t1,...,tn
x1,...,xn

Dabei ist ψ t1,...,tn
x1,...,xn

die Formel, die aus ψ entsteht, indem für jedes i ∈ [n] jedes
Vorkommen von xi ersetzt wird durch den Grundterm ti .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 354

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Bemerkung 4.44
Sei A eine σ-Herbrandstruktur.
Man sieht leicht, dass Folgendes gilt:

• Für jeden variablenfreien σ-Term t (d.h. für jedes t ∈ GTσ = A) gilt:

JtKA = t .

• Für jede quantorenfreie FO[σ]-Formel ψ gilt:
Ist var(ψ) ⊆ {x1, . . . , xn} und sind t1, . . . , tn ∈ GTσ, so gilt:

A |= ψ[t1, . . . , tn] ⇐⇒ A |= ψ t1,...,tn
x1,...,xn

Dabei ist ψ t1,...,tn
x1,...,xn

die Formel, die aus ψ entsteht, indem für jedes i ∈ [n] jedes
Vorkommen von xi ersetzt wird durch den Grundterm ti .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 354

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Bemerkung 4.44
Sei A eine σ-Herbrandstruktur.
Man sieht leicht, dass Folgendes gilt:

• Für jeden variablenfreien σ-Term t (d.h. für jedes t ∈ GTσ = A) gilt:

JtKA = t .

• Für jede quantorenfreie FO[σ]-Formel ψ gilt:
Ist var(ψ) ⊆ {x1, . . . , xn} und sind t1, . . . , tn ∈ GTσ, so gilt:

A |= ψ[t1, . . . , tn] ⇐⇒ A |= ψ t1,...,tn
x1,...,xn

Dabei ist ψ t1,...,tn
x1,...,xn

die Formel, die aus ψ entsteht, indem für jedes i ∈ [n] jedes
Vorkommen von xi ersetzt wird durch den Grundterm ti .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 354

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Herbrand-Modelle und gleichheitsfreie Formeln in
Skolemform

Definition 4.45
(a) Ein Herbrand-Modell eines FO[σ]-Satzes φ ist eine σ-Herbrandstruktur, die φ

erfüllt.

(b) Eine FO[σ]-Formel φ heißt gleichheitsfrei, falls das Symbol
”
=“ nicht in φ

vorkommt.

(c) Eine FO[σ]-Formel ist in Skolemform (auch: Skolem-Normalform), falls sie von
der Form

∀x1 · · · ∀xn ψ
ist, wobei gilt: n ⩾ 0, x1, . . . , xn sind paarweise verschiedene Variablen, und ψ
ist eine quantorenfreie FO[σ]-Formel.

Satz 4.46
Sei σ eine Signatur, die mindestens ein Konstantensymbol besitzt.
Für jeden gleichheitsfreien FO[σ]-Satz φ in Skolemform gilt:

φ ist erfüllbar ⇐⇒ φ besitzt ein Herbrand-Modell.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 355

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Herbrand-Modelle und gleichheitsfreie Formeln in
Skolemform

Definition 4.45
(a) Ein Herbrand-Modell eines FO[σ]-Satzes φ ist eine σ-Herbrandstruktur, die φ

erfüllt.

(b) Eine FO[σ]-Formel φ heißt gleichheitsfrei, falls das Symbol
”
=“ nicht in φ

vorkommt.

(c) Eine FO[σ]-Formel ist in Skolemform (auch: Skolem-Normalform), falls sie von
der Form

∀x1 · · · ∀xn ψ
ist, wobei gilt: n ⩾ 0, x1, . . . , xn sind paarweise verschiedene Variablen, und ψ
ist eine quantorenfreie FO[σ]-Formel.

Satz 4.46
Sei σ eine Signatur, die mindestens ein Konstantensymbol besitzt.
Für jeden gleichheitsfreien FO[σ]-Satz φ in Skolemform gilt:

φ ist erfüllbar ⇐⇒ φ besitzt ein Herbrand-Modell.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 355

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Herbrand-Modelle und gleichheitsfreie Formeln in
Skolemform

Definition 4.45
(a) Ein Herbrand-Modell eines FO[σ]-Satzes φ ist eine σ-Herbrandstruktur, die φ

erfüllt.

(b) Eine FO[σ]-Formel φ heißt gleichheitsfrei, falls das Symbol
”
=“ nicht in φ

vorkommt.

(c) Eine FO[σ]-Formel ist in Skolemform (auch: Skolem-Normalform), falls sie von
der Form

∀x1 · · · ∀xn ψ
ist, wobei gilt: n ⩾ 0, x1, . . . , xn sind paarweise verschiedene Variablen, und ψ
ist eine quantorenfreie FO[σ]-Formel.

Satz 4.46
Sei σ eine Signatur, die mindestens ein Konstantensymbol besitzt.
Für jeden gleichheitsfreien FO[σ]-Satz φ in Skolemform gilt:

φ ist erfüllbar ⇐⇒ φ besitzt ein Herbrand-Modell.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 355

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Herbrand-Modelle und gleichheitsfreie Formeln in
Skolemform

Definition 4.45
(a) Ein Herbrand-Modell eines FO[σ]-Satzes φ ist eine σ-Herbrandstruktur, die φ

erfüllt.

(b) Eine FO[σ]-Formel φ heißt gleichheitsfrei, falls das Symbol
”
=“ nicht in φ

vorkommt.

(c) Eine FO[σ]-Formel ist in Skolemform (auch: Skolem-Normalform), falls sie von
der Form

∀x1 · · · ∀xn ψ
ist, wobei gilt: n ⩾ 0, x1, . . . , xn sind paarweise verschiedene Variablen, und ψ
ist eine quantorenfreie FO[σ]-Formel.

Satz 4.46
Sei σ eine Signatur, die mindestens ein Konstantensymbol besitzt.
Für jeden gleichheitsfreien FO[σ]-Satz φ in Skolemform gilt:

φ ist erfüllbar ⇐⇒ φ besitzt ein Herbrand-Modell.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 355

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Die Herbrand-Expansion eines Satzes in Skolemform

Definition 4.47
Sei φ ein gleichheitsfreier FO[σ]-Satz in Skolemform, d.h. φ ist von der Form
∀x1 · · · ∀xn ψ, wobei ψ quantorenfrei und gleichheitsfrei ist.
Die Herbrand-Expansion von φ ist die Formelmenge

HE(φ) :=
{
ψ t1,...,tn

x1,...,xn
: t1, . . . , tn ∈ GTσ

}

D.h.: Jede Formel in HE(φ) entsteht, indem in der quantorenfreien Formel ψ jede
Variable xi ersetzt wird durch einen Grundterm ti .

Beispiel 4.48
Sei σ = { c, f /1, g/2, R/3 } und sei φ := ∀x ∀y ∀z R

(
x , f (y), g(z, x)

)
.

Dann gehören z.B. die folgenden Formeln zur Herbrand-Expansion HE(φ):

• R(c, f (c), g(c, c)) (dies erhält man, indem jede der Variablen x , y , z durch den
Grundterm c ersetzt wird)

• R(f (c), f (c), g(c, f (c))) (dies erhält man, indem x durch den Grundterm f (c) und
jede der Variablen y , z durch den Grundterm c ersetzt wird)

• R(g(c, c), f (f (c)), g(c, g(c, c))) (dies erhält man, indem Variable x durch den
Grundterm g(c, c), Variable y durch den Grundterm f (c) und Variable z durch den
Grundterm c ersetzt wird)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 356

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Die Herbrand-Expansion eines Satzes in Skolemform

Definition 4.47
Sei φ ein gleichheitsfreier FO[σ]-Satz in Skolemform, d.h. φ ist von der Form
∀x1 · · · ∀xn ψ, wobei ψ quantorenfrei und gleichheitsfrei ist.
Die Herbrand-Expansion von φ ist die Formelmenge

HE(φ) :=
{
ψ t1,...,tn

x1,...,xn
: t1, . . . , tn ∈ GTσ

}
D.h.: Jede Formel in HE(φ) entsteht, indem in der quantorenfreien Formel ψ jede
Variable xi ersetzt wird durch einen Grundterm ti .

Beispiel 4.48
Sei σ = { c, f /1, g/2, R/3 } und sei φ := ∀x ∀y ∀z R

(
x , f (y), g(z, x)

)
.

Dann gehören z.B. die folgenden Formeln zur Herbrand-Expansion HE(φ):

• R(c, f (c), g(c, c)) (dies erhält man, indem jede der Variablen x , y , z durch den
Grundterm c ersetzt wird)

• R(f (c), f (c), g(c, f (c))) (dies erhält man, indem x durch den Grundterm f (c) und
jede der Variablen y , z durch den Grundterm c ersetzt wird)

• R(g(c, c), f (f (c)), g(c, g(c, c))) (dies erhält man, indem Variable x durch den
Grundterm g(c, c), Variable y durch den Grundterm f (c) und Variable z durch den
Grundterm c ersetzt wird)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 356

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Die Herbrand-Expansion eines Satzes in Skolemform

Definition 4.47
Sei φ ein gleichheitsfreier FO[σ]-Satz in Skolemform, d.h. φ ist von der Form
∀x1 · · · ∀xn ψ, wobei ψ quantorenfrei und gleichheitsfrei ist.
Die Herbrand-Expansion von φ ist die Formelmenge

HE(φ) :=
{
ψ t1,...,tn

x1,...,xn
: t1, . . . , tn ∈ GTσ

}
D.h.: Jede Formel in HE(φ) entsteht, indem in der quantorenfreien Formel ψ jede
Variable xi ersetzt wird durch einen Grundterm ti .

Beispiel 4.48
Sei σ = { c, f /1, g/2, R/3 } und sei φ := ∀x ∀y ∀z R

(
x , f (y), g(z, x)

)
.

Dann gehören z.B. die folgenden Formeln zur Herbrand-Expansion HE(φ):

• R(c, f (c), g(c, c)) (dies erhält man, indem jede der Variablen x , y , z durch den
Grundterm c ersetzt wird)

• R(f (c), f (c), g(c, f (c))) (dies erhält man, indem x durch den Grundterm f (c) und
jede der Variablen y , z durch den Grundterm c ersetzt wird)

• R(g(c, c), f (f (c)), g(c, g(c, c))) (dies erhält man, indem Variable x durch den
Grundterm g(c, c), Variable y durch den Grundterm f (c) und Variable z durch den
Grundterm c ersetzt wird)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 356

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Die aussagenlogische Version der Herbrand-Expansion

Für jeden gleichheitsfreien FO[σ]-Satz φ in Skolemform gilt:

Jede Formel ξ ∈ HE(φ) ist quantorenfrei, gleichheitsfrei und variablenfrei,

und
jede atomare Subformel von ξ ist von der Form R(t1, . . . , tk), wobei R ∈ σ,
k = ar(R) und t1, . . . , tk ∈ GTσ.

Für jede solche atomare Formel stellen wir ein Aussagensymbol
XR(t1,...,tk) ∈ AS bereit.

Für jedes ξ ∈ HE(φ) sei al(ξ) die aussagenlogische Formel, die aus ξ entsteht,
indem jede atomare Subformel der Form R(t1, . . . , tk) ersetzt wird durch das
Aussagensymbol XR(t1,...,tk).

Die aussagenlogische Version der Herbrand-Expansion von φ ist die Menge

AHE(φ) :=
{
al(ξ) : ξ ∈ HE(φ)

}
.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 357

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Die aussagenlogische Version der Herbrand-Expansion

Für jeden gleichheitsfreien FO[σ]-Satz φ in Skolemform gilt:

Jede Formel ξ ∈ HE(φ) ist quantorenfrei, gleichheitsfrei und variablenfrei, und
jede atomare Subformel von ξ ist von der Form R(t1, . . . , tk), wobei R ∈ σ,
k = ar(R) und t1, . . . , tk ∈ GTσ.

Für jede solche atomare Formel stellen wir ein Aussagensymbol
XR(t1,...,tk) ∈ AS bereit.

Für jedes ξ ∈ HE(φ) sei al(ξ) die aussagenlogische Formel, die aus ξ entsteht,
indem jede atomare Subformel der Form R(t1, . . . , tk) ersetzt wird durch das
Aussagensymbol XR(t1,...,tk).

Die aussagenlogische Version der Herbrand-Expansion von φ ist die Menge

AHE(φ) :=
{
al(ξ) : ξ ∈ HE(φ)

}
.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 357

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Die aussagenlogische Version der Herbrand-Expansion

Für jeden gleichheitsfreien FO[σ]-Satz φ in Skolemform gilt:

Jede Formel ξ ∈ HE(φ) ist quantorenfrei, gleichheitsfrei und variablenfrei, und
jede atomare Subformel von ξ ist von der Form R(t1, . . . , tk), wobei R ∈ σ,
k = ar(R) und t1, . . . , tk ∈ GTσ.

Für jede solche atomare Formel stellen wir ein Aussagensymbol
XR(t1,...,tk) ∈ AS bereit.

Für jedes ξ ∈ HE(φ) sei al(ξ) die aussagenlogische Formel, die aus ξ entsteht,
indem jede atomare Subformel der Form R(t1, . . . , tk) ersetzt wird durch das
Aussagensymbol XR(t1,...,tk).

Die aussagenlogische Version der Herbrand-Expansion von φ ist die Menge

AHE(φ) :=
{
al(ξ) : ξ ∈ HE(φ)

}
.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 357

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Die aussagenlogische Version der Herbrand-Expansion

Für jeden gleichheitsfreien FO[σ]-Satz φ in Skolemform gilt:

Jede Formel ξ ∈ HE(φ) ist quantorenfrei, gleichheitsfrei und variablenfrei, und
jede atomare Subformel von ξ ist von der Form R(t1, . . . , tk), wobei R ∈ σ,
k = ar(R) und t1, . . . , tk ∈ GTσ.

Für jede solche atomare Formel stellen wir ein Aussagensymbol
XR(t1,...,tk) ∈ AS bereit.

Für jedes ξ ∈ HE(φ) sei al(ξ) die aussagenlogische Formel, die aus ξ entsteht,
indem jede atomare Subformel der Form R(t1, . . . , tk) ersetzt wird durch das
Aussagensymbol XR(t1,...,tk).

Die aussagenlogische Version der Herbrand-Expansion von φ ist die Menge

AHE(φ) :=
{
al(ξ) : ξ ∈ HE(φ)

}
.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 357

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Die aussagenlogische Version der Herbrand-Expansion

Für jeden gleichheitsfreien FO[σ]-Satz φ in Skolemform gilt:

Jede Formel ξ ∈ HE(φ) ist quantorenfrei, gleichheitsfrei und variablenfrei, und
jede atomare Subformel von ξ ist von der Form R(t1, . . . , tk), wobei R ∈ σ,
k = ar(R) und t1, . . . , tk ∈ GTσ.

Für jede solche atomare Formel stellen wir ein Aussagensymbol
XR(t1,...,tk) ∈ AS bereit.

Für jedes ξ ∈ HE(φ) sei al(ξ) die aussagenlogische Formel, die aus ξ entsteht,
indem jede atomare Subformel der Form R(t1, . . . , tk) ersetzt wird durch das
Aussagensymbol XR(t1,...,tk).

Die aussagenlogische Version der Herbrand-Expansion von φ ist die Menge

AHE(φ) :=
{
al(ξ) : ξ ∈ HE(φ)

}
.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 357

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Der Satz von Herbrand

Satz 4.49 (Satz von Gödel-Herbrand-Skolem)
Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält.
Für jeden gleichheitsfreien FO[σ]-Satz φ in Skolemform gilt:
φ ist erfüllbar ⇐⇒ die aussagenlogische Formelmenge AHE(φ) ist erfüllbar.

In Verbindung mit dem Endlichkeitssatz der Aussagenlogik erhalten wir:

Satz 4.50 (Satz von Herbrand)
Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält. Sei ψ eine
gleichheitsfreie und quantorenfreie FO[σ]-Formel und sei {x1, . . . , xn} = frei(ψ).
Dann gilt für die FO[σ]-Sätze φ := ∀x1 · · · ∀xn ψ und φ′ := ∃x1 · · · ∃xn ψ :

(a) φ ist erfüllbar ⇐⇒ jede endliche Teilmenge von AHE(φ) ist erfüllbar.

(b) φ ist unerfüllbar ⇐⇒ es gibt eine endliche Teilmenge von AHE(φ), die un-
erfüllbar ist.

(c) φ′ ist allgemeingültig ⇐⇒ es gibt eine Zahl m ∈ N und Grundterme
ti,1, . . . , ti,n für alle i ∈ [m], so dass die folgende Formel allgemeingültig ist:

m∨
i=1

ψ
ti,1,...,ti,n
x1,...,xn

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 358

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Der Satz von Herbrand

Satz 4.49 (Satz von Gödel-Herbrand-Skolem)
Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält.
Für jeden gleichheitsfreien FO[σ]-Satz φ in Skolemform gilt:
φ ist erfüllbar ⇐⇒ die aussagenlogische Formelmenge AHE(φ) ist erfüllbar.

In Verbindung mit dem Endlichkeitssatz der Aussagenlogik erhalten wir:

Satz 4.50 (Satz von Herbrand)
Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält.

Sei ψ eine
gleichheitsfreie und quantorenfreie FO[σ]-Formel und sei {x1, . . . , xn} = frei(ψ).
Dann gilt für die FO[σ]-Sätze φ := ∀x1 · · · ∀xn ψ und φ′ := ∃x1 · · · ∃xn ψ :

(a) φ ist erfüllbar ⇐⇒ jede endliche Teilmenge von AHE(φ) ist erfüllbar.

(b) φ ist unerfüllbar ⇐⇒ es gibt eine endliche Teilmenge von AHE(φ), die un-
erfüllbar ist.

(c) φ′ ist allgemeingültig ⇐⇒ es gibt eine Zahl m ∈ N und Grundterme
ti,1, . . . , ti,n für alle i ∈ [m], so dass die folgende Formel allgemeingültig ist:

m∨
i=1

ψ
ti,1,...,ti,n
x1,...,xn

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 358

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Der Satz von Herbrand

Satz 4.49 (Satz von Gödel-Herbrand-Skolem)
Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält.
Für jeden gleichheitsfreien FO[σ]-Satz φ in Skolemform gilt:
φ ist erfüllbar ⇐⇒ die aussagenlogische Formelmenge AHE(φ) ist erfüllbar.

In Verbindung mit dem Endlichkeitssatz der Aussagenlogik erhalten wir:

Satz 4.50 (Satz von Herbrand)
Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält. Sei ψ eine
gleichheitsfreie und quantorenfreie FO[σ]-Formel und sei {x1, . . . , xn} = frei(ψ).

Dann gilt für die FO[σ]-Sätze φ := ∀x1 · · · ∀xn ψ und φ′ := ∃x1 · · · ∃xn ψ :

(a) φ ist erfüllbar ⇐⇒ jede endliche Teilmenge von AHE(φ) ist erfüllbar.

(b) φ ist unerfüllbar ⇐⇒ es gibt eine endliche Teilmenge von AHE(φ), die un-
erfüllbar ist.

(c) φ′ ist allgemeingültig ⇐⇒ es gibt eine Zahl m ∈ N und Grundterme
ti,1, . . . , ti,n für alle i ∈ [m], so dass die folgende Formel allgemeingültig ist:

m∨
i=1

ψ
ti,1,...,ti,n
x1,...,xn

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 358

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Der Satz von Herbrand

Satz 4.49 (Satz von Gödel-Herbrand-Skolem)
Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält.
Für jeden gleichheitsfreien FO[σ]-Satz φ in Skolemform gilt:
φ ist erfüllbar ⇐⇒ die aussagenlogische Formelmenge AHE(φ) ist erfüllbar.

In Verbindung mit dem Endlichkeitssatz der Aussagenlogik erhalten wir:

Satz 4.50 (Satz von Herbrand)
Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält. Sei ψ eine
gleichheitsfreie und quantorenfreie FO[σ]-Formel und sei {x1, . . . , xn} = frei(ψ).
Dann gilt für die FO[σ]-Sätze φ := ∀x1 · · · ∀xn ψ

und φ′ := ∃x1 · · · ∃xn ψ :

(a) φ ist erfüllbar ⇐⇒ jede endliche Teilmenge von AHE(φ) ist erfüllbar.

(b) φ ist unerfüllbar ⇐⇒ es gibt eine endliche Teilmenge von AHE(φ), die un-
erfüllbar ist.

(c) φ′ ist allgemeingültig ⇐⇒ es gibt eine Zahl m ∈ N und Grundterme
ti,1, . . . , ti,n für alle i ∈ [m], so dass die folgende Formel allgemeingültig ist:

m∨
i=1

ψ
ti,1,...,ti,n
x1,...,xn

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 358

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Der Satz von Herbrand

Satz 4.49 (Satz von Gödel-Herbrand-Skolem)
Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält.
Für jeden gleichheitsfreien FO[σ]-Satz φ in Skolemform gilt:
φ ist erfüllbar ⇐⇒ die aussagenlogische Formelmenge AHE(φ) ist erfüllbar.

In Verbindung mit dem Endlichkeitssatz der Aussagenlogik erhalten wir:

Satz 4.50 (Satz von Herbrand)
Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält. Sei ψ eine
gleichheitsfreie und quantorenfreie FO[σ]-Formel und sei {x1, . . . , xn} = frei(ψ).
Dann gilt für die FO[σ]-Sätze φ := ∀x1 · · · ∀xn ψ und φ′ := ∃x1 · · · ∃xn ψ :

(a) φ ist erfüllbar ⇐⇒ jede endliche Teilmenge von AHE(φ) ist erfüllbar.

(b) φ ist unerfüllbar ⇐⇒ es gibt eine endliche Teilmenge von AHE(φ), die un-
erfüllbar ist.

(c) φ′ ist allgemeingültig ⇐⇒ es gibt eine Zahl m ∈ N und Grundterme
ti,1, . . . , ti,n für alle i ∈ [m], so dass die folgende Formel allgemeingültig ist:

m∨
i=1

ψ
ti,1,...,ti,n
x1,...,xn

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 358

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Der Satz von Herbrand

Satz 4.49 (Satz von Gödel-Herbrand-Skolem)
Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält.
Für jeden gleichheitsfreien FO[σ]-Satz φ in Skolemform gilt:
φ ist erfüllbar ⇐⇒ die aussagenlogische Formelmenge AHE(φ) ist erfüllbar.

In Verbindung mit dem Endlichkeitssatz der Aussagenlogik erhalten wir:

Satz 4.50 (Satz von Herbrand)
Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält. Sei ψ eine
gleichheitsfreie und quantorenfreie FO[σ]-Formel und sei {x1, . . . , xn} = frei(ψ).
Dann gilt für die FO[σ]-Sätze φ := ∀x1 · · · ∀xn ψ und φ′ := ∃x1 · · · ∃xn ψ :

(a) φ ist erfüllbar ⇐⇒ jede endliche Teilmenge von AHE(φ) ist erfüllbar.

(b) φ ist unerfüllbar ⇐⇒ es gibt eine endliche Teilmenge von AHE(φ), die un-
erfüllbar ist.

(c) φ′ ist allgemeingültig ⇐⇒ es gibt eine Zahl m ∈ N und Grundterme
ti,1, . . . , ti,n für alle i ∈ [m], so dass die folgende Formel allgemeingültig ist:

m∨
i=1

ψ
ti,1,...,ti,n
x1,...,xn

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 358

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Der Satz von Herbrand

Satz 4.49 (Satz von Gödel-Herbrand-Skolem)
Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält.
Für jeden gleichheitsfreien FO[σ]-Satz φ in Skolemform gilt:
φ ist erfüllbar ⇐⇒ die aussagenlogische Formelmenge AHE(φ) ist erfüllbar.

In Verbindung mit dem Endlichkeitssatz der Aussagenlogik erhalten wir:

Satz 4.50 (Satz von Herbrand)
Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält. Sei ψ eine
gleichheitsfreie und quantorenfreie FO[σ]-Formel und sei {x1, . . . , xn} = frei(ψ).
Dann gilt für die FO[σ]-Sätze φ := ∀x1 · · · ∀xn ψ und φ′ := ∃x1 · · · ∃xn ψ :

(a) φ ist erfüllbar ⇐⇒ jede endliche Teilmenge von AHE(φ) ist erfüllbar.

(b) φ ist unerfüllbar ⇐⇒ es gibt eine endliche Teilmenge von AHE(φ), die un-
erfüllbar ist.

(c) φ′ ist allgemeingültig ⇐⇒ es gibt eine Zahl m ∈ N und Grundterme
ti,1, . . . , ti,n für alle i ∈ [m], so dass die folgende Formel allgemeingültig ist:

m∨
i=1

ψ
ti,1,...,ti,n
x1,...,xn

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 358

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Der Satz von Herbrand

Satz 4.49 (Satz von Gödel-Herbrand-Skolem)
Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält.
Für jeden gleichheitsfreien FO[σ]-Satz φ in Skolemform gilt:
φ ist erfüllbar ⇐⇒ die aussagenlogische Formelmenge AHE(φ) ist erfüllbar.

In Verbindung mit dem Endlichkeitssatz der Aussagenlogik erhalten wir:

Satz 4.50 (Satz von Herbrand)
Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält. Sei ψ eine
gleichheitsfreie und quantorenfreie FO[σ]-Formel und sei {x1, . . . , xn} = frei(ψ).
Dann gilt für die FO[σ]-Sätze φ := ∀x1 · · · ∀xn ψ und φ′ := ∃x1 · · · ∃xn ψ :

(a) φ ist erfüllbar ⇐⇒ jede endliche Teilmenge von AHE(φ) ist erfüllbar.

(b) φ ist unerfüllbar ⇐⇒ es gibt eine endliche Teilmenge von AHE(φ), die un-
erfüllbar ist.

(c) φ′ ist allgemeingültig ⇐⇒

es gibt eine Zahl m ∈ N und Grundterme
ti,1, . . . , ti,n für alle i ∈ [m], so dass die folgende Formel allgemeingültig ist:

m∨
i=1

ψ
ti,1,...,ti,n
x1,...,xn

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 358

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Der Satz von Herbrand

Satz 4.49 (Satz von Gödel-Herbrand-Skolem)
Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält.
Für jeden gleichheitsfreien FO[σ]-Satz φ in Skolemform gilt:
φ ist erfüllbar ⇐⇒ die aussagenlogische Formelmenge AHE(φ) ist erfüllbar.

In Verbindung mit dem Endlichkeitssatz der Aussagenlogik erhalten wir:

Satz 4.50 (Satz von Herbrand)
Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält. Sei ψ eine
gleichheitsfreie und quantorenfreie FO[σ]-Formel und sei {x1, . . . , xn} = frei(ψ).
Dann gilt für die FO[σ]-Sätze φ := ∀x1 · · · ∀xn ψ und φ′ := ∃x1 · · · ∃xn ψ :

(a) φ ist erfüllbar ⇐⇒ jede endliche Teilmenge von AHE(φ) ist erfüllbar.

(b) φ ist unerfüllbar ⇐⇒ es gibt eine endliche Teilmenge von AHE(φ), die un-
erfüllbar ist.

(c) φ′ ist allgemeingültig ⇐⇒ es gibt eine Zahl m ∈ N und Grundterme
ti,1, . . . , ti,n für alle i ∈ [m], so dass die folgende Formel allgemeingültig ist:

m∨
i=1

ψ
ti,1,...,ti,n
x1,...,xn

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 358

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Anwendung des Satzes von Herbrand

Um nachzuweisen, dass ein gleichheitsfreier FO[σ]-Satz φ in Skolemform unerfüllbar
ist, kann man auf Grund des Satzes von Herbrand wie folgt vorgehen:

Für i = 1, 2, 3, . . . tue Folgendes:

(1) Sei ξi die i-te Formel in AHE(φ)
(2) Teste, ob die aussagenlogische Formel (ξ1 ∧ · · · ∧ ξi) unerfüllbar ist.
(3) Falls ja, halte an mit Ausgabe

”
φ ist unerfüllbar“

Man sieht leicht, dass dies ein Semi-Entscheidungsverfahren ist, das eine gegebene
Formel φ auf Unerfüllbarkeit testet.

Durch die Einschränkung auf gleichheitsfreie FO[σ]-Sätze in Skolemform scheint dieses
Verfahren auf den ersten Blick nur sehr eingeschränkt anwendbar zu sein.

Im Folgenden zeigen wir jedoch, dass jede FO[σ]-Formel in eine zu ihr
erfüllbarkeitsäquivalente Formel der richtigen Form transformiert werden kann.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 359

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Anwendung des Satzes von Herbrand

Um nachzuweisen, dass ein gleichheitsfreier FO[σ]-Satz φ in Skolemform unerfüllbar
ist, kann man auf Grund des Satzes von Herbrand wie folgt vorgehen:

Für i = 1, 2, 3, . . . tue Folgendes:

(1) Sei ξi die i-te Formel in AHE(φ)
(2) Teste, ob die aussagenlogische Formel (ξ1 ∧ · · · ∧ ξi) unerfüllbar ist.
(3) Falls ja, halte an mit Ausgabe

”
φ ist unerfüllbar“

Man sieht leicht, dass dies ein Semi-Entscheidungsverfahren ist, das eine gegebene
Formel φ auf Unerfüllbarkeit testet.

Durch die Einschränkung auf gleichheitsfreie FO[σ]-Sätze in Skolemform scheint dieses
Verfahren auf den ersten Blick nur sehr eingeschränkt anwendbar zu sein.

Im Folgenden zeigen wir jedoch, dass jede FO[σ]-Formel in eine zu ihr
erfüllbarkeitsäquivalente Formel der richtigen Form transformiert werden kann.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 359

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Anwendung des Satzes von Herbrand

Um nachzuweisen, dass ein gleichheitsfreier FO[σ]-Satz φ in Skolemform unerfüllbar
ist, kann man auf Grund des Satzes von Herbrand wie folgt vorgehen:

Für i = 1, 2, 3, . . . tue Folgendes:

(1) Sei ξi die i-te Formel in AHE(φ)

(2) Teste, ob die aussagenlogische Formel (ξ1 ∧ · · · ∧ ξi) unerfüllbar ist.
(3) Falls ja, halte an mit Ausgabe

”
φ ist unerfüllbar“

Man sieht leicht, dass dies ein Semi-Entscheidungsverfahren ist, das eine gegebene
Formel φ auf Unerfüllbarkeit testet.

Durch die Einschränkung auf gleichheitsfreie FO[σ]-Sätze in Skolemform scheint dieses
Verfahren auf den ersten Blick nur sehr eingeschränkt anwendbar zu sein.

Im Folgenden zeigen wir jedoch, dass jede FO[σ]-Formel in eine zu ihr
erfüllbarkeitsäquivalente Formel der richtigen Form transformiert werden kann.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 359

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Anwendung des Satzes von Herbrand

Um nachzuweisen, dass ein gleichheitsfreier FO[σ]-Satz φ in Skolemform unerfüllbar
ist, kann man auf Grund des Satzes von Herbrand wie folgt vorgehen:

Für i = 1, 2, 3, . . . tue Folgendes:

(1) Sei ξi die i-te Formel in AHE(φ)
(2) Teste, ob die aussagenlogische Formel (ξ1 ∧ · · · ∧ ξi) unerfüllbar ist.

(3) Falls ja, halte an mit Ausgabe
”
φ ist unerfüllbar“

Man sieht leicht, dass dies ein Semi-Entscheidungsverfahren ist, das eine gegebene
Formel φ auf Unerfüllbarkeit testet.

Durch die Einschränkung auf gleichheitsfreie FO[σ]-Sätze in Skolemform scheint dieses
Verfahren auf den ersten Blick nur sehr eingeschränkt anwendbar zu sein.

Im Folgenden zeigen wir jedoch, dass jede FO[σ]-Formel in eine zu ihr
erfüllbarkeitsäquivalente Formel der richtigen Form transformiert werden kann.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 359

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Anwendung des Satzes von Herbrand

Um nachzuweisen, dass ein gleichheitsfreier FO[σ]-Satz φ in Skolemform unerfüllbar
ist, kann man auf Grund des Satzes von Herbrand wie folgt vorgehen:

Für i = 1, 2, 3, . . . tue Folgendes:

(1) Sei ξi die i-te Formel in AHE(φ)
(2) Teste, ob die aussagenlogische Formel (ξ1 ∧ · · · ∧ ξi) unerfüllbar ist.
(3) Falls ja, halte an mit Ausgabe

”
φ ist unerfüllbar“

Man sieht leicht, dass dies ein Semi-Entscheidungsverfahren ist, das eine gegebene
Formel φ auf Unerfüllbarkeit testet.

Durch die Einschränkung auf gleichheitsfreie FO[σ]-Sätze in Skolemform scheint dieses
Verfahren auf den ersten Blick nur sehr eingeschränkt anwendbar zu sein.

