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Kapitel 1:
Einleitung



Abschnitt 1.1:

Von der Bibel bis zu den Simpsons



Kapitel 1: Einleitung - Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Logik

altgriechisch , logos": Vernunft

die Lehre des verniinftigen Schlussfolgerns

Teilgebiet u.a. der Disziplinen Philosophie, Mathematik und Informatik

zentrale Frage:
Wie kann man Aussagen miteinander verkniipfen, und auf welche Weise
kann man formal Schliisse ziehen und Beweise durchfiihren?
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Das Liignerparadoxon von Epimenides

Brief des Paulus an Titus 1:12-13:
Es hat einer von ihnen gesagt, ihr eigener Prophet:
Die Kreter sind immer Liigner, bése Tiere und faule Biuche.
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in dem Satz ,,Die Kreter sind immer Liigner, bése Tiere und faule
Bauche* gelogen. D.h. die Aussage des Propheten ist nicht wahr.
Dies ist ein Widerspruch!
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Das Liignerparadoxon von Epimenides

Brief des Paulus an Titus 1:12-13:
Es hat einer von ihnen gesagt, ihr eigener Prophet:
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Das Liignerparadoxon von Epimenides

Brief des Paulus an Titus 1:12-13:
Es hat einer von ihnen gesagt, ihr eigener Prophet:
Die Kreter sind immer Liigner, bése Tiere und faule Biuche.

Angenommen, die Aussage des Propheten ist wahr.
Da der Prophet selbst Kreter ist, liigt er also immer (und ist ein
boses Tier und ein fauler Bauch). Dann hat er aber insbesondere
in dem Satz ,,Die Kreter sind immer Liigner, bése Tiere und faule
Bauche* gelogen. D.h. die Aussage des Propheten ist nicht wahr.
Dies ist ein Widerspruch!

Angenommen, die Aussage des Propheten ist falsch.
Dann gibt es Kreter, die nicht immer Liigner, bése Tiere und
faule Bauche sind. Dies stellt keinen Widerspruch dar.

Insgesamt wissen wir also, dass der Prophet in seiner obigen Aussage nicht die
Wahrheit gesagt hat.
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Protagoras und sein Student Euthalus vor Gericht

i Protagoras (490 — 420 v.Chr.)
Quelle: http: //www greatthoughtstreasury com/author/protagoras

Euthalus studierte die Kunst der Argumentation beim Meister Protago-
ras, um Anwalt zu werden.

Er vereinbart mit Protagoras, die Gebiihren fiir den Unterricht zu be-
zahlen, sobald er seinen ersten Prozess gewonnen hat.
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Protagoras und sein Student Euthalus vor Gericht

i Protagoras (490 — 420 v.Chr.)
Quelle: http: //www greatthoughtstreasury.com/author/protagoras

Euthalus studierte die Kunst der Argumentation beim Meister Protago-
ras, um Anwalt zu werden.

Er vereinbart mit Protagoras, die Gebiihren fiir den Unterricht zu be-
zahlen, sobald er seinen ersten Prozess gewonnen hat.

Aber dann zégert Euthalus seine Anwaltstitigkeit immer weiter hinaus,
und schlieBlich beschlieBt Protagoras, seine Gebiihren einzuklagen.
Euthalus verteidigt sich selbst . . .
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Protagoras denkt:
Wenn ich den Prozess gewinne, muss Euthalus gemaB
Gerichtsbeschluss zahlen.
Wenn ich den Prozess verliere, muss Euthalus gemaB unserer
Vereinbarung zahlen, da er dann seinen ersten Prozess gewonnen
hat.
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Gerichtsbeschluss zahlen.
Wenn ich den Prozess verliere, muss Euthalus gemaB unserer
Vereinbarung zahlen, da er dann seinen ersten Prozess gewonnen
hat.

Euthalus denkt:
Wenn ich den Prozess gewinne, muss ich gemaB
Gerichtsbeschluss nicht zahlen.
Wenn ich den Prozess verliere, muss ich gemaB unserer
Vereinbarung nicht zahlen.
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Achilles und die Schildkrote

Achilles und die Schildkréte laufen ein Wettrennen. Achilles gewéhrt
der Schildkréte einen Vorsprung. Zenon behauptet, dass Achilles die
Schildkréte niemals einholen kann.

1 Zenon von Elea (490 — 425 v.Chr.) Quelle:
http://aefucr.blogspot.de/2008/04/resolucin-de-la-paradoja-de-zenn-de.html
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Achilles und die Schildkrote

Achilles und die Schildkréte laufen ein Wettrennen. Achilles gewéhrt
der Schildkréte einen Vorsprung. Zenon behauptet, dass Achilles die
Schildkréte niemals einholen kann.

! Zenon von Elea (490 — 425 v.Chr.) Quelle:
http://aefucr. blogspot de/2008/04/resolucin-de-la-paradoja-de-zenn-de.html

Zenons Begriindung: Zu dem Zeitpunkt, an dem Achilles den Startpunkt der
Schildkrote erreicht, ist die Schildkréte schon ein Stiick weiter.
Etwas spater erreicht Achilles diesen Punkt, aber die Schildkrote
ist schon etwas weiter. Wenn Achilles diesen Punkt erreicht, ist
die Schildkrote wieder etwas weiter. So kann Achilles zwar immer
niaher an die Schildkrote herankommen, sie aber niemals einholen.
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Auflésung durch die Infinitesimalrechnung:

Gottfried Wilhelm von Leibniz (1646 — 1716)

und Isaac Newton (1643 — 1727)
Quelle: http://wuw-history.mcs.st-and.ac.uk/PictDisplay/Leibniz.html
und Quelle: http://de.wikipedia.org/wiki/Isaac_Newton
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Der Barbier von Sonnenthal

Im Stadtchen Sonnenthal (in dem bekanntlich viele seltsame Dinge pas-
sieren) wohnt ein Barbier, der genau diejenigen miannlichen Einwohner
von Sonnenthal rasiert, die sich nicht selbst rasieren.

Frage: Rasiert der Barbier sich selbst?
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Angenommen, der Barbier rasiert sich nicht selbst.
Da er in Sonnenthal wohnt und dort alle Einwohner rasiert, die
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Die Anfange der formalen Logik
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Aristoteles’ Syllogismen

Die folgende Schlussweise ist aus rein formalen Griinden korrekt.

Annahme 1:  Alle Menschen sind sterblich.
Annahme 2:  Sokrates ist ein Mensch.

Folgerung:  Also ist Sokrates sterblich.
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Aristoteles’ Syllogismen

Die folgende Schlussweise ist aus rein formalen Griinden korrekt.

Annahme 1:  Alle Menschen sind sterblich.
Annahme 2:  Sokrates ist ein Mensch.

Folgerung:  Also ist Sokrates sterblich.

Diese Art von Schluss und eine Reihe verwandter Schlussweisen nennt man
Syllogismen.

Annahme 1: Alle A sind B.
Annahme 2:  Cist ein A.

Folgerung:  Also ist C B.
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Beispiele
Annahme 1:  Alle Borg sind assimiliert worden.
Annahme 2:  Seven of Nine ist eine Borg.

Folgerung:

Also ist Seven of Nine assimiliert worden.
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Beispiele

Annahme 1:  Alle Borg sind assimiliert worden.
Annahme 2:  Seven of Nine ist eine Borg.

Folgerung:  Also ist Seven of Nine assimiliert worden.

Annahme 1:  Alle Substitutionschiffren sind
anfillig gegen Brute-Force-Angriffe.
Annahme 2:  Der Julius-César-Chiffre ist ein Substitutionschiffre.
Folgerung:  Also ist der Julius-Casar-Chiffre anfallig
gegen Brute-Force-Angriffe.
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Aristoteles (384 - 322 v.Chr.)
Quelle: http://de.wikipedia.org/wiki/Aristoteles
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Ein komplizierterer formaler Schluss

Annahme 1:  Es gibt keine Schweine, die fliegen konnen.
Annahme 2:  Alle Schweine sind gefraBige Tiere.
Annahme 3:  Es gibt Schweine.

Folgerung:  Also gibt es gefraBige Tiere, die nicht fliegen kdnnen.
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Ein komplizierterer formaler Schluss

Annahme 1:  Es gibt keine Schweine, die fliegen konnen.
Annahme 2:  Alle Schweine sind gefraBige Tiere.
Annahme 3:  Es gibt Schweine.

Folgerung:  Also gibt es gefraBige Tiere, die nicht fliegen kdnnen.

Die Form des Schlusses ist:

Annahme 1:  Es gibt keine A, die B (sind).
Annahme 2:  Alle A sind C.
Annahme 3: Es gibt A.

Folgerung:  Also gibt es C, die nicht B (sind).
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Charles Lutwidge Dodgson a.k.a. Lewis Carroll (1838 — 1898)
Quelle: http://en.wikiquote.org/wiki/Lewis_Carroll

“Contrariwise,” continued Tweedledee, “if it was so, it might be; and if
it were so, it would be; but as it isn't, it ain't. That's logic.”

aus: Alice in Wonderland
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Nicht jeder formale Schluss ist korrekt

Annahme 1: Es gibt Vogel, die fliegen kdnnen.
Annahme 2:  Es gibt keine fliegenden (Tiere),
die Klavier spielen kdnnen.

Folgerung:  Also gibt es keine Vogel, die Klavier spielen kdnnen.
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Nicht jeder formale Schluss ist korrekt

Annahme 1: Es gibt Vogel, die fliegen kdnnen.
Annahme 2:  Es gibt keine fliegenden (Tiere),
die Klavier spielen kdnnen.

Folgerung:  Also gibt es keine Vogel, die Klavier spielen kdnnen.

Kein korrekter Schluss, auch wenn in diesem Fall die Folgerung wahr ist.

Der folgende, offensichtlich falsche, Schluss hat dieselbe Form:

Annahme 1:  Es gibt Menschen, die stumm sind.
Annahme 2:  Es gibt keine stummen (Lebewesen),
die sprechen konnen.

Folgerung: Also gibt es keine Menschen, die sprechen konnen.
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Kapitel 1: Einleitung - Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Aber wie merkt man es?

Man kann einen falschen Schluss entlarven, indem man einen formal gleichen
Schluss findet, der klar falsch ist.

Annahme 1:  Erbeeren schmecken gut.
Annahme 2:  Schlagsahne schmeckt gut.
Folgerung:  Also schmecken Erdbeeren mit Schlagsahne gut.
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Kapitel 1: Einleitung - Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Aber wie merkt man es?

Man kann einen falschen Schluss entlarven, indem man einen formal gleichen
Schluss findet, der klar falsch ist.

Annahme 1:  Erbeeren schmecken gut.
Annahme 2:  Schlagsahne schmeckt gut.
Folgerung:  Also schmecken Erdbeeren mit Schlagsahne gut.

Aber:

Annahme 1:  Pizza schmeckt gut.
Annahme 2:  Schlagsahne schmeckt gut.

Folgerung:  Also schmeckt Pizza mit Schlagsahne gut.
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Kapitel 1: Einleitung - Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Wasons Auswahlaufgabe (Wason's selection task)

Uns stehen vier Karten der folgenden Art zur Verfiigung:
Auf jeder Karte steht auf der Vorderseite eine Ziffer zwischen 0 und 9. Die

Riickseite jeder Karte ist komplett rot oder komplett blau.
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Kapitel 1: Einleitung - Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Wasons Auswahlaufgabe (Wason's selection task)

Uns stehen vier Karten der folgenden Art zur Verfiigung:
Auf jeder Karte steht auf der Vorderseite eine Ziffer zwischen 0 und 9. Die
Riickseite jeder Karte ist komplett rot oder komplett blau.

Wir sehen Folgendes:

74

Jemand hat folgende Hypothese aufgestellt:
Wenn auf der Vorderseite eine gerade Zahl steht,
dann ist die Riickseite rot.
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Kapitel 1: Einleitung - Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Wasons Auswahlaufgabe (Wason's selection task)

Uns stehen vier Karten der folgenden Art zur Verfiigung:
Auf jeder Karte steht auf der Vorderseite eine Ziffer zwischen 0 und 9. Die
Riickseite jeder Karte ist komplett rot oder komplett blau.

Wir sehen Folgendes:

74

Jemand hat folgende Hypothese aufgestellt:
Wenn auf der Vorderseite eine gerade Zahl steht,
dann ist die Riickseite rot.
Welche Karte(n) miissen Sie umdrehen, um zu iiberpriifen, ob die Hypothese

stimmt?
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Kapitel 1: Einleitung - Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Und was sagen die Simpsons?

Homer:

Lisa:
Homer:
Lisa:

Homer:
Lisa:
Homer:
Lisa:
Homer:
Quelle: http://en. Lisa:
wikipedia.org/wiki/

Simpson_family

Homer:

Not a bear in sight. The Bear Patrol
must be working like a charm.
That's specious reasoning, Dad.
Thank you, dear.

By your logic | could claim that
this rock keeps tigers away.

Oh, how does it work?

It doesn't work.

Uh-huh.

It's just a stupid rock.

Uh-huh.

But | don't see any tigers around,
do you?

(Pause)

Lisa, | want to buy your rock.

[Lisa refuses at first, then takes the exchange]
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Kapitel 1: Einleitung - Abschnitt 1.2: Logik in der Informatik

Die Rolle der Logik in der Informatik

Halpern, Harper, Immerman, Kolaitis, Vardi, Vianu (2001):
Concepts and methods of logic occupy a central place in computer
science, insomuch that logic has been called
“the calculus of computer science”.

aus: On the unusual effectiveness of logic in computer science, Bulletin of
Symbolic Logic 7(2): 213-236 (2001)

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 17



Kapitel 1: Einleitung - Abschnitt 1.2: Logik in der Informatik

Anwendungsbereiche der Logik in der Informatik

® Reprisentation von Wissen (z.B. im Bereich der kiinstlichen Intelligenz)
[siehe Kapitel 2 und 3]
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Kapitel 1: Einleitung - Abschnitt 1.2: Logik in der Informatik

Anwendungsbereiche der Logik in der Informatik

® Reprisentation von Wissen (z.B. im Bereich der kiinstlichen Intelligenz)
[siehe Kapitel 2 und 3]

® Grundlage fiir Datenbank-Anfragesprachen [siehe Kapitel 3]
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Kapitel 1: Einleitung - Abschnitt 1.2: Logik in der Informatik

Anwendungsbereiche der Logik in der Informatik

® Reprisentation von Wissen (z.B. im Bereich der kiinstlichen Intelligenz)
[siche Kapitel 2 und 3]

® Grundlage fiir Datenbank-Anfragesprachen [siehe Kapitel 3]

® Bestandteil von Programmiersprachen
(z.B. um Bedingungen in IF-Anweisungen zu formulieren) [siche Kapitel 2]
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Anwendungsbereiche der Logik in der Informatik

® Reprisentation von Wissen (z.B. im Bereich der kiinstlichen Intelligenz)
[siche Kapitel 2 und 3]

® Grundlage fiir Datenbank-Anfragesprachen [siehe Kapitel 3]

® Bestandteil von Programmiersprachen
(z.B. um Bedingungen in IF-Anweisungen zu formulieren) [siche Kapitel 2]

® automatische Generierung von Beweisen
(so genannte Theorembeweiser) [siehe Kapitel 4]
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Kapitel 1: Einleitung - Abschnitt 1.2: Logik in der Informatik

Anwendungsbereiche der Logik in der Informatik

® Reprisentation von Wissen (z.B. im Bereich der kiinstlichen Intelligenz)
[siche Kapitel 2 und 3]

Grundlage fiir Datenbank-Anfragesprachen [siehe Kapitel 3]

Bestandteil von Programmiersprachen
(z.B. um Bedingungen in IF-Anweisungen zu formulieren) [siche Kapitel 2]

automatische Generierung von Beweisen
(so genannte Theorembeweiser) [siehe Kapitel 4]

Verifikation von

® Schaltkreisen (Ziel: beweise, dass ein Schaltkreis bzw. Chip ,richtig"
funktioniert)
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Kapitel 1: Einleitung - Abschnitt 1.2: Logik in der Informatik

Anwendungsbereiche der Logik in der Informatik

® Reprisentation von Wissen (z.B. im Bereich der kiinstlichen Intelligenz)
[siche Kapitel 2 und 3]

Grundlage fiir Datenbank-Anfragesprachen [siehe Kapitel 3]

Bestandteil von Programmiersprachen
(z.B. um Bedingungen in IF-Anweisungen zu formulieren) [siche Kapitel 2]

automatische Generierung von Beweisen
(so genannte Theorembeweiser) [siehe Kapitel 4]

Verifikation von

® Schaltkreisen (Ziel: beweise, dass ein Schaltkreis bzw. Chip ,richtig"
funktioniert)

® Programmen (Ziel: beweise, dass ein Programm gewisse wiinschenswerte
Eigenschaften hat)
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Kapitel 1: Einleitung - Abschnitt 1.2: Logik in der Informatik

Anwendungsbereiche der Logik in der Informatik

® Reprisentation von Wissen (z.B. im Bereich der kiinstlichen Intelligenz)
[siche Kapitel 2 und 3]

Grundlage fiir Datenbank-Anfragesprachen [siehe Kapitel 3]

Bestandteil von Programmiersprachen
(z.B. um Bedingungen in IF-Anweisungen zu formulieren) [siche Kapitel 2]

automatische Generierung von Beweisen
(so genannte Theorembeweiser) [siehe Kapitel 4]

Verifikation von

® Schaltkreisen (Ziel: beweise, dass ein Schaltkreis bzw. Chip ,richtig"
funktioniert)

® Programmen (Ziel: beweise, dass ein Programm gewisse wiinschenswerte
Eigenschaften hat)

® Protokollen (Ziel: beweise, dass die Kommunikation zwischen zwei
,Agenten”, die nach einem gewissen Protokoll ablduft, ,sicher” ist — etwa
gegen Abhoren oder Manipulation durch dritte; Anwendungsbeispiel:
Internet-Banking)
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Kapitel 1: Einleitung - Abschnitt 1.2: Logik in der Informatik

Anwendungsbereiche der Logik in der Informatik

® Reprisentation von Wissen (z.B. im Bereich der kiinstlichen Intelligenz)
[siche Kapitel 2 und 3]

Grundlage fiir Datenbank-Anfragesprachen [siehe Kapitel 3]

Bestandteil von Programmiersprachen
(z.B. um Bedingungen in IF-Anweisungen zu formulieren) [siche Kapitel 2]

automatische Generierung von Beweisen
(so genannte Theorembeweiser) [siehe Kapitel 4]

Verifikation von

® Schaltkreisen (Ziel: beweise, dass ein Schaltkreis bzw. Chip ,richtig"
funktioniert)

® Programmen (Ziel: beweise, dass ein Programm gewisse wiinschenswerte
Eigenschaften hat)

® Protokollen (Ziel: beweise, dass die Kommunikation zwischen zwei
,Agenten”, die nach einem gewissen Protokoll ablduft, ,sicher” ist — etwa
gegen Abhoren oder Manipulation durch dritte; Anwendungsbeispiel:
Internet-Banking)

® | ogik-Programmierung [siehe folgende Folien und Kapitel 5]
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Kapitel 1: Einleitung - Abschnitt 1.2: Logik in der Informatik

Einfiihrung in die Logik-Programmierung



Kapitel 1: Einleitung - Abschnitt 1.2: Logik in der Informatik

»Was" statt ,, Wie" am Beispiel von Tiramisu

Tiramisu — Deklarativ
Aus Eigelb, Mascarpone
und in Likdr und Kaffee
getrankten Biskuits
hergestellte cremige
SiiBspeise

(aus: DUDEN,
Fremdwdrterbuch, 6. Auflage)

Tiramisu — Imperativ
1/4 1 Milch mit 2 EL Kakao und 2 EL Zucker

aufkochen. 1/4 | starken Kaffee und 4 EL Amaretto
dazugeben.

5 Eigelb mit 75 g Zucker weiBschaumig riihren,
dann 500 g Mascarpone dazumischen.

ca 200 g Loffelbiskuit.

Eine Lage Loffelbiskuit in eine Auflaufform legen,
mit der Flissigkeit tranken und mit der Creme
iiberziehen. Dann wieder Léffelbiskuit darauflegen,
mit der restlichen Fliissigkeit tranken und mit der
restlichen Creme iiberziehen.

Uber Nacht im Kiihlschrank durchziehen lassen und
vor dem Servieren mit Kakao bestiuben.

(aus: Gisela Schweikardt, handschriftliche Kochrezepte)
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Kapitel 1: Einleitung - Abschnitt 1.2: Logik in der Informatik

Der groBe Traum der Informatik

Imperative Vorgehensweise:

Beschreibung, wie das gewiinschte Ergebnis erzeugt wird ..................... » Wie"

Deklarative Vorgehensweise:
Beschreibung der Eigenschaften des gewiinschten Ergebnisses ................. ,» Was"

Traum der Informatik:
Moglichst wenig , wie", moglichst viel ,,was"

D.h.: Automatische Generierung eines Ergebnisses aus seiner Spezifikation
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Kapitel 1: Einleitung - Abschnitt 1.2: Logik in der Informatik

Der groBe Traum der Informatik

Imperative Vorgehensweise:

Beschreibung, wie das gewiinschte Ergebnis erzeugt wird ....................., Wie"

Deklarative Vorgehensweise:

Beschreibung der Eigenschaften des gewiinschten Ergebnisses ................. ,» Was"

Traum der Informatik:
Moglichst wenig , wie", moglichst viel ,,was"

D.h.: Automatische Generierung eines Ergebnisses aus seiner Spezifikation

Realitat:
Datenbanken: Deklarative Anfragesprache ist Industriestandard (SQL)
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Kapitel 1: Einleitung - Abschnitt 1.2: Logik in der Informatik

Der groBe Traum der Informatik

Imperative Vorgehensweise:

Beschreibung, wie das gewiinschte Ergebnis erzeugt wird ....................., Wie"

Deklarative Vorgehensweise:

Beschreibung der Eigenschaften des gewiinschten Ergebnisses ................. ,» Was"

Traum der Informatik:
Moglichst wenig , wie", moglichst viel ,,was"

D.h.: Automatische Generierung eines Ergebnisses aus seiner Spezifikation

Realitat:
Datenbanken: Deklarative Anfragesprache ist Industriestandard (SQL)

Software-Entwicklung: Generierungs-Tools
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Kapitel 1: Einleitung - Abschnitt 1.2: Logik in der Informatik

Der groBe Traum der Informatik

Imperative Vorgehensweise:

Beschreibung, wie das gewiinschte Ergebnis erzeugt wird ....................., Wie"

Deklarative Vorgehensweise:

Beschreibung der Eigenschaften des gewiinschten Ergebnisses ................. ,» Was"

Traum der Informatik:
Moglichst wenig , wie", moglichst viel ,,was"

D.h.: Automatische Generierung eines Ergebnisses aus seiner Spezifikation

Realitat:
Datenbanken: Deklarative Anfragesprache ist Industriestandard (SQL)
Software-Entwicklung: Generierungs-Tools

Programmiersprachen: Logik-Programmierung, insbes. Prolog
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Kapitel 1: Einleitung - Abschnitt 1.2: Logik in der Informatik

Der groBe Traum der Informatik

Imperative Vorgehensweise:

Beschreibung, wie das gewiinschte Ergebnis erzeugt wird ....................., Wie"

Deklarative Vorgehensweise:

Beschreibung der Eigenschaften des gewiinschten Ergebnisses ................. ,» Was"

Traum der Informatik:
Moglichst wenig , wie", moglichst viel ,,was"

D.h.: Automatische Generierung eines Ergebnisses aus seiner Spezifikation

Realitat:

Datenbanken: Deklarative Anfragesprache ist Industriestandard (SQL)
Software-Entwicklung: Generierungs-Tools

Programmiersprachen: Logik-Programmierung, insbes. Prolog

ABER: Imperativer Ansatz iiberwiegt in der Praxis
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Kapitel 1: Einleitung - Abschnitt 1.2: Logik in der Informatik

Logik-Programmierung

® | ogik-Programmierung bezeichnet die Idee, Logik direkt als
Programmiersprache zu verwenden.
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Kapitel 1: Einleitung - Abschnitt 1.2: Logik in der Informatik

Logik-Programmierung

® | ogik-Programmierung bezeichnet die Idee, Logik direkt als
Programmiersprache zu verwenden.

® |ogik-Programmierung (in Sprachen wie Prolog) und die verwandte
funktionale Programmierung (in Sprachen wie LISP, ML, Haskell) sind
deklarativ,
im Gegensatz zur imperativen Programmierung (in Sprachen wie Java, C,
Perl).
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Kapitel 1: Einleitung - Abschnitt 1.2: Logik in der Informatik

Logik-Programmierung

® | ogik-Programmierung bezeichnet die Idee, Logik direkt als
Programmiersprache zu verwenden.

® |ogik-Programmierung (in Sprachen wie Prolog) und die verwandte
funktionale Programmierung (in Sprachen wie LISP, ML, Haskell) sind
deklarativ,
im Gegensatz zur imperativen Programmierung (in Sprachen wie Java, C,
Perl).

® Die ldee der deklarativen Programmierung besteht darin, dem Computer
lediglich sein Wissen {iber das Anwendungsszenario und sein Ziel mitzuteilen
und dann die Lésung des Problems dem Computer zu iiberlassen.

Bei der imperativen Programmierung hingegen gibt man dem Computer die
einzelnen Schritte zur Losung des Problems vor.
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Kapitel 1: Einleitung - Abschnitt 1.2: Logik in der Informatik

Prolog

® Prolog

® ist die wichtigste logische Programmiersprache,

® geht zuriick auf Kowalski und Colmerauer
(Anfang der 1970er Jahre, Marseilles),

® steht fiir (franz.) Programmation en logique.

® Mitte/Ende der 1970er Jahre: effiziente Prolog-Implementierung durch den
von Warren (in Edinburgh) entwickelten Prolog-10 Compiler.
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Kapitel 1: Einleitung - Abschnitt 1.2: Logik in der Informatik

Prolog

® Prolog

® ist die wichtigste logische Programmiersprache,

® geht zuriick auf Kowalski und Colmerauer
(Anfang der 1970er Jahre, Marseilles),

® steht fiir (franz.) Programmation en logique.

® Mitte/Ende der 1970er Jahre: effiziente Prolog-Implementierung durch den
von Warren (in Edinburgh) entwickelten Prolog-10 Compiler.

® Aus Effizienzgriinden werden in Prolog die abstrakten Ideen der logischen
Programmierung nicht in Reinform umgesetzt, Prolog hat auch
,hichtlogische" Elemente.
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Kapitel 1: Einleitung - Abschnitt 1.2: Logik in der Informatik

Prolog

® Prolog

® ist die wichtigste logische Programmiersprache,

® geht zuriick auf Kowalski und Colmerauer
(Anfang der 1970er Jahre, Marseilles),

® steht fiir (franz.) Programmation en logique.

® Mitte/Ende der 1970er Jahre: effiziente Prolog-Implementierung durch den
von Warren (in Edinburgh) entwickelten Prolog-10 Compiler.

® Aus Effizienzgriinden werden in Prolog die abstrakten Ideen der logischen
Programmierung nicht in Reinform umgesetzt, Prolog hat auch
,hichtlogische" Elemente.

® Prolog ist eine voll entwickelte und machtige Programmiersprache, die vor
allem fiir symbolische Berechnungsprobleme geeignet ist.
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Kapitel 1: Einleitung - Abschnitt 1.2: Logik in der Informatik

Anwendungen

Die wichtigsten Anwendungsgebiete sind die kiinstliche Intelligenz und die

Computerlinguistik.

Version vom 25. Januar 2024 Folie 23
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Kapitel 1: Einleitung - Abschnitt 1.2: Logik in der Informatik

Anwendungen

Die wichtigsten Anwendungsgebiete sind die kiinstliche Intelligenz und die
Computerlinguistik.

Beispiele
Das Interface fiir natiirliche Sprache

® in der International Space Station wurde von der NASA

® beim IBM Watson System, das in 2011 die Jeopardy! Man vs. Machine
Challenge gewonnen hat, wurde

in Prolog implementiert.
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Kapitel 1: Einleitung - Abschnitt 1.2: Logik in der Informatik
Anwendungen

Die wichtigsten Anwendungsgebiete sind die kiinstliche Intelligenz und die
Computerlinguistik.

Beispiele
Das Interface fiir natiirliche Sprache

® in der International Space Station wurde von der NASA

® beim IBM Watson System, das in 2011 die Jeopardy! Man vs. Machine
Challenge gewonnen hat, wurde

in Prolog implementiert.
Mehr Informationen dazu finden sich z.B. unter
https://sicstus.sics.se/customers.html und

http://www.cs.nmsu.edu/ALP/2011/03/
natural-language-processing-with-prolog-in-the-ibm-watson-system/
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Kapitel 1: Einleitung - Abschnitt 1.2: Logik in der Informatik

Learn Prolog Now!

Im Rahmen der Ubungsaufgaben zur Vorlesung werden wir jede Woche eins der
12 Kapitel des Buchs

»Learn Prolog Now!" von Patrick Blackburn, Johan Bos und Kristina
Striegnitz (Kings College Publications, 2006)

auch erhdltlich als  Online-Kurs  unter http://www.
learnprolognow.org

durcharbeiten.
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Kapitel 1: Einleitung - Abschnitt 1.2: Logik in der Informatik

Learn Prolog Now!

Im Rahmen der Ubungsaufgaben zur Vorlesung werden wir jede Woche eins der
12 Kapitel des Buchs

»Learn Prolog Now!" von Patrick Blackburn, Johan Bos und Kristina
Striegnitz (Kings College Publications, 2006)

auch erhdltlich als  Online-Kurs  unter http://www.
learnprolognow.org

durcharbeiten. )
Als Unterstiitzung dazu gibt es jede Woche eine 2-stiindige Prolog-Ubung.
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Kapitel 1: Einleitung - Abschnitt 1.2: Logik in der Informatik

Learn Prolog Now!

Im Rahmen der Ubungsaufgaben zur Vorlesung werden wir jede Woche eins der
12 Kapitel des Buchs

»Learn Prolog Now!" von Patrick Blackburn, Johan Bos und Kristina
Striegnitz (Kings College Publications, 2006)

auch erhdltlich als  Online-Kurs  unter http://www.
learnprolognow.org

durcharbeiten. )
Als Unterstiitzung dazu gibt es jede Woche eine 2-stiindige Prolog-Ubung.

Am Ende des Semesters, in Kapitel 5, werden wir von Prolog abstrahieren und
uns die Grundprinzipien der Logik-Programmierung anschauen.
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Abschnitt 1.3:

Lernziele, Semesterausblick und Literatur



Kapitel 1: Einleitung - Abschnitt 1.3: Lernziele, Semesterausblick und Literatur

Lern- und Qualifikationsziele

Aus der Modulbeschreibung:
Studierende erlangen die Fihigkeit, Sachverhalte in geeigneten formalen
Systemen zu formalisieren und die grundlegenden Begriffe und Ergeb-
nisse der mathematischen Logik zu verstehen und anzuwenden. Dariiber
hinaus erlernen sie anhand der deklarativen Programmiersprache Prolog
ein neues Programmierparadigma.
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Kapitel 1: Einleitung - Abschnitt 1.3: Lernziele, Semesterausblick und Literatur

Lern- und Qualifikationsziele

Aus der Modulbeschreibung:
Studierende erlangen die Fihigkeit, Sachverhalte in geeigneten formalen
Systemen zu formalisieren und die grundlegenden Begriffe und Ergeb-
nisse der mathematischen Logik zu verstehen und anzuwenden. Dariiber
hinaus erlernen sie anhand der deklarativen Programmiersprache Prolog
ein neues Programmierparadigma.

Und was sagt Goethe dazu?
Mein teurer Freund, ich rat Euch drum
Zuerst Collegium Logicum.
Da wird der Geist Euch wohl dressiert,
In spanische Stiefeln eingeschniirt,
DaB er bedachtiger so fortan
Hinschleiche die Gedankenbahn,
Und nicht etwa, die Kreuz und Quer,
Irrlichteliere hin und her.

Mephistopheles in Faust
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Semesteriberblick

1. Einleitung (dieses Kapitel)
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Kapitel 1: Einleitung - Abschnitt 1.3: Lernziele, Semesterausblick und Literatur

Semesteriiberblick
1. Einleitung (dieses Kapitel)

2. Aussagenlogik
Syntax und Semantik, Normalformen, Modellierung,

Resolution, Erfiillbarkeitsalgorithmen
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Kapitel 1: Einleitung - Abschnitt 1.3: Lernziele, Semesterausblick und Literatur

Semesteriberblick

1. Einleitung (dieses Kapitel)

2. Aussagenlogik
Syntax und Semantik, Normalformen, Modellierung,
Resolution, Erfiillbarkeitsalgorithmen

3. Logik erster Stufe

Syntax und Semantik, Normalformen, Modellierung,
Nichtausdriickbarkeit
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Kapitel 1: Einleitung - Abschnitt 1.3: Lernziele, Semesterausblick und Literatur

Semesteriberblick

1. Einleitung (dieses Kapitel)

2. Aussagenlogik
Syntax und Semantik, Normalformen, Modellierung,
Resolution, Erfiillbarkeitsalgorithmen

3. Logik erster Stufe
Syntax und Semantik, Normalformen, Modellierung,
Nichtausdriickbarkeit

4. Grundlagen des automatischen SchlieBens

Sequenzenkalkiil, Vollstandigkeits- und Endlichkeitssatz,
Grenzen der Berechenbarkeit, automatische Theorembeweiser
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Kapitel 1: Einleitung - Abschnitt 1.3: Lernziele, Semesterausblick und Literatur

Semesteriberblick

1. Einleitung (dieses Kapitel)

2. Aussagenlogik
Syntax und Semantik, Normalformen, Modellierung,
Resolution, Erfiillbarkeitsalgorithmen

3. Logik erster Stufe
Syntax und Semantik, Normalformen, Modellierung,
Nichtausdriickbarkeit

4. Grundlagen des automatischen SchlieBens
Sequenzenkalkiil, Vollstandigkeits- und Endlichkeitssatz,
Grenzen der Berechenbarkeit, automatische Theorembeweiser

5. Grundlagen der Logik-Programmierung
Syntax und deklarative Semantik von Logikprogrammen, Ableitungen und
Beweisbdume, operationelle Semantik, Unifikation
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Kapitel 1: Einleitung - Abschnitt 1.3: Lernziele, Semesterausblick und Literatur
Literaturempfehlungen

Folgende Schriften werden zur Vertiefung des Vorlesungsstoffes empfohlen:

1. dieses Vorlesungsskript zur Veranstaltung
Logik in der Informatik

2. die Lehrbiicher [?, ?, ?] und das Buch [?].
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Kapitel 1: Einleitung - Abschnitt 1.3: Lernziele, Semesterausblick und Literatur

Literaturempfehlungen

Folgende Schriften werden zur Vertiefung des Vorlesungsstoffes empfohlen:

1. dieses Vorlesungsskript zur Veranstaltung
Logik in der Informatik

2. die Lehrbiicher [?, ?, ?] und das Buch [?].

Als Ergdnzung seien auch folgende Lehrbiicher genannt:

¢ [?] (Einfiihrung in die mathematische Logik)

[?] (Einfiihrung in die Mengenlehre)

[?, 7] (Biicher zum Thema Logik und Komplexitit)

[?. 7, 7] (weiterfiihrende Literatur im Bereich Logik und automatisches
SchlieBen)

[?] (weiterfiihrende Literatur zum Thema Logik-Programmierung und
Prolog)
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Kapitel 2:
Aussagenlogik



Abschnitt 2.1:
Syntax und Semantik



Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Aussagen

Die Frage ,Was ist eigentlich ein Wort?" ist analog der ,Was ist eine
Schachfigur?“ Ludwig Wittgenstein, Philosophische Untersuchungen
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Aussagen

Die Frage ,Was ist eigentlich ein Wort?" ist analog der ,Was ist eine
Schachfigur?“ Ludwig Wittgenstein, Philosophische Untersuchungen

® Aussagen (im Sinne der Aussagenlogik) sind sprachliche Gebilde, die
entweder wahr oder falsch sind.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Aussagen

Die Frage ,Was ist eigentlich ein Wort?" ist analog der ,Was ist eine
Schachfigur?“ Ludwig Wittgenstein, Philosophische Untersuchungen

® Aussagen (im Sinne der Aussagenlogik) sind sprachliche Gebilde, die
entweder wahr oder falsch sind.

® Aussagen konnen mit Junktoren wie nicht, und, oder oder wenn ... dann
zu komplexeren Aussagen verkniipft werden.

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 28



Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Aussagen

Die Frage ,Was ist eigentlich ein Wort?" ist analog der ,Was ist eine
Schachfigur?* Ludwig Wittgenstein, Philosophische Untersuchungen

® Aussagen (im Sinne der Aussagenlogik) sind sprachliche Gebilde, die
entweder wahr oder falsch sind.

® Aussagen konnen mit Junktoren wie nicht, und, oder oder wenn ... dann
zu komplexeren Aussagen verkniipft werden.

® Aussagenlogik beschéftigt sich mit allgemeinen Prinzipien des korrekten
Argumentierens und SchlieBens mit Aussagen und Kombinationen von
Aussagen.
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Ludwig Wittgenstein (1889 — 1951)
Quelle: http://en.wikipedia.org/wiki/Ludwig_Wittgenstein
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiel 2.1 (Geburtstagsfeier)

Fred méchte mit moglichst vielen seiner Freunde Anne, Bernd, Christine, Dirk
und Eva seinen Geburtstag feiern. Er weiB Folgendes:

Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf keinen Fall
kommen. Und Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur
Feier kommen. Aber Eva kommt allenfalls dann, wenn Christine und Dirk
kommen. Andererseits kommt Christine nur dann, wenn auch Anne kommt.
Anne wiederum wird nur dann kommen, wenn auch Bernd oder Christine dabei
sind.

Frage: Wie viele Freunde (und welche) werden im besten Fall zur Party
kommen?
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Das Wissen, das in dem Text wiedergegeben ist, ldsst sich in ,atomare
Aussagen” zerlegen, die mit Junktoren verkniipft werden kdnnen.
Die atomaren Aussagen, um die sich der Text dreht, kiirzen wir folgendermaBen

ab:

Anne kommt zur Feier
Bernd kommt zur Feier
Christine kommt zur Feier

Dirk kommt zur Feier

m T O T >

Eva kommt zur Feier

Das im Text zusammengefasste Wissen l&sst sich wie folgt reprasentieren.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik
(1) Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf keinen

Fall kommen.

(2) Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier
kommen.

(3) Eva kommt allenfalls dann, wenn Christine und Dirk kommen.

(4) Christine kommt nur dann, wenn auch Anne kommt.

(5) Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

(1) Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf keinen
Fall kommen.

kurz: Wenn (B und A), dann nicht E

(2) Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier
kommen.

(3) Eva kommt allenfalls dann, wenn Christine und Dirk kommen.

(4) Christine kommt nur dann, wenn auch Anne kommt.

(5) Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

(1) Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf keinen
Fall kommen.

kurz: Wenn (B und A), dann nicht E kiirzer:

(2) Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier
kommen.

(3) Eva kommt allenfalls dann, wenn Christine und Dirk kommen.

(4) Christine kommt nur dann, wenn auch Anne kommt.

(5) Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

(1) Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf keinen
Fall kommen.

kurz: Wenn (B und A), dann nicht E kiirzer:

(2) Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier
kommen.

kurz: Wenn (B und E), dann nicht D
(3) Eva kommt allenfalls dann, wenn Christine und Dirk kommen.

(4) Christine kommt nur dann, wenn auch Anne kommt.

(5) Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

(1)

Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf keinen
Fall kommen.

kurz: Wenn (B und A), dann nicht E kiirzer:

Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier
kommen.

kurz: Wenn (B und E), dann nicht D kiirzer:

Eva kommt allenfalls dann, wenn Christine und Dirk kommen.

Christine kommt nur dann, wenn auch Anne kommt.

Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

(1)

Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf keinen
Fall kommen.

kurz: Wenn (B und A), dann nicht E kiirzer:
Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier
kommen.

kurz: Wenn (B und E), dann nicht D kiirzer:

Eva kommt allenfalls dann, wenn Christine und Dirk kommen.
kurz: Wenn E, dann (C und D)

Christine kommt nur dann, wenn auch Anne kommt.

Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

(1)

Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf keinen
Fall kommen.

kurz: Wenn (B und A), dann nicht E kiirzer:
Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier
kommen.

kurz: Wenn (B und E), dann nicht D kiirzer:

Eva kommt allenfalls dann, wenn Christine und Dirk kommen.
kurz: Wenn E, dann (C und D) kiirzer:

Christine kommt nur dann, wenn auch Anne kommt.

Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

(1) Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf keinen

(3)

(4)

Fall kommen.
kurz: Wenn (B und A), dann nicht E kiirzer:

Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier
kommen.

kurz: Wenn (B und E), dann nicht D kiirzer:

Eva kommt allenfalls dann, wenn Christine und Dirk kommen.
kurz: Wenn E, dann (C und D) kiirzer:

Christine kommt nur dann, wenn auch Anne kommt.
kurz: Wenn C, dann A

(5) Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

(1) Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf keinen

Fall kommen.
kurz: Wenn (B und A), dann nicht E kiirzer:

(2) Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier

kommen.
kurz: Wenn (B und E), dann nicht D kiirzer:

(3) Eva kommt allenfalls dann, wenn Christine und Dirk kommen.
kurz: Wenn E, dann (C und D) kiirzer:

(4) Christine kommt nur dann, wenn auch Anne kommt.

kurz: Wenn C, dann A kiirzer:

(5) Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

(1)

(3)

(4)

Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf keinen
Fall kommen.

kurz: Wenn (B und A), dann nicht E kiirzer:

Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier
kommen.

kurz: Wenn (B und E), dann nicht D kiirzer:

Eva kommt allenfalls dann, wenn Christine und Dirk kommen.
kurz: Wenn E, dann (C und D) kiirzer:

Christine kommt nur dann, wenn auch Anne kommt.

kurz: Wenn C, dann A kiirzer:

(5) Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind.

kurz: Wenn A, dann (B oder C)
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

(1)

(3)

(4)

Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf keinen
Fall kommen.

kurz: Wenn (B und A), dann nicht E kiirzer:

Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier
kommen.

kurz: Wenn (B und E), dann nicht D kiirzer:

Eva kommt allenfalls dann, wenn Christine und Dirk kommen.
kurz: Wenn E, dann (C und D) kiirzer:

Christine kommt nur dann, wenn auch Anne kommt.

kurz: Wenn C, dann A kiirzer:

(5) Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind.

kurz: Wenn A, dann (B oder C) kiirzer:
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Fallstricke natiirlichsprachlicher Aussagen

Die Verwendung der Worter und, wenn . ..dann, oder, nicht in der
Alltagssprache entspricht nicht immer exakt unseren logischen Junktoren.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Fallstricke natiirlichsprachlicher Aussagen

Die Verwendung der Worter und, wenn . ..dann, oder, nicht in der

Alltagssprache entspricht nicht immer exakt unseren logischen Junktoren.

(1) Anne hat mit dem Kaffeetrinken aufgehort.

(2) Anne hat nicht mit dem Kaffeetrinken aufgehdrt.

Ist (2) die Negation von (1)?

Version vom 25. Januar 2024
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Fallstricke natiirlichsprachlicher Aussagen

Die Verwendung der Worter und, wenn . ..dann, oder, nicht in der
Alltagssprache entspricht nicht immer exakt unseren logischen Junktoren.

(1) Anne hat mit dem Kaffeetrinken aufgehort.

(2) Anne hat nicht mit dem Kaffeetrinken aufgehdrt.

Ist (2) die Negation von (1)? In dem Fall, dass Anne noch nie Kaffee getrunken
hat, ist keine der beiden Aussagen wahr.

V' Anne war in der Vergangenheit Kaffeetrinkerin.

G . Anneist zur Zeit Kaffeetrinkerin.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Fallstricke natiirlichsprachlicher Aussagen

Die Verwendung der Worter und, wenn . ..dann, oder, nicht in der
Alltagssprache entspricht nicht immer exakt unseren logischen Junktoren.

(1) Anne hat mit dem Kaffeetrinken aufgehort.

kurz: 'V und nicht G kiirzer:
(2) Anne hat nicht mit dem Kaffeetrinken aufgehdrt.

kurz: 'V und G kiirzer:

Ist (2) die Negation von (1)? In dem Fall, dass Anne noch nie Kaffee getrunken
hat, ist keine der beiden Aussagen wahr.

V' Anne war in der Vergangenheit Kaffeetrinkerin.

G . Anneist zur Zeit Kaffeetrinkerin.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Fallstricke natiirlichsprachlicher Aussagen

Die Verwendung der Worter und, wenn . ..dann, oder, nicht in der
Alltagssprache entspricht nicht immer exakt unseren logischen Junktoren.

(1) Anne hat mit dem Kaffeetrinken aufgehort.

kurz: 'V und nicht G kiirzer:

(2) Anne hat nicht mit dem Kaffeetrinken aufgehdrt.

kurz: V und G kiirzer:

Ist (2) die Negation von (1)? In dem Fall, dass Anne noch nie Kaffee getrunken
hat, ist keine der beiden Aussagen wahr.

V' Anne war in der Vergangenheit Kaffeetrinkerin.

G . Anneist zur Zeit Kaffeetrinkerin.

Zwei weitere Beispiele:
® |ch werde mir ein rotes oder ein blaues Fahrrad kaufen.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Fallstricke natiirlichsprachlicher Aussagen
Die Verwendung der Worter und, wenn . ..dann, oder, nicht in der

Alltagssprache entspricht nicht immer exakt unseren logischen Junktoren.

(1) Anne hat mit dem Kaffeetrinken aufgehort.
kurz: 'V und nicht G kiirzer:

(2) Anne hat nicht mit dem Kaffeetrinken aufgehdrt.

kurz: V und G kiirzer:

Ist (2) die Negation von (1)? In dem Fall, dass Anne noch nie Kaffee getrunken
hat, ist keine der beiden Aussagen wahr.

V' Anne war in der Vergangenheit Kaffeetrinkerin.

G . Anneist zur Zeit Kaffeetrinkerin.

Zwei weitere Beispiele:
® |ch werde mir ein rotes oder ein blaues Fahrrad kaufen.
® \Wenn Regen vorhergesagt ist, dann nehme ich einen Schirm mit.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Syntax und Semantik

Syntax: legt fest, welche Zeichenketten Formeln der Aussagenlogik sind

Semantik: legt fest, welche ,, Bedeutung" einzelne Formeln haben

Dies ist analog zur Syntax und Semantik von Java-Programmen:

Die Syntax legt fest, welche Zeichenketten Java-Programme sind, wahrend die
Semantik bestimmt, was das Programm tut.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Syntax und Semantik

Syntax: legt fest, welche Zeichenketten Formeln der Aussagenlogik sind

Semantik: legt fest, welche ,, Bedeutung" einzelne Formeln haben

Dies ist analog zur Syntax und Semantik von Java-Programmen:

Die Syntax legt fest, welche Zeichenketten Java-Programme sind, wahrend die
Semantik bestimmt, was das Programm tut.

Zur Verdeutlichung werden wir im Folgenden oft in
darstellen, wahrend wir semantische Aussagen in blau angeben.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Syntax der Aussagenlogik



Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Notationen

® Die Menge N der natiirlichen Zahlen besteht aus allen nicht-negativen
ganzen Zahlen, d.h.

N:={0,1,23, ...}

® Fiir ein n € N ist
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Definition 2.2

Ein Aussagensymbol (oder eine Aussagenvariable, kurz: Variable) hat die Form

fiir ein i € N.
Die Menge aller Aussagensymbole bezeichnen wir mit AS, d.h.

AS = {A : ieN} = {Ay, A, Aoy As, o)

Version vom 25. Januar 2024 Folie 36

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik



Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik
Definition 2.2
Ein Aussagensymbol (oder eine Aussagenvariable, kurz: Variable) hat die Form

fiir ein i € N.
Die Menge aller Aussagensymbole bezeichnen wir mit AS, d.h.

AS = {A; 1 ieN} = {Ao, A, Aoy A,y oot}

Aussagenlogische Formeln sind Woérter, die iiber dem folgenden Alphabet
gebildet sind.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik
Definition 2.2
Ein Aussagensymbol (oder eine Aussagenvariable, kurz: Variable) hat die Form

fiir ein i € N.
Die Menge aller Aussagensymbole bezeichnen wir mit AS, d.h.

AS = {A; 1 ieN} = {Ao, A, Aoy A,y oot}

Aussagenlogische Formeln sind Woérter, die iiber dem folgenden Alphabet
gebildet sind.

Definition 2.3
Das Alphabet der Aussagenlogik besteht aus
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik
Definition 2.2
Ein Aussagensymbol (oder eine Aussagenvariable, kurz: Variable) hat die Form

fiir ein i € N.
Die Menge aller Aussagensymbole bezeichnen wir mit AS, d.h.

AS = {A; 1 ieN} = {Ao, A, Aoy A,y oot}

Aussagenlogische Formeln sind Woérter, die iiber dem folgenden Alphabet
gebildet sind.

Definition 2.3
Das Alphabet der Aussagenlogik besteht aus

® den Aussagesymbolen in AS,
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik
Definition 2.2
Ein Aussagensymbol (oder eine Aussagenvariable, kurz: Variable) hat die Form

fiir ein i € N.
Die Menge aller Aussagensymbole bezeichnen wir mit AS, d.h.

AS = {A; 1 ieN} = {Ao, A, Aoy A,y oot}

Aussagenlogische Formeln sind Woérter, die iiber dem folgenden Alphabet
gebildet sind.

Definition 2.3
Das Alphabet der Aussagenlogik besteht aus
® den Aussagesymbolen in AS,

® den Junktoren —, A, V/, —,

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 36



Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik
Definition 2.2
Ein Aussagensymbol (oder eine Aussagenvariable, kurz: Variable) hat die Form

fiir ein i € N.
Die Menge aller Aussagensymbole bezeichnen wir mit AS, d.h.

AS = {A; 1 ieN} = {Ao, A, Aoy A,y oot}

Aussagenlogische Formeln sind Woérter, die iiber dem folgenden Alphabet
gebildet sind.

Definition 2.3
Das Alphabet der Aussagenlogik besteht aus

® den Aussagesymbolen in AS,
® den Junktoren —, A, V/, —,
® den booleschen Konstanten 0, 1,
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Definition 2.2

Ein Aussagensymbol (oder eine Aussagenvariable, kurz: Variable) hat die Form

fiir ein i € N.
Die Menge aller Aussagensymbole bezeichnen wir mit AS, d.h.

AS = {A; 1 ieN} = {Ao, A, Aoy A,y oot}

Aussagenlogische Formeln sind Woérter, die iiber dem folgenden Alphabet
gebildet sind.

Definition 2.3
Das Alphabet der Aussagenlogik besteht aus

® den Aussagesymbolen in AS,
® den Junktoren —, A, V/, —,
® den booleschen Konstanten 0, 1,

® den Klammersymbolen (,
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Definition 2.2

Ein Aussagensymbol (oder eine Aussagenvariable, kurz: Variable) hat die Form
fiir ein i € N.

Die Menge aller Aussagensymbole bezeichnen wir mit AS, d.h.

AS = {A; 1 ieN} = {Ao, A, Aoy A,y oot}

Aussagenlogische Formeln sind Woérter, die iiber dem folgenden Alphabet
gebildet sind.

Definition 2.3
Das Alphabet der Aussagenlogik besteht aus

® den Aussagesymbolen in AS,

® den Junktoren —, A, V/, —,

® den booleschen Konstanten 0, 1,
® den Klammersymbolen (,

Wir schreiben AL, um das Alphabet der Aussagenlogik zu bezeichnen, d.h.
A/—\L = AS U { ) ) ) y Uy by }
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Definition 2.4 ( der Aussagenlogik)

Die Menge AL der aussagenlogischen Formeln (kurz: Formeln) ist die
folgendermaBen rekursiv definierte Teilmenge von A3, :
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Definition 2.4 ( der Aussagenlogik)

Die Menge AL der aussagenlogischen Formeln (kurz: Formeln) ist die
folgendermaBen rekursiv definierte Teilmenge von A3, :

Basisregeln: (zum Bilden der so genannten atomaren Formeln)

(BO) 0 € AL
(B1) 1€ AL
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Definition 2.4 ( der Aussagenlogik)

Die Menge AL der aussagenlogischen Formeln (kurz: Formeln) ist die
folgendermaBen rekursiv definierte Teilmenge von A3, :

Basisregeln: (zum Bilden der so genannten atomaren Formeln)

(B0O) 0 e AL
(B1) 1€ AL
(BS) Fiir jedes Aussagensymbol A; € AS gilt: € AL
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Definition 2.4 ( der Aussagenlogik)

Die Menge AL der aussagenlogischen Formeln (kurz: Formeln) ist die

folgendermaBen rekursiv definierte Teilmenge von A3, :

Basisregeln: (zum Bilden der so genannten atomaren Formeln)
(BO) 0 € AL

(Bl) 1 e AL

(BS) Fiir jedes Aussagensymbol A; € AS gilt: € AL

Rekursive Regeln:
(R1) Ist » € AL, so ist auch € AL (Negation)
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Definition 2.4 ( der Aussagenlogik)

Die Menge AL der aussagenlogischen Formeln (kurz: Formeln) ist die

folgendermaBen rekursiv definierte Teilmenge von A3, :

Basisregeln: (zum Bilden der so genannten atomaren Formeln)
(BO) 0 € AL

(Bl) 1 e AL

(BS) Fiir jedes Aussagensymbol A; € AS gilt: € AL

Rekursive Regeln:
(R1) Ist » € AL, so ist auch € AL (Negation)
(R2) Ist v € AL und > € AL, so ist auch

° € AL (Konjunktion)

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024

Folie 37



Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Definition 2.4 ( der Aussagenlogik)

Die Menge AL der aussagenlogischen Formeln (kurz: Formeln) ist die

folgendermaBen rekursiv definierte Teilmenge von A3, :

Basisregeln: (zum Bilden der so genannten atomaren Formeln)
(BO) 0 € AL

(Bl) 1 e AL

(BS) Fiir jedes Aussagensymbol A; € AS gilt: € AL

Rekursive Regeln:
(R1) Ist » € AL, so ist auch € AL (Negation)
(R2) Ist v € AL und > € AL, so ist auch

° € AL (Konjunktion)

o € AL (Disjunktion)
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Definition 2.4 ( der Aussagenlogik)

Die Menge AL der aussagenlogischen Formeln (kurz: Formeln) ist die
folgendermaBen rekursiv definierte Teilmenge von A3, :

Basisregeln: (zum Bilden der so genannten atomaren Formeln)
(BO) 0 € AL

(Bl) 1 e AL

(BS) Fiir jedes Aussagensymbol A; € AS gilt: € AL

Rekursive Regeln:
(R1) Ist » € AL, so ist auch € AL (Negation)
(R2) Ist v € AL und > € AL, so ist auch

° € AL (Konjunktion)
o € AL (Disjunktion)
° € AL (Implikation)
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiele

° (ﬁAO V (AO — Al))
® ((Ao N 0) — ﬁA3)
o A VA ANA;3

* (—A)
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiele

L4 (ﬁAO V (AO — Al)) e AL
® ((Ao N 0) — ﬁA3)
o A VA ANA;3

* (—A)
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiele

L4 (ﬁAO V (AO — Al)) e AL
e —((AbND)— —A3) €AL
o A VA ANA;3

* (—A)
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiele

L4 (ﬁAO V (AO — Al)) e AL
e —((AbND)— —A3) €AL
o A VA ANA;3 g AL

* (—A)
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiele

L4 (ﬁAO V (AO — Al)) e AL
L4 ﬁ((AQ/\O) — ﬁA3) € AL
o A VA ANA;3 g AL

° (A1) ¢AL
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Griechische Buchstaben

In der Literatur werden Formeln einer Logik traditionell meistens mit
griechischen Buchstaben bezeichnet.

Hier eine Liste der gebrauchlichsten Buchstaben:

Buchstabe © ‘ P ‘ X ‘ 0 bzw. 9 ‘ A ‘ I ‘ v ‘ T ‘ K
Aussprache | phi ‘ psi ‘ chi ‘ theta ‘ lambda ‘ mii ‘ ni | tau ‘ kappa
Buchstabe o ‘ p ‘ 13 ¢ «@ B8 ¥ 0 w

| |
Aussprache | sigma ‘ rho ‘ xi ‘ zeta ‘ alpha ‘ beta ‘ gamma ‘ delta ‘ omega

Buchstabe € ‘L‘W‘A r Z‘I‘I‘¢‘\U
Aussprache | epsilon ‘ iota ‘ pi ‘ Delta ‘ Gamma ‘ Sigma ‘ Pi ‘ Phi ‘ Psi
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Syntaxbdume

Die Struktur einer Formel lasst sich bequem in einem Syntaxbaum (englisch:

parse tree) darstellen.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Syntaxbdume

Die Struktur einer Formel lasst sich bequem in einem Syntaxbaum (englisch:
parse tree) darstellen.

Beispiel: Syntaxbaum der Formel

Ausfiihrlich: Kurzform:

] (((As A1)V —As)—(As A =(As A 1)) \

’ ((As A 1)V-As) ‘ (A5/\—'(A4 A 1)

9 o B
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Subformeln und eindeutige Lesbarkeit

® Jede Formel hat genau einen Syntaxbaum. Diese Aussage ist als das
Lemma iiber die eindeutige Lesbarkeit aussagenlogischer Formeln bekannt.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Subformeln und eindeutige Lesbarkeit

® Jede Formel hat genau einen Syntaxbaum. Diese Aussage ist als das
Lemma iiber die eindeutige Lesbarkeit aussagenlogischer Formeln bekannt.

® Die Formeln v, die im ausfiihrlichen Syntaxbaum einer Formel ¢ als

Knotenbeschriftung vorkommen, nennen wir Subformeln (bzw. Teilformeln)
von .
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Subformeln und eindeutige Lesbarkeit

® Jede Formel hat genau einen Syntaxbaum. Diese Aussage ist als das
Lemma iiber die eindeutige Lesbarkeit aussagenlogischer Formeln bekannt.

® Die Formeln v, die im ausfiihrlichen Syntaxbaum einer Formel ¢ als
Knotenbeschriftung vorkommen, nennen wir Subformeln (bzw. Teilformeln)
von .

® Eine Subformel ¥ von ¢ kann an mehreren Knoten des Syntaxbaums
vorkommen. Wir sprechen dann von verschiedenen Vorkommen von ¢ in .
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Semantik der Aussagenlogik



Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Voriiberlegung zur Semantik

® Eine aussagenlogische Formel wird erst zur Aussage, wenn wir alle in ihr
vorkommenden durch Aussagen ersetzen.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Voriiberlegung zur Semantik

® Eine aussagenlogische Formel wird erst zur Aussage, wenn wir alle in ihr
vorkommenden durch Aussagen ersetzen.

® Wir interessieren uns hier nicht so sehr fiir die tatsdchlichen Aussagen,
sondern nur fiir ihren Wahrheitswert, also dafiir, ob sie wahr oder falsch
sind.

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 42



Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Voriiberlegung zur Semantik

® Eine aussagenlogische Formel wird erst zur Aussage, wenn wir alle in ihr
vorkommenden durch Aussagen ersetzen.

® Wir interessieren uns hier nicht so sehr fiir die tatsdchlichen Aussagen,
sondern nur fiir ihren Wahrheitswert, also dafiir, ob sie wahr oder falsch
sind.

® Um das festzustellen, reicht es, den Aussagensymbolen die Wahrheitswerte
der durch sie reprdsentierten Aussagen zuzuordnen.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Voriiberlegung zur Semantik

® Eine aussagenlogische Formel wird erst zur Aussage, wenn wir alle in ihr
vorkommenden durch Aussagen ersetzen.

® Wir interessieren uns hier nicht so sehr fiir die tatsdchlichen Aussagen,
sondern nur fiir ihren Wahrheitswert, also dafiir, ob sie wahr oder falsch
sind.

® Um das festzustellen, reicht es, den Aussagensymbolen die Wahrheitswerte
der durch sie reprdsentierten Aussagen zuzuordnen.

® Die Bedeutung einer Formel besteht also aus ihren Wahrheitswerten unter

allen moglichen Wahrheitswerten fiir die in der Formel vorkommenden
Aussagensymbole.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Interpretationen (d.h. Variablenbelegungen)

Wir reprasentieren die Wahrheitswerte wahr und falsch durch 1 und 0.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Interpretationen (d.h. Variablenbelegungen)

Wir reprasentieren die Wahrheitswerte wahr und falsch durch 1 und 0.

Definition 2.5

Eine aussagenlogische Interpretation (kurz: Interpretation oder Belegung) ist

eine Abbildung
T:AS—{0,1}.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Interpretationen (d.h. Variablenbelegungen)

Wir reprasentieren die Wahrheitswerte wahr und falsch durch 1 und 0.

Definition 2.5
Eine aussagenlogische Interpretation (kurz: Interpretation oder Belegung) ist

eine Abbildung
T:AS—{0,1}.

D.h.: 7 ,belegt” jedes Aussagensymbol X € AS mit einem der beiden
Wahrheitswerte 1 (fiir ,,wahr") oder 0 (fiir ,falsch"); und Z(X) ist der
Wahrheitswert, mit dem das Aussagensymbol X belegt wird.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Semantik der Aussagenlogik

Definition 2.6

Zu jeder Formel v € AL und jeder Interpretation Z definieren wir einen
Wahrheitswert [.-]” rekursiv wie folgt:
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Semantik der Aussagenlogik

Definition 2.6

Zu jeder Formel v € AL und jeder Interpretation Z definieren wir einen
Wahrheitswert [.-]” rekursiv wie folgt:

Rekursionsanfang:

o [0]" :=0.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Semantik der Aussagenlogik

Definition 2.6

Zu jeder Formel v € AL und jeder Interpretation Z definieren wir einen
Wahrheitswert [.-]” rekursiv wie folgt:

Rekursionsanfang:
e [0]" :=o0.
o [1]* :=1.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Semantik der Aussagenlogik

Definition 2.6

Zu jeder Formel v € AL und jeder Interpretation Z definieren wir einen

Wahrheitswert [.-]” rekursiv wie folgt:

Rekursionsanfang:
e [0]" :=o0.
o« 1 =1
e Fiiralle X € AS gilt: [X]" :=

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Semantik der Aussagenlogik

Definition 2.6

Zu jeder Formel v € AL und jeder Interpretation Z definieren wir einen
Wahrheitswert [.-]” rekursiv wie folgt:

Rekursionsanfang:
e [0]" :=o0.
o« 1 =1
e Fiiralle X € AS gilt: [X]" :=Z(X).
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Semantik der Aussagenlogik

Definition 2.6

Zu jeder Formel v € AL und jeder Interpretation Z definieren wir einen
Wahrheitswert [.-]” rekursiv wie folgt:

Rekursionsanfang:
e [0]" :=o0.
o« 1 =1
e Fiiralle X € AS gilt: [X]" :=Z(X).

Rekursionsschritt:

o Ist e AL soist [] =
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Semantik der Aussagenlogik

Definition 2.6

Zu jeder Formel v € AL und jeder Interpretation Z definieren wir einen
Wahrheitswert [.-]” rekursiv wie folgt:

Rekursionsanfang:
e [0]" :=o0.
o« 1 =1
e Fiiralle X € AS gilt: [X]" :=Z(X).

Rekursionsschritt:
1 falls [-]" =0,

o Ist e AL soist [] = {0 .
sonst.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Semantik der Aussagenlogik (Fortsetzung)

® |st o € AL und ©» € AL, so ist
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Semantik der Aussagenlogik (Fortsetzung)

® |st o € AL und ©» € AL, so ist

ol Hz::{l falls [17 = [1]7 = 1,

0 sonst.
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Semantik der Aussagenlogik (Fortsetzung)

® |st o € AL und ©» € AL, so ist

ol Hz::{l falls [17 = [1]7 = 1,

0 sonst.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Semantik der Aussagenlogik (Fortsetzung)
® |st o € AL und ©» € AL, so ist

0 sonst.

ol Hz::{l falls [17 = [1]7 = 1,

. 7 {0 falls [-]% = [«]* =0,

1 sonst.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Semantik der Aussagenlogik (Fortsetzung)
® |st o € AL und ©» € AL, so ist

0 sonst.

ol Hz::{l falls [17 = [1]7 = 1,

. 7 {0 falls [-]% = [«]* =0,

1 sonst.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Semantik der Aussagenlogik (Fortsetzung)
® |st o € AL und ©» € AL, so ist

0 sonst.

ol Hz::{l falls [17 = [1]7 = 1,

. 7 {0 falls [-]% = [«]* =0,

1 sonst.

. [ [ {o falls [ -] =1 und [/]* =0,

1 sonst.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Intuitive Bedeutung der Semantik

Boolesche Konstanten: 1 und 0 bedeuten einfach ,,wahr" und , falsch*.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Intuitive Bedeutung der Semantik

Boolesche Konstanten: 1 und 0 bedeuten einfach ,,wahr" und , falsch*.
Aussagensymbole: Die Aussagensymbole stehen fiir irgendwelche Aussagen, von

denen uns aber nur der Wahrheitswert interessiert. Dieser wird
durch die Interpretation festgelegt.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Intuitive Bedeutung der Semantik

Boolesche Konstanten: 1 und 0 bedeuten einfach ,,wahr" und , falsch*.
Aussagensymbole: Die Aussagensymbole stehen fiir irgendwelche Aussagen, von
denen uns aber nur der Wahrheitswert interessiert. Dieser wird

durch die Interpretation festgelegt.

Negation: —p bedeutet , nicht ¢“.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Intuitive Bedeutung der Semantik

Boolesche Konstanten: 1 und 0 bedeuten einfach ,,wahr" und , falsch*.

Aussagensymbole: Die Aussagensymbole stehen fiir irgendwelche Aussagen, von
denen uns aber nur der Wahrheitswert interessiert. Dieser wird
durch die Interpretation festgelegt.

Negation: —p bedeutet , nicht ¢“.

Konjunktion: (¢ A ) bedeutet ,,¢ und 9*.

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 46



Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Intuitive Bedeutung der Semantik

Boolesche Konstanten: 1 und 0 bedeuten einfach ,,wahr" und , falsch*.
Aussagensymbole: Die Aussagensymbole stehen fiir irgendwelche Aussagen, von
denen uns aber nur der Wahrheitswert interessiert. Dieser wird
durch die Interpretation festgelegt.
Negation: —p bedeutet , nicht ¢“.

Konjunktion: (¢ A ) bedeutet ,,¢ und 9*.

Disjunktion: (¢ V ) bedeutet ,¢ oder ",
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Intuitive Bedeutung der Semantik

Boolesche Konstanten: 1 und 0 bedeuten einfach ,,wahr" und , falsch*.
Aussagensymbole: Die Aussagensymbole stehen fiir irgendwelche Aussagen, von
denen uns aber nur der Wahrheitswert interessiert. Dieser wird
durch die Interpretation festgelegt.
Negation: —p bedeutet , nicht ¢“.
Konjunktion: (¢ A ) bedeutet ,,¢ und 9*.

Disjunktion: (¢ V ) bedeutet ,¢ oder ",

Implikation: (¢ — 1) bedeutet ,, o impliziert ¢»" (oder ,,wenn ¢ dann ¥").
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Rekursive Definitionen liber Formeln

e Ahnlich wie Funktionen auf den natiirlichen Zahlen, wie zum Beispiel die
Fakultatsfunktion oder die Fibonacci Folge, kdnnen wir Funktionen auf den
aussagenlogischen Formeln rekursiv definieren.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Rekursive Definitionen liber Formeln

e Ahnlich wie Funktionen auf den natiirlichen Zahlen, wie zum Beispiel die
Fakultatsfunktion oder die Fibonacci Folge, kdnnen wir Funktionen auf den
aussagenlogischen Formeln rekursiv definieren.

® Dabei gehen wir von den atomaren Formeln aus und definieren dann den

Funktionswert einer zusammengesetzten Formel aus den Funktionswerten
ihrer Bestandteile.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Rekursive Definitionen liber Formeln

e Ahnlich wie Funktionen auf den natiirlichen Zahlen, wie zum Beispiel die
Fakultatsfunktion oder die Fibonacci Folge, kdnnen wir Funktionen auf den
aussagenlogischen Formeln rekursiv definieren.

® Dabei gehen wir von den atomaren Formeln aus und definieren dann den
Funktionswert einer zusammengesetzten Formel aus den Funktionswerten
ihrer Bestandteile.

® Zur Rechtfertigung solcher Definitionen benétigt man die eindeutige

Lesbarkeit aussagenlogischer Formeln, die besagt, dass sich jede Formel
eindeutig in ihre Bestandteile zerlegen lasst.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Rekursive Definitionen liber Formeln

e Ahnlich wie Funktionen auf den natiirlichen Zahlen, wie zum Beispiel die
Fakultatsfunktion oder die Fibonacci Folge, kdnnen wir Funktionen auf den
aussagenlogischen Formeln rekursiv definieren.

® Dabei gehen wir von den atomaren Formeln aus und definieren dann den
Funktionswert einer zusammengesetzten Formel aus den Funktionswerten
ihrer Bestandteile.

® Zur Rechtfertigung solcher Definitionen benétigt man die eindeutige
Lesbarkeit aussagenlogischer Formeln, die besagt, dass sich jede Formel

eindeutig in ihre Bestandteile zerlegen lasst.

® Wir haben auf diese Weise die Semantik definiert. Wir haben namlich fiir
jede Interpretation Z rekursiv eine Funktion [ - ]* : AL — {0, 1} definiert.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Rekursive Definitionen (Forts.)

Schematisch sieht die rekursive Definition einer Funktion f : AL —» M
(fiir eine beliebige Menge M) folgendermaBen aus:

Rekursionsanfang:
® Definiere £(0) und f(1).
® Definiere f(X) fiir alle X € AS.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Rekursive Definitionen (Forts.)

Schematisch sieht die rekursive Definition einer Funktion f : AL —» M
(fiir eine beliebige Menge M) folgendermaBen aus:

Rekursionsanfang:
® Definiere £(0) und f(1).
® Definiere f(X) fiir alle X € AS.

Rekursionsschritt:
® Definiere f(—) aus ().
® Definiere f( ) aus f(») und f(2)).
® Definiere f( ) aus f(») und f(2)).
(

® Definiere f ) aus f() und f(2).
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiel 2.7
Betrachte die Formel ¢ = (—Ag V (As = A;))

und die Interpretation Z : AS — {0,1} mit
IZ(Ao) =1, Z(A)=1, Z(As5)=0
und Z(Y) =0 fiir alle Y € AS\ {Ap, A1, As }.

Der Wahrheitswert [¢]” ist der Wert

7 Def. 2.6
le]” =
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiel 2.7
Betrachte die Formel ¢ = (—Ag V (As = A;))

und die Interpretation Z : AS — {0,1} mit
IZ(Ao) =1, Z(A)=1, Z(As5)=0

und Z(Y) =0 fiir alle Y € AS\ {Ap, A1, As }.

Der Wahrheitswert [¢]” ist der Wert

[[QQHI Def.:2.6 {

Def. 2.6

0, falls [=Ao]% =0 und [(As — A)]* =0

1, sonst
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiel 2.7
Betrachte die Formel ¢ = (—Ag V (As = A;))

und die Interpretation Z : AS — {0,1} mit

I(A)) =1, Z(A) =1, I(As)=0
und Z(Y) =0 fiir alle Y € AS\ {Ap, A1, As }.
Der Wahrheitswert [[(p]]I ist der Wert

[ D26 0, falls [=Ao]" =0 und [(As — A)]* =0
i N 1, sonst

1, sonst

)

Def. 2.6 {0’ falls [Ao]” = 1 und ([[AS]]I =1und [A]" = 0)

Def. 2.6
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiel 2.7
Betrachte die Formel ¢ = (—Ag V (As = A;))

und die Interpretation Z : AS — {0,1} mit

I(A)) =1, Z(A) =1, I(As)=0
und Z(Y) =0 fiir alle Y € AS\ {Ap, A1, As }.
Der Wahrheitswert [[(p]]I ist der Wert

1, sonst

)

[o]f D2 {o, falls [-Aq]” = 0 und [(As — Ay)]* =0

1, sonst

)

Def. 2.6 {0’ falls [Ao]” = 1 und ([[As]]I =1und [A]" = 0)

1, sonst

)

Def. 2.6 {0, falls Z(Ag) = 1 und Z(As) = 1 und Z(A;) =0
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiel 2.7

Betrachte die Formel ¢ = (—Ag V (As = A;))
und die Interpretation Z : AS — {0,1} mit

Z(Ao) = 1,

I(A)) =1, I(As)=0

und Z(Y) =0 fiir alle Y € AS\ {Ap, A1, As }.

Der Wahrheitswert [¢]” ist der Wert

)

Def. 26 0,
L,
Def. 26 | 0,
L,

= 1

7 Def.26 |0,
[l 7= {1

Nicole Schweikardt - HU Berlin -

Vorlesung Logik in der Informatik

falls [=Ao]” = 0 und [(As — Ap)]* =0

sonst

falls [Ao]* =1 und ([[As]]I =1 und [A]" = 0)
sonst

falls Z(Ao) = 1 und Z(As) = 1 und Z(A;) = 0
sonst

(denn gemiB obiger Wahl von Z gilt Z(As) = 0).
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Alternative Art, den Wert []” zu bestimmen

® Ersetze in ¢ jedes Aussagensymbol X durch seinen gemaB Z festgelegten
Wahrheitswert, d.h. durch den Wert Z(X), und rechne dann den Wert des
resultierenden booleschen Ausdrucks aus.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Alternative Art, den Wert []” zu bestimmen

® Ersetze in ¢ jedes Aussagensymbol X durch seinen gemaB Z festgelegten
Wahrheitswert, d.h. durch den Wert Z(X), und rechne dann den Wert des
resultierenden booleschen Ausdrucks aus.

® Speziell fiir die Formel ¢ und die Interpretation Z aus Beispiel 2.7 ergibt die
Ersetzung der Aussagensymbole durch die gemaB Z festgelegten
Wabhrheitswerte den booleschen Ausdruck
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Alternative Art, den Wert []” zu bestimmen

® Ersetze in ¢ jedes Aussagensymbol X durch seinen gemaB Z festgelegten
Wahrheitswert, d.h. durch den Wert Z(X), und rechne dann den Wert des
resultierenden booleschen Ausdrucks aus.

® Speziell fiir die Formel ¢ und die Interpretation Z aus Beispiel 2.7 ergibt die
Ersetzung der Aussagensymbole durch die gemaB Z festgelegten
Wabhrheitswerte den booleschen Ausdruck

(-1 v (0—1)).
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Alternative Art, den Wert []” zu bestimmen

® Ersetze in ¢ jedes Aussagensymbol X durch seinen gemaB Z festgelegten
Wahrheitswert, d.h. durch den Wert Z(X), und rechne dann den Wert des
resultierenden booleschen Ausdrucks aus.

® Speziell fiir die Formel ¢ und die Interpretation Z aus Beispiel 2.7 ergibt die
Ersetzung der Aussagensymbole durch die gemaB Z festgelegten
Wabhrheitswerte den booleschen Ausdruck

(-1 v (0—1)).

® Ausrechnen von —1 ergibt den Wert
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Alternative Art, den Wert []” zu bestimmen

® Ersetze in ¢ jedes Aussagensymbol X durch seinen gemaB Z festgelegten
Wahrheitswert, d.h. durch den Wert Z(X), und rechne dann den Wert des
resultierenden booleschen Ausdrucks aus.

® Speziell fiir die Formel ¢ und die Interpretation Z aus Beispiel 2.7 ergibt die
Ersetzung der Aussagensymbole durch die gemaB Z festgelegten
Wabhrheitswerte den booleschen Ausdruck

(-1 v (0—1)).

® Ausrechnen von —1 ergibt den Wert 0.
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Alternative Art, den Wert []” zu bestimmen

® Ersetze in ¢ jedes Aussagensymbol X durch seinen gemaB Z festgelegten
Wahrheitswert, d.h. durch den Wert Z(X), und rechne dann den Wert des
resultierenden booleschen Ausdrucks aus.

® Speziell fiir die Formel ¢ und die Interpretation Z aus Beispiel 2.7 ergibt die
Ersetzung der Aussagensymbole durch die gemaB Z festgelegten
Wabhrheitswerte den booleschen Ausdruck

(-1 v (0—1)).

® Ausrechnen von —1 ergibt den Wert 0.
Ausrechnen von (0 — 1) ergibt den Wert
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Alternative Art, den Wert []” zu bestimmen

® Ersetze in ¢ jedes Aussagensymbol X durch seinen gemaB Z festgelegten
Wahrheitswert, d.h. durch den Wert Z(X), und rechne dann den Wert des
resultierenden booleschen Ausdrucks aus.

® Speziell fiir die Formel ¢ und die Interpretation Z aus Beispiel 2.7 ergibt die
Ersetzung der Aussagensymbole durch die gemaB Z festgelegten
Wabhrheitswerte den booleschen Ausdruck

(-1 v (0—1)).

® Ausrechnen von —1 ergibt den Wert 0.
Ausrechnen von (0 — 1) ergibt den Wert 1.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Alternative Art, den Wert []” zu bestimmen

® Ersetze in ¢ jedes Aussagensymbol X durch seinen gemaB Z festgelegten
Wahrheitswert, d.h. durch den Wert Z(X), und rechne dann den Wert des
resultierenden booleschen Ausdrucks aus.

® Speziell fiir die Formel ¢ und die Interpretation Z aus Beispiel 2.7 ergibt die
Ersetzung der Aussagensymbole durch die gemaB Z festgelegten
Wabhrheitswerte den booleschen Ausdruck

(-1 v (0—1)).

® Ausrechnen von —1 ergibt den Wert 0.
Ausrechnen von (0 — 1) ergibt den Wert 1.

® |nsgesamt erhalten wir also
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Alternative Art, den Wert []” zu bestimmen

® Ersetze in ¢ jedes Aussagensymbol X durch seinen gemaB Z festgelegten
Wahrheitswert, d.h. durch den Wert Z(X), und rechne dann den Wert des
resultierenden booleschen Ausdrucks aus.

® Speziell fiir die Formel ¢ und die Interpretation Z aus Beispiel 2.7 ergibt die
Ersetzung der Aussagensymbole durch die gemaB Z festgelegten
Wabhrheitswerte den booleschen Ausdruck

(-1 v (0—1)).

® Ausrechnen von —1 ergibt den Wert 0.
Ausrechnen von (0 — 1) ergibt den Wert 1.

® Insgesamt erhalten wir also (0V 1), was sich zum Wert
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Alternative Art, den Wert []” zu bestimmen

® Ersetze in ¢ jedes Aussagensymbol X durch seinen gemaB Z festgelegten
Wahrheitswert, d.h. durch den Wert Z(X), und rechne dann den Wert des
resultierenden booleschen Ausdrucks aus.

® Speziell fiir die Formel ¢ und die Interpretation Z aus Beispiel 2.7 ergibt die
Ersetzung der Aussagensymbole durch die gemaB Z festgelegten
Wabhrheitswerte den booleschen Ausdruck

(-1 v (0—1)).

® Ausrechnen von —1 ergibt den Wert 0.
Ausrechnen von (0 — 1) ergibt den Wert 1.

® Insgesamt erhalten wir also (0V 1), was sich zum Wert 1 errechnet.

Somit erhalten wir, dass []” =1 ist.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Die Modellbeziehung

Definition 2.8

(a) Eine Interpretation Z erfiillt eine Formel » € AL (wir schreiben: Z = ),
wenn []F = 1.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Die Modellbeziehung

Definition 2.8

(a) Eine Interpretation Z erfiillt eine Formel > € AL (wir schreiben: Z = ),
wenn []F = 1.

Wir schreiben kurz Z = ¢ um auszudriicken, dass Z die Formel ¢
nicht erfiillt (d.h., es gilt [-]* = 0).

(b) Eine Interpretation Z erfiillt eine Formelmenge ® C AL (wir schreiben:
I = ®), wenn Z = o fiir alle p € .
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Die Modellbeziehung

Definition 2.8

(a) Eine Interpretation Z erfiillt eine Formel > € AL (wir schreiben: Z = ),
wenn []F = 1.

Wir schreiben kurz Z = ¢ um auszudriicken, dass Z die Formel ¢
nicht erfiillt (d.h., es gilt [-]* = 0).

(b) Eine Interpretation Z erfiillt eine Formelmenge ® C AL (wir schreiben:
I = ®), wenn Z = o fiir alle p € .

(c) Ein Modell einer Formel ¢ ist eine
Interpretation Z mit Z = ¢
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Die Modellbeziehung

Definition 2.8

(a) Eine Interpretation Z erfiillt eine Formel > € AL (wir schreiben: Z = ),
wenn []F = 1.

Wir schreiben kurz Z = ¢ um auszudriicken, dass Z die Formel ¢
nicht erfiillt (d.h., es gilt [-]* = 0).

(b) Eine Interpretation Z erfiillt eine Formelmenge ® C AL (wir schreiben:
I = ®), wenn Z = o fiir alle p € .

(c) Ein Modell einer Formel ¢ (bzw. einer Formelmenge ®) ist eine
Interpretation Z mit Z = ¢ (bzw. 7 = ®).
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Das Koinzidenzlemma

e Offensichtlich hingt der Wert [¢]” nur von den Werten Z(X) der
Aussagensymbole X € AS ab, die auch in ¢ vorkommen.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Das Koinzidenzlemma

e Offensichtlich hingt der Wert [¢]” nur von den Werten Z(X) der
Aussagensymbole X € AS ab, die auch in ¢ vorkommen.

Diese Aussage ist als das Koinzidenzlemma der Aussagenlogik bekannt.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Das Koinzidenzlemma

e Offensichtlich hingt der Wert [¢]” nur von den Werten Z(X) der
Aussagensymbole X € AS ab, die auch in ¢ vorkommen.

Diese Aussage ist als das Koinzidenzlemma der Aussagenlogik bekannt.

® Um [¢]” festzulegen, reicht es also, die Werte Z(X) nur fiir diejenigen
Aussagensymbole X € AS anzugeben, die in ¢ vorkommen.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Vereinbarungen zu Interpretationen

e Statt der vollen Interpretation Z : AS — {0, 1} geben wir in der Regel nur
endlich viele Werte Z(X1), ..., Z(X,) an und legen fest, dass Z(Y) := 0 fiir
alle Y € AS\ {Xq,..., Xs}.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Vereinbarungen zu Interpretationen

e Statt der vollen Interpretation Z : AS — {0, 1} geben wir in der Regel nur
endlich viele Werte Z(X1), ..., Z(X,) an und legen fest, dass Z(Y) := 0 fiir
alle Y € AS\ {Xq,..., Xs}.

® |n den Beispielen legen wir eine Interpretation oft durch eine Wertetabelle
fest.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Vereinbarungen zu Interpretationen

e Statt der vollen Interpretation Z : AS — {0, 1} geben wir in der Regel nur
endlich viele Werte Z(X1), ..., Z(X,) an und legen fest, dass Z(Y) := 0 fiir
alle Y € AS\ {Xq,..., Xs}.

® In den Beispielen legen wir eine Interpretation oft durch eine Wertetabelle

fest. Beispielsweise beschreibt die Tabelle

X A A As
IX)|1 1 o0

die Interpretation Z mit Z(Ag) = Z(A1) =1 und Z(As) =0 und Z(Y) =0
fiir alle Y € AS \ {Ao,Al,A5}.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Vereinbarungen zu Interpretationen

e Statt der vollen Interpretation Z : AS — {0, 1} geben wir in der Regel nur
endlich viele Werte Z(X1), ..., Z(X,) an und legen fest, dass Z(Y) := 0 fiir
alle Y € AS\ {Xq,..., Xs}.

® In den Beispielen legen wir eine Interpretation oft durch eine Wertetabelle

fest. Beispielsweise beschreibt die Tabelle

X A A As
IX)|1 1 o0

die Interpretation Z mit Z(Ag) = Z(A1) =1 und Z(As) =0 und Z(Y) =0
fiir alle Y € AS \ {Ao,Al,A5}.

® Wir schreiben , um anzudeuten, dass in ¢ nur
Aussagensymbole aus der Menge {Xi,..., X,} vorkommen.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Vereinbarungen zu Interpretationen

e Statt der vollen Interpretation Z : AS — {0, 1} geben wir in der Regel nur
endlich viele Werte Z(X1), ..., Z(X,) an und legen fest, dass Z(Y) := 0 fiir
alle Y € AS\ {Xq,..., Xs}.

® In den Beispielen legen wir eine Interpretation oft durch eine Wertetabelle
fest. Beispielsweise beschreibt die Tabelle

X A A As
IX)|1 1 o0

die Interpretation Z mit Z(Ag) = Z(A1) =1 und Z(As) =0 und Z(Y) =0
fiir alle Y € AS \ {Ao,Al,A5}.

® Wir schreiben , um anzudeuten, dass in ¢ nur
Aussagensymbole aus der Menge {Xi,..., X,} vorkommen.

Fiir Wahrheitswerte by, ..., b, € {0,1} schreiben wir dann [bs, ..., by]
anstatt [-]” fiir eine (bzw. alle) Interpretationen Z mit Z(X;) = b; fiir alle
i€[n]:={1,...,n}.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Vereinbarungen

® Wir schreiben als Abkiirzung fiir
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Vereinbarungen
® Wir schreiben als Abkiirzung fiir

® Statt mit Ag, A1, Az, ... bezeichnen wir Aussagensymbole auch oft mit
AB,C,....X,Y,Z,... oder mit Varianten wie X', Y1,....

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 54



Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Vereinbarungen
® Wir schreiben als Abkiirzung fiir

® Statt mit Ag, A1, Az, ... bezeichnen wir Aussagensymbole auch oft mit
AB,C,....X,Y,Z,... oder mit Varianten wie X', Y1,....

® Die duBeren Klammern einer Formel lassen wir manchmal weg und
schreiben z.B. an Stelle des (formal korrekten)

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 54



Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Vereinbarungen
® Wir schreiben als Abkiirzung fiir

® Statt mit Ag, A1, Az, ... bezeichnen wir Aussagensymbole auch oft mit
AB,C,....X,Y,Z,... oder mit Varianten wie X', Y1,....

® Die duBeren Klammern einer Formel lassen wir manchmal weg und
schreiben z.B. an Stelle des (formal korrekten)

® Beziiglich Klammerung vereinbaren wir, dass — am starksten bindet, und
dass A und V starker binden als —.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Vereinbarungen
® Wir schreiben als Abkiirzung fiir

® Statt mit Ag, A1, Az, ... bezeichnen wir Aussagensymbole auch oft mit
AB,C,....X,Y,Z,... oder mit Varianten wie X', Y1,....

® Die duBeren Klammern einer Formel lassen wir manchmal weg und
schreiben z.B. an Stelle des (formal korrekten)

® Beziiglich Klammerung vereinbaren wir, dass — am starksten bindet, und
dass A und V starker binden als —.

Wir kénnen also z.B. schreiben und meinen damit
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Vereinbarungen
® Wir schreiben als Abkiirzung fiir

® Statt mit Ag, A1, Az, ... bezeichnen wir Aussagensymbole auch oft mit
AB,C,....X,Y,Z,... oder mit Varianten wie X', Y1,....

® Die duBeren Klammern einer Formel lassen wir manchmal weg und
schreiben z.B. an Stelle des (formal korrekten)

® Beziiglich Klammerung vereinbaren wir, dass — am starksten bindet, und
dass A und V starker binden als —.

Wir kénnen also z.B. schreiben und meinen damit
(X A=Y) = (ZVX)).

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 54



Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Vereinbarungen
® Wir schreiben als Abkiirzung fiir

® Statt mit Ag, A1, Az, ... bezeichnen wir Aussagensymbole auch oft mit
AB,C,....X,Y,Z,... oder mit Varianten wie X', Y1,....

® Die duBeren Klammern einer Formel lassen wir manchmal weg und
schreiben z.B. an Stelle des (formal korrekten)

® Beziiglich Klammerung vereinbaren wir, dass — am starksten bindet, und
dass A und V starker binden als —.

Wir kénnen also z.B. schreiben und meinen damit
(X A=Y) = (ZVX)).

Nicht schreiben kénnen wir z.B. X A Y VvV Z (da wir nichts dariiber
vereinbart haben, wie fehlende Klammern hier zu setzen sind).
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik
n
® Wir schreiben /\ i bzw. (1 Ao A p,) an Stelle von
i=1
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

® Wir schreiben bzw. an Stelle von

und nutzen analoge Schreibweisen auch fiir ,,\/** an Stelle von ,,
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

® Wir schreiben bzw. an Stelle von

und nutzen analoge Schreibweisen auch fiir ,,\/** an Stelle von ,,

® Ist M eine endliche Menge aussagenlogischer Formeln, so schreiben wir
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

® Wir schreiben bzw. an Stelle von

und nutzen analoge Schreibweisen auch fiir ,,\/** an Stelle von ,,

® [st M eine endliche Menge aussagenlogischer Formeln, so schreiben wir

um die Formel (1 A--- A pp) zu bezeichnen, wobei n = |M| die Anzahl der
Formeln in M ist und ¢1, ..., ¢, die Auflistung aller Formeln in M in
lexikographischer Reihenfolge ist.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

® Wir schreiben bzw. an Stelle von

und nutzen analoge Schreibweisen auch fiir ,,\/** an Stelle von ,,

® [st M eine endliche Menge aussagenlogischer Formeln, so schreiben wir

um die Formel (1 A--- A pp) zu bezeichnen, wobei n = |M| die Anzahl der
Formeln in M ist und ¢1, ..., ¢, die Auflistung aller Formeln in M in
lexikographischer Reihenfolge ist. Formeln sind hierbei Worte liber dem
Alphabet der Aussagenlogik, wobei die einzelnen Symbole dieses Alphabets
folgendermaBen aufsteigend sortiert sind:

0,1, -, AV, =, () Ao, A1, Az, As, ...
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

® Wir schreiben bzw. an Stelle von

und nutzen analoge Schreibweisen auch fiir ,,\/** an Stelle von ,,

® [st M eine endliche Menge aussagenlogischer Formeln, so schreiben wir

um die Formel (1 A--- A pp) zu bezeichnen, wobei n = |M| die Anzahl der
Formeln in M ist und ¢1, ..., ¢, die Auflistung aller Formeln in M in
lexikographischer Reihenfolge ist. Formeln sind hierbei Worte liber dem
Alphabet der Aussagenlogik, wobei die einzelnen Symbole dieses Alphabets
folgendermaBen aufsteigend sortiert sind:

0,1, -, AV, =, () Ao, A1, Az, As, ...

“

Die analoge Schreibweise nutzen wir auch fiir ,,\/" an Stelle von ,,
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

® Diese Schreibweisen werden wir manchmal auch kombinieren. Sind zum
Beispiel | = {i,...,im} und J={ji1,...,jn} endliche Mengen und ist fiir
jedes i € [ und j € J eine Formel ; ; gegeben, so schreiben wir

um die Formel (3, A --- A1);) zu bezeichnen, wobei fiir jedes i € [ die
Formel v; durch ; := (30;71'1 VeV (p,'Jn) definiert ist.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Wahrheitstafeln

Fiir jede Formel kann man die Wahrheitswerte unter allen
moglichen Interpretationen in einer Wahrheitstafel darstellen. Fiir alle
(b1,-..,bp) € {0,1}" enthdlt die Tafel eine Zeile mit den Werten

by <+ by | ©[b1,. .., by
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Wabhrheitstafeln

Fiir jede Formel kann man die Wahrheitswerte unter allen
moglichen Interpretationen in einer Wahrheitstafel darstellen. Fiir alle
(b1,-..,bp) € {0,1}" enthdlt die Tafel eine Zeile mit den Werten

by -+ b, | olb1,..., byl

Um die Wahrheitstafel fiir ¢ auszufiillen, ist es bequem, auch Spalten fiir (alle
oder einige) Subformeln von ¢ einzufiigen.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Wabhrheitstafeln

Fiir jede Formel kann man die Wahrheitswerte unter allen
moglichen Interpretationen in einer Wahrheitstafel darstellen. Fiir alle
(b1,-..,bp) € {0,1}" enthdlt die Tafel eine Zeile mit den Werten

by -+ b, | olb1,..., byl
Um die Wahrheitstafel fiir ¢ auszufiillen, ist es bequem, auch Spalten fiir (alle

oder einige) Subformeln von ¢ einzufiigen.