Im Folgenden zeigen wir jedoch, dass jede FO[σ]-Formel in eine zu ihr
erfüllbarkeitsäquivalente Formel der richtigen Form transformiert werden kann.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 359

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Anwendung des Satzes von Herbrand

Um nachzuweisen, dass ein gleichheitsfreier FO[σ]-Satz φ in Skolemform unerfüllbar
ist, kann man auf Grund des Satzes von Herbrand wie folgt vorgehen:

Für i = 1, 2, 3, . . . tue Folgendes:

(1) Sei ξi die i-te Formel in AHE(φ)
(2) Teste, ob die aussagenlogische Formel (ξ1 ∧ · · · ∧ ξi) unerfüllbar ist.
(3) Falls ja, halte an mit Ausgabe

”
φ ist unerfüllbar“

Man sieht leicht, dass dies ein Semi-Entscheidungsverfahren ist, das eine gegebene
Formel φ auf Unerfüllbarkeit testet.

Durch die Einschränkung auf gleichheitsfreie FO[σ]-Sätze in Skolemform scheint dieses
Verfahren auf den ersten Blick nur sehr eingeschränkt anwendbar zu sein.

Im Folgenden zeigen wir jedoch, dass jede FO[σ]-Formel in eine zu ihr
erfüllbarkeitsäquivalente Formel der richtigen Form transformiert werden kann.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 359

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Anwendung des Satzes von Herbrand

Um nachzuweisen, dass ein gleichheitsfreier FO[σ]-Satz φ in Skolemform unerfüllbar
ist, kann man auf Grund des Satzes von Herbrand wie folgt vorgehen:

Für i = 1, 2, 3, . . . tue Folgendes:

(1) Sei ξi die i-te Formel in AHE(φ)
(2) Teste, ob die aussagenlogische Formel (ξ1 ∧ · · · ∧ ξi) unerfüllbar ist.
(3) Falls ja, halte an mit Ausgabe

”
φ ist unerfüllbar“

Man sieht leicht, dass dies ein Semi-Entscheidungsverfahren ist, das eine gegebene
Formel φ auf Unerfüllbarkeit testet.

Durch die Einschränkung auf gleichheitsfreie FO[σ]-Sätze in Skolemform scheint dieses
Verfahren auf den ersten Blick nur sehr eingeschränkt anwendbar zu sein.

Im Folgenden zeigen wir jedoch, dass jede FO[σ]-Formel in eine zu ihr
erfüllbarkeitsäquivalente Formel der richtigen Form transformiert werden kann.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 359

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Definition 4.51
Seien σ1, σ2 Signaturen und φi eine FO[σi]-Formel, für jedes i ∈ {1, 2}.
Die Formel φ2 heißt erfüllbarkeitsäquivalent zu φ1, falls gilt:

φ2 ist erfüllbar ⇐⇒ φ1 ist erfüllbar.

Satz 4.52 (Skolemisierung)
Zu jeder Signatur σ gibt es eine Signatur σ̂, so dass jede FO[σ]-Formel φ in
einen zu φ erfüllbarkeitsäquivalenten gleichheitsfreien FO[σ̂]-Satz φ̂ in
Skolemform transformiert werden kann.

Beispiel 4.53
Die Formel ∀x ∃y ∀z ∃u R(x , y , z , u) ist erfüllbarkeitsäquivalent zum folgenden
gleichheitsfreien Satz in Skolemform:

∀x ∀z R
(
x , f (x), z , g(x , z)

)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 360

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Definition 4.51
Seien σ1, σ2 Signaturen und φi eine FO[σi]-Formel, für jedes i ∈ {1, 2}.
Die Formel φ2 heißt erfüllbarkeitsäquivalent zu φ1, falls gilt:

φ2 ist erfüllbar ⇐⇒ φ1 ist erfüllbar.

Satz 4.52 (Skolemisierung)
Zu jeder Signatur σ gibt es eine Signatur σ̂, so dass jede FO[σ]-Formel φ in
einen zu φ erfüllbarkeitsäquivalenten gleichheitsfreien FO[σ̂]-Satz φ̂ in
Skolemform transformiert werden kann.

Beispiel 4.53
Die Formel ∀x ∃y ∀z ∃u R(x , y , z , u) ist erfüllbarkeitsäquivalent zum folgenden
gleichheitsfreien Satz in Skolemform:

∀x ∀z R
(
x , f (x), z , g(x , z)

)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 360

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Definition 4.51
Seien σ1, σ2 Signaturen und φi eine FO[σi]-Formel, für jedes i ∈ {1, 2}.
Die Formel φ2 heißt erfüllbarkeitsäquivalent zu φ1, falls gilt:

φ2 ist erfüllbar ⇐⇒ φ1 ist erfüllbar.

Satz 4.52 (Skolemisierung)
Zu jeder Signatur σ gibt es eine Signatur σ̂, so dass jede FO[σ]-Formel φ in
einen zu φ erfüllbarkeitsäquivalenten gleichheitsfreien FO[σ̂]-Satz φ̂ in
Skolemform transformiert werden kann.

Beispiel 4.53
Die Formel ∀x ∃y ∀z ∃u R(x , y , z , u) ist erfüllbarkeitsäquivalent zum folgenden
gleichheitsfreien Satz in Skolemform:

∀x ∀z R
(
x , f (x), z , g(x , z)

)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 360

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.5: Der Satz von Herbrand

Definition 4.51
Seien σ1, σ2 Signaturen und φi eine FO[σi]-Formel, für jedes i ∈ {1, 2}.
Die Formel φ2 heißt erfüllbarkeitsäquivalent zu φ1, falls gilt:

φ2 ist erfüllbar ⇐⇒ φ1 ist erfüllbar.

Satz 4.52 (Skolemisierung)
Zu jeder Signatur σ gibt es eine Signatur σ̂, so dass jede FO[σ]-Formel φ in
einen zu φ erfüllbarkeitsäquivalenten gleichheitsfreien FO[σ̂]-Satz φ̂ in
Skolemform transformiert werden kann.

Beispiel 4.53
Die Formel ∀x ∃y ∀z ∃u R(x , y , z , u) ist erfüllbarkeitsäquivalent zum folgenden
gleichheitsfreien Satz in Skolemform:

∀x ∀z R
(
x , f (x), z , g(x , z)

)
Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 360

Abschnitt 4.6:

Automatische Theorembeweiser

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.6: Automatische Theorembeweiser

Einfaches Verfahren (ohne Unifikation)

Seien φ und ψ zwei FO[σ]-Formeln.

Ziel: Automatischer Beweis, dass φ |= ψ gilt.

Dazu reicht es, zu zeigen, dass die Formel (φ ∧ ¬ψ) unerfüllbar ist.

Verfahren:
1. Erzeuge einen zu (φ ∧ ¬ψ) erfüllbarkeitsäquivalenten gleichheitsfreien

FO[σ̂]-Satz χ in Skolemform (über der erweiterten Signatur σ̂).
Nutze dazu das im Beweis von Satz 4.52 vorgestellte Verfahren.

2. Verwende das auf Folie 359 beschriebene Semi-Entscheidungsverfahren, um
zu herauszufinden, ob χ unerfüllbar ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 361

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.6: Automatische Theorembeweiser

Einfaches Verfahren (ohne Unifikation)

Seien φ und ψ zwei FO[σ]-Formeln.

Ziel: Automatischer Beweis, dass φ |= ψ gilt.

Dazu reicht es, zu zeigen, dass die Formel (φ ∧ ¬ψ) unerfüllbar ist.

Verfahren:
1. Erzeuge einen zu (φ ∧ ¬ψ) erfüllbarkeitsäquivalenten gleichheitsfreien

FO[σ̂]-Satz χ in Skolemform (über der erweiterten Signatur σ̂).
Nutze dazu das im Beweis von Satz 4.52 vorgestellte Verfahren.

2. Verwende das auf Folie 359 beschriebene Semi-Entscheidungsverfahren, um
zu herauszufinden, ob χ unerfüllbar ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 361

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.6: Automatische Theorembeweiser

Einfaches Verfahren (ohne Unifikation)

Seien φ und ψ zwei FO[σ]-Formeln.

Ziel: Automatischer Beweis, dass φ |= ψ gilt.

Dazu reicht es, zu zeigen, dass die Formel (φ ∧ ¬ψ) unerfüllbar ist.

Verfahren:
1. Erzeuge einen zu (φ ∧ ¬ψ) erfüllbarkeitsäquivalenten gleichheitsfreien

FO[σ̂]-Satz χ in Skolemform (über der erweiterten Signatur σ̂).
Nutze dazu das im Beweis von Satz 4.52 vorgestellte Verfahren.

2. Verwende das auf Folie 359 beschriebene Semi-Entscheidungsverfahren, um
zu herauszufinden, ob χ unerfüllbar ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 361

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.6: Automatische Theorembeweiser

Einfaches Verfahren (ohne Unifikation)

Seien φ und ψ zwei FO[σ]-Formeln.

Ziel: Automatischer Beweis, dass φ |= ψ gilt.

Dazu reicht es, zu zeigen, dass die Formel (φ ∧ ¬ψ) unerfüllbar ist.

Verfahren:
1. Erzeuge einen zu (φ ∧ ¬ψ) erfüllbarkeitsäquivalenten gleichheitsfreien

FO[σ̂]-Satz χ in Skolemform (über der erweiterten Signatur σ̂).
Nutze dazu das im Beweis von Satz 4.52 vorgestellte Verfahren.

2. Verwende das auf Folie 359 beschriebene Semi-Entscheidungsverfahren, um
zu herauszufinden, ob χ unerfüllbar ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 361

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.6: Automatische Theorembeweiser

Beispiel 4.54
Sei σ := {R/1, c, f /1},

φ := R(c) ∧ ∀x ∃y
(
(R(x)→ R(f (f (y)))) ∨ R(f (x))

)
ψ := ∃x R(f (f (x))).

Dann ist (φ ∧ ¬ψ) =

R(c) ∧ ∀x ∃y
(
(R(x)→ R(f (f (y)))) ∨ R(f (x))

)
∧ ¬∃x R(f (f (x)))

ein gleichheitsfreier Satz. Eine Umformung in Pränex-Normalform liefert den dazu
äquivalenten Satz

∀x ∃y
(
R(c) ∧

(
¬R(x) ∨ R(f (f (y))) ∨ R(f (x))

)
∧ ¬R(f (f (x)))

)
.

Wir erweitern die Signatur um ein 1-stelliges Funktionssymbol g und erhalten den dazu
erfüllbarkeitsäquivalenten gleichheitsfreien Satz in Skolemform χ =

∀x
(
R(c) ∧

(
¬R(x) ∨ R(f (f (g(x)))) ∨ R(f (x))

)
∧ ¬R(f (f (x)))

)
über der Signatur σ̂ = {R, c, f , g}.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 362

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.6: Automatische Theorembeweiser

Beispiel 4.54
Sei σ := {R/1, c, f /1},

φ := R(c) ∧ ∀x ∃y
(
(R(x)→ R(f (f (y)))) ∨ R(f (x))

)
ψ := ∃x R(f (f (x))).

Dann ist (φ ∧ ¬ψ) =

R(c) ∧ ∀x ∃y
(
(R(x)→ R(f (f (y)))) ∨ R(f (x))

)
∧ ¬∃x R(f (f (x)))

ein gleichheitsfreier Satz.

Eine Umformung in Pränex-Normalform liefert den dazu
äquivalenten Satz

∀x ∃y
(
R(c) ∧

(
¬R(x) ∨ R(f (f (y))) ∨ R(f (x))

)
∧ ¬R(f (f (x)))

)
.

Wir erweitern die Signatur um ein 1-stelliges Funktionssymbol g und erhalten den dazu
erfüllbarkeitsäquivalenten gleichheitsfreien Satz in Skolemform χ =

∀x
(
R(c) ∧

(
¬R(x) ∨ R(f (f (g(x)))) ∨ R(f (x))

)
∧ ¬R(f (f (x)))

)
über der Signatur σ̂ = {R, c, f , g}.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 362

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.6: Automatische Theorembeweiser

Beispiel 4.54
Sei σ := {R/1, c, f /1},

φ := R(c) ∧ ∀x ∃y
(
(R(x)→ R(f (f (y)))) ∨ R(f (x))

)
ψ := ∃x R(f (f (x))).

Dann ist (φ ∧ ¬ψ) =

R(c) ∧ ∀x ∃y
(
(R(x)→ R(f (f (y)))) ∨ R(f (x))

)
∧ ¬∃x R(f (f (x)))

ein gleichheitsfreier Satz. Eine Umformung in Pränex-Normalform liefert den dazu
äquivalenten Satz

∀x ∃y
(
R(c) ∧

(
¬R(x) ∨ R(f (f (y))) ∨ R(f (x))

)
∧ ¬R(f (f (x)))

)
.

Wir erweitern die Signatur um ein 1-stelliges Funktionssymbol g und erhalten den dazu
erfüllbarkeitsäquivalenten gleichheitsfreien Satz in Skolemform χ =

∀x
(
R(c) ∧

(
¬R(x) ∨ R(f (f (g(x)))) ∨ R(f (x))

)
∧ ¬R(f (f (x)))

)
über der Signatur σ̂ = {R, c, f , g}.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 362

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.6: Automatische Theorembeweiser

Beispiel 4.54
Sei σ := {R/1, c, f /1},

φ := R(c) ∧ ∀x ∃y
(
(R(x)→ R(f (f (y)))) ∨ R(f (x))

)
ψ := ∃x R(f (f (x))).

Dann ist (φ ∧ ¬ψ) =

R(c) ∧ ∀x ∃y
(
(R(x)→ R(f (f (y)))) ∨ R(f (x))

)
∧ ¬∃x R(f (f (x)))

ein gleichheitsfreier Satz. Eine Umformung in Pränex-Normalform liefert den dazu
äquivalenten Satz

∀x ∃y
(
R(c) ∧

(
¬R(x) ∨ R(f (f (y))) ∨ R(f (x))

)
∧ ¬R(f (f (x)))

)
.

Wir erweitern die Signatur um ein 1-stelliges Funktionssymbol g und erhalten den dazu
erfüllbarkeitsäquivalenten gleichheitsfreien Satz in Skolemform χ =

∀x
(
R(c) ∧

(
¬R(x) ∨ R(f (f (g(x)))) ∨ R(f (x))

)
∧ ¬R(f (f (x)))

)
über der Signatur σ̂ = {R, c, f , g}.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 362

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.6: Automatische Theorembeweiser

Beispiel 4.54
Sei σ := {R/1, c, f /1},

φ := R(c) ∧ ∀x ∃y
(
(R(x)→ R(f (f (y)))) ∨ R(f (x))

)
ψ := ∃x R(f (f (x))).

Dann ist (φ ∧ ¬ψ) =

R(c) ∧ ∀x ∃y
(
(R(x)→ R(f (f (y)))) ∨ R(f (x))

)
∧ ¬∃x R(f (f (x)))

ein gleichheitsfreier Satz. Eine Umformung in Pränex-Normalform liefert den dazu
äquivalenten Satz

∀x ∃y
(
R(c) ∧

(
¬R(x) ∨ R(f (f (y))) ∨ R(f (x))

)
∧ ¬R(f (f (x)))

)
.

Wir erweitern die Signatur um ein 1-stelliges Funktionssymbol g und erhalten den dazu
erfüllbarkeitsäquivalenten gleichheitsfreien Satz in Skolemform χ =

∀x
(
R(c) ∧

(
¬R(x) ∨ R(f (f (g(x)))) ∨ R(f (x))

)
∧ ¬R(f (f (x)))

)
über der Signatur σ̂ = {R, c, f , g}.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 362

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.6: Automatische Theorembeweiser

Beispiel 4.54
Sei σ := {R/1, c, f /1},

φ := R(c) ∧ ∀x ∃y
(
(R(x)→ R(f (f (y)))) ∨ R(f (x))

)
ψ := ∃x R(f (f (x))).

Dann ist (φ ∧ ¬ψ) =

R(c) ∧ ∀x ∃y
(
(R(x)→ R(f (f (y)))) ∨ R(f (x))

)
∧ ¬∃x R(f (f (x)))

ein gleichheitsfreier Satz. Eine Umformung in Pränex-Normalform liefert den dazu
äquivalenten Satz

∀x ∃y
(
R(c) ∧

(
¬R(x) ∨ R(f (f (y))) ∨ R(f (x))

)
∧ ¬R(f (f (x)))

)
.

Wir erweitern die Signatur um ein 1-stelliges Funktionssymbol g und erhalten den dazu
erfüllbarkeitsäquivalenten gleichheitsfreien Satz in Skolemform χ =

∀x
(
R(c) ∧

(
¬R(x) ∨ R(f (f (g(x)))) ∨ R(f (x))

)
∧ ¬R(f (f (x)))

)
über der Signatur σ̂ = {R, c, f , g}.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 362

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.6: Automatische Theorembeweiser

χ = ∀x
(
R(c) ∧

(
¬R(x) ∨ R(f (f (g(x)))) ∨ R(f (x))

)
∧ ¬R(f (f (x)))

)
.

Für jeden Grundterm t ∈ GTσ̂ enthält die aussagenlogische Variante AHE(χ) der
Herbrand-Expansion von χ die aussagenlogische Formel

ξt := XR(c) ∧
(
¬XR(t) ∨ XR(f (f (g(t)))) ∨ XR(f (t))

)
∧ ¬XR(f (f (t))).

Wir zählen die Grundterme in GTσ̂ in der folgenden Reihenfolge auf

t1 = c, t2 = f (c), t3 = g(c), t4 = f (f (c)), t5 = g(f (c)), . . .

und zählen die Formeln in AHE(χ) in derselben Reihenfolge auf, also

ξ1 = ξt1 , ξ2 = ξt2 , ξ3 = ξt3 , . . .

Bei dem auf Folie 359 beschriebenen Verfahren wird dann beispielsweise im
Schleifendurchlauf für i = 5 getestet, ob die aussagenlogische Formel(

ξ1 ∧ ξ2 ∧ ξ3 ∧ ξ4 ∧ ξ5
)

unerfüllbar ist. Dazu können wir beispielsweise das Resolutionsverfahren oder den
DPLL-Algorithmus anwenden.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 363

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.6: Automatische Theorembeweiser

χ = ∀x
(
R(c) ∧

(
¬R(x) ∨ R(f (f (g(x)))) ∨ R(f (x))

)
∧ ¬R(f (f (x)))

)
.

Für jeden Grundterm t ∈ GTσ̂ enthält die aussagenlogische Variante AHE(χ) der
Herbrand-Expansion von χ die aussagenlogische Formel

ξt := XR(c) ∧
(
¬XR(t) ∨ XR(f (f (g(t)))) ∨ XR(f (t))

)
∧ ¬XR(f (f (t))).

Wir zählen die Grundterme in GTσ̂ in der folgenden Reihenfolge auf

t1 = c, t2 = f (c), t3 = g(c), t4 = f (f (c)), t5 = g(f (c)), . . .

und zählen die Formeln in AHE(χ) in derselben Reihenfolge auf, also

ξ1 = ξt1 ,

ξ2 = ξt2 , ξ3 = ξt3 , . . .

Bei dem auf Folie 359 beschriebenen Verfahren wird dann beispielsweise im
Schleifendurchlauf für i = 5 getestet, ob die aussagenlogische Formel(

ξ1 ∧ ξ2 ∧ ξ3 ∧ ξ4 ∧ ξ5
)

unerfüllbar ist. Dazu können wir beispielsweise das Resolutionsverfahren oder den
DPLL-Algorithmus anwenden.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 363

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.6: Automatische Theorembeweiser

χ = ∀x
(
R(c) ∧

(
¬R(x) ∨ R(f (f (g(x)))) ∨ R(f (x))

)
∧ ¬R(f (f (x)))

)
.

Für jeden Grundterm t ∈ GTσ̂ enthält die aussagenlogische Variante AHE(χ) der
Herbrand-Expansion von χ die aussagenlogische Formel

ξt := XR(c) ∧
(
¬XR(t) ∨ XR(f (f (g(t)))) ∨ XR(f (t))

)
∧ ¬XR(f (f (t))).

Wir zählen die Grundterme in GTσ̂ in der folgenden Reihenfolge auf

t1 = c, t2 = f (c), t3 = g(c), t4 = f (f (c)), t5 = g(f (c)), . . .

und zählen die Formeln in AHE(χ) in derselben Reihenfolge auf, also

ξ1 = ξt1 , ξ2 = ξt2 ,

ξ3 = ξt3 , . . .

Bei dem auf Folie 359 beschriebenen Verfahren wird dann beispielsweise im
Schleifendurchlauf für i = 5 getestet, ob die aussagenlogische Formel(

ξ1 ∧ ξ2 ∧ ξ3 ∧ ξ4 ∧ ξ5
)

unerfüllbar ist. Dazu können wir beispielsweise das Resolutionsverfahren oder den
DPLL-Algorithmus anwenden.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 363

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.6: Automatische Theorembeweiser

χ = ∀x
(
R(c) ∧

(
¬R(x) ∨ R(f (f (g(x)))) ∨ R(f (x))

)
∧ ¬R(f (f (x)))

)
.

Für jeden Grundterm t ∈ GTσ̂ enthält die aussagenlogische Variante AHE(χ) der
Herbrand-Expansion von χ die aussagenlogische Formel

ξt := XR(c) ∧
(
¬XR(t) ∨ XR(f (f (g(t)))) ∨ XR(f (t))

)
∧ ¬XR(f (f (t))).

Wir zählen die Grundterme in GTσ̂ in der folgenden Reihenfolge auf

t1 = c, t2 = f (c), t3 = g(c), t4 = f (f (c)), t5 = g(f (c)), . . .

und zählen die Formeln in AHE(χ) in derselben Reihenfolge auf, also

ξ1 = ξt1 , ξ2 = ξt2 , ξ3 = ξt3 , . . .

Bei dem auf Folie 359 beschriebenen Verfahren wird dann beispielsweise im
Schleifendurchlauf für i = 5 getestet, ob die aussagenlogische Formel(

ξ1 ∧ ξ2 ∧ ξ3 ∧ ξ4 ∧ ξ5
)

unerfüllbar ist. Dazu können wir beispielsweise das Resolutionsverfahren oder den
DPLL-Algorithmus anwenden.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 363

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.6: Automatische Theorembeweiser

χ = ∀x
(
R(c) ∧

(
¬R(x) ∨ R(f (f (g(x)))) ∨ R(f (x))

)
∧ ¬R(f (f (x)))

)
.

Für jeden Grundterm t ∈ GTσ̂ enthält die aussagenlogische Variante AHE(χ) der
Herbrand-Expansion von χ die aussagenlogische Formel

ξt := XR(c) ∧
(
¬XR(t) ∨ XR(f (f (g(t)))) ∨ XR(f (t))

)
∧ ¬XR(f (f (t))).

Wir zählen die Grundterme in GTσ̂ in der folgenden Reihenfolge auf

t1 = c, t2 = f (c), t3 = g(c), t4 = f (f (c)), t5 = g(f (c)), . . .

und zählen die Formeln in AHE(χ) in derselben Reihenfolge auf, also

ξ1 = ξt1 , ξ2 = ξt2 , ξ3 = ξt3 , . . .

Bei dem auf Folie 359 beschriebenen Verfahren wird dann beispielsweise im
Schleifendurchlauf für i = 5 getestet,

ob die aussagenlogische Formel(
ξ1 ∧ ξ2 ∧ ξ3 ∧ ξ4 ∧ ξ5

)
unerfüllbar ist. Dazu können wir beispielsweise das Resolutionsverfahren oder den
DPLL-Algorithmus anwenden.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 363

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.6: Automatische Theorembeweiser

χ = ∀x
(
R(c) ∧

(
¬R(x) ∨ R(f (f (g(x)))) ∨ R(f (x))

)
∧ ¬R(f (f (x)))

)
.

Für jeden Grundterm t ∈ GTσ̂ enthält die aussagenlogische Variante AHE(χ) der
Herbrand-Expansion von χ die aussagenlogische Formel

ξt := XR(c) ∧
(
¬XR(t) ∨ XR(f (f (g(t)))) ∨ XR(f (t))

)
∧ ¬XR(f (f (t))).

Wir zählen die Grundterme in GTσ̂ in der folgenden Reihenfolge auf

t1 = c, t2 = f (c), t3 = g(c), t4 = f (f (c)), t5 = g(f (c)), . . .

und zählen die Formeln in AHE(χ) in derselben Reihenfolge auf, also

ξ1 = ξt1 , ξ2 = ξt2 , ξ3 = ξt3 , . . .

Bei dem auf Folie 359 beschriebenen Verfahren wird dann beispielsweise im
Schleifendurchlauf für i = 5 getestet, ob die aussagenlogische Formel(

ξ1 ∧ ξ2 ∧ ξ3 ∧ ξ4 ∧ ξ5
)

unerfüllbar ist.

Dazu können wir beispielsweise das Resolutionsverfahren oder den
DPLL-Algorithmus anwenden.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 363

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.6: Automatische Theorembeweiser

χ = ∀x
(
R(c) ∧

(
¬R(x) ∨ R(f (f (g(x)))) ∨ R(f (x))

)
∧ ¬R(f (f (x)))

)
.

Für jeden Grundterm t ∈ GTσ̂ enthält die aussagenlogische Variante AHE(χ) der
Herbrand-Expansion von χ die aussagenlogische Formel

ξt := XR(c) ∧
(
¬XR(t) ∨ XR(f (f (g(t)))) ∨ XR(f (t))

)
∧ ¬XR(f (f (t))).

Wir zählen die Grundterme in GTσ̂ in der folgenden Reihenfolge auf

t1 = c, t2 = f (c), t3 = g(c), t4 = f (f (c)), t5 = g(f (c)), . . .

und zählen die Formeln in AHE(χ) in derselben Reihenfolge auf, also

ξ1 = ξt1 , ξ2 = ξt2 , ξ3 = ξt3 , . . .

Bei dem auf Folie 359 beschriebenen Verfahren wird dann beispielsweise im
Schleifendurchlauf für i = 5 getestet, ob die aussagenlogische Formel(

ξ1 ∧ ξ2 ∧ ξ3 ∧ ξ4 ∧ ξ5
)

unerfüllbar ist. Dazu können wir beispielsweise das Resolutionsverfahren oder den
DPLL-Algorithmus anwenden.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 363

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.6: Automatische Theorembeweiser

In unserem Beispiel entspricht die Formel
(
ξ1 ∧ · · · ∧ ξ5) der Klauselmenge

Γ :=
{

{ XR(c) } ,

{ ¬XR(c) , XR(f (f (g(c)))) , XR(f (c)) } , { ¬XR(f (f (c))) } ,

{ ¬XR(f (c)) , XR(f (f (g(f (c))))) , XR(f (f (c))) } , { ¬XR(f (f (f (c)))) } ,

{ ¬XR(g(c)) , XR(f (f (g(g(c))))) , XR(f (g(c))) } , { ¬XR(f (f (g(c)))) }
{ ¬XR(f (f (c))) , XR(f (f (g(f (f (c)))))) , XR(f (f (f (c)))) } , { ¬XR(f (f (f (f (c))))) }

{ ¬XR(g(f (c))) , XR(f (f (g(g(f (c)))))) , XR(f (g(f (c)))) } , { ¬XR(f (f (g(f (c))))) }
}

Wir konstruieren eine Resolutionswiderlegung für Γ:

(1)
{
XR(c)

}
in Γ

(2)
{
¬XR(c) , XR(f (f (g(c)))) ,XR(f (c))

}
in Γ

(3)
{
XR(f (f (g(c)))) , XR(f (c))

}
Resolvente aus 1,2

(4)
{
¬XR(f (f (g(c))))

}
in Γ

(5)
{
XR(f (c))

}
Resolvente aus 3,4

(6)
{
¬XR(f (c)) , XR(f (f (g(f (c))))) , XR(f (f (c)))

}
in Γ

(7)
{
XR(f (f (g(f (c))))) , XR(f (f (c)))

}
Resolvente aus 5,6

(8)
{
¬XR(f (f (c)))

}
in Γ

(9)
{
XR(f (f (g(f (c)))))

}
Resolvente aus 7,8

(10)
{
¬XR(f (f (g(f (c)))))

}
in Γ

(11) ∅ Resolvente aus 9,10
Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 364

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.6: Automatische Theorembeweiser

Somit ist Γ unerfüllbar (gemäß Satz 2.59). Das auf Folie 359 angegebene
Verfahren hält daher (spätestens) im Schleifendurchlauf für i = 5 mit der
Ausgabe

”
χ ist unerfüllbar“ an. Da χ erfüllbarkeitsäquivalent zur Formel

(φ ∧ ¬ψ) ist, wissen wir also, dass φ |= ψ gilt.
Dies beendet Beispiel 4.54.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 365

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.6: Automatische Theorembeweiser

Somit ist Γ unerfüllbar (gemäß Satz 2.59). Das auf Folie 359 angegebene
Verfahren hält daher (spätestens) im Schleifendurchlauf für i = 5 mit der
Ausgabe

”
χ ist unerfüllbar“ an.

Da χ erfüllbarkeitsäquivalent zur Formel
(φ ∧ ¬ψ) ist, wissen wir also, dass φ |= ψ gilt.
Dies beendet Beispiel 4.54.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 365

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.6: Automatische Theorembeweiser

Somit ist Γ unerfüllbar (gemäß Satz 2.59). Das auf Folie 359 angegebene
Verfahren hält daher (spätestens) im Schleifendurchlauf für i = 5 mit der
Ausgabe

”
χ ist unerfüllbar“ an. Da χ erfüllbarkeitsäquivalent zur Formel

(φ ∧ ¬ψ) ist, wissen wir also, dass φ |= ψ gilt.

Dies beendet Beispiel 4.54.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 365

Kapitel 4: Grundlagen des automatischen Schließens · Abschnitt 4.6: Automatische Theorembeweiser

Somit ist Γ unerfüllbar (gemäß Satz 2.59). Das auf Folie 359 angegebene
Verfahren hält daher (spätestens) im Schleifendurchlauf für i = 5 mit der
Ausgabe

”
χ ist unerfüllbar“ an. Da χ erfüllbarkeitsäquivalent zur Formel

(φ ∧ ¬ψ) ist, wissen wir also, dass φ |= ψ gilt.
Dies beendet Beispiel 4.54.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 365

Kapitel 5:

Logik-Programmierung

Abschnitt 5.1:

Einführung

Kapitel 5: Logik-Programmierung · Abschnitt 5.1: Einführung

Logik-Programmierung

Logik-Programmierung bezeichnet die Idee, Logik direkt als
Programmiersprache zu verwenden.

Logik-Programmierung (in Sprachen wie Prolog) und die verwandte funktionale
Programmierung (in Sprachen wie LISP, ML, Haskell) sind deklarativ,
im Gegensatz zur imperativen Programmierung (in Sprachen wie Java, C, Perl).

Die Idee der deklarativen Programmierung besteht darin, dem Computer
lediglich sein Wissen über das Anwendungsszenario und sein Ziel mitzuteilen
und dann die Lösung des Problems dem Computer zu überlassen.

Bei der imperativen Programmierung hingegen gibt man dem Computer die
einzelnen Schritte zur Lösung des Problems vor.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 366

Kapitel 5: Logik-Programmierung · Abschnitt 5.1: Einführung

Logik-Programmierung

Logik-Programmierung bezeichnet die Idee, Logik direkt als
Programmiersprache zu verwenden.

Logik-Programmierung (in Sprachen wie Prolog) und die verwandte funktionale
Programmierung (in Sprachen wie LISP, ML, Haskell) sind deklarativ,
im Gegensatz zur imperativen Programmierung (in Sprachen wie Java, C, Perl).

Die Idee der deklarativen Programmierung besteht darin, dem Computer
lediglich sein Wissen über das Anwendungsszenario und sein Ziel mitzuteilen
und dann die Lösung des Problems dem Computer zu überlassen.

Bei der imperativen Programmierung hingegen gibt man dem Computer die
einzelnen Schritte zur Lösung des Problems vor.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 366

Kapitel 5: Logik-Programmierung · Abschnitt 5.1: Einführung

Logik-Programmierung

Logik-Programmierung bezeichnet die Idee, Logik direkt als
Programmiersprache zu verwenden.

Logik-Programmierung (in Sprachen wie Prolog) und die verwandte funktionale
Programmierung (in Sprachen wie LISP, ML, Haskell) sind deklarativ,
im Gegensatz zur imperativen Programmierung (in Sprachen wie Java, C, Perl).

Die Idee der deklarativen Programmierung besteht darin, dem Computer
lediglich sein Wissen über das Anwendungsszenario und sein Ziel mitzuteilen
und dann die Lösung des Problems dem Computer zu überlassen.

Bei der imperativen Programmierung hingegen gibt man dem Computer die
einzelnen Schritte zur Lösung des Problems vor.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 366

Kapitel 5: Logik-Programmierung · Abschnitt 5.1: Einführung

Prolog

• ist die wichtigste logische Programmiersprache,

• geht zurück auf Kowalski und Colmerauer
(Anfang der 1970er Jahre, Marseilles),

• steht für (franz.) Programmation en logique.

• Mitte/Ende der 1970er Jahre: effiziente Prolog-Implementierung durch den
von Warren (in Edinburgh) entwickelten Prolog-10 Compiler.

Prolog ist eine voll entwickelte und mächtige Programmiersprache, die vor allem
für symbolische Berechnungsprobleme geeignet ist.