Beispiel: Wahrheitstafel fiir =
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Wahrheitstafeln

Fiir jede Formel kann man die Wahrheitswerte unter allen
moglichen Interpretationen in einer Wahrheitstafel darstellen. Fiir alle
(b1,-..,bp) € {0,1}" enthdlt die Tafel eine Zeile mit den Werten

by -+ b, | olb1,..., byl

Um die Wahrheitstafel fiir ¢ auszufiillen, ist es bequem, auch Spalten fiir (alle
oder einige) Subformeln von ¢ einzufiigen.

Beispiel: Wahrheitstafel fiir =

H =R~ OOOO
H O, ORFORFO

i = =)

H ORFROOOOO

= = OO KFE OO
H O, OOORFHH
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Wahrheitstafeln

Fiir jede Formel kann man die Wahrheitswerte unter allen
moglichen Interpretationen in einer Wahrheitstafel darstellen. Fiir alle
(b1,-..,bp) € {0,1}" enthdlt die Tafel eine Zeile mit den Werten

by -+ b, | olb1,..., byl

Um die Wahrheitstafel fiir ¢ auszufiillen, ist es bequem, auch Spalten fiir (alle
oder einige) Subformeln von ¢ einzufiigen.

Beispiel: Wahrheitstafel fiir =

0 0 O 0 0 1
0 0 1 0 0 1
0 1 0 1 0 0
0 1 1 1 0 0
1 0 O 1 0 0
1 0 1 1 1 1
1 1 0 1 0 0
1 1 1 1 1 1

Die Reihenfolge der Zeilen ist dabei unerheblich. Wir vereinbaren allerdings, die
Zeilen stets so anzuordnen, dass die Werte by - - - b, € {0,1}", aufgefasst als

Bindrzahlen, in aufsteigender Reihenfolge aufgelistet werden.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Wahrheitstafeln fiir die Junktoren

Die Bedeutung der Junktoren kann man mittels ihrer Wahrheitstafeln
beschreiben:
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Wahrheitstafeln fiir die Junktoren

Die Bedeutung der Junktoren kann man mittels ihrer Wahrheitstafeln
beschreiben:

X Y |(xXY) X Y| (xvy) X Y[(XY)
X | X 0 o0 0 0 o0 0 0 0 1
0 1 0 1 0 0 1 1 0 1 1
1| 0 1 0 0 1 0 1 1 0 0

11 1 11 1 11 1
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Wahrheitstafeln fiir die Junktoren

Die Bedeutung der Junktoren kann man mittels ihrer Wahrheitstafeln

beschreiben:

X Y |(xXY) X Y| (xvy) X Y[(XY)
X | X 0 o0 0 0 o0 0 0 0 1
0 1 0 1 0 0 1 1 0 1 1
1| 0 1 0 0 1 0 1 1 0 0

11 1 11 1 11 1

Genauso kann man eine Wahrheitstafel fiir die Formel X<:Y, die ja eine
Abkiirzung fiir (X — Y)A (Y — X) ist, bestimmen:

X Y| (X2Y)
0 0 1
0 1 0
1 0 0
11 1

X<«>Y bedeutet also ,, X genau dann wenn Y".
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Version vom 25. Januar 2024

Folie 58



Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Ein Logikratsel

Beispiel 2.9
Auf der Insel Wafa gibt es zwei Dorfer: Das Dorf Wa, dessen Einwohner:innen
immer die Wahrheit sagen, und das Dorf Fa, dessen Einwohner:innen immer

ligen.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Ein Logikratsel

Beispiel 2.9

Auf der Insel Wafa gibt es zwei Dorfer: Das Dorf Wa, dessen Einwohner:innen
immer die Wahrheit sagen, und das Dorf Fa, dessen Einwohner:innen immer
ligen. Ein Reisender besucht die Insel und trifft auf drei Einwohner A, B, C, die
ihm Folgendes erzihlen:

® A sagt:
B und C sagen genau dann die Wahrheit, wenn C die Wahrheit sagt. "

® B sagt:
.Wenn A und C die Wahrheit sagen, dann ist es nicht der Fall, dass A die
Wahrheit sagt, wenn B und C die Wahrheit sagen.

e (C sagt:
B liigt genau dann, wenn A oder B die Wahrheit sagen.’

‘

Frage: In welchen der beiden Dé&rfern leben jeweils A, B bzw. C?
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Aussagenlogische Modellierung

Aussagensymbole:
® W, steht fiir ,, A sagt die Wahrheit."
® W;g steht fiir ,, B sagt die Wahrheit."
® W steht fiir ,, C sagt die Wahrheit."
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Aussagenlogische Modellierung

Aussagensymbole:
® W, steht fiir ,, A sagt die Wahrheit."

® W;g steht fiir ,, B sagt die Wahrheit."
® W steht fiir ,, C sagt die Wahrheit."

Aussagen der drei Inselbewohner:

[ ) (pA::
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Aussagenlogische Modellierung

Aussagensymbole:
® W, steht fiir ,, A sagt die Wahrheit."
® W;g steht fiir ,, B sagt die Wahrheit."
® W steht fiir ,, C sagt die Wahrheit."

Aussagen der drei Inselbewohner:
® pp:= (WgAWe) « We
° g := (WanWe) — ﬂ((WB/\ We) — WA)
® pc:= ~Wg < (WaV Wpg)

Wir suchen nach einer Interpretation, die die Formel

b=
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Aussagenlogische Modellierung

Aussagensymbole:
® W, steht fiir ,, A sagt die Wahrheit."
® W;g steht fiir ,, B sagt die Wahrheit."
® W steht fiir ,, C sagt die Wahrheit."

Aussagen der drei Inselbewohner:
® pp:= (WgAWe) « We
° g := (WanWe) — ﬂ((WB/\ We) — WA)
® pc:= ~Wg < (WaV Wpg)

Wir suchen nach einer Interpretation, die die Formel

P = (WA<—><pA) A (WB<—><pB) A (Wc<—><pc)

erfiillt.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Losung mittels Wahrheitstafel
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Losung mittels Wahrheitstafel

Wa We Wc | pal|lvs|wc| Wasrpa| Werpp | We e | ¥
0 0 0 1 1 0 0 0 1 0
0 0 1 0 1 0 1 0 0 0
0 1 0 1 1 0 0 1 1 0
0 1 1 1 1 0 0 1 0 0
1 0 0 1 1 1 1 0 0 0
1 0 1 0 0 1 0 1 1 0
1 1 0 1 1 0 1 1 1 1
1 1 1 1 0 0 1 0 0 0
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Kapitel 2: Aussagenlogik -

Abschnitt 2.1: Syntax und Semantik

Losung mittels Wahrheitstafel

Wa We Wc | pal|lvs|wc| Wasrpa| Werpp | We e | ¥
0 0 0 1 1 0 0 0 1 0
0 0 1 0 1 0 1 0 0 0
0 1 0 1 1 0 0 1 1 0
0 1 1 1 1 0 0 1 0 0
1 0 0 1 1 1 1 0 0 0
1 0 1 0 0 1 0 1 1 0
1 1 0 1 1 0 1 1 1 1
1 1 1 1 0 0 1 0 0 0

Die Interpretation Z mit Z(W,) = 1, Z(Wg) = 1, Z(W¢) = 0 in Zeile 7 ist die
einzige, die die Formel v erfiillt.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Losung mittels Wahrheitstafel

Wa We Wc | pal|lvs|wc| Wasrpa| Werpp | We e | ¥
0 0 0 1 1 0 0 0 1 0
0 0 1 0 1 0 1 0 0 0
0 1 0 1 1 0 0 1 1 0
0 1 1 1 1 0 0 1 0 0
1 0 0 1 1 1 1 0 0 0
1 0 1 0 0 1 0 1 1 0
1 1 0 1 1 0 1 1 1 1
1 1 1 1 0 0 1 0 0 0

Die Interpretation Z mit Z(W,) = 1, Z(Wg) = 1, Z(W¢) = 0 in Zeile 7 ist die
einzige, die die Formel v erfiillt.

GemaB dieser Interpretation sind die Aussagen, die durch die Symbole W, und
Wpg reprasentiert werden, wahr, wihrend die Aussage, die durch W¢
reprasentiert wird, falsch ist.
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Kapitel 2: Aussagenlogik -

Abschnitt 2.1: Syntax und Semantik

Losung mittels Wahrheitstafel

Wa We Wc | pal|lvs|wc| Wasrpa| Werpp | We e | ¥
0 0 0 1 1 0 0 0 1 0
0 0 1 0 1 0 1 0 0 0
0 1 0 1 1 0 0 1 1 0
0 1 1 1 1 0 0 1 0 0
1 0 0 1 1 1 1 0 0 0
1 0 1 0 0 1 0 1 1 0
1 1 0 1 1 0 1 1 1 1
1 1 1 1 0 0 1 0 0 0

Die Interpretation Z mit Z(W,) = 1, Z(Wg) = 1, Z(W¢) = 0 in Zeile 7 ist die
einzige, die die Formel v erfiillt.

GemaB dieser Interpretation sind die Aussagen, die durch die Symbole W, und
Wpg reprasentiert werden, wahr, wihrend die Aussage, die durch W¢
reprasentiert wird, falsch ist.

Das heiBt, die Personen A und B sagen die Wahrheit und leben somit im Dorf
Wa, und Person C liigt und lebt daher im Dorf Fa.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Computerlesbare Darstellung von Formeln

Wir betrachten das Alphabet ASCII aller ASCII-Symbole.

Die Menge ASjscrr aller ASCII-Reprasentationen von Aussagensymbolen besteht
aus allen nicht-leeren Worten iiber dem Alphabet ASCII, deren erstes Symbol
ein Buchstabe ist, und bei dem alle weiteren Symbole Buchstaben oder Ziffern

sind.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Computerlesbare Darstellung von Formeln

Wir betrachten das Alphabet ASCII aller ASCII-Symbole.

Die Menge ASjscrr aller ASCII-Reprasentationen von Aussagensymbolen besteht
aus allen nicht-leeren Worten iiber dem Alphabet ASCII, deren erstes Symbol
ein Buchstabe ist, und bei dem alle weiteren Symbole Buchstaben oder Ziffern
sind.

Die Menge ALscrr aller ASCII-Reprasentationen von aussagenlogischen Formeln
ist die rekursiv wie folgt definierte Teilmenge von ASCII*:
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Computerlesbare Darstellung von Formeln

Wir betrachten das Alphabet ASCII aller ASCII-Symbole.

Die Menge ASjscrr aller ASCII-Reprasentationen von Aussagensymbolen besteht
aus allen nicht-leeren Worten iiber dem Alphabet ASCII, deren erstes Symbol
ein Buchstabe ist, und bei dem alle weiteren Symbole Buchstaben oder Ziffern
sind.

Die Menge ALscrr aller ASCII-Reprasentationen von aussagenlogischen Formeln
ist die rekursiv wie folgt definierte Teilmenge von ASCII*:

Basisregeln:
® 0 € Alpsciz, 1€ Alpscr
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Computerlesbare Darstellung von Formeln

Wir betrachten das Alphabet ASCII aller ASCII-Symbole.

Die Menge ASjscrr aller ASCII-Reprasentationen von Aussagensymbolen besteht
aus allen nicht-leeren Worten iiber dem Alphabet ASCII, deren erstes Symbol
ein Buchstabe ist, und bei dem alle weiteren Symbole Buchstaben oder Ziffern
sind.

Die Menge ALscrr aller ASCII-Reprasentationen von aussagenlogischen Formeln
ist die rekursiv wie folgt definierte Teilmenge von ASCII*:

Basisregeln:
® 0c ALASCII: 1e ALASCII und w € ALASCII fur alle w € ASASCII-
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Computerlesbare Darstellung von Formeln

Wir betrachten das Alphabet ASCII aller ASCII-Symbole.

Die Menge ASjscrr aller ASCII-Reprasentationen von Aussagensymbolen besteht
aus allen nicht-leeren Worten iiber dem Alphabet ASCII, deren erstes Symbol
ein Buchstabe ist, und bei dem alle weiteren Symbole Buchstaben oder Ziffern
sind.

Die Menge ALscrr aller ASCII-Reprasentationen von aussagenlogischen Formeln
ist die rekursiv wie folgt definierte Teilmenge von ASCII*:

Basisregeln:
® 0c ALASCII: 1e ALASCII und w € ALASCII fur alle w € ASASCII-

Rekursive Regeln:
® Ist ¢ € Alscrr, so ist auch ~p € Alyscrr- (Negation)
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Computerlesbare Darstellung von Formeln

Wir betrachten das Alphabet ASCII aller ASCII-Symbole.

Die Menge ASjscrr aller ASCII-Reprasentationen von Aussagensymbolen besteht
aus allen nicht-leeren Worten iiber dem Alphabet ASCII, deren erstes Symbol
ein Buchstabe ist, und bei dem alle weiteren Symbole Buchstaben oder Ziffern
sind.

Die Menge ALscrr aller ASCII-Reprasentationen von aussagenlogischen Formeln
ist die rekursiv wie folgt definierte Teilmenge von ASCII*:

Basisregeln:
® 0c ALASCII: 1e ALASCII und w € ALASCII fur alle w € ASASCII-

Rekursive Regeln:

® Ist ¢ € Alscrr, so ist auch ~p € Alyscrr- (Negation)
® |st (TS AI—ASCII und w S ALASCII: so ist auch

e (p/\vY) € ALpscrr  (Konjunktion)
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Computerlesbare Darstellung von Formeln

Wir betrachten das Alphabet ASCII aller ASCII-Symbole.

Die Menge ASjscrr aller ASCII-Reprasentationen von Aussagensymbolen besteht
aus allen nicht-leeren Worten iiber dem Alphabet ASCII, deren erstes Symbol
ein Buchstabe ist, und bei dem alle weiteren Symbole Buchstaben oder Ziffern
sind.

Die Menge ALscrr aller ASCII-Reprasentationen von aussagenlogischen Formeln
ist die rekursiv wie folgt definierte Teilmenge von ASCII*:
Basisregeln:

® 0 ¢ Alpscrr, 1 € Alpserr und w € Alygerr fiir alle w € ASygerr.
Rekursive Regeln:

® Ist ¢ € Alscrr, so ist auch ~p € Alyscrr- (Negation)
® |st (TS AI—ASCII und w S ALASCII: so ist auch

e (p/\vY) € ALpscrr  (Konjunktion)
° ((,0 \/ ’(/J) c ALASCII (Disjunktion)
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Computerlesbare Darstellung von Formeln

Wir betrachten das Alphabet ASCII aller ASCII-Symbole.

Die Menge ASjscrr aller ASCII-Reprasentationen von Aussagensymbolen besteht
aus allen nicht-leeren Worten iiber dem Alphabet ASCII, deren erstes Symbol
ein Buchstabe ist, und bei dem alle weiteren Symbole Buchstaben oder Ziffern
sind.

Die Menge ALscrr aller ASCII-Reprasentationen von aussagenlogischen Formeln
ist die rekursiv wie folgt definierte Teilmenge von ASCII*:
Basisregeln:

® 0 ¢ Alpscrr, 1 € Alpserr und w € Alygerr fiir alle w € ASygerr.
Rekursive Regeln:

® Ist ¢ € Alscrr, so ist auch ~p € Alyscrr- (Negation)
® |st (TS AI—ASCII und w S ALASCII: so ist auch

e (p/\vY) € ALpscrr  (Konjunktion)
° ((,0 \/ ’(/J) c ALASCII (Disjunktion)
® (p->1) € Alpscrr (Implikation)
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Computerlesbare Darstellung von Formeln

Wir betrachten das Alphabet ASCII aller ASCII-Symbole.

Die Menge ASjscrr aller ASCII-Reprasentationen von Aussagensymbolen besteht
aus allen nicht-leeren Worten iiber dem Alphabet ASCII, deren erstes Symbol
ein Buchstabe ist, und bei dem alle weiteren Symbole Buchstaben oder Ziffern
sind.

Die Menge ALscrr aller ASCII-Reprasentationen von aussagenlogischen Formeln
ist die rekursiv wie folgt definierte Teilmenge von ASCII*:
Basisregeln:

® 0c ALASCII: 1e ALASCII und w € ALASCII fur alle w € ASASCII-
Rekursive Regeln:

® Ist ¢ € Alscrr, so ist auch ~p € Alyscrr- (Negation)

® |st (TS AI—ASCII und w S ALASCII: so ist auch

° ((,0 /\ w) S ALASCII (Konjunktion)

i (QO \/ ’(/J) S ALASCII (Disjunktion)
® (p->1) € Alpscrr (Implikation)
® (p<—>1) € Alyserr (Biimplikation).
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Abstrakte vs. computerlesbare Syntax

Es ist offensichtlich, wie man Formeln aus AL in ihre entsprechende
ASCII-Reprasentation iibersetzt und umgekehrt.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Abstrakte vs. computerlesbare Syntax

Es ist offensichtlich, wie man Formeln aus AL in ihre entsprechende
ASCII-Reprasentation iibersetzt und umgekehrt. Zum Beispiel ist

eine Formel in AL, deren ASCII-Reprasentation die folgende Zeichenkette aus
ALASCII ist:
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Abstrakte vs. computerlesbare Syntax

Es ist offensichtlich, wie man Formeln aus AL in ihre entsprechende
ASCII-Reprasentation iibersetzt und umgekehrt. Zum Beispiel ist

eine Formel in AL, deren ASCII-Reprasentation die folgende Zeichenkette aus
ALASCII ist:

( (A0O/\O) -> ~A13 ).
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Abstrakte vs. computerlesbare Syntax

Es ist offensichtlich, wie man Formeln aus AL in ihre entsprechende
ASCII-Reprasentation iibersetzt und umgekehrt. Zum Beispiel ist

eine Formel in AL, deren ASCII-Reprasentation die folgende Zeichenkette aus
ALASCII ist:

( (A0O/\O) -> ~A13 ).
Wir werden meistens mit der , abstrakten Syntax", d.h. mit der in Definition 2.4

festgelegten Menge AL, arbeiten. Um aber Formeln in Computer-Programme
einzugeben, konnen wir die ASCII-Reprasentation verwenden.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Demo: snippets of logic

® ein Formelchecker fiir die Aussagenlogik

entwickelt von André Frochaux

Funktionalitdten u.a.:
® Syntaxcheck fiir eingegebene Formeln
® Ausgabe eines Syntaxbaums

® Ausgabe einer Wahrheitstafel

Zuganglich via

http://www.snippets-of-logic.net/index_AL.php?lang=de
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Zuriick zu Beispiel 2.1 (,, Geburtstagsfeier")

Das in Beispiel 2.1 aufgelistete Wissen kann durch folgende aussagenlogische
Formel reprasentiert werden:

¢ = ((BAA)—=-E) A ((BAE)—=D) A
(E=(CAD)) A (C—A) A (A= (BVO))
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Zuriick zu Beispiel 2.1 (,, Geburtstagsfeier")

Das in Beispiel 2.1 aufgelistete Wissen kann durch folgende aussagenlogische
Formel reprasentiert werden:

¢ = ((BAA)—=-E) A ((BAE)—=D) A
(E=(CAD)) A (C—A) A (A= (BVO))

Die Frage
. Wie viele (und welche) Freunde werden im besten Fall zur Party kom-
men?"

kann nun durch Losen der folgenden Aufgabe beantwortet werden:
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Zuriick zu Beispiel 2.1 (,, Geburtstagsfeier")

Das in Beispiel 2.1 aufgelistete Wissen kann durch folgende aussagenlogische
Formel reprasentiert werden:

¢ = ((BAA)—=-E) A ((BAE)—=D) A
(E=(CAD)) A (C—A) A (A= (BVO))

Die Frage
. Wie viele (und welche) Freunde werden im besten Fall zur Party kom-
men?"

kann nun durch Losen der folgenden Aufgabe beantwortet werden:

Finde eine Interpretation Z fiir ¢, so dass gilt:

® 7Tk ¢ (d.h., T ist ein Modell von ¢) und
e {Xe{A B,C,D,E} : Z(X) =1}| ist so groB wie moglich.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Diese Frage kdnnen wir I6sen, indem wir

(1) die Wahrheitstafel fiir ¢ ermitteln,
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Diese Frage kdnnen wir I6sen, indem wir
(1) die Wahrheitstafel fiir ¢ ermitteln,

(2) alle Zeilen raussuchen, in denen in der mit " beschrifteten Spalte der
Wert 1 steht (das liefert uns genau die Modelle von ¢) und
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Diese Frage kdnnen wir I6sen, indem wir
(1) die Wahrheitstafel fiir ¢ ermitteln,

(2) alle Zeilen raussuchen, in denen in der mit " beschrifteten Spalte der
Wert 1 steht (das liefert uns genau die Modelle von ¢) und

(3) aus diesen Zeilen all jene raussuchen, bei denen in den mit A, B, C, D, E
beschrifteten Spalten moglichst viele Einsen stehen. Jede dieser Zeilen
reprasentiert dann eine groBtmogliche Konstellation von gleichzeitigen
Partybesuchern.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Diese Frage kdnnen wir I6sen, indem wir
(1) die Wahrheitstafel fiir ¢ ermitteln,

(2) alle Zeilen raussuchen, in denen in der mit " beschrifteten Spalte der
Wert 1 steht (das liefert uns genau die Modelle von ¢) und

(3) aus diesen Zeilen all jene raussuchen, bei denen in den mit A, B, C, D, E
beschrifteten Spalten moglichst viele Einsen stehen. Jede dieser Zeilen
reprasentiert dann eine groBtmogliche Konstellation von gleichzeitigen
Partybesuchern.

Prinzipiell fiihrt diese Vorgehensweise zum Ziel.

Leider ist das Verfahren aber recht aufwindig, da die Wahrheitstafel, die man
dabei aufstellen muss, sehr groB wird:
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Diese Frage kdnnen wir I6sen, indem wir
(1) die Wahrheitstafel fiir ¢ ermitteln,

(2) alle Zeilen raussuchen, in denen in der mit " beschrifteten Spalte der
Wert 1 steht (das liefert uns genau die Modelle von ¢) und

(3) aus diesen Zeilen all jene raussuchen, bei denen in den mit A, B, C, D, E
beschrifteten Spalten moglichst viele Einsen stehen. Jede dieser Zeilen
reprasentiert dann eine groBtmogliche Konstellation von gleichzeitigen
Partybesuchern.

Prinzipiell fiihrt diese Vorgehensweise zum Ziel.

Leider ist das Verfahren aber recht aufwindig, da die Wahrheitstafel, die man
dabei aufstellen muss, sehr groB wird: Sie hat 2° = 32 Zeilen.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

A B c D E | ES(CAD) | C—oA | (BAE)y— =D | A5 (BVC) | (BAA) = —E | ¢

o o o o 1| o | 1 | 1 1 5o
0 0 0 1 1 0 1 1 1 1 0
0 0 1 0 0 1 0 1 1 1 0
0 0 1 0 1 0 0 1 1 1 0
0 0 1 1 0 1 0 1 1 1 0
0 0 1 1 1 1 0 1 1 1 0
o 1 o o 1| o | 1 | 1 ] 1 5 o

Modelle fiir ¢ werden hier durch grau unterlegte Zeilen reprasentiert.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

In der Wahrheitstafel sieht man:

® Es gibt kein Modell fiir ¢, bei dem in den mit A bis E beschrifteten Spalten
insgesamt 5 Einsen stehen.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

In der Wahrheitstafel sieht man:

® Es gibt kein Modell fiir ¢, bei dem in den mit A bis E beschrifteten Spalten
insgesamt 5 Einsen stehen.

® Es gibt genau Modelle fiir ¢, bei denen in den mit A bis E
beschrifteten Spalten insgesamt 4 Einsen stehen, namlich die beiden
Interpretationen Z; und Z, mit

und

I2(A) = IQ(B) = IQ(C) = I2(D) =1 und IQ(E) =0.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

In der Wahrheitstafel sieht man:

® Es gibt kein Modell fiir ¢, bei dem in den mit A bis E beschrifteten Spalten
insgesamt 5 Einsen stehen.

® Es gibt genau Modelle fiir ¢, bei denen in den mit A bis E
beschrifteten Spalten insgesamt 4 Einsen stehen, namlich die beiden
Interpretationen Z; und Z, mit

und

I2(A) = IQ(B) = IQ(C) = I2(D) =1 und IQ(E) =0.

Die Antwort auf die Frage , Wie viele (und welche) Freunde werden bestenfalls
zur Party kommen?* lautet also:
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik
In der Wahrheitstafel sieht man:

® Es gibt kein Modell fiir ¢, bei dem in den mit A bis E beschrifteten Spalten
insgesamt 5 Einsen stehen.

® Es gibt genau Modelle fiir ¢, bei denen in den mit A bis E
beschrifteten Spalten insgesamt 4 Einsen stehen, namlich die beiden
Interpretationen Z; und Z, mit

und
IQ(A) = IQ(B) = IQ(C) = I2(D) =1 und IQ(E) =0.
Die Antwort auf die Frage , Wie viele (und welche) Freunde werden bestenfalls

zur Party kommen?* lautet also:

Bestenfalls werden 4 der 5 Freunde kommen, und dafiir gibt es zwei
Moglichkeiten, namlich

(1) dass alle auBer Bernd kommen, und
(2) dass alle auBer Eva kommen.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Erfiillbarkeit, Allgemeingiiltigkeit und die
Folgerungsbeziehung



Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Erfillbarkeit

Definition 2.10
Eine Formel ¢ € AL heiBt erfiillbar, wenn es eine Interpretation gibt, die ¢

erfiillt.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Erfiillbarkeit

Definition 2.10

Eine Formel ¢ € AL heiBt erfiillbar, wenn es eine Interpretation gibt, die ¢
erfiillt.

Eine Formelmenge ® heiBt erfiillbar, wenn es eine Interpretation Z gibt, die ¢
erfiillt (d.h. es gilt Z |= ¢ fiir jedes p € ®).
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Erfiillbarkeit

Definition 2.10

Eine Formel ¢ € AL heiBt erfiillbar, wenn es eine Interpretation gibt, die ¢
erfiillt.

Eine Formelmenge ® heiBt erfiillbar, wenn es eine Interpretation Z gibt, die ¢
erfiillt (d.h. es gilt Z |= ¢ fiir jedes p € ®).

Eine Formel oder Formelmenge, die nicht erfiillbar ist, nennen wir unerfiillbar.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Erfillbarkeit

Definition 2.10
Eine Formel ¢ € AL heiBt erfiillbar, wenn es eine Interpretation gibt, die ¢

erfiillt.
Eine Formelmenge ® heiBt erfiillbar, wenn es eine Interpretation Z gibt, die ¢
erfiillt (d.h. es gilt Z |= ¢ fiir jedes p € ®).

Eine Formel oder Formelmenge, die nicht erfiillbar ist, nennen wir unerfiillbar.

Beobachtung 2.11

(a) Eine aussagenlogische Formel ist genau dann erfiillbar, wenn in der letzten
Spalte ihrer Wahrheitstafel mindestens eine 1 steht.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Erfillbarkeit

Definition 2.10
Eine Formel ¢ € AL heiBt erfiillbar, wenn es eine Interpretation gibt, die ¢
erfiillt.

Eine Formelmenge ® heiBt erfiillbar, wenn es eine Interpretation Z gibt, die ¢
erfiillt (d.h. es gilt Z |= ¢ fiir jedes p € ®).

Eine Formel oder Formelmenge, die nicht erfiillbar ist, nennen wir unerfiillbar.

Beobachtung 2.11

(a) Eine aussagenlogische Formel ist genau dann erfiillbar, wenn in der letzten
Spalte ihrer Wahrheitstafel mindestens eine 1 steht.

(b) Eine endliche Formelmenge ® = {¢1,...,p,} ist genau dann erfiillbar,
wenn die Formel \!_, p; erfiillbar ist.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Erfillbarkeit

Definition 2.10
Eine Formel ¢ € AL heiBt erfiillbar, wenn es eine Interpretation gibt, die ¢
erfiillt.

Eine Formelmenge ® heiBt erfiillbar, wenn es eine Interpretation Z gibt, die ¢
erfiillt (d.h. es gilt Z |= ¢ fiir jedes p € ®).

Eine Formel oder Formelmenge, die nicht erfiillbar ist, nennen wir unerfiillbar.

Beobachtung 2.11

(a) Eine aussagenlogische Formel ist genau dann erfiillbar, wenn in der letzten
Spalte ihrer Wahrheitstafel mindestens eine 1 steht.

(b) Eine endliche Formelmenge ® = {¢1,...,p,} ist genau dann erfiillbar,
wenn die Formel \!_, p; erfiillbar ist.

Beispiele:
® Die Formel X ist
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Erfillbarkeit

Definition 2.10
Eine Formel ¢ € AL heiBt erfiillbar, wenn es eine Interpretation gibt, die ¢
erfiillt.

Eine Formelmenge ® heiBt erfiillbar, wenn es eine Interpretation Z gibt, die ¢
erfiillt (d.h. es gilt Z |= ¢ fiir jedes p € ®).

Eine Formel oder Formelmenge, die nicht erfiillbar ist, nennen wir unerfiillbar.

Beobachtung 2.11

(a) Eine aussagenlogische Formel ist genau dann erfiillbar, wenn in der letzten
Spalte ihrer Wahrheitstafel mindestens eine 1 steht.

(b) Eine endliche Formelmenge ® = {¢1,...,p,} ist genau dann erfiillbar,
wenn die Formel \!_, p; erfiillbar ist.

Beispiele:
® Die Formel X ist erfiillbar.

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 69



Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Erfillbarkeit

Definition 2.10
Eine Formel ¢ € AL heiBt erfiillbar, wenn es eine Interpretation gibt, die ¢
erfiillt.

Eine Formelmenge ® heiBt erfiillbar, wenn es eine Interpretation Z gibt, die ¢
erfiillt (d.h. es gilt Z |= ¢ fiir jedes p € ®).

Eine Formel oder Formelmenge, die nicht erfiillbar ist, nennen wir unerfiillbar.

Beobachtung 2.11

(a) Eine aussagenlogische Formel ist genau dann erfiillbar, wenn in der letzten
Spalte ihrer Wahrheitstafel mindestens eine 1 steht.

(b) Eine endliche Formelmenge ® = {¢1,...,p,} ist genau dann erfiillbar,
wenn die Formel \!_, p; erfiillbar ist.

Beispiele:
® Die Formel X ist erfiillbar.
® Die Formel (X A —=X) ist
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Erfillbarkeit

Definition 2.10
Eine Formel ¢ € AL heiBt erfiillbar, wenn es eine Interpretation gibt, die ¢
erfiillt.

Eine Formelmenge ® heiBt erfiillbar, wenn es eine Interpretation Z gibt, die ¢
erfiillt (d.h. es gilt Z |= ¢ fiir jedes p € ®).

Eine Formel oder Formelmenge, die nicht erfiillbar ist, nennen wir unerfiillbar.

Beobachtung 2.11

(a) Eine aussagenlogische Formel ist genau dann erfiillbar, wenn in der letzten
Spalte ihrer Wahrheitstafel mindestens eine 1 steht.

(b) Eine endliche Formelmenge ® = {¢1,...,p,} ist genau dann erfiillbar,
wenn die Formel \!_, p; erfiillbar ist.

Beispiele:
® Die Formel X ist erfiillbar.
® Die Formel (X A —=X) ist unerfiillbar.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Allgemeingiiltigkeit

Definition 2.12
Eine Formel ¢ € AL ist allgemeingiiltig, wenn jede Interpretation Z die Formel ¢

erfiillt.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Allgemeingiiltigkeit

Definition 2.12
Eine Formel ¢ € AL ist allgemeingiiltig, wenn jede Interpretation Z die Formel ¢

erfiillt.

Bemerkung
Allgemeingiiltige Formeln nennt man auch Tautologien.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Allgemeingiiltigkeit

Definition 2.12

Eine Formel ¢ € AL ist allgemeingiiltig, wenn jede Interpretation Z die Formel ¢
erfiillt.

Bemerkung

Allgemeingiiltige Formeln nennt man auch Tautologien.
Man schreibt auch = ¢ um auszudriicken, dass ¢ allgemeingiiltig ist.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Allgemeingiiltigkeit

Definition 2.12
Eine Formel ¢ € AL ist allgemeingiiltig, wenn jede Interpretation Z die Formel ¢
erfiillt.

Bemerkung

Allgemeingiiltige Formeln nennt man auch Tautologien.
Man schreibt auch = ¢ um auszudriicken, dass ¢ allgemeingiiltig ist.

Beobachtung 2.13

Eine aussagenlogische Formel ist genau dann allgemeingiiltig, wenn in der
letzten Spalte ihrer Wahrheitstafel nur len stehen.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Allgemeingiiltigkeit

Definition 2.12
Eine Formel ¢ € AL ist allgemeingiiltig, wenn jede Interpretation Z die Formel ¢
erfiillt.

Bemerkung

Allgemeingiiltige Formeln nennt man auch Tautologien.
Man schreibt auch = ¢ um auszudriicken, dass ¢ allgemeingiiltig ist.

Beobachtung 2.13
Eine aussagenlogische Formel ist genau dann allgemeingiiltig, wenn in der

letzten Spalte ihrer Wahrheitstafel nur len stehen.

Beispiel: Die Formel (X V —X) ist allgemeingiiltig.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiel 2.14
Die Formel (XV Y)A (=X VY) ist
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiel 2.14
Die Formel (XV Y)A (=X VY) ist

e erfiillbar, da z.B. die Interpretation Z mit Z(X) = 0 und Z(Y) = 1 die
Formel erfiillt.

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 71



Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiel 2.14
Die Formel (XV Y)A (=X VY) ist

e erfiillbar, da z.B. die Interpretation Z mit Z(X) = 0 und Z(Y) = 1 die
Formel erfiillt.

® nicht allgemeingiiltig, da z.B. die Interpretation Z' mit Z'(X) = 0 und
Z'(Y) = 0 die Formel nicht erfiillt.

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 71



Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Die Folgerungsbeziehung

Definition 2.15
Eine Formel ¢ € AL folgt aus einer Formelmenge ® C AL (wir schreiben:

® = 1), wenn fiir jede Interpretation Z gilt: Wenn Z die Formelmenge ¢ erfiillt,
dann erfiillt Z auch die Formel .
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Die Folgerungsbeziehung

Definition 2.15

Eine Formel ¢ € AL folgt aus einer Formelmenge ® C AL (wir schreiben:

® = 1), wenn fiir jede Interpretation Z gilt: Wenn Z die Formelmenge ¢ erfiillt,
dann erfiillt Z auch die Formel .

Notation
Fiir zwei Formeln ¢, € AL schreiben wir kurz ¢ |= 9 an Stelle von {p} = ¢
und sagen, dass die Formel v aus der Formel ¢ folgt.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiel 2.16
Sei v :=((XVY)A(=XVY)) und ¢:=(YV(=XA=Y)).
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiel 2.16
Sei p:=((XVY)A(=XVY)) und ¢:=(YV(=XA=Y)).

| (XVvY) [ (=XVY) |

— = O ol X
= o = ol
=== o<
= O~ OfS

(&
1
1
0
1

[ = S
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiel 2.16
Sei p:=((XVY)A(=XVY)) und ¢ :=(YV(=XAY)).

X Y [(XVY) [(XvY) | g | @
0 O 0 1 0|1
0 1 1 1 1)1
1 0 1 0 0|0
1 1 1 1 1)1

In jeder Zeile der Wahrheitstafel, in der in der mit ,,¢" beschrifteten Spalte eine
1 steht, steht auch in der mit ;7" beschrifteten Spalte eine 1. Somit gilt

o EYP.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiel 2.16
Sei p:=((XVY)A(=XVY)) und ¢ :=(YV(=XAY)).

X Y [(XVY) [(XvY) | g | @
0 O 0 1 0|1
0 1 1 1 1)1
1 0 1 0 0|0
1 1 1 1 1)1

In jeder Zeile der Wahrheitstafel, in der in der mit ,,¢" beschrifteten Spalte eine
1 steht, steht auch in der mit ;7" beschrifteten Spalte eine 1. Somit gilt

o EYP.

Andererseits steht in Zeile 1 in der mit , 9" beschrifteten Spalte eine 1 und in
der mit ,," beschrifteten Spalte eine 0. Fiir die entsprechende Interpretation 7
(mit Z(X) = 0 und Z(Y) = 0) gilt also [¢]" = 1 und [¢]” = 0. Daher gilt
(o
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiel 2.16
Sei p:=((XVY)A(=XVY)) und ¢ :=(YV(=XAY)).
Dann gilt ¢ [= 1, aber es gilt nicht ¢ = ¢ (kurz: ¥ £ ), denn:

X Y| (XVY) [(-XVY) || v
0 0 0 1 01
0 1 1 1 1|1
1 0 1 0 00
1 1 1 1 1|1

In jeder Zeile der Wahrheitstafel, in der in der mit ,,¢" beschrifteten Spalte eine
1 steht, steht auch in der mit ;3" beschrifteten Spalte eine 1. Somit gilt

o EYP.

Andererseits steht in Zeile 1 in der mit , 9" beschrifteten Spalte eine 1 und in
der mit ,," beschrifteten Spalte eine 0. Fiir die entsprechende Interpretation 7
(mit Z(X) = 0 und Z(Y) = 0) gilt also [¢]" = 1 und [¢]” = 0. Daher gilt
(o
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiel 2.17
Fiir alle Formeln ¢, € AL gilt:

{e, (p=9)} F o
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiel 2.17
Fiir alle Formeln ¢, € AL gilt:

{e, (p=9)} F o

Dies folgt unmittelbar aus der Definition der Semantik:
Sei Z eine Interpretation mit Z = {¢, (¢ — v)}. Dann gilt:
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiel 2.17
Fiir alle Formeln ¢, € AL gilt:

{o, (=)} E ¢
Dies folgt unmittelbar aus der Definition der Semantik:
Sei Z eine Interpretation mit Z = {¢, (¢ — v)}. Dann gilt:
(1) [¢]* =1 und
(2) [(¢ = ¥)]* =1, d.h. esgilt [¢]" = 0 oder []* = 1.
Da [¢]* = 1 gem3B (1) gilt, folgt gem3B (2), dass [¢]* = 1.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiel 2.17
Fiir alle Formeln ¢, € AL gilt:

{e, (p=9)} F o

Dies folgt unmittelbar aus der Definition der Semantik:
Sei Z eine Interpretation mit Z = {¢, (¢ — v)}. Dann gilt:

(1) [¢]* =1 und
(2) [(¢ = ¥)]* =1, d.h. esgilt [¢]" = 0 oder []* = 1.
Da [[cp]]I =1 gemiB (1) gilt, folgt gemiB (2), dass [[1/)]}1 =1

Bemerkung
Man kann die Folgerungsbeziehung {¢, (¢ — )} =4 als eine formale
Schlussregel auffassen (dhnlich den Syllogismen in Kapitel 1):

Wenn ¢ und (¢ — 1) gelten, so muss auch v gelten.
Diese Regel, die unter dem Namen Modus Ponens bekannt ist, ist von

grundlegender Bedeutung in der Logik.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Zusammenhange

Lemma 2.18 (Allgemeingiiltigkeit, Unerfiillbarkeit und Folgerung)
Fiir jede Formel p € AL gilt:

(a)  ist allgemeingiiltig <= - ist unerfiillbar <— 1k .
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Zusammenhange

Lemma 2.18 (Allgemeingiiltigkeit, Unerfiillbarkeit und Folgerung)

Fiir jede Formel p € AL gilt:

(a)  ist allgemeingiiltig <= - ist unerfiillbar <— 1k .

(b) ¢ ist unerfiillbar <— ¢ = 0.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Lemma 2.19 (Erfiillbarkeit und die Folgerungsbeziehung)

Fiir alle Formelmengen ® C AL und fiir alle Formeln i) € AL gilt:

b=y <«  dU{wp} ist unerfiillbar.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Lemma 2.20 (Allgemeingiiltigkeit und die Folgerungsbeziehung)
(a) Fiir jede Formel ¢ € AL gilt:

@ Ist allgemeingliiltig <=  folgt aus der leeren Menge,

kurz:

Fe <= 0Fe
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Lemma 2.20 (Allgemeingiiltigkeit und die Folgerungsbeziehung)
(a) Fiir jede Formel ¢ € AL gilt:

@ Ist allgemeingliiltig <=  folgt aus der leeren Menge,

kurz:

Fe <= 0OFEe

(b) Fiir jede Formel 1) € AL und jede endliche Formelmenge
o= {(pla ceey (pn} C AL g//t

PEY <= (p1 ANy — Y ist allgemeingiiltig.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Bemerkung 2.21

Aus den beiden vorigen Lemmas erhdlt man leicht, dass fiir alle Formeln
p, Y € AL gilt:
v EY <= (¢ = ) ist allgemeingiiltig <= (¢ A =) ist unerfiillbar.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Bemerkung 2.21

Aus den beiden vorigen Lemmas erhdlt man leicht, dass fiir alle Formeln
p, Y € AL gilt:

v EY <= (¢ = ) ist allgemeingiiltig <= (¢ A =) ist unerfiillbar.

Beweis.
Es sei ¢ := {¢}. GemiB Lemma 2.20 gilt:

by < (p—1) ist allgemeingiiltig.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Bemerkung 2.21

Aus den beiden vorigen Lemmas erhdlt man leicht, dass fiir alle Formeln
p, Y € AL gilt:

v EY <= (¢ = ) ist allgemeingiiltig <= (¢ A =) ist unerfiillbar.

Beweis.
Es sei ¢ := {¢}. GemiB Lemma 2.20 gilt:

by < (p—1) ist allgemeingiiltig.

Somit gilt: pEY <= (p — ) ist allgemeingiiltig.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Bemerkung 2.21
Aus den beiden vorigen Lemmas erhdlt man leicht, dass fiir alle Formeln
p, Y € AL gilt:

v EY <= (¢ = ) ist allgemeingiiltig <= (¢ A =) ist unerfiillbar.

Beweis.
Es sei ¢ := {¢}. GemiB Lemma 2.20 gilt:

by < (p—1) ist allgemeingiiltig.

Somit gilt: pEY <= (p — ) ist allgemeingiiltig.
AuBerdem gilt gem3B Lemma 2.19:

b=y < PU{-w} ist unerfiillbar.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Bemerkung 2.21

Aus den beiden vorigen Lemmas erhdlt man leicht, dass fiir alle Formeln

p, Y € AL gilt:

v EY <= (¢ = ) ist allgemeingiiltig <= (¢ A =) ist unerfiillbar.

Beweis.
Es sei ¢ := {¢}. GemiB Lemma 2.20 gilt:

by < (p—1) ist allgemeingiiltig.

Somit gilt: pEY <= (p — ) ist allgemeingiiltig.
AuBerdem gilt gem3B Lemma 2.19:

b=y < PU{-w} ist unerfiillbar.

Somit gilt: @ E®¥ <= (@A) ist unerfiillbar.
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Aussagenlogische Modellierung



Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Beispiel 1: Sudoku



Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Sudoku

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 79



Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Sudoku

S
w
=

Wl | ol &= |®m|un

Blo @ lFE ||Vl |~ W

A~ (Flw|om|o|lw|m| &

pmlhlon]lo |l @m|uv]|lw|k|®e

W = | el a e W~

® | o | N &E W= N n o

| ® (plo|~|& ]3| w|o

~N|w | |lun|lw M]I®|&E)| e
o |éa (&)o@~ @M
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Aussagenlogisches Modell

Koordinaten der Felder:
Feld (i,/) ist das Feld in Zeile i und Spalte ;.
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Aussagenlogisches Modell

Koordinaten der Felder:
Feld (i,/) ist das Feld in Zeile i und Spalte ;.

Aussagensymbole:
Aussagensymbol P, fiir i,j, k € [9], steht fiir die Aussage

»Das Feld mit den Koordinaten (i, ) enthilt die Zahl k."
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Aussagenlogisches Modell

Koordinaten der Felder:
Feld (i,/) ist das Feld in Zeile i und Spalte ;.

Aussagensymbole:
Aussagensymbol P, fiir i,j, k € [9], steht fiir die Aussage

»Das Feld mit den Koordinaten (i, ) enthilt die Zahl k."

Interpretationen beschreiben also Beschriftungen des 9x9-Gitters.
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Aussagenlogisches Modell

Koordinaten der Felder:
Feld (i,/) ist das Feld in Zeile i und Spalte ;.

Aussagensymbole:
Aussagensymbol P, fiir i,j, k € [9], steht fiir die Aussage

»Das Feld mit den Koordinaten (i, ) enthilt die Zahl k."
Interpretationen beschreiben also Beschriftungen des 9x9-Gitters.
Ziel:

Fiir jede Anfangsbeschriftung A eine Formelmenge ® 4, so dass fiir alle
Interpretationen Z gilt:

ITE®4 <= T beschreibt eine korrekte Losung.
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Wir beschreiben zunichst eine Formelmenge ® = {1,...,¢s}, die die
Grundregeln des Spiels beschreibt.
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Wir beschreiben zunichst eine Formelmenge ® = {1,...,¢s}, die die
Grundregeln des Spiels beschreibt.

Beschriftungen:
“Auf jedem Feld steht mindestens eine Zahl":
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Wir beschreiben zunichst eine Formelmenge ® = {1,...,¢s}, die die
Grundregeln des Spiels beschreibt.

Beschriftungen:
“Auf jedem Feld steht mindestens eine Zahl":

9 9
Y1 = /\ \/'Di,j,k~

ij=1 k=1
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Wir beschreiben zunichst eine Formelmenge ® = {1,...,¢s}, die die
Grundregeln des Spiels beschreibt.

Beschriftungen:
“Auf jedem Feld steht mindestens eine Zahl":

9 9
Y1 = /\ \/'Di,j,k~

ij=1 k=1

“Auf jedem Feld steht héchstens eine Zahl":
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Wir beschreiben zunichst eine Formelmenge ® = {1,...,¢s}, die die
Grundregeln des Spiels beschreibt.

Beschriftungen:
“Auf jedem Feld steht mindestens eine Zahl":

9 9
Y1 = /\ \/'Di,j,k~

ij=1 k=1

“Auf jedem Feld steht héchstens eine Zahl":

9 9
Y2 = /\ /\ ﬂ(P,',Lk/\P,',j,g).

ij=1 k=1
k0
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Zeilen:
,Jede Zahl kommt in jeder Zeile
vor':
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Zeilen:

~Jede Zahl kommt in jeder Zeile

vor

©3

Nicole Schweikardt -

= AA Ve

i=1 k=1 j=1
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Zeilen:

~Jede Zahl kommt in jeder Zeile

vor

©3

Nicole Schweikardt -

= AA Ve

i=1 k=1 j=1

HU Berlin - Vorlesung Logik in der Informatik

Spalten:
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Zeilen:
»Jede Zahl kommt in jeder Zeile

vor .

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Spalten:

»Jede Zahl kommt in jeder Spalte
vor':

9 9
g = /\ /\ Pij.-
j=1 k=1 i=1
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Zeilen:
»Jede Zahl kommt in jeder Zeile

vor .

Blocke:

»Jede Zahl kommt in jedem Block vor*:

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Spalten:

»Jede Zahl kommt in jeder Spalte
vor':

w= A A

j=1 k=1 i

P,'J,k.

9
=1
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Zeilen: Spalten:
.Jede Zahl kommt in jeder Zeile »Jede Zahl kommt in jeder Spalte
vor': vor':
9 9 9 9
o= N\ N VP o = N\ N VP
i=1 k=1 j=1 j=1 k=1 i=1

Blocke:

»Jede Zahl kommt in jedem Block vor*:

2 9 3
AVARNRE T
ij=0 k=1 i’,j'=1
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Anfangsbeschriftung:
Sei A die Anfangsbeschriftung. Wir setzen

(DA =
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Anfangsbeschriftung:
Sei A die Anfangsbeschriftung. Wir setzen

®s = & U {Pijr : Abeschriftet Feld (/) mit der Zahl k }.
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Anfangsbeschriftung:
Sei A die Anfangsbeschriftung. Wir setzen

®s = & U {Pijr : Abeschriftet Feld (/) mit der Zahl k }.

Automatische Losung von Sudokus:
Um ein Sudoku mit Anfangsbeschriftung A zu I6sen, kdnnen wir nun einfach
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Anfangsbeschriftung:
Sei A die Anfangsbeschriftung. Wir setzen

®s = & U {Pijr : Abeschriftet Feld (/) mit der Zahl k }.

Automatische Losung von Sudokus:

Um ein Sudoku mit Anfangsbeschriftung A zu 16sen, kénnen wir nun einfach die
Formel ¢4 := /\we% @ bilden und die Wahrheitstafel zu dieser Formel
aufstellen.
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Anfangsbeschriftung:
Sei A die Anfangsbeschriftung. Wir setzen

®s = & U {Pijr : Abeschriftet Feld (/) mit der Zahl k }.

Automatische Losung von Sudokus:

Um ein Sudoku mit Anfangsbeschriftung A zu 16sen, kénnen wir nun einfach die
Formel ¢4 := /\wG‘DA @ bilden und die Wahrheitstafel zu dieser Formel
aufstellen. Falls die Wahrheitstafel zeigt, dass 14 kein Modell besitzt, so ist das
Sudoku nicht |6sbar.
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Anfangsbeschriftung:
Sei A die Anfangsbeschriftung. Wir setzen

®s = & U {Pijr : Abeschriftet Feld (/) mit der Zahl k }.

Automatische Losung von Sudokus:

Um ein Sudoku mit Anfangsbeschriftung A zu 16sen, kénnen wir nun einfach die
Formel ¢4 := /\wG‘DA  bilden und die Wahrheitstafel zu dieser Formel
aufstellen. Falls die Wahrheitstafel zeigt, dass 14 kein Modell besitzt, so ist das
Sudoku nicht I8sbar. Andernfalls kdnnen wir ein beliebiges Modell Z von 4
hernehmen und daran die Lésung des Sudokus ablesen:
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Anfangsbeschriftung:
Sei A die Anfangsbeschriftung. Wir setzen

®s = & U {Pijr : Abeschriftet Feld (/) mit der Zahl k }.

Automatische Losung von Sudokus:

Um ein Sudoku mit Anfangsbeschriftung A zu 16sen, kénnen wir nun einfach die
Formel ¢4 := /\wG‘DA  bilden und die Wahrheitstafel zu dieser Formel
aufstellen. Falls die Wahrheitstafel zeigt, dass 14 kein Modell besitzt, so ist das
Sudoku nicht I8sbar. Andernfalls kdnnen wir ein beliebiges Modell Z von 4
hernehmen und daran die Lésung des Sudokus ablesen: Fiir jedes Feld (i, ) gibt
es gemaB unserer Konstruktion der Formel 14 genau eine Zahl k € [9], so dass
Z(P;jk) =1 ist. Diese Zahl k koénnen wir in Feld (i,) eintragen und erhalten
damit eine Losung des Sudokus.
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Beispiel 2: Automatische Hardwareverifikation



Abschnitt 2.3:
Aquivalenz und Adiquatheit



Kapitel 2: Aussagenlogik - Abschnitt 2.3: Aquivalenz und Adiquatheit

Aquivalenz

Definition 2.22

Zwei Formeln ¢, 1) € AL sind dquivalent (wir schreiben
selben Interpretationen erfiillt werden
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Kapitel 2: Aussagenlogik - Abschnitt 2.3: Aquivalenz und Adiquatheit
Aquivalenz

Definition 2.22
Zwei Formeln ¢, € AL sind dquivalent (wir schreiben » = ¢)), wenn sie von den
selben Interpretationen erfiillt werden, d.h., wenn fiir alle Interpretationen Z gilt:

IEy < IE
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Aquivalenz

Definition 2.22

Zwei Formeln ¢, € AL sind dquivalent (wir schreiben » = ¢)), wenn sie von den
selben Interpretationen erfiillt werden, d.h., wenn fiir alle Interpretationen Z gilt:

Ty — IE

Zwei Formelmengen ®, W C AL sind dquivalent (wir schreiben ® = W), wenn sie von
den selben Interpretationen erfiillt werden, d.h., wenn fiir alle Interpretationen Z gilt:
IE® <= IEV
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Kapitel 2: Aussagenlogik - Abschnitt 2.3: Aquivalenz und Adiquatheit

Aquivalenz

Definition 2.22

Zwei Formeln ¢, € AL sind dquivalent (wir schreiben » = ¢)), wenn sie von den
selben Interpretationen erfiillt werden, d.h., wenn fiir alle Interpretationen Z gilt:
IEy << Ik

Zwei Formelmengen ®, W C AL sind dquivalent (wir schreiben ® = W), wenn sie von
den selben Interpretationen erfiillt werden, d.h., wenn fiir alle Interpretationen Z gilt:

IE® <= IEV

Beobachtung 2.23

(a) Zwei Formeln ¢, € AL sind genau dann iquivalent, wenn in den letzten Spalten
ihrer Wahrheitstafeln jeweils die gleichen Eintrige stehen.
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Aquivalenz

Definition 2.22
Zwei Formeln ¢, € AL sind dquivalent (wir schreiben » = ¢)), wenn sie von den
selben Interpretationen erfiillt werden, d.h., wenn fiir alle Interpretationen Z gilt:

Ty — IE

Zwei Formelmengen ®, W C AL sind dquivalent (wir schreiben ® = W), wenn sie von
den selben Interpretationen erfiillt werden, d.h., wenn fiir alle Interpretationen Z gilt:
IE® <= IEV

Beobachtung 2.23

(a) Zwei Formeln ¢, € AL sind genau dann iquivalent, wenn in den letzten Spalten
ihrer Wahrheitstafeln jeweils die gleichen Eintrige stehen.

und

Beispiel:  Fiir alle X, Y € AS gilt:
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Aquivalenz

Definition 2.22
Zwei Formeln ¢, € AL sind dquivalent (wir schreiben » = ¢)), wenn sie von den
selben Interpretationen erfiillt werden, d.h., wenn fiir alle Interpretationen Z gilt:

Ty — IE

Zwei Formelmengen ®, W C AL sind dquivalent (wir schreiben ® = W), wenn sie von
den selben Interpretationen erfiillt werden, d.h., wenn fiir alle Interpretationen Z gilt:

IE® <= IEV

Beobachtung 2.23

(a) Zwei Formeln ¢, € AL sind genau dann iquivalent, wenn in den letzten Spalten
ihrer Wahrheitstafeln jeweils die gleichen Eintrige stehen.

(b) Fiir endliche Formelmengen ® = {¢1,...,0m}, V= {¢1,...,9n} C AL gilt

b=V <=

und

Beispiel:  Fiir alle X, Y € AS gilt:
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Aquivalenz

Definition 2.22

Zwei Formeln ¢, € AL sind dquivalent (wir schreiben » = ¢)), wenn sie von den
selben Interpretationen erfiillt werden, d.h., wenn fiir alle Interpretationen Z gilt:

Ty — IE

Zwei Formelmengen ®, W C AL sind dquivalent (wir schreiben ® = W), wenn sie von
den selben Interpretationen erfiillt werden, d.h., wenn fiir alle Interpretationen Z gilt:
IE® <= IEV

Beobachtung 2.23

(a) Zwei Formeln ¢, € AL sind genau dann iquivalent, wenn in den letzten Spalten
ihrer Wahrheitstafeln jeweils die gleichen Eintrige stehen.

(b) Fiir endliche Formelmengen ® = {¢1,...,0m}, V= {¢1,...,9n} C AL gilt

o=V = Ao = Avu.
i=1 j=1

und

Beispiel:  Fiir alle X, Y € AS gilt:
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Aquivalenz und Allgemeingiiltigkeit

Lemma 2.24
(a) Fiir alle Formeln ¢, € AL gilt:

= = ist allgemeingiiltig.
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Aquivalenz und Allgemeingiiltigkeit

Lemma 2.24
(a) Fiir alle Formeln ¢, € AL gilt:
= = ist allgemeingiiltig.
(b) Fiir alle ¢ € AL gilt:
ist allgemeingiiltig — =
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Fundamentale Aquivalenzen

Satz 2.25 )
Fiir alle Formeln ¢,1, x € AL gelten die folgenden Aquivalenzen:

(a) Idempotenz:
(Prg) = o

Version vom 25. Januar 2024
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Fundamentale Aquivalenzen

Satz 2.25 )
Fiir alle Formeln ¢,1, x € AL gelten die folgenden Aquivalenzen:

(a) Idempotenz:
(prw) =9, (pVe) = ¢

Version vom 25. Januar 2024
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Kapitel 2: Aussagenlogik - Abschnitt 2.3: Aquivalenz und Adiquatheit

Fundamentale Aquivalenzen

Satz 2.25 )
Fiir alle Formeln ¢,1, x € AL gelten die folgenden Aquivalenzen:

(a) Idempotenz:
(prw) =9, (pVe) = ¢

(b) Kommutativitat:

(pAY) = (WAp)

Version vom 25. Januar 2024
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Fundamentale Aquivalenzen

Satz 2.25 )
Fiir alle Formeln ¢,1, x € AL gelten die folgenden Aquivalenzen:

(a) Idempotenz:
(prw) =9, (pVe) = ¢

(b) Kommutativitat:

(eAY) = (WAp),  (pVY) = (V).
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Fundamentale Aquivalenzen

Satz 2.25 )
Fiir alle Formeln ¢,1, x € AL gelten die folgenden Aquivalenzen:

(a) Idempotenz:
(prw) =9, (pVe) = ¢

(b) Kommutativitat:

(eAY) = (WAp),  (pVY) = (V).

(c) Assoziativitat:

((pAy)nx) = (@A (P AX))
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Fundamentale Aquivalenzen

Satz 2.25 )
Fiir alle Formeln ¢,1, x € AL gelten die folgenden Aquivalenzen:

(a) Idempotenz:
(prw) =9, (pVe) = ¢

(b) Kommutativitat:
(bny) = Wnre),  (pve) = (V)
(c) Assoziativitat:

((prA)nx) = (@AW AX) ., (V) VX)) = (pV (P VX))
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Fundamentale Aquivalenzen

Satz 2.25 )
Fiir alle Formeln ¢,1, x € AL gelten die folgenden Aquivalenzen:

(a) Idempotenz:

(php) = ¢, (V) = ¢

(b) Kommutativitit:
(pAY) = WAe),  (pVY) = (PVe)
(c) Assoziativitit:
((pAd)Ax) = (eA(WAX),  ((pVY)VX) = (¢V (¥ VX))
(d) Absorption:

(A (pVY) = ¢
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Fundamentale Aquivalenzen

Satz 2.25 )
Fiir alle Formeln ¢,1, x € AL gelten die folgenden Aquivalenzen:

(a) Idempotenz:

(php) = ¢, (V) = ¢

(b) Kommutativitit:
(pAY) = WAe),  (pVY) = (PVe)
(c) Assoziativitit:
((pAd)Ax) = (eA(WAX),  ((pVY)VX) = (¢V (¥ VX))
(d) Absorption:

(A (pVY) = ¢, (pV(pAD))

Il
s

(Fortsetzung: nichste Folie)
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(e) Distributivitat:

(eA(¥VX)) = (PAY)V(PAX))
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(e) Distributivitat:

(eA (VX)) = (pAY)V(pAX)) , (eV(¥Ax)) = (pVY)A(pVX)).
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(e) Distributivitat:
(eA (VX)) = (pAY)V(pAX)) , (eV(¥Ax)) = (pVY)A(pVX)).

(f) Doppelte Negation:
—|—\80

If
N
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(e) Distributivitat:
(eA (VX)) = (pAY)V(pAX)) , (eV(¥Ax)) = (pVY)A(pVX)).

(f) Doppelte Negation:
—|—\80

If
N

(g) De Morgansche Regeln:
(A7) = (- V—y)
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(e) Distributivitat:

(eA (VX)) = (pAY)V(pAX)) , (eV(¥Ax)) = (pVY)A(pVX)).

(f) Doppelte Negation:
—|—\80

If
N

(g) De Morgansche Regeln:

“(pAY) = (mpV ), (VYY) = (mp A ).
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(e) Distributivitat:
(eA (VX)) = (pAY)V(pAX)) , (eV(¥Ax)) = (pVY)A(pVX)).

(f) Doppelte Negation:
—|—\80

If
N

(g) De Morgansche Regeln:
“(pAY) = (V) —(eVY) = (e Ay
(h) Tertium Non Datur:

(pA-p) =0
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(e) Distributivitat:

(eA (VX)) = (pAY)V(pAX)) , (eV(¥Ax)) = (pVY)A(pVX)).

(f) Doppelte Negation:
—|—\80

If
N

(g) De Morgansche Regeln:

“(pAY) = (mpV ), (VYY) = (mp A ).

(h) Tertium Non Datur:

(pA-p) =0, (pV-yp) =1

(Fortsetzung: nichste Folie)
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(A1) = o, (pV0) = ¢,
0

—_
AS)
<
=
|
[ary
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()

(k) Elimination der Implikation:

(pV0) = o,
(pvl) =

|
=

(=) = (mpV).
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Beweis. )
Alle hier genannten Aquivalenzen kdnnen leicht mit Hilfe der

Wahrheisttafelmethode tiberpriift werden.
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Beweis. )
Alle hier genannten Aquivalenzen kdnnen leicht mit Hilfe der
Wahrheisttafelmethode tiberpriift werden.

Zum Beispiel die erste de Morgansche Regel:

(e AY) = (mpV ).

Wir berechnen dazu folgende Wahrheitstafeln:

e | (eA) | a(pA) e Y| -p | | (V)
0 0] 0 1 0 0|11 1
0 1 0 1 0o 1/ 1] o0 1
1 0| o 1 1 0|01 1
11 1 0 1 10l o0 0
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Beweis. )
Alle hier genannten Aquivalenzen kdnnen leicht mit Hilfe der
Wahrheisttafelmethode tiberpriift werden.

Zum Beispiel die erste de Morgansche Regel:

(e AY) = (mpV ).

Wir berechnen dazu folgende Wahrheitstafeln:

e | (eA) | a(pA) e Y| -p | | (V)
0 0] 0 1 0 0|11 1
0 1 0 1 0o 1/ 1] o0 1
1 0| o 1 1 0|01 1
11 1 0 1 10l o0 0

Die letzten Spalten der beiden Wahrheitstafeln sind gleich, also sind die Formeln
dquivalent.
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Beweis. )
Alle hier genannten Aquivalenzen kdnnen leicht mit Hilfe der
Wahrheisttafelmethode tiberpriift werden.

Zum Beispiel die erste de Morgansche Regel:

(e AY) = (mpV ).

Wir berechnen dazu folgende Wahrheitstafeln:

e | (eA) | a(pA) e Y| -p | | (V)
0 0] 0 1 0 0|11 1
0 1 0 1 0o 1/ 1] o0 1
1 0| o 1 1 0|01 1
11 1 0 1 10l o0 0

Die letzten Spalten der beiden Wahrheitstafeln sind gleich, also sind die Formeln
dquivalent.

Rest: Ubung. O
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Bemerkung
Durch schrittweises Anwenden der in Satz 2.25 aufgelisteten Aquivalenzen kann
man eine gegebene Formel in eine zu ihr dquivalente Formel umformen.
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Das Dualitatsprinzip

Definition 2.26

Sei ¢ € AL eine Formel, in der keine Implikationen vorkommt.

Die zu ¢ duale Formel ist die Formel ¢ € AL, die aus ¢ entsteht, indem man
tiberall 0 durch 1, 1 durch 0, A durch VvV und V durch A ersetzt.
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Das Dualitatsprinzip

Definition 2.26

Sei ¢ € AL eine Formel, in der keine Implikationen vorkommt.

Die zu ¢ duale Formel ist die Formel ¢ € AL, die aus ¢ entsteht, indem man
tiberall 0 durch 1, 1 durch 0, A durch VvV und V durch A ersetzt.

Beispiel
Fir ¢ .= ((A1 A0) V(A2 V1)) ist ¢ = ((A1V1)A=(AAD0)).
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Kapitel 2: Aussagenlogik - Abschnitt 2.3: Aquivalenz und Adiquatheit

Das Dualitatsprinzip

Definition 2.26

Sei ¢ € AL eine Formel, in der keine Implikationen vorkommt.

Die zu ¢ duale Formel ist die Formel ¢ € AL, die aus ¢ entsteht, indem man
tiberall 0 durch 1, 1 durch 0, A durch VvV und V durch A ersetzt.

Beispiel
Fir ¢ .= ((A1 A0) V(A2 V1)) ist ¢ = ((A1V1)A=(AAD0)).

Satz 2.27 (Dualitdtssatz der Aussagenlogik)
Fiir alle Formeln @, € AL, in denen keine Implikation vorkommt, gilt:

= <~ =
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Beweise per Induktion iiber den Aufbau von Formeln

e Ahnlich wie wir Aussagen iiber die natiirlichen Zahlen durch vollstandige
Induktion beweisen konnen, konnen wir Aussagen liber Formeln per
Induktion iiber den Aufbau der Formeln beweisen.
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Beweise per Induktion iiber den Aufbau von Formeln

e Ahnlich wie wir Aussagen iiber die natiirlichen Zahlen durch vollstandige
Induktion beweisen konnen, konnen wir Aussagen liber Formeln per
Induktion iiber den Aufbau der Formeln beweisen.

® Im Induktionsanfang beweisen wir die Aussagen fiir die atomaren Formeln,
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Beweise per Induktion iiber den Aufbau von Formeln

e Ahnlich wie wir Aussagen iiber die natiirlichen Zahlen durch vollstandige
Induktion beweisen konnen, konnen wir Aussagen liber Formeln per
Induktion iiber den Aufbau der Formeln beweisen.

® Im Induktionsanfang beweisen wir die Aussagen fiir die atomaren Formeln,
und im Induktionschritt schlieBen wir von den Bestandteilen einer Formel
auf die Formel selbst.
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Beweise per Induktion iiber den Aufbau von Formeln

e Ahnlich wie wir Aussagen iiber die natiirlichen Zahlen durch vollstandige
Induktion beweisen konnen, konnen wir Aussagen liber Formeln per
Induktion iiber den Aufbau der Formeln beweisen.

® Im Induktionsanfang beweisen wir die Aussagen fiir die atomaren Formeln,
und im Induktionschritt schlieBen wir von den Bestandteilen einer Formel
auf die Formel selbst.

® Dieses Vorgehen ist z.B. dadurch gerechtfertigt, dass es sich auch als
vollstindige Induktion iiber die Hohe des Syntaxbaumes auffassen l3sst.
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Schematisch sieht der Beweis einer Aussage A(¢p) fiir alle Formeln ¢ € AL wie

folgt aus:

Induktionsanfang:

® Beweise A(0) und A(1).
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Schematisch sieht der Beweis einer Aussage A(¢p) fiir alle Formeln ¢ € AL wie

folgt aus:

Induktionsanfang:
® Beweise A(0) und A(1).
® Beweise A(X) fiir alle X € AS.
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Schematisch sieht der Beweis einer Aussage A(¢p) fiir alle Formeln ¢ € AL wie

folgt aus:

Induktionsanfang:
® Beweise A(0) und A(1).
® Beweise A(X) fiir alle X € AS.

Induktionsschritt:
® Beweise A(—¢) unter der Annahme, dass A(y) gilt.
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Schematisch sieht der Beweis einer Aussage A(¢p) fiir alle Formeln ¢ € AL wie

folgt aus:

Induktionsanfang:
® Beweise A(0) und A(1).
® Beweise A(X) fiir alle X € AS.

Induktionsschritt:
® Beweise A(—¢) unter der Annahme, dass A(y) gilt.
® Beweise A((¢ A %)) unter der Annahme, dass A(y) und A(%)) gelten.
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Schematisch sieht der Beweis einer Aussage A(¢p) fiir alle Formeln ¢ € AL wie

folgt aus:

Induktionsanfang:
® Beweise A(0) und A(1).
® Beweise A(X) fiir alle X € AS.

Induktionsschritt:
® Beweise A(—¢) unter der Annahme, dass A(y) gilt.
® Beweise A((¢ A %)) unter der Annahme, dass A(y) und A(%)) gelten.
® Beweise A((¢ V )) unter der Annahme, dass A(p) und A(%)) gelten.
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Kapitel 2: Aussagenlogik - Abschnitt 2.3: Aquivalenz und Adiquatheit

Schematisch sieht der Beweis einer Aussage A(¢p) fiir alle Formeln ¢ € AL wie
folgt aus:

Induktionsanfang:
® Beweise A(0) und A(1).
® Beweise A(X) fiir alle X € AS.

Induktionsschritt:

Beweise A(—¢) unter der Annahme, dass A(yp) gilt.

)) unter der Annahme, dass A(y) und A(%
)) unter der Annahme, dass A(y) und A(%
— b)) unter der Annahme, dass A(p) und A(¢) gelten.

gelten.

® Beweise A gelten.

~— ~—

N
Vi

(
Beweise A(
(
® Beweise A(

(v
(v
(v
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Um den Dualitatssatz zu beweisen bendtigen wir zundchst noch eine Definition.
Der Kern des Beweises steckt im darauf folgenden Lemma.
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Um den Dualitatssatz zu beweisen bendtigen wir zundchst noch eine Definition.
Der Kern des Beweises steckt im darauf folgenden Lemma.

Definition 2.28

Sei 7 eine Interpretation. Die zu Z duale Interpretation 7 ist definiert durch
Z(X) :=1—Z(X) fiir alle X € AS.

D.h. fiir alle Aussagensymbole X gilt:

Fx) — 0, falsZ(X)=1
(X) = 1, falls Z(X)=0
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Kapitel 2: Aussagenlogik - Abschnitt 2.3: Aquivalenz und Adiquatheit
Um den Dualitatssatz zu beweisen bendtigen wir zundchst noch eine Definition.
Der Kern des Beweises steckt im darauf folgenden Lemma.

Definition 2.28

Sei 7 eine Interpretation. Die zu Z duale Interpretation 7 ist definiert durch
Z(X) :=1—Z(X) fiir alle X € AS.

D.h. fiir alle Aussagensymbole X gilt:

Fx) — 0, falsZ(X)=1
(X) = 1, falls Z(X)=0

Lemma 2.29

Fiir alle Formeln ¢ € AL, in denen keine Implikation vorkommt, und alle

Interpretationen I gilt:
ITE¢ <= TIIWEe
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Beweis von Satz 2.27.
Seien ¢, 1) € AL Formeln, in denen keine Implikation vorkommt.

1Wir schreiben kurz ,f.a.“ als Abkiirzung fiir die Worte ,fiir alle”
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Beweis von Satz 2.27.
Seien ¢, 1) € AL Formeln, in denen keine Implikation vorkommt.

Wir wollen zeigen, dass gilt: ¢ =9 < p = 1.

1Wir schreiben kurz ,f.a.“ als Abkiirzung fiir die Worte ,fiir alle”
Version vom 25. Januar 2024 Folie 95
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Kapitel 2: Aussagenlogik - Abschnitt 2.3: Aquivalenz und Adiquatheit

Beweis von Satz 2.27.
Seien ¢, 1) € AL Formeln, in denen keine Implikation vorkommt.

Wir wollen zeigen, dass gilt: ¢ =9 < p = 1.
— " Es gilt:1
p=1

— F.a. Interpretationen Z gilt: (f Ep <~ z E 1/))

1Wir schreiben kurz ,f.a.“ als Abkiirzung fiir die Worte ,fiir alle”
Version vom 25. Januar 2024 Folie 95
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Beweis von Satz 2.27.
Seien ¢, 1) € AL Formeln, in denen keine Implikation vorkommt.

Wir wollen zeigen, dass gilt: ¢ =9 < p = 1.

— " Es gilt:1
p=19

— F.a. Interpretationen Z gilt: (f Ep <~ z E 1/))

Lemma.229 4. Interpretationen 7 gilt: (ITHo <= T {/;)

1Wir schreiben kurz ,f.a.“ als Abkiirzung fiir die Worte ,fiir alle”
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Beweis von Satz 2.27.
Seien ¢, 1) € AL Formeln, in denen keine Implikation vorkommt.

Wir wollen zeigen, dass gilt: ¢ =9 < p = 1.

— " Es gilt:1
p=19

— F.a. Interpretationen Z gilt: (f Ep <~ z E 1/))

Lemma.229 4. Interpretationen 7 gilt: (ITHo <= T {/;)

—>  F.a. Interpretationen Z gilt: (IE¢ < I 1;)

1Wir schreiben kurz ,f.a.“ als Abkiirzung fiir die Worte ,fiir alle”
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Beweis von Satz 2.27.
Seien ¢, 1) € AL Formeln, in denen keine Implikation vorkommt.

Wir wollen zeigen, dass gilt: ¢ =9 < p = 1.
— " Es gilt:1
p=9
— F.a. Interpretationen Z gilt: (f Ep <~ z E 1/))
Lemma.229 4. Interpretationen 7 gilt: (ITHo <= T {/;)

—>  F.a. Interpretationen Z gilt: (IE¢ < I 1;)

1Wir schreiben kurz ,f.a.“ als Abkiirzung fiir die Worte ,fiir alle”
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Beweis von Satz 2.27.
Seien ¢, 1) € AL Formeln, in denen keine Implikation vorkommt.

Wir wollen zeigen, dass gilt: ¢ =9 < p = 1.

— " Es gilt:1

=1

— F.a. Interpretationen Z gilt: (f Ep <~ z E 1/))
Lemma.229 4. Interpretationen 7 gilt: (ITHo <= T {/;)

—>  F.a. Interpretationen Z gilt: (IE¢ < I 1;)

= P =1

<" Esgilt:
=9 = o=4 (andere Beweisrichtung)
= o =4 (weil é:cp und zZ:l/J).

O

1Wir schreiben kurz ,f.a.“ als Abkiirzung fiir die Worte ,fiir alle"
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Funktionale Vollstandigkeit der Aussagenlogik

Im Folgenden bezeichnen wir als Wahrheitstafel eine Tabelle mit n+1 Spalten
und 2" Zeilen, die fiir jedes Tupel (by,..., b,) € {0,1}" genau eine Zeile
enthalt, deren erste n Eintrage by, ..., b, sind.
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Funktionale Vollstandigkeit der Aussagenlogik

Im Folgenden bezeichnen wir als Wahrheitstafel eine Tabelle mit n+1 Spalten
und 2" Zeilen, die fiir jedes Tupel (by,..., b,) € {0,1}" genau eine Zeile
enthalt, deren erste n Eintrage by, ..., b, sind.

Satz 2.30 (Funktionale Vollstandigkeit der Aussagenlogik)
Zu jeder Wahrheitstafel gibt es eine Formel ¢ € AL mit dieser Wahrheitstafel.
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Funktionale Vollstandigkeit der Aussagenlogik

Im Folgenden bezeichnen wir als Wahrheitstafel eine Tabelle mit n+1 Spalten
und 2" Zeilen, die fiir jedes Tupel (by,..., b,) € {0,1}" genau eine Zeile
enthalt, deren erste n Eintrage by, ..., b, sind.

Satz 2.30 (Funktionale Vollstandigkeit der Aussagenlogik)
Zu jeder Wahrheitstafel gibt es eine Formel ¢ € AL mit dieser Wahrheitstafel.

Mathematisch prazise lasst sich dieser Satzes wie folgt formulieren:

Fiir alle n € N gibt es zu jeder Funktion F : {0,1}" — {0,1} eine Formel
©(A1,...,A,) € AL, so dass fiir alle (by,. .., b,) € {0,1}" gilt:

F(bl,...,bn):]. <~ (p[bh...,bn]:l.

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 96
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Funktionale Vollstandigkeit der Aussagenlogik

Im Folgenden bezeichnen wir als Wahrheitstafel eine Tabelle mit n+1 Spalten
und 2" Zeilen, die fiir jedes Tupel (by,..., b,) € {0,1}" genau eine Zeile
enthalt, deren erste n Eintrage by, ..., b, sind.

Satz 2.30 (Funktionale Vollstandigkeit der Aussagenlogik)
Zu jeder Wahrheitstafel gibt es eine Formel ¢ € AL mit dieser Wahrheitstafel.

Mathematisch prazise lasst sich dieser Satzes wie folgt formulieren:

Fiir alle n € N gibt es zu jeder Funktion F : {0,1}" — {0,1} eine Formel
©(A1,...,A,) € AL, so dass fiir alle (by,. .., b,) € {0,1}" gilt:

F(bl,...,bn):]. <~ (p[bh...,bn]:l.

Definition 2.31
Funktionen F : {0,1}" — {0,1} (mit n € N) nennt man Boolesche Funktionen
(der Stelligkeit n).
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Funktionale Vollstandigkeit der Aussagenlogik

Im Folgenden bezeichnen wir als Wahrheitstafel eine Tabelle mit n+1 Spalten
und 2" Zeilen, die fiir jedes Tupel (by,..., b,) € {0,1}" genau eine Zeile
enthalt, deren erste n Eintrage by, ..., b, sind.

Satz 2.30 (Funktionale Vollstandigkeit der Aussagenlogik)

Zu jeder Wahrheitstafel gibt es eine Formel ¢ € AL mit dieser Wahrheitstafel.
Mathematisch prazise lasst sich dieser Satzes wie folgt formulieren:

Fiir alle n € N gibt es zu jeder Funktion F : {0,1}" — {0,1} eine Formel
©(A1,...,A,) € AL, so dass fiir alle (by,. .., b,) € {0,1}" gilt:

F(bl,...,bn):]. <~ (p[bh...,bn]:l.

Definition 2.31
Funktionen F : {0,1}" — {0,1} (mit n € N) nennt man Boolesche Funktionen
(der Stelligkeit n).

Bevor wir Satz 2.30 beweisen, betrachten wir zunichst ein Beispiel.
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Beispiel 2.32
Betrachte die Wahrheitstafel T:

by by bs| F(by, by, bs)
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
11 1 0

Eine Formel (A1, Az, A3), so dass T die Wahrheitstafel fiir ¢ ist, kann man
folgendermalBen erzeugen:
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Beispiel 2.32
Betrachte die Wahrheitstafel T:

by by b3 | F(by, bo, b3)
0O 0 O 1
0 0 1 1
0O 1 0 0
0o 1 1 0
1 0 O 0
1 0 1 1
1 1 0 0
1 1 1 0

Eine Formel (A1, Az, A3), so dass T die Wahrheitstafel fiir ¢ ist, kann man
folgendermaBen erzeugen:

® Betrachte alle Zeilen von T, bei denen in der letzten Spalte eine ,, 1" steht.
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Kapitel 2: Aussagenlogik - Abschnitt 2.3: Aquivalenz und Adiquatheit

Beispiel 2.32
Betrachte die Wahrheitstafel T:

by by bs| F(by, by, bs)
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
11 1 0

Eine Formel (A1, Az, A3), so dass T die Wahrheitstafel fiir ¢ ist, kann man
folgendermaBen erzeugen:

® Betrachte alle Zeilen von T, bei denen in der letzten Spalte eine ,, 1" steht.

® Fiir jede solche Zeile konstruiere eine Formel, die genau von der zu der
Zeile gehorenden Belegung von by, by, bs erfiillt wird.
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Beispiel 2.32
Betrachte die Wahrheitstafel T:

by by bs| F(by, by, bs)
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
11 1 0

Eine Formel (A1, Az, A3), so dass T die Wahrheitstafel fiir ¢ ist, kann man
folgendermaBen erzeugen:

® Betrachte alle Zeilen von T, bei denen in der letzten Spalte eine ,, 1" steht.

® Fiir jede solche Zeile konstruiere eine Formel, die genau von der zu der
Zeile gehorenden Belegung von by, by, bs erfiillt wird.

® Bilde die Disjunktion (d.h. die , Veroderung") iiber all diese Formeln.
Dies liefert die gesuchte Formel ¢.
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In unserer Beispiel-Wahrheitstafel T gibt es genau 3 Zeilen, bei denen in der
letzten Spalte eine ,,1" steht, namlich die Zeilen

bi by b3 ‘ F(b1, ba, b3) zur jeweiligen Zeile gehdrende Formel:
0 0 O 1
0 0 1 1
1 0 1 1
Version vom 25. Januar 2024 Folie 98
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In unserer Beispiel-Wahrheitstafel T gibt es genau 3 Zeilen, bei denen in der
letzten Spalte eine ,,1" steht, namlich die Zeilen

bi by b3 ‘ F(b1, ba, b3) zur jeweiligen Zeile gehdrende Formel:
0 0 0 1 (—\Al/\—‘Ag/\—‘Ag)

0 0 1 1

1 0 1 1
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In unserer Beispiel-Wahrheitstafel T gibt es genau 3 Zeilen, bei denen in der
letzten Spalte eine ,,1" steht, namlich die Zeilen

bi by b3 ‘ F(b1, ba, b3) zur jeweiligen Zeile gehdrende Formel:
0 0 0 1 (—\Al/\—‘Ag/\—‘Ag)

0 0 1 1 (ﬁAl/\ﬁAz/\A3)

1 0 1 1
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In unserer Beispiel-Wahrheitstafel T gibt es genau 3 Zeilen, bei denen in der
letzten Spalte eine ,,1" steht, namlich die Zeilen

bi by b3 ‘ F(b1, ba, b3) zur jeweiligen Zeile gehdrende Formel:
0 0 0 1 (—\Al/\—‘Ag/\—‘Ag)

0 0 1 1 (ﬁAl/\ﬁAz/\A3)

1 0 1 1 (AL A—A2 A A3)
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In unserer Beispiel-Wahrheitstafel T gibt es genau 3 Zeilen, bei denen in der
letzten Spalte eine ,,1" steht, namlich die Zeilen

bi by b3 ‘ F(b1, ba, b3) zur jeweiligen Zeile gehdrende Formel:
0 0 0 1 (—\Al/\—‘Ag/\—‘Ag)

0 0 1 1 (ﬁAl/\ﬁAz/\A3)

1 0 1 1 (AL A—A2 A A3)

Insgesamt erhalten wir dadurch die zur Wahrheitstafel T passende Formel
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In unserer Beispiel-Wahrheitstafel T gibt es genau 3 Zeilen, bei denen in der
letzten Spalte eine ,,1" steht, namlich die Zeilen

by by bs | F(by, ba, bs)

zur jeweiligen Zeile gehorende Formel:

0
0

0
0

0
1

1
1

(ﬁAl/\ﬁAz/\A3)

(A]_/\_|A2/\A3)

Insgesamt erhalten wir dadurch die zur Wahrheitstafel T passende Formel

¥

Nicole Schweikardt -

(mAL A —A A DA3) V(DAL A —A A As) V(AL A —A A As).

HU Berlin -
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Kapitel 2: Aussagenlogik - Abschnitt 2.3: Aquivalenz und Adiquatheit

Adadquatheit

Satz 2.30 besagt, dass die Aussagenlogik AL die groBtmogliche Ausdrucksstarke
hat. Dafiir reichen allerdings schon , kleinere" Logiken, wie wir im Folgenden

sehen werden.
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Adadquatheit

Satz 2.30 besagt, dass die Aussagenlogik AL die groBtmogliche Ausdrucksstarke

hat. Dafiir reichen allerdings schon , kleinere" Logiken, wie wir im Folgenden

sehen werden.

Definition 2.33
Sei 7 C {0,1,~,A,V, >}
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Adadquatheit
Satz 2.30 besagt, dass die Aussagenlogik AL die groBtmogliche Ausdrucksstarke
hat. Dafiir reichen allerdings schon , kleinere" Logiken, wie wir im Folgenden

sehen werden.

Definition 2.33
Sei 7 C {0,1,~,A,V, >}

(a) AL(7) sei das Fragment der Logik AL, das aus den Formeln besteht, in
denen nur Junktoren und Konstanten aus 7 vorkommen.
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Kapitel 2: Aussagenlogik - Abschnitt 2.3: Aquivalenz und Adiquatheit

Adadquatheit

Satz 2.30 besagt, dass die Aussagenlogik AL die groBtmogliche Ausdrucksstarke
hat. Dafiir reichen allerdings schon , kleinere" Logiken, wie wir im Folgenden

sehen werden.

Definition 2.33

Sei 7 C{0,1,~,A,V,—}.

(a) AL(7) sei das Fragment der Logik AL, das aus den Formeln besteht, in
denen nur Junktoren und Konstanten aus 7 vorkommen.

(b) 7 heiBt addquat, wenn jede Formel ¢ € AL dquivalent zu einer Formel in
AL(T) ist.
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Adadquatheit

Satz 2.30 besagt, dass die Aussagenlogik AL die groBtmogliche Ausdrucksstarke
hat. Dafiir reichen allerdings schon , kleinere" Logiken, wie wir im Folgenden
sehen werden.

Definition 2.33
Sei 7 C {0,1,~,A,V, >}

(a) AL(7) sei das Fragment der Logik AL, das aus den Formeln besteht, in
denen nur Junktoren und Konstanten aus 7 vorkommen.

(b) 7 heiBt addquat, wenn jede Formel ¢ € AL dquivalent zu einer Formel in
AL(T) ist.

Beispiele 2.34
(a) {—,A}, {—,V}, {0,—} sind adiquat.
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Adadquatheit

Satz 2.30 besagt, dass die Aussagenlogik AL die groBtmogliche Ausdrucksstarke
hat. Dafiir reichen allerdings schon , kleinere" Logiken, wie wir im Folgenden
sehen werden.

Definition 2.33
Sei 7 C {0,1,~,A,V, >}

(a) AL(7) sei das Fragment der Logik AL, das aus den Formeln besteht, in
denen nur Junktoren und Konstanten aus 7 vorkommen.

(b) 7 heiBt addquat, wenn jede Formel ¢ € AL dquivalent zu einer Formel in
AL(T) ist.

Beispiele 2.34
(a) {—,A}, {—,V}, {0,—} sind adiquat.

(b) {A,V,—} ist nicht adiquat.
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Andere Junktoren

® Die Auswahl der Junktoren =, A, V, — (und <« als Abkiirzung) fiir ,,unsere’
aussagenlogische Sprache richtet sich nach dem umgangssprachlichen
Gebrauch und den Erfordernissen des formalen SchlieBens, ist aber in
gewisser Weise willkiirlich.
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Andere Junktoren

® Die Auswahl der Junktoren =, A, V, — (und < als Abkiirzung) fiir ,unsere*
aussagenlogische Sprache richtet sich nach dem umgangssprachlichen
Gebrauch und den Erfordernissen des formalen SchlieBens, ist aber in
gewisser Weise willkiirlich.

® Durch Festlegung ihrer Wahrheitstafeln konnen wir auch andere Junktoren
definieren und erhalten daraus andere aussagenlogische Sprachen.
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Andere Junktoren

® Die Auswahl der Junktoren =, A, V, — (und < als Abkiirzung) fiir ,unsere*
aussagenlogische Sprache richtet sich nach dem umgangssprachlichen
Gebrauch und den Erfordernissen des formalen SchlieBens, ist aber in
gewisser Weise willkiirlich.

® Durch Festlegung ihrer Wahrheitstafeln konnen wir auch andere Junktoren
definieren und erhalten daraus andere aussagenlogische Sprachen.

® Fiir jede Menge 7 von so definierten Junktoren und den boolschen
Konstanten (die wir als ,,nullstellige” Junktoren auffassen kdnnen) sei
AL(7) die daraus gebildete aussagenlogische Sprache.
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Kapitel 2: Aussagenlogik - Abschnitt 2.3: Aquivalenz und Adiquatheit

Andere Junktoren

® Die Auswahl der Junktoren =, A, V, — (und < als Abkiirzung) fiir ,unsere*
aussagenlogische Sprache richtet sich nach dem umgangssprachlichen
Gebrauch und den Erfordernissen des formalen SchlieBens, ist aber in
gewisser Weise willkiirlich.

® Durch Festlegung ihrer Wahrheitstafeln konnen wir auch andere Junktoren
definieren und erhalten daraus andere aussagenlogische Sprachen.

® Fiir jede Menge 7 von so definierten Junktoren und den boolschen
Konstanten (die wir als ,,nullstellige” Junktoren auffassen kdnnen) sei
AL(7) die daraus gebildete aussagenlogische Sprache.

® Satz 2.30 besagt dann, dass jede Formel in AL(7) zu einer Formel in AL
dquivalent ist. Gilt die Umkehrung ebenfalls, so bezeichnen wir 7 als
adaquat.
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Kapitel 2: Aussagenlogik - Abschnitt 2.3: Aquivalenz und Adiquatheit

Beispiele 1: Exklusives Oder

Der 2-stellige Junktor & sei definiert durch

=~ O OB

Intuitiv bedeutet (¢ @) ,entweder o oder 1".
Man nennt @ auch exklusives Oder.
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Kapitel 2: Aussagenlogik - Abschnitt 2.3: Aquivalenz und Adiquatheit

Der dreistellige Mehrheitsjunktor

Der 3-stellige Junktor M sei definiert durch

¢ Y x| Mpv,x)
0 0 0 0
0 0 1 0
01 0 0
01 1 1
1 00 0
1 0 1 1
1 10 1
11 1 1

Intuitiv ist M(p, 1, x) also genau dann wahr, wenn mindestens zwei (also die
Mehrheit) der Formeln ¢, 4, x wahr sind.
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Kapitel 2: Aussagenlogik - Abschnitt 2.3: Aquivalenz und Adiquatheit

NAND

Der folgende zweistellige Junktor ist bekannt als NAND-Gatter (not-and) oder
Sheffer-Strich:

Satz 2.35
{|} ist addquat.
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Vereinfachende Annahme

In diesem Abschnitt betrachten wir nur Formeln in AL({—, V, A}).

Rechtfertigung
Die Annahme bedeutet keine wesentliche Einschrankung, weil die Menge
{—, V, A} adiquat ist.
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

NNF

Definition 2.36
Eine Formel ist in Negationsnormalform (NNF), wenn sie zu AL({—, A, V})
gehort und Negationszeichen nur unmittelbar vor Aussagensymbolen auftreten.
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

NNF

Definition 2.36
Eine Formel ist in Negationsnormalform (NNF), wenn sie zu AL({—, A, V})
gehort und Negationszeichen nur unmittelbar vor Aussagensymbolen auftreten.

Satz 2.37

Jede aussagenlogische Formel ist dquivalent zu einer Formel in NNF.
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Ein NNF-Algorithmus

Eingabe: Formel ¢ € AL({—, A, V}).

Ausgabe: Formel ¢’ in NNF

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Ein NNF-Algorithmus

Eingabe: Formel ¢ € AL({—, A, V}).
Ausgabe: Formel ¢’ in NNF

Verfahren:
1. Wiederhole folgende Schritte:
2. Wenn ¢ in NNF ist, dann halte mit
Ausgabe .
3. Ersetze eine Subformel von ¢ der Gestalt

(11 A1) durch (—e)1 V —1h2)

oder eine Subformel der Gestalt

(1 V 4b2) durch (=¢h1 A =h2)

oder eine Subformel der Gestalt

——1) durch 9.
Sei ¢’ die resultierende Formel.
4, p=¢.
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Korrektheit des NNF-Algorithmus

Satz 2.38
Fiir jede Eingabeformel ¢ € AL({—, A, V}) gibt der NNF-Algorithmus nach
endlich vielen Schritten eine zu ¢ adquivalente Formel ©' in NNF aus.

(hier ohne Beweis)
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Korrektheit des NNF-Algorithmus

Satz 2.38
Fiir jede Eingabeformel ¢ € AL({—, A, V}) gibt der NNF-Algorithmus nach
endlich vielen Schritten eine zu  dquivalente Formel ¢’ in NNF aus.

(hier ohne Beweis)

Bemerkung

Unter Verwendung geeigneter Datenstrukturen l3sst sich der NNF-Algorithmus
mit linearer Laufzeit implementieren, d.h., Laufzeit O(n) bei Eingabe einer
Formel der Lange n.