Aus Effizienzgründen werden in Prolog die abstrakten Ideen der logischen
Programmierung nicht in Reinform umgesetzt, Prolog hat auch

”
nichtlogische“

Elemente.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 367

Kapitel 5: Logik-Programmierung · Abschnitt 5.1: Einführung

Prolog

• ist die wichtigste logische Programmiersprache,

• geht zurück auf Kowalski und Colmerauer
(Anfang der 1970er Jahre, Marseilles),

• steht für (franz.) Programmation en logique.

• Mitte/Ende der 1970er Jahre: effiziente Prolog-Implementierung durch den
von Warren (in Edinburgh) entwickelten Prolog-10 Compiler.

Prolog ist eine voll entwickelte und mächtige Programmiersprache, die vor allem
für symbolische Berechnungsprobleme geeignet ist.

Aus Effizienzgründen werden in Prolog die abstrakten Ideen der logischen
Programmierung nicht in Reinform umgesetzt, Prolog hat auch

”
nichtlogische“

Elemente.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 367

Kapitel 5: Logik-Programmierung · Abschnitt 5.1: Einführung

Prolog

• ist die wichtigste logische Programmiersprache,

• geht zurück auf Kowalski und Colmerauer
(Anfang der 1970er Jahre, Marseilles),

• steht für (franz.) Programmation en logique.

• Mitte/Ende der 1970er Jahre: effiziente Prolog-Implementierung durch den
von Warren (in Edinburgh) entwickelten Prolog-10 Compiler.

Prolog ist eine voll entwickelte und mächtige Programmiersprache, die vor allem
für symbolische Berechnungsprobleme geeignet ist.

Aus Effizienzgründen werden in Prolog die abstrakten Ideen der logischen
Programmierung nicht in Reinform umgesetzt, Prolog hat auch

”
nichtlogische“

Elemente.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 367

Kapitel 5: Logik-Programmierung · Abschnitt 5.1: Einführung

Dieses Kapitel

• setzt voraus, dass Sie bereits Grundkenntnisse der Programmiersprache
Prolog besitzen, die beispielsweise im Buch

”
Learn Prolog Now!“ von

P. Blackburn, J. Bos und K. Striegnitz vermittelt werden, und die während
des Semesters bereits im Übungsbetrieb behandelt wurden.

• gibt eine Einführung in die Grundlagen der Logik-Programmierung —
keine Einführung in die Programmiersprache Prolog!

Auf einige der Hauptunterschiede zwischen allgemeiner Logik-Programmierung
und Prolog werden wir im Laufe dieses Kapitels eingehen.

Alle in diesem Kapitel enthaltenen Beispiele von Logikprogrammen sind voll
lauffähige Prologprogramme, aber in einigen Fällen unterscheidet sich die
Semantik des Programms im Sinne der Logik-Programmierung von der
Semantik des Programms im Sinne von Prolog.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 368

Kapitel 5: Logik-Programmierung · Abschnitt 5.1: Einführung

Dieses Kapitel

• setzt voraus, dass Sie bereits Grundkenntnisse der Programmiersprache
Prolog besitzen, die beispielsweise im Buch

”
Learn Prolog Now!“ von

P. Blackburn, J. Bos und K. Striegnitz vermittelt werden, und die während
des Semesters bereits im Übungsbetrieb behandelt wurden.

• gibt eine Einführung in die Grundlagen der Logik-Programmierung —
keine Einführung in die Programmiersprache Prolog!

Auf einige der Hauptunterschiede zwischen allgemeiner Logik-Programmierung
und Prolog werden wir im Laufe dieses Kapitels eingehen.

Alle in diesem Kapitel enthaltenen Beispiele von Logikprogrammen sind voll
lauffähige Prologprogramme, aber in einigen Fällen unterscheidet sich die
Semantik des Programms im Sinne der Logik-Programmierung von der
Semantik des Programms im Sinne von Prolog.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 368

Kapitel 5: Logik-Programmierung · Abschnitt 5.1: Einführung

Dieses Kapitel

• setzt voraus, dass Sie bereits Grundkenntnisse der Programmiersprache
Prolog besitzen, die beispielsweise im Buch

”
Learn Prolog Now!“ von

P. Blackburn, J. Bos und K. Striegnitz vermittelt werden, und die während
des Semesters bereits im Übungsbetrieb behandelt wurden.

• gibt eine Einführung in die Grundlagen der Logik-Programmierung —
keine Einführung in die Programmiersprache Prolog!

Auf einige der Hauptunterschiede zwischen allgemeiner Logik-Programmierung
und Prolog werden wir im Laufe dieses Kapitels eingehen.

Alle in diesem Kapitel enthaltenen Beispiele von Logikprogrammen sind voll
lauffähige Prologprogramme, aber in einigen Fällen unterscheidet sich die
Semantik des Programms im Sinne der Logik-Programmierung von der
Semantik des Programms im Sinne von Prolog.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 368

Kapitel 5: Logik-Programmierung · Abschnitt 5.1: Einführung

Dieses Kapitel

• setzt voraus, dass Sie bereits Grundkenntnisse der Programmiersprache
Prolog besitzen, die beispielsweise im Buch

”
Learn Prolog Now!“ von

P. Blackburn, J. Bos und K. Striegnitz vermittelt werden, und die während
des Semesters bereits im Übungsbetrieb behandelt wurden.

• gibt eine Einführung in die Grundlagen der Logik-Programmierung —
keine Einführung in die Programmiersprache Prolog!

Auf einige der Hauptunterschiede zwischen allgemeiner Logik-Programmierung
und Prolog werden wir im Laufe dieses Kapitels eingehen.

Alle in diesem Kapitel enthaltenen Beispiele von Logikprogrammen sind voll
lauffähige Prologprogramme, aber in einigen Fällen unterscheidet sich die
Semantik des Programms im Sinne der Logik-Programmierung von der
Semantik des Programms im Sinne von Prolog.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 368

Kapitel 5: Logik-Programmierung · Abschnitt 5.1: Einführung

Dieses Kapitel

• setzt voraus, dass Sie bereits Grundkenntnisse der Programmiersprache
Prolog besitzen, die beispielsweise im Buch

”
Learn Prolog Now!“ von

P. Blackburn, J. Bos und K. Striegnitz vermittelt werden, und die während
des Semesters bereits im Übungsbetrieb behandelt wurden.

• gibt eine Einführung in die Grundlagen der Logik-Programmierung —
keine Einführung in die Programmiersprache Prolog!

Auf einige der Hauptunterschiede zwischen allgemeiner Logik-Programmierung
und Prolog werden wir im Laufe dieses Kapitels eingehen.

Alle in diesem Kapitel enthaltenen Beispiele von Logikprogrammen sind voll
lauffähige Prologprogramme,

aber in einigen Fällen unterscheidet sich die
Semantik des Programms im Sinne der Logik-Programmierung von der
Semantik des Programms im Sinne von Prolog.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 368

Kapitel 5: Logik-Programmierung · Abschnitt 5.1: Einführung

Dieses Kapitel

• setzt voraus, dass Sie bereits Grundkenntnisse der Programmiersprache
Prolog besitzen, die beispielsweise im Buch

”
Learn Prolog Now!“ von

P. Blackburn, J. Bos und K. Striegnitz vermittelt werden, und die während
des Semesters bereits im Übungsbetrieb behandelt wurden.

• gibt eine Einführung in die Grundlagen der Logik-Programmierung —
keine Einführung in die Programmiersprache Prolog!

Auf einige der Hauptunterschiede zwischen allgemeiner Logik-Programmierung
und Prolog werden wir im Laufe dieses Kapitels eingehen.

Alle in diesem Kapitel enthaltenen Beispiele von Logikprogrammen sind voll
lauffähige Prologprogramme, aber in einigen Fällen unterscheidet sich die
Semantik des Programms im Sinne der Logik-Programmierung von der
Semantik des Programms im Sinne von Prolog.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 368

Kapitel 5: Logik-Programmierung · Abschnitt 5.1: Einführung

Zunächst zwei Beispiele für Logikprogramme

Beispiel 5.1
Ein Logikprogramm zur Repräsentation natürlicher Zahlen in Unärdarstellung und der
zugehörigen Arithmetik und der Kleiner-Relation.

Programm: unat.pl

unat(null).

unat(s(X)) :- unat(X).

plus(null, Y, Y).

plus(s(X), Y, s(Z)) :- plus(X, Y, Z).

minus(X, Y, Z) :- plus(Y, Z, X).

mal(null, Y, null).

mal(s(X), Y, Z) :- mal(X, Y, Z1), plus(Z1, Y, Z).

less(null, s(_)).

less(s(X), s(Y)) :- less(X, Y).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 369

Kapitel 5: Logik-Programmierung · Abschnitt 5.1: Einführung

Beispiel 5.2

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 370

Abschnitt 5.2:

Syntax und deklarative Semantik von
Logikprogrammen

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Logikprogramme

Logikprogramme sind
”
Wissensbasen“, bestehend aus einer endlichen Menge von

Fakten und Regeln.

Eine Berechnung eines Logikprogramms besteht aus der Ableitung der Konsequenzen,
die aus den Fakten und den Regeln des Programms hergeleitet werden können.

Man führt ein Programm aus, indem man Anfragen an die Wissensbasis stellt.

Fakten beschreiben Relationen zwischen Objekten.

Beispiele: mutter(lominka,totilas), maennlich(totilas), party,
plus(s(null),s(s(null)),s(s(s(null)))).

Relationen haben eine Stelligkeit k ⩾ 0.
Nullstellige Relationen sind einfach Aussagen (z.B. besagt

”
party“, dass die Party

stattfindet).

Eine Anfrage ist eine durch Kommas getrennte Liste von Fakten; gefragt wird, ob
diese Fakten in der Wissenbasis gelten, d.h., ob sie aus der Wissensbasis ableitbar sind.

Beispiele: Die Anfrage ?- vorfahr(gribaldi, totalHope) fragt, ob Gribaldi ein
Vorfahr von Total Hope ist.
Die Anfrage ?- mutter(elsa, X), vater(kostolany, X) fragt, ob Elsa und
Kostolany ein gemeinsames Kind haben.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 371

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Logikprogramme

Logikprogramme sind
”
Wissensbasen“, bestehend aus einer endlichen Menge von

Fakten und Regeln.

Eine Berechnung eines Logikprogramms besteht aus der Ableitung der Konsequenzen,
die aus den Fakten und den Regeln des Programms hergeleitet werden können.

Man führt ein Programm aus, indem man Anfragen an die Wissensbasis stellt.

Fakten beschreiben Relationen zwischen Objekten.

Beispiele: mutter(lominka,totilas)

, maennlich(totilas), party,
plus(s(null),s(s(null)),s(s(s(null)))).

Relationen haben eine Stelligkeit k ⩾ 0.
Nullstellige Relationen sind einfach Aussagen (z.B. besagt

”
party“, dass die Party

stattfindet).

Eine Anfrage ist eine durch Kommas getrennte Liste von Fakten; gefragt wird, ob
diese Fakten in der Wissenbasis gelten, d.h., ob sie aus der Wissensbasis ableitbar sind.

Beispiele: Die Anfrage ?- vorfahr(gribaldi, totalHope) fragt, ob Gribaldi ein
Vorfahr von Total Hope ist.
Die Anfrage ?- mutter(elsa, X), vater(kostolany, X) fragt, ob Elsa und
Kostolany ein gemeinsames Kind haben.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 371

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Logikprogramme

Logikprogramme sind
”
Wissensbasen“, bestehend aus einer endlichen Menge von

Fakten und Regeln.

Eine Berechnung eines Logikprogramms besteht aus der Ableitung der Konsequenzen,
die aus den Fakten und den Regeln des Programms hergeleitet werden können.

Man führt ein Programm aus, indem man Anfragen an die Wissensbasis stellt.

Fakten beschreiben Relationen zwischen Objekten.

Beispiele: mutter(lominka,totilas), maennlich(totilas)

, party,
plus(s(null),s(s(null)),s(s(s(null)))).

Relationen haben eine Stelligkeit k ⩾ 0.
Nullstellige Relationen sind einfach Aussagen (z.B. besagt

”
party“, dass die Party

stattfindet).

Eine Anfrage ist eine durch Kommas getrennte Liste von Fakten; gefragt wird, ob
diese Fakten in der Wissenbasis gelten, d.h., ob sie aus der Wissensbasis ableitbar sind.

Beispiele: Die Anfrage ?- vorfahr(gribaldi, totalHope) fragt, ob Gribaldi ein
Vorfahr von Total Hope ist.
Die Anfrage ?- mutter(elsa, X), vater(kostolany, X) fragt, ob Elsa und
Kostolany ein gemeinsames Kind haben.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 371

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Logikprogramme

Logikprogramme sind
”
Wissensbasen“, bestehend aus einer endlichen Menge von

Fakten und Regeln.

Eine Berechnung eines Logikprogramms besteht aus der Ableitung der Konsequenzen,
die aus den Fakten und den Regeln des Programms hergeleitet werden können.

Man führt ein Programm aus, indem man Anfragen an die Wissensbasis stellt.

Fakten beschreiben Relationen zwischen Objekten.

Beispiele: mutter(lominka,totilas), maennlich(totilas), party

,
plus(s(null),s(s(null)),s(s(s(null)))).

Relationen haben eine Stelligkeit k ⩾ 0.
Nullstellige Relationen sind einfach Aussagen (z.B. besagt

”
party“, dass die Party

stattfindet).

Eine Anfrage ist eine durch Kommas getrennte Liste von Fakten; gefragt wird, ob
diese Fakten in der Wissenbasis gelten, d.h., ob sie aus der Wissensbasis ableitbar sind.

Beispiele: Die Anfrage ?- vorfahr(gribaldi, totalHope) fragt, ob Gribaldi ein
Vorfahr von Total Hope ist.
Die Anfrage ?- mutter(elsa, X), vater(kostolany, X) fragt, ob Elsa und
Kostolany ein gemeinsames Kind haben.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 371

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Logikprogramme

Logikprogramme sind
”
Wissensbasen“, bestehend aus einer endlichen Menge von

Fakten und Regeln.

Eine Berechnung eines Logikprogramms besteht aus der Ableitung der Konsequenzen,
die aus den Fakten und den Regeln des Programms hergeleitet werden können.

Man führt ein Programm aus, indem man Anfragen an die Wissensbasis stellt.

Fakten beschreiben Relationen zwischen Objekten.

Beispiele: mutter(lominka,totilas), maennlich(totilas), party,
plus(s(null),s(s(null)),s(s(s(null)))).

Relationen haben eine Stelligkeit k ⩾ 0.
Nullstellige Relationen sind einfach Aussagen (z.B. besagt

”
party“, dass die Party

stattfindet).

Eine Anfrage ist eine durch Kommas getrennte Liste von Fakten; gefragt wird, ob
diese Fakten in der Wissenbasis gelten, d.h., ob sie aus der Wissensbasis ableitbar sind.

Beispiele: Die Anfrage ?- vorfahr(gribaldi, totalHope) fragt, ob Gribaldi ein
Vorfahr von Total Hope ist.
Die Anfrage ?- mutter(elsa, X), vater(kostolany, X) fragt, ob Elsa und
Kostolany ein gemeinsames Kind haben.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 371

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Logikprogramme

Logikprogramme sind
”
Wissensbasen“, bestehend aus einer endlichen Menge von

Fakten und Regeln.

Eine Berechnung eines Logikprogramms besteht aus der Ableitung der Konsequenzen,
die aus den Fakten und den Regeln des Programms hergeleitet werden können.

Man führt ein Programm aus, indem man Anfragen an die Wissensbasis stellt.

Fakten beschreiben Relationen zwischen Objekten.

Beispiele: mutter(lominka,totilas), maennlich(totilas), party,
plus(s(null),s(s(null)),s(s(s(null)))).

Relationen haben eine Stelligkeit k ⩾ 0.
Nullstellige Relationen sind einfach Aussagen (z.B. besagt

”
party“, dass die Party

stattfindet).

Eine Anfrage ist eine durch Kommas getrennte Liste von Fakten; gefragt wird, ob
diese Fakten in der Wissenbasis gelten, d.h., ob sie aus der Wissensbasis ableitbar sind.

Beispiele: Die Anfrage ?- vorfahr(gribaldi, totalHope) fragt, ob Gribaldi ein
Vorfahr von Total Hope ist.
Die Anfrage ?- mutter(elsa, X), vater(kostolany, X) fragt, ob Elsa und
Kostolany ein gemeinsames Kind haben.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 371

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Logikprogramme

Logikprogramme sind
”
Wissensbasen“, bestehend aus einer endlichen Menge von

Fakten und Regeln.

Eine Berechnung eines Logikprogramms besteht aus der Ableitung der Konsequenzen,
die aus den Fakten und den Regeln des Programms hergeleitet werden können.

Man führt ein Programm aus, indem man Anfragen an die Wissensbasis stellt.

Fakten beschreiben Relationen zwischen Objekten.

Beispiele: mutter(lominka,totilas), maennlich(totilas), party,
plus(s(null),s(s(null)),s(s(s(null)))).

Relationen haben eine Stelligkeit k ⩾ 0.
Nullstellige Relationen sind einfach Aussagen (z.B. besagt

”
party“, dass die Party

stattfindet).

Eine Anfrage ist eine durch Kommas getrennte Liste von Fakten; gefragt wird, ob
diese Fakten in der Wissenbasis gelten, d.h., ob sie aus der Wissensbasis ableitbar sind.

Beispiele: Die Anfrage ?- vorfahr(gribaldi, totalHope) fragt, ob Gribaldi ein
Vorfahr von Total Hope ist.

Die Anfrage ?- mutter(elsa, X), vater(kostolany, X) fragt, ob Elsa und
Kostolany ein gemeinsames Kind haben.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 371

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Logikprogramme

Logikprogramme sind
”
Wissensbasen“, bestehend aus einer endlichen Menge von

Fakten und Regeln.

Eine Berechnung eines Logikprogramms besteht aus der Ableitung der Konsequenzen,
die aus den Fakten und den Regeln des Programms hergeleitet werden können.

Man führt ein Programm aus, indem man Anfragen an die Wissensbasis stellt.

Fakten beschreiben Relationen zwischen Objekten.

Beispiele: mutter(lominka,totilas), maennlich(totilas), party,
plus(s(null),s(s(null)),s(s(s(null)))).

Relationen haben eine Stelligkeit k ⩾ 0.
Nullstellige Relationen sind einfach Aussagen (z.B. besagt

”
party“, dass die Party

stattfindet).

Eine Anfrage ist eine durch Kommas getrennte Liste von Fakten; gefragt wird, ob
diese Fakten in der Wissenbasis gelten, d.h., ob sie aus der Wissensbasis ableitbar sind.

Beispiele: Die Anfrage ?- vorfahr(gribaldi, totalHope) fragt, ob Gribaldi ein
Vorfahr von Total Hope ist.
Die Anfrage ?- mutter(elsa, X), vater(kostolany, X) fragt, ob Elsa und
Kostolany ein gemeinsames Kind haben.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 371

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Die Rolle der Terme

Terme sind in Logikprogrammen die universelle Datenstruktur.

Je nach Kontext spielen sie die Rolle von Fakten
oder von Objekten, über die die Fakten sprechen.

Die einfachste Art von Termen in Logikprogrammen sind die im Folgenden
definierten Konstanten und Variablen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 372

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Die Rolle der Terme

Terme sind in Logikprogrammen die universelle Datenstruktur.

Je nach Kontext spielen sie die Rolle von Fakten
oder von Objekten, über die die Fakten sprechen.

Die einfachste Art von Termen in Logikprogrammen sind die im Folgenden
definierten Konstanten und Variablen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 372

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Die Rolle der Terme

Terme sind in Logikprogrammen die universelle Datenstruktur.

Je nach Kontext spielen sie die Rolle von Fakten
oder von Objekten, über die die Fakten sprechen.

Die einfachste Art von Termen in Logikprogrammen sind die im Folgenden
definierten Konstanten und Variablen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 372

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Atome, Zahlen, Konstanten und Variablen der
Logik-Programmierung

Definition 5.3
(a) Atome sind die Grundbausteine von Logikprogrammen. Sie werden bezeichnet

durch Zeichenketten, die keins der Symbole
”
(“ und

”
)“ enthalten und die mit

einem Kleinbuchstaben beginnen oder in einfachen Hochkommata stehen. Atome
repräsentieren Individuen.

Beispiele: totilas, ’Totilas’, logikInDerInformatik

(b) Zahlen in Logikprogrammen sind entweder ganze Zahlen oder reelle Zahlen in
Gleitkommadarstellung.

Beispiele: 42, 1.2e-3

(c) Konstanten der Logik-Programmierung sind Atome oder Zahlen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 373

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Atome, Zahlen, Konstanten und Variablen der
Logik-Programmierung

Definition 5.3
(a) Atome sind die Grundbausteine von Logikprogrammen. Sie werden bezeichnet

durch Zeichenketten, die keins der Symbole
”
(“ und

”
)“ enthalten und die mit

einem Kleinbuchstaben beginnen oder in einfachen Hochkommata stehen. Atome
repräsentieren Individuen.

Beispiele: totilas, ’Totilas’, logikInDerInformatik

(b) Zahlen in Logikprogrammen sind entweder ganze Zahlen oder reelle Zahlen in
Gleitkommadarstellung.

Beispiele: 42, 1.2e-3

(c) Konstanten der Logik-Programmierung sind Atome oder Zahlen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 373

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Atome, Zahlen, Konstanten und Variablen der
Logik-Programmierung

Definition 5.3
(a) Atome sind die Grundbausteine von Logikprogrammen. Sie werden bezeichnet

durch Zeichenketten, die keins der Symbole
”
(“ und

”
)“ enthalten und die mit

einem Kleinbuchstaben beginnen oder in einfachen Hochkommata stehen. Atome
repräsentieren Individuen.

Beispiele: totilas, ’Totilas’, logikInDerInformatik

(b) Zahlen in Logikprogrammen sind entweder ganze Zahlen oder reelle Zahlen in
Gleitkommadarstellung.

Beispiele: 42, 1.2e-3

(c) Konstanten der Logik-Programmierung sind Atome oder Zahlen.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 373

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Definition 5.4
Variablen der Logik-Programmierung werden durch Zeichenketten bezeichnet, die mit
einem Großbuchstaben oder einem Unterstrich beginnen und keins der Symbole

”
(“

und
”
)“ enthalten.

Eine Variable repräsentiert in einem Logikprogramm (ähnlich wie in der Logik erster
Stufe) ein nicht-spezifiziertes Individuum.
Man beachte den Gegensatz zur imperativen Programmierung, bei der eine Variable für eine

”
Speicherzelle“ steht, in der Werte gespeichert und verändert werden können.

Beispiele: X, Mutter, mutter, RUD26

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 374

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Terme der Logik-Programmierung

Definition 5.5
(a) Ein einfacher Term der Logik-Programmierung ist eine Konstante oder eine

Variable (d.h., ein Atom, eine Zahl oder eine Variable der
Logik-Programmierung).

(b) Die Menge TLP der Terme der Logik-Programmierung ist rekursiv wie folgt
definiert:

(1) Jeder einfache Term ist ein Term.
(2) Ist f ein Atom, ist k ∈ N mit k ⩾ 1 und sind t1, . . . , tk ∈ TLP Terme, so ist

f(t1,...,tk)

ein Term in TLP.

(c) Terme in TLP, die keine einfachen Terme sind, heißen zusammengesetzte Terme
der Logik-Programmierung.

In einem zusammengesetzten Term der Form f(t1,...,tk) spielt das Atom f die Rolle
eines k-stelligen Funktors, den wir mit f/k bezeichnen.

Spezialfall k = 0: Jedes Atom g wird als ein 0-stelliger Funktor betrachtet, der mit g/0
bezeichnet wird, und der ein (einfacher) Term ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 375

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Terme der Logik-Programmierung

Definition 5.5
(a) Ein einfacher Term der Logik-Programmierung ist eine Konstante oder eine

Variable (d.h., ein Atom, eine Zahl oder eine Variable der
Logik-Programmierung).

(b) Die Menge TLP der Terme der Logik-Programmierung ist rekursiv wie folgt
definiert:

(1) Jeder einfache Term ist ein Term.

(2) Ist f ein Atom, ist k ∈ N mit k ⩾ 1 und sind t1, . . . , tk ∈ TLP Terme, so ist

f(t1,...,tk)

ein Term in TLP.

(c) Terme in TLP, die keine einfachen Terme sind, heißen zusammengesetzte Terme
der Logik-Programmierung.

In einem zusammengesetzten Term der Form f(t1,...,tk) spielt das Atom f die Rolle
eines k-stelligen Funktors, den wir mit f/k bezeichnen.

Spezialfall k = 0: Jedes Atom g wird als ein 0-stelliger Funktor betrachtet, der mit g/0
bezeichnet wird, und der ein (einfacher) Term ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 375

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Terme der Logik-Programmierung

Definition 5.5
(a) Ein einfacher Term der Logik-Programmierung ist eine Konstante oder eine

Variable (d.h., ein Atom, eine Zahl oder eine Variable der
Logik-Programmierung).

(b) Die Menge TLP der Terme der Logik-Programmierung ist rekursiv wie folgt
definiert:

(1) Jeder einfache Term ist ein Term.
(2) Ist f ein Atom, ist k ∈ N mit k ⩾ 1 und sind t1, . . . , tk ∈ TLP Terme, so ist

f(t1,...,tk)

ein Term in TLP.

(c) Terme in TLP, die keine einfachen Terme sind, heißen zusammengesetzte Terme
der Logik-Programmierung.

In einem zusammengesetzten Term der Form f(t1,...,tk) spielt das Atom f die Rolle
eines k-stelligen Funktors, den wir mit f/k bezeichnen.

Spezialfall k = 0: Jedes Atom g wird als ein 0-stelliger Funktor betrachtet, der mit g/0
bezeichnet wird, und der ein (einfacher) Term ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 375

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beispiele: party,

mutter(lominka,totilas), s(s(s(null))),

vorlesung(name(logikInDerInformatik),

zeit(di,11,13),

ort(gebaeude(rUD26),raum(0115))).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 376

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beispiele: party, mutter(lominka,totilas),

s(s(s(null))),

vorlesung(name(logikInDerInformatik),

zeit(di,11,13),

ort(gebaeude(rUD26),raum(0115))).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 376

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beispiele: party, mutter(lominka,totilas), s(s(s(null))),

vorlesung(name(logikInDerInformatik),

zeit(di,11,13),

ort(gebaeude(rUD26),raum(0115))).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 376

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beispiele: party, mutter(lominka,totilas), s(s(s(null))),

vorlesung(name(logikInDerInformatik),

zeit(di,11,13),

ort(gebaeude(rUD26),raum(0115))).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 376

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Gleichheit von Termen

Zwei Terme t und t ′ der Logik-Programmierung werden nur dann als gleich
bezeichnet, wenn sie syntaktisch, d.h. als Zeichenketten betrachtet, identisch
sind.

Beispiel:
Die beiden Terme plus(null,X,X) und plus(null,Y,Y) sind nicht gleich.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 377

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Substitutionen

Notation
Für eine partielle Funktion f schreiben wir Def(f) und Bild(f) um den
Definitionsbereich und den Bildbereich von f zu bezeichnen.
D.h. Def(f) ist die Menge aller Objekte x , für die der Wert f (x) definiert ist, und
Bild(f) = {f (x) : x ∈ Def(f)}.

Definition 5.6
Eine Substitution ist eine partielle Abbildung von der Menge der Variablen auf die
Menge der Terme.

Eine Substitution für eine Menge V von Variablen der Logik-Programmierung ist eine
Substitution S mit Def(S) ⊆ V .

Beispiel:
S :=

{
X 7→ c, Y 7→ f(X,g(c)), Z 7→ Y

}
bezeichnet die Substitution mit Definitionsbereich Def(S) = {X, Y, Z}, für die gilt:
S(X) = c, S(Y) = f(X,g(c)), S(Z) = Y.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 378

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Substitutionen

Notation
Für eine partielle Funktion f schreiben wir Def(f) und Bild(f) um den
Definitionsbereich und den Bildbereich von f zu bezeichnen.
D.h. Def(f) ist die Menge aller Objekte x , für die der Wert f (x) definiert ist, und
Bild(f) = {f (x) : x ∈ Def(f)}.

Definition 5.6
Eine Substitution ist eine partielle Abbildung von der Menge der Variablen auf die
Menge der Terme.

Eine Substitution für eine Menge V von Variablen der Logik-Programmierung ist eine
Substitution S mit Def(S) ⊆ V .

Beispiel:
S :=

{
X 7→ c, Y 7→ f(X,g(c)), Z 7→ Y

}
bezeichnet die Substitution mit Definitionsbereich Def(S) = {X, Y, Z}, für die gilt:
S(X) = c, S(Y) = f(X,g(c)), S(Z) = Y.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 378

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Substitutionen

Notation
Für eine partielle Funktion f schreiben wir Def(f) und Bild(f) um den
Definitionsbereich und den Bildbereich von f zu bezeichnen.
D.h. Def(f) ist die Menge aller Objekte x , für die der Wert f (x) definiert ist, und
Bild(f) = {f (x) : x ∈ Def(f)}.

Definition 5.6
Eine Substitution ist eine partielle Abbildung von der Menge der Variablen auf die
Menge der Terme.

Eine Substitution für eine Menge V von Variablen der Logik-Programmierung ist eine
Substitution S mit Def(S) ⊆ V .

Beispiel:
S :=

{
X 7→ c, Y 7→ f(X,g(c)), Z 7→ Y

}
bezeichnet die Substitution mit Definitionsbereich Def(S) = {X, Y, Z}, für die gilt:
S(X) = c, S(Y) = f(X,g(c)), S(Z) = Y.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 378

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Anwendung von Substitutionen

Durch Anwenden einer Substitution S auf einen Term t ∈ TLP erhalten wir den Term
tS ∈ TLP, der aus t durch simultanes Ersetzen jeder Variablen X ∈ Def(S) durch den
Term S(X) entsteht.

Beispiel: Sei
t := h(f(X,X), Y, f(Y,g(Z)))

und
S :=

{
X 7→ c, Y 7→ f(X,g(c)), Z 7→ Y

}
.

Dann ist
tS = h(f(c,c), f(X,g(c)), f(f(X,g(c)), g(Y))).

Definition 5.7
Ein Term t′ ist eine Instanz eines Terms t, wenn es eine Substitution S gibt, so dass
t′ = tS .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 379

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Anwendung von Substitutionen

Durch Anwenden einer Substitution S auf einen Term t ∈ TLP erhalten wir den Term
tS ∈ TLP, der aus t durch simultanes Ersetzen jeder Variablen X ∈ Def(S) durch den
Term S(X) entsteht.

Beispiel: Sei
t := h(f(X,X), Y, f(Y,g(Z)))

und
S :=

{
X 7→ c, Y 7→ f(X,g(c)), Z 7→ Y

}
.

Dann ist
tS =

h(f(c,c), f(X,g(c)), f(f(X,g(c)), g(Y))).

Definition 5.7
Ein Term t′ ist eine Instanz eines Terms t, wenn es eine Substitution S gibt, so dass
t′ = tS .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 379

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Anwendung von Substitutionen

Durch Anwenden einer Substitution S auf einen Term t ∈ TLP erhalten wir den Term
tS ∈ TLP, der aus t durch simultanes Ersetzen jeder Variablen X ∈ Def(S) durch den
Term S(X) entsteht.

Beispiel: Sei
t := h(f(X,X), Y, f(Y,g(Z)))

und
S :=

{
X 7→ c, Y 7→ f(X,g(c)), Z 7→ Y

}
.

Dann ist
tS = h(f(c,c), f(X,g(c)), f(f(X,g(c)), g(Y))).

Definition 5.7
Ein Term t′ ist eine Instanz eines Terms t, wenn es eine Substitution S gibt, so dass
t′ = tS .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 379

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Anwendung von Substitutionen

Durch Anwenden einer Substitution S auf einen Term t ∈ TLP erhalten wir den Term
tS ∈ TLP, der aus t durch simultanes Ersetzen jeder Variablen X ∈ Def(S) durch den
Term S(X) entsteht.

Beispiel: Sei
t := h(f(X,X), Y, f(Y,g(Z)))

und
S :=

{
X 7→ c, Y 7→ f(X,g(c)), Z 7→ Y

}
.

Dann ist
tS = h(f(c,c), f(X,g(c)), f(f(X,g(c)), g(Y))).

Definition 5.7
Ein Term t′ ist eine Instanz eines Terms t, wenn es eine Substitution S gibt, so dass
t′ = tS .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 379

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Grundterme

Definition 5.8
Ein Grundterm der Logik-Programmierung ist ein Term, der keine Variable(n) enthält.

Eine Grundinstanz eines Terms t ∈ TLP ist eine Instanz von t, die ein Grundterm ist.

Eine Grundinstanz eines Terms t entsteht also, indem jede in t vorkommende Variable
durch einen Grundterm ersetzt wird.