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 107



Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Beispiel 2.39
Das Ziel ist, die Formel <<ﬂAo A= ((Ao V A1) — Ao)> - 0)

in NNF zu bringen, d.h. eine zu ihr dquivalente Formel in NNF zu finden.
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Beispiel 2.39

Das Ziel ist, die Formel <<ﬂAo A= ((Ao V A1) — Ao)> — 0)

in NNF zu bringen, d.h. eine zu ihr dquivalente Formel in NNF zu finden.
Lésung: Wir ersetzen zunéchst die Konstanten 0 und 1 sowie alle

Implikationspfeile durch geeignete Formeln aus AL({—, A, V}) und wenden dann
den NNF-Algorithmus an. Der Teil einer Formel, der als Nichstes ersetzt wird,

ist im Folgenden jeweils unterstrichen.
((ﬁAo N ﬁ((Ao \Y A1) — Ao)) — Q)
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Beispiel 2.39

Das Ziel ist, die Formel <<ﬂAo A= ((Ao V A1) — Ao)> — 0)

in NNF zu bringen, d.h. eine zu ihr dquivalente Formel in NNF zu finden.
Lésung: Wir ersetzen zunéchst die Konstanten 0 und 1 sowie alle

Implikationspfeile durch geeignete Formeln aus AL({—, A, V}) und wenden dann
den NNF-Algorithmus an. Der Teil einer Formel, der als Nichstes ersetzt wird,

ist im Folgenden jeweils unterstrichen.
((ﬁAo N ﬁ((Ao \Y A1) — Ao)) — Q)

= ((ﬂAo A=((AoV AL) — Ao)) = (Ao A —\Ao))

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 108
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Beispiel 2.39

Das Ziel ist, die Formel <<ﬂAo A= ((Ao V A1) — Ao)> — 0)

in NNF zu bringen, d.h. eine zu ihr dquivalente Formel in NNF zu finden.
Lésung: Wir ersetzen zunéchst die Konstanten 0 und 1 sowie alle

Implikationspfeile durch geeignete Formeln aus AL({—, A, V}) und wenden dann
den NNF-Algorithmus an. Der Teil einer Formel, der als Nichstes ersetzt wird,

ist im Folgenden jeweils unterstrichen.
((ﬁAo N ﬁ((Ao \Y A1) — Ao)) — Q)

((ﬂAo A=((AoV AL) — Ao)> = (Ao A ﬁAO))

= (—\ (—\Ao A=((AoV Ar) = Ao)) V (Ao A —'Ao))
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Beispiel 2.39

Das Ziel ist, die Formel <<ﬂAo A= ((Ao V A1) — Ao)> — 0)

in NNF zu bringen, d.h. eine zu ihr dquivalente Formel in NNF zu finden.
Lésung: Wir ersetzen zunéchst die Konstanten 0 und 1 sowie alle

Implikationspfeile durch geeignete Formeln aus AL({—, A, V}) und wenden dann
den NNF-Algorithmus an. Der Teil einer Formel, der als Nichstes ersetzt wird,

ist im Folgenden jeweils unterstrichen.
((ﬁAo N ﬁ((Ao \Y A1) — Ao)) — Q)

(ﬂAo A= ((Ao VAL — Ao)) = (Ao A —\Ao))

(
( (ﬂAo/\ Ao\/Al)jAo)) \/(AOA—|A0))
= (=

(ﬂAo A =(=(Ao V A1) v Ao)) V (Ao A ﬂAo))
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Beispiel 2.39
Das Ziel ist, die Formel <<ﬂAo A= ((Ao V A1) — Ao)> - 0)

in NNF zu bringen, d.h. eine zu ihr dquivalente Formel in NNF zu finden.

Lésung: Wir ersetzen zunéchst die Konstanten 0 und 1 sowie alle
Implikationspfeile durch geeignete Formeln aus AL({—, A, V}) und wenden dann
den NNF-Algorithmus an. Der Teil einer Formel, der als Nichstes ersetzt wird,
ist im Folgenden jeweils unterstrichen.

((ﬁAo A =((Ao V A1) — Ao)) . Q)

(ﬁAo A=((AoV A1) = Ao)> (Ao A —\Ao))
)
)

(2240 V == (=(A0 V A1) V Ao) ) V (A0 A —Ad))

—\(—\Ao/\—\((Ao\/Al *)Ao )\/ AoA‘!Ao)

:(—\Ao/\ ( (Ao\/Al)\/Ao )\/(Ao/\—‘Ao

Il
/N N N N
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Beispiel 2.39
Das Ziel ist, die Formel <<ﬂAo A= ((Ao V A1) — Ao)> - 0)

in NNF zu bringen, d.h. eine zu ihr dquivalente Formel in NNF zu finden.

Lésung: Wir ersetzen zunéchst die Konstanten 0 und 1 sowie alle
Implikationspfeile durch geeignete Formeln aus AL({—, A, V}) und wenden dann
den NNF-Algorithmus an. Der Teil einer Formel, der als Nichstes ersetzt wird,
ist im Folgenden jeweils unterstrichen.

((ﬁAo A =((Ao V A1) — Ao)) . Q)

(ﬁAO A=((Ao v Ar) — Ao)> (Ao A —\Ao))

-
-

(
(
(=
(
(

(—\Ao N —\((Ao Vv Al) — Ao)) Ao A\ —|Ao)
(

)
(ﬂAo A=(=(Ao V A1) V Ao)) V (Ao A —Ao) )

(:Ao V (Ao V Ar) V Ao)) V (Ao A —|Ao))

(Ao V (2(A0 V A1) V Ao)) V (Ao A —\A0)>
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Beispiel 2.39
Das Ziel ist, die Formel <<ﬂAo A= ((Ao V A1) — Ao)> - 0)

in NNF zu bringen, d.h. eine zu ihr dquivalente Formel in NNF zu finden.

Lésung: Wir ersetzen zunéchst die Konstanten 0 und 1 sowie alle
Implikationspfeile durch geeignete Formeln aus AL({—, A, V}) und wenden dann
den NNF-Algorithmus an. Der Teil einer Formel, der als Nichstes ersetzt wird,
ist im Folgenden jeweils unterstrichen.

((ﬁAo A =((Ao V A1) — Ao)) . Q)

(ﬁAo A= ((A0V A1) — Ao)> (Ao A —\Ao))

(—\Ao A~ Ao Vv Al) — Ao)) Ao A\ —|Ao)

(ﬁﬁAO V = (=(Ao V Ar) V Ao)) V (Ao A ﬁAO))

(
(- )
(=(A0 A= (A0 v A1) V A0) ) V (Ao A ~A0) )
(
(

(Ao V (2(A0 V A1) V Ao)) V (Ao A —\A0)>

= ((Ao V ((— A0 A ~A1) V Ao)> V (Ao A ﬁAo))‘

Diese Formel ist offensichtlicherweise in NNF.
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Klammern bei Konjunktionen und Disjunktionen

Weil A assoziativ ist, kénnen wir Formeln der Gestalt A", ¢; etwas
groBziigiger interpretieren. Von nun an stehe A7 ¢; fiir o1 A A, mit
irgendeiner Klammerung.

Entsprechend verfahren wir mit Disjunktionen.
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Klammern bei Konjunktionen und Disjunktionen

Weil A assoziativ ist, kénnen wir Formeln der Gestalt A", ¢; etwas
groBziigiger interpretieren. Von nun an stehe A7 ¢; fiir o1 A A, mit
irgendeiner Klammerung.

Entsprechend verfahren wir mit Disjunktionen.

Beispiel
Die Formel /\;‘:1 @i kann fiir jede der folgenden Formeln stehen:
(((p1 A @2) Aps) A ga)
((p1 A (2 A p3)) A pa)
((pr A p2) A3 Apa))
(1 A ((p2 A p3) A ea))
)

(1 A (02 A (3 A pa))) -
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

DNF und KNF

Definition 2.40
(a) Ein Literal ist eine Formel der Gestalt X oder =X, wobei X € AS.

Version vom 25. Januar 2024 Folie 110

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik



Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

DNF und KNF

Definition 2.40
(a) Ein Literal ist eine Formel der Gestalt X oder =X, wobei X € AS.
Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem

negativen Literal.

Version vom 25. Januar 2024 Folie 110
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

DNF und KNF

Definition 2.40

(a) Ein Literal ist eine Formel der Gestalt X oder =X, wobei X € AS.
Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem
negativen Literal.

(b) Eine Formel ist in disjunktiver Normalform (DNF), wenn sie eine
Disjunktion von Konjunktionen von Literalen ist, d.h., wenn sie die Form

mj

(Ax)

n
i=1 = j=1

hat, wobei n,my, ..., m, > 1 sind und die \;; fiir alle i € [n] und j € [m;]
Literale sind.
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

DNF und KNF

Definition 2.40

(a) Ein Literal ist eine Formel der Gestalt X oder =X, wobei X € AS.
Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem
negativen Literal.

(b) Eine Formel ist in disjunktiver Normalform (DNF), wenn sie eine
Disjunktion von Konjunktionen von Literalen ist, d.h., wenn sie die Form

mj

(Ax)

n
i=1 = j=1

hat, wobei n,my, ..., m, > 1 sind und die \;; fiir alle i € [n] und j € [m;]
Literale sind. Die Subformeln x; := Jm:l Aij, fiir i € [n], nennen wir die
(konjunktiven) Klauseln der Formel.
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

DNF und KNF
Definition 2.40

(a)

(b)

Ein Literal ist eine Formel der Gestalt X oder —X, wobei X € AS.

Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem
negativen Literal.

Eine Formel ist in disjunktiver Normalform (DNF), wenn sie eine
Disjunktion von Konjunktionen von Literalen ist, d.h., wenn sie die Form

mj

(Ax)

n
i=1 = j=1

hat, wobei n,my, ..., m, > 1 sind und die \;; fiir alle i € [n] und j € [m;]
Literale sind. Die Subformeln x; := Jm:l Aij, fiir i € [n], nennen wir die
(konjunktiven) Klauseln der Formel.

Beispiele:
° (AL A —As A Ag) (*Av ﬁAj) (AQ AL)
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

DNF und KNF
Definition 2.40

(a)

(b)

Ein Literal ist eine Formel der Gestalt X oder —X, wobei X € AS.

Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem
negativen Literal.

Eine Formel ist in disjunktiver Normalform (DNF), wenn sie eine
Disjunktion von Konjunktionen von Literalen ist, d.h., wenn sie die Form

mj

(Ax)

n
i=1 = j=1

hat, wobei n,my, ..., m, > 1 sind und die \;; fiir alle i € [n] und j € [m;]
Literale sind. Die Subformeln x; := Jm:l Aij, fiir i € [n], nennen wir die
(konjunktiven) Klauseln der Formel.

Beispiele:
° (AL A=A A Ag) y (*Av : ﬁA-;) y (Aj AL) ist in DNF
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

DNF und KNF
Definition 2.40

(a)

(b)

Ein Literal ist eine Formel der Gestalt X oder —X, wobei X € AS.

Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem
negativen Literal.

Eine Formel ist in disjunktiver Normalform (DNF), wenn sie eine
Disjunktion von Konjunktionen von Literalen ist, d.h., wenn sie die Form

mj

(Ax)

n
i=1 = j=1

hat, wobei n,my, ..., m, > 1 sind und die \;; fiir alle i € [n] und j € [m;]
Literale sind. Die Subformeln x; := Jm:l Aij, fiir i € [n], nennen wir die
(konjunktiven) Klauseln der Formel.

Beispiele:

° (AL A —As A Ag) (*Ag ﬁAj) (AQ AL) ist in DNF
° A\ V \Ag Aj
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DNF und KNF
Definition 2.40

(a)

(b)

Ein Literal ist eine Formel der Gestalt X oder —X, wobei X € AS.
Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem
negativen Literal.

Eine Formel ist in disjunktiver Normalform (DNF), wenn sie eine
Disjunktion von Konjunktionen von Literalen ist, d.h., wenn sie die Form
mj

v (An)

n
i=1 j=

hat, wobei n,my, ..., m, > 1 sind und die \;; fiir alle i € [n] und j € [m;]
Literale sind. Die Subformeln x; := Jm:l Aij, fiir i € [n], nennen wir die
(konjunktiven) Klauseln der Formel.

Beispiele:

° (AL A=A A Ag) y (*Ag : ﬁA-;) y (Aj AL) ist in DNF
® AV AV Az istin DNF (mitn=3und m =m =mz =1)

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 110



Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

DNF und KNF
Definition 2.40

(a)

(b)

Ein Literal ist eine Formel der Gestalt X oder —X, wobei X € AS.
Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem
negativen Literal.

Eine Formel ist in disjunktiver Normalform (DNF), wenn sie eine
Disjunktion von Konjunktionen von Literalen ist, d.h., wenn sie die Form
mj

v (An)

n
i=1 j=

hat, wobei n,my, ..., m, > 1 sind und die \;; fiir alle i € [n] und j € [m;]
Literale sind. Die Subformeln x; := Jm:l Aij, fiir i € [n], nennen wir die
(konjunktiven) Klauseln der Formel.

Beispiele:
° (AL A —As A Ag) (*Ag ﬁAj) (AQ AL) ist in DNF
® AV AV Az istin DNF (mitn=3und m =m =mz =1)
* At A-ANA3
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DNF und KNF
Definition 2.40

(a)

(b)

Ein Literal ist eine Formel der Gestalt X oder —X, wobei X € AS.
Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem
negativen Literal.

Eine Formel ist in disjunktiver Normalform (DNF), wenn sie eine
Disjunktion von Konjunktionen von Literalen ist, d.h., wenn sie die Form
mj

v (An)

n
i=1 j=

hat, wobei n,my, ..., m, > 1 sind und die \;; fiir alle i € [n] und j € [m;]
Literale sind. Die Subformeln x; := Jm:l Aij, fiir i € [n], nennen wir die
(konjunktiven) Klauseln der Formel.

Beispiele:
® (AL A=A A A3)V (mA2 A—A3) V (A2 A Ar) st in DNF
® AV AV Az istin DNF (mitn=3und m =m =mz =1)
® A A—=As A As istin DNF (mit n=1 und my = 3)
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DNF und KNF
Definition 2.40

(a)

(b)

Ein Literal ist eine Formel der Gestalt X oder —X, wobei X € AS.
Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem
negativen Literal.

Eine Formel ist in disjunktiver Normalform (DNF), wenn sie eine
Disjunktion von Konjunktionen von Literalen ist, d.h., wenn sie die Form

mj

n
(A)
=1 j=1
hat, wobei n,my, ..., m, > 1 sind und die \;; fiir alle i € [n] und j € [m;]
Literale sind. Die Subformeln x; := Jm:l Aij, fiir i € [n], nennen wir die
(konjunktiven) Klauseln der Formel.
Beispiele:
® ist in DNF
° istin DNF (mit n=3und my =m=mz =1)
o ist in DNF (mit n =1 und my = 3) und gleichzeitig ist diese

Formel eine konjunktive Klausel
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

(c) Eine Formel ist in konjunktiver Normalform (KNF), wenn sie eine
Konjunktion von Disjunktion von Literalen ist, d.h., wenn sie die Form

A

hat, wobei n,my, ..., m, > 1 sind und die \;; fiir alle i € [n] und j € [m;]
Literale sind.
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(c) Eine Formel ist in konjunktiver Normalform (KNF), wenn sie eine
Konjunktion von Disjunktion von Literalen ist, d.h., wenn sie die Form

A

hat, wobei n,my, ..., m, > 1 sind und die \;; fiir alle i € [n] und j € [m;]
Literale sind. Die Subformeln x; := \/Jm:’1 Aij, fur i € [n], nennen wir die
(disjunktiven) Klauseln der Formel.
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

(c) Eine Formel ist in konjunktiver Normalform (KNF), wenn sie eine
Konjunktion von Disjunktion von Literalen ist, d.h., wenn sie die Form

A

hat, wobei n,my, ..., m, > 1 sind und die \;; fiir alle i € [n] und j € [m;]
Literale sind. Die Subformeln x; := \/Jm:’1 Aij, fiir i € [n], nennen wir die
(disjunktiven) Klauseln der Formel.

Beispiele:
° (A\ V \A) A;) ( Ag ‘Ag) (Ag A\)
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

(c) Eine Formel ist in konjunktiver Normalform (KNF), wenn sie eine
Konjunktion von Disjunktion von Literalen ist, d.h., wenn sie die Form

A

hat, wobei n,my, ..., m, > 1 sind und die \;; fiir alle i € [n] und j € [m;]
Literale sind. Die Subformeln x; := \/Jm:’1 Aij, fiir i € [n], nennen wir die
(disjunktiven) Klauseln der Formel.

Beispiele:
o (A\ V —Ay V A;) ( As V \Ag) (Ag A\) ist in KNF
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

(c) Eine Formel ist in konjunktiver Normalform (KNF), wenn sie eine
Konjunktion von Disjunktion von Literalen ist, d.h., wenn sie die Form

A

hat, wobei n,my, ..., m, > 1 sind und die \;; fiir alle i € [n] und j € [m;]
Literale sind. Die Subformeln x; := \/Jm:’1 Aij, fiir i € [n], nennen wir die
(disjunktiven) Klauseln der Formel.

Beispiele:
° (A\ V =A; V Aj) ( As V ‘Ag) (Ag Vv A|) ist in KNF
e AV —-AV Az
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(c) Eine Formel ist in konjunktiver Normalform (KNF), wenn sie eine
Konjunktion von Disjunktion von Literalen ist, d.h., wenn sie die Form

A

hat, wobei n,my, ..., m, > 1 sind und die \;; fiir alle i € [n] und j € [m;]
Literale sind. Die Subformeln x; := \/Jm:’1 Aij, fiir i € [n], nennen wir die
(disjunktiven) Klauseln der Formel.

Beispiele:
o (A\ V —Ay V A;) ( As V \Ag) (Ag A\) ist in KNF
® AV —=AV As st in KNF (mit n=1 und my = 3)
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(c) Eine Formel ist in konjunktiver Normalform (KNF), wenn sie eine
Konjunktion von Disjunktion von Literalen ist, d.h., wenn sie die Form

A

hat, wobei n,my, ..., m, > 1 sind und die \;; fiir alle i € [n] und j € [m;]
Literale sind. Die Subformeln x; := \/7", \;;, fiir i € [n], nennen wir die

J
(disjunktiven) Klauseln der Formel.
Beispiele:

* ist in KNF

° ist in KNF (mit n =1 und my = 3) und gleichzeitig ist diese

Formel eine disjunktive Klausel
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(c) Eine Formel ist in konjunktiver Normalform (KNF), wenn sie eine
Konjunktion von Disjunktion von Literalen ist, d.h., wenn sie die Form

A (V)

i=1 = j=1

hat, wobei n,my, ..., m, > 1 sind und die \;; fiir alle i € [n] und j € [m;]
Literale sind. Die Subformeln x; := \/Jm:’1 Aij, fur i € [n], nennen wir die
(disjunktiven) Klauseln der Formel.

Beispiele:
® (A1V—AV A3) A (mA2V —A3) A (A2 V A1) st in KNF
® AV AV As ist in KNF (mit n =1 und m; = 3) und gleichzeitig ist diese
Formel eine disjunktive Klausel
® A AN-A N A3
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(c) Eine Formel ist in konjunktiver Normalform (KNF), wenn sie eine
Konjunktion von Disjunktion von Literalen ist, d.h., wenn sie die Form

A

hat, wobei n,my, ..., m, > 1 sind und die \;; fiir alle i € [n] und j € [m;]
Literale sind. Die Subformeln x; := \/Jm:’1 Aij, fur i € [n], nennen wir die
(disjunktiven) Klauseln der Formel.

Beispiele:
. ist in KNF
° ist in KNF (mit n =1 und my = 3) und gleichzeitig ist diese
Formel eine disjunktive Klausel
° istin KNF (mit n =3 und myi =mx =mz =1)
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Normalformen spielen in vielen Anwendungsgebieten eine wichtige Rolle.
Beispielsweise geht man in der Schaltungstechnik (Hardware-Entwurf) oft von
DNF-Formeln aus, wahrend bei der aussagenlogischen Modellbildung oftmals
KNF-Formeln auftreten, da sich eine Sammlung von einfach strukturierten
Aussagen sehr gut durch eine Konjunktion von Klauseln ausdriicken |&sst.
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Satz 2.41

Jede aussagenlogische Formel ist dquivalent zu einer Formel in DNF und zu
einer Formel in KNF.
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Bemerkung 2.42

Der Beweis von Satz 2.41 zeigt Folgendes:
Um fiir eine gegebene Formel 1 eine dquivalente Formel ¢ in

® DNF zu erzeugen, kénnen wir

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 114
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Bemerkung 2.42

Der Beweis von Satz 2.41 zeigt Folgendes:
Um fiir eine gegebene Formel 1 eine dquivalente Formel ¢ in
® DNF zu erzeugen, kénnen wir die Wahrheitstafel fiir 1) aufstellen und dann

wie in Beispiel 2.32 vorgehen
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Bemerkung 2.42
Der Beweis von Satz 2.41 zeigt Folgendes:
Um fiir eine gegebene Formel 1 eine dquivalente Formel ¢ in
® DNF zu erzeugen, kénnen wir die Wahrheitstafel fiir 1) aufstellen und dann
wie in Beispiel 2.32 vorgehen (bzw. ¢ := A; A —A; setzen, falls ¢

unerfiillbar ist).
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Bemerkung 2.42
Der Beweis von Satz 2.41 zeigt Folgendes:
Um fiir eine gegebene Formel 1 eine dquivalente Formel ¢ in
® DNF zu erzeugen, kénnen wir die Wahrheitstafel fiir 1) aufstellen und dann
wie in Beispiel 2.32 vorgehen (bzw. ¢ := A; A —A; setzen, falls ¢
unerfiillbar ist).
® KNF zu erzeugen, kdnnen wir wie folgt vorgehen:
(1) Stelle die Wahrheitstafel fiir ¢ auf.
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Bemerkung 2.42
Der Beweis von Satz 2.41 zeigt Folgendes:
Um fiir eine gegebene Formel 1 eine dquivalente Formel ¢ in
® DNF zu erzeugen, kénnen wir die Wahrheitstafel fiir 1) aufstellen und dann
wie in Beispiel 2.32 vorgehen (bzw. ¢ := A; A —A; setzen, falls ¢
unerfiillbar ist).
® KNF zu erzeugen, kdnnen wir wie folgt vorgehen:

(1) Stelle die Wahrheitstafel fiir ¢ auf.
(2) Falls in der letzten Spalte nur ,, 1"en stehen,
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Bemerkung 2.42
Der Beweis von Satz 2.41 zeigt Folgendes:
Um fiir eine gegebene Formel 1 eine dquivalente Formel ¢ in
® DNF zu erzeugen, kénnen wir die Wahrheitstafel fiir 1) aufstellen und dann
wie in Beispiel 2.32 vorgehen (bzw. ¢ := A; A —A; setzen, falls ¢
unerfiillbar ist).
® KNF zu erzeugen, kdnnen wir wie folgt vorgehen:

(1) Stelle die Wahrheitstafel fiir ¢ auf.
(2) Falls in der letzten Spalte nur ,,1"en stehen, setze ¢ := A; V —A;.
(3) Ansonsten gehe wie folgt vor:
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Bemerkung 2.42
Der Beweis von Satz 2.41 zeigt Folgendes:
Um fiir eine gegebene Formel 1 eine dquivalente Formel ¢ in
® DNF zu erzeugen, kénnen wir die Wahrheitstafel fiir 1) aufstellen und dann
wie in Beispiel 2.32 vorgehen (bzw. ¢ := A; A —A; setzen, falls ¢
unerfiillbar ist).
® KNF zu erzeugen, kdnnen wir wie folgt vorgehen:

(1) Stelle die Wahrheitstafel fiir ¢ auf.
(2) Falls in der letzten Spalte nur ,,1"en stehen, setze ¢ := A; V —A;.
(3) Ansonsten gehe wie folgt vor:
® Betrachte alle Zeilen der Wahrheitstafel, bei denen in der letzten Spalte eine

,0" steht.
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Bemerkung 2.42
Der Beweis von Satz 2.41 zeigt Folgendes:
Um fiir eine gegebene Formel 1 eine dquivalente Formel ¢ in
® DNF zu erzeugen, kénnen wir die Wahrheitstafel fiir 1) aufstellen und dann
wie in Beispiel 2.32 vorgehen (bzw. ¢ := A; A —A; setzen, falls ¢
unerfiillbar ist).
® KNF zu erzeugen, kdnnen wir wie folgt vorgehen:

(1) Stelle die Wahrheitstafel fiir ¢ auf.
(2) Falls in der letzten Spalte nur ,,1"en stehen, setze ¢ := A; V —A;.

(3) Ansonsten gehe wie folgt vor:
® Betrachte alle Zeilen der Wahrheitstafel, bei denen in der letzten Spalte eine

, 0% steht.
® Fiir jede solche Zeile konstruiere die disjunktive Klausel, die von allen

Interpretationen auBer der zur Zeile gehdrenden erfiillt wird.
Beispiel: Wenn die Zeile der Wahrheitstafel die Form

011]0
hat, so gehort dazu die disjunktive Klausel

A1V —Ay V —A3.
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Bemerkung 2.42
Der Beweis von Satz 2.41 zeigt Folgendes:
Um fiir eine gegebene Formel 1 eine dquivalente Formel ¢ in
® DNF zu erzeugen, kénnen wir die Wahrheitstafel fiir 1) aufstellen und dann
wie in Beispiel 2.32 vorgehen (bzw. ¢ := A; A —A; setzen, falls ¢
unerfiillbar ist).
® KNF zu erzeugen, kdnnen wir wie folgt vorgehen:

(1) Stelle die Wahrheitstafel fiir ¢ auf.
(2) Falls in der letzten Spalte nur ,,1"en stehen, setze ¢ := A; V —A;.

(3) Ansonsten gehe wie folgt vor:
® Betrachte alle Zeilen der Wahrheitstafel, bei denen in der letzten Spalte eine

, 0% steht.
® Fiir jede solche Zeile konstruiere die disjunktive Klausel, die von allen

Interpretationen auBer der zur Zeile gehdrenden erfiillt wird.
Beispiel: Wenn die Zeile der Wahrheitstafel die Form

0110
hat, so gehort dazu die disjunktive Klausel
A1V —Ay V —A3.

® Bilde die Konjunktion all dieser disjunktiven Klauseln.
Dies liefert die gesuchte KNF-Formel ¢.
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Wenn eine Formel sehr viele verschiedene Aussagensymbole enthilt, die zur
Formel gehorige Wahrheitstafel also sehr groB ist, ist das gerade beschriebene
Verfahren zur Umformung in DNF oder KNF sehr zeitaufwandig.
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Wenn eine Formel sehr viele verschiedene Aussagensymbole enthilt, die zur
Formel gehorige Wahrheitstafel also sehr groB ist, ist das gerade beschriebene
Verfahren zur Umformung in DNF oder KNF sehr zeitaufwandig.

In solchen Fallen ist es ratsam, stattdessen zu versuchen, die gewiinschte
Normalform durch Aquivalenzumformungen zu erzeugen.
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Beispiel 2.43
Sei ¢ = ((ﬂAO A (Ao = A1) V (Ao — A3)).

Transformation von ¢ in NNF: siehe Tafel
Transformation in DNF: siehe Tafel

Transformation in KNF: siehe Tafel
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Beispiel 2.43
Sei ¢ = ((ﬂAO A (Ao = A1) V (Ao — A3)).

Transformation von ¢ in NNF: siehe Tafel
Transformation in DNF: siehe Tafel

Transformation in KNF: siehe Tafel

Je nach Formel muss man ggf. die Distributivitatsregel mehrmals anwenden, bis
man eine Formel der gewiinschten Normalform erhilt.
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Ein DNF-Algorithmus

Eingabe: Formel ¢ € AL({—, A, V}) in NNF.
Ausgabe: Formel ¢ in DNF
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Ein DNF-Algorithmus

Eingabe: Formel ¢ € AL({—, A, V}) in NNF.
Ausgabe: Formel ¢ in DNF
Verfahren: 1. Wiederhole folgende Schritte:
2. Wenn ¢ in DNF ist, dann halte mit
Ausgabe .
3. Ersetze eine Subformel von ¢ der Gestalt

(Y1 A (Y2 V ab3)) durch ((11 Ath2) V (Y1 A 93))

oder eine Subformel der Gestalt

(1 Vab2) Ap3) durch (1 A 93) V (2 A 93)).

Sei ¢’ die resultierende Formel.
4, w=¢.
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Ein DNF-Algorithmus

Eingabe: Formel ¢ € AL({—, A, V}) in NNF.
Ausgabe: Formel ¢ in DNF
Verfahren: 1. Wiederhole folgende Schritte:
2. Wenn ¢ in DNF ist, dann halte mit
Ausgabe .
3. Ersetze eine Subformel von ¢ der Gestalt

(Y1 A (Y2 V ab3)) durch ((11 Ath2) V (Y1 A 93))

oder eine Subformel der Gestalt

(1 Vab2) Ap3) durch (1 A 93) V (2 A 93)).

Sei ¢’ die resultierende Formel.
4, w=¢.
Satz 2.44

Fiir jede Eingabeformel ¢ in NNF gibt der DNF-Algorithmus nach endlich vielen
Schritten eine zu ¢ dquivalente Formel ¢ in DNF aus.

(hier ohne Beweis)
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Ein DNF-Algorithmus

Eingabe: Formel ¢ € AL({—, A, V}) in NNF.
Ausgabe: Formel ¢ in DNF
Verfahren: 1. Wiederhole folgende Schritte:
2. Wenn ¢ in DNF ist, dann halte mit
Ausgabe .
3. Ersetze eine Subformel von ¢ der Gestalt

(Y1 A (Y2 V ab3)) durch ((11 Ath2) V (Y1 A 93))

oder eine Subformel der Gestalt

(1 Vab2) Ap3) durch (1 A 93) V (2 A 93)).

Sei ¢’ die resultierende Formel.
4, w=¢.
Satz 2.44

Fiir jede Eingabeformel ¢ in NNF gibt der DNF-Algorithmus nach endlich vielen
Schritten eine zu ¢ dquivalente Formel ¢ in DNF aus.

(hier ohne Beweis)

Analog kann man auch einen , KNF-Algorithmus™ angeben, der bei Eingabe
einer NNF-Formel eine dquivalente Formel in KNF erzeugt (Details: Ubung).
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Eine kleine Formel mit groBer DNF

Satz 2.45

Seine€ N mitn>1, seien Xq,...,X, und Yi,...,Y, genau 2n verschiedene

Aussagensymbole und sei
n
On = /\ (Xiv=Y;).
i=1

Jede zu p,, dquivalente Formel in DNF hat mindestens 2" konjunktive Klauseln.

Version vom 25. Januar 2024 Folie 118
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Eine kleine Formel mit groBer DNF

Satz 2.45

Seine€ N mitn>1, seien Xq,...,X, und Yi,...,Y, genau 2n verschiedene
Aussagensymbole und sei

n
On = /\ (Xiv=Y;).
i=1

Jede zu p,, dquivalente Formel in DNF hat mindestens 2" konjunktive Klauseln.

Beweis: Ubung

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 118



Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Eine kleine Formel mit groBer DNF

Satz 2.45
Seine€ N mitn>1, seien Xq,...,X, und Yi,...,Y, genau 2n verschiedene
Aussagensymbole und sei

n
On = /\ (Xiv=Y;).
i=1

Jede zu p,, dquivalente Formel in DNF hat mindestens 2" konjunktive Klauseln.

Beweis: Ubung

Korollar 2.46

Jeder Algorithmus, der bei Eingabe von beliebigen aussagenlogischen Formeln
dazu dquivalente Formeln in DNF erzeugt, hat eine Laufzeit, die im worst-case
exponentiell ist, d.h., 2" bei Eingabe von Formeln der Lange n.
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Kapitel 2: Aussagenlogik - Abschnitt 2.5: Der Endlichkeitssatz

Der Endlichkeitssatz
(auch bekannt als Kompaktheitssatz)

Um nachzuweisen, dass eine gegebene unendliche Formelmenge erfiillbar ist, ist
der folgende Satz sehr niitzlich.

Satz 2.47 (Der Endlichkeitssatz der Aussagenlogik)

(a) Fiir jede Formelmenge ® C AL gilt:
b st erfiillbar <= Jede endliche Teilmenge von ® ist erfiillbar.
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Kapitel 2: Aussagenlogik - Abschnitt 2.5: Der Endlichkeitssatz

Der Endlichkeitssatz
(auch bekannt als Kompaktheitssatz)

Um nachzuweisen, dass eine gegebene unendliche Formelmenge erfiillbar ist, ist
der folgende Satz sehr niitzlich.

Satz 2.47 (Der Endlichkeitssatz der Aussagenlogik)

(a) Fiir jede Formelmenge ® C AL gilt:
& st erfiillbar <= Jede endliche Teilmenge von ® ist erfiillbar.

(b) Fiir alle & C AL und ¢ € AL gilt:
& =1 <= Es gibt eine endliche Teilmenge T von ®, so dass I |= 1.

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 119



Kapitel 2: Aussagenlogik - Abschnitt 2.5: Der Endlichkeitssatz

Anwendung: Farbbarkeit

Definition:
® Ein (ungerichteter) Graph G = (V/, E) besteht aus einer nicht-leeren Menge V
und einer Menge E C {{x,y} : x,y € V, x # y}. Die Elemente in V werden
Knoten und die Elemente in E werden (ungerichtete) Kanten genannt.
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Kapitel 2: Aussagenlogik - Abschnitt 2.5: Der Endlichkeitssatz

Anwendung: Farbbarkeit

Definition:
® Ein (ungerichteter) Graph G = (V/, E) besteht aus einer nicht-leeren Menge V
und einer Menge E C {{x,y} : x,y € V, x # y}. Die Elemente in V werden
Knoten und die Elemente in E werden (ungerichtete) Kanten genannt. Zwei
Knoten x,y € V heiBen benachbart, wenn {x,y} € E.
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Kapitel 2: Aussagenlogik - Abschnitt 2.5: Der Endlichkeitssatz

Anwendung: Farbbarkeit

Definition:
® Ein (ungerichteter) Graph G = (V/, E) besteht aus einer nicht-leeren Menge V
und einer Menge E C {{x,y} : x,y € V, x # y}. Die Elemente in V werden
Knoten und die Elemente in E werden (ungerichtete) Kanten genannt. Zwei
Knoten x,y € V heiBen benachbart, wenn {x,y} € E.
® Ein Subgraph eines Graphen G = (V, E) ist ein Graph H = (V' E') mit V' C V
und E' C E.
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Kapitel 2: Aussagenlogik - Abschnitt 2.5: Der Endlichkeitssatz

Anwendung: Farbbarkeit

Definition:

® Ein (ungerichteter) Graph G = (V/, E) besteht aus einer nicht-leeren Menge V
und einer Menge E C {{x,y} : x,y € V, x # y}. Die Elemente in V werden
Knoten und die Elemente in E werden (ungerichtete) Kanten genannt. Zwei
Knoten x,y € V heiBen benachbart, wenn {x,y} € E.

® Ein Subgraph eines Graphen G = (V, E) ist ein Graph H = (V' E') mit V' C V
und E' C E.

® Ein Graph G = (V, E) heiBt endlich (bzw. unendlich), wenn seine Knotenmenge
V endlich (bzw. unendlich) ist.
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Kapitel 2: Aussagenlogik - Abschnitt 2.5: Der Endlichkeitssatz

Anwendung: Farbbarkeit

Definition:

® Ein (ungerichteter) Graph G = (V/, E) besteht aus einer nicht-leeren Menge V
und einer Menge E C {{x,y} : x,y € V, x # y}. Die Elemente in V werden
Knoten und die Elemente in E werden (ungerichtete) Kanten genannt. Zwei
Knoten x,y € V heiBen benachbart, wenn {x,y} € E.

® Ein Subgraph eines Graphen G = (V, E) ist ein Graph H = (V' E') mit V' C V
und E' C E.

® Ein Graph G = (V, E) heiBt endlich (bzw. unendlich), wenn seine Knotenmenge
V endlich (bzw. unendlich) ist.

Definition 2.48
Sei k € Nmit k > 1.
Eine k-Farbung eines Graphen G = (V/, E) ist eine Abbildung f : V — [k], so dass fiir

alle Kanten {v,w} € E gilt: f(v) # f(w).
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Kapitel 2: Aussagenlogik - Abschnitt 2.5: Der Endlichkeitssatz

Anwendung: Farbbarkeit

Definition:

® Ein (ungerichteter) Graph G = (V/, E) besteht aus einer nicht-leeren Menge V
und einer Menge E C {{x,y} : x,y € V, x # y}. Die Elemente in V werden
Knoten und die Elemente in E werden (ungerichtete) Kanten genannt. Zwei
Knoten x,y € V heiBen benachbart, wenn {x,y} € E.

® Ein Subgraph eines Graphen G = (V, E) ist ein Graph H = (V' E') mit V' C V
und E' C E.

® Ein Graph G = (V, E) heiBt endlich (bzw. unendlich), wenn seine Knotenmenge
V endlich (bzw. unendlich) ist.

Definition 2.48

Sei k € Nmit k > 1.

Eine k-Farbung eines Graphen G = (V/, E) ist eine Abbildung f : V — [k], so dass fiir
alle Kanten {v,w} € E gilt: f(v) # f(w).

G heiBt k-farbbar, falls es eine k-Farbung von G gibt.
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Kapitel 2: Aussagenlogik - Abschnitt 2.5: Der Endlichkeitssatz

Anwendung: Farbbarkeit

Definition:

® Ein (ungerichteter) Graph G = (V/, E) besteht aus einer nicht-leeren Menge V
und einer Menge E C {{x,y} : x,y € V, x # y}. Die Elemente in V werden
Knoten und die Elemente in E werden (ungerichtete) Kanten genannt. Zwei
Knoten x,y € V heiBen benachbart, wenn {x,y} € E.

® Ein Subgraph eines Graphen G = (V, E) ist ein Graph H = (V' E') mit V' C V
und E' C E.

® Ein Graph G = (V, E) heiBt endlich (bzw. unendlich), wenn seine Knotenmenge
V endlich (bzw. unendlich) ist.

Definition 2.48

Sei k € Nmit k > 1.

Eine k-Farbung eines Graphen G = (V/, E) ist eine Abbildung f : V — [k], so dass fiir
alle Kanten {v,w} € E gilt: f(v) # f(w).

G heiBt k-farbbar, falls es eine k-Farbung von G gibt.

Satz 2.49

Sei k € N mit k > 1.

Ein unendlicher Graph G mit Knotenmenge N ist genau dann k-firbbar, wenn jeder
endliche Subgraph von G k-farbbar ist.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Um nachzuweisen, dass eine gegebene KNF-Formel unerfiillbar ist, ist das im
Folgenden vorgestellte Resolutionsverfahren niitzlich.

Beispiel 2.50
Wir wollen nachweisen, dass die KNF-Formel
p =

unerfiillbar ist.

Version vom 25. Januar 2024 Folie 121

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik



Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Um nachzuweisen, dass eine gegebene KNF-Formel unerfiillbar ist, ist das im

Folgenden vorgestellte Resolutionsverfahren niitzlich.

Beispiel 2.50
Wir wollen nachweisen, dass die KNF-Formel
p =

unerfiillbar ist. Dazu konnen wir wie folgt argumentieren:

Angenommen, eine Interpretation Z erfiillt .
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p =
unerfiillbar ist. Dazu konnen wir wie folgt argumentieren:
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Um nachzuweisen, dass eine gegebene KNF-Formel unerfiillbar ist, ist das im

Folgenden vorgestellte Resolutionsverfahren niitzlich.

Beispiel 2.50

Wir wollen nachweisen, dass die KNF-Formel
p =
unerfiillbar ist. Dazu konnen wir wie folgt argumentieren:

Angenommen, eine Interpretation Z erfiillt .
® Danngilt Z | —T.

® Aus TEQVRVT und Z}~T folgtdann T QV R.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Um nachzuweisen, dass eine gegebene KNF-Formel unerfiillbar ist, ist das im

Folgenden vorgestellte Resolutionsverfahren niitzlich.

Beispiel 2.50

Wir wollen nachweisen, dass die KNF-Formel
p =
unerfiillbar ist. Dazu konnen wir wie folgt argumentieren:

Angenommen, eine Interpretation Z erfiillt .
® Danngilt Z | —T.

® Aus TEQVRVT und Z}~T folgtdann T QV R.

® Aus TEQVR und ZTE-QVS folgt ZTE=RVS.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Um nachzuweisen, dass eine gegebene KNF-Formel unerfiillbar ist, ist das im

Folgenden vorgestellte Resolutionsverfahren niitzlich.

Beispiel 2.50

Wir wollen nachweisen, dass die KNF-Formel
p =
unerfiillbar ist. Dazu konnen wir wie folgt argumentieren:

Angenommen, eine Interpretation Z erfiillt .
® Danngilt Z | —T.

® Aus TEQVRVT und Z}~T folgtdann T QV R.

® Aus TEQVR und ZTE-QVS folgt ZTE=RVS.
® Aus TERVS und ZTE=-SVR folgt ZTE=R.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Um nachzuweisen, dass eine gegebene KNF-Formel unerfiillbar ist, ist das im

Folgenden vorgestellte Resolutionsverfahren niitzlich.

Beispiel 2.50

Wir wollen nachweisen, dass die KNF-Formel

P =

unerfiillbar ist. Dazu konnen wir wie folgt argumentieren:
Angenommen, eine Interpretation Z erfiillt .
® Danngilt Z | —T.

® Aus TEQVRVT und Z}~T folgtdann T QV R.

® Aus TEQVR und ZTE-QVS folgt ZTE=RVS.
® Aus TERVS und ZTE=-SVR folgt ZTE=R.
® Aus ZTE==-PV-=R und T PV -R folgt T -R.

Das ist ein Widerspruch. Somit ist ¢ nicht erfiillbar.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Umwandlung in kleine KNF-Formeln

Das Resolutionsverfahren, das wir im Folgenden vorstellen, funktioniert nur fiir
KNF-Formeln.

Wir wissen bereits:
® Zu jeder Formel ¢ gibt es eine dquivalente Formel in KNF.
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Umwandlung in kleine KNF-Formeln

Das Resolutionsverfahren, das wir im Folgenden vorstellen, funktioniert nur fiir
KNF-Formeln.

Wir wissen bereits:
® Zu jeder Formel ¢ gibt es eine dquivalente Formel in KNF.
® Aber moglicherweise ist die kleinste zu ¢ dquivalente KNF-Formel
exponentiell groB in der GroBe von .
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Umwandlung in kleine KNF-Formeln

Das Resolutionsverfahren, das wir im Folgenden vorstellen, funktioniert nur fiir
KNF-Formeln.

Wir wissen bereits:
® Zu jeder Formel ¢ gibt es eine dquivalente Formel in KNF.

® Aber moglicherweise ist die kleinste zu ¢ dquivalente KNF-Formel
exponentiell groB in der GroBe von .

Wenn es uns nur um die Frage geht, ob eine Formel ¢ (un)erfiillbar ist, ist es
aber auch gar nicht notig, eine zu ¢ dquivalente KNF-Formel zu finden.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Umwandlung in kleine KNF-Formeln

Das Resolutionsverfahren, das wir im Folgenden vorstellen, funktioniert nur fiir
KNF-Formeln.

Wir wissen bereits:
® Zu jeder Formel ¢ gibt es eine dquivalente Formel in KNF.

® Aber moglicherweise ist die kleinste zu ¢ dquivalente KNF-Formel
exponentiell groB in der GroBe von .

Wenn es uns nur um die Frage geht, ob eine Formel ¢ (un)erfiillbar ist, ist es
aber auch gar nicht nétig, eine zu ¢ dquivalente KNF-Formel zu finden. Es
reicht, eine zu ¢ erfiillbarkeitsdquivalente KNF-Formel zu konstruieren.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Umwandlung in kleine KNF-Formeln

Das Resolutionsverfahren, das wir im Folgenden vorstellen, funktioniert nur fiir
KNF-Formeln.

Wir wissen bereits:
® Zu jeder Formel ¢ gibt es eine dquivalente Formel in KNF.

® Aber moglicherweise ist die kleinste zu ¢ dquivalente KNF-Formel
exponentiell groB in der GroBe von .

Wenn es uns nur um die Frage geht, ob eine Formel ¢ (un)erfiillbar ist, ist es
aber auch gar nicht nétig, eine zu ¢ dquivalente KNF-Formel zu finden. Es
reicht, eine zu ¢ erfiillbarkeitsdquivalente KNF-Formel zu konstruieren.

Definition 2.51

Zwei Formeln ¢ und 9 heiBen erfiillbarkeitsdquivalent, falls gilt:

@ ist erflillbar <= 4 ist erfiillbar.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Eine beliebige Formel in eine erfiillbarkeitsdquivalente KNF-Formel
umzuwandeln, ist in Linearzeit moglich.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Eine beliebige Formel in eine erfiillbarkeitsdquivalente KNF-Formel
umzuwandeln, ist in Linearzeit moglich.

Beispiel 2.52

Um die Formel
p = (P=>-Q)V (-(PAQ) AN R)

in eine erfiillbarkeitsdquivalente KNF-Formel umzuformen, kénnen wir wie folgt
vorgehen.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Das Tseitin-Verfahren

Auf die gleiche Weise wie in Beispiel 2.52 kdnnen wir jede beliebige
aussagenlogische Formel in eine erfiillbarkeitsdquivalente KNF-Formel

umwandeln.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Das Tseitin-Verfahren

Auf die gleiche Weise wie in Beispiel 2.52 kdnnen wir jede beliebige
aussagenlogische Formel in eine erfiillbarkeitsdquivalente KNF-Formel
umwandeln. Dieses Verfahren wird Tseitin-Verfahren genannt.
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aussagenlogische Formel in eine erfiillbarkeitsdquivalente KNF-Formel
umwandeln. Dieses Verfahren wird Tseitin-Verfahren genannt. Eine
Laufzeitanalyse zeigt, dass das Tseitin-Verfahren in Linearzeit durchgefiihrt

werden kann.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Das Tseitin-Verfahren

Auf die gleiche Weise wie in Beispiel 2.52 kdnnen wir jede beliebige
aussagenlogische Formel in eine erfiillbarkeitsdquivalente KNF-Formel
umwandeln. Dieses Verfahren wird Tseitin-Verfahren genannt. Eine
Laufzeitanalyse zeigt, dass das Tseitin-Verfahren in Linearzeit durchgefiihrt
werden kann. Insgesamt erhalten wir so den folgenden Satz.

Satz 2.53

Zu jeder aussagenlogischen Formel ¢ gibt es eine aussagenlogische Formel ¢k
mit folgenden Eigenschaften:

(a) @k ist erfiillbarkeitsdquivalent zu .
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Das Tseitin-Verfahren

Auf die gleiche Weise wie in Beispiel 2.52 kdnnen wir jede beliebige
aussagenlogische Formel in eine erfiillbarkeitsdquivalente KNF-Formel
umwandeln. Dieses Verfahren wird Tseitin-Verfahren genannt. Eine
Laufzeitanalyse zeigt, dass das Tseitin-Verfahren in Linearzeit durchgefiihrt
werden kann. Insgesamt erhalten wir so den folgenden Satz.

Satz 2.53

Zu jeder aussagenlogischen Formel ¢ gibt es eine aussagenlogische Formel ¢k
mit folgenden Eigenschaften:

(a) @k ist erfiillbarkeitsdquivalent zu .

(b) @k ist in 3-KNF, d.h., in KNF, wobei jede disjunktive Klausel aus
héchstens 3 Literalen besteht (wir sagen: die Klauseln haben Linge < 3).
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Das Tseitin-Verfahren

Auf die gleiche Weise wie in Beispiel 2.52 kdnnen wir jede beliebige
aussagenlogische Formel in eine erfiillbarkeitsdquivalente KNF-Formel
umwandeln. Dieses Verfahren wird Tseitin-Verfahren genannt. Eine
Laufzeitanalyse zeigt, dass das Tseitin-Verfahren in Linearzeit durchgefiihrt
werden kann. Insgesamt erhalten wir so den folgenden Satz.

Satz 2.53

Zu jeder aussagenlogischen Formel ¢ gibt es eine aussagenlogische Formel ¢k

mit folgenden Eigenschaften:

(a) @k ist erfiillbarkeitsdquivalent zu .

(b) @k ist in 3-KNF, d.h., in KNF, wobei jede disjunktive Klausel aus
héchstens 3 Literalen besteht (wir sagen: die Klauseln haben Linge < 3).

(©) lexl = O(l¢l)-

AuBerdem gibt es einen Algorithmus, der ok bei Eingabe von ¢ in Linearzeit

berechnet.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Das Tseitin-Verfahren

Auf die gleiche Weise wie in Beispiel 2.52 kdnnen wir jede beliebige
aussagenlogische Formel in eine erfiillbarkeitsdquivalente KNF-Formel
umwandeln. Dieses Verfahren wird Tseitin-Verfahren genannt. Eine
Laufzeitanalyse zeigt, dass das Tseitin-Verfahren in Linearzeit durchgefiihrt
werden kann. Insgesamt erhalten wir so den folgenden Satz.

Satz 2.53

Zu jeder aussagenlogischen Formel ¢ gibt es eine aussagenlogische Formel ¢k
mit folgenden Eigenschaften:

(a) @k ist erfiillbarkeitsdquivalent zu .

(b) @k ist in 3-KNF, d.h., in KNF, wobei jede disjunktive Klausel aus
héchstens 3 Literalen besteht (wir sagen: die Klauseln haben Linge < 3).

(©) lexl = O(l¢l)-
AuBerdem gibt es einen Algorithmus, der ok bei Eingabe von ¢ in Linearzeit
berechnet.

Notation
|| bezeichnet die Lange (bzw. GroBe) einer aussagenlogischen Formel ¢, d.h.
die Lange von ¢ aufgefasst als Wort iiber dem Alphabet Aa, .
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Reprasentation von KNF-Formeln

Fiir den Rest diese Abschnitts werden wir nur noch KNF-Formeln betrachten,
und wenn wir von Klauseln sprechen, meinen wir stets disjunktive Klauseln, also

Disjunktionen von Literalen.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Reprasentation von KNF-Formeln

Fiir den Rest diese Abschnitts werden wir nur noch KNF-Formeln betrachten,
und wenn wir von Klauseln sprechen, meinen wir stets disjunktive Klauseln, also

Disjunktionen von Literalen.

Fiir das Resolutionsverfahren ist die folgende Reprasentation von Klauseln und
KNF-Formeln sehr hilfreich:
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Reprasentation von KNF-Formeln

Fiir den Rest diese Abschnitts werden wir nur noch KNF-Formeln betrachten,
und wenn wir von Klauseln sprechen, meinen wir stets disjunktive Klauseln, also
Disjunktionen von Literalen.

Fiir das Resolutionsverfahren ist die folgende Reprasentation von Klauseln und
KNF-Formeln sehr hilfreich:
® Eine Klausel (A1 V ---V \y), die aus Literalen Ay, ..., \; besteht,
identifizieren wir mit der Menge {\1,..., A} ihrer Literale.
Beispiel: Wir schreiben z.B. {A;1, Az, A3} um die Klausel (A; V —A; V A3)
zu bezeichnen.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Reprasentation von KNF-Formeln

Fiir den Rest diese Abschnitts werden wir nur noch KNF-Formeln betrachten,
und wenn wir von Klauseln sprechen, meinen wir stets disjunktive Klauseln, also
Disjunktionen von Literalen.

Fiir das Resolutionsverfahren ist die folgende Reprasentation von Klauseln und
KNF-Formeln sehr hilfreich:
® Eine Klausel (A1 V ---V \y), die aus Literalen Ay, ..., \; besteht,
identifizieren wir mit der Menge {\1,..., A} ihrer Literale.

Beispiel: Wir schreiben z.B. {A;1, Az, A3} um die Klausel (A; V —A; V A3)
zu bezeichnen.

D.h.: Ab jetzt sind disjunktive Klauseln fiir uns dasselbe wie endliche
Mengen von Literalen. Wenn wir von einer Klausel sprechen, meinen wir
eine endliche Menge von Literalen und identifizieren diese mit der Formel,
die aus der Disjunktion all dieser Literale besteht.

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 125



Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Reprasentation von KNF-Formeln

Fiir den Rest diese Abschnitts werden wir nur noch KNF-Formeln betrachten,
und wenn wir von Klauseln sprechen, meinen wir stets disjunktive Klauseln, also
Disjunktionen von Literalen.

Fiir das Resolutionsverfahren ist die folgende Reprasentation von Klauseln und
KNF-Formeln sehr hilfreich:
® Eine Klausel (A1 V ---V \y), die aus Literalen Ay, ..., \; besteht,
identifizieren wir mit der Menge {1, ..., A/} ihrer Literale.

Beispiel: Wir schreiben z.B. {A1, Az, A3} um die Klausel (A1 V —A; V A3)
zu bezeichnen.

D.h.: Ab jetzt sind disjunktive Klauseln fiir uns dasselbe wie endliche
Mengen von Literalen. Wenn wir von einer Klausel sprechen, meinen wir
eine endliche Menge von Literalen und identifizieren diese mit der Formel,
die aus der Disjunktion all dieser Literale besteht.

Spezialfall: Die leere Menge () entspricht der unerfiillbaren Formel 0 (die
wiederum der ,, Formel* entspricht, die aus der Disjunktion aller Literale aus
() besteht).
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

® Eine KNF-Formel ¢ = /\7,-, die aus (disjunktiven) Klauseln 1, ..., vm
i=1
besteht, identifizieren wir mit der Menge I := {71, ...,vm} ihrer Klauseln.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

® Eine KNF-Formel ¢ = /\7,-, die aus (disjunktiven) Klauseln 1, ..., vm
i=1
besteht, identifizieren wir mit der Menge I := {71, ...,vm} ihrer Klauseln.

Offensichtlicherweise gilt fiir alle Interpretationen Z:

IEp < IET.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

® Eine KNF-Formel ¢ = /\7,-, die aus (disjunktiven) Klauseln 1, ..., vm
i=1
besteht, identifizieren wir mit der Menge I := {~1,..., Ym} ihrer Klauseln.

Offensichtlicherweise gilt fiir alle Interpretationen Z:

IEp < IET.
Beispiel: Die KNF-Formel ¢ = A; A (mA2 V A1) A (A3 V Ay V —A;)
reprasentieren wir durch die endliche Klauselmenge

{ A1, (A2 VA, (A3V-AyV—A) }
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

® Eine KNF-Formel ¢ = /\7,-, die aus (disjunktiven) Klauseln 1, ..., vm
i=1
besteht, identifizieren wir mit der Menge I := {71, ...,vm} ihrer Klauseln.

Offensichtlicherweise gilt fiir alle Interpretationen Z:
IEp < IET.

Beispiel: Die KNF-Formel ¢ = A; A (mA2 V A1) A (A3 V Ay V —A;)
reprasentieren wir durch die endliche Klauselmenge

{ A1, (A2 VA, (A3V-AyV—A) }

bzw. durch
{ {A1}, {-A2, A}, {As,—Ay, —AL} }
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

® Eine KNF-Formel ¢ = /\7,-, die aus (disjunktiven) Klauseln 1, ..., vm
i=1
besteht, identifizieren wir mit der Menge I := {~1,..., Ym} ihrer Klauseln.

Offensichtlicherweise gilt fiir alle Interpretationen Z:
IEp < IET.

Beispiel: Die KNF-Formel ¢ = A; A (mA2 V A1) A (A3 V Ay V —A;)
reprasentieren wir durch die endliche Klauselmenge

{ A1, (A2 VA, (A3V-AyV—A) }

bzw. durch
{ {A1}, {-A2, A}, {As, Ay, A} }

., Erfiillbarkeit von KNF-Formeln" ist damit im Wesentlichen dasselbe Problem
wie ,, Erfiillbarkeit von endlichen Mengen von Klauseln”.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Resolution

Notation

Fiir ein Literal X sei

3 —X, falls A von der Form X fiir ein X € AS ist
" | X, falls A von der Form =X fiir ein X € AS ist.

Wir nennen X auch das Negat von \.

Version vom 25. Januar 2024 Folie 127
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Resolution

Notation
Fiir ein Literal \ sei

3 —X, falls A von der Form X fiir ein X € AS ist
o X, falls A von der Form —X fiir ein X € AS ist.

Wir nennen X auch das Negat von \.

Definition 2.54 (Resolutionsregel)

Seien 71, 72 und § endliche Mengen von Literalen (d.h. disjunktive Klauseln). Dann ist
0 eine Resolvente von 1 und -2, wenn es ein Literal A gibt, so dass gilt:

A€ m, A€ und §= (m\{A}) U (=\{r)}).
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Resolution

Notation
Fiir ein Literal \ sei

3 —X, falls A von der Form X fiir ein X € AS ist
o X, falls A von der Form —X fiir ein X € AS ist.

Wir nennen X auch das Negat von \.
Definition 2.54 (Resolutionsregel)

Seien 71, 72 und § endliche Mengen von Literalen (d.h. disjunktive Klauseln). Dann ist
0 eine Resolvente von 1 und -2, wenn es ein Literal A gibt, so dass gilt:

A€ m, A€ und §= (m\{A}) U (=\{r)}).

\/

.0 ist eine Resolvente von ~; und ~."

Graphische Darstellung:
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Das Resolutionslemma

Notation
Ein Klausel ist eine endliche Menge von Literalen (eine solche Klausel

reprasentiert die Disjunktion der in ihr enthaltenen Literale).
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Das Resolutionslemma

Notation

Ein Klausel ist eine endliche Menge von Literalen (eine solche Klausel
reprasentiert die Disjunktion der in ihr enthaltenen Literale).

Eine Klauselmenge ist eine (endliche oder unendliche) Menge von Klauseln.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Das Resolutionslemma

Notation

Ein Klausel ist eine endliche Menge von Literalen (eine solche Klausel
reprasentiert die Disjunktion der in ihr enthaltenen Literale).

Eine Klauselmenge ist eine (endliche oder unendliche) Menge von Klauseln.

Lemma 2.55 (Resolutionslemma)

Sei I eine Klauselmenge, seien 71,72 € I und sei § eine Resolvente von v, und
~2. Dann sind die Klauselmengen I und T U {6} dquivalent.
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Resolutionsableitungen und -widerlegungen

Definition 2.56

Sei I eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel 6 aus I ist
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Resolutionsableitungen und -widerlegungen

Definition 2.56

Sei I eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel 6 aus I ist ein Tupel (d1,...,d,)

von Klauseln, so dass gilt: ¢ > 1,
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Resolutionsableitungen und -widerlegungen

Definition 2.56

Sei I eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel 6 aus I ist ein Tupel (d1,...,d,)

von Klauseln, so dass gilt: > 1, §, =9,
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Resolutionsableitungen und -widerlegungen

Definition 2.56

Sei I eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel 6 aus I ist ein Tupel (d1,...,d,)
von Klauseln, so dass gilt: ¢ > 1, 6, =49, und fiir alle i € [{] ist
® 4 erl, oder
Folie 129
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Resolutionsableitungen und -widerlegungen

Definition 2.56

Sei I eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel ¢ aus I ist ein Tupel (41, ..

von Klauseln, so dass gilt: ¢ > 1, 6, =49, und fiir alle i € [{] ist

® 4 erl, oder
® es gibt j, k € [i—1], so dass §; eine Resolvente von d; und Jj ist.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Resolutionsableitungen und -widerlegungen

Definition 2.56

Sei I eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel 6 aus I ist ein Tupel (d1, ...,
von Klauseln, so dass gilt: ¢ > 1, 6, =49, und fiir alle i € [{] ist

® 4 erl, oder
® es gibt j, k € [i—1], so dass §; eine Resolvente von d; und Jj ist.

(b) Eine Resolutionswiderlegung von T ist eine Resolutionsableitung der
leeren Klausel aus T
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Resolutionsableitungen und -widerlegungen

Definition 2.56

Sei I eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel 6 aus I ist ein Tupel (d1,...,d,)
von Klauseln, so dass gilt: ¢ > 1, 6, =49, und fiir alle i € [{] ist

® 5, el, oder

® es gibt j, k € [i—1], so dass §; eine Resolvente von d; und Jj ist.

(b) Eine Resolutionswiderlegung von T ist eine Resolutionsableitung der
leeren Klausel aus T

Zur Erinnerung:
Eine Klausel § ist genau dann eine Resolvente zweier Klauseln v; und 7y,, wenn
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Resolutionsableitungen und -widerlegungen

Definition 2.56

Sei I eine Klauselmenge.
(a) Eine Resolutionsableitung einer Klausel 6 aus I ist ein Tupel (d1, ...,
von Klauseln, so dass gilt: ¢ > 1, 6, =49, und fiir alle i € [{] ist
® g;eTl, oder
® es gibt j, k € [i—1], so dass §; eine Resolvente von d; und Jj ist.

(b) Eine Resolutionswiderlegung von T ist eine Resolutionsableitung der
leeren Klausel aus T

Zur Erinnerung:
Eine Klausel § ist genau dann eine Resolvente zweier Klauseln v; und 7y,, wenn

es ein Literal \ gibt, so dass gilt:

A€, A€y und 6=
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Resolutionsableitungen und -widerlegungen

Definition 2.56

Sei I eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel 6 aus I ist ein Tupel (d1, ...,
von Klauseln, so dass gilt: ¢ > 1, 6, =49, und fiir alle i € [{] ist

® 4 erl, oder
® es gibt j, k € [i—1], so dass §; eine Resolvente von d; und Jj ist.

(b) Eine Resolutionswiderlegung von T ist eine Resolutionsableitung der
leeren Klausel aus T

Zur Erinnerung:
Eine Klausel § ist genau dann eine Resolvente zweier Klauseln v; und 7y,, wenn

es ein Literal \ gibt, so dass gilt:

Aem, A€ und 5= (m\{\}) U (\{2}).
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Notation 2.57

(a) Wir schreiben kurz ' Fg § um auszudriicken, dass es eine
Resolutionsableitung von § aus I gibt.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Notation 2.57

(a) Wir schreiben kurz ' Fg § um auszudriicken, dass es eine
Resolutionsableitung von § aus I gibt.

Insbesondere bedeutet I =g (), dass es eine Resolutionswiderlegung von I
gibt.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Notation 2.57
(a) Wir schreiben kurz ' Fg § um auszudriicken, dass es eine
Resolutionsableitung von § aus I gibt.

Insbesondere bedeutet I =g (), dass es eine Resolutionswiderlegung von I
gibt.

(b) An Stelle von (1, ..., ) schreiben wir Resolutionsableitungen der
besseren Lesbarkeit halber oft zeilenweise, also
(1) &
(2) &
(£) o

und geben am Ende jeder Zeile eine kurze Begriindung an.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Beispiel 2.58
Sei
M= {{_"Dv_‘R}a {Pv_‘R}v {_‘075}7 {QvRv T}v {_‘T}v {_‘57 R}v {Ta R}}

Eine Resolutionswiderlegung von I ist:

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 131



Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Beispiel 2.58
Sei
M= {{_"Dv_‘R}a {Pv_‘R}v {_‘075}7 {QR/ T}v {_‘T}v {_‘57 R}v {Tv R}}

Eine Resolutionswiderlegung von I ist:

(1) =T} (inT)
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Beispiel 2.58
Sei
M= {{_"Dv_‘R}a {Pv_‘R}v {_‘st}v {QR/ T}v {_‘T}v {_‘57 R}v {Tv R}}

Eine Resolutionswiderlegung von I ist:
1) {-T} (inl)
(2) {QR, T} (inT)
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Beispiel 2.58
Sei

M= {{_"Dv_‘R}a {P,_‘R}, {_‘st}v {QR/ T}v {_‘T}7 {_‘SvR}’ {TR}}

Eine Resolutionswiderlegung von I ist:
1) {-T} (inl)

(2 {QR, T} (inT)
3) {Q,R} (Resolvente von (1), (2))

Version vom 25. Januar 2024
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Beispiel 2.58
Sei

M= {{_"Dv_‘R}a {P,_‘R}, {_‘st}v {QR/ T}v {_‘T}7 {_‘SvR}’ {T7 R}}

Eine Resolutionswiderlegung von I ist:
1) (-}  (nD)
(2) {QR, T} (inT)
3) {Q,R} (Resolvente von (1), (2))
(

4) {-Q,S} inT)

Version vom 25. Januar 2024
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Beispiel 2.58
Sei

M= {{_"Dv_‘R}a {P,_‘R}, {_‘st}v {QR/ T}v {_‘T}7 {_‘SvR}’ {T7 R}}

Eine Resolutionswiderlegung von I ist:

(1) {-7} (inl)
(2 {Q,R T} (inT)
3) {Q R} (Resolvente von (1), (2))
(4) {-Q. s} (in)
(5) {S.,R} (Resolvente von (3), (4))
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Beispiel 2.58
Sei

M= {{_"Dv_‘R}a {P,_‘R}, {_‘st}v {QR/ T}v {_‘T}7 {_‘SvR}’ {T7 R}}

Eine Resolutionswiderlegung von I ist:

(1) =T} (inT)
2) {Q,R T} (inT)
3) {Q,R} (Resolvente von (1), (2))
(4) {-Q,5} (inT)
(5) {S,R} (Resolvente von (3), (4))
(6) {=S,rR}  (inT)
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Beispiel 2.58
Sei

M= {{_"Dv_‘R}a {P,_‘R}, {_‘st}v {QR/ T}v {_‘T}7 {_‘SvR}’ {T7 R}}

Eine Resolutionswiderlegung von I ist:

(1) =T} (inT)
(2 {QR, T} (inT)
3) {Q,R} (Resolvente von (1), (2))
(4) {-Q,5} (inT)
(5) {S,R} (Resolvente von (3), (4))
(6) {=S,rR}  (inT)
(7)) {R} (Resolvente von (5), (6))
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Beispiel 2.58
Sei

M= {{_"Dv_‘R}a {P,_‘R}, {_‘st}v {QR/ T}v {_‘T}7 {_‘SvR}’ {T7 R}}

Eine Resolutionswiderlegung von I ist:

W) (-T} (D)
(2 {QR, T} (inT)
3) {Q,R} (Resolvente von (1), (2))
(4) {-Q,5} (inT)
(5) {S,R} (Resolvente von (3), (4))
(6) {=S,rR}  (inT)
(7)) {R} (Resolvente von (5), (6))
(8) {=P,—R} (inT)
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Beispiel 2.58
Sei

M= {{_"Dv_‘R}a {P,—‘R}, {_‘st}v {QR/ T}v {_‘T}7 {_‘SvR}v {T7 R}}

Eine Resolutionswiderlegung von I ist:

(1) =T} (inT)
(2 {QR, T} (inT)
3) {Q,R} (Resolvente von (1), (2))
(4) {-Q,5} (inT)
(5) {S,R} (Resolvente von (3), (4))
(6) {=S,rR}  (inT)
(7)) {R} (Resolvente von (5), (6))
(8) {=P,—R} (inT)
© {P,-R}  (inT)
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Beispiel 2.58
Sei

M= {{_"Dv_‘R}a {P,_‘R}, {_‘st}v {QR/ T}v {_‘T}7 {_‘SvR}’ {T7 R}}

Eine Resolutionswiderlegung von I ist:

(1) {~T} (inl)
(2 {QR T} (inT)
(3) {Q,R} (Resolvente von (1), (2))
@) {~Q,s}  (inT)
(5) {S,R}  (Resolvente von (3), (4))
6) {=S,R}  (inT)
(7) {R} (Resolvente von (5), (6))
(8) {~P,-R} (inT)
©) {P.-R}  (inT)
(10) {-R} (Resolvente von (8), (9))
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Beispiel 2.58
Sei

M= {{_"Dv_‘R}a {P,—‘R}, {_‘st}v {QR/ T}v {_‘T}7 {_‘SvR}v {T7 R}}

Eine Resolutionswiderlegung von I ist:

1 {7} (inT)
(2 {Q R, T} (inT)
3) {Q,R} (Resolvente von (1), (2))
(4) {-Q,S} (inT)
(5) {S,R} (Resolvente von (3), (4))
(6) {~S,R}  (inT)
(7)) {R} (Resolvente von (5), (6))
(8) {~P,-R} (inT)
© {P,-R}  (inT)
(10) {-R} (Resolvente von (8), (9))
(11) 0 (Resolvente von (7), (10))
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Graphische Darstellung der Resolutionswiderlegung

{_'T} {Q’ R, T}

{Q’ R} {_‘st}

N/

{5, R} {—=S,R} {-P,-R} {P,—R}

N/ N/

{R} {=R}

N,

0
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Eine weitere Resolutionswiderlegung von I ist:
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Eine weitere Resolutionswiderlegung von I ist:

(1) {-7} (in T)

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 133



Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Eine weitere Resolutionswiderlegung von I ist:

(1) {-7} (in T)
(2) {T.R} (in T)
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Eine weitere Resolutionswiderlegung von I ist:

W -7} (D)
(2) {T.R} (in T)
(3) {R} (Resolvente von (1), (2))
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Eine weitere Resolutionswiderlegung von [ ist:

inl
nT)
Resolvente von (1), (2))

)

(1) (i
(2) {T,R} (i
3) (
(4) (in
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Eine weitere Resolutionswiderlegung von [ ist:

(1) {-7} (in T)
(2) {T.R} (in T)
(3) {R} (Resolvente von (1), (2))
(4) {P.-R}  (inT)
(5) {P} (Resolvente von (3), (4))
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Eine weitere Resolutionswiderlegung von [ ist:

{=7}
{T.R}
{R}

(1) (in )
() (i
3) (
(4) {P,=R}  (in
(5) (
(6) (in

nT)
Resolvente von (1), (2))

)

Resolvente von (3), (4))

in T)

{P}
{_"D7 _'R}
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Eine weitere Resolutionswiderlegung von [ ist:

{=7}
{T.R}
{R}

(1) (in )
() (i
3) (
(4) {P,=R}  (in
(5) (
(6) (in
() (

nT)
Resolvente von (1), (2))

)

Resolvente von (3), (4))

r

Resolvente von (5), (6))

{P}
{_"D7 _'R}

{=R}
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Eine weitere Resolutionswiderlegung von [ ist:

(1) {-7} (inT)
(2) {T.R} (inT)
3) {R} (Resolvente von (1), (2))
(4) {P,-R}  (inT)
(5) {P} (Resolvente von (3), (4))
(6) {-P,-R} (inT)
(7) {—-R} (Resolvente von (5), (6))
(8) 0 (Resolvente von (7), (3) )
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Korrektheit und Vollstandigkeit der Resolution

Satz 2.59
Fiir jede Klauselmenge I gilt:

MR O <= T ist unerfiillbar.

D.h.: Eine Klauselmenge hat genau dann eine Resolutionswiderlegung, wenn sie
unerfiillbar ist.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Vorsicht

Beim Anwenden der Resolutionsregel (Definition 2.54) darf immer nur
ein Literal \ betrachtet werden.

Beispiel:

Betrachte die Klauselmenge I := {71,72} mit 71 := {X, Y} und
2 :={=X, =Y} (wobei X und Y zwei verschiedene Ausagensymbole sind).
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Der Satz von Haken

Fiir eine endliche Klauselmenge I sei die GréfBe von [ die Zahl

Irl = > _hl,

yer

wobei |y| die Anzahl der Literale in v bezeichnet.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution
Der Satz von Haken
Fiir eine endliche Klauselmenge I sei die GréfBe von [ die Zahl

Irl = > _hl,

yer

wobei |y| die Anzahl der Literale in v bezeichnet.

Der folgende (schwer zu beweisende) Satz zeigt, dass es im Worst-Case
exponentiell lange dauern kann, eine Resolutionswiderlegung zu finden.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Der Satz von Haken
Fiir eine endliche Klauselmenge I sei die GréfBe von [ die Zahl

Irl = > _hl,

yer

wobei |y| die Anzahl der Literale in v bezeichnet.

Der folgende (schwer zu beweisende) Satz zeigt, dass es im Worst-Case
exponentiell lange dauern kann, eine Resolutionswiderlegung zu finden.

Satz 2.60 (Satz von Haken, 1985)

Es gibt Konstanten c,d > 0 und endliche Klauselmengen I, fiir n > 1, so dass
fiir alle n € N mit n > 1 gilt:

1. Fa <n
2. I, ist unerfiillbar, und
3. jede Resolutionswiderlegung von ', hat Lange > > 2dn,

(Hier ohne Beweis)
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Abschnitt 2.7:
Erfillbarkeitsalgorithmen



Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Das aussagenlogische Erfiillbarkeitsproblem

Wir betrachten im Folgenden Algorithmen fiir das
Aussagenlogische Erfiillbarkeitsproblem:

Eingabe: eine Formel ¢ € AL
Ausgabe: , erfiillbar", falls ¢ erfiillbar ist;
,unerfiillbar", sonst.
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Das aussagenlogische Erfiillbarkeitsproblem

Wir betrachten im Folgenden Algorithmen fiir das
Aussagenlogische Erfiillbarkeitsproblem:

Eingabe: eine Formel ¢ € AL
Ausgabe: , erfiillbar", falls ¢ erfiillbar ist;
,unerfiillbar", sonst.

Notation
Im Folgenden bezeichnet n immer die Anzahl der in ¢ vorkommenden
verschiedenen Aussagensymbole, und m := || bezeichnet die Linge von ¢

(aufgefasst als Wort iiber dem Alphabet der Aussagenlogik).
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Varianten des Erfiillbarkeitsproblems

Berechnen einer erfiillenden Interpretation:
Zusatzlich soll bei erfiillbaren Formeln noch ein Modell berechnet werden, d.h.,
ein Tupel (by,...,b,) € {0,1}", so dass ¢[b1, ..., by] = 1.

Version vom 25. Januar 2024 Folie 138

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik



Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Varianten des Erfiillbarkeitsproblems

Berechnen einer erfiillenden Interpretation:
Zusatzlich soll bei erfiillbaren Formeln noch ein Modell berechnet werden, d.h.,
ein Tupel (by,...,b,) € {0,1}", so dass ¢[by,..., b,] = 1.

Einschrankung auf KNF-Formeln:

Oft beschrankt man sich auf Eingabeformeln in KNF oder sogar 3-KNF. Das ist
keine wesentliche Einschrankung, weil sich mit Hilfe des Tseitin-Verfahrens jede
Formel in Linearzeit in eine erfiillbarkeitsdquivalente Formel in 3-KNF
transformieren ldsst (Satz 2.53).
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Varianten des Erfiillbarkeitsproblems

Berechnen einer erfiillenden Interpretation:

Zusatzlich soll bei erfiillbaren Formeln noch ein Modell berechnet werden, d.h.,
ein Tupel (by,...,b,) € {0,1}", so dass ¢[by,..., b,] = 1.

Einschrankung auf KNF-Formeln:

Oft beschrankt man sich auf Eingabeformeln in KNF oder sogar 3-KNF. Das ist
keine wesentliche Einschrankung, weil sich mit Hilfe des Tseitin-Verfahrens jede
Formel in Linearzeit in eine erfiillbarkeitsdquivalente Formel in 3-KNF
transformieren ldsst (Satz 2.53).

Das Erfiillbarkeitsproblem fiir Formeln in KNF bzw. 3-KNF bezeichnet man mit
SAT bzw. 3-SAT.
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Komplexitat des Erfiillbarkeitsproblems

Satz 2.61 (Satz von Cook und Levin, ~1971)
Das aussagenlogische Erfiillbarkeitsproblem (und sogar die Einschrankung
3-SAT) ist NP-vollstindig.

Die Komplexitatsklassen P und NP, der Begriff der NP-Vollstandigkeit, sowie ein
Beweis des Satzes von Cook und Levin werden in der Vorlesung Einfiihrung in
die Theoretische Informatik behandelt.
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Komplexitat des Erfiillbarkeitsproblems
Satz 2.61 (Satz von Cook und Levin, ~1971)

Das aussagenlogische Erfiillbarkeitsproblem (und sogar die Einschrankung
3-SAT) ist NP-vollstindig.

Die Komplexitatsklassen P und NP, der Begriff der NP-Vollstandigkeit, sowie ein
Beweis des Satzes von Cook und Levin werden in der Vorlesung Einfiihrung in
die Theoretische Informatik behandelt.

Bemerkung

® Wenn also P # NP ist (was allgemein vermutet wird), gibt es fiir das
aussagenlogische Erfiillbarkeitsproblem keinen Polynomialzeitalgorithmus.
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Komplexitat des Erfiillbarkeitsproblems
Satz 2.61 (Satz von Cook und Levin, ~1971)

Das aussagenlogische Erfiillbarkeitsproblem (und sogar die Einschrankung
3-SAT) ist NP-vollstindig.

Die Komplexitatsklassen P und NP, der Begriff der NP-Vollstandigkeit, sowie ein
Beweis des Satzes von Cook und Levin werden in der Vorlesung Einfiihrung in
die Theoretische Informatik behandelt.

Bemerkung

® Wenn also P # NP ist (was allgemein vermutet wird), gibt es fiir das
aussagenlogische Erfiillbarkeitsproblem keinen Polynomialzeitalgorithmus.

® Man vermutet sogar, dass es eine Konstante ¢ > 1 gibt, so dass jeder
Algorithmus fiir 3-SAT eine worst-case Laufzeit von Q(c") hat.
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Komplexitat des Erfiillbarkeitsproblems
Satz 2.61 (Satz von Cook und Levin, ~1971)

Das aussagenlogische Erfiillbarkeitsproblem (und sogar die Einschrankung
3-SAT) ist NP-vollstindig.

Die Komplexitatsklassen P und NP, der Begriff der NP-Vollstandigkeit, sowie ein
Beweis des Satzes von Cook und Levin werden in der Vorlesung Einfiihrung in
die Theoretische Informatik behandelt.

Bemerkung

® Wenn also P # NP ist (was allgemein vermutet wird), gibt es fiir das
aussagenlogische Erfiillbarkeitsproblem keinen Polynomialzeitalgorithmus.

® Man vermutet sogar, dass es eine Konstante ¢ > 1 gibt, so dass jeder
Algorithmus fiir 3-SAT eine worst-case Laufzeit von Q(c") hat.
Diese Vermutung ist unter dem Namen ,,Exponential Time Hypothesis"
(ETH) bekannt.
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen
Komplexitat des Erfiillbarkeitsproblems
Satz 2.61 (Satz von Cook und Levin, ~1971)

Das aussagenlogische Erfiillbarkeitsproblem (und sogar die Einschrankung
3-SAT) ist NP-vollstindig.

Die Komplexitatsklassen P und NP, der Begriff der NP-Vollstandigkeit, sowie ein
Beweis des Satzes von Cook und Levin werden in der Vorlesung Einfiihrung in
die Theoretische Informatik behandelt.

Bemerkung

® Wenn also P # NP ist (was allgemein vermutet wird), gibt es fiir das
aussagenlogische Erfiillbarkeitsproblem keinen Polynomialzeitalgorithmus.

® Man vermutet sogar, dass es eine Konstante ¢ > 1 gibt, so dass jeder
Algorithmus fiir 3-SAT eine worst-case Laufzeit von Q(c") hat.
Diese Vermutung ist unter dem Namen ,,Exponential Time Hypothesis"
(ETH) bekannt.

® Der im Worst-Case beste derzeit bekannte Algorithmus fiir 3-SAT hat eine
Laufzeit von etwa O(1.4").
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Der Wahrheitstafelalgorithmus

Lemma 2.62

Es gibt einen Linearzeitalgorithmus, der bei Eingabe einer Formel
©(A1,...,A,) € AL und eines Tupels (by, ..., b,) € {0,1}" den Wert
©lb1, ..., by] berechnet.

Beweis: Ubung.
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Der Wahrheitstafelalgorithmus

Lemma 2.62

Es gibt einen Linearzeitalgorithmus, der bei Eingabe einer Formel
©(A1,...,A,) € AL und eines Tupels (by, ..., b,) € {0,1}" den Wert
©lb1, ..., by] berechnet.

Beweis: Ubung.
Der folgende Algorithmus [6st das aussagenlogische Erfiillbarkeitsproblem.

Wabhrheitstafelalgorithmus
Eingabe: eine Formel ¢ € AL
1. Berechne die Wahrheitstafel fiir ¢.
2. Falls in der letzten Spalte mindestens eine 1 auftaucht, gib ,erfiillbar” aus,
sonst gib ,,unerfiillbar" aus.
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Der Wahrheitstafelalgorithmus

Lemma 2.62

Es gibt einen Linearzeitalgorithmus, der bei Eingabe einer Formel
©(A1,...,A,) € AL und eines Tupels (by, ..., b,) € {0,1}" den Wert
©lb1, ..., by] berechnet.

Beweis: Ubung.
Der folgende Algorithmus [6st das aussagenlogische Erfiillbarkeitsproblem.

Wabhrheitstafelalgorithmus
Eingabe: eine Formel ¢ € AL
1. Berechne die Wahrheitstafel fiir ¢.

2. Falls in der letzten Spalte mindestens eine 1 auftaucht, gib ,erfiillbar” aus,
sonst gib ,,unerfiillbar" aus.

Laufzeit:
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Der Wahrheitstafelalgorithmus

Lemma 2.62

Es gibt einen Linearzeitalgorithmus, der bei Eingabe einer Formel
©(A1,...,A,) € AL und eines Tupels (by, ..., b,) € {0,1}" den Wert
©lb1, ..., by] berechnet.

Beweis: Ubung.
Der folgende Algorithmus [6st das aussagenlogische Erfiillbarkeitsproblem.

Wabhrheitstafelalgorithmus
Eingabe: eine Formel ¢ € AL
1. Berechne die Wahrheitstafel fiir ¢.

2. Falls in der letzten Spalte mindestens eine 1 auftaucht, gib ,erfiillbar” aus,
sonst gib ,,unerfiillbar" aus.

Laufzeit: O(m-2") (sogar im , Best-Case")
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Der Resolutionsalgorithmus

Der Resolutionsalgorithmus probiert einfach alle mdglichen
Resolutionsableitungen durch und testet so, ob es eine Resolutionswiderlegung

gibt (d.h. die Klauselmenge unerfiillbar ist).

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 141



Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Der Resolutionsalgorithmus

Der Resolutionsalgorithmus probiert einfach alle mdglichen
Resolutionsableitungen durch und testet so, ob es eine Resolutionswiderlegung
gibt (d.h. die Klauselmenge unerfiillbar ist).

Resolutionsalgorithmus
Eingabe: eine endliche Klauselmenge I' (entspricht einer KNF-Formel)

1. Wiederhole, bis keine neuen Klauseln mehr generiert werden:
Fiige alle Resolventen aller Klauseln aus [ zu I hinzu.

2. Falls@ e,
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Der Resolutionsalgorithmus

Der Resolutionsalgorithmus probiert einfach alle mdglichen
Resolutionsableitungen durch und testet so, ob es eine Resolutionswiderlegung
gibt (d.h. die Klauselmenge unerfiillbar ist).

Resolutionsalgorithmus
Eingabe: eine endliche Klauselmenge I' (entspricht einer KNF-Formel)

1. Wiederhole, bis keine neuen Klauseln mehr generiert werden:
Fiige alle Resolventen aller Klauseln aus [ zu I hinzu.

2. Falls @ €T, gib ,unerfiillbar* aus, sonst
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Der Resolutionsalgorithmus

Der Resolutionsalgorithmus probiert einfach alle mdglichen
Resolutionsableitungen durch und testet so, ob es eine Resolutionswiderlegung
gibt (d.h. die Klauselmenge unerfiillbar ist).

Resolutionsalgorithmus
Eingabe: eine endliche Klauselmenge I' (entspricht einer KNF-Formel)

1. Wiederhole, bis keine neuen Klauseln mehr generiert werden:
Fiige alle Resolventen aller Klauseln aus [ zu I hinzu.

2. Falls @ €T, gib ,,unerfiillbar* aus, sonst gib , erfiillbar" aus.
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Der Resolutionsalgorithmus

Der Resolutionsalgorithmus probiert einfach alle mdglichen
Resolutionsableitungen durch und testet so, ob es eine Resolutionswiderlegung
gibt (d.h. die Klauselmenge unerfiillbar ist).

Resolutionsalgorithmus
Eingabe: eine endliche Klauselmenge I' (entspricht einer KNF-Formel)

1. Wiederhole, bis keine neuen Klauseln mehr generiert werden:
Fiige alle Resolventen aller Klauseln aus [ zu I hinzu.

2. Falls @ €T, gib ,,unerfiillbar* aus, sonst gib , erfiillbar" aus.

Laufzeit:
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Der Resolutionsalgorithmus

Der Resolutionsalgorithmus probiert einfach alle mdglichen
Resolutionsableitungen durch und testet so, ob es eine Resolutionswiderlegung
gibt (d.h. die Klauselmenge unerfiillbar ist).

Resolutionsalgorithmus
Eingabe: eine endliche Klauselmenge I' (entspricht einer KNF-Formel)

1. Wiederhole, bis keine neuen Klauseln mehr generiert werden:
Fiige alle Resolventen aller Klauseln aus [ zu I hinzu.

2. Falls @ €T, gib ,,unerfiillbar* aus, sonst gib , erfiillbar" aus.

Laufzeit: 290" (weil es bei n Aussagensymbolen 4" verschiedene Klauseln gibt).
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Der Davis-Putnam-Logemann-Loveland Algorithmus

Der DPLL-Algorithmus ist ein in der Praxis sehr erfolgreicher Algorithmus, der
die Wahrheitstafelmethode mit Resolution kombiniert.

Ahnlich wie bei dem Wahrheitstafelalgorithmus durchsucht der
DPLL-Algorithmus systematisch den Raum aller moglichen Interpretationen und
testet, ob diese die gegebene Klauselmenge erfiillen. Resolution wird dabei dazu
verwendet, die Suche geschickt zu steuern und Dinge, die wahrend der Suche
bereits iiber die Klauselmenge ,,gelernt” wurden, weiterzuverwenden.
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Der Davis-Putnam-Logemann-Loveland Algorithmus

Der DPLL-Algorithmus ist ein in der Praxis sehr erfolgreicher Algorithmus, der
die Wahrheitstafelmethode mit Resolution kombiniert.

Ahnlich wie bei dem Wahrheitstafelalgorithmus durchsucht der
DPLL-Algorithmus systematisch den Raum aller moglichen Interpretationen und
testet, ob diese die gegebene Klauselmenge erfiillen. Resolution wird dabei dazu
verwendet, die Suche geschickt zu steuern und Dinge, die wahrend der Suche
bereits iiber die Klauselmenge ,,gelernt” wurden, weiterzuverwenden.

Der DPLL-Algorithmus ist die Basis moderner SAT-Solver, die Klauselmengen,

die aus Millionen von Klauseln und Hunderttausenden von Aussagensymbolen
bestehen, auf Erfiillbarkeit testen konnen.

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 142



Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

DPLL-Algorithmus

Eingabe: eine endliche Klauselmenge I' (entspricht einer KNF-Formel)
1. Vereinfache I'. % Details dazu: siehe ndchste Folie
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

DPLL-Algorithmus

Eingabe: eine endliche Klauselmenge I' (entspricht einer KNF-Formel)
1. Vereinfache I'. % Details dazu: siehe ndchste Folie
2. Falls T =0,
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

DPLL-Algorithmus

Eingabe: eine endliche Klauselmenge I' (entspricht einer KNF-Formel)
1. Vereinfache I'. % Details dazu: siehe nichste Folie
2. Falls T =0, gib ,erfiillbar" aus.
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

DPLL-Algorithmus

Eingabe: eine endliche Klauselmenge I' (entspricht einer KNF-Formel)
1. Vereinfache I'. % Details dazu: siehe nichste Folie
2. Falls T =0, gib ,erfiillbar" aus.
3. Falls@ e,

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 143



Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

DPLL-Algorithmus

Eingabe: eine endliche Klauselmenge I' (entspricht einer KNF-Formel)
1. Vereinfache I'. % Details dazu: siehe nichste Folie
2. Falls T =0, gib ,erfiillbar" aus.
3. Falls ) €T, gib ,,unerfiillbar" aus.
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

DPLL-Algorithmus
Eingabe: eine endliche Klauselmenge I' (entspricht einer KNF-Formel)
1. Vereinfache I'. % Details dazu: siehe nichste Folie
Falls I = (), gib , erfiillbar* aus.
Falls ) €T, gib , unerfiillbar” aus.
Wahle ein Literal A.
% probiere aus, ob I ein Modell hat, bei dem das Literal \ erfiillt wird:

AR
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

DPLL-Algorithmus

Eingabe: eine endliche Klauselmenge I' (entspricht einer KNF-Formel)

1. Vereinfache I'. % Details dazu: siehe nichste Folie
2. Falls T =0, gib ,erfiillbar" aus.

3. Falls ) €T, gib ,,unerfiillbar" aus.

4. Wahle ein Literal A.

5. % probiere aus, ob I ein Modell hat, bei dem das Literal \ erfiillt wird:

Lose rekursiv ' U {{/\}} Falls dies erfiillbar ist, gib , erfiillbar" aus.
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

DPLL-Algorithmus
Eingabe: eine endliche Klauselmenge I' (entspricht einer KNF-Formel)
1. Vereinfache I'. % Details dazu: siehe nichste Folie
Falls I = (), gib , erfiillbar* aus.
Falls ) €T, gib , unerfiillbar” aus.
Wahle ein Literal A.

% probiere aus, ob I ein Modell hat, bei dem das Literal \ erfiillt wird:
Lose rekursiv ' U {{/\}} Falls dies erfiillbar ist, gib , erfiillbar" aus.

6. % probiere aus, ob I ein Modell hat, bei dem das Literal X erfiillt wird:

AR
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

DPLL-Algorithmus

Eingabe: eine endliche Klauselmenge I' (entspricht einer KNF-Formel)

1. Vereinfache I'. % Details dazu: siehe nichste Folie
2. Falls T =0, gib ,erfiillbar" aus.

3. Falls ) €T, gib ,,unerfiillbar" aus.

4. Wahle ein Literal A.

5. % probiere aus, ob I ein Modell hat, bei dem das Literal \ erfiillt wird:

Lose rekursiv ' U {{/\}} Falls dies erfiillbar ist, gib , erfiillbar" aus.

6. % probiere aus, ob [ ein Modell hat, bei dem das Literal X erfiillt wird:
Lose rekursiv I'U {{A}}. Falls dies erfiillbar ist, gib ,erfiillbar" aus. Sonst
gib ,,unerfiillbar” aus.
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Vereinfachungsheuristiken, die in Schritt 1. angewendet werden:

® Unit Propagation: Fiir alle , Einerklauseln® {\} € I (wobei X ein Literal ist),
bilde alle Resolventen von {A} mit anderen Klauseln und streiche anschlieBend
alle Klauseln, die A\ enthalten. Wiederhole dies, so lange es Einerklauseln gibt.

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 144



Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Vereinfachungsheuristiken, die in Schritt 1. angewendet werden:

® Unit Propagation: Fiir alle , Einerklauseln® {\} € I (wobei X ein Literal ist),
bilde alle Resolventen von {A} mit anderen Klauseln und streiche anschlieBend
alle Klauseln, die A\ enthalten. Wiederhole dies, so lange es Einerklauseln gibt.

Prézise: Fiir jede , Einerklausel" {A\} € I' tue Folgendes:
1. Ersetze jede Klausel v € I durch die Klausel v\ {\}.
2. Entferne aus I' jede Klausel, die das Literal A enthilt.
Wiederhole dies, so lange es in ' Einerklauseln gibt.
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Vereinfachungsheuristiken, die in Schritt 1. angewendet werden:

® Unit Propagation: Fiir alle , Einerklauseln® {\} € I (wobei X ein Literal ist),
bilde alle Resolventen von {A} mit anderen Klauseln und streiche anschlieBend
alle Klauseln, die A\ enthalten. Wiederhole dies, so lange es Einerklauseln gibt.

Prézise: Fiir jede , Einerklausel" {A\} € I' tue Folgendes:
1. Ersetze jede Klausel v € I durch die Klausel v\ {\}.
2. Entferne aus I' jede Klausel, die das Literal A enthilt.
Wiederhole dies, so lange es in ' Einerklauseln gibt.

® Pure Literal Rule: Literale ), deren Negat X\ nirgendwo in der Klauselmenge
auftaucht, kdnnen auf 1 gesetzt werden. Alle Klauseln, die ein solches Literal
enthalten, sind dann wahr und kdnnen gestrichen werden.
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Vereinfachungsheuristiken, die in Schritt 1. angewendet werden:

® Unit Propagation: Fiir alle , Einerklauseln® {\} € I (wobei X ein Literal ist),
bilde alle Resolventen von {A} mit anderen Klauseln und streiche anschlieBend
alle Klauseln, die A\ enthalten. Wiederhole dies, so lange es Einerklauseln gibt.

Prézise: Fiir jede , Einerklausel" {A\} € I' tue Folgendes:
1. Ersetze jede Klausel v € I durch die Klausel v\ {\}.
2. Entferne aus I' jede Klausel, die das Literal A enthilt.
Wiederhole dies, so lange es in ' Einerklauseln gibt.