Beispiele: h(c,c,f(c)) und h(f(f(c,c),g(d)),d,f(g(g(c)))) sind
Grundinstanzen des Terms h(X,Y,f(Z)).

Bemerkung
Grundterme sind wichtig, weil sie in dem Modell, das dem Logikprogramm zu Grunde
liegt, eine unmittelbare Bedeutung haben. Variablen hingegen haben keine direkte
Bedeutung, sondern sind nur Platzhalter für Objekte.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 380

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Grundterme

Definition 5.8
Ein Grundterm der Logik-Programmierung ist ein Term, der keine Variable(n) enthält.

Eine Grundinstanz eines Terms t ∈ TLP ist eine Instanz von t, die ein Grundterm ist.

Eine Grundinstanz eines Terms t entsteht also, indem jede in t vorkommende Variable
durch einen Grundterm ersetzt wird.

Beispiele: h(c,c,f(c)) und h(f(f(c,c),g(d)),d,f(g(g(c)))) sind
Grundinstanzen des Terms h(X,Y,f(Z)).

Bemerkung
Grundterme sind wichtig, weil sie in dem Modell, das dem Logikprogramm zu Grunde
liegt, eine unmittelbare Bedeutung haben. Variablen hingegen haben keine direkte
Bedeutung, sondern sind nur Platzhalter für Objekte.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 380

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Grundterme

Definition 5.8
Ein Grundterm der Logik-Programmierung ist ein Term, der keine Variable(n) enthält.

Eine Grundinstanz eines Terms t ∈ TLP ist eine Instanz von t, die ein Grundterm ist.

Eine Grundinstanz eines Terms t entsteht also, indem jede in t vorkommende Variable
durch einen Grundterm ersetzt wird.

Beispiele: h(c,c,f(c)) und h(f(f(c,c),g(d)),d,f(g(g(c)))) sind
Grundinstanzen des Terms h(X,Y,f(Z)).

Bemerkung
Grundterme sind wichtig, weil sie in dem Modell, das dem Logikprogramm zu Grunde
liegt, eine unmittelbare Bedeutung haben. Variablen hingegen haben keine direkte
Bedeutung, sondern sind nur Platzhalter für Objekte.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 380

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Grundterme

Definition 5.8
Ein Grundterm der Logik-Programmierung ist ein Term, der keine Variable(n) enthält.

Eine Grundinstanz eines Terms t ∈ TLP ist eine Instanz von t, die ein Grundterm ist.

Eine Grundinstanz eines Terms t entsteht also, indem jede in t vorkommende Variable
durch einen Grundterm ersetzt wird.

Beispiele: h(c,c,f(c)) und h(f(f(c,c),g(d)),d,f(g(g(c)))) sind
Grundinstanzen des Terms h(X,Y,f(Z)).

Bemerkung
Grundterme sind wichtig, weil sie in dem Modell, das dem Logikprogramm zu Grunde
liegt, eine unmittelbare Bedeutung haben. Variablen hingegen haben keine direkte
Bedeutung, sondern sind nur Platzhalter für Objekte.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 380

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Grundterme

Definition 5.8
Ein Grundterm der Logik-Programmierung ist ein Term, der keine Variable(n) enthält.

Eine Grundinstanz eines Terms t ∈ TLP ist eine Instanz von t, die ein Grundterm ist.

Eine Grundinstanz eines Terms t entsteht also, indem jede in t vorkommende Variable
durch einen Grundterm ersetzt wird.

Beispiele: h(c,c,f(c)) und h(f(f(c,c),g(d)),d,f(g(g(c)))) sind
Grundinstanzen des Terms h(X,Y,f(Z)).

Bemerkung
Grundterme sind wichtig, weil sie in dem Modell, das dem Logikprogramm zu Grunde
liegt, eine unmittelbare Bedeutung haben. Variablen hingegen haben keine direkte
Bedeutung, sondern sind nur Platzhalter für Objekte.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 380

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Fakten der Logik-Programmierung

Definition 5.9
Ein Faktum der Logik-Programmierung ist ein Atom oder ein zusammengesetzter
Term der Logik-Programmierung.

Fakten beschreiben Tatsachen bzw. Relationen zwischen Objekten.

Beispiele: Das Faktum party beschreibt, dass eine Party stattfindet.

Das Faktum unat(s(s(null))) beschreibt, dass der Term s(s(null)) die
Unärdarstellung einer natürlichen Zahl ist.
Das Faktum mutter(lominka,totilas) beschreibt, dass Lominka die Mutter von
Totilas ist.

Fakten dürfen auch Variablen enthalten. Eine Variable in einem Faktum bedeutet, dass
die entsprechende Aussage für alle Objekte, durch die die Variable ersetzt werden
kann, gilt.
Beispiel: plus(null,Y,Y)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 381

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Fakten der Logik-Programmierung

Definition 5.9
Ein Faktum der Logik-Programmierung ist ein Atom oder ein zusammengesetzter
Term der Logik-Programmierung.

Fakten beschreiben Tatsachen bzw. Relationen zwischen Objekten.

Beispiele: Das Faktum party beschreibt, dass eine Party stattfindet.
Das Faktum unat(s(s(null))) beschreibt, dass der Term s(s(null)) die
Unärdarstellung einer natürlichen Zahl ist.

Das Faktum mutter(lominka,totilas) beschreibt, dass Lominka die Mutter von
Totilas ist.

Fakten dürfen auch Variablen enthalten. Eine Variable in einem Faktum bedeutet, dass
die entsprechende Aussage für alle Objekte, durch die die Variable ersetzt werden
kann, gilt.
Beispiel: plus(null,Y,Y)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 381

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Fakten der Logik-Programmierung

Definition 5.9
Ein Faktum der Logik-Programmierung ist ein Atom oder ein zusammengesetzter
Term der Logik-Programmierung.

Fakten beschreiben Tatsachen bzw. Relationen zwischen Objekten.

Beispiele: Das Faktum party beschreibt, dass eine Party stattfindet.
Das Faktum unat(s(s(null))) beschreibt, dass der Term s(s(null)) die
Unärdarstellung einer natürlichen Zahl ist.
Das Faktum mutter(lominka,totilas) beschreibt, dass Lominka die Mutter von
Totilas ist.

Fakten dürfen auch Variablen enthalten. Eine Variable in einem Faktum bedeutet, dass
die entsprechende Aussage für alle Objekte, durch die die Variable ersetzt werden
kann, gilt.
Beispiel: plus(null,Y,Y)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 381

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Fakten der Logik-Programmierung

Definition 5.9
Ein Faktum der Logik-Programmierung ist ein Atom oder ein zusammengesetzter
Term der Logik-Programmierung.

Fakten beschreiben Tatsachen bzw. Relationen zwischen Objekten.

Beispiele: Das Faktum party beschreibt, dass eine Party stattfindet.
Das Faktum unat(s(s(null))) beschreibt, dass der Term s(s(null)) die
Unärdarstellung einer natürlichen Zahl ist.
Das Faktum mutter(lominka,totilas) beschreibt, dass Lominka die Mutter von
Totilas ist.

Fakten dürfen auch Variablen enthalten. Eine Variable in einem Faktum bedeutet, dass
die entsprechende Aussage für alle Objekte, durch die die Variable ersetzt werden
kann, gilt.
Beispiel: plus(null,Y,Y)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 381

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Regeln

Definition 5.10
Eine Regel der Logik-Programmierung besteht aus

• einem Faktum (dem so genannten Kopf der Regel),

• gefolgt von :-

(in der Literatur wird an Stelle von
”
:-“ oft auch

”
←“ geschrieben) und

• einer durch Kommas getrennten Liste von Fakten (dem so genannten Rumpf der
Regel).

Wir interpretieren die Regel als Implikation:

Wenn alle Fakten im Rumpf gelten, dann gilt auch das Faktum im Kopf.

Beispiele:

minus(X,Y,Z) :- plus(Y,Z,X)

grossmutter(X,Z) :- mutter(X,Y), elternteil(Y,Z)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 382

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Regeln

Definition 5.10
Eine Regel der Logik-Programmierung besteht aus

• einem Faktum (dem so genannten Kopf der Regel),

• gefolgt von :-

(in der Literatur wird an Stelle von
”
:-“ oft auch

”
←“ geschrieben) und

• einer durch Kommas getrennten Liste von Fakten (dem so genannten Rumpf der
Regel).

Wir interpretieren die Regel als Implikation:

Wenn alle Fakten im Rumpf gelten, dann gilt auch das Faktum im Kopf.

Beispiele:

minus(X,Y,Z) :- plus(Y,Z,X)

grossmutter(X,Z) :- mutter(X,Y), elternteil(Y,Z)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 382

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Regeln

Definition 5.10
Eine Regel der Logik-Programmierung besteht aus

• einem Faktum (dem so genannten Kopf der Regel),

• gefolgt von :-

(in der Literatur wird an Stelle von
”
:-“ oft auch

”
←“ geschrieben) und

• einer durch Kommas getrennten Liste von Fakten (dem so genannten Rumpf der
Regel).

Wir interpretieren die Regel als Implikation:

Wenn alle Fakten im Rumpf gelten, dann gilt auch das Faktum im Kopf.

Beispiele:

minus(X,Y,Z) :- plus(Y,Z,X)

grossmutter(X,Z) :- mutter(X,Y), elternteil(Y,Z)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 382

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Regeln

Definition 5.10
Eine Regel der Logik-Programmierung besteht aus

• einem Faktum (dem so genannten Kopf der Regel),

• gefolgt von :-

(in der Literatur wird an Stelle von
”
:-“ oft auch

”
←“ geschrieben) und

• einer durch Kommas getrennten Liste von Fakten (dem so genannten Rumpf der
Regel).

Wir interpretieren die Regel als Implikation:

Wenn alle Fakten im Rumpf gelten, dann gilt auch das Faktum im Kopf.

Beispiele:

minus(X,Y,Z) :- plus(Y,Z,X)

grossmutter(X,Z) :- mutter(X,Y), elternteil(Y,Z)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 382

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Logikprogramme

Definition 5.11
Ein Logikprogramm ist eine endliche Menge von Fakten und Regeln der
Logik-Programmierung.

Es ist oft bequem, Fakten als spezielle Regeln mit leerem Rumpf aufzufassen. Dann
besteht ein Logikprogramm nur aus Regeln.

In konkreten Beispielen stellen wir Logikprogramme meistens als Liste der in ihnen
enthaltenen Fakten und Regeln dar, wobei das Ende jedes Eintrags dieser Liste durch
einen Punkt markiert wird.

Beispiele: Das Programm unat.pl aus Beispiel 5.1 ist ein Logikprogramm im Sinne
von Definition 5.11. Das Programm pferdeDressurreiten.pl aus Beispiel 5.2 nicht,
da dort Ungleichheitsprädikate der Form X \== Y vorkommen, die gemäß
Definition 5.10 nicht im Rumpf von Regeln vorkommen können, da sie keine Fakten
gemäß Definition 5.9 sind.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 383

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Logikprogramme

Definition 5.11
Ein Logikprogramm ist eine endliche Menge von Fakten und Regeln der
Logik-Programmierung.

Es ist oft bequem, Fakten als spezielle Regeln mit leerem Rumpf aufzufassen. Dann
besteht ein Logikprogramm nur aus Regeln.

In konkreten Beispielen stellen wir Logikprogramme meistens als Liste der in ihnen
enthaltenen Fakten und Regeln dar, wobei das Ende jedes Eintrags dieser Liste durch
einen Punkt markiert wird.

Beispiele: Das Programm unat.pl aus Beispiel 5.1 ist ein Logikprogramm im Sinne
von Definition 5.11. Das Programm pferdeDressurreiten.pl aus Beispiel 5.2 nicht,
da dort Ungleichheitsprädikate der Form X \== Y vorkommen, die gemäß
Definition 5.10 nicht im Rumpf von Regeln vorkommen können, da sie keine Fakten
gemäß Definition 5.9 sind.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 383

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Logikprogramme

Definition 5.11
Ein Logikprogramm ist eine endliche Menge von Fakten und Regeln der
Logik-Programmierung.

Es ist oft bequem, Fakten als spezielle Regeln mit leerem Rumpf aufzufassen. Dann
besteht ein Logikprogramm nur aus Regeln.

In konkreten Beispielen stellen wir Logikprogramme meistens als Liste der in ihnen
enthaltenen Fakten und Regeln dar, wobei das Ende jedes Eintrags dieser Liste durch
einen Punkt markiert wird.

Beispiele: Das Programm unat.pl aus Beispiel 5.1 ist ein Logikprogramm im Sinne
von Definition 5.11. Das Programm pferdeDressurreiten.pl aus Beispiel 5.2 nicht,
da dort Ungleichheitsprädikate der Form X \== Y vorkommen, die gemäß
Definition 5.10 nicht im Rumpf von Regeln vorkommen können, da sie keine Fakten
gemäß Definition 5.9 sind.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 383

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Logikprogramme

Definition 5.11
Ein Logikprogramm ist eine endliche Menge von Fakten und Regeln der
Logik-Programmierung.

Es ist oft bequem, Fakten als spezielle Regeln mit leerem Rumpf aufzufassen. Dann
besteht ein Logikprogramm nur aus Regeln.

In konkreten Beispielen stellen wir Logikprogramme meistens als Liste der in ihnen
enthaltenen Fakten und Regeln dar, wobei das Ende jedes Eintrags dieser Liste durch
einen Punkt markiert wird.

Beispiele: Das Programm unat.pl aus Beispiel 5.1 ist ein Logikprogramm im Sinne
von Definition 5.11. Das Programm pferdeDressurreiten.pl aus Beispiel 5.2 nicht,
da dort Ungleichheitsprädikate der Form X \== Y vorkommen, die gemäß
Definition 5.10 nicht im Rumpf von Regeln vorkommen können, da sie keine Fakten
gemäß Definition 5.9 sind.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 383

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Ableitungen aus Logikprogrammen

Definition 5.12
Eine Ableitung aus einem Logikprogramm Π ist ein Tupel (t1, . . . , tℓ) von
Termen, so dass ℓ ∈ N mit ℓ ⩾ 1 ist und für jedes i ∈ [ℓ] (mindestens) eine der
beiden folgenden Aussagen zutrifft:

• ti ist eine Instanz eines Faktums in Π.

• Es gibt eine Regel
φ :- ψ1, . . . , ψm

in Π, eine Substitution S und Indizes i1, . . . , im ∈ {1, . . . , i−1}, so dass gilt:

ti = φS und tij = ψjS für jedes j ∈ [m].

Eine Ableitung eines Terms t aus Π ist eine Ableitung (t1, . . . , tℓ) aus Π mit
tℓ = t.

Ein Term t ist ableitbar aus Π, wenn es eine Ableitung von t aus Π gibt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 384

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Ableitungen aus Logikprogrammen

Definition 5.12
Eine Ableitung aus einem Logikprogramm Π ist ein Tupel (t1, . . . , tℓ) von
Termen, so dass ℓ ∈ N mit ℓ ⩾ 1 ist und für jedes i ∈ [ℓ] (mindestens) eine der
beiden folgenden Aussagen zutrifft:

• ti ist eine Instanz eines Faktums in Π.

• Es gibt eine Regel
φ :- ψ1, . . . , ψm

in Π, eine Substitution S und Indizes i1, . . . , im ∈ {1, . . . , i−1}, so dass gilt:

ti = φS und tij = ψjS für jedes j ∈ [m].

Eine Ableitung eines Terms t aus Π ist eine Ableitung (t1, . . . , tℓ) aus Π mit
tℓ = t.

Ein Term t ist ableitbar aus Π, wenn es eine Ableitung von t aus Π gibt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 384

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Ableitungen aus Logikprogrammen

Definition 5.12
Eine Ableitung aus einem Logikprogramm Π ist ein Tupel (t1, . . . , tℓ) von
Termen, so dass ℓ ∈ N mit ℓ ⩾ 1 ist und für jedes i ∈ [ℓ] (mindestens) eine der
beiden folgenden Aussagen zutrifft:

• ti ist eine Instanz eines Faktums in Π.

• Es gibt eine Regel
φ :- ψ1, . . . , ψm

in Π, eine Substitution S und Indizes i1, . . . , im ∈ {1, . . . , i−1}, so dass gilt:

ti = φS und tij = ψjS für jedes j ∈ [m].

Eine Ableitung eines Terms t aus Π ist eine Ableitung (t1, . . . , tℓ) aus Π mit
tℓ = t.

Ein Term t ist ableitbar aus Π, wenn es eine Ableitung von t aus Π gibt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 384

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Die im Kapitel über Automatisches Schließen eingeführte Kalkül-Schreibweise
lässt sich dazu nutzen, eine elegante Darstellung des Begriffs der Ableitungen
aus Logikprogrammen anzugeben.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 385

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Verwendung der Kalkül-Schreibweise für Ableitungen in
Logikprogrammen

Sei Π ein Logikprogramm.

Gesucht: Ein Kalkül KΠ über der Menge TLP, so dass ablKΠ
genau die Menge

aller aus Π ableitbaren Terme ist.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 386

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Darstellung von Ableitungen

• An Stelle von (t1, . . . , tℓ)
schreiben wir Ableitungen der besseren Lesbarkeit halber oft zeilenweise, also

(1) t1
(2) t2
...

(ℓ) tℓ

und geben am Ende jeder Zeile eine kurze Begründung an.

• Ableitungen werden oft auch als Bäume dargestellt; man bezeichnet diese
als Beweisbäume.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 387

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Darstellung von Ableitungen

• An Stelle von (t1, . . . , tℓ)
schreiben wir Ableitungen der besseren Lesbarkeit halber oft zeilenweise, also

(1) t1
(2) t2
...

(ℓ) tℓ

und geben am Ende jeder Zeile eine kurze Begründung an.

• Ableitungen werden oft auch als Bäume dargestellt; man bezeichnet diese
als Beweisbäume.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 387

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beispiel

Betrachte das Programm pferdeDressurreiten1.pl

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 388

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beispiel 5.13
Ableitung von onkel(sirWeihbach,marigold) aus dem Programm
pferdeDressurreiten1.pl:

(1) mutter(weihegold,totalHope) Faktum in Zeile 1

(2) elternteil(weihegold,totalHope) Regel in Zeile 17 und (1)

(3) mutter(weihegold,sirWeihbach) Faktum in Zeile 1

(4) elternteil(weihegold,sirWeihbach) Regel in Zeile 17 und (3)

(5) ungleich(sirWeihbach,totalHope) Regel in Zeile 23

(6) maennlich(sirWeihbach) Faktum in Zeile 14

(7) bruder(sirWeihbach,totalHope) Regel in Z. 20 u. (4),(2),(6),(5)

(8) vater(totalHope,marigold) Faktum in Zeile 6

(9) elternteil(totalHope,marigold) Regel in Zeile 17 und (8)

(10) onkel(sirWeihbach,marigold) Regel in Zeile 22 und (9),(7)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 389

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beispiel 5.13
Ableitung von onkel(sirWeihbach,marigold) aus dem Programm
pferdeDressurreiten1.pl:

(1) mutter(weihegold,totalHope) Faktum in Zeile 1

(2) elternteil(weihegold,totalHope) Regel in Zeile 17 und (1)

(3) mutter(weihegold,sirWeihbach) Faktum in Zeile 1

(4) elternteil(weihegold,sirWeihbach) Regel in Zeile 17 und (3)

(5) ungleich(sirWeihbach,totalHope) Regel in Zeile 23

(6) maennlich(sirWeihbach) Faktum in Zeile 14

(7) bruder(sirWeihbach,totalHope) Regel in Z. 20 u. (4),(2),(6),(5)

(8) vater(totalHope,marigold) Faktum in Zeile 6

(9) elternteil(totalHope,marigold) Regel in Zeile 17 und (8)

(10) onkel(sirWeihbach,marigold) Regel in Zeile 22 und (9),(7)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 389

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beispiel 5.13
Ableitung von onkel(sirWeihbach,marigold) aus dem Programm
pferdeDressurreiten1.pl:

(1) mutter(weihegold,totalHope) Faktum in Zeile 1

(2) elternteil(weihegold,totalHope) Regel in Zeile 17 und (1)

(3) mutter(weihegold,sirWeihbach) Faktum in Zeile 1

(4) elternteil(weihegold,sirWeihbach) Regel in Zeile 17 und (3)

(5) ungleich(sirWeihbach,totalHope) Regel in Zeile 23

(6) maennlich(sirWeihbach) Faktum in Zeile 14

(7) bruder(sirWeihbach,totalHope) Regel in Z. 20 u. (4),(2),(6),(5)

(8) vater(totalHope,marigold) Faktum in Zeile 6

(9) elternteil(totalHope,marigold) Regel in Zeile 17 und (8)

(10) onkel(sirWeihbach,marigold) Regel in Zeile 22 und (9),(7)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 389

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beispiel 5.13
Ableitung von onkel(sirWeihbach,marigold) aus dem Programm
pferdeDressurreiten1.pl:

(1) mutter(weihegold,totalHope) Faktum in Zeile 1

(2) elternteil(weihegold,totalHope) Regel in Zeile 17 und (1)

(3) mutter(weihegold,sirWeihbach) Faktum in Zeile 1

(4) elternteil(weihegold,sirWeihbach) Regel in Zeile 17 und (3)

(5) ungleich(sirWeihbach,totalHope) Regel in Zeile 23

(6) maennlich(sirWeihbach) Faktum in Zeile 14

(7) bruder(sirWeihbach,totalHope) Regel in Z. 20 u. (4),(2),(6),(5)

(8) vater(totalHope,marigold) Faktum in Zeile 6

(9) elternteil(totalHope,marigold) Regel in Zeile 17 und (8)

(10) onkel(sirWeihbach,marigold) Regel in Zeile 22 und (9),(7)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 389

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beispiel 5.13
Ableitung von onkel(sirWeihbach,marigold) aus dem Programm
pferdeDressurreiten1.pl:

(1) mutter(weihegold,totalHope) Faktum in Zeile 1

(2) elternteil(weihegold,totalHope) Regel in Zeile 17 und (1)

(3) mutter(weihegold,sirWeihbach) Faktum in Zeile 1

(4) elternteil(weihegold,sirWeihbach) Regel in Zeile 17 und (3)

(5) ungleich(sirWeihbach,totalHope) Regel in Zeile 23

(6) maennlich(sirWeihbach) Faktum in Zeile 14

(7) bruder(sirWeihbach,totalHope) Regel in Z. 20 u. (4),(2),(6),(5)

(8) vater(totalHope,marigold) Faktum in Zeile 6

(9) elternteil(totalHope,marigold) Regel in Zeile 17 und (8)

(10) onkel(sirWeihbach,marigold) Regel in Zeile 22 und (9),(7)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 389

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beispiel 5.13
Ableitung von onkel(sirWeihbach,marigold) aus dem Programm
pferdeDressurreiten1.pl:

(1) mutter(weihegold,totalHope) Faktum in Zeile 1

(2) elternteil(weihegold,totalHope) Regel in Zeile 17 und (1)

(3) mutter(weihegold,sirWeihbach) Faktum in Zeile 1

(4) elternteil(weihegold,sirWeihbach) Regel in Zeile 17 und (3)

(5) ungleich(sirWeihbach,totalHope) Regel in Zeile 23

(6) maennlich(sirWeihbach) Faktum in Zeile 14

(7) bruder(sirWeihbach,totalHope) Regel in Z. 20 u. (4),(2),(6),(5)

(8) vater(totalHope,marigold) Faktum in Zeile 6

(9) elternteil(totalHope,marigold) Regel in Zeile 17 und (8)

(10) onkel(sirWeihbach,marigold) Regel in Zeile 22 und (9),(7)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 389

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beispiel 5.13
Ableitung von onkel(sirWeihbach,marigold) aus dem Programm
pferdeDressurreiten1.pl:

(1) mutter(weihegold,totalHope) Faktum in Zeile 1

(2) elternteil(weihegold,totalHope) Regel in Zeile 17 und (1)

(3) mutter(weihegold,sirWeihbach) Faktum in Zeile 1

(4) elternteil(weihegold,sirWeihbach) Regel in Zeile 17 und (3)

(5) ungleich(sirWeihbach,totalHope) Regel in Zeile 23

(6) maennlich(sirWeihbach) Faktum in Zeile 14

(7) bruder(sirWeihbach,totalHope) Regel in Z. 20 u. (4),(2),(6),(5)

(8) vater(totalHope,marigold) Faktum in Zeile 6

(9) elternteil(totalHope,marigold) Regel in Zeile 17 und (8)

(10) onkel(sirWeihbach,marigold) Regel in Zeile 22 und (9),(7)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 389

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beispiel 5.13
Ableitung von onkel(sirWeihbach,marigold) aus dem Programm
pferdeDressurreiten1.pl:

(1) mutter(weihegold,totalHope) Faktum in Zeile 1

(2) elternteil(weihegold,totalHope) Regel in Zeile 17 und (1)

(3) mutter(weihegold,sirWeihbach) Faktum in Zeile 1

(4) elternteil(weihegold,sirWeihbach) Regel in Zeile 17 und (3)

(5) ungleich(sirWeihbach,totalHope) Regel in Zeile 23

(6) maennlich(sirWeihbach) Faktum in Zeile 14

(7) bruder(sirWeihbach,totalHope) Regel in Z. 20 u. (4),(2),(6),(5)

(8) vater(totalHope,marigold) Faktum in Zeile 6

(9) elternteil(totalHope,marigold) Regel in Zeile 17 und (8)

(10) onkel(sirWeihbach,marigold) Regel in Zeile 22 und (9),(7)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 389

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beispiel 5.13
Ableitung von onkel(sirWeihbach,marigold) aus dem Programm
pferdeDressurreiten1.pl:

(1) mutter(weihegold,totalHope) Faktum in Zeile 1

(2) elternteil(weihegold,totalHope) Regel in Zeile 17 und (1)

(3) mutter(weihegold,sirWeihbach) Faktum in Zeile 1

(4) elternteil(weihegold,sirWeihbach) Regel in Zeile 17 und (3)

(5) ungleich(sirWeihbach,totalHope) Regel in Zeile 23

(6) maennlich(sirWeihbach) Faktum in Zeile 14

(7) bruder(sirWeihbach,totalHope) Regel in Z. 20 u. (4),(2),(6),(5)

(8) vater(totalHope,marigold) Faktum in Zeile 6

(9) elternteil(totalHope,marigold) Regel in Zeile 17 und (8)

(10) onkel(sirWeihbach,marigold) Regel in Zeile 22 und (9),(7)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 389

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beispiel 5.13
Ableitung von onkel(sirWeihbach,marigold) aus dem Programm
pferdeDressurreiten1.pl:

(1) mutter(weihegold,totalHope) Faktum in Zeile 1

(2) elternteil(weihegold,totalHope) Regel in Zeile 17 und (1)

(3) mutter(weihegold,sirWeihbach) Faktum in Zeile 1

(4) elternteil(weihegold,sirWeihbach) Regel in Zeile 17 und (3)

(5) ungleich(sirWeihbach,totalHope) Regel in Zeile 23

(6) maennlich(sirWeihbach) Faktum in Zeile 14

(7) bruder(sirWeihbach,totalHope) Regel in Z. 20 u. (4),(2),(6),(5)

(8) vater(totalHope,marigold) Faktum in Zeile 6

(9) elternteil(totalHope,marigold) Regel in Zeile 17 und (8)

(10) onkel(sirWeihbach,marigold) Regel in Zeile 22 und (9),(7)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 389

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beispiel 5.13
Ableitung von onkel(sirWeihbach,marigold) aus dem Programm
pferdeDressurreiten1.pl:

(1) mutter(weihegold,totalHope) Faktum in Zeile 1

(2) elternteil(weihegold,totalHope) Regel in Zeile 17 und (1)

(3) mutter(weihegold,sirWeihbach) Faktum in Zeile 1

(4) elternteil(weihegold,sirWeihbach) Regel in Zeile 17 und (3)

(5) ungleich(sirWeihbach,totalHope) Regel in Zeile 23

(6) maennlich(sirWeihbach) Faktum in Zeile 14

(7) bruder(sirWeihbach,totalHope) Regel in Z. 20 u. (4),(2),(6),(5)

(8) vater(totalHope,marigold) Faktum in Zeile 6

(9) elternteil(totalHope,marigold) Regel in Zeile 17 und (8)

(10) onkel(sirWeihbach,marigold) Regel in Zeile 22 und (9),(7)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 389

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beweisbäume

Definition 5.14
Sei Π ein Logikprogramm und sei t ein Term.
Ein Beweisbaum für t aus Π ist ein endlicher Baum, dessen Knoten mit Termen
beschriftet sind, so dass gilt:

• die Wurzel ist mit dem
”
Ziel“ t beschriftet,

• jedes Blatt ist mit einer Instanz eines Faktums in Π beschriftet, und

• für jeden inneren Knoten u und dessen Kinder v1, . . . , vm gilt:
Es gibt eine Regel

φ :- ψ1, . . . , ψm

in Π und eine Substitution S , so dass für die Beschriftung tu von u und die
Beschriftungen tv1 , . . . , tvm der Knoten v1, . . . , vm gilt:

tu = φS , tv1 = ψ1S , tv2 = ψ2S , . . . , tvm = ψmS .

Man sieht leicht, dass es genau dann einen Beweisbaum für t aus Π gibt, wenn
t aus Π ableitbar ist (Details: Übung).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 390

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beweisbäume

Definition 5.14
Sei Π ein Logikprogramm und sei t ein Term.
Ein Beweisbaum für t aus Π ist ein endlicher Baum, dessen Knoten mit Termen
beschriftet sind, so dass gilt:

• die Wurzel ist mit dem
”
Ziel“ t beschriftet,

• jedes Blatt ist mit einer Instanz eines Faktums in Π beschriftet,

und

• für jeden inneren Knoten u und dessen Kinder v1, . . . , vm gilt:
Es gibt eine Regel

φ :- ψ1, . . . , ψm

in Π und eine Substitution S , so dass für die Beschriftung tu von u und die
Beschriftungen tv1 , . . . , tvm der Knoten v1, . . . , vm gilt:

tu = φS , tv1 = ψ1S , tv2 = ψ2S , . . . , tvm = ψmS .

Man sieht leicht, dass es genau dann einen Beweisbaum für t aus Π gibt, wenn
t aus Π ableitbar ist (Details: Übung).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 390

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beweisbäume

Definition 5.14
Sei Π ein Logikprogramm und sei t ein Term.
Ein Beweisbaum für t aus Π ist ein endlicher Baum, dessen Knoten mit Termen
beschriftet sind, so dass gilt:

• die Wurzel ist mit dem
”
Ziel“ t beschriftet,

• jedes Blatt ist mit einer Instanz eines Faktums in Π beschriftet, und

• für jeden inneren Knoten u und dessen Kinder v1, . . . , vm gilt:
Es gibt eine Regel

φ :- ψ1, . . . , ψm

in Π und eine Substitution S , so dass für die Beschriftung tu von u und die
Beschriftungen tv1 , . . . , tvm der Knoten v1, . . . , vm gilt:

tu = φS , tv1 = ψ1S , tv2 = ψ2S , . . . , tvm = ψmS .

Man sieht leicht, dass es genau dann einen Beweisbaum für t aus Π gibt, wenn
t aus Π ableitbar ist (Details: Übung).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 390

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beweisbäume

Definition 5.14
Sei Π ein Logikprogramm und sei t ein Term.
Ein Beweisbaum für t aus Π ist ein endlicher Baum, dessen Knoten mit Termen
beschriftet sind, so dass gilt:

• die Wurzel ist mit dem
”
Ziel“ t beschriftet,

• jedes Blatt ist mit einer Instanz eines Faktums in Π beschriftet, und

• für jeden inneren Knoten u und dessen Kinder v1, . . . , vm gilt:
Es gibt eine Regel

φ :- ψ1, . . . , ψm

in Π und eine Substitution S , so dass für die Beschriftung tu von u und die
Beschriftungen tv1 , . . . , tvm der Knoten v1, . . . , vm gilt:

tu = φS , tv1 = ψ1S , tv2 = ψ2S , . . . , tvm = ψmS .

Man sieht leicht, dass es genau dann einen Beweisbaum für t aus Π gibt, wenn
t aus Π ableitbar ist (Details: Übung).
Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 390

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Deklarative Semantik von Logikprogrammen

Definition 5.15
Sei Π ein Logikprogramm.

Die Bedeutung von Π ist die Menge B(Π) aller Grundterme, die aus Π ableitbar
sind.

Beispiel 5.16
Sei Π das folgende Logikprogramm unat1.pl.

Programm: unat1.pl

unat(null).

unat(s(X)) :- unat(X).

less(null, s(X)) :- unat(X).

less(s(X), s(Y)) :- less(X, Y).

Die Bedeutung von Π ist die Menge B(Π), und diese enthält u.a. die Terme

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 391

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beispiel: Wege in Digraphen (d.h., gerichteten Graphen)

Wir repräsentieren einen gerichteten Graphen G durch die Auflistung node(v)

für alle Knoten v von G und edge(v,w) für alle Kanten (v,w) von G .

Ziel: path(X,Y) soll besagen, dass es in G einen Weg von Knoten X zu Knoten
Y gibt.

Lösung:

path(X,X).

path(X,Y) :- edge(X,Z), path(Z,Y).

Im folgenden Programm digraph.pl ist dies zusammen mit einem
Beispiel-Graphen gegeben.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 392

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beispiel: Wege in Digraphen (d.h., gerichteten Graphen)

Wir repräsentieren einen gerichteten Graphen G durch die Auflistung node(v)

für alle Knoten v von G und edge(v,w) für alle Kanten (v,w) von G .

Ziel: path(X,Y) soll besagen, dass es in G einen Weg von Knoten X zu Knoten
Y gibt.

Lösung:

path(X,X).

path(X,Y) :- edge(X,Z), path(Z,Y).

Im folgenden Programm digraph.pl ist dies zusammen mit einem
Beispiel-Graphen gegeben.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 392

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beispiel: Wege in Digraphen (d.h., gerichteten Graphen)

Wir repräsentieren einen gerichteten Graphen G durch die Auflistung node(v)

für alle Knoten v von G und edge(v,w) für alle Kanten (v,w) von G .

Ziel: path(X,Y) soll besagen, dass es in G einen Weg von Knoten X zu Knoten
Y gibt.

Lösung:

path(X,X).

path(X,Y) :- edge(X,Z), path(Z,Y).

Im folgenden Programm digraph.pl ist dies zusammen mit einem
Beispiel-Graphen gegeben.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 392

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Der in digraph.pl angegebene Graph sieht wie folgt aus:

Ein Beweisbaum für path(a,g) aus digraph.pl:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 393

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Der in digraph.pl angegebene Graph sieht wie folgt aus:

Ein Beweisbaum für path(a,g) aus digraph.pl:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 393

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Ein Beweisbaum für path(h,a) aus digraph.pl:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 394

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Ein Beweisbaum für path(h,a) aus digraph.pl:

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 394

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Und was tut Prolog bei Eingabe von

?- consult(digraph).

?- path(a,g).

und bei Eingabe von

?- path(h,a).

?

Auf die Frage, ob path(a,g) gilt, antwortet Prolog mit
”
true“.

Auf die Frage, ob path(h,a) gilt, antwortet Prolog mit
”
ERROR: Out of

local stack“.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 395

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Und was tut Prolog bei Eingabe von

?- consult(digraph).

?- path(a,g).

und bei Eingabe von

?- path(h,a).

?

Auf die Frage, ob path(a,g) gilt, antwortet Prolog mit
”
true“.

Auf die Frage, ob path(h,a) gilt, antwortet Prolog mit
”
ERROR: Out of

local stack“.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 395

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Und was tut Prolog bei Eingabe von

?- consult(digraph).

?- path(a,g).

und bei Eingabe von

?- path(h,a).

?

Auf die Frage, ob path(a,g) gilt, antwortet Prolog mit
”
true“.

Auf die Frage, ob path(h,a) gilt, antwortet Prolog mit
”
ERROR: Out of

local stack“.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 395

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Was passiert hier?

Die Details zur Berechnung, die Prolog hier durchführt, können wir mit uns mit
?- trace.

?- path(h,a).

anschauen.

Dies zeigt, dass die Prolog-Suche nach einem Beweisbaum im Kreis

stecken bleibt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 396

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Was passiert hier?

Die Details zur Berechnung, die Prolog hier durchführt, können wir mit uns mit
?- trace.

?- path(h,a).

anschauen.

Dies zeigt, dass die Prolog-Suche nach einem Beweisbaum im Kreis

stecken bleibt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 396

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Unterschied zwischen Theorie und Praxis

In der Theorie funktioniert die Pfadsuche aus digraph.pl für alle endlichen
gerichteten Graphen.

In der Praxis funktioniert sie aber nur für azyklische Graphen.

Die operationelle Semantik von Prolog entspricht also nicht genau der
deklarativen Semantik von Logikprogrammen!

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 397

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Anfragen an Logikprogramme

Definition 5.17
Eine Anfrage der Logik-Progammierung besteht aus den Symbolen ?- gefolgt
von einem Faktum oder aus einer durch Kommas getrennten Liste von Fakten
der Logik-Programmierung.

Die Antwort auf eine Anfrage α der Form

?- α1, . . . , αn

an ein Logikprogramm Π ist definiert als die Menge JαKΠ aller Substitutionen S
für die in α vorkommenden Variablen, so dass gilt:
α1S , . . . , αnS sind Grundterme, die aus Π ableitbar sind.

Hier repräsentiert die leere Menge ∅ die Antwort
”
falsch“.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 398

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Anfragen an Logikprogramme

Definition 5.17
Eine Anfrage der Logik-Progammierung besteht aus den Symbolen ?- gefolgt
von einem Faktum oder aus einer durch Kommas getrennten Liste von Fakten
der Logik-Programmierung.

Die Antwort auf eine Anfrage α der Form

?- α1, . . . , αn

an ein Logikprogramm Π ist definiert als die Menge JαKΠ aller Substitutionen S
für die in α vorkommenden Variablen, so dass gilt:
α1S , . . . , αnS sind Grundterme, die aus Π ableitbar sind.

Hier repräsentiert die leere Menge ∅ die Antwort
”
falsch“.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 398

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Anfragen an Logikprogramme

Definition 5.17
Eine Anfrage der Logik-Progammierung besteht aus den Symbolen ?- gefolgt
von einem Faktum oder aus einer durch Kommas getrennten Liste von Fakten
der Logik-Programmierung.

Die Antwort auf eine Anfrage α der Form

?- α1, . . . , αn

an ein Logikprogramm Π ist definiert als die Menge JαKΠ aller Substitutionen S
für die in α vorkommenden Variablen, so dass gilt:
α1S , . . . , αnS sind Grundterme, die aus Π ableitbar sind.

Hier repräsentiert die leere Menge ∅ die Antwort
”
falsch“.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 398

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beachte: Eine Variable X in einer Anfrage fragt also nach einem bzw. allen
Objekten, die die Anfrage erfüllen.

Beispiel 5.18
Betrachte die Anfrage

?- vorfahr(gribaldi,X), vorfahr(weihegold,X)

angewendet auf das Logikprogramm pferdeDressurreiten1.pl.

D.h. wir wollen als Antwort alle Pferde X erhalten, die sowohl Gribaldi als auch
Weihegold als Vorfahren haben. Eine genaue Inspektion zeigt, dass dies genau
die Pferde Total Hope und Marigold sind. Die Antwort auf diese Anfrage
besteht also aus den beiden Substitutionen

S1 := { X 7→ totalHope },
S2 := { X 7→ marigold }.

Beispiele von Anfragen an das Logikprogramm unat.pl:

?- plus(s(null),s(s(null)),X).

?- plus(X,Y,s(s(s(null)))).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 399

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beachte: Eine Variable X in einer Anfrage fragt also nach einem bzw. allen
Objekten, die die Anfrage erfüllen.

Beispiel 5.18
Betrachte die Anfrage

?- vorfahr(gribaldi,X), vorfahr(weihegold,X)

angewendet auf das Logikprogramm pferdeDressurreiten1.pl.

D.h. wir wollen als Antwort alle Pferde X erhalten, die sowohl Gribaldi als auch
Weihegold als Vorfahren haben. Eine genaue Inspektion zeigt, dass dies genau
die Pferde Total Hope und Marigold sind. Die Antwort auf diese Anfrage
besteht also aus

den beiden Substitutionen

S1 := { X 7→ totalHope },
S2 := { X 7→ marigold }.

Beispiele von Anfragen an das Logikprogramm unat.pl:

?- plus(s(null),s(s(null)),X).

?- plus(X,Y,s(s(s(null)))).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 399

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beachte: Eine Variable X in einer Anfrage fragt also nach einem bzw. allen
Objekten, die die Anfrage erfüllen.

Beispiel 5.18
Betrachte die Anfrage

?- vorfahr(gribaldi,X), vorfahr(weihegold,X)

angewendet auf das Logikprogramm pferdeDressurreiten1.pl.

D.h. wir wollen als Antwort alle Pferde X erhalten, die sowohl Gribaldi als auch
Weihegold als Vorfahren haben. Eine genaue Inspektion zeigt, dass dies genau
die Pferde Total Hope und Marigold sind. Die Antwort auf diese Anfrage
besteht also aus den beiden Substitutionen

S1 := { X 7→ totalHope },
S2 := { X 7→ marigold }.

Beispiele von Anfragen an das Logikprogramm unat.pl:

?- plus(s(null),s(s(null)),X).

?- plus(X,Y,s(s(s(null)))).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 399

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beachte: Eine Variable X in einer Anfrage fragt also nach einem bzw. allen
Objekten, die die Anfrage erfüllen.

Beispiel 5.18
Betrachte die Anfrage

?- vorfahr(gribaldi,X), vorfahr(weihegold,X)

angewendet auf das Logikprogramm pferdeDressurreiten1.pl.

D.h. wir wollen als Antwort alle Pferde X erhalten, die sowohl Gribaldi als auch
Weihegold als Vorfahren haben. Eine genaue Inspektion zeigt, dass dies genau
die Pferde Total Hope und Marigold sind. Die Antwort auf diese Anfrage
besteht also aus den beiden Substitutionen

S1 := { X 7→ totalHope },
S2 := { X 7→ marigold }.

Beispiele von Anfragen an das Logikprogramm unat.pl:

?- plus(s(null),s(s(null)),X).

?- plus(X,Y,s(s(s(null)))).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 399

Kapitel 5: Logik-Programmierung · Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beachte: Eine Variable X in einer Anfrage fragt also nach einem bzw. allen
Objekten, die die Anfrage erfüllen.

Beispiel 5.18
Betrachte die Anfrage

?- vorfahr(gribaldi,X), vorfahr(weihegold,X)

angewendet auf das Logikprogramm pferdeDressurreiten1.pl.

D.h. wir wollen als Antwort alle Pferde X erhalten, die sowohl Gribaldi als auch
Weihegold als Vorfahren haben. Eine genaue Inspektion zeigt, dass dies genau
die Pferde Total Hope und Marigold sind. Die Antwort auf diese Anfrage
besteht also aus den beiden Substitutionen

S1 := { X 7→ totalHope },
S2 := { X 7→ marigold }.

Beispiele von Anfragen an das Logikprogramm unat.pl:

?- plus(s(null),s(s(null)),X).

?- plus(X,Y,s(s(s(null)))).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 399

Abschnitt 5.3:

Operationelle Semantik

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Deklarative vs. Operationelle Semantik

• Die in Definition 5.15 festgelegte deklarative Semantik von
Logikprogrammen beruht auf einer logischen Interpretation von
Programmen (Regeln als Implikationen) und logischer Deduktion.

• Jetzt werden wir dieser deklarativen Semantik eine operationelle Semantik
gegenüberstellen, indem wir einen Algorithmus angeben, der Programme
ausführt (auf einem abstrakten, nichtdeterministischen Maschinenmodell).
Dadurch legen wir ebenfalls die Antworten auf die Anfragen fest und weisen
somit Programmen eine Bedeutung zu.

• Wir werden sehen, dass die deklarative Bedeutung von Logikprogrammen
mit der operationellen übereinstimmt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 400

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Deklarative vs. Operationelle Semantik

• Die in Definition 5.15 festgelegte deklarative Semantik von
Logikprogrammen beruht auf einer logischen Interpretation von
Programmen (Regeln als Implikationen) und logischer Deduktion.

• Jetzt werden wir dieser deklarativen Semantik eine operationelle Semantik
gegenüberstellen, indem wir einen Algorithmus angeben, der Programme
ausführt (auf einem abstrakten, nichtdeterministischen Maschinenmodell).

Dadurch legen wir ebenfalls die Antworten auf die Anfragen fest und weisen
somit Programmen eine Bedeutung zu.

• Wir werden sehen, dass die deklarative Bedeutung von Logikprogrammen
mit der operationellen übereinstimmt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 400

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Deklarative vs. Operationelle Semantik

• Die in Definition 5.15 festgelegte deklarative Semantik von
Logikprogrammen beruht auf einer logischen Interpretation von
Programmen (Regeln als Implikationen) und logischer Deduktion.

• Jetzt werden wir dieser deklarativen Semantik eine operationelle Semantik
gegenüberstellen, indem wir einen Algorithmus angeben, der Programme
ausführt (auf einem abstrakten, nichtdeterministischen Maschinenmodell).
Dadurch legen wir ebenfalls die Antworten auf die Anfragen fest und weisen
somit Programmen eine Bedeutung zu.

• Wir werden sehen, dass die deklarative Bedeutung von Logikprogrammen
mit der operationellen übereinstimmt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 400

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Deklarative vs. Operationelle Semantik

• Die in Definition 5.15 festgelegte deklarative Semantik von
Logikprogrammen beruht auf einer logischen Interpretation von
Programmen (Regeln als Implikationen) und logischer Deduktion.

• Jetzt werden wir dieser deklarativen Semantik eine operationelle Semantik
gegenüberstellen, indem wir einen Algorithmus angeben, der Programme
ausführt (auf einem abstrakten, nichtdeterministischen Maschinenmodell).
Dadurch legen wir ebenfalls die Antworten auf die Anfragen fest und weisen
somit Programmen eine Bedeutung zu.

• Wir werden sehen, dass die deklarative Bedeutung von Logikprogrammen
mit der operationellen übereinstimmt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 400

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Semantik von Programmiersprachen im Allgemeinen

Generell unterscheidet man zwischen zwei Wegen, die Semantik von
Programmiersprachen zu definieren:

• Die deklarative oder denotationelle Semantik ordnet Programmen Objekte
in abstrakten mathematischen Räumen zu, in der Regel partielle
Funktionen, oder im Fall von Logikprogrammen Mengen von Grundtermen.

Zur Erinnerung: Die Bedeutung B(Π) eines Logikprogramms Π ist gemäß
Definition 5.15 die die Menge aller Grundterme, die aus Π ableitbar sind.

• Die operationelle Semantik legt fest, wie Programme auf abstrakten
Maschinenmodellen ausgeführt werden.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 401

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Semantik von Programmiersprachen im Allgemeinen

Generell unterscheidet man zwischen zwei Wegen, die Semantik von
Programmiersprachen zu definieren:

• Die deklarative oder denotationelle Semantik ordnet Programmen Objekte
in abstrakten mathematischen Räumen zu, in der Regel partielle
Funktionen, oder im Fall von Logikprogrammen Mengen von Grundtermen.

Zur Erinnerung: Die Bedeutung B(Π) eines Logikprogramms Π ist gemäß
Definition 5.15 die die Menge aller Grundterme, die aus Π ableitbar sind.

• Die operationelle Semantik legt fest, wie Programme auf abstrakten
Maschinenmodellen ausgeführt werden.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 401

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Notation
• LP := die Menge aller Logikprogramme

• ALP := die Menge aller Atome der Logik-Programmierung

VLP := die Menge aller Variablen der Logik-Programmierung

KLP := die Menge aller Konstanten der Logik-Programmierung

TLP := die Menge aller Terme der Logik-Programmierung

FLP := die Menge aller Anfragen der Logik-Programmierung

RLP := die Menge aller Regeln der Logik-Programmierung

• Für jedes ξ aus TLP ∪ FLP ∪ RLP ∪ LP bezeichnet Var(ξ) die Menge aller
Variablen, die in ξ vorkommen.

Beispiel: Ist ρ die Regel path(X,Y) :- edge(X,Z), path(Z,Y), dann ist
Var(ρ) = {X, Y, Z}.

• Ist S eine Substitution und α ∈ FLP eine Anfrage der Form ?- α1, . . . , αm ist, so
bezeichnet αS die Anfrage ?- α1S , . . . , αmS .

Entsprechend definieren wir für jede Regel ρ ∈ RLP die Regel ρS .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 402

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Notation
• LP := die Menge aller Logikprogramme

• ALP := die Menge aller Atome der Logik-Programmierung

VLP := die Menge aller Variablen der Logik-Programmierung

KLP := die Menge aller Konstanten der Logik-Programmierung

TLP := die Menge aller Terme der Logik-Programmierung

FLP := die Menge aller Anfragen der Logik-Programmierung

RLP := die Menge aller Regeln der Logik-Programmierung

• Für jedes ξ aus TLP ∪ FLP ∪ RLP ∪ LP bezeichnet Var(ξ) die Menge aller
Variablen, die in ξ vorkommen.

Beispiel: Ist ρ die Regel path(X,Y) :- edge(X,Z), path(Z,Y), dann ist
Var(ρ) = {X, Y, Z}.

• Ist S eine Substitution und α ∈ FLP eine Anfrage der Form ?- α1, . . . , αm ist, so
bezeichnet αS die Anfrage ?- α1S , . . . , αmS .

Entsprechend definieren wir für jede Regel ρ ∈ RLP die Regel ρS .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 402

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Notation
• LP := die Menge aller Logikprogramme

• ALP := die Menge aller Atome der Logik-Programmierung

VLP := die Menge aller Variablen der Logik-Programmierung

KLP := die Menge aller Konstanten der Logik-Programmierung

TLP := die Menge aller Terme der Logik-Programmierung

FLP := die Menge aller Anfragen der Logik-Programmierung

RLP := die Menge aller Regeln der Logik-Programmierung

• Für jedes ξ aus TLP ∪ FLP ∪ RLP ∪ LP bezeichnet Var(ξ) die Menge aller
Variablen, die in ξ vorkommen.

Beispiel: Ist ρ die Regel path(X,Y) :- edge(X,Z), path(Z,Y), dann ist
Var(ρ) = {X, Y, Z}.

• Ist S eine Substitution und α ∈ FLP eine Anfrage der Form ?- α1, . . . , αm ist, so
bezeichnet αS die Anfrage ?- α1S , . . . , αmS .

Entsprechend definieren wir für jede Regel ρ ∈ RLP die Regel ρS .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 402

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Notation
• LP := die Menge aller Logikprogramme

• ALP := die Menge aller Atome der Logik-Programmierung

VLP := die Menge aller Variablen der Logik-Programmierung

KLP := die Menge aller Konstanten der Logik-Programmierung

TLP := die Menge aller Terme der Logik-Programmierung

FLP := die Menge aller Anfragen der Logik-Programmierung

RLP := die Menge aller Regeln der Logik-Programmierung

• Für jedes ξ aus TLP ∪ FLP ∪ RLP ∪ LP bezeichnet Var(ξ) die Menge aller
Variablen, die in ξ vorkommen.

Beispiel: Ist ρ die Regel path(X,Y) :- edge(X,Z), path(Z,Y), dann ist
Var(ρ) = {X, Y, Z}.

• Ist S eine Substitution und α ∈ FLP eine Anfrage der Form ?- α1, . . . , αm ist, so
bezeichnet αS die Anfrage ?- α1S , . . . , αmS .

Entsprechend definieren wir für jede Regel ρ ∈ RLP die Regel ρS .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 402

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Notation
• LP := die Menge aller Logikprogramme

• ALP := die Menge aller Atome der Logik-Programmierung

VLP := die Menge aller Variablen der Logik-Programmierung

KLP := die Menge aller Konstanten der Logik-Programmierung

TLP := die Menge aller Terme der Logik-Programmierung

FLP := die Menge aller Anfragen der Logik-Programmierung

RLP := die Menge aller Regeln der Logik-Programmierung

• Für jedes ξ aus TLP ∪ FLP ∪ RLP ∪ LP bezeichnet Var(ξ) die Menge aller
Variablen, die in ξ vorkommen.

Beispiel: Ist ρ die Regel path(X,Y) :- edge(X,Z), path(Z,Y), dann ist
Var(ρ) = {X, Y, Z}.

• Ist S eine Substitution und α ∈ FLP eine Anfrage der Form ?- α1, . . . , αm ist, so
bezeichnet αS die Anfrage ?- α1S , . . . , αmS .

Entsprechend definieren wir für jede Regel ρ ∈ RLP die Regel ρS .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 402

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Notation
• LP := die Menge aller Logikprogramme

• ALP := die Menge aller Atome der Logik-Programmierung

VLP := die Menge aller Variablen der Logik-Programmierung

KLP := die Menge aller Konstanten der Logik-Programmierung

TLP := die Menge aller Terme der Logik-Programmierung

FLP := die Menge aller Anfragen der Logik-Programmierung

RLP := die Menge aller Regeln der Logik-Programmierung

• Für jedes ξ aus TLP ∪ FLP ∪ RLP ∪ LP bezeichnet Var(ξ) die Menge aller
Variablen, die in ξ vorkommen.

Beispiel: Ist ρ die Regel path(X,Y) :- edge(X,Z), path(Z,Y), dann ist
Var(ρ) = {X, Y, Z}.

• Ist S eine Substitution und α ∈ FLP eine Anfrage der Form ?- α1, . . . , αm ist, so
bezeichnet αS die Anfrage ?- α1S , . . . , αmS .

Entsprechend definieren wir für jede Regel ρ ∈ RLP die Regel ρS .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 402

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Notation
• LP := die Menge aller Logikprogramme

• ALP := die Menge aller Atome der Logik-Programmierung

VLP := die Menge aller Variablen der Logik-Programmierung

KLP := die Menge aller Konstanten der Logik-Programmierung

TLP := die Menge aller Terme der Logik-Programmierung

FLP := die Menge aller Anfragen der Logik-Programmierung

RLP := die Menge aller Regeln der Logik-Programmierung

• Für jedes ξ aus TLP ∪ FLP ∪ RLP ∪ LP bezeichnet Var(ξ) die Menge aller
Variablen, die in ξ vorkommen.

Beispiel: Ist ρ die Regel path(X,Y) :- edge(X,Z), path(Z,Y), dann ist
Var(ρ) = {X, Y, Z}.

• Ist S eine Substitution und α ∈ FLP eine Anfrage der Form ?- α1, . . . , αm ist, so
bezeichnet αS die Anfrage ?- α1S , . . . , αmS .

Entsprechend definieren wir für jede Regel ρ ∈ RLP die Regel ρS .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 402

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Notation
• LP := die Menge aller Logikprogramme

• ALP := die Menge aller Atome der Logik-Programmierung

VLP := die Menge aller Variablen der Logik-Programmierung

KLP := die Menge aller Konstanten der Logik-Programmierung

TLP := die Menge aller Terme der Logik-Programmierung

FLP := die Menge aller Anfragen der Logik-Programmierung

RLP := die Menge aller Regeln der Logik-Programmierung

• Für jedes ξ aus TLP ∪ FLP ∪ RLP ∪ LP bezeichnet Var(ξ) die Menge aller
Variablen, die in ξ vorkommen.

Beispiel: Ist ρ die Regel path(X,Y) :- edge(X,Z), path(Z,Y), dann ist
Var(ρ) = {X, Y, Z}.

• Ist S eine Substitution und α ∈ FLP eine Anfrage der Form ?- α1, . . . , αm ist, so
bezeichnet αS die Anfrage ?- α1S , . . . , αmS .

Entsprechend definieren wir für jede Regel ρ ∈ RLP die Regel ρS .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 402

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Notation
• LP := die Menge aller Logikprogramme

• ALP := die Menge aller Atome der Logik-Programmierung

VLP := die Menge aller Variablen der Logik-Programmierung

KLP := die Menge aller Konstanten der Logik-Programmierung

TLP := die Menge aller Terme der Logik-Programmierung

FLP := die Menge aller Anfragen der Logik-Programmierung

RLP := die Menge aller Regeln der Logik-Programmierung

• Für jedes ξ aus TLP ∪ FLP ∪ RLP ∪ LP bezeichnet Var(ξ) die Menge aller
Variablen, die in ξ vorkommen.

Beispiel: Ist ρ die Regel path(X,Y) :- edge(X,Z), path(Z,Y), dann ist
Var(ρ) = {X, Y, Z}.

• Ist S eine Substitution und α ∈ FLP eine Anfrage der Form ?- α1, . . . , αm ist, so
bezeichnet αS die Anfrage ?- α1S , . . . , αmS .

Entsprechend definieren wir für jede Regel ρ ∈ RLP die Regel ρS .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 402

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Notation
• LP := die Menge aller Logikprogramme

• ALP := die Menge aller Atome der Logik-Programmierung

VLP := die Menge aller Variablen der Logik-Programmierung

KLP := die Menge aller Konstanten der Logik-Programmierung

TLP := die Menge aller Terme der Logik-Programmierung

FLP := die Menge aller Anfragen der Logik-Programmierung

RLP := die Menge aller Regeln der Logik-Programmierung

• Für jedes ξ aus TLP ∪ FLP ∪ RLP ∪ LP bezeichnet Var(ξ) die Menge aller
Variablen, die in ξ vorkommen.

Beispiel: Ist ρ die Regel path(X,Y) :- edge(X,Z), path(Z,Y), dann ist
Var(ρ) = {X, Y, Z}.

• Ist S eine Substitution und α ∈ FLP eine Anfrage der Form ?- α1, . . . , αm ist, so
bezeichnet αS die Anfrage ?- α1S , . . . , αmS .

Entsprechend definieren wir für jede Regel ρ ∈ RLP die Regel ρS .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 402

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Notation
• LP := die Menge aller Logikprogramme

• ALP := die Menge aller Atome der Logik-Programmierung

VLP := die Menge aller Variablen der Logik-Programmierung

KLP := die Menge aller Konstanten der Logik-Programmierung

TLP := die Menge aller Terme der Logik-Programmierung

FLP := die Menge aller Anfragen der Logik-Programmierung

RLP := die Menge aller Regeln der Logik-Programmierung

• Für jedes ξ aus TLP ∪ FLP ∪ RLP ∪ LP bezeichnet Var(ξ) die Menge aller
Variablen, die in ξ vorkommen.

Beispiel: Ist ρ die Regel path(X,Y) :- edge(X,Z), path(Z,Y), dann ist
Var(ρ) = {X, Y, Z}.

• Ist S eine Substitution und α ∈ FLP eine Anfrage der Form ?- α1, . . . , αm ist, so
bezeichnet αS die Anfrage ?- α1S , . . . , αmS .

Entsprechend definieren wir für jede Regel ρ ∈ RLP die Regel ρS .
Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 402

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Mehr über Substitutionen

• Zur Erinnerung: Eine Substitution ist eine partielle Abbildung S von VLP

nach TLP. Den Definitionsbereich von S bezeichnen wir mit Def(S), den
Bildbereich mit Bild(S).

• Die Verkettung zweier Substitutionen S und T ist die Substitution ST mit
Def(ST) = Def(S) ∪ Def(T) und X(ST) := (XS)T für alle X ∈ Def(ST).

• Die Einschränkung einer Substitution S auf eine Menge V von Variablen ist
die Substitution S |V mit Def(S |V) = Def(S) ∩ V und XS |V := XS für alle
X ∈ Def(S) ∩ V .

• Die leere Substitution bezeichnen wir mit I . Es gilt:

• tI = t für alle Terme t ∈ TLP, und

• IS = SI = S für alle Substitutionen S .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 403

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Mehr über Substitutionen

• Zur Erinnerung: Eine Substitution ist eine partielle Abbildung S von VLP

nach TLP. Den Definitionsbereich von S bezeichnen wir mit Def(S), den
Bildbereich mit Bild(S).

• Die Verkettung zweier Substitutionen S und T ist die Substitution ST mit
Def(ST) = Def(S) ∪ Def(T) und X(ST) := (XS)T für alle X ∈ Def(ST).

• Die Einschränkung einer Substitution S auf eine Menge V von Variablen ist
die Substitution S |V mit Def(S |V) = Def(S) ∩ V und XS |V := XS für alle
X ∈ Def(S) ∩ V .

• Die leere Substitution bezeichnen wir mit I . Es gilt:

• tI = t für alle Terme t ∈ TLP, und

• IS = SI = S für alle Substitutionen S .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 403

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Mehr über Substitutionen

• Zur Erinnerung: Eine Substitution ist eine partielle Abbildung S von VLP

nach TLP. Den Definitionsbereich von S bezeichnen wir mit Def(S), den
Bildbereich mit Bild(S).

• Die Verkettung zweier Substitutionen S und T ist die Substitution ST mit
Def(ST) = Def(S) ∪ Def(T) und X(ST) := (XS)T für alle X ∈ Def(ST).

• Die Einschränkung einer Substitution S auf eine Menge V von Variablen ist
die Substitution S |V mit Def(S |V) = Def(S) ∩ V und XS |V := XS für alle
X ∈ Def(S) ∩ V .

• Die leere Substitution bezeichnen wir mit I . Es gilt:

• tI = t für alle Terme t ∈ TLP, und

• IS = SI = S für alle Substitutionen S .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 403

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Mehr über Substitutionen

• Zur Erinnerung: Eine Substitution ist eine partielle Abbildung S von VLP

nach TLP. Den Definitionsbereich von S bezeichnen wir mit Def(S), den
Bildbereich mit Bild(S).

• Die Verkettung zweier Substitutionen S und T ist die Substitution ST mit
Def(ST) = Def(S) ∪ Def(T) und X(ST) := (XS)T für alle X ∈ Def(ST).

• Die Einschränkung einer Substitution S auf eine Menge V von Variablen ist
die Substitution S |V mit Def(S |V) = Def(S) ∩ V und XS |V := XS für alle
X ∈ Def(S) ∩ V .

• Die leere Substitution bezeichnen wir mit I . Es gilt:

• tI = t für alle Terme t ∈ TLP

, und

• IS = SI = S für alle Substitutionen S .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 403

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Mehr über Substitutionen

• Zur Erinnerung: Eine Substitution ist eine partielle Abbildung S von VLP

nach TLP. Den Definitionsbereich von S bezeichnen wir mit Def(S), den
Bildbereich mit Bild(S).

• Die Verkettung zweier Substitutionen S und T ist die Substitution ST mit
Def(ST) = Def(S) ∪ Def(T) und X(ST) := (XS)T für alle X ∈ Def(ST).

• Die Einschränkung einer Substitution S auf eine Menge V von Variablen ist
die Substitution S |V mit Def(S |V) = Def(S) ∩ V und XS |V := XS für alle
X ∈ Def(S) ∩ V .

• Die leere Substitution bezeichnen wir mit I . Es gilt:

• tI = t für alle Terme t ∈ TLP, und

• IS = SI = S für alle Substitutionen S .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 403

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Beispiel 5.19
Für die Substitutionen

S := { X 7→ good(c,Y), Y 7→ rainy(d) },
T := { Y 7→ sunny(d), Z 7→ humid(e) }.

gilt:

ST =

{ X 7→ good(c,sunny(d)), Y 7→ rainy(d), Z 7→ humid(e) }
TS = { X 7→ good(c,Y), Y 7→ sunny(d), Z 7→ humid(e) }.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 404

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Beispiel 5.19
Für die Substitutionen

S := { X 7→ good(c,Y), Y 7→ rainy(d) },
T := { Y 7→ sunny(d), Z 7→ humid(e) }.

gilt:

ST = { X 7→ good(c,sunny(d)), Y 7→ rainy(d), Z 7→ humid(e) }

TS = { X 7→ good(c,Y), Y 7→ sunny(d), Z 7→ humid(e) }.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 404

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Beispiel 5.19
Für die Substitutionen

S := { X 7→ good(c,Y), Y 7→ rainy(d) },
T := { Y 7→ sunny(d), Z 7→ humid(e) }.

gilt:

ST = { X 7→ good(c,sunny(d)), Y 7→ rainy(d), Z 7→ humid(e) }
TS =

{ X 7→ good(c,Y), Y 7→ sunny(d), Z 7→ humid(e) }.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 404

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Beispiel 5.19
Für die Substitutionen

S := { X 7→ good(c,Y), Y 7→ rainy(d) },
T := { Y 7→ sunny(d), Z 7→ humid(e) }.

gilt:

ST = { X 7→ good(c,sunny(d)), Y 7→ rainy(d), Z 7→ humid(e) }
TS = { X 7→ good(c,Y), Y 7→ sunny(d), Z 7→ humid(e) }.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 404

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Umbennungen

• Eine Umbenennung ist eine injektive partielle Abbildung von VLP nach VLP.

Wegen VLP ⊆ TLP, sind Umbenennungen spezielle Substitutionen.

• Eine Umbenennung für eine Menge V von Variablen ist eine Umbennung U
mit Def(U) = V .

• Ist U eine Umbennung, so bezeichnet U−1 ihre Umkehrung.

Beispiel: U := {X 7→ Y, Y 7→ Z} ist eine Umbenennung für {X, Y}.
U−1 = {Y 7→ X, Z 7→ Y} ist die Umkehrung von U.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 405

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Umbennungen

• Eine Umbenennung ist eine injektive partielle Abbildung von VLP nach VLP.

Wegen VLP ⊆ TLP, sind Umbenennungen spezielle Substitutionen.

• Eine Umbenennung für eine Menge V von Variablen ist eine Umbennung U
mit Def(U) = V .

• Ist U eine Umbennung, so bezeichnet U−1 ihre Umkehrung.

Beispiel: U := {X 7→ Y, Y 7→ Z} ist eine Umbenennung für {X, Y}.
U−1 = {Y 7→ X, Z 7→ Y} ist die Umkehrung von U.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 405

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Umbennungen

• Eine Umbenennung ist eine injektive partielle Abbildung von VLP nach VLP.