® Pure Literal Rule: Literale ), deren Negat X\ nirgendwo in der Klauselmenge
auftaucht, kdnnen auf 1 gesetzt werden. Alle Klauseln, die ein solches Literal
enthalten, sind dann wahr und kdnnen gestrichen werden. Wiederhole dies, so
lange es Literale gibt, deren Negat nirgendwo in der Klauselmenge auftaucht.
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Vereinfachungsheuristiken, die in Schritt 1. angewendet werden:

® Unit Propagation: Fiir alle , Einerklauseln® {\} € I (wobei X ein Literal ist),
bilde alle Resolventen von {A} mit anderen Klauseln und streiche anschlieBend
alle Klauseln, die A\ enthalten. Wiederhole dies, so lange es Einerklauseln gibt.

Prézise: Fiir jede , Einerklausel" {A\} € I' tue Folgendes:
1. Ersetze jede Klausel v € I durch die Klausel v\ {\}.
2. Entferne aus I' jede Klausel, die das Literal A enthilt.
Wiederhole dies, so lange es in ' Einerklauseln gibt.

® Pure Literal Rule: Literale ), deren Negat X nirgendwo in der Klauselmenge
auftaucht, kdnnen auf 1 gesetzt werden. Alle Klauseln, die ein solches Literal
enthalten, sind dann wahr und kdnnen gestrichen werden. Wiederhole dies, so
lange es Literale gibt, deren Negat nirgendwo in der Klauselmenge auftaucht.

® Streiche Klauseln, die Obermengen von anderen Klauseln sind (dies ist allerdings
ineffizient und wird in der Praxis zumeist weggelassen).
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Vereinfachungsheuristiken, die in Schritt 1. angewendet werden:

® Unit Propagation: Fiir alle , Einerklauseln® {\} € I (wobei X ein Literal ist),
bilde alle Resolventen von {A} mit anderen Klauseln und streiche anschlieBend
alle Klauseln, die A\ enthalten. Wiederhole dies, so lange es Einerklauseln gibt.

Prézise: Fiir jede , Einerklausel" {A\} € I' tue Folgendes:
1. Ersetze jede Klausel v € I durch die Klausel v\ {\}.
2. Entferne aus I' jede Klausel, die das Literal A enthilt.
Wiederhole dies, so lange es in ' Einerklauseln gibt.

® Pure Literal Rule: Literale ), deren Negat X nirgendwo in der Klauselmenge
auftaucht, kdnnen auf 1 gesetzt werden. Alle Klauseln, die ein solches Literal
enthalten, sind dann wahr und kdnnen gestrichen werden. Wiederhole dies, so
lange es Literale gibt, deren Negat nirgendwo in der Klauselmenge auftaucht.

® Streiche Klauseln, die Obermengen von anderen Klauseln sind (dies ist allerdings
ineffizient und wird in der Praxis zumeist weggelassen).

Man sieht leicht, dass das Anwenden dieser Vereinfachungsheuristiken die Klauselmenge I in
eine erfiillbarkeitsdquivalente Klauselmenge transformiert.
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Vereinfachungsheuristiken, die in Schritt 1. angewendet werden:

® Unit Propagation: Fiir alle , Einerklauseln® {\} € I (wobei X ein Literal ist),
bilde alle Resolventen von {A} mit anderen Klauseln und streiche anschlieBend
alle Klauseln, die A\ enthalten. Wiederhole dies, so lange es Einerklauseln gibt.

Prézise: Fiir jede , Einerklausel" {A\} € I' tue Folgendes:
1. Ersetze jede Klausel v € I durch die Klausel v\ {\}.
2. Entferne aus I' jede Klausel, die das Literal A enthilt.
Wiederhole dies, so lange es in ' Einerklauseln gibt.

® Pure Literal Rule: Literale ), deren Negat X nirgendwo in der Klauselmenge
auftaucht, kdnnen auf 1 gesetzt werden. Alle Klauseln, die ein solches Literal
enthalten, sind dann wahr und kdnnen gestrichen werden. Wiederhole dies, so
lange es Literale gibt, deren Negat nirgendwo in der Klauselmenge auftaucht.

® Streiche Klauseln, die Obermengen von anderen Klauseln sind (dies ist allerdings
ineffizient und wird in der Praxis zumeist weggelassen).

Man sieht leicht, dass das Anwenden dieser Vereinfachungsheuristiken die Klauselmenge I in
eine erfiillbarkeitsdquivalente Klauselmenge transformiert. Hieraus folgt leicht, dass der
DPLL-Algorithmus stets die korrekte Antwort gibt (d.h., er terminiert immer, und er gibt
genau dann ,erfiillbar" aus, wenn die eingegebene Klauselmenge I erfiillbar ist).
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Vereinfachungsheuristiken, die in Schritt 1. angewendet werden:

® Unit Propagation: Fiir alle , Einerklauseln® {\} € I (wobei X ein Literal ist),
bilde alle Resolventen von {A} mit anderen Klauseln und streiche anschlieBend
alle Klauseln, die A\ enthalten. Wiederhole dies, so lange es Einerklauseln gibt.

Prézise: Fiir jede , Einerklausel" {A\} € I' tue Folgendes:
1. Ersetze jede Klausel v € I durch die Klausel v\ {\}.
2. Entferne aus I' jede Klausel, die das Literal A enthilt.
Wiederhole dies, so lange es in ' Einerklauseln gibt.

® Pure Literal Rule: Literale ), deren Negat X nirgendwo in der Klauselmenge
auftaucht, kdnnen auf 1 gesetzt werden. Alle Klauseln, die ein solches Literal
enthalten, sind dann wahr und kdnnen gestrichen werden. Wiederhole dies, so
lange es Literale gibt, deren Negat nirgendwo in der Klauselmenge auftaucht.

® Streiche Klauseln, die Obermengen von anderen Klauseln sind (dies ist allerdings
ineffizient und wird in der Praxis zumeist weggelassen).

Man sieht leicht, dass das Anwenden dieser Vereinfachungsheuristiken die Klauselmenge I in
eine erfiillbarkeitsdquivalente Klauselmenge transformiert. Hieraus folgt leicht, dass der
DPLL-Algorithmus stets die korrekte Antwort gibt (d.h., er terminiert immer, und er gibt
genau dann ,erfiillbar" aus, wenn die eingegebene Klauselmenge I erfiillbar ist).

Laufzeit des DPLL-Algorithmus:
O(m-2") im Worst-Case
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Vereinfachungsheuristiken, die in Schritt 1. angewendet werden:

® Unit Propagation: Fiir alle , Einerklauseln® {\} € I (wobei X ein Literal ist),
bilde alle Resolventen von {A} mit anderen Klauseln und streiche anschlieBend
alle Klauseln, die A\ enthalten. Wiederhole dies, so lange es Einerklauseln gibt.

Prézise: Fiir jede , Einerklausel" {A\} € I' tue Folgendes:
1. Ersetze jede Klausel v € I durch die Klausel v\ {\}.
2. Entferne aus I' jede Klausel, die das Literal A enthilt.
Wiederhole dies, so lange es in ' Einerklauseln gibt.

® Pure Literal Rule: Literale ), deren Negat X nirgendwo in der Klauselmenge
auftaucht, kdnnen auf 1 gesetzt werden. Alle Klauseln, die ein solches Literal
enthalten, sind dann wahr und kdnnen gestrichen werden. Wiederhole dies, so
lange es Literale gibt, deren Negat nirgendwo in der Klauselmenge auftaucht.

® Streiche Klauseln, die Obermengen von anderen Klauseln sind (dies ist allerdings
ineffizient und wird in der Praxis zumeist weggelassen).

Man sieht leicht, dass das Anwenden dieser Vereinfachungsheuristiken die Klauselmenge I in
eine erfiillbarkeitsdquivalente Klauselmenge transformiert. Hieraus folgt leicht, dass der
DPLL-Algorithmus stets die korrekte Antwort gibt (d.h., er terminiert immer, und er gibt
genau dann ,erfiillbar" aus, wenn die eingegebene Klauselmenge I erfiillbar ist).

Laufzeit des DPLL-Algorithmus:
O(m - 2") im Worst-Case; in der Praxis aber hiufig sehr effizient.
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Beispiel 2.63
Sei :=

{ {X1, X6, ~ X6, X1}, {=X1, Xo, = X5}, {~X1, = Xa, = X3, =X, = X5},
(X1, Xo, —Xa, Xo }, {=Xa, = Xe, = X7}, {X5, X5, X7},
(X5, =X, X5}, {Xs, " Xe}, {Xs, Xz, ~Xs},
{X1, X3, X5, X6, X7}, {~Xz, X}, {~X6,~Xs,~ X5} }
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Hornformeln



Kapitel 2: Aussagenlogik - Abschnitt 2.8: Hornformeln

Hornklauseln und Hornformeln

Hornformeln sind spezielle aussagenlogische Formeln, die die Basis der logischen
Programmierung bilden, und fiir die das Erfiillbarkeitsproblem effizient geldst

werden kann.
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Kapitel 2: Aussagenlogik - Abschnitt 2.8: Hornformeln

Hornklauseln und Hornformeln

Hornformeln sind spezielle aussagenlogische Formeln, die die Basis der logischen
Programmierung bilden, und fiir die das Erfiillbarkeitsproblem effizient geldst

werden kann.

Definition 2.64

Eine Hornklausel ist eine disjunktive Klausel, in der héchstens ein positives
Literal vorkommt.
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Kapitel 2: Aussagenlogik - Abschnitt 2.8: Hornformeln

Hornklauseln und Hornformeln

Hornformeln sind spezielle aussagenlogische Formeln, die die Basis der logischen
Programmierung bilden, und fiir die das Erfiillbarkeitsproblem effizient geldst
werden kann.

Definition 2.64

Eine Hornklausel ist eine disjunktive Klausel, in der héchstens ein positives

Literal vorkommt.
Eine Hornformel ist eine Konjunktion endlich vieler Hornklauseln.
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Kapitel 2: Aussagenlogik - Abschnitt 2.8: Hornformeln

Hornklauseln und Hornformeln

Hornformeln sind spezielle aussagenlogische Formeln, die die Basis der logischen
Programmierung bilden, und fiir die das Erfiillbarkeitsproblem effizient geldst

werden kann.

Definition 2.64

Eine Hornklausel ist eine disjunktive Klausel, in der héchstens ein positives

Literal vorkommt.
Eine Hornformel ist eine Konjunktion endlich vieler Hornklauseln.

Beispiele
o {=X,~Y,=Z} (bzw. -X VYV Z)
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Kapitel 2: Aussagenlogik - Abschnitt 2.8: Hornformeln

Hornklauseln und Hornformeln

Hornformeln sind spezielle aussagenlogische Formeln, die die Basis der logischen
Programmierung bilden, und fiir die das Erfiillbarkeitsproblem effizient geldst
werden kann.

Definition 2.64

Eine Hornklausel ist eine disjunktive Klausel, in der héchstens ein positives

Literal vorkommt.
Eine Hornformel ist eine Konjunktion endlich vieler Hornklauseln.

Beispiele
o {-X,~Y,=Z} (bzw. =X V=Y VvV —Z) ist eine Hornklausel.
o {-X,~Y,Z} (bZW. ﬁX\/ﬁY\/Z)
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Kapitel 2: Aussagenlogik - Abschnitt 2.8: Hornformeln

Hornklauseln und Hornformeln

Hornformeln sind spezielle aussagenlogische Formeln, die die Basis der logischen
Programmierung bilden, und fiir die das Erfiillbarkeitsproblem effizient geldst
werden kann.

Definition 2.64

Eine Hornklausel ist eine disjunktive Klausel, in der héchstens ein positives
Literal vorkommt.

Eine Hornformel ist eine Konjunktion endlich vieler Hornklauseln.

Beispiele
o {-X,~Y,=Z} (bzw. =X V=Y VvV —Z) ist eine Hornklausel.
e {=X,=Y,Z} (bzw. =X V=Y V Z) ist eine Hornklausel.
o [-X.Y.Z} (bzw. ~XV YV Z)
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Kapitel 2: Aussagenlogik - Abschnitt 2.8: Hornformeln

Hornklauseln und Hornformeln

Hornformeln sind spezielle aussagenlogische Formeln, die die Basis der logischen
Programmierung bilden, und fiir die das Erfiillbarkeitsproblem effizient geldst

werden kann.

Definition 2.64

Eine Hornklausel ist eine disjunktive Klausel, in der héchstens ein positives

Literal vorkommt.
Eine Hornformel ist eine Konjunktion endlich vieler Hornklauseln.

Beispiele
o {-X,~Y,=Z} (bzw. =X V=Y VvV —Z) ist eine Hornklausel.
e {=X,=Y,Z} (bzw. =X V=Y V Z) ist eine Hornklausel.
e {-X,Y,Z} (bzw. =XV Y V Z) ist keine Hornklausel.
o {X} (bzw. X)
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Kapitel 2: Aussagenlogik - Abschnitt 2.8: Hornformeln

Hornklauseln und Hornformeln

Hornformeln sind spezielle aussagenlogische Formeln, die die Basis der logischen
Programmierung bilden, und fiir die das Erfiillbarkeitsproblem effizient geldst
werden kann.

Definition 2.64

Eine Hornklausel ist eine disjunktive Klausel, in der héchstens ein positives

Literal vorkommt.
Eine Hornformel ist eine Konjunktion endlich vieler Hornklauseln.

Beispiele

o {-X,~Y,=Z} (bzw. =X V=Y VvV —Z) ist eine Hornklausel.
{=X,=Y,Z} (bzw. =X V =Y V Z) st eine Hornklausel.
{=X,Y,Z} (bzw. =XV Y V Z) st keine Hornklausel.
{X} (bzw. X) ist eine Hornklausel.
e 0
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Kapitel 2: Aussagenlogik - Abschnitt 2.8: Hornformeln

Hornklauseln und Hornformeln

Hornformeln sind spezielle aussagenlogische Formeln, die die Basis der logischen
Programmierung bilden, und fiir die das Erfiillbarkeitsproblem effizient geldst
werden kann.

Definition 2.64

Eine Hornklausel ist eine disjunktive Klausel, in der héchstens ein positives

Literal vorkommt.
Eine Hornformel ist eine Konjunktion endlich vieler Hornklauseln.

Beispiele

o {-X,~Y,=Z} (bzw. =X V=Y VvV —Z) ist eine Hornklausel.
{=X,=Y,Z} (bzw. =X V =Y V Z) st eine Hornklausel.
{=X,Y,Z} (bzw. =XV Y V Z) st keine Hornklausel.
{X} (bzw. X) ist eine Hornklausel.
® () ist eine Hornklausel.
(XV=Y)A(=ZV=XV=Y)AY
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Kapitel 2: Aussagenlogik - Abschnitt 2.8: Hornformeln

Hornklauseln und Hornformeln

Hornformeln sind spezielle aussagenlogische Formeln, die die Basis der logischen
Programmierung bilden, und fiir die das Erfiillbarkeitsproblem effizient geldst
werden kann.

Definition 2.64

Eine Hornklausel ist eine disjunktive Klausel, in der héchstens ein positives

Literal vorkommt.
Eine Hornformel ist eine Konjunktion endlich vieler Hornklauseln.

Beispiele

o {-X,~Y,=Z} (bzw. =X V=Y VvV —Z) ist eine Hornklausel.
{=X,=Y,Z} (bzw. =X V =Y V Z) st eine Hornklausel.
{=X,Y,Z} (bzw. =XV Y V Z) st keine Hornklausel.
{X} (bzw. X) ist eine Hornklausel.
® () ist eine Hornklausel.
(XV=Y)A(=ZV—=XV=Y)AY ist eine Hornformel.
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Kapitel 2: Aussagenlogik - Abschnitt 2.8: Hornformeln

Hornklauseln als Implikationen

® Eine Hornklausel der Form {—=Xy,...,=X,_1,X,} (bzw.
X1 V-V aX,_1 VX,) ist dquivalent zur Formel

(Xy A A Xn_1) = X
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Kapitel 2: Aussagenlogik - Abschnitt 2.8: Hornformeln

Hornklauseln als Implikationen

® Eine Hornklausel der Form {—=Xy,...,=X,_1,X,} (bzw.
X1 V-V aX,_1 VX,) ist dquivalent zur Formel

(Xy A A Xn_1) = X

Solche Klauseln werden auch , Regeln” (oder ,, Prozedurklauseln™) genannt.
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Kapitel 2: Aussagenlogik - Abschnitt 2.8: Hornformeln

Hornklauseln als Implikationen

® Eine Hornklausel der Form {—=Xy,...,=X,_1,X,} (bzw.
X1 V-V aX,_1 VX,) ist dquivalent zur Formel

(Xy A A Xn_1) = X

Solche Klauseln werden auch , Regeln” (oder ,, Prozedurklauseln™) genannt.

® Eine Hornklausel der Form {—Xj,...,—X,_1} ist dquivalent zur Formel

(Xl/\.../\X,,,l)—)O.
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Kapitel 2: Aussagenlogik - Abschnitt 2.8: Hornformeln

Hornklauseln als Implikationen

® Eine Hornklausel der Form {—=Xy,...,=X,_1,X,} (bzw.
X1 V-V aX,_1 VX,) ist dquivalent zur Formel

(Xy A A Xn_1) = X

Solche Klauseln werden auch , Regeln” (oder ,, Prozedurklauseln™) genannt.

® Eine Hornklausel der Form {—Xj,...,—X,_1} ist dquivalent zur Formel
(X]_/\.../\X,,,l) — 0.

Solche Klauseln werden auch ,, Zielklauseln" (oder , Frageklauseln*)
genannt.

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 147



Kapitel 2: Aussagenlogik - Abschnitt 2.8: Hornformeln

Hornklauseln als Implikationen

® Eine Hornklausel der Form {—=Xy,...,=X,_1,X,} (bzw.
X1 V-V aX,_1 VX,) ist dquivalent zur Formel

(Xy A A Xn_1) = X

Solche Klauseln werden auch , Regeln” (oder ,, Prozedurklauseln™) genannt.

® Eine Hornklausel der Form {—Xj,...,—X,_1} ist dquivalent zur Formel
(Xl/\“-/\anl) — 0.
Solche Klauseln werden auch ,, Zielklauseln" (oder , Frageklauseln*)

genannt.

® Eine Hornklausel der Form {X;} ist dquivalent zur Formel

1—>X1.
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Kapitel 2: Aussagenlogik - Abschnitt 2.8: Hornformeln

Hornklauseln als Implikationen

® Eine Hornklausel der Form {—=Xy,...,=X,_1,X,} (bzw.
X1 V-V aX,_1 VX,) ist dquivalent zur Formel

(Xy A A Xn_1) = X

Solche Klauseln werden auch , Regeln” (oder ,, Prozedurklauseln™) genannt.

® Eine Hornklausel der Form {—Xj,...,—X,_1} ist dquivalent zur Formel
(Xl/\“-/\anl) — 0.
Solche Klauseln werden auch ,, Zielklauseln" (oder , Frageklauseln*)

genannt.

® Eine Hornklausel der Form {X;} ist dquivalent zur Formel
1-— Xi.

Solche Klauseln werden auch , Tatsachenklausel” genannt.
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Kapitel 2: Aussagenlogik - Abschnitt 2.8: Hornformeln

Hornklauseln als Implikationen

® Eine Hornklausel der Form {—=Xy,...,=X,_1,X,} (bzw.
X1 V-V aX,_1 VX,) ist dquivalent zur Formel

(Xy A A Xn_1) = X

Solche Klauseln werden auch , Regeln” (oder ,, Prozedurklauseln™) genannt.

® Eine Hornklausel der Form {—Xj,...,—X,_1} ist dquivalent zur Formel
(Xa A A Xpo1) — 0.
Solche Klauseln werden auch ,, Zielklauseln" (oder , Frageklauseln*)
genannt.
® Eine Hornklausel der Form {X;} ist dquivalent zur Formel
1-— X

Solche Klauseln werden auch , Tatsachenklausel” genannt.

® Die leere (Horn-)Klausel () ist unerfiillbar und daher dquivalent zur Formel
1-0.
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Kapitel 2: Aussagenlogik - Abschnitt 2.8: Hornformeln

Der Streichungsalgorithmus

Der folgende Algorithmus I6st das Erfiillbarkeitsproblem fiir Hornformeln in
Polynomialzeit.

Wir geben zunichst den Algorithmus an, betrachten dann Beispielldufe davon,
analysieren die Laufzeit und zeigen danach, dass der Algorithmus korrekt ist,
d.h. stets die richtige Antwort gibt.
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Kapitel 2: Aussagenlogik - Abschnitt 2.8: Hornformeln

Streichungsalgorithmus
Eingabe: eine endliche Menge I von Hornklauseln

1. Wiederhole:
2. FallsQ T
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Kapitel 2: Aussagenlogik - Abschnitt 2.8: Hornformeln

Streichungsalgorithmus
Eingabe: eine endliche Menge I von Hornklauseln

1. Wiederhole:
2. Falls § € ', so halte mit Ausgabe ,,unerfiillbar".

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 149



Kapitel 2: Aussagenlogik - Abschnitt 2.8: Hornformeln

Streichungsalgorithmus
Eingabe: eine endliche Menge I von Hornklauseln

1. Wiederhole:

2. Falls § € ', so halte mit Ausgabe ,,unerfiillbar".

3. Falls ' keine Tatsachenklausel (d.h. Klausel {X} mit X € AS)
enthalt
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Streichungsalgorithmus
Eingabe: eine endliche Menge I von Hornklauseln

1. Wiederhole:
2. Falls ) € T, so halte mit Ausgabe ,, unerfiillbar".
3. Falls ' keine Tatsachenklausel (d.h. Klausel {X} mit X € AS)

enthilt, so halte mit Ausgabe , erfiillbar”.
% T wird erfiillt, indem jedes Aussagensymbol mit O belegt wird
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Streichungsalgorithmus
Eingabe: eine endliche Menge I von Hornklauseln

1. Wiederhole:
2. Falls ) € T, so halte mit Ausgabe ,, unerfiillbar".

3. Falls ' keine Tatsachenklausel (d.h. Klausel {X} mit X € AS)
enthilt, so halte mit Ausgabe , erfiillbar”.
% T wird erfiillt, indem jedes Aussagensymbol mit O belegt wird

4. Wabhle eine Tatsachenklausel {X} € T.

% Idee: Um T zu erfiillen, muss X mit dem Wert 1 belegt werden
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Streichungsalgorithmus
Eingabe: eine endliche Menge I von Hornklauseln

1. Wiederhole:
2. Falls ) € T, so halte mit Ausgabe ,, unerfiillbar".
3. Falls ' keine Tatsachenklausel (d.h. Klausel {X} mit X € AS)
enthilt, so halte mit Ausgabe , erfiillbar”.
% T wird erfiillt, indem jedes Aussagensymbol mit O belegt wird
4. Wabhle eine Tatsachenklausel {X} € T.
% Idee: Um T zu erfiillen, muss X mit dem Wert 1 belegt werden
5. Streiche =X aus allen Klauseln § € T, die das Literal =X

enthalten.
% Wenn X den Wert 1 hat, tragt =X nichts zum Erfiillen einer Klausel bei
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Streichungsalgorithmus
Eingabe: eine endliche Menge I von Hornklauseln

1. Wiederhole:
2. Falls ) € T, so halte mit Ausgabe ,, unerfiillbar".
3. Falls ' keine Tatsachenklausel (d.h. Klausel {X} mit X € AS)
enthilt, so halte mit Ausgabe , erfiillbar”.
% T wird erfiillt, indem jedes Aussagensymbol mit O belegt wird
4. Wabhle eine Tatsachenklausel {X} € T.
% Idee: Um T zu erfiillen, muss X mit dem Wert 1 belegt werden
5. Streiche =X aus allen Klauseln § € T, die das Literal =X
enthalten.
% Wenn X den Wert 1 hat, tragt =X nichts zum Erfiillen einer Klausel bei
6. Streiche aus I alle Klauseln § € T, die das Literal X enthalten

(d.h. entferne aus I alle § € T, fiir die gilt: X € 9).
% Wenn X den Wert 1 hat, sind solche Klauseln erfiillt
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Beispiele 2.65
Wir wenden den Streichungsalgorithmus auf die beiden folgenden Mengen von
Hornklauseln an.

(@) Tai= {S§—=0, (PAQ)—=R, (SAR)—=0, (UNTAQ)— P,
(UANT)—=Q, 15U, 15T}
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Beispiele 2.65

Wir wenden den Streichungsalgorithmus auf die beiden folgenden Mengen von
Hornklauseln an.

(@) Tai= {S§—=0, (PAQ)—=R, (SAR)—=0, (UNTAQ)— P,
(UANT)—=Q, 15U, 15T}

(b) To:= {(QAP)=T, (UNTAQ)—=R, (UNT) = Q,
1-U, R—0, 1T}
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Laufzeit des Streichungsalgorithmus
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Laufzeit des Streichungsalgorithmus

Man sieht leicht, dass in jedem Schleifendurchlauf die Anzahl der Klauseln in T

kleiner wird.
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Laufzeit des Streichungsalgorithmus

Man sieht leicht, dass in jedem Schleifendurchlauf die Anzahl der Klauseln in T

kleiner wird. Daher terminiert der Algorithmus nach maximal
m Schleifendurchlaufen, wobei m die Anzahl der Klauseln in der Eingabemenge

[ ist.

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 151



Kapitel 2: Aussagenlogik - Abschnitt 2.8: Hornformeln

Laufzeit des Streichungsalgorithmus

Man sieht leicht, dass in jedem Schleifendurchlauf die Anzahl der Klauseln in T
kleiner wird. Daher terminiert der Algorithmus nach maximal
m Schleifendurchlaufen, wobei m die Anzahl der Klauseln in der Eingabemenge

[ ist.

In jedem einzelnen Schleifendurchlauf betrachtet der Algorithmus alle Klauseln
der aktuellen Klauselmenge und fiihrt dabei O(n) Schritte durch, wobei n = ||
die GroBe der Klauselmenge ist.
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Laufzeit des Streichungsalgorithmus

Man sieht leicht, dass in jedem Schleifendurchlauf die Anzahl der Klauseln in T
kleiner wird. Daher terminiert der Algorithmus nach maximal

m Schleifendurchlaufen, wobei m die Anzahl der Klauseln in der Eingabemenge
I ist.

In jedem einzelnen Schleifendurchlauf betrachtet der Algorithmus alle Klauseln
der aktuellen Klauselmenge und fiihrt dabei O(n) Schritte durch, wobei n = |T|
die GroBe der Klauselmenge ist.

Insgesamt terminiert der Streichungsalgorithmus also nach O(m-n) Schritten,
d.h. in Zeit polynomiell in der GroBe von T.
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Laufzeit des Streichungsalgorithmus

Man sieht leicht, dass in jedem Schleifendurchlauf die Anzahl der Klauseln in T
kleiner wird. Daher terminiert der Algorithmus nach maximal

m Schleifendurchlaufen, wobei m die Anzahl der Klauseln in der Eingabemenge
I ist.

In jedem einzelnen Schleifendurchlauf betrachtet der Algorithmus alle Klauseln
der aktuellen Klauselmenge und fiihrt dabei O(n) Schritte durch, wobei n = |T|
die GroBe der Klauselmenge ist.

Insgesamt terminiert der Streichungsalgorithmus also nach O(m-n) Schritten,
d.h. in Zeit polynomiell in der GroBe von T.

Satz 2.66
Die Laufzeit des Streichungsalgorithmus ist O(m-n), wobei m = |['| die Anzahl
der Hornklauseln in der eingegebenen Menge I' und n = ||| die GréBe von T ist.
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Laufzeit des Streichungsalgorithmus

Man sieht leicht, dass in jedem Schleifendurchlauf die Anzahl der Klauseln in T
kleiner wird. Daher terminiert der Algorithmus nach maximal

m Schleifendurchlaufen, wobei m die Anzahl der Klauseln in der Eingabemenge
I ist.

In jedem einzelnen Schleifendurchlauf betrachtet der Algorithmus alle Klauseln
der aktuellen Klauselmenge und fiihrt dabei O(n) Schritte durch, wobei n = |T|
die GroBe der Klauselmenge ist.

Insgesamt terminiert der Streichungsalgorithmus also nach O(m-n) Schritten,
d.h. in Zeit polynomiell in der GroBe von T.

Satz 2.66
Die Laufzeit des Streichungsalgorithmus ist O(m-n), wobei m = |['| die Anzahl
der Hornklauseln in der eingegebenen Menge I' und n = ||| die GréBe von T ist.

Bemerkung
Eine Variante des Streichungsalgorithmus lauft sogar in Linearzeit, d.h. in Zeit

O(n).
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Der Streichungsalgorithmus und Resolution

Lemma 2.67

Sei [y eine endliche Menge von Hornklauseln und § eine Klausel, die zu
irgendeinem Zeitpunkt wihrend des Laufs des Streichungsalgorithmus bei
Eingabe g in der vom Algorithmus gespeicherten Menge I liegt. Dann gilt:
Mobrd.
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Korrektheit des Streichungsalgorithmus

Satz 2.68

Der Streichungsalgorithmus ist korrekt.

Das heiBt, bei Eingabe einer endlichen Menge g von Hornklauseln halt der
Algorithmus mit Ausgabe ,erfiillbar”, falls Tq erfiillbar ist, und mit Ausgabe
hicht erfiillbar”, falls Tq unerfiillbar ist.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Strukturen

Wir fiihren einen allgemeinen Strukturbegriff ein, der es uns erlaubt:

® mathematische Strukturen wie Gruppen, Koérper, Vektorraume, Graphen,
etc.

® und die gingigen Modelle der Informatik wie Transitionssysteme, endliche
Automaten, relationale Datenbanken, Schaltkreise, etc.

zu beschreiben.
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Signaturen

Definition 3.1
Eine Signatur (auch Vokabular oder Symbolmenge) ist eine Menge o von
Relations-, Funktions- und/oder Konstantensymbolen.
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Signaturen

Definition 3.1
Eine Signatur (auch Vokabular oder Symbolmenge) ist eine Menge o von
Relations-, Funktions- und/oder Konstantensymbolen.

Jedes Relationsymbol R € ¢ und jedes Funktionssymbol f € ¢ hat eine
Stelligkeit (bzw. Aritét, engl. arity)

ar(R) e N\ {0} bzw. ar(f) € N\ {0}.
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Notation

® In diesem Kapitel bezeichnet der griechische Buchstabe o (in Worten:
sigma) immer eine Signatur.
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Notation

® In diesem Kapitel bezeichnet der griechische Buchstabe o (in Worten:
sigma) immer eine Signatur.

® Fiir Relationssymbole verwenden wir normalerweise GroBbuchstaben wie
R, P, Q, E, fiir Funktionsymbole verwenden wir meistens Kleinbuchstaben
wie f, g, h und fiir Konstantensymbole Kleinbuchstaben wie c, d.
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Notation

® In diesem Kapitel bezeichnet der griechische Buchstabe o (in Worten:
sigma) immer eine Signatur.

® Fiir Relationssymbole verwenden wir normalerweise GroBbuchstaben wie
R, P, Q, E, fiir Funktionsymbole verwenden wir meistens Kleinbuchstaben
wie f, g, h und fiir Konstantensymbole Kleinbuchstaben wie c, d.

® Gelegentlich verwenden wir als Relations- und Funktionssymbole auch

Zeichen wie < (2-stelliges Relationssymbol) und +, - (2-stellige
Funktionssymbole), und wir verwenden 0,1 als Konstantensymbole.
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Notation

® In diesem Kapitel bezeichnet der griechische Buchstabe o (in Worten:
sigma) immer eine Signatur.

® Fiir Relationssymbole verwenden wir normalerweise GroBbuchstaben wie
R, P, Q, E, fiir Funktionsymbole verwenden wir meistens Kleinbuchstaben
wie f, g, h und fiir Konstantensymbole Kleinbuchstaben wie c, d.

® Gelegentlich verwenden wir als Relations- und Funktionssymbole auch
Zeichen wie < (2-stelliges Relationssymbol) und +, - (2-stellige

Funktionssymbole), und wir verwenden 0,1 als Konstantensymbole.

® Die Stelligkeit eines Relations- oder Funktionssymbols deuten wir hdufig
an, indem wir sie mit Schragstrich hinter das Symbol schreiben.
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Notation

® In diesem Kapitel bezeichnet der griechische Buchstabe o (in Worten:
sigma) immer eine Signatur.

® Fiir Relationssymbole verwenden wir normalerweise GroBbuchstaben wie
R, P, Q, E, fiir Funktionsymbole verwenden wir meistens Kleinbuchstaben
wie f, g, h und fiir Konstantensymbole Kleinbuchstaben wie c, d.

® Gelegentlich verwenden wir als Relations- und Funktionssymbole auch
Zeichen wie < (2-stelliges Relationssymbol) und +, - (2-stellige

Funktionssymbole), und wir verwenden 0,1 als Konstantensymbole.

® Die Stelligkeit eines Relations- oder Funktionssymbols deuten wir hdufig
an, indem wir sie mit Schragstrich hinter das Symbol schreiben.

Beispiel
Die Notation R/2 deutet an, dass R ein 2-stelliges Relationssymbol ist.
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Strukturen

Definition 3.2

Eine o-Struktur A besteht aus folgenden Komponenten:

® ciner nicht-leeren Menge A, dem Universum von A (auch: Trager, engl.
universe, domain),
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Strukturen

Definition 3.2

Eine o-Struktur A besteht aus folgenden Komponenten:

® ciner nicht-leeren Menge A, dem Universum von A (auch: Trager, engl.
universe, domain),

e fiir jedes Relationssymbol R € o und fiir k := ar(R) gibt es eine k-stellige
Relation RA C Ak,
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Strukturen

Definition 3.2

Eine o-Struktur A besteht aus folgenden Komponenten:

® ciner nicht-leeren Menge A, dem Universum von A (auch: Trager, engl.
universe, domain),

e fiir jedes Relationssymbol R € o und fiir k := ar(R) gibt es eine k-stellige
Relation RA C Ak,

e fiir jedes Funktionssymbol f € o und fiir k := ar(f) gibt es eine k-stellige
Funktion A : Ax — A, und
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Strukturen

Definition 3.2

Eine o-Struktur A besteht aus folgenden Komponenten:

® ciner nicht-leeren Menge A, dem Universum von A (auch: Trager, engl.
universe, domain),

e fiir jedes Relationssymbol R € o und fiir k := ar(R) gibt es eine k-stellige
Relation RA C Ak,

e fiir jedes Funktionssymbol f € o und fiir k := ar(f) gibt es eine k-stellige
Funktion A : Ax — A, und

® fiir jedes Konstantensymbol ¢ € o gibt es ein Element c* € A.
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Notation

® Wir beschreiben o-Strukturen oft in Tupelschreibweise:

A= (A, (5%)scs).
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Notation

® Wir beschreiben o-Strukturen oft in Tupelschreibweise:

A= (A, (5%)scs).

Falls 0 = {Si1, ..., Sk} endlich ist, schreiben wir auch
A= (A S, 50.

)
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Notation

® Wir beschreiben o-Strukturen oft in Tupelschreibweise:

A= (A, (5%)scs).

Falls 0 = {Si1, ..., Sk} endlich ist, schreiben wir auch
A= (A S, 50.

)

® Wir bezeichnen o-Strukturen meistens mit , kalligraphischen" Buchstaben

wie A, B,C, WV, ....
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Notation

® Wir beschreiben o-Strukturen oft in Tupelschreibweise:

A= (A, (5%)scs).

Falls 0 = {Si1, ..., Sk} endlich ist, schreiben wir auch
A= (A SA,...S0).

® Wir bezeichnen o-Strukturen meistens mit , kalligraphischen" Buchstaben
wie A, B,C,W,.... Das Universum der Strukturen bezeichnen wir dann
durch die entsprechenden lateinischen GroBbuchstaben, also
AB,C,W,....
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Mengen

Fiir die leere Signatur o := () bestehen o-Strukturen
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Mengen

Fiir die leere Signatur o := () bestehen o-Strukturen nur aus ihrem Universum,
sind also einfach (nicht-leere) Mengen.
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Graphen

In diesem Kapitel bezeichnet E immer ein zweistelliges Relationssymbol.
® Ein gerichteter Graph (kurz: Digraph) G = (V9, EY) mit Knotenmenge V9

und Kantenmenge EY ist eine {E}-Struktur. Das Universum ist die
Knotenmenge V9.
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Graphen

In diesem Kapitel bezeichnet E immer ein zweistelliges Relationssymbol.

® Ein gerichteter Graph (kurz: Digraph) G = (V9, EY) mit Knotenmenge V9
und Kantenmenge EY ist eine {E}-Struktur. Das Universum ist die
Knotenmenge V9.

® Einen ungerichteten Graphen G = (V9, EY) mit Knotenmenge V9 und
Kantenmenge E9 C {e C V9 : |e| = 2} reprisentieren wir durch eine
{E}-Struktur A = (A, E*)
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Graphen

In diesem Kapitel bezeichnet E immer ein zweistelliges Relationssymbol.

® Ein gerichteter Graph (kurz: Digraph) G = (V9, EY) mit Knotenmenge V9
und Kantenmenge EY ist eine {E}-Struktur. Das Universum ist die
Knotenmenge V9.

® Einen ungerichteten Graphen G = (V9, EY) mit Knotenmenge V9 und
Kantenmenge E9 C {e C V9 : |e| = 2} reprisentieren wir durch eine
{E}-Struktur A = (A, E*) mit Universum A = V9 und Relation
EA={(u,v) : {u,v} e E9}.
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Graphen

In diesem Kapitel bezeichnet E immer ein zweistelliges Relationssymbol.

® Ein gerichteter Graph (kurz: Digraph) G = (V9, EY) mit Knotenmenge V9
und Kantenmenge EY ist eine {E}-Struktur. Das Universum ist die
Knotenmenge V9.

® Einen ungerichteten Graphen G = (V9, EY) mit Knotenmenge V9 und
Kantenmenge E9 C {e C V9 : |e| = 2} reprisentieren wir durch eine
{E}-Struktur A = (A, E*) mit Universum A = V9 und Relation
EA = {(u,v) : {u,v} € EY9}. Insbesondere ist E4 symmetrisch und
irreflexiv im Sinne der folgenden Definition.
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Eigenschaften zweistelliger Relationen

Definition 3.3
Sei A = (A, R4), wobei RA eine zweistellige Relation iiber der Menge A ist

(d.h. (A, R4) ist ein gerichteter Graph).
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Eigenschaften zweistelliger Relationen

Definition 3.3
Sei A = (A, R4), wobei RA eine zweistellige Relation iiber der Menge A ist

(d.h. (A, R4) ist ein gerichteter Graph).

(a) R heiBt reflexiv, wenn
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Eigenschaften zweistelliger Relationen

Definition 3.3
Sei A = (A, R4), wobei RA eine zweistellige Relation iiber der Menge A ist

(d.h. (A, R4) ist ein gerichteter Graph).
(a) R4 heiBt reflexiv, wenn fiir alle a € A gilt: (a,a) € RA.
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Eigenschaften zweistelliger Relationen

Definition 3.3

Sei A = (A, R4), wobei RA eine zweistellige Relation iiber der Menge A ist
(d.h. (A, R4) ist ein gerichteter Graph).

(a) R4 heiBt reflexiv, wenn fiir alle a € A gilt: (a,a) € RA.

R4 heiBt irreflexiv, wenn
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Eigenschaften zweistelliger Relationen

Definition 3.3
Sei A = (A, R4), wobei RA eine zweistellige Relation iiber der Menge A ist

(d.h. (A, R4) ist ein gerichteter Graph).
(a) R4 heiBt reflexiv, wenn fiir alle a € A gilt: (a,a) € RA.
RA heiBt irreflexiv, wenn fiir alle a € A gilt: (a,a) € RA.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Eigenschaften zweistelliger Relationen
Definition 3.3
Sei A = (A, R4), wobei RA eine zweistellige Relation iiber der Menge A ist
(d.h. (A, R4) ist ein gerichteter Graph).
(a) R4 heiBt reflexiv, wenn fiir alle a € A gilt: (a,a) € RA.
RA heiBt irreflexiv, wenn fiir alle a € A gilt: (a,a) € RA.

(b) R* heiBt symmetrisch, wenn
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Eigenschaften zweistelliger Relationen

Definition 3.3
Sei A = (A, R4), wobei RA eine zweistellige Relation iiber der Menge A ist

(d.h. (A, R4) ist ein gerichteter Graph).
(a) R4 heiBt reflexiv, wenn fiir alle a € A gilt: (a,a) € RA.
RA heiBt irreflexiv, wenn fiir alle a € A gilt: (a,a) € RA.

(b) R4 heiBt symmetrisch, wenn fiir alle a, b € A gilt:
Wenn (a, b) € R4, dann ist auch (b,a) € R4,
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Eigenschaften zweistelliger Relationen
Definition 3.3
Sei A = (A, R4), wobei RA eine zweistellige Relation iiber der Menge A ist
(d.h. (A, R4) ist ein gerichteter Graph).
(a) R4 heiBt reflexiv, wenn fiir alle a € A gilt: (a,a) € RA.
RA heiBt irreflexiv, wenn fiir alle a € A gilt: (a,a) € RA.

(b) R4 heiBt symmetrisch, wenn fiir alle a, b € A gilt:
Wenn (a, b) € R4, dann ist auch (b,a) € R4,

R4 heiBt antisymmetrisch, wenn
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Eigenschaften zweistelliger Relationen

Definition 3.3
Sei A = (A, R4), wobei RA eine zweistellige Relation iiber der Menge A ist

(d.h. (A, R4) ist ein gerichteter Graph).
(a) R4 heiBt reflexiv, wenn fiir alle a € A gilt: (a,a) € RA.
RA heiBt irreflexiv, wenn fiir alle a € A gilt: (a,a) € RA.

(b) R4 heiBt symmetrisch, wenn fiir alle a, b € A gilt:
Wenn (a, b) € R4, dann ist auch (b,a) € R4,

R4 heiBt antisymmetrisch, wenn fiir alle a, b € A mit a # b gilt:
Wenn (a, b) € RA, dann (b,a) ¢ RA.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Eigenschaften zweistelliger Relationen

Definition 3.3
Sei A = (A, R4), wobei RA eine zweistellige Relation iiber der Menge A ist

(d.h. (A, R4) ist ein gerichteter Graph).
(a) R4 heiBt reflexiv, wenn fiir alle a € A gilt: (a,a) € RA.
RA heiBt irreflexiv, wenn fiir alle a € A gilt: (a,a) € RA.

(b) R4 heiBt symmetrisch, wenn fiir alle a, b € A gilt:
Wenn (a, b) € R4, dann ist auch (b,a) € R4,

R4 heiBt antisymmetrisch, wenn fiir alle a, b € A mit a # b gilt:
Wenn (a, b) € RA, dann (b,a) ¢ RA.

(c) R heiBt transitiv,

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024

Folie 161



Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Eigenschaften zweistelliger Relationen

Definition 3.3
Sei A = (A, R4), wobei RA eine zweistellige Relation iiber der Menge A ist

(d.h. (A, R4) ist ein gerichteter Graph).
(a) R4 heiBt reflexiv, wenn fiir alle a € A gilt: (a,a) € RA.
RA heiBt irreflexiv, wenn fiir alle a € A gilt: (a,a) € RA.
(b) R* heiBt symmetrisch, wenn fiir alle a, b € A gilt:
Wenn (a, b) € R4, dann ist auch (b,a) € R4,

R4 heiBt antisymmetrisch, wenn fiir alle a, b € A mit a # b gilt:
Wenn (a, b) € RA, dann (b,a) ¢ RA.

(c) R heiBt transitiv, wenn fiir alle a, b, c € A gilt:
Wenn (a, b) € R4 und (b, c) € R4, dann auch (a,c) € RA.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Eigenschaften zweistelliger Relationen

Definition 3.3
Sei A = (A, R4), wobei RA eine zweistellige Relation iiber der Menge A ist

(d.h. (A, R4) ist ein gerichteter Graph).
(a) R4 heiBt reflexiv, wenn fiir alle a € A gilt: (a,a) € RA.
RA heiBt irreflexiv, wenn fiir alle a € A gilt: (a,a) € RA.

(b) R4 heiBt symmetrisch, wenn fiir alle a, b € A gilt:
Wenn (a, b) € R4, dann ist auch (b,a) € R4,

R4 heiBt antisymmetrisch, wenn fiir alle a, b € A mit a # b gilt:
Wenn (a, b) € RA, dann (b,a) ¢ RA.

(c) R heiBt transitiv, wenn fiir alle a, b, c € A gilt:
Wenn (a, b) € R4 und (b, c) € R4, dann auch (a,c) € RA.

(d) R4 heiBt konnex,
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Eigenschaften zweistelliger Relationen

Definition 3.3
Sei A = (A, R4), wobei RA eine zweistellige Relation iiber der Menge A ist

(d.h. (A, R4) ist ein gerichteter Graph).
(a) R4 heiBt reflexiv, wenn fiir alle a € A gilt: (a,a) € RA.
RA heiBt irreflexiv, wenn fiir alle a € A gilt: (a,a) € RA.

(b) R4 heiBt symmetrisch, wenn fiir alle a, b € A gilt:
Wenn (a, b) € R4, dann ist auch (b,a) € R4,

R4 heiBt antisymmetrisch, wenn fiir alle a, b € A mit a # b gilt:
Wenn (a, b) € RA, dann (b,a) ¢ RA.

(c) R heiBt transitiv, wenn fiir alle a, b, c € A gilt:
Wenn (a, b) € R4 und (b, c) € R4, dann auch (a,c) € RA.

(d) R heiBt konnex, wenn fiir alle a, b € A gilt:
(a,b) € R* oder (b,a) € R* oder a=b.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Aquivalenzrelationen

Eine Aquivalenzrelation auf einer Menge A ist

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 162



Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Aquivalenzrelationen

Eine Aquivalenzrelation auf einer Menge A ist eine 2-stellige Relation iiber A,
die reflexiv, transitiv und symmetrisch ist.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Aquivalenzrelationen

Eine Aquivalenzrelation auf einer Menge A ist eine 2-stellige Relation iiber A,
die reflexiv, transitiv und symmetrisch ist.

Beispiele
(2) Gleichheit: Fiir jede Menge M ist {(m,m) : m & M} eine
Aquivalenzrelation auf M.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Aquivalenzrelationen

Eine Aquivalenzrelation auf einer Menge A ist eine 2-stellige Relation iiber A,
die reflexiv, transitiv und symmetrisch ist.