Wegen VLP ⊆ TLP, sind Umbenennungen spezielle Substitutionen.

• Eine Umbenennung für eine Menge V von Variablen ist eine Umbennung U
mit Def(U) = V .

• Ist U eine Umbennung, so bezeichnet U−1 ihre Umkehrung.

Beispiel: U := {X 7→ Y, Y 7→ Z} ist eine Umbenennung für {X, Y}.
U−1 = {Y 7→ X, Z 7→ Y} ist die Umkehrung von U.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 405

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Umbennungen

• Eine Umbenennung ist eine injektive partielle Abbildung von VLP nach VLP.

Wegen VLP ⊆ TLP, sind Umbenennungen spezielle Substitutionen.

• Eine Umbenennung für eine Menge V von Variablen ist eine Umbennung U
mit Def(U) = V .

• Ist U eine Umbennung, so bezeichnet U−1 ihre Umkehrung.

Beispiel: U := {X 7→ Y, Y 7→ Z} ist eine Umbenennung für

{X, Y}.
U−1 = {Y 7→ X, Z 7→ Y} ist die Umkehrung von U.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 405

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Umbennungen

• Eine Umbenennung ist eine injektive partielle Abbildung von VLP nach VLP.

Wegen VLP ⊆ TLP, sind Umbenennungen spezielle Substitutionen.

• Eine Umbenennung für eine Menge V von Variablen ist eine Umbennung U
mit Def(U) = V .

• Ist U eine Umbennung, so bezeichnet U−1 ihre Umkehrung.

Beispiel: U := {X 7→ Y, Y 7→ Z} ist eine Umbenennung für {X, Y}.
U−1 =

{Y 7→ X, Z 7→ Y} ist die Umkehrung von U.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 405

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Umbennungen

• Eine Umbenennung ist eine injektive partielle Abbildung von VLP nach VLP.

Wegen VLP ⊆ TLP, sind Umbenennungen spezielle Substitutionen.

• Eine Umbenennung für eine Menge V von Variablen ist eine Umbennung U
mit Def(U) = V .

• Ist U eine Umbennung, so bezeichnet U−1 ihre Umkehrung.

Beispiel: U := {X 7→ Y, Y 7→ Z} ist eine Umbenennung für {X, Y}.
U−1 = {Y 7→ X, Z 7→ Y} ist die Umkehrung von U.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 405

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Ein einfacher Interpreter für Logikprogramme

Algorithmus Antwort(Π, α)

% Eingabe: Programm Π ∈ LP, Anfrage ?-α ∈ FLP mit α = α1, . . . , αm

% Ausgabe: eine Substitution S für Var(α) oder das Wort
”
gescheitert“.

1. Wähle ein i ∈ [m] % αi ist das nächste ”
Ziel“

2. Wähle eine Regel ρ aus Π. Sei φ :- ψ1, . . . , ψn die Form von ρ.
% Fakten fassen wir als Regeln ohne Rumpf auf

3. Sei U eine Umbennung für Var(ρ), so dass Var(ρU) ∩ Var(α) = ∅.
4. Wähle eine Substitution T , so dass αiT = φUT . Wenn dies nicht möglich

ist, gib
”
gescheitert“ aus und halte an.

5. Wenn m = 1 und n = 0, gib T |Var(α) aus und halte an.

6. Setze α′ := α1T , . . . , αi−1T , ψ1UT , . . . , ψnUT , αi+1T , . . . , αmT .

7. Setze T ′ := Antwort(Π, α′)

8. Wenn T ′ eine Substitution ist, gib (TT ′)|Var(α) aus und halte an.

9. Gib
”
gescheitert“ aus und halte an.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 406

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Ein einfacher Interpreter für Logikprogramme

Algorithmus Antwort(Π, α)

% Eingabe: Programm Π ∈ LP, Anfrage ?-α ∈ FLP mit α = α1, . . . , αm

% Ausgabe: eine Substitution S für Var(α) oder das Wort
”
gescheitert“.

1. Wähle ein i ∈ [m] % αi ist das nächste ”
Ziel“

2. Wähle eine Regel ρ aus Π. Sei φ :- ψ1, . . . , ψn die Form von ρ.
% Fakten fassen wir als Regeln ohne Rumpf auf

3. Sei U eine Umbennung für Var(ρ), so dass Var(ρU) ∩ Var(α) = ∅.
4. Wähle eine Substitution T , so dass αiT = φUT . Wenn dies nicht möglich

ist, gib
”
gescheitert“ aus und halte an.

5. Wenn m = 1 und n = 0, gib T |Var(α) aus und halte an.

6. Setze α′ := α1T , . . . , αi−1T , ψ1UT , . . . , ψnUT , αi+1T , . . . , αmT .

7. Setze T ′ := Antwort(Π, α′)

8. Wenn T ′ eine Substitution ist, gib (TT ′)|Var(α) aus und halte an.

9. Gib
”
gescheitert“ aus und halte an.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 406

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Ein einfacher Interpreter für Logikprogramme

Algorithmus Antwort(Π, α)

% Eingabe: Programm Π ∈ LP, Anfrage ?-α ∈ FLP mit α = α1, . . . , αm

% Ausgabe: eine Substitution S für Var(α) oder das Wort
”
gescheitert“.

1. Wähle ein i ∈ [m] % αi ist das nächste ”
Ziel“

2. Wähle eine Regel ρ aus Π. Sei φ :- ψ1, . . . , ψn die Form von ρ.
% Fakten fassen wir als Regeln ohne Rumpf auf

3. Sei U eine Umbennung für Var(ρ), so dass Var(ρU) ∩ Var(α) = ∅.
4. Wähle eine Substitution T , so dass αiT = φUT . Wenn dies nicht möglich

ist, gib
”
gescheitert“ aus und halte an.

5. Wenn m = 1 und n = 0, gib T |Var(α) aus und halte an.

6. Setze α′ := α1T , . . . , αi−1T , ψ1UT , . . . , ψnUT , αi+1T , . . . , αmT .

7. Setze T ′ := Antwort(Π, α′)

8. Wenn T ′ eine Substitution ist, gib (TT ′)|Var(α) aus und halte an.

9. Gib
”
gescheitert“ aus und halte an.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 406

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Ein einfacher Interpreter für Logikprogramme

Algorithmus Antwort(Π, α)

% Eingabe: Programm Π ∈ LP, Anfrage ?-α ∈ FLP mit α = α1, . . . , αm

% Ausgabe: eine Substitution S für Var(α) oder das Wort
”
gescheitert“.

1. Wähle ein i ∈ [m] % αi ist das nächste ”
Ziel“

2. Wähle eine Regel ρ aus Π. Sei φ :- ψ1, . . . , ψn die Form von ρ.
% Fakten fassen wir als Regeln ohne Rumpf auf

3. Sei U eine Umbennung für Var(ρ), so dass Var(ρU) ∩ Var(α) = ∅.

4. Wähle eine Substitution T , so dass αiT = φUT . Wenn dies nicht möglich
ist, gib

”
gescheitert“ aus und halte an.

5. Wenn m = 1 und n = 0, gib T |Var(α) aus und halte an.

6. Setze α′ := α1T , . . . , αi−1T , ψ1UT , . . . , ψnUT , αi+1T , . . . , αmT .

7. Setze T ′ := Antwort(Π, α′)

8. Wenn T ′ eine Substitution ist, gib (TT ′)|Var(α) aus und halte an.

9. Gib
”
gescheitert“ aus und halte an.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 406

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Ein einfacher Interpreter für Logikprogramme

Algorithmus Antwort(Π, α)

% Eingabe: Programm Π ∈ LP, Anfrage ?-α ∈ FLP mit α = α1, . . . , αm

% Ausgabe: eine Substitution S für Var(α) oder das Wort
”
gescheitert“.

1. Wähle ein i ∈ [m] % αi ist das nächste ”
Ziel“

2. Wähle eine Regel ρ aus Π. Sei φ :- ψ1, . . . , ψn die Form von ρ.
% Fakten fassen wir als Regeln ohne Rumpf auf

3. Sei U eine Umbennung für Var(ρ), so dass Var(ρU) ∩ Var(α) = ∅.
4. Wähle eine Substitution T , so dass αiT = φUT . Wenn dies nicht möglich

ist, gib
”
gescheitert“ aus und halte an.

5. Wenn m = 1 und n = 0, gib T |Var(α) aus und halte an.

6. Setze α′ := α1T , . . . , αi−1T , ψ1UT , . . . , ψnUT , αi+1T , . . . , αmT .

7. Setze T ′ := Antwort(Π, α′)

8. Wenn T ′ eine Substitution ist, gib (TT ′)|Var(α) aus und halte an.

9. Gib
”
gescheitert“ aus und halte an.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 406

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Ein einfacher Interpreter für Logikprogramme

Algorithmus Antwort(Π, α)

% Eingabe: Programm Π ∈ LP, Anfrage ?-α ∈ FLP mit α = α1, . . . , αm

% Ausgabe: eine Substitution S für Var(α) oder das Wort
”
gescheitert“.

1. Wähle ein i ∈ [m] % αi ist das nächste ”
Ziel“

2. Wähle eine Regel ρ aus Π. Sei φ :- ψ1, . . . , ψn die Form von ρ.
% Fakten fassen wir als Regeln ohne Rumpf auf

3. Sei U eine Umbennung für Var(ρ), so dass Var(ρU) ∩ Var(α) = ∅.
4. Wähle eine Substitution T , so dass αiT = φUT . Wenn dies nicht möglich

ist, gib
”
gescheitert“ aus und halte an.

5. Wenn m = 1 und n = 0, gib T |Var(α) aus und halte an.

6. Setze α′ := α1T , . . . , αi−1T , ψ1UT , . . . , ψnUT , αi+1T , . . . , αmT .

7. Setze T ′ := Antwort(Π, α′)

8. Wenn T ′ eine Substitution ist, gib (TT ′)|Var(α) aus und halte an.

9. Gib
”
gescheitert“ aus und halte an.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 406

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Ein einfacher Interpreter für Logikprogramme

Algorithmus Antwort(Π, α)

% Eingabe: Programm Π ∈ LP, Anfrage ?-α ∈ FLP mit α = α1, . . . , αm

% Ausgabe: eine Substitution S für Var(α) oder das Wort
”
gescheitert“.

1. Wähle ein i ∈ [m] % αi ist das nächste ”
Ziel“

2. Wähle eine Regel ρ aus Π. Sei φ :- ψ1, . . . , ψn die Form von ρ.
% Fakten fassen wir als Regeln ohne Rumpf auf

3. Sei U eine Umbennung für Var(ρ), so dass Var(ρU) ∩ Var(α) = ∅.
4. Wähle eine Substitution T , so dass αiT = φUT . Wenn dies nicht möglich

ist, gib
”
gescheitert“ aus und halte an.

5. Wenn m = 1 und n = 0, gib T |Var(α) aus und halte an.

6. Setze α′ := α1T , . . . , αi−1T , ψ1UT , . . . , ψnUT , αi+1T , . . . , αmT .

7. Setze T ′ := Antwort(Π, α′)

8. Wenn T ′ eine Substitution ist, gib (TT ′)|Var(α) aus und halte an.

9. Gib
”
gescheitert“ aus und halte an.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 406

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Ein einfacher Interpreter für Logikprogramme

Algorithmus Antwort(Π, α)

% Eingabe: Programm Π ∈ LP, Anfrage ?-α ∈ FLP mit α = α1, . . . , αm

% Ausgabe: eine Substitution S für Var(α) oder das Wort
”
gescheitert“.

1. Wähle ein i ∈ [m] % αi ist das nächste ”
Ziel“

2. Wähle eine Regel ρ aus Π. Sei φ :- ψ1, . . . , ψn die Form von ρ.
% Fakten fassen wir als Regeln ohne Rumpf auf

3. Sei U eine Umbennung für Var(ρ), so dass Var(ρU) ∩ Var(α) = ∅.
4. Wähle eine Substitution T , so dass αiT = φUT . Wenn dies nicht möglich

ist, gib
”
gescheitert“ aus und halte an.

5. Wenn m = 1 und n = 0, gib T |Var(α) aus und halte an.

6. Setze α′ := α1T , . . . , αi−1T , ψ1UT , . . . , ψnUT , αi+1T , . . . , αmT .

7. Setze T ′ := Antwort(Π, α′)

8. Wenn T ′ eine Substitution ist, gib (TT ′)|Var(α) aus und halte an.

9. Gib
”
gescheitert“ aus und halte an.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 406

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Zum Nichtdeterminismus des Interpreters

• Das Programm Antwort ist nichtdeterministisch. Wir sprechen von
verschiedenen Läufen des Programms, die durch die Auswahlen in den
Zeilen 1–4 bestimmt sind.

• Ein Lauf heißt akzeptierend, wenn die Ausgabe eine Substitution ist.

• Von den nichtdeterministischen Auswahlschritten in den Zeilen 1–4 ist die
Wahl der Substitution in Zeile 4 am problematischsten, weil hier ein
Element einer unendlichen Menge ausgewählt wird, und weil nicht klar ist,
wie man so ein Element überhaupt finden kann.

• Die Wahl der Umbennung in Zeile 3 hingegen ist unwesentlich. Jede
Umbennung U, für die Var(ρU) ∩ Var(α) = ∅ gilt, führt zum gleichen
Ergebnis, und es ist leicht, eine solche Umbennung zu finden.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 407

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Zum Nichtdeterminismus des Interpreters

• Das Programm Antwort ist nichtdeterministisch. Wir sprechen von
verschiedenen Läufen des Programms, die durch die Auswahlen in den
Zeilen 1–4 bestimmt sind.

• Ein Lauf heißt akzeptierend, wenn die Ausgabe eine Substitution ist.

• Von den nichtdeterministischen Auswahlschritten in den Zeilen 1–4 ist die
Wahl der Substitution in Zeile 4 am problematischsten, weil hier ein
Element einer unendlichen Menge ausgewählt wird, und weil nicht klar ist,
wie man so ein Element überhaupt finden kann.

• Die Wahl der Umbennung in Zeile 3 hingegen ist unwesentlich. Jede
Umbennung U, für die Var(ρU) ∩ Var(α) = ∅ gilt, führt zum gleichen
Ergebnis, und es ist leicht, eine solche Umbennung zu finden.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 407

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Zum Nichtdeterminismus des Interpreters

• Das Programm Antwort ist nichtdeterministisch. Wir sprechen von
verschiedenen Läufen des Programms, die durch die Auswahlen in den
Zeilen 1–4 bestimmt sind.

• Ein Lauf heißt akzeptierend, wenn die Ausgabe eine Substitution ist.

• Von den nichtdeterministischen Auswahlschritten in den Zeilen 1–4 ist die
Wahl der Substitution in Zeile 4 am problematischsten, weil hier ein
Element einer unendlichen Menge ausgewählt wird, und weil nicht klar ist,
wie man so ein Element überhaupt finden kann.

• Die Wahl der Umbennung in Zeile 3 hingegen ist unwesentlich. Jede
Umbennung U, für die Var(ρU) ∩ Var(α) = ∅ gilt, führt zum gleichen
Ergebnis, und es ist leicht, eine solche Umbennung zu finden.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 407

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Zum Nichtdeterminismus des Interpreters

• Das Programm Antwort ist nichtdeterministisch. Wir sprechen von
verschiedenen Läufen des Programms, die durch die Auswahlen in den
Zeilen 1–4 bestimmt sind.

• Ein Lauf heißt akzeptierend, wenn die Ausgabe eine Substitution ist.

• Von den nichtdeterministischen Auswahlschritten in den Zeilen 1–4 ist die
Wahl der Substitution in Zeile 4 am problematischsten, weil hier ein
Element einer unendlichen Menge ausgewählt wird, und weil nicht klar ist,
wie man so ein Element überhaupt finden kann.

• Die Wahl der Umbennung in Zeile 3 hingegen ist unwesentlich. Jede
Umbennung U, für die Var(ρU) ∩ Var(α) = ∅ gilt, führt zum gleichen
Ergebnis, und es ist leicht, eine solche Umbennung zu finden.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 407

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Korrektheit und Vollständigkeit des Interpreters

Satz 5.20
Seien Π ∈ LP ein Logikprogramm, sei ?-α ∈ FLP eine Anfrage mit
α = α1, . . . , αm, und sei S eine Substitution für Var(α). Dann sind folgende
Aussagen äquivalent:

(a) Die Terme α1S , . . . , αmS sind aus Π ableitbar.

(b) Es gibt einen Lauf von Antwort(Π, α), der S ausgibt.

Die Richtung
”
(b) =⇒ (a)“ wird Korrektheit des Interpreters genannt; die

Richtung
”
(a) =⇒ (b)“ Vollständigkeit.

Für den Spezialfall, dass m = 1 und α ein Grundterm ist, erhalten wir das
folgende Korollar.

Korollar 5.21
Sei Π ∈ LP ein Programm und sei α ein Grundterm. Dann gilt:
α ∈ B(Π) ⇐⇒ es gibt einen akzeptierenden Lauf von Antwort(Π, α).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 408

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Korrektheit und Vollständigkeit des Interpreters

Satz 5.20
Seien Π ∈ LP ein Logikprogramm, sei ?-α ∈ FLP eine Anfrage mit
α = α1, . . . , αm, und sei S eine Substitution für Var(α). Dann sind folgende
Aussagen äquivalent:

(a) Die Terme α1S , . . . , αmS sind aus Π ableitbar.

(b) Es gibt einen Lauf von Antwort(Π, α), der S ausgibt.

Die Richtung
”
(b) =⇒ (a)“ wird Korrektheit des Interpreters genannt; die

Richtung
”
(a) =⇒ (b)“ Vollständigkeit.

Für den Spezialfall, dass m = 1 und α ein Grundterm ist, erhalten wir das
folgende Korollar.

Korollar 5.21
Sei Π ∈ LP ein Programm und sei α ein Grundterm. Dann gilt:
α ∈ B(Π) ⇐⇒ es gibt einen akzeptierenden Lauf von Antwort(Π, α).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 408

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Korrektheit und Vollständigkeit des Interpreters

Satz 5.20
Seien Π ∈ LP ein Logikprogramm, sei ?-α ∈ FLP eine Anfrage mit
α = α1, . . . , αm, und sei S eine Substitution für Var(α). Dann sind folgende
Aussagen äquivalent:

(a) Die Terme α1S , . . . , αmS sind aus Π ableitbar.

(b) Es gibt einen Lauf von Antwort(Π, α), der S ausgibt.

Die Richtung
”
(b) =⇒ (a)“ wird Korrektheit des Interpreters genannt; die

Richtung
”
(a) =⇒ (b)“ Vollständigkeit.

Für den Spezialfall, dass m = 1 und α ein Grundterm ist, erhalten wir das
folgende Korollar.

Korollar 5.21
Sei Π ∈ LP ein Programm und sei α ein Grundterm. Dann gilt:
α ∈ B(Π) ⇐⇒ es gibt einen akzeptierenden Lauf von Antwort(Π, α).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 408

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Nächstes Ziel:
Auflösen des Nichtdeterminismus in Zeile 4

Als ein Hauptproblem des nichtdeterministischen Interpreters Antwort haben
wir die Wahl der Substitution T in Zeile 4 identifiziert.

Mit Hilfe der im Folgenden vorgestellten Unifikatoren können die richtigen
Substitutionen auf deterministische Art gefunden werden.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 409

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Unifikation

Definition 5.22
Seien t, s ∈ TLP Terme der Logik-Programmierung.

(a) Ein Unifikator für t und s ist eine Substitution S , so dass tS = sS .

(b) t und s sind unifizierbar, wenn es einen Unifikator für t und s gibt.

Beispiel 5.23
t := mal(s(X), Y, s(Z)) und s := mal(s(s(null)), Y, Y) sind unifizierbar.
Ein Unifikator ist

S :=
{
X 7→ s(null), Y 7→ s(Z)

}
.

Die entstehende gemeinsame Instanz ist
tS = mal(s(s(null)), s(Z), s(Z)) = sS .

Ein weiterer Unifikator für t und s ist

S ′ :=
{
X 7→ s(null), Y 7→ s(null), Z 7→ null

}
.

Die entstehende gemeinsame Instanz ist
tS ′ = mal(s(s(null)), s(null), s(null)) = sS ′.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 410

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Unifikation

Definition 5.22
Seien t, s ∈ TLP Terme der Logik-Programmierung.

(a) Ein Unifikator für t und s ist eine Substitution S , so dass tS = sS .

(b) t und s sind unifizierbar, wenn es einen Unifikator für t und s gibt.

Beispiel 5.23
t := mal(s(X), Y, s(Z)) und s := mal(s(s(null)), Y, Y) sind unifizierbar.
Ein Unifikator ist

S :=
{
X 7→ s(null), Y 7→ s(Z)

}
.

Die entstehende gemeinsame Instanz ist
tS = mal(s(s(null)), s(Z), s(Z)) = sS .

Ein weiterer Unifikator für t und s ist

S ′ :=
{
X 7→ s(null), Y 7→ s(null), Z 7→ null

}
.

Die entstehende gemeinsame Instanz ist
tS ′ = mal(s(s(null)), s(null), s(null)) = sS ′.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 410

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Unifikation

Definition 5.22
Seien t, s ∈ TLP Terme der Logik-Programmierung.

(a) Ein Unifikator für t und s ist eine Substitution S , so dass tS = sS .

(b) t und s sind unifizierbar, wenn es einen Unifikator für t und s gibt.

Beispiel 5.23
t := mal(s(X), Y, s(Z)) und s := mal(s(s(null)), Y, Y) sind

unifizierbar.
Ein Unifikator ist

S :=
{
X 7→ s(null), Y 7→ s(Z)

}
.

Die entstehende gemeinsame Instanz ist
tS = mal(s(s(null)), s(Z), s(Z)) = sS .

Ein weiterer Unifikator für t und s ist

S ′ :=
{
X 7→ s(null), Y 7→ s(null), Z 7→ null

}
.

Die entstehende gemeinsame Instanz ist
tS ′ = mal(s(s(null)), s(null), s(null)) = sS ′.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 410

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Unifikation

Definition 5.22
Seien t, s ∈ TLP Terme der Logik-Programmierung.

(a) Ein Unifikator für t und s ist eine Substitution S , so dass tS = sS .

(b) t und s sind unifizierbar, wenn es einen Unifikator für t und s gibt.

Beispiel 5.23
t := mal(s(X), Y, s(Z)) und s := mal(s(s(null)), Y, Y) sind unifizierbar.
Ein Unifikator ist

S :=
{
X 7→ s(null), Y 7→ s(Z)

}
.

Die entstehende gemeinsame Instanz ist
tS = mal(s(s(null)), s(Z), s(Z)) = sS .

Ein weiterer Unifikator für t und s ist

S ′ :=
{
X 7→ s(null), Y 7→ s(null), Z 7→ null

}
.

Die entstehende gemeinsame Instanz ist
tS ′ = mal(s(s(null)), s(null), s(null)) = sS ′.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 410

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Unifikation

Definition 5.22
Seien t, s ∈ TLP Terme der Logik-Programmierung.

(a) Ein Unifikator für t und s ist eine Substitution S , so dass tS = sS .

(b) t und s sind unifizierbar, wenn es einen Unifikator für t und s gibt.

Beispiel 5.23
t := mal(s(X), Y, s(Z)) und s := mal(s(s(null)), Y, Y) sind unifizierbar.
Ein Unifikator ist

S :=
{
X 7→ s(null), Y 7→ s(Z)

}
.

Die entstehende gemeinsame Instanz ist

tS = mal(s(s(null)), s(Z), s(Z)) = sS .

Ein weiterer Unifikator für t und s ist

S ′ :=
{
X 7→ s(null), Y 7→ s(null), Z 7→ null

}
.

Die entstehende gemeinsame Instanz ist
tS ′ = mal(s(s(null)), s(null), s(null)) = sS ′.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 410

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Unifikation

Definition 5.22
Seien t, s ∈ TLP Terme der Logik-Programmierung.

(a) Ein Unifikator für t und s ist eine Substitution S , so dass tS = sS .

(b) t und s sind unifizierbar, wenn es einen Unifikator für t und s gibt.

Beispiel 5.23
t := mal(s(X), Y, s(Z)) und s := mal(s(s(null)), Y, Y) sind unifizierbar.
Ein Unifikator ist

S :=
{
X 7→ s(null), Y 7→ s(Z)

}
.

Die entstehende gemeinsame Instanz ist
tS = mal(s(s(null)), s(Z), s(Z)) = sS .

Ein weiterer Unifikator für t und s ist

S ′ :=
{
X 7→ s(null), Y 7→ s(null), Z 7→ null

}
.

Die entstehende gemeinsame Instanz ist
tS ′ = mal(s(s(null)), s(null), s(null)) = sS ′.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 410

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Unifikation

Definition 5.22
Seien t, s ∈ TLP Terme der Logik-Programmierung.

(a) Ein Unifikator für t und s ist eine Substitution S , so dass tS = sS .

(b) t und s sind unifizierbar, wenn es einen Unifikator für t und s gibt.

Beispiel 5.23
t := mal(s(X), Y, s(Z)) und s := mal(s(s(null)), Y, Y) sind unifizierbar.
Ein Unifikator ist

S :=
{
X 7→ s(null), Y 7→ s(Z)

}
.

Die entstehende gemeinsame Instanz ist
tS = mal(s(s(null)), s(Z), s(Z)) = sS .

Ein weiterer Unifikator für t und s ist

S ′ :=
{
X 7→ s(null), Y 7→ s(null), Z 7→ null

}
.

Die entstehende gemeinsame Instanz ist
tS ′ = mal(s(s(null)), s(null), s(null)) = sS ′.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 410

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Unifikation

Definition 5.22
Seien t, s ∈ TLP Terme der Logik-Programmierung.

(a) Ein Unifikator für t und s ist eine Substitution S , so dass tS = sS .

(b) t und s sind unifizierbar, wenn es einen Unifikator für t und s gibt.

Beispiel 5.23
t := mal(s(X), Y, s(Z)) und s := mal(s(s(null)), Y, Y) sind unifizierbar.
Ein Unifikator ist

S :=
{
X 7→ s(null), Y 7→ s(Z)

}
.

Die entstehende gemeinsame Instanz ist
tS = mal(s(s(null)), s(Z), s(Z)) = sS .

Ein weiterer Unifikator für t und s ist

S ′ :=
{
X 7→ s(null), Y 7→ s(null), Z 7→ null

}
.

Die entstehende gemeinsame Instanz ist

tS ′ = mal(s(s(null)), s(null), s(null)) = sS ′.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 410

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Unifikation

Definition 5.22
Seien t, s ∈ TLP Terme der Logik-Programmierung.

(a) Ein Unifikator für t und s ist eine Substitution S , so dass tS = sS .

(b) t und s sind unifizierbar, wenn es einen Unifikator für t und s gibt.

Beispiel 5.23
t := mal(s(X), Y, s(Z)) und s := mal(s(s(null)), Y, Y) sind unifizierbar.
Ein Unifikator ist

S :=
{
X 7→ s(null), Y 7→ s(Z)

}
.

Die entstehende gemeinsame Instanz ist
tS = mal(s(s(null)), s(Z), s(Z)) = sS .

Ein weiterer Unifikator für t und s ist

S ′ :=
{
X 7→ s(null), Y 7→ s(null), Z 7→ null

}
.

Die entstehende gemeinsame Instanz ist
tS ′ = mal(s(s(null)), s(null), s(null)) = sS ′.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 410

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Eine Ordnung auf den Substitutionen

Definition 5.24
Zwei Substitutionen S und T sind äquivalent (kurz: S ≡ T), wenn für alle Variablen
X ∈ VLP gilt: XS = XT .

Beobachtung:
S und T sind genau dann äquivalent, wenn XS = XT für alle X ∈ Def(S) ∩ Def(T)
und XS = X für alle X ∈ Def(S) \ Def(T) und XT = X für alle X ∈ Def(T) \ Def(S).

Definition 5.25
Seien S und T Substitutionen. S ist allgemeiner als T (wir schreiben S ≦ T), wenn es
eine Substitution S ′ gibt, so dass SS ′ ≡ T .

Beobachtung:
I ist eine allgemeinste Substitution, d.h. für jede Substitution T gilt I ≦ T .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 411

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Eine Ordnung auf den Substitutionen

Definition 5.24
Zwei Substitutionen S und T sind äquivalent (kurz: S ≡ T), wenn für alle Variablen
X ∈ VLP gilt: XS = XT .

Beobachtung:
S und T sind genau dann äquivalent, wenn XS = XT für alle X ∈ Def(S) ∩ Def(T)
und XS = X für alle X ∈ Def(S) \ Def(T) und XT = X für alle X ∈ Def(T) \ Def(S).

Definition 5.25
Seien S und T Substitutionen. S ist allgemeiner als T (wir schreiben S ≦ T), wenn es
eine Substitution S ′ gibt, so dass SS ′ ≡ T .

Beobachtung:
I ist eine allgemeinste Substitution, d.h. für jede Substitution T gilt I ≦ T .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 411

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Eine Ordnung auf den Substitutionen

Definition 5.24
Zwei Substitutionen S und T sind äquivalent (kurz: S ≡ T), wenn für alle Variablen
X ∈ VLP gilt: XS = XT .

Beobachtung:
S und T sind genau dann äquivalent, wenn XS = XT für alle X ∈ Def(S) ∩ Def(T)
und XS = X für alle X ∈ Def(S) \ Def(T) und XT = X für alle X ∈ Def(T) \ Def(S).

Definition 5.25
Seien S und T Substitutionen. S ist allgemeiner als T (wir schreiben S ≦ T), wenn es
eine Substitution S ′ gibt, so dass SS ′ ≡ T .

Beobachtung:
I ist eine allgemeinste Substitution, d.h. für jede Substitution T gilt I ≦ T .

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 411

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Allgemeinste Unifikatoren
(kurz: mgu, für

”
most general unifier“)

Definition 5.26
Seien t, s ∈ TLP. Ein allgemeinster Unifikator für t und s ist ein Unifikator S für
t und s, so dass gilt: S ≦ T für alle Unifikatoren T für t und s.

Das folgende Lemma besagt, dass allgemeinste Unifikatoren bis auf
Umbenennung von Variablen eindeutig sind.

Lemma 5.27
Seien t, s ∈ TLP, und seien S ,T allgemeinste Unifikatoren für t und s.
Dann gibt es eine Umbennenung U, so dass SU ≡ T.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 412

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Allgemeinste Unifikatoren
(kurz: mgu, für

”
most general unifier“)

Definition 5.26
Seien t, s ∈ TLP. Ein allgemeinster Unifikator für t und s ist ein Unifikator S für
t und s, so dass gilt: S ≦ T für alle Unifikatoren T für t und s.

Das folgende Lemma besagt, dass allgemeinste Unifikatoren bis auf
Umbenennung von Variablen eindeutig sind.

Lemma 5.27
Seien t, s ∈ TLP, und seien S ,T allgemeinste Unifikatoren für t und s.
Dann gibt es eine Umbennenung U, so dass SU ≡ T.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 412

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Allgemeinste Unifikatoren
(kurz: mgu, für

”
most general unifier“)

Definition 5.26
Seien t, s ∈ TLP. Ein allgemeinster Unifikator für t und s ist ein Unifikator S für
t und s, so dass gilt: S ≦ T für alle Unifikatoren T für t und s.

Das folgende Lemma besagt, dass allgemeinste Unifikatoren bis auf
Umbenennung von Variablen eindeutig sind.

Lemma 5.27
Seien t, s ∈ TLP, und seien S ,T allgemeinste Unifikatoren für t und s.
Dann gibt es eine Umbennenung U, so dass SU ≡ T.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 412

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Ein Unifikationsalgorithmus
Algorithmus MGU(t, s)

% Eingabe: zwei Terme t, s ∈ TLP.

% Ausgabe: eine Substitution S oder die Worte
”
nicht unifizierbar“

1. Wenn t = s, dann gib I aus und halte an.

2. Wenn t = X ∈ VLP

3. Wenn X ∈ Var(s), dann gib
”
nicht unifizierbar“ aus und halte an.

4. Gib {X 7→ s} aus und halte an.

5. Wenn s = X ∈ VLP

6. Wenn X ∈ Var(t) dann gib
”
nicht unifizierbar“ aus und halte an.

7. Gib {X 7→ t} aus und halte an.

8. Wenn t = f(t1, . . . , tk) und s = f(s1, . . . , sk)
für ein Atom f ∈ ALP und eine Stelligkeit k ∈ N mit k ⩾ 1

9. Setze S1 := I .

10. Für i = 1, . . . , k tue Folgendes:

11. Setze Ti := MGU(tiSi , siSi).

12. Wenn Ti = ”
nicht unifizierbar“ dann gib

”
nicht unifizierbar“

aus und halte an.

13. Setze Si+1 := SiTi .

14. Gib Sk+1 aus und halte an.

15. Gib
”
nicht unifizierbar“ aus und halte an.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 413

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Ein Unifikationsalgorithmus
Algorithmus MGU(t, s)

% Eingabe: zwei Terme t, s ∈ TLP.

% Ausgabe: eine Substitution S oder die Worte
”
nicht unifizierbar“

1. Wenn t = s, dann gib I aus und halte an.

2. Wenn t = X ∈ VLP

3. Wenn X ∈ Var(s), dann gib
”
nicht unifizierbar“ aus und halte an.

4. Gib {X 7→ s} aus und halte an.

5. Wenn s = X ∈ VLP

6. Wenn X ∈ Var(t) dann gib
”
nicht unifizierbar“ aus und halte an.

7. Gib {X 7→ t} aus und halte an.

8. Wenn t = f(t1, . . . , tk) und s = f(s1, . . . , sk)
für ein Atom f ∈ ALP und eine Stelligkeit k ∈ N mit k ⩾ 1

9. Setze S1 := I .

10. Für i = 1, . . . , k tue Folgendes:

11. Setze Ti := MGU(tiSi , siSi).

12. Wenn Ti = ”
nicht unifizierbar“ dann gib

”
nicht unifizierbar“

aus und halte an.

13. Setze Si+1 := SiTi .

14. Gib Sk+1 aus und halte an.

15. Gib
”
nicht unifizierbar“ aus und halte an.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 413

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Ein Unifikationsalgorithmus
Algorithmus MGU(t, s)

% Eingabe: zwei Terme t, s ∈ TLP.

% Ausgabe: eine Substitution S oder die Worte
”
nicht unifizierbar“

1. Wenn t = s, dann gib I aus und halte an.

2. Wenn t = X ∈ VLP

3. Wenn X ∈ Var(s), dann gib
”
nicht unifizierbar“ aus und halte an.

4. Gib {X 7→ s} aus und halte an.

5. Wenn s = X ∈ VLP

6. Wenn X ∈ Var(t) dann gib
”
nicht unifizierbar“ aus und halte an.

7. Gib {X 7→ t} aus und halte an.

8. Wenn t = f(t1, . . . , tk) und s = f(s1, . . . , sk)
für ein Atom f ∈ ALP und eine Stelligkeit k ∈ N mit k ⩾ 1

9. Setze S1 := I .

10. Für i = 1, . . . , k tue Folgendes:

11. Setze Ti := MGU(tiSi , siSi).

12. Wenn Ti = ”
nicht unifizierbar“ dann gib

”
nicht unifizierbar“

aus und halte an.

13. Setze Si+1 := SiTi .

14. Gib Sk+1 aus und halte an.

15. Gib
”
nicht unifizierbar“ aus und halte an.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 413

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Ein Unifikationsalgorithmus
Algorithmus MGU(t, s)

% Eingabe: zwei Terme t, s ∈ TLP.

% Ausgabe: eine Substitution S oder die Worte
”
nicht unifizierbar“

1. Wenn t = s, dann gib I aus und halte an.

2. Wenn t = X ∈ VLP

3. Wenn X ∈ Var(s), dann gib
”
nicht unifizierbar“ aus und halte an.

4. Gib {X 7→ s} aus und halte an.

5. Wenn s = X ∈ VLP

6. Wenn X ∈ Var(t) dann gib
”
nicht unifizierbar“ aus und halte an.

7. Gib {X 7→ t} aus und halte an.

8. Wenn t = f(t1, . . . , tk) und s = f(s1, . . . , sk)
für ein Atom f ∈ ALP und eine Stelligkeit k ∈ N mit k ⩾ 1

9. Setze S1 := I .

10. Für i = 1, . . . , k tue Folgendes:

11. Setze Ti := MGU(tiSi , siSi).

12. Wenn Ti = ”
nicht unifizierbar“ dann gib

”
nicht unifizierbar“

aus und halte an.

13. Setze Si+1 := SiTi .

14. Gib Sk+1 aus und halte an.

15. Gib
”
nicht unifizierbar“ aus und halte an.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 413

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Ein Unifikationsalgorithmus
Algorithmus MGU(t, s)

% Eingabe: zwei Terme t, s ∈ TLP.

% Ausgabe: eine Substitution S oder die Worte
”
nicht unifizierbar“

1. Wenn t = s, dann gib I aus und halte an.

2. Wenn t = X ∈ VLP

3. Wenn X ∈ Var(s), dann gib
”
nicht unifizierbar“ aus und halte an.

4. Gib {X 7→ s} aus und halte an.

5. Wenn s = X ∈ VLP

6. Wenn X ∈ Var(t) dann gib
”
nicht unifizierbar“ aus und halte an.

7. Gib {X 7→ t} aus und halte an.

8. Wenn t = f(t1, . . . , tk) und s = f(s1, . . . , sk)
für ein Atom f ∈ ALP und eine Stelligkeit k ∈ N mit k ⩾ 1

9. Setze S1 := I .

10. Für i = 1, . . . , k tue Folgendes:

11. Setze Ti := MGU(tiSi , siSi).

12. Wenn Ti = ”
nicht unifizierbar“ dann gib

”
nicht unifizierbar“

aus und halte an.

13. Setze Si+1 := SiTi .

14. Gib Sk+1 aus und halte an.

15. Gib
”
nicht unifizierbar“ aus und halte an.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 413

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Korrektheit des Unifikationsalgorithmus

Satz 5.28
Für alle Terme t, s ∈ TLP gilt:

(a) Sind t und s unifizierbar, so gibt MGU(t, s) einen allgemeinsten Unifikator
für t und s aus.

(b) Sind t und s nicht unifizierbar, so gibt MGU(t, s) die Worte
”
nicht

unifizierbar“ aus.

(Hier ohne Beweis)

Korollar 5.29
Sind zwei Terme unifizierbar, so gibt es für diese Terme einen allgemeinsten
Unifikator.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 414

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Korrektheit des Unifikationsalgorithmus

Satz 5.28
Für alle Terme t, s ∈ TLP gilt:

(a) Sind t und s unifizierbar, so gibt MGU(t, s) einen allgemeinsten Unifikator
für t und s aus.

(b) Sind t und s nicht unifizierbar, so gibt MGU(t, s) die Worte
”
nicht

unifizierbar“ aus.

(Hier ohne Beweis)

Korollar 5.29
Sind zwei Terme unifizierbar, so gibt es für diese Terme einen allgemeinsten
Unifikator.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 414

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Beispiele 5.30

(a) Ein allgemeinster Unifikator für

t := g(f(X,Y),f(V,W)) und s := g(V,f(Z,g(X,Y)))

ist

S := { V 7→ f(X,Y), Z 7→ f(X,Y), W 7→ g(X,Y) }
= { V 7→ f(X,Y) } { Z 7→ f(X,Y) } { W 7→ g(X,Y) },

und es gilt tS = sS = g(f(X,Y),f(f(X,Y),g(X,Y))).

(b) g(f(X,Y),Y) und g(c,Y) sind nicht unifizierbar.

(c) Seien n ⩾ 1 und seien X0, . . . ,Xn ∈ VLP paarweise verschieden. Sei

tn := f(X1,X2...,Xn)

sn := f(g(X0,X0),g(X1,X1),...,g(Xn−1,Xn−1)) .

Dann sind tn und sn unifizierbar durch einen allgemeinsten Unifikator S , für den
gilt: – siehe Tafel –

Es gilt: Für jeden Unifikator T für tn und sn ist der Term T (Xn) exponentiell groß
in n, und jede gemeinsame Instanz von tn und sn ist exponentiell lang in n.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 415

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Beispiele 5.30

(a) Ein allgemeinster Unifikator für

t := g(f(X,Y),f(V,W)) und s := g(V,f(Z,g(X,Y)))

ist

S := { V 7→ f(X,Y), Z 7→ f(X,Y), W 7→ g(X,Y) }
= { V 7→ f(X,Y) } { Z 7→ f(X,Y) } { W 7→ g(X,Y) },

und es gilt tS = sS = g(f(X,Y),f(f(X,Y),g(X,Y))).

(b) g(f(X,Y),Y) und g(c,Y) sind nicht unifizierbar.

(c) Seien n ⩾ 1 und seien X0, . . . ,Xn ∈ VLP paarweise verschieden. Sei

tn := f(X1,X2...,Xn)

sn := f(g(X0,X0),g(X1,X1),...,g(Xn−1,Xn−1)) .

Dann sind tn und sn unifizierbar durch einen allgemeinsten Unifikator S , für den
gilt: – siehe Tafel –

Es gilt: Für jeden Unifikator T für tn und sn ist der Term T (Xn) exponentiell groß
in n, und jede gemeinsame Instanz von tn und sn ist exponentiell lang in n.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 415

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Beispiele 5.30

(a) Ein allgemeinster Unifikator für

t := g(f(X,Y),f(V,W)) und s := g(V,f(Z,g(X,Y)))

ist

S := { V 7→ f(X,Y), Z 7→ f(X,Y), W 7→ g(X,Y) }
= { V 7→ f(X,Y) } { Z 7→ f(X,Y) } { W 7→ g(X,Y) },

und es gilt tS = sS = g(f(X,Y),f(f(X,Y),g(X,Y))).

(b) g(f(X,Y),Y) und g(c,Y) sind

nicht unifizierbar.

(c) Seien n ⩾ 1 und seien X0, . . . ,Xn ∈ VLP paarweise verschieden. Sei

tn := f(X1,X2...,Xn)

sn := f(g(X0,X0),g(X1,X1),...,g(Xn−1,Xn−1)) .

Dann sind tn und sn unifizierbar durch einen allgemeinsten Unifikator S , für den
gilt: – siehe Tafel –

Es gilt: Für jeden Unifikator T für tn und sn ist der Term T (Xn) exponentiell groß
in n, und jede gemeinsame Instanz von tn und sn ist exponentiell lang in n.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 415

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Beispiele 5.30

(a) Ein allgemeinster Unifikator für

t := g(f(X,Y),f(V,W)) und s := g(V,f(Z,g(X,Y)))

ist

S := { V 7→ f(X,Y), Z 7→ f(X,Y), W 7→ g(X,Y) }
= { V 7→ f(X,Y) } { Z 7→ f(X,Y) } { W 7→ g(X,Y) },

und es gilt tS = sS = g(f(X,Y),f(f(X,Y),g(X,Y))).

(b) g(f(X,Y),Y) und g(c,Y) sind nicht unifizierbar.

(c) Seien n ⩾ 1 und seien X0, . . . ,Xn ∈ VLP paarweise verschieden. Sei

tn := f(X1,X2...,Xn)

sn := f(g(X0,X0),g(X1,X1),...,g(Xn−1,Xn−1)) .

Dann sind tn und sn unifizierbar durch einen allgemeinsten Unifikator S , für den
gilt: – siehe Tafel –

Es gilt: Für jeden Unifikator T für tn und sn ist der Term T (Xn) exponentiell groß
in n, und jede gemeinsame Instanz von tn und sn ist exponentiell lang in n.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 415

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Beispiele 5.30

(a) Ein allgemeinster Unifikator für

t := g(f(X,Y),f(V,W)) und s := g(V,f(Z,g(X,Y)))

ist

S := { V 7→ f(X,Y), Z 7→ f(X,Y), W 7→ g(X,Y) }
= { V 7→ f(X,Y) } { Z 7→ f(X,Y) } { W 7→ g(X,Y) },

und es gilt tS = sS = g(f(X,Y),f(f(X,Y),g(X,Y))).

(b) g(f(X,Y),Y) und g(c,Y) sind nicht unifizierbar.

(c) Seien n ⩾ 1 und seien X0, . . . ,Xn ∈ VLP paarweise verschieden.

Sei

tn := f(X1,X2...,Xn)

sn := f(g(X0,X0),g(X1,X1),...,g(Xn−1,Xn−1)) .

Dann sind tn und sn unifizierbar durch einen allgemeinsten Unifikator S , für den
gilt: – siehe Tafel –

Es gilt: Für jeden Unifikator T für tn und sn ist der Term T (Xn) exponentiell groß
in n, und jede gemeinsame Instanz von tn und sn ist exponentiell lang in n.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 415

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Beispiele 5.30

(a) Ein allgemeinster Unifikator für

t := g(f(X,Y),f(V,W)) und s := g(V,f(Z,g(X,Y)))

ist

S := { V 7→ f(X,Y), Z 7→ f(X,Y), W 7→ g(X,Y) }
= { V 7→ f(X,Y) } { Z 7→ f(X,Y) } { W 7→ g(X,Y) },

und es gilt tS = sS = g(f(X,Y),f(f(X,Y),g(X,Y))).

(b) g(f(X,Y),Y) und g(c,Y) sind nicht unifizierbar.

(c) Seien n ⩾ 1 und seien X0, . . . ,Xn ∈ VLP paarweise verschieden. Sei

tn := f(X1,X2...,Xn)

sn := f(g(X0,X0),g(X1,X1),...,g(Xn−1,Xn−1)) .

Dann sind tn und sn unifizierbar durch einen allgemeinsten Unifikator S , für den
gilt: – siehe Tafel –

Es gilt: Für jeden Unifikator T für tn und sn ist der Term T (Xn) exponentiell groß
in n, und jede gemeinsame Instanz von tn und sn ist exponentiell lang in n.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 415

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Beispiele 5.30

(a) Ein allgemeinster Unifikator für

t := g(f(X,Y),f(V,W)) und s := g(V,f(Z,g(X,Y)))

ist

S := { V 7→ f(X,Y), Z 7→ f(X,Y), W 7→ g(X,Y) }
= { V 7→ f(X,Y) } { Z 7→ f(X,Y) } { W 7→ g(X,Y) },

und es gilt tS = sS = g(f(X,Y),f(f(X,Y),g(X,Y))).

(b) g(f(X,Y),Y) und g(c,Y) sind nicht unifizierbar.

(c) Seien n ⩾ 1 und seien X0, . . . ,Xn ∈ VLP paarweise verschieden. Sei

tn := f(X1,X2...,Xn)

sn := f(g(X0,X0),g(X1,X1),...,g(Xn−1,Xn−1)) .

Dann sind tn und sn unifizierbar durch einen allgemeinsten Unifikator S , für den
gilt: – siehe Tafel –

Es gilt: Für jeden Unifikator T für tn und sn ist der Term T (Xn) exponentiell groß
in n, und jede gemeinsame Instanz von tn und sn ist exponentiell lang in n.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 415

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Beispiele 5.30

(a) Ein allgemeinster Unifikator für

t := g(f(X,Y),f(V,W)) und s := g(V,f(Z,g(X,Y)))

ist

S := { V 7→ f(X,Y), Z 7→ f(X,Y), W 7→ g(X,Y) }
= { V 7→ f(X,Y) } { Z 7→ f(X,Y) } { W 7→ g(X,Y) },

und es gilt tS = sS = g(f(X,Y),f(f(X,Y),g(X,Y))).

(b) g(f(X,Y),Y) und g(c,Y) sind nicht unifizierbar.

(c) Seien n ⩾ 1 und seien X0, . . . ,Xn ∈ VLP paarweise verschieden. Sei

tn := f(X1,X2...,Xn)

sn := f(g(X0,X0),g(X1,X1),...,g(Xn−1,Xn−1)) .

Dann sind tn und sn

unifizierbar durch einen allgemeinsten Unifikator S , für den
gilt: – siehe Tafel –

Es gilt: Für jeden Unifikator T für tn und sn ist der Term T (Xn) exponentiell groß
in n, und jede gemeinsame Instanz von tn und sn ist exponentiell lang in n.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 415

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Beispiele 5.30

(a) Ein allgemeinster Unifikator für

t := g(f(X,Y),f(V,W)) und s := g(V,f(Z,g(X,Y)))

ist

S := { V 7→ f(X,Y), Z 7→ f(X,Y), W 7→ g(X,Y) }
= { V 7→ f(X,Y) } { Z 7→ f(X,Y) } { W 7→ g(X,Y) },

und es gilt tS = sS = g(f(X,Y),f(f(X,Y),g(X,Y))).

(b) g(f(X,Y),Y) und g(c,Y) sind nicht unifizierbar.

(c) Seien n ⩾ 1 und seien X0, . . . ,Xn ∈ VLP paarweise verschieden. Sei

tn := f(X1,X2...,Xn)

sn := f(g(X0,X0),g(X1,X1),...,g(Xn−1,Xn−1)) .

Dann sind tn und sn unifizierbar durch einen allgemeinsten Unifikator S , für den
gilt:

– siehe Tafel –

Es gilt: Für jeden Unifikator T für tn und sn ist der Term T (Xn) exponentiell groß
in n, und jede gemeinsame Instanz von tn und sn ist exponentiell lang in n.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 415

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Beispiele 5.30

(a) Ein allgemeinster Unifikator für

t := g(f(X,Y),f(V,W)) und s := g(V,f(Z,g(X,Y)))

ist

S := { V 7→ f(X,Y), Z 7→ f(X,Y), W 7→ g(X,Y) }
= { V 7→ f(X,Y) } { Z 7→ f(X,Y) } { W 7→ g(X,Y) },

und es gilt tS = sS = g(f(X,Y),f(f(X,Y),g(X,Y))).

(b) g(f(X,Y),Y) und g(c,Y) sind nicht unifizierbar.

(c) Seien n ⩾ 1 und seien X0, . . . ,Xn ∈ VLP paarweise verschieden. Sei

tn := f(X1,X2...,Xn)

sn := f(g(X0,X0),g(X1,X1),...,g(Xn−1,Xn−1)) .

Dann sind tn und sn unifizierbar durch einen allgemeinsten Unifikator S , für den
gilt: – siehe Tafel –

Es gilt: Für jeden Unifikator T für tn und sn ist der Term T (Xn) exponentiell groß
in n, und jede gemeinsame Instanz von tn und sn ist exponentiell lang in n.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 415

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Auflösen des Nichtdeterminismus in Zeile 4

Wir können nun den Nichtdeterminismus in Zeile 4 unseres einfachen
Interpreters für Logikprogramme, Antwort(Π, α), auflösen, indem wir als
Substitution T einen allgemeinsten Unifikator von αi und φU wählen, und zwar
den allgemeinsten Unifikator, der vom Algorithmus MGU(αi , φU) ausgegeben
wird.

Dadurch erhalten wir den folgenden Algorithmus UAntwort(Π, α).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 416

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Interpreter für Logikprogramme mit allgemeinsten
Unifikatoren
Algorithmus UAntwort(Π, α)

% Eingabe: Programm Π ∈ LP, Anfrage ?-α ∈ FLP mit α = α1, . . . , αm

% Ausgabe: eine Substitution S̃ für Var(α) oder das Wort
”
gescheitert“.

1. Wähle ein i ∈ [m] % αi ist das nächste ”
Ziel“

2. Wähle eine Regel ρ aus Π. Sei φ :- ψ1, . . . , ψn die Form von ρ.
% Fakten fassen wir als Regeln ohne Rumpf auf

3. Sei U eine Umbennung für Var(ρ), so dass Var(ρU) ∩ Var(α) = ∅.
4. Setze T̃ := MGU(αi , φU)

% T̃ soll ein allgemeinster Unifikator von αi und φU sein

5. Wenn T̃ =
”
nicht unifizierbar“, gib

”
gescheitert“ aus und halte an.

6. Wenn m = 1 und n = 0, gib T̃ |Var(α) aus und halte an.

7. Setze α̃′ := α1T̃ , . . . , αi−1T̃ , ψ1UT̃ , . . . , ψnUT̃ , αi+1T̃ , . . . , αmT̃ .

8. Setze T̃ ′ := UAntwort(Π, α̃′)

9. Wenn T̃ ′ eine Substitution ist, gib (T̃ T̃ ′)|Var(α) aus und halte an.

10. Gib
”
gescheitert“ aus und halte an.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 417

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Interpreter für Logikprogramme mit allgemeinsten
Unifikatoren
Algorithmus UAntwort(Π, α)

% Eingabe: Programm Π ∈ LP, Anfrage ?-α ∈ FLP mit α = α1, . . . , αm

% Ausgabe: eine Substitution S̃ für Var(α) oder das Wort
”
gescheitert“.

1. Wähle ein i ∈ [m] % αi ist das nächste ”
Ziel“

2. Wähle eine Regel ρ aus Π. Sei φ :- ψ1, . . . , ψn die Form von ρ.
% Fakten fassen wir als Regeln ohne Rumpf auf

3. Sei U eine Umbennung für Var(ρ), so dass Var(ρU) ∩ Var(α) = ∅.
4. Setze T̃ := MGU(αi , φU)

% T̃ soll ein allgemeinster Unifikator von αi und φU sein

5. Wenn T̃ =
”
nicht unifizierbar“, gib

”
gescheitert“ aus und halte an.

6. Wenn m = 1 und n = 0, gib T̃ |Var(α) aus und halte an.

7. Setze α̃′ := α1T̃ , . . . , αi−1T̃ , ψ1UT̃ , . . . , ψnUT̃ , αi+1T̃ , . . . , αmT̃ .

8. Setze T̃ ′ := UAntwort(Π, α̃′)

9. Wenn T̃ ′ eine Substitution ist, gib (T̃ T̃ ′)|Var(α) aus und halte an.

10. Gib
”
gescheitert“ aus und halte an.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 417

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Interpreter für Logikprogramme mit allgemeinsten
Unifikatoren
Algorithmus UAntwort(Π, α)

% Eingabe: Programm Π ∈ LP, Anfrage ?-α ∈ FLP mit α = α1, . . . , αm

% Ausgabe: eine Substitution S̃ für Var(α) oder das Wort
”
gescheitert“.

1. Wähle ein i ∈ [m] % αi ist das nächste ”
Ziel“

2. Wähle eine Regel ρ aus Π. Sei φ :- ψ1, . . . , ψn die Form von ρ.
% Fakten fassen wir als Regeln ohne Rumpf auf

3. Sei U eine Umbennung für Var(ρ), so dass Var(ρU) ∩ Var(α) = ∅.
4. Setze T̃ := MGU(αi , φU)

% T̃ soll ein allgemeinster Unifikator von αi und φU sein

5. Wenn T̃ =
”
nicht unifizierbar“, gib

”
gescheitert“ aus und halte an.

6. Wenn m = 1 und n = 0, gib T̃ |Var(α) aus und halte an.

7. Setze α̃′ := α1T̃ , . . . , αi−1T̃ , ψ1UT̃ , . . . , ψnUT̃ , αi+1T̃ , . . . , αmT̃ .

8. Setze T̃ ′ := UAntwort(Π, α̃′)

9. Wenn T̃ ′ eine Substitution ist, gib (T̃ T̃ ′)|Var(α) aus und halte an.

10. Gib
”
gescheitert“ aus und halte an.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 417

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Interpreter für Logikprogramme mit allgemeinsten
Unifikatoren
Algorithmus UAntwort(Π, α)

% Eingabe: Programm Π ∈ LP, Anfrage ?-α ∈ FLP mit α = α1, . . . , αm

% Ausgabe: eine Substitution S̃ für Var(α) oder das Wort
”
gescheitert“.

1. Wähle ein i ∈ [m] % αi ist das nächste ”
Ziel“

2. Wähle eine Regel ρ aus Π. Sei φ :- ψ1, . . . , ψn die Form von ρ.
% Fakten fassen wir als Regeln ohne Rumpf auf

3. Sei U eine Umbennung für Var(ρ), so dass Var(ρU) ∩ Var(α) = ∅.

4. Setze T̃ := MGU(αi , φU)
% T̃ soll ein allgemeinster Unifikator von αi und φU sein

5. Wenn T̃ =
”
nicht unifizierbar“, gib

”
gescheitert“ aus und halte an.

6. Wenn m = 1 und n = 0, gib T̃ |Var(α) aus und halte an.

7. Setze α̃′ := α1T̃ , . . . , αi−1T̃ , ψ1UT̃ , . . . , ψnUT̃ , αi+1T̃ , . . . , αmT̃ .

8. Setze T̃ ′ := UAntwort(Π, α̃′)

9. Wenn T̃ ′ eine Substitution ist, gib (T̃ T̃ ′)|Var(α) aus und halte an.

10. Gib
”
gescheitert“ aus und halte an.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 417

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Interpreter für Logikprogramme mit allgemeinsten
Unifikatoren
Algorithmus UAntwort(Π, α)

% Eingabe: Programm Π ∈ LP, Anfrage ?-α ∈ FLP mit α = α1, . . . , αm

% Ausgabe: eine Substitution S̃ für Var(α) oder das Wort
”
gescheitert“.

1. Wähle ein i ∈ [m] % αi ist das nächste ”
Ziel“

2. Wähle eine Regel ρ aus Π. Sei φ :- ψ1, . . . , ψn die Form von ρ.
% Fakten fassen wir als Regeln ohne Rumpf auf

3. Sei U eine Umbennung für Var(ρ), so dass Var(ρU) ∩ Var(α) = ∅.
4. Setze T̃ := MGU(αi , φU)

% T̃ soll ein allgemeinster Unifikator von αi und φU sein

5. Wenn T̃ =
”
nicht unifizierbar“, gib

”
gescheitert“ aus und halte an.

6. Wenn m = 1 und n = 0, gib T̃ |Var(α) aus und halte an.

7. Setze α̃′ := α1T̃ , . . . , αi−1T̃ , ψ1UT̃ , . . . , ψnUT̃ , αi+1T̃ , . . . , αmT̃ .

8. Setze T̃ ′ := UAntwort(Π, α̃′)

9. Wenn T̃ ′ eine Substitution ist, gib (T̃ T̃ ′)|Var(α) aus und halte an.

10. Gib
”
gescheitert“ aus und halte an.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 417

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Interpreter für Logikprogramme mit allgemeinsten
Unifikatoren
Algorithmus UAntwort(Π, α)

% Eingabe: Programm Π ∈ LP, Anfrage ?-α ∈ FLP mit α = α1, . . . , αm

% Ausgabe: eine Substitution S̃ für Var(α) oder das Wort
”
gescheitert“.

1. Wähle ein i ∈ [m] % αi ist das nächste ”
Ziel“

2. Wähle eine Regel ρ aus Π. Sei φ :- ψ1, . . . , ψn die Form von ρ.
% Fakten fassen wir als Regeln ohne Rumpf auf

3. Sei U eine Umbennung für Var(ρ), so dass Var(ρU) ∩ Var(α) = ∅.
4. Setze T̃ := MGU(αi , φU)

% T̃ soll ein allgemeinster Unifikator von αi und φU sein

5. Wenn T̃ =
”
nicht unifizierbar“, gib

”
gescheitert“ aus und halte an.

6. Wenn m = 1 und n = 0, gib T̃ |Var(α) aus und halte an.

7. Setze α̃′ := α1T̃ , . . . , αi−1T̃ , ψ1UT̃ , . . . , ψnUT̃ , αi+1T̃ , . . . , αmT̃ .

8. Setze T̃ ′ := UAntwort(Π, α̃′)

9. Wenn T̃ ′ eine Substitution ist, gib (T̃ T̃ ′)|Var(α) aus und halte an.

10. Gib
”
gescheitert“ aus und halte an.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 417

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Interpreter für Logikprogramme mit allgemeinsten
Unifikatoren
Algorithmus UAntwort(Π, α)

% Eingabe: Programm Π ∈ LP, Anfrage ?-α ∈ FLP mit α = α1, . . . , αm

% Ausgabe: eine Substitution S̃ für Var(α) oder das Wort
”
gescheitert“.

1. Wähle ein i ∈ [m] % αi ist das nächste ”
Ziel“

2. Wähle eine Regel ρ aus Π. Sei φ :- ψ1, . . . , ψn die Form von ρ.
% Fakten fassen wir als Regeln ohne Rumpf auf

3. Sei U eine Umbennung für Var(ρ), so dass Var(ρU) ∩ Var(α) = ∅.
4. Setze T̃ := MGU(αi , φU)

% T̃ soll ein allgemeinster Unifikator von αi und φU sein

5. Wenn T̃ =
”
nicht unifizierbar“, gib

”
gescheitert“ aus und halte an.

6. Wenn m = 1 und n = 0, gib T̃ |Var(α) aus und halte an.

7. Setze α̃′ := α1T̃ , . . . , αi−1T̃ , ψ1UT̃ , . . . , ψnUT̃ , αi+1T̃ , . . . , αmT̃ .

8. Setze T̃ ′ := UAntwort(Π, α̃′)

9. Wenn T̃ ′ eine Substitution ist, gib (T̃ T̃ ′)|Var(α) aus und halte an.

10. Gib
”
gescheitert“ aus und halte an.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 417

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Interpreter für Logikprogramme mit allgemeinsten
Unifikatoren
Algorithmus UAntwort(Π, α)

% Eingabe: Programm Π ∈ LP, Anfrage ?-α ∈ FLP mit α = α1, . . . , αm

% Ausgabe: eine Substitution S̃ für Var(α) oder das Wort
”
gescheitert“.

1. Wähle ein i ∈ [m] % αi ist das nächste ”
Ziel“

2. Wähle eine Regel ρ aus Π. Sei φ :- ψ1, . . . , ψn die Form von ρ.
% Fakten fassen wir als Regeln ohne Rumpf auf

3. Sei U eine Umbennung für Var(ρ), so dass Var(ρU) ∩ Var(α) = ∅.
4. Setze T̃ := MGU(αi , φU)

% T̃ soll ein allgemeinster Unifikator von αi und φU sein

5. Wenn T̃ =
”
nicht unifizierbar“, gib

”
gescheitert“ aus und halte an.

6. Wenn m = 1 und n = 0, gib T̃ |Var(α) aus und halte an.

7. Setze α̃′ := α1T̃ , . . . , αi−1T̃ , ψ1UT̃ , . . . , ψnUT̃ , αi+1T̃ , . . . , αmT̃ .

8. Setze T̃ ′ := UAntwort(Π, α̃′)

9. Wenn T̃ ′ eine Substitution ist, gib (T̃ T̃ ′)|Var(α) aus und halte an.

10. Gib
”
gescheitert“ aus und halte an.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 417

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Korrektheit und Vollständigkeit des Interpreters

Satz 5.31
Sei Π ∈ LP ein Logikprogramm, sei ?- α ∈ FLP eine Anfrage mit α = α1, . . . , αm, und
sei S eine Substitution für Var(α). Dann sind folgende Aussagen äquivalent:

(a) Die Terme α1S , . . . , αmS sind aus Π ableitbar.

(b) Es gibt einen Lauf von UAntwort(Π, α), der eine Substitution S̃ für Var(α) mit
S̃ ≦ S ausgibt.

Korollar 5.32
Sei Π ∈ LP ein Logikprogramm und sei α ein Grundterm. Dann gilt:
α ∈ B(Π) ⇐⇒ es gibt einen akzeptierenden Lauf von UAntwort(Π, α).

Für den Beweis der Richtung
”
(a) =⇒ (b)“ von Satz 5.31 verwenden wir:

Lemma 5.33
Sei Π ∈ LP und sei ?- α ∈ FLP mit α = α1, . . . , αm ∈ FLP, und sei S ′ eine
Substitution für α. Dann gibt es zu jedem Lauf von Antwort(Π, αS ′), der eine
Substitution S ausgibt, einen Lauf von UAntwort(Π, α), der eine Substitution S̃ mit
S̃ ≦ S ′S ausgibt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 418

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Korrektheit und Vollständigkeit des Interpreters

Satz 5.31
Sei Π ∈ LP ein Logikprogramm, sei ?- α ∈ FLP eine Anfrage mit α = α1, . . . , αm, und
sei S eine Substitution für Var(α). Dann sind folgende Aussagen äquivalent:

(a) Die Terme α1S , . . . , αmS sind aus Π ableitbar.

(b) Es gibt einen Lauf von UAntwort(Π, α), der eine Substitution S̃ für Var(α) mit
S̃ ≦ S ausgibt.

Korollar 5.32
Sei Π ∈ LP ein Logikprogramm und sei α ein Grundterm. Dann gilt:
α ∈ B(Π) ⇐⇒ es gibt einen akzeptierenden Lauf von UAntwort(Π, α).

Für den Beweis der Richtung
”
(a) =⇒ (b)“ von Satz 5.31 verwenden wir:

Lemma 5.33
Sei Π ∈ LP und sei ?- α ∈ FLP mit α = α1, . . . , αm ∈ FLP, und sei S ′ eine
Substitution für α. Dann gibt es zu jedem Lauf von Antwort(Π, αS ′), der eine
Substitution S ausgibt, einen Lauf von UAntwort(Π, α), der eine Substitution S̃ mit
S̃ ≦ S ′S ausgibt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 418

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Korrektheit und Vollständigkeit des Interpreters

Satz 5.31
Sei Π ∈ LP ein Logikprogramm, sei ?- α ∈ FLP eine Anfrage mit α = α1, . . . , αm, und
sei S eine Substitution für Var(α). Dann sind folgende Aussagen äquivalent:

(a) Die Terme α1S , . . . , αmS sind aus Π ableitbar.

(b) Es gibt einen Lauf von UAntwort(Π, α), der eine Substitution S̃ für Var(α) mit
S̃ ≦ S ausgibt.

Korollar 5.32
Sei Π ∈ LP ein Logikprogramm und sei α ein Grundterm. Dann gilt:
α ∈ B(Π) ⇐⇒ es gibt einen akzeptierenden Lauf von UAntwort(Π, α).

Für den Beweis der Richtung
”
(a) =⇒ (b)“ von Satz 5.31 verwenden wir:

Lemma 5.33
Sei Π ∈ LP und sei ?- α ∈ FLP mit α = α1, . . . , αm ∈ FLP, und sei S ′ eine
Substitution für α. Dann gibt es zu jedem Lauf von Antwort(Π, αS ′), der eine
Substitution S ausgibt, einen Lauf von UAntwort(Π, α), der eine Substitution S̃ mit
S̃ ≦ S ′S ausgibt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 418

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Bemerkungen

• Indem wir das nichtdeterministische Auswählen einer Substitution im
Algorithmus Antwort im Algorithmus UAntwort durch das
deterministische Berechnen eines allgemeinsten Unifikators ersetzt haben,
sind wir einen entscheidenden Schritt in Richtung

”
praktische

Ausführbarkeit“ gegangen.

• Es bleiben aber immer noch die nichtdeterministischen Auswahlschritte
eines Ziels in Zeile 1 und einer Regel in Zeile 2. Diese müssen bei einer
praktischen Implementierung durch eine systematische Suche durch alle
Möglichkeiten ersetzt werden.

(Die Wahl der Umbennenung in Zeile 3 unproblematisch.)

• Verschiedene logische Programmiersprachen unterscheiden sich in den
verwendeten Suchstrategien.

• Prolog verwendet Tiefensuche.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 419

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Bemerkungen

• Indem wir das nichtdeterministische Auswählen einer Substitution im
Algorithmus Antwort im Algorithmus UAntwort durch das
deterministische Berechnen eines allgemeinsten Unifikators ersetzt haben,
sind wir einen entscheidenden Schritt in Richtung

”
praktische

Ausführbarkeit“ gegangen.

• Es bleiben aber immer noch die nichtdeterministischen Auswahlschritte
eines Ziels in Zeile 1 und einer Regel in Zeile 2. Diese müssen bei einer
praktischen Implementierung durch eine systematische Suche durch alle
Möglichkeiten ersetzt werden.

(Die Wahl der Umbennenung in Zeile 3 unproblematisch.)

• Verschiedene logische Programmiersprachen unterscheiden sich in den
verwendeten Suchstrategien.

• Prolog verwendet Tiefensuche.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 419

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Bemerkungen

• Indem wir das nichtdeterministische Auswählen einer Substitution im
Algorithmus Antwort im Algorithmus UAntwort durch das
deterministische Berechnen eines allgemeinsten Unifikators ersetzt haben,
sind wir einen entscheidenden Schritt in Richtung

”
praktische

Ausführbarkeit“ gegangen.

• Es bleiben aber immer noch die nichtdeterministischen Auswahlschritte
eines Ziels in Zeile 1 und einer Regel in Zeile 2. Diese müssen bei einer
praktischen Implementierung durch eine systematische Suche durch alle
Möglichkeiten ersetzt werden.

(Die Wahl der Umbennenung in Zeile 3 unproblematisch.)

• Verschiedene logische Programmiersprachen unterscheiden sich in den
verwendeten Suchstrategien.

• Prolog verwendet Tiefensuche.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 419

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Bemerkungen

• Indem wir das nichtdeterministische Auswählen einer Substitution im
Algorithmus Antwort im Algorithmus UAntwort durch das
deterministische Berechnen eines allgemeinsten Unifikators ersetzt haben,
sind wir einen entscheidenden Schritt in Richtung

”
praktische

Ausführbarkeit“ gegangen.

• Es bleiben aber immer noch die nichtdeterministischen Auswahlschritte
eines Ziels in Zeile 1 und einer Regel in Zeile 2. Diese müssen bei einer
praktischen Implementierung durch eine systematische Suche durch alle
Möglichkeiten ersetzt werden.

(Die Wahl der Umbennenung in Zeile 3 unproblematisch.)

• Verschiedene logische Programmiersprachen unterscheiden sich in den
verwendeten Suchstrategien.

• Prolog verwendet Tiefensuche.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 419

Kapitel 5: Logik-Programmierung · Abschnitt 5.3: Operationelle Semantik

Bemerkungen

• Indem wir das nichtdeterministische Auswählen einer Substitution im
Algorithmus Antwort im Algorithmus UAntwort durch das
deterministische Berechnen eines allgemeinsten Unifikators ersetzt haben,
sind wir einen entscheidenden Schritt in Richtung

”
praktische

Ausführbarkeit“ gegangen.

• Es bleiben aber immer noch die nichtdeterministischen Auswahlschritte
eines Ziels in Zeile 1 und einer Regel in Zeile 2. Diese müssen bei einer
praktischen Implementierung durch eine systematische Suche durch alle
Möglichkeiten ersetzt werden.

(Die Wahl der Umbennenung in Zeile 3 unproblematisch.)

• Verschiedene logische Programmiersprachen unterscheiden sich in den
verwendeten Suchstrategien.

• Prolog verwendet Tiefensuche.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 419

Abschnitt 5.4:

Logik-Programmierung und Prolog

Kapitel 5: Logik-Programmierung · Abschnitt 5.4: Logik-Programmierung und Prolog

Reines Prolog

Reines Prolog ist das Fragment der Programmiersprache Prolog, dessen
Programme gerade die Logikprogramme in LP sind.

Insbesondere enthält reines Prolog keine speziellen Prolog-Operatoren wie Cut

”
!“, arithmetische Prädikate oder Ein-/Ausgabe-Prädikate (d.h. Prädikate mit
Seiteneffekten).

Die Semantik von reinem Prolog stimmt nicht mit der deklarativen Semantik
der Logik-Programmierung überein.

Die erste vom Prolog-Interpreter ausgegebene Antwort wird gemäß dem
folgenden Interpreter PErsteAntwort ermittelt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 420

Kapitel 5: Logik-Programmierung · Abschnitt 5.4: Logik-Programmierung und Prolog

Reines Prolog

Reines Prolog ist das Fragment der Programmiersprache Prolog, dessen
Programme gerade die Logikprogramme in LP sind.

Insbesondere enthält reines Prolog keine speziellen Prolog-Operatoren wie Cut

”
!“,

arithmetische Prädikate oder Ein-/Ausgabe-Prädikate (d.h. Prädikate mit
Seiteneffekten).

Die Semantik von reinem Prolog stimmt nicht mit der deklarativen Semantik
der Logik-Programmierung überein.

Die erste vom Prolog-Interpreter ausgegebene Antwort wird gemäß dem
folgenden Interpreter PErsteAntwort ermittelt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 420

Kapitel 5: Logik-Programmierung · Abschnitt 5.4: Logik-Programmierung und Prolog

Reines Prolog

Reines Prolog ist das Fragment der Programmiersprache Prolog, dessen
Programme gerade die Logikprogramme in LP sind.

Insbesondere enthält reines Prolog keine speziellen Prolog-Operatoren wie Cut

”
!“, arithmetische Prädikate

oder Ein-/Ausgabe-Prädikate (d.h. Prädikate mit
Seiteneffekten).

Die Semantik von reinem Prolog stimmt nicht mit der deklarativen Semantik
der Logik-Programmierung überein.

Die erste vom Prolog-Interpreter ausgegebene Antwort wird gemäß dem
folgenden Interpreter PErsteAntwort ermittelt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 420

Kapitel 5: Logik-Programmierung · Abschnitt 5.4: Logik-Programmierung und Prolog

Reines Prolog

Reines Prolog ist das Fragment der Programmiersprache Prolog, dessen
Programme gerade die Logikprogramme in LP sind.

Insbesondere enthält reines Prolog keine speziellen Prolog-Operatoren wie Cut

”
!“, arithmetische Prädikate oder Ein-/Ausgabe-Prädikate (d.h. Prädikate mit
Seiteneffekten).

Die Semantik von reinem Prolog stimmt nicht mit der deklarativen Semantik
der Logik-Programmierung überein.

Die erste vom Prolog-Interpreter ausgegebene Antwort wird gemäß dem
folgenden Interpreter PErsteAntwort ermittelt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 420

Kapitel 5: Logik-Programmierung · Abschnitt 5.4: Logik-Programmierung und Prolog

Reines Prolog

Reines Prolog ist das Fragment der Programmiersprache Prolog, dessen
Programme gerade die Logikprogramme in LP sind.

Insbesondere enthält reines Prolog keine speziellen Prolog-Operatoren wie Cut

”
!“, arithmetische Prädikate oder Ein-/Ausgabe-Prädikate (d.h. Prädikate mit
Seiteneffekten).

Die Semantik von reinem Prolog stimmt nicht mit der deklarativen Semantik
der Logik-Programmierung überein.

Die erste vom Prolog-Interpreter ausgegebene Antwort wird gemäß dem
folgenden Interpreter PErsteAntwort ermittelt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 420

Kapitel 5: Logik-Programmierung · Abschnitt 5.4: Logik-Programmierung und Prolog

Reines Prolog

Reines Prolog ist das Fragment der Programmiersprache Prolog, dessen
Programme gerade die Logikprogramme in LP sind.

Insbesondere enthält reines Prolog keine speziellen Prolog-Operatoren wie Cut

”
!“, arithmetische Prädikate oder Ein-/Ausgabe-Prädikate (d.h. Prädikate mit
Seiteneffekten).

Die Semantik von reinem Prolog stimmt nicht mit der deklarativen Semantik
der Logik-Programmierung überein.

Die erste vom Prolog-Interpreter ausgegebene Antwort wird gemäß dem
folgenden Interpreter PErsteAntwort ermittelt.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 420

Kapitel 5: Logik-Programmierung · Abschnitt 5.4: Logik-Programmierung und Prolog

Ein Prolog-Interpreter

Algorithmus PErsteAntwort(Π, α)

% Eingabe: Programm Π ∈ LP, Anfrage ?- α ∈ FLP mit α = α1, . . . , αm

% Ausgabe: eine Substitution S für Var(α) oder das Wort
”
false“

1. Betrachte alle Regeln ρ in Π in der Reihenfolge ihres Vorkommens in Π und tue
Folgendes: % Fakten fassen wir als Regeln ohne Rumpf auf

2. Sei φ :- ψ1, . . . , ψn die Form von ρ

3. Sei U eine Umbennung für Var(ρ), so dass Var(ρU) ∩ Var(α) = ∅
4. Setze T := MGU(α1, φU)

5. Wenn T eine Substitution ist

6. Wenn m = 1 und n = 0, gib T |Var(α) aus und halte an

7. Setze α′ := ψ1UT , . . . , ψnUT , α2T , . . . , αmT

8. Setze T ′ := PErsteAntwort(Π, α′)

9. Wenn T ′ eine Substitution ist, gib (TT ′)|Var(α) aus und halte an

10. Gib
”
false“ aus und halte an

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 421

Kapitel 5: Logik-Programmierung · Abschnitt 5.4: Logik-Programmierung und Prolog

Ein Prolog-Interpreter

Algorithmus PErsteAntwort(Π, α)

% Eingabe: Programm Π ∈ LP, Anfrage ?- α ∈ FLP mit α = α1, . . . , αm

% Ausgabe: eine Substitution S für Var(α) oder das Wort
”
false“

1. Betrachte alle Regeln ρ in Π in der Reihenfolge ihres Vorkommens in Π und tue
Folgendes: % Fakten fassen wir als Regeln ohne Rumpf auf

2. Sei φ :- ψ1, . . . , ψn die Form von ρ

3. Sei U eine Umbennung für Var(ρ), so dass Var(ρU) ∩ Var(α) = ∅
4. Setze T := MGU(α1, φU)

5. Wenn T eine Substitution ist

6. Wenn m = 1 und n = 0, gib T |Var(α) aus und halte an

7. Setze α′ := ψ1UT , . . . , ψnUT , α2T , . . . , αmT

8. Setze T ′ := PErsteAntwort(Π, α′)

9. Wenn T ′ eine Substitution ist, gib (TT ′)|Var(α) aus und halte an

10. Gib
”
false“ aus und halte an

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 421

Kapitel 5: Logik-Programmierung · Abschnitt 5.4: Logik-Programmierung und Prolog

Ein Prolog-Interpreter

Algorithmus PErsteAntwort(Π, α)

% Eingabe: Programm Π ∈ LP, Anfrage ?- α ∈ FLP mit α = α1, . . . , αm

% Ausgabe: eine Substitution S für Var(α) oder das Wort
”
false“

1. Betrachte alle Regeln ρ in Π in der Reihenfolge ihres Vorkommens in Π und tue
Folgendes: % Fakten fassen wir als Regeln ohne Rumpf auf

2. Sei φ :- ψ1, . . . , ψn die Form von ρ

3. Sei U eine Umbennung für Var(ρ), so dass Var(ρU) ∩ Var(α) = ∅
4. Setze T := MGU(α1, φU)

5. Wenn T eine Substitution ist

6. Wenn m = 1 und n = 0, gib T |Var(α) aus und halte an

7. Setze α′ := ψ1UT , . . . , ψnUT , α2T , . . . , αmT

8. Setze T ′ := PErsteAntwort(Π, α′)

9. Wenn T ′ eine Substitution ist, gib (TT ′)|Var(α) aus und halte an

10. Gib
”
false“ aus und halte an

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 421

Kapitel 5: Logik-Programmierung · Abschnitt 5.4: Logik-Programmierung und Prolog

Vergleich zur deklarativen Semantik

PErsteAntwort(Π, α) gibt höchstens eine Substitution aus, kann u.U. aber auch in
eine Endlosschleife gelangen und nicht terminieren.

Der folgende Satz besagt, dass im Falle der Terminierung die ausgegebene Antwort
korrekt ist.

Satz 5.34
Sei Π ∈ LP ein Logikprogramm und sei ?- α ∈ FLP mit α = α1, . . . , αm eine Anfrage.
Dann gilt:

(a) Wenn PErsteAntwort(Π, α) eine Substitution S ausgibt, dann sind die Terme
α1S , . . . , αmS aus Π ableitbar.

(b) Wenn PErsteAntwort(Π, α) das Wort
”
false“ ausgibt, dann gibt es keine

Substitution S, so dass die Terme α1S , . . . , αmS aus Π ableitbar sind.

(Hier ohne Beweis)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 422

Kapitel 5: Logik-Programmierung · Abschnitt 5.4: Logik-Programmierung und Prolog

Vergleich zur deklarativen Semantik

PErsteAntwort(Π, α) gibt höchstens eine Substitution aus, kann u.U. aber auch in
eine Endlosschleife gelangen und nicht terminieren.

Der folgende Satz besagt, dass im Falle der Terminierung die ausgegebene Antwort
korrekt ist.

Satz 5.34
Sei Π ∈ LP ein Logikprogramm und sei ?- α ∈ FLP mit α = α1, . . . , αm eine Anfrage.
Dann gilt:

(a) Wenn PErsteAntwort(Π, α) eine Substitution S ausgibt, dann sind die Terme
α1S , . . . , αmS aus Π ableitbar.

(b) Wenn PErsteAntwort(Π, α) das Wort
”
false“ ausgibt, dann gibt es keine

Substitution S, so dass die Terme α1S , . . . , αmS aus Π ableitbar sind.

(Hier ohne Beweis)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 422

Kapitel 5: Logik-Programmierung · Abschnitt 5.4: Logik-Programmierung und Prolog

Vergleich zur deklarativen Semantik

PErsteAntwort(Π, α) gibt höchstens eine Substitution aus, kann u.U. aber auch in
eine Endlosschleife gelangen und nicht terminieren.

Der folgende Satz besagt, dass im Falle der Terminierung die ausgegebene Antwort
korrekt ist.

Satz 5.34
Sei Π ∈ LP ein Logikprogramm und sei ?- α ∈ FLP mit α = α1, . . . , αm eine Anfrage.
Dann gilt:

(a) Wenn PErsteAntwort(Π, α) eine Substitution S ausgibt, dann sind die Terme
α1S , . . . , αmS aus Π ableitbar.

(b) Wenn PErsteAntwort(Π, α) das Wort
”
false“ ausgibt, dann gibt es keine

Substitution S, so dass die Terme α1S , . . . , αmS aus Π ableitbar sind.

(Hier ohne Beweis)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 422

Kapitel 5: Logik-Programmierung · Abschnitt 5.4: Logik-Programmierung und Prolog

Terminierung

Intuitiv besagt Satz 5.34, dass im Falle der Terminierung die vom
Prolog-Interpreter bei Eingabe eines Logikprogramms Π und einer Anfrage ?- α
gegebene erste Antwort korrekt ist.

Möglicherweise hält der Prolog-Interpreter aber gar nicht an, obwohl es laut
Definition der deklarativen Semantik korrekte Antworten gibt.

Es ist Aufgabe des Programmierers, dies zu verhindern!

Typische Probleme dabei sind Dummheit und linksrekursive Regeln.

Beispiel: vorfahre(X,Y) :- vorfahre(X,Z), elternteil(Z,Y)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 423

Kapitel 5: Logik-Programmierung · Abschnitt 5.4: Logik-Programmierung und Prolog

Terminierung

Intuitiv besagt Satz 5.34, dass im Falle der Terminierung die vom
Prolog-Interpreter bei Eingabe eines Logikprogramms Π und einer Anfrage ?- α
gegebene erste Antwort korrekt ist.

Möglicherweise hält der Prolog-Interpreter aber gar nicht an, obwohl es laut
Definition der deklarativen Semantik korrekte Antworten gibt.

Es ist Aufgabe des Programmierers, dies zu verhindern!

Typische Probleme dabei sind Dummheit und linksrekursive Regeln.

Beispiel: vorfahre(X,Y) :- vorfahre(X,Z), elternteil(Z,Y)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 423

Kapitel 5: Logik-Programmierung · Abschnitt 5.4: Logik-Programmierung und Prolog

Terminierung

Intuitiv besagt Satz 5.34, dass im Falle der Terminierung die vom
Prolog-Interpreter bei Eingabe eines Logikprogramms Π und einer Anfrage ?- α
gegebene erste Antwort korrekt ist.

Möglicherweise hält der Prolog-Interpreter aber gar nicht an, obwohl es laut
Definition der deklarativen Semantik korrekte Antworten gibt.

Es ist Aufgabe des Programmierers, dies zu verhindern!

Typische Probleme dabei sind Dummheit und linksrekursive Regeln.

Beispiel: vorfahre(X,Y) :- vorfahre(X,Z), elternteil(Z,Y)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 423

Kapitel 5: Logik-Programmierung · Abschnitt 5.4: Logik-Programmierung und Prolog

Terminierung

Intuitiv besagt Satz 5.34, dass im Falle der Terminierung die vom
Prolog-Interpreter bei Eingabe eines Logikprogramms Π und einer Anfrage ?- α
gegebene erste Antwort korrekt ist.

Möglicherweise hält der Prolog-Interpreter aber gar nicht an, obwohl es laut
Definition der deklarativen Semantik korrekte Antworten gibt.

Es ist Aufgabe des Programmierers, dies zu verhindern!

Typische Probleme dabei sind Dummheit und linksrekursive Regeln.

Beispiel: vorfahre(X,Y) :- vorfahre(X,Z), elternteil(Z,Y)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 423

Kapitel 5: Logik-Programmierung · Abschnitt 5.4: Logik-Programmierung und Prolog

Terminierung

Intuitiv besagt Satz 5.34, dass im Falle der Terminierung die vom
Prolog-Interpreter bei Eingabe eines Logikprogramms Π und einer Anfrage ?- α
gegebene erste Antwort korrekt ist.

Möglicherweise hält der Prolog-Interpreter aber gar nicht an, obwohl es laut
Definition der deklarativen Semantik korrekte Antworten gibt.

Es ist Aufgabe des Programmierers, dies zu verhindern!

Typische Probleme dabei sind Dummheit und linksrekursive Regeln.

Beispiel: vorfahre(X,Y) :- vorfahre(X,Z), elternteil(Z,Y)

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 423

Kapitel 5: Logik-Programmierung · Abschnitt 5.4: Logik-Programmierung und Prolog

Unterschied zwischen Theorie und Praxis

Beispiel 5.35
Die folgenden Logikprogramme myplus1.pl, myplus2.pl, myplus3.pl haben
die gleiche Bedeutung hinsichtlich der deklarativen Semantik im folgenden
Sinne:

Aus allen drei Programmen können genau dieselben Grundterme der Form
myplus(...) abgeleitet werden.

Alle drei Programme erzeugen jedoch unterschiedliche Ausgaben in Prolog.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 424

Kapitel 5: Logik-Programmierung · Abschnitt 5.4: Logik-Programmierung und Prolog

Programm: myplus1.pl

myplus(X,Y,Z) :- myplus(Y,X,Z).

myplus(0,X,X).

myplus(1,1,2). myplus(1,2,3). myplus(1,3,4).

myplus(2,2,4). myplus(2,3,5).

myplus(3,3,6).

Programm: myplus2.pl

myplus(0,X,X).

myplus(1,1,2). myplus(1,2,3). myplus(1,3,4).

myplus(2,2,4). myplus(2,3,5).

myplus(3,3,6).

myplus(X,Y,Z) :- myplus(Y,X,Z).

Programm: myplus3.pl

myplusH(0,X,X).

myplusH(1,1,2). myplusH(1,2,3). myplusH(1,3,4).

myplusH(2,2,4). myplusH(2,3,5).

myplusH(3,3,6).

myplus(X,Y,Z) :- myplusH(X,Y,Z).

myplus(X,Y,Z) :- myplusH(Y,X,Z).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 425

Kapitel 5: Logik-Programmierung · Abschnitt 5.4: Logik-Programmierung und Prolog

Programm: myplus1.pl

myplus(X,Y,Z) :- myplus(Y,X,Z).

myplus(0,X,X).

myplus(1,1,2). myplus(1,2,3). myplus(1,3,4).

myplus(2,2,4). myplus(2,3,5).

myplus(3,3,6).

Programm: myplus2.pl

myplus(0,X,X).

myplus(1,1,2). myplus(1,2,3). myplus(1,3,4).

myplus(2,2,4). myplus(2,3,5).

myplus(3,3,6).

myplus(X,Y,Z) :- myplus(Y,X,Z).

Programm: myplus3.pl

myplusH(0,X,X).

myplusH(1,1,2). myplusH(1,2,3). myplusH(1,3,4).

myplusH(2,2,4). myplusH(2,3,5).

myplusH(3,3,6).

myplus(X,Y,Z) :- myplusH(X,Y,Z).

myplus(X,Y,Z) :- myplusH(Y,X,Z).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 425

Kapitel 5: Logik-Programmierung · Abschnitt 5.4: Logik-Programmierung und Prolog

Programm: myplus1.pl

myplus(X,Y,Z) :- myplus(Y,X,Z).

myplus(0,X,X).

myplus(1,1,2). myplus(1,2,3). myplus(1,3,4).

myplus(2,2,4). myplus(2,3,5).

myplus(3,3,6).

Programm: myplus2.pl

myplus(0,X,X).

myplus(1,1,2). myplus(1,2,3). myplus(1,3,4).

myplus(2,2,4). myplus(2,3,5).

myplus(3,3,6).

myplus(X,Y,Z) :- myplus(Y,X,Z).

Programm: myplus3.pl

myplusH(0,X,X).

myplusH(1,1,2). myplusH(1,2,3). myplusH(1,3,4).

myplusH(2,2,4). myplusH(2,3,5).

myplusH(3,3,6).

myplus(X,Y,Z) :- myplusH(X,Y,Z).

myplus(X,Y,Z) :- myplusH(Y,X,Z).

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 425

Kapitel 5: Logik-Programmierung · Abschnitt 5.4: Logik-Programmierung und Prolog

Aus Sicht des Prolog-Interpreters (und des Interpreters PErsteAntwort) ist
das Programm myplus1.pl idiotisch und liefert auf keine Anfrage der Form

”
myplus(...)“ eine Antwort, da die Auswertung des Programms stets mit der
ersten Regel in eine Endlosschleife gerät.

Das Programm myplus2.pl ist besser, hält aber auch bei
”
falschen“ Anfragen

wie z.B.
”
myplus(1,1,3)“ nicht an, da die Auswertung des Programms dann

mit der letzten Regel in eine Endlosschleife gerät.

Das Programm myplus3.pl leistet das, was es soll.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 426

Kapitel 5: Logik-Programmierung · Abschnitt 5.4: Logik-Programmierung und Prolog

Aus Sicht des Prolog-Interpreters (und des Interpreters PErsteAntwort) ist
das Programm myplus1.pl idiotisch und liefert auf keine Anfrage der Form

”
myplus(...)“ eine Antwort, da die Auswertung des Programms stets mit der
ersten Regel in eine Endlosschleife gerät.

Das Programm myplus2.pl ist besser, hält aber auch bei
”
falschen“ Anfragen

wie z.B.
”
myplus(1,1,3)“ nicht an, da die Auswertung des Programms dann

mit der letzten Regel in eine Endlosschleife gerät.

Das Programm myplus3.pl leistet das, was es soll.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 426

Kapitel 5: Logik-Programmierung · Abschnitt 5.4: Logik-Programmierung und Prolog

Aus Sicht des Prolog-Interpreters (und des Interpreters PErsteAntwort) ist
das Programm myplus1.pl idiotisch und liefert auf keine Anfrage der Form

”
myplus(...)“ eine Antwort, da die Auswertung des Programms stets mit der
ersten Regel in eine Endlosschleife gerät.

Das Programm myplus2.pl ist besser, hält aber auch bei
”
falschen“ Anfragen

wie z.B.
”
myplus(1,1,3)“ nicht an, da die Auswertung des Programms dann

mit der letzten Regel in eine Endlosschleife gerät.

Das Programm myplus3.pl leistet das, was es soll.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 426

Kapitel 5: Logik-Programmierung · Abschnitt 5.4: Logik-Programmierung und Prolog

Beweisbäume vs. Suchbäume

Beweisbäume
sind in Definition 5.14 definiert. Ein Beweisbaum ist eine graphische Darstellung
einer Ableitung eines Terms t ∈ TLP aus einem Logikprogramm Π ∈ LP.

Somit stellt ein Beweisbaum eine einzelne Ableitung dar. Diese entspricht einem
erfolgreichen Lauf unseres nichtdeterministischen Interpreters Antwort.

Suchbäume
stellen die vollständige Suche des Prolog-Interpreters bei Eingabe eines
Logikprogramms Π und einer Anfrage ?- α dar. Insbesondere enthält der
Suchbaum Informationen über alle erfolgreichen Läufe des
nichtdeterministischen Interpreters Antwort.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 427

Kapitel 5: Logik-Programmierung · Abschnitt 5.4: Logik-Programmierung und Prolog

Beweisbäume vs. Suchbäume

Beweisbäume
sind in Definition 5.14 definiert. Ein Beweisbaum ist eine graphische Darstellung
einer Ableitung eines Terms t ∈ TLP aus einem Logikprogramm Π ∈ LP.

Somit stellt ein Beweisbaum eine einzelne Ableitung dar. Diese entspricht einem
erfolgreichen Lauf unseres nichtdeterministischen Interpreters Antwort.

Suchbäume
stellen die vollständige Suche des Prolog-Interpreters bei Eingabe eines
Logikprogramms Π und einer Anfrage ?- α dar. Insbesondere enthält der
Suchbaum Informationen über alle erfolgreichen Läufe des
nichtdeterministischen Interpreters Antwort.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 427

Kapitel 5: Logik-Programmierung · Abschnitt 5.4: Logik-Programmierung und Prolog

Beweisbäume vs. Suchbäume

Beweisbäume
sind in Definition 5.14 definiert. Ein Beweisbaum ist eine graphische Darstellung
einer Ableitung eines Terms t ∈ TLP aus einem Logikprogramm Π ∈ LP.

Somit stellt ein Beweisbaum eine einzelne Ableitung dar. Diese entspricht einem
erfolgreichen Lauf unseres nichtdeterministischen Interpreters Antwort.

Suchbäume
stellen die vollständige Suche des Prolog-Interpreters bei Eingabe eines
Logikprogramms Π und einer Anfrage ?- α dar. Insbesondere enthält der
Suchbaum Informationen über alle erfolgreichen Läufe des
nichtdeterministischen Interpreters Antwort.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 427

Kapitel 5: Logik-Programmierung · Abschnitt 5.4: Logik-Programmierung und Prolog

Unifikation in Prolog

In Prolog testet der Ausdruck t = s nicht, ob die Terme t und s gleich sind,
sondern ob sie unifizierbar sind.

Der in den meisten Prologimplementierungen verwendete
Unifikationsalgorithmus testet aus Effizienzgründen bei der Unifikation einer
Variablen X mit einem Term t nicht, ob X in t vorkommt.

Diesen Test bezeichnet man als Occurs-Check, er findet in den Zeilen 3 und 6
unseres Unifikationsalgorithmus MGU statt.

In Prolog ist es eine Aufgabe des Programmierers, sicherzustellen, dass niemals
eine Variable mit einem Term unifiziert wird, der diese Variable enthält.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 428

Kapitel 5: Logik-Programmierung · Abschnitt 5.4: Logik-Programmierung und Prolog

Unifikation in Prolog

In Prolog testet der Ausdruck t = s nicht, ob die Terme t und s gleich sind,
sondern ob sie unifizierbar sind.

Der in den meisten Prologimplementierungen verwendete
Unifikationsalgorithmus testet aus Effizienzgründen bei der Unifikation einer
Variablen X mit einem Term t nicht, ob X in t vorkommt.

Diesen Test bezeichnet man als Occurs-Check, er findet in den Zeilen 3 und 6
unseres Unifikationsalgorithmus MGU statt.

In Prolog ist es eine Aufgabe des Programmierers, sicherzustellen, dass niemals
eine Variable mit einem Term unifiziert wird, der diese Variable enthält.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 428

Kapitel 5: Logik-Programmierung · Abschnitt 5.4: Logik-Programmierung und Prolog

Unifikation in Prolog

In Prolog testet der Ausdruck t = s nicht, ob die Terme t und s gleich sind,
sondern ob sie unifizierbar sind.

Der in den meisten Prologimplementierungen verwendete
Unifikationsalgorithmus testet aus Effizienzgründen bei der Unifikation einer
Variablen X mit einem Term t nicht, ob X in t vorkommt.

Diesen Test bezeichnet man als Occurs-Check, er findet in den Zeilen 3 und 6
unseres Unifikationsalgorithmus MGU statt.

In Prolog ist es eine Aufgabe des Programmierers, sicherzustellen, dass niemals
eine Variable mit einem Term unifiziert wird, der diese Variable enthält.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 428

Kapitel 5: Logik-Programmierung · Abschnitt 5.4: Logik-Programmierung und Prolog

Unifikation in Prolog

In Prolog testet der Ausdruck t = s nicht, ob die Terme t und s gleich sind,
sondern ob sie unifizierbar sind.

Der in den meisten Prologimplementierungen verwendete
Unifikationsalgorithmus testet aus Effizienzgründen bei der Unifikation einer
Variablen X mit einem Term t nicht, ob X in t vorkommt.

Diesen Test bezeichnet man als Occurs-Check, er findet in den Zeilen 3 und 6
unseres Unifikationsalgorithmus MGU statt.

In Prolog ist es eine Aufgabe des Programmierers, sicherzustellen, dass niemals
eine Variable mit einem Term unifiziert wird, der diese Variable enthält.

Nicole Schweikardt · HU Berlin · Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 428

Kapitel 6:

Literatur

	Einleitung
	Von der Bibel bis zu den Simpsons
	Die Anfänge der formalen Logik

	Logik in der Informatik
	Einführung in die Logik-Programmierung

	Lernziele, Semesterausblick und Literatur

	Aussagenlogik
	Syntax und Semantik
	Syntax der Aussagenlogik
	Semantik der Aussagenlogik
	Erfüllbarkeit, Allgemeingültigkeit und die Folgerungsbeziehung

	Aussagenlogische Modellierung
	Beispiel 1: Sudoku
	Beispiel 2: Automatische Hardwareverifikation

	Äquivalenz und Adäquatheit
	Normalformen
	Der Endlichkeitssatz
	Resolution
	Erfüllbarkeitsalgorithmen
	Hornformeln

	Logik erster Stufe
	Strukturen
	Terme der Logik erster Stufe
	Syntax der Logik erster Stufe
	Semantik der Logik erster Stufe
	Beispiele zur Semantik der Logik erster Stufe
	Formale Definition der Semantik der Logik erster Stufe
	Das Isomorphielemma
	Das Koinzidenzlemma
	Sätze der Logik erster Stufe

	Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen
	Logik und Datenbanken
	Äquivalenz von Formeln der Logik erster Stufe
	Ehrenfeucht-Fraïssé-Spiele
	Erfüllbarkeit, Allgemeingültigkeit und die Folgerungsbeziehung
	Normalformen

	Grundlagen des automatischen Schließens
	Kalküle und Ableitungen
	Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz
	Der Endlichkeitssatz
	Die Grenzen der Berechenbarkeit
	Der Satz von Herbrand
	Automatische Theorembeweiser

	Logik-Programmierung
	Einführung
	Syntax und deklarative Semantik von Logikprogrammen
	Operationelle Semantik
	Logik-Programmierung und Prolog