Beispiele
(a) Gleichheit: Fiir jede Menge M ist {(m,m) : m & M} eine
Aquivalenzrelation auf M.

(b) Gleichmichtigkeit: Fiir jede endliche Menge M und deren Potenzmenge
P(M)={N : NC M}gilt: {(A,B) : A,BC M, |A| =|B|} ist eine
Aquivalenzrelation auf P(M).
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Aquivalenzrelationen

Eine Aquivalenzrelation auf einer Menge A ist eine 2-stellige Relation iiber A,
die reflexiv, transitiv und symmetrisch ist.

Beispiele
(a) Gleichheit: Fiir jede Menge M ist {(m,m) : m & M} eine
Aquivalenzrelation auf M.

(b) Gleichmichtigkeit: Fiir jede endliche Menge M und deren Potenzmenge
P(M)={N : NC M}gilt: {(A,B) : A,BC M, |A| =|B|} ist eine
Aquivalenzrelation auf P(M).

(c) Logische Aquivalenz: Die Relation {(¢,%) : ¢,9 € AL, p = 1)} ist eine
Aquivalenzrelation auf der Menge AL aller aussagenlogischen Formeln.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Ordnungen
In diesem Kapitel bezeichnet < immer ein zweistelliges Relationssymbol. Fiir <
verwenden wir Infixschreibweise, d.h., wir schreiben x <# y statt (x,y) € <A
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Ordnungen
In diesem Kapitel bezeichnet < immer ein zweistelliges Relationssymbol. Fiir <
verwenden wir Infixschreibweise, d.h., wir schreiben x <# y statt (x,y) € <A

a) Eine Priordnung ist eine {<}-Struktur A = (A, <A), bei der <A reflexiv
(a) g

und transitiv ist.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Ordnungen

In diesem Kapitel bezeichnet < immer ein zweistelliges Relationssymbol. Fiir <

verwenden wir Infixschreibweise, d.h., wir schreiben x <# y statt (x,y) € <A

(a) Eine Priordnung ist eine {<}-Struktur A = (A, <*), bei der <A reflexiv
und transitiv ist.

(b) Eine partielle Ordnung (oder Halbordnung) ist eine Priordnung A, bei der
<A antisymmetrisch ist.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Ordnungen

In diesem Kapitel bezeichnet < immer ein zweistelliges Relationssymbol. Fiir <

verwenden wir Infixschreibweise, d.h., wir schreiben x <# y statt (x,y) € <A

(a) Eine Priordnung ist eine {<}-Struktur A = (A, <*), bei der <A reflexiv
und transitiv ist.

(b) Eine partielle Ordnung (oder Halbordnung) ist eine Priordnung A, bei der
<A antisymmetrisch ist.

(c) Eine lineare (oder totale) Ordnung ist eine partielle Ordnung A, bei der <A
konnex ist.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Ordnungen

In diesem Kapitel bezeichnet < immer ein zweistelliges Relationssymbol. Fiir <
verwenden wir Infixschreibweise, d.h., wir schreiben x <# y statt (x,y) € <A
(a) Eine Priordnung ist eine {<}-Struktur A = (A, <*), bei der <A reflexiv

und transitiv ist.
(b) Eine partielle Ordnung (oder Halbordnung) ist eine Priordnung A, bei der

<A antisymmetrisch ist.
(c) Eine lineare (oder totale) Ordnung ist eine partielle Ordnung A, bei der <A

konnex ist.

Beispiele
(a) Die , kleiner-gleich" Relation auf N (oder Z oder R)
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Ordnungen

In diesem Kapitel bezeichnet < immer ein zweistelliges Relationssymbol. Fiir <
verwenden wir Infixschreibweise, d.h., wir schreiben x <# y statt (x,y) € <A
(a) Eine Priordnung ist eine {<}-Struktur A = (A, <*), bei der <A reflexiv

und transitiv ist.
(b) Eine partielle Ordnung (oder Halbordnung) ist eine Priordnung A, bei der

<A antisymmetrisch ist.
(c) Eine lineare (oder totale) Ordnung ist eine partielle Ordnung A, bei der <A

konnex ist.

Beispiele
(a) Die , kleiner-gleich" Relation auf N (oder Z oder R) ist eine lineare
Ordnung; die ,, groBer-gleich" auch.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Ordnungen

In diesem Kapitel bezeichnet < immer ein zweistelliges Relationssymbol. Fiir <

verwenden wir Infixschreibweise, d.h., wir schreiben x <# y statt (x,y) € <A

(a) Eine Priordnung ist eine {<}-Struktur A = (A, <*), bei der <A reflexiv
und transitiv ist.

(b) Eine partielle Ordnung (oder Halbordnung) ist eine Priordnung A, bei der
<A antisymmetrisch ist.

(c) Eine lineare (oder totale) Ordnung ist eine partielle Ordnung A, bei der <A

konnex ist.

Beispiele

(a) Die , kleiner-gleich" Relation auf N (oder Z oder R) ist eine lineare
Ordnung; die ,, groBer-gleich" auch.

(b) Fiir jede Menge M ist die Teilmengenrelation C
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Ordnungen

In diesem Kapitel bezeichnet < immer ein zweistelliges Relationssymbol. Fiir <

verwenden wir Infixschreibweise, d.h., wir schreiben x <# y statt (x,y) € <A

(a) Eine Priordnung ist eine {<}-Struktur A = (A, <*), bei der <A reflexiv
und transitiv ist.

(b) Eine partielle Ordnung (oder Halbordnung) ist eine Priordnung A, bei der
<A antisymmetrisch ist.

(c) Eine lineare (oder totale) Ordnung ist eine partielle Ordnung A, bei der <A

konnex ist.

Beispiele

(a) Die , kleiner-gleich" Relation auf N (oder Z oder R) ist eine lineare
Ordnung; die ,, groBer-gleich" auch.

(b) Fiir jede Menge M ist die Teilmengenrelation C eine partielle Ordnung auf
der Potenzmenge P(M);

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 163



Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Ordnungen

In diesem Kapitel bezeichnet < immer ein zweistelliges Relationssymbol. Fiir <

verwenden wir Infixschreibweise, d.h., wir schreiben x <# y statt (x,y) € <A

(a) Eine Priordnung ist eine {<}-Struktur A = (A, <*), bei der <A reflexiv
und transitiv ist.

(b) Eine partielle Ordnung (oder Halbordnung) ist eine Priordnung A, bei der
<A antisymmetrisch ist.

(c) Eine lineare (oder totale) Ordnung ist eine partielle Ordnung A, bei der <A

konnex ist.

Beispiele

(a) Die , kleiner-gleich" Relation auf N (oder Z oder R) ist eine lineare
Ordnung; die ,, groBer-gleich" auch.

(b) Fiir jede Menge M ist die Teilmengenrelation C eine partielle Ordnung auf
der Potenzmenge P(M); aber keine lineare Ordnung, sofern M mindestens
zwei Elemente besitzt.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Ordnungen

In diesem Kapitel bezeichnet < immer ein zweistelliges Relationssymbol. Fiir <

verwenden wir Infixschreibweise, d.h., wir schreiben x <# y statt (x,y) € <A

(a) Eine Priordnung ist eine {<}-Struktur A = (A, <*), bei der <A reflexiv
und transitiv ist.

(b) Eine partielle Ordnung (oder Halbordnung) ist eine Priordnung A, bei der
<A antisymmetrisch ist.

(c) Eine lineare (oder totale) Ordnung ist eine partielle Ordnung A, bei der <A
konnex ist.

Beispiele

(a) Die , kleiner-gleich" Relation auf N (oder Z oder R) ist eine lineare
Ordnung; die ,, groBer-gleich" auch.

(b) Fiir jede Menge M ist die Teilmengenrelation C eine partielle Ordnung auf

der Potenzmenge P(M); aber keine lineare Ordnung, sofern M mindestens
zwei Elemente besitzt. Dasselbe gilt fiir die Obermengenrelation 2O.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Ordnungen

In diesem Kapitel bezeichnet < immer ein zweistelliges Relationssymbol. Fiir <

verwenden wir Infixschreibweise, d.h., wir schreiben x <# y statt (x,y) € <A

(a) Eine Priordnung ist eine {<}-Struktur A = (A, <*), bei der <A reflexiv
und transitiv ist.

(b) Eine partielle Ordnung (oder Halbordnung) ist eine Priordnung A, bei der
<A antisymmetrisch ist.

(c) Eine lineare (oder totale) Ordnung ist eine partielle Ordnung A, bei der <A

konnex ist.

Beispiele
(a) Die , kleiner-gleich" Relation auf N (oder Z oder R) ist eine lineare
Ordnung; die ,, groBer-gleich" auch.

(b) Fiir jede Menge M ist die Teilmengenrelation C eine partielle Ordnung auf
der Potenzmenge P(M); aber keine lineare Ordnung, sofern M mindestens
zwei Elemente besitzt. Dasselbe gilt fiir die Obermengenrelation 2O.

(c) Die Folgerungsrelation fiir aussagenlogische Formeln:

{lg,9) + ¥ € AL, v =¥}
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Ordnungen

In diesem Kapitel bezeichnet < immer ein zweistelliges Relationssymbol. Fiir <

verwenden wir Infixschreibweise, d.h., wir schreiben x <# y statt (x,y) € <A

(a) Eine Priordnung ist eine {<}-Struktur A = (A, <*), bei der <A reflexiv
und transitiv ist.

(b) Eine partielle Ordnung (oder Halbordnung) ist eine Priordnung A, bei der
<A antisymmetrisch ist.

(c) Eine lineare (oder totale) Ordnung ist eine partielle Ordnung A, bei der <A
konnex ist.

Beispiele
(a) Die , kleiner-gleich" Relation auf N (oder Z oder R) ist eine lineare
Ordnung; die ,, groBer-gleich" auch.

(b) Fiir jede Menge M ist die Teilmengenrelation C eine partielle Ordnung auf
der Potenzmenge P(M); aber keine lineare Ordnung, sofern M mindestens
zwei Elemente besitzt. Dasselbe gilt fiir die Obermengenrelation 2O.

(c) Die Folgerungsrelation fiir aussagenlogische Formeln:
{(e,¥) : p, € AL, ¢ =1} ist eine Priordnung auf der Menge AL,
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Ordnungen

In diesem Kapitel bezeichnet < immer ein zweistelliges Relationssymbol. Fiir <

verwenden wir Infixschreibweise, d.h., wir schreiben x <# y statt (x,y) € <A

(a) Eine Priordnung ist eine {<}-Struktur A = (A, <*), bei der <A reflexiv
und transitiv ist.

(b) Eine partielle Ordnung (oder Halbordnung) ist eine Priordnung A, bei der
<A antisymmetrisch ist.

(c) Eine lineare (oder totale) Ordnung ist eine partielle Ordnung A, bei der <A
konnex ist.

Beispiele

(a) Die , kleiner-gleich" Relation auf N (oder Z oder R) ist eine lineare
Ordnung; die ,, groBer-gleich" auch.

(b) Fiir jede Menge M ist die Teilmengenrelation C eine partielle Ordnung auf
der Potenzmenge P(M); aber keine lineare Ordnung, sofern M mindestens
zwei Elemente besitzt. Dasselbe gilt fiir die Obermengenrelation 2O.

(c) Die Folgerungsrelation fiir aussagenlogische Formeln:
{(e,¥) : p, € AL, ¢ =1} ist eine Praordnung auf der Menge AL, aber
keine partielle Ordnung.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Arithmetische Strukturen

+ und - seien immer zweistellige Funktionssymbole, fiir die wir Infixschreibweise
verwenden. 0 und 1 seien Konstantensymbole.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Arithmetische Strukturen

+ und - seien immer zweistellige Funktionssymbole, fiir die wir Infixschreibweise
verwenden. 0 und 1 seien Konstantensymbole.

® Der Korper der reellen Zahlen ist die {+, -, 0, 1}-Struktur Ag, so dass
Ag := R, +4= und = sind die normale Addition bzw. Multiplikation auf

R, und 0% := 0, 144 := 1.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Arithmetische Strukturen

+ und - seien immer zweistellige Funktionssymbole, fiir die wir Infixschreibweise
verwenden. 0 und 1 seien Konstantensymbole.
® Der Korper der reellen Zahlen ist die {+, -, 0, 1}-Struktur Ag, so dass
Ag := R, +4= und = sind die normale Addition bzw. Multiplikation auf
R, und 0% := 0, 14% := 1.
® Der Ring der ganzen Zahlen ist die {+, -, 0, 1}-Struktur Az, so dass
Az = Z, +22 und -2 sind die normale Addition bzw. Multiplikation auf
Z, und 04 := 0, 14 .= 1.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Arithmetische Strukturen

+ und - seien immer zweistellige Funktionssymbole, fiir die wir Infixschreibweise
verwenden. 0 und 1 seien Konstantensymbole.

® Der Korper der reellen Zahlen ist die {+, -, 0, 1}-Struktur Ag, so dass
Ag := R, +4= und = sind die normale Addition bzw. Multiplikation auf
R, und 0% := 0, 14= := 1.

® Der Ring der ganzen Zahlen ist die {+, -, 0, 1}-Struktur Az, so dass
Az = Z, +22 und -2 sind die normale Addition bzw. Multiplikation auf
Z, und 04 := 0, 14 .= 1.

® Das Standardmodell der Arithmetik ist die {+, -, <, 0, 1}-Struktur Ay, so
dass Ay := N ist; die Funktionen +" und ¥ und die Relation <A sind
die normale Addition, Multiplikation bzw. Ordnung auf N, und QAN =0,
1A =1
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Arithmetische Strukturen

+ und - seien immer zweistellige Funktionssymbole, fiir die wir Infixschreibweise
verwenden. 0 und 1 seien Konstantensymbole.

® Der Korper der reellen Zahlen ist die {+, -, 0, 1}-Struktur Ag, so dass
Ag := R, +4= und = sind die normale Addition bzw. Multiplikation auf
R, und 0% := 0, 14= := 1.

® Der Ring der ganzen Zahlen ist die {+, -, 0, 1}-Struktur Az, so dass
Az = Z, +22 und -2 sind die normale Addition bzw. Multiplikation auf
Z, und 04 := 0, 14 .= 1.

® Das Standardmodell der Arithmetik ist die {+, -, <, 0, 1}-Struktur Ay, so
dass Ay := N ist; die Funktionen +" und ¥ und die Relation <A sind
die normale Addition, Multiplikation bzw. Ordnung auf N, und QAN =0,
1A =1

® Der zweielementige Korper ist die {+, -, 0, 1}-Struktur F, mit Universum
F» :={0,1}, den Funktionen +72 und -”2 der Addition bzw. Multiplikation
modulo 2, und sz =0, l}—z =1.

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 164



Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Worter als Strukturen
Sei ¥ ein endliches, nicht-leeres Alphabet. Fiir jedes a € ¥ sei P, ein einstelliges

Relationssymbol, und es sei
oy = {<}U{P,:aex}
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Worter als Strukturen
Sei ¥ ein endliches, nicht-leeres Alphabet. Fiir jedes a € ¥ sei P, ein einstelliges

Relationssymbol, und es sei
oy = {<}U{P,:aex}

Fiir jedes nicht-leere Wort w := wy - - - w, € Z* mit wy,...,w, € T sei A,, die
os-Struktur

e mit Universum A,, := [n], fir die gilt:
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Worter als Strukturen
Sei ¥ ein endliches, nicht-leeres Alphabet. Fiir jedes a € ¥ sei P, ein einstelliges

Relationssymbol, und es sei
oy = {<}U{P,:aex}
Fiir jedes nicht-leere Wort w := wy - - - w, € Z* mit wy,...,w, € T sei A,, die
os-Struktur
e mit Universum A,, := [n], fir die gilt:

e <Aw ist die natiirliche lineare Ordnung auf [n],
dh, <A={(i,j) - ijeN, 1<i<j<n},
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Worter als Strukturen
Sei ¥ ein endliches, nicht-leeres Alphabet. Fiir jedes a € ¥ sei P, ein einstelliges
Relationssymbol, und es sei

oy = {<}U{P,:aex}
Fiir jedes nicht-leere Wort w := wy - - - w, € Z* mit wy,...,w, € T sei A,, die
os-Struktur
e mit Universum A,, := [n], fir die gilt:

e <Aw ist die natiirliche lineare Ordnung auf [n],
dh, <A={(i,j) - ijeN, 1<i<j<n},

® Fiir jedes a € ¥ ist Py := {i € [n] : w; = a}.
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Worter als Strukturen
Sei ¥ ein endliches, nicht-leeres Alphabet. Fiir jedes a € ¥ sei P, ein einstelliges
Relationssymbol, und es sei

oy = {<}U{P,:aex}
Fiir jedes nicht-leere Wort w := wy - - - w, € Z* mit wy,...,w, € T sei A,, die
os-Struktur
® mit Universum A, := [n], fiir die gilt:

e <Aw ist die natiirliche lineare Ordnung auf [n],
dh, <A={(i,j) - ijeN, 1<i<j<n},

® Fiir jedes a € ¥ ist Py := {i € [n] : w; = a}.

Beispiel
Sei X :={a, b,c}. Fiir w:= abacaba ist A, die folgende ox-Struktur:
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Worter als Strukturen

Sei ¥ ein endliches, nicht-leeres Alphabet. Fiir jedes a € ¥ sei P, ein einstelliges
Relationssymbol, und es sei
oy = {<}U{P,:aex}

Fiir jedes nicht-leere Wort w := wy - - - w, € Z* mit wy,...,w, € T sei A,, die

os-Struktur
® mit Universum A, := [n], fiir die gilt:
e <Aw ist die natiirliche lineare Ordnung auf [n],
dh, <A={(i,j) - ijeN, 1<i<j<n},

® Fiir jedes a € ¥ ist Py := {i € [n] : w; = a}.

Beispiel
Sei X :={a, b,c}. Fiir w:= abacaba ist A, die folgende ox-Struktur:
° A, =1{1,2,3,4,506,7}
o <Av= [ (i) i, jeEN, 1<Ki<j<T}
o PAv=1{1,357}, P/v={26}, PA={4}.

a
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Wortstrukturen
Eine Wortstruktur liber ¥ ist eine ox-Struktur A fiir die gilt:
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Wortstrukturen
Eine Wortstruktur liber ¥ ist eine ox-Struktur A fiir die gilt:

® das Universum A von A ist endlich,
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Wortstrukturen
Eine Wortstruktur liber ¥ ist eine ox-Struktur A fiir die gilt:

® das Universum A von A ist endlich,

® (A, <) ist eine lineare Ordnung,
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Wortstrukturen
Eine Wortstruktur liber ¥ ist eine ox-Struktur A fiir die gilt:

® das Universum A von A ist endlich,
® (A, <?) ist eine lineare Ordnung,

® fiir jedes i € A gibt es genau ein a € ¥, so dass i € P,
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Wortstrukturen
Eine Wortstruktur liber ¥ ist eine ox-Struktur A fiir die gilt:

® das Universum A von A ist endlich,
® (A, <?) ist eine lineare Ordnung,

® fiir jedes i € A gibt es genau ein a € ¥, so dass i € P,

Beispiel 3.4
Sei X := {a, b, c}. Die ox-Struktur B mit
® Universum B = {$, 0, 4, &},

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024

Folie 166



Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Wortstrukturen
Eine Wortstruktur liber ¥ ist eine ox-Struktur A fiir die gilt:

® das Universum A von A ist endlich,
® (A, <?) ist eine lineare Ordnung,

® fiir jedes i € A gibt es genau ein a € ¥, so dass i € P,

Beispiel 3.4
Sei X := {a, b, c}. Die ox-Struktur B mit
® Universum B = {$, 0, 4, &},
e linearer Ordnung <B, die besagt, dass ¢ <O < & < & ist, d.h.

<F=
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Wortstrukturen
Eine Wortstruktur liber ¥ ist eine ox-Struktur A fiir die gilt:

® das Universum A von A ist endlich,
® (A, <?) ist eine lineare Ordnung,

® fiir jedes i € A gibt es genau ein a € ¥, so dass i € P,

Beispiel 3.4
Sei X := {a, b, c}. Die ox-Struktur B mit
® Universum B = {$, 0, 4, &},
e linearer Ordnung <B, die besagt, dass ¢ <O < & < & ist, d.h.
<L ={(0,0), (0,9), (0, 4), (0, %), (V,9), (V, &), (V, &), (#,4), (,&), (&,&)},
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Wortstrukturen
Eine Wortstruktur liber ¥ ist eine ox-Struktur A fiir die gilt:

® das Universum A von A ist endlich,
® (A, <?) ist eine lineare Ordnung,

® fiir jedes i € A gibt es genau ein a € ¥, so dass i € P,

Beispiel 3.4
Sei X := {a, b, c}. Die ox-Struktur B mit
® Universum B = {$, 0, 4, &},
e linearer Ordnung <B, die besagt, dass ¢ <O < & < & ist, d.h.
<L ={(0,0), (0,9), (0, 4), (0, %), (V,9), (V, &), (V, &), (#,4), (,&), (&,&)},

.P§:{<>> *}
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Wortstrukturen
Eine Wortstruktur liber ¥ ist eine ox-Struktur A fiir die gilt:

® das Universum A von A ist endlich,
® (A, <?) ist eine lineare Ordnung,

® fiir jedes i € A gibt es genau ein a € ¥, so dass i € P,

Beispiel 3.4
Sei X := {a, b, c}. Die ox-Struktur B mit
® Universum B = {$, 0, 4, &},
e linearer Ordnung <B, die besagt, dass ¢ <O < & < & ist, d.h.
<L ={(0,0), (0,9), (0, 4), (0, %), (V,9), (V, &), (V, &), (#,4), (,&), (&,&)},

° 'De?:{O) *}
° PP ={0, &},
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Wortstrukturen
Eine Wortstruktur liber ¥ ist eine ox-Struktur A fiir die gilt:

® das Universum A von A ist endlich,
® (A, <) ist eine lineare Ordnung,

® fiir jedes i € A gibt es genau ein a € ¥, so dass i € P,

Beispiel 3.4
Sei X := {a, b, c}. Die ox-Struktur B mit
® Universum B = {$, 0, 4, &},
e linearer Ordnung <B, die besagt, dass ¢ <O < & < & ist, d.h.

<= H{(0,0), (0,9), (0, 4), (O, 4), (V,9), (V. B), (V, &), (&, 4), (A, &), (%,&)},

© PE— {0, %)
« P ={9. &},
. PE=,

ist eine Wortstruktur, die das Wort
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Wortstrukturen
Eine Wortstruktur liber ¥ ist eine ox-Struktur A fiir die gilt:

® das Universum A von A ist endlich,
® (A, <) ist eine lineare Ordnung,

® fiir jedes i € A gibt es genau ein a € ¥, so dass i € P,

Beispiel 3.4
Sei X := {a, b, c}. Die ox-Struktur B mit
® Universum B = {$, 0, 4, &},
e linearer Ordnung <B, die besagt, dass ¢ <O < & < & ist, d.h.

<= H{(0,0), (0,9), (0, 4), (O, 4), (V,9), (V. B), (V, &), (&, 4), (A, &), (%,&)},

© PE— {0, %)
« P ={9. &},
. PE=,

ist eine Wortstruktur, die das Wort w = abba reprasentiert.
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Relationale Datenbanken

® Relationale Datenbanken bestehen aus endlich vielen endlichen Tabellen.
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Relationale Datenbanken

® Relationale Datenbanken bestehen aus endlich vielen endlichen Tabellen.

® Jede solche Tabelle lasst sich als Relation auffassen, die Zeilen der Tabelle
entsprechen dabei den Tupeln in der Relation.
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Relationale Datenbanken

® Relationale Datenbanken bestehen aus endlich vielen endlichen Tabellen.

® Jede solche Tabelle lasst sich als Relation auffassen, die Zeilen der Tabelle
entsprechen dabei den Tupeln in der Relation.

® Eine relationale Datenbank entspricht dann einer endlichen Struktur, deren
Universum aus allen potentiellen Eintragen in einzelnen Zellen der Tabellen
besteht, und die fiir jede Tabelle in der Datenbank eine Relation enthilt.
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Kapitel 3: Logik erster Stufe -

Abschnitt 3.1: Strukturen

Beispiel: Eine Kinodatenbank

Kino

Name Adresse Stadtteil Telefonnummer
Babylon Dresdner Str. 126 Kreuzberg 030 61 60 96 93
Casablanca Friedenstr. 12-13 Adlershof 030 67 75 75 2

Filmtheater am Friedrichshain
Kino International
Moviemento

Urania

Botzowstr. 1-5
Karl-Marx-Allee 33
Kotbusser Damm 22
An der Urania 17

Prenzlauer Berg
Mitte
Kreuzberg
Schdneberg

030 42 84 51 88
030 24 75 60 11
030 692 47 85
0302189091
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Kapitel 3: Logik erster Stufe -

Abschnitt 3.1: Strukturen

Beispiel: Eine Kinodatenbank

Kino

Name Adresse Stadtteil Telefonnummer
Babylon Dresdner Str. 126 Kreuzberg 030 61 60 96 93
Casablanca Friedenstr. 12-13 Adlershof 030 67 75 75 2

Filmtheater am Friedrichshain

Kino International

Botzowstr. 1-5
Karl-Marx-Allee 33

Prenzlauer Berg
Mitte

030 42 84 51 88
030 24 75 60 11

Moviemento Kotbusser Damm 22 Kreuzberg 030 692 47 85
Urania An der Urania 17 Schéneberg 0302189091
Film

Name Regisseur Schauspieler

Alien Ridley Scott Sigourney Weaver

Blade Runner Ridley Scott Harrison Ford

Blade Runner Ridley Scott Sean Young

Brazil Terry Gilliam Jonathan Pryce

Brazil Terry Gilliam Kim Greist

Casablanca Michael Curtiz Humphrey Bogart

Casablanca Michael Curtiz Ingrid Bergmann

Gravity Alfonso Cuaron Sandra Bullock

Gravity Alfonso Cuaron George Clooney

Monuments Men
Monuments Men
Resident Evil
Terminator
Terminator
Terminator

George Clooney
George Clooney
Paul Anderson

James Cameron
James Cameron
James Cameron

George Clooney
Matt Damon
Milla Jovovich
Arnold Schwarzen
Linda Hamilton
Michael Biehn

egger
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Programm

Kino Film Zeit
Babylon Casablanca 17:30
Babylon Gravity 20:15
Casablanca Blade Runner 15:30
Casablanca Alien 18:15
Casablanca Blade Runner 20:30
Casablanca Resident Evil 20:30
Filmtheater am Friedrichshain Resident Evil 20:00
Filmtheater am Friedrichshain Resident Evil 21:30
Filmtheater am Friedrichshain Resident Evil 23:00
Kino International Casablanca 18:00
Kino International Brazil 20:00
Kino International Brazil 22:00
Moviemento Gravity 17:00
Moviemento Gravity 19:30
Moviemento Alien 22:00
Urania Monuments Men 17:00
Urania Monuments Men 20:00
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Die Kinodatenbank als Struktur

Signatur: OKINO = {:‘?}(,‘,,0/4-7 RF,'/m/3, R,Dmg/3}
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Die Kinodatenbank als Struktur

Signatur: OKINO ‘= {RK,',,O/Z]-7 R,E,'/m/:‘;7 Rp,og/3} U {‘CY . CEASCII*}
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Die Kinodatenbank als Struktur
{:‘?;(,',,0/4-7 R,E,'/m/:‘;7 R,Dmg/3} U {‘C’ CEASCII*}

Signatur: OKINO =

Die Kinodatenbank wird dargestellt als okno-Struktur D.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Die Kinodatenbank als Struktur
Signatur: OKINO ‘= { :‘?;(,',,0/4-7 R,E,'/m/:‘;7 Rp,og/3 } U {‘C’ L CcE ASCII*}
Die Kinodatenbank wird dargestellt als okno-Struktur D.

Universum:
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Die Kinodatenbank als Struktur

Signatur: OKINO = { RK,',10/47 RFilm/37 Rpmg/:’) } U { ‘c’ : ¢ € ASCII* }
Die Kinodatenbank wird dargestellt als okino-Struktur D.
Universum:

D := ASCII® D { Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93,

Casablanca, ..., 20:00}.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Die Kinodatenbank als Struktur
Signatur: OKINO = {RK,',,D/4, RF,'/m/3, Rpmg/3} U {‘CY . CGASCII*}

Die Kinodatenbank wird dargestellt als ok no-Struktur D.

Universum:
D := ASCII® D { Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93,
Casablanca, ..., 20:00}.
Relationen:
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Die Kinodatenbank als Struktur

Signatur: OKINO = { RK,',,D/4, RF,'/m/3, Rpmg/3 } U { ‘c’ : c € ASCII* }
Die Kinodatenbank wird dargestellt als ok no-Struktur D.
Universum:
D := ASCII® D { Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93,
Casablanca, ..., 20:00}.
Relationen:

REHO := { (Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93),
(Casablanca, Friedenstr. 12-13, Adlershof, 030 67 75 75 2),
(Urania, An der Urania 17, Schdneberg, 030 21 89 09 1) }
RE. = { (Alien, Ridley Scott, Sigourney Weaver),
(Blade Runner, Ridley Scott, Harrison Ford), ... }
Rgog := { (Babylon, Casablanca, 17:30),
(Babylon, Gravity, 20:15), ... }.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Die Kinodatenbank als Struktur
Signatur: OKINO = {RK,',,D/4, RF,'/m/3, R,Dmg/3} U {‘CY : CGASCII*}

Die Kinodatenbank wird dargestellt als ok no-Struktur D.

Universum:

D := ASCII® D { Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93,
Casablanca, ..., 20:00}.

Relationen:

REHO := { (Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93),
(Casablanca, Friedenstr. 12-13, Adlershof, 030 67 75 75 2),

)

(Urania, An der Urania 17, Schdneberg, 030 21 89 09 1) }

R = { (Alien, Ridley Scott, Sigourney Weaver),
(Blade Runner, Ridley Scott, Harrison Ford), ... }

Rgog := { (Babylon, Casablanca, 17:30),
(Babylon, Gravity, 20:15), ... }.

Konstanten:
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Die Kinodatenbank als Struktur

Signatur: OKINO = { RK,',,D/4, RF,'/m/3, Rpmg/3 } U { ‘c’ : c € ASCII* }
Die Kinodatenbank wird dargestellt als ok no-Struktur D.
Universum:
D := ASCII® D { Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93,
Casablanca, ..., 20:00}.
Relationen:
REHO := { (Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93),
(Casablanca, Friedenstr. 12-13, Adlershof, 030 67 75 75 2),
(Urania, An der Urania 17, Schdneberg, 030 21 89 09 1) }
RE. = { (Alien, Ridley Scott, Sigourney Weaver),
(Blade Runner, Ridley Scott, Harrison Ford), ... }
Rgog := { (Babylon, Casablanca, 17:30),
(Babylon, Gravity, 20:15), ... }.
Konstanten: ‘P = ¢, fiir jedes ¢ € ASCII*.

D.h.: jedes Konstantensymbol wird durch den zwischen den Hochkommas stehenden Text interpretiert.
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Redukte und Expansionen

Definition 3.5
Seien o und 7 Signaturen mit ¢ C 7.
(a) Das o-Redukt einer 7-Struktur B ist die o-Struktur B|, mit B|, := B und

SBlo .= SB fiir jedes S € 0.
D.h.: Ist B= (B, (5%)se.), soist Bl, = (B, (5%)sco).
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Redukte und Expansionen

Definition 3.5

Seien o und 7 Signaturen mit ¢ C 7.
(a) Das o-Redukt einer 7-Struktur B ist die o-Struktur B|, mit B|, := B und
SBlo .= SB fiir jedes S € 0.

D.h.: Ist B= (B, (5%)se.), soist Bl, = (B, (5%)sco).

(b) Eine 7-Struktur B ist eine 7-Expansion einer o-Struktur A, wenn A = B|,.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Redukte und Expansionen

Definition 3.5
Seien o und 7 Signaturen mit ¢ C 7.
(a) Das o-Redukt einer 7-Struktur B ist die o-Struktur B|, mit B|, := B und

SBlo .= SB fiir jedes S € 0.
D.h.: Ist B= (B, (5%)se.), soist Bl, = (B, (5%)sco).

(b) Eine 7-Struktur B ist eine 7-Expansion einer o-Struktur A, wenn A = B|,.

Beispiel
Das {+,0}-Redukt des Standardmodells der Arithmetik ist die Struktur
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Redukte und Expansionen

Definition 3.5
Seien o und 7 Signaturen mit ¢ C 7.
(a) Das o-Redukt einer 7-Struktur B ist die o-Struktur B|, mit B|, := B und

SBlo .= SB fiir jedes S € 0.
D.h.: Ist B= (B, (5%)se.), soist Bl, = (B, (5%)sco).

(b) Eine 7-Struktur B ist eine 7-Expansion einer o-Struktur A, wenn A = B|,.

Beispiel
Das {+, 0}-Redukt des Standardmodells der Arithmetik ist die Struktur

-AN|{+,Q} = (N7+ANaQAN)a

wobei +4% die natiirliche Addition auf N und QAN die nattirliche Zahl 0 ist.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Redukte und Expansionen

Definition 3.5

Seien o und 7 Signaturen mit ¢ C 7.
(a) Das o-Redukt einer 7-Struktur B ist die o-Struktur B|, mit B|, := B und
SBlo .= SB fiir jedes S € 0.

D.h.: Ist B= (B, (5%)se.), soist Bl, = (B, (5%)sco).

(b) Eine 7-Struktur B ist eine 7-Expansion einer o-Struktur A, wenn A = B|,.

Beispiel
Das {+, 0}-Redukt des Standardmodells der Arithmetik ist die Struktur

-AN|{+,Q} = (N7+ANaQAN)a

wobei +4% die natiirliche Addition auf N und QAN die nattirliche Zahl 0 ist.
Man bezeichnet diese Struktur als das Standardmodell der Presburger
Arithmetik.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Prinzipielle Gleichheit von Strukturen

Frage: Wann sind zwei o-Strukturen A und B , prinzipiell gleich“?
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Prinzipielle Gleichheit von Strukturen

Frage: Wann sind zwei o-Strukturen A und B , prinzipiell gleich“?

Antwort: Wenn B aus A entsteht, indem man die Elemente des Universums von
A umbenennt.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Prinzipielle Gleichheit von Strukturen

Frage: Wann sind zwei o-Strukturen A und B , prinzipiell gleich“?

Antwort: Wenn B aus A entsteht, indem man die Elemente des Universums von
A umbenennt.

Dies wird in der folgenden Definition prazisiert.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen
Isomorphismen
Definition 3.6

Seien A und B o-Strukturen. Ein Isomorphismus von A nach B ist eine
Abbildung 7 : A — B mit folgenden Eigenschaften:
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen
Isomorphismen
Definition 3.6

Seien A und B o-Strukturen. Ein Isomorphismus von A nach B ist eine
Abbildung 7 : A — B mit folgenden Eigenschaften:

1. 7 ist bijektiv.

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 173



Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen
I[somorphismen
Definition 3.6

Seien A und B o-Strukturen. Ein Isomorphismus von A nach B ist eine
Abbildung 7 : A — B mit folgenden Eigenschaften:
1. 7 ist bijektiv.
2. Fir alle k € N\ {0}, alle k-stelligen Relationssymbole R € o und alle
k-Tupel (a1,...,ax) € A gilt:

(a1,..,ak) € RY = (m(ar),...,m(ak)) € RE.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen
I[somorphismen
Definition 3.6

Seien A und B o-Strukturen. Ein Isomorphismus von A nach B ist eine
Abbildung 7 : A — B mit folgenden Eigenschaften:
1. 7 ist bijektiv.
2. Fir alle k € N\ {0}, alle k-stelligen Relationssymbole R € o und alle
k-Tupel (a1,...,ax) € A gilt:

(a1,..,ak) € RY = (m(ar),...,m(ak)) € RE.

3. Fiir alle Konstantensymbole ¢ € o gilt:

w(ct) = .
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen
I[somorphismen
Definition 3.6

Seien A und B o-Strukturen. Ein Isomorphismus von A nach B ist eine
Abbildung 7 : A — B mit folgenden Eigenschaften:

1. 7 ist bijektiv.
2. Fir alle k € N\ {0}, alle k-stelligen Relationssymbole R € o und alle
k-Tupel (a1,...,ax) € A gilt:

(a1,..,ak) € RY = (m(ar),...,m(ak)) € RE.

3. Fiir alle Konstantensymbole ¢ € o gilt:

w(ct) = .

4. Fiir alle k € N\ {0}, alle k-stelligen Funktionssymbole f € ¢ und alle
k-Tupel (ay,...,ax) € A gilt:

W(fA(al, L) = fB(ﬂ'(al), o, m(ax)).
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Isomorphie

Notation

Seien A und B o-Strukturen. Wir schreiben 7 : A = 3, um anzudeuten, dass 7

ein Isomorphismus von A4 nach B ist.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Isomorphie

Notation
Seien A und B o-Strukturen. Wir schreiben 7 : A = 3, um anzudeuten, dass 7

ein Isomorphismus von A4 nach B ist.

Definition 3.7

Zwei o-Strukturen A und B heiBen isomorph (wir schreiben: A 2 13), wenn es
einen Isomorphismus von A nach B gibt.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Beispiele 3.8

(a) Seien A, B nicht-leere Mengen. Dann sind die (-Strukturen A := (A) und

B := (B) genau dann isomorph, wenn
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Beispiele 3.8

(a) Seien A, B nicht-leere Mengen. Dann sind die (-Strukturen A := (A) und
B := (B) genau dann isomorph, wenn A und B gleichméchtig sind (d.h. es
gibt eine Bijektion von A nach B).
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

(b) Seien A = (A, E4) und B = (B, EB) die beiden folgenden Digraphen:

a - S |
3
N % 1 e
B - (B, E®)
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

(b) Seien A = (A, E4) und B = (B, EB) die beiden folgenden Digraphen:

a b L k
3
L ¥ 4 e
A= (A EY B - (B, E®)

Dannist m: A— B mit
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

(b) Seien A = (A, E4) und B = (B, EB) die beiden folgenden Digraphen:

a o S k
3
N % 1 e
A= (A EY B - (B, E®)
Dannist m: A— B mit
i|1]2|3[4[5|6]|7]8
(i) [[a|blc|d]|h|g|f]e

ein Isomorphismus von A nach B.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

(c) Sei A=(A<") mit A={1,2,3,4} und
<M= {(h)) : hJEN, 1<i<j<4),

und sei B=(B,<*) mit B={{,0, M, &}, wobei < wie in Beispiel 3.4
definiert ist. Skizze:
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(c) Sei A=(A<") mit A={1,2,3,4} und
<M= {(h)) : hJEN, 1<i<j<4),

und sei B=(B,<*) mit B={{,0, M, &}, wobei < wie in Beispiel 3.4
definiert ist. Skizze:

Dannist 7 : A— B mit
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen
(c) Sei A=(A,<*) mit A={1,23,4} und

<t o= {()) i jEN, 1<i<j<4},

und sei B=(B,<*) mit B={{,0, M, &}, wobei < wie in Beispiel 3.4
definiert ist. Skizze:

o]

ein Isomorphismus von A nach
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen
(c) Sei A= (A, <) mit A={1,2,3,4} und
<t = {(i)) s LJEN, 1<i< <4},

und sei B=(B,<*) mit B={{,0, M, &}, wobei < wie in Beispiel 3.4
definiert ist. Skizze:

Dannist 7 : A— B mit

il 1]

|1]2]3]4
HONRIMEIES

ein Isomorphismus von A nach B.

Allgemein gilt: Sind A und B endliche Mengen mit |A| = |B|, und sind <* und
<5 lineare Ordnungen auf A und B, so ist die Abbildung 7 : A — B, die
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen
(c) Sei A=(A,<?) mit A={1,2,3,4} und
<t = {(i)) s LJEN, 1<i< <4},

und sei B=(B,<*) mit B={{,0, M, &}, wobei < wie in Beispiel 3.4
definiert ist. Skizze:

Dannist 7 : A— B mit

ill1]2]3]4
HONRIMEIES

ein Isomorphismus von A nach B.

Allgemein gilt: Sind A und B endliche Mengen mit |A| = |B|, und sind <* und
<5 lineare Ordnungen auf A und B, so ist die Abbildung 7 : A — B, die das
(bzgl. <*) kleinste Element in A auf das (bzgl. <®) kleinste Element in B
abbildet, und allgemein fiir jedes i € {1,...,|A|} das (bzgl. <*) i-kleinste
Element in A auf das (bzgl. <) i-kleinste Element in B abbildet, ein
Isomorphismus von A := (A, <) nach B := (B, <").
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

(d) Sind <M und <Z die natiirlichen linearen Ordnungen auf N und Z, so sind
die {<}-Strukturen N := (N, <) und Z := (Z,<%)
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

(d) Sind <M und <Z die natiirlichen linearen Ordnungen auf N und Z, so sind
die {<}-Strukturen N := (N, <) und Z :=(Z,<?%) nicht isomorph
(kurz: N 2 2).
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

(d) Sind <M und <Z die natiirlichen linearen Ordnungen auf N und Z, so sind
die {<}-Strukturen N := (N, <) und Z :=(Z,<?%) nicht isomorph
(kurz: N 2 2).

Beweis:
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

(d) Sind <M und <Z die natiirlichen linearen Ordnungen auf N und Z, so sind
die {<}-Strukturen N := (N, <) und Z :=(Z,<?%) nicht isomorph
(kurz: N 2 2).

Beweis: Angenommen, 7 : N — Z ist ein Isomorphismus von N nach Z.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

(d) Sind <M und <Z die natiirlichen linearen Ordnungen auf N und Z, so sind
die {<}-Strukturen N := (N, <) und Z :=(Z,<?%) nicht isomorph
(kurz: N 2 2).

Beweis: Angenommen, 7 : N — Z ist ein Isomorphismus von N nach Z.
Sei z := 7(0). In Z gibt es ein Element 2/ € Z mit 2/ < z (z.B. 2/ =z - 1),
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

(d) Sind <M und <Z die natiirlichen linearen Ordnungen auf N und Z, so sind
die {<}-Strukturen N := (N, <) und Z :=(Z,<?%) nicht isomorph
(kurz: N 2 2).

Beweis: Angenommen, 7 : N — Z ist ein Isomorphismus von N nach Z.
Sei z := 7(0). In Z gibt es ein Element 2/ € Z mit 2/ < z (z.B. 2/ =z - 1),
Da 7 surjektiv ist, muss es ein n’ € N geben, so dass 7(n’) = z’.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

(d) Sind <M und <Z die natiirlichen linearen Ordnungen auf N und Z, so sind
die {<}-Strukturen N := (N, <) und Z :=(Z,<?%) nicht isomorph
(kurz: N 2 2).

Beweis: Angenommen, 7 : N — Z ist ein Isomorphismus von N nach Z.
Sei z := 7(0). In Z gibt es ein Element 2/ € Z mit 2/ < z (z.B. 2/ =z - 1),
Da 7 surjektiv ist, muss es ein n’ € N geben, so dass m(n’) = z’. Wegen

7' # z muss n’ # 0 gelten (da 7 injektiv ist). Somit gilt:
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

(d) Sind <M und <Z die natiirlichen linearen Ordnungen auf N und Z, so sind
die {<}-Strukturen N := (N, <) und Z :=(Z,<?%) nicht isomorph
(kurz: N 2 2).

Beweis: Angenommen, 7 : N — Z ist ein Isomorphismus von N nach Z.
Sei z := 7(0). In Z gibt es ein Element 2/ € Z mit 2/ < z (z.B. 2/ =z - 1),
Da 7 surjektiv ist, muss es ein n’ € N geben, so dass m(n’) = z’. Wegen
7' # z muss n’ # 0 gelten (da 7 injektiv ist). Somit gilt:

o<Nn aber z¢2 7.

Also ist 7 kein Isomorphismus von N nach Z. Widerspruch!
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

(e) Sei o:={f,c}, wobei f ein 2-stelliges Funktionssymbol und c ein
Konstantensymbol ist. Sei A := (A, f*, c*), wobei gilt:
® A:=N ist die Menge aller natiirlichen Zahlen,
o 4= +A% st die natiirliche Addition auf N,
® ¢*:=0 ist die natiirliche Zahl 0
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

(e) Sei o:={f,c}, wobei f ein 2-stelliges Funktionssymbol und c ein
Konstantensymbol ist. Sei A := (A, f*, c*), wobei gilt:

® A:=N ist die Menge aller natiirlichen Zahlen,
o fA.— 4 Av st die natiirliche Addition auf N,
e ¢4 :.=0 ist die natiirliche Zahl 0

und sei B:= (B, 5, cB), wobei

¢ B:={2" : ne N} ist die Menge aller Zweierpotenzen,
* f5:Bx B — B ist die Funktion mit

fB(b1,bs) = by by, fir alle by, by € B

o B.—1=2¢8B.

Dann gilt:
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

(e) Sei o:={f,c}, wobei f ein 2-stelliges Funktionssymbol und c ein
Konstantensymbol ist. Sei A := (A, f*, c*), wobei gilt:

® A:=N ist die Menge aller natiirlichen Zahlen,
o fA.— 4 Av st die natiirliche Addition auf N,
e ¢4 :.=0 ist die natiirliche Zahl 0

und sei B:= (B, 5, cB), wobei

¢ B:={2" : ne N} ist die Menge aller Zweierpotenzen,
* f5:Bx B — B ist die Funktion mit

fB(b1,bs) = by by, fir alle by, by € B

o B.—1=2¢8B.

Dann gilt: A = B3, und die Abbildung 7 : A — B mit
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

(e) Sei o:={f,c}, wobei f ein 2-stelliges Funktionssymbol und c ein
Konstantensymbol ist. Sei A := (A, f*, c*), wobei gilt:

® A:=N ist die Menge aller natiirlichen Zahlen,
o fA.— 4 Av st die natiirliche Addition auf N,
e ¢4 :.=0 ist die natiirliche Zahl 0

und sei B:= (B, 5, cB), wobei

¢ B:={2" : ne N} ist die Menge aller Zweierpotenzen,
* f5:Bx B — B ist die Funktion mit

fB(b1,bs) = by by, fir alle by, by € B

o B.—1=2¢8B.

Dann gilt: A = 3, und die Abbildung 7 : A — B mit 7(n) := 2" fiir alle
n € N ist ein Isomorphismus von A nach 5, denn:

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 179



Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Isomorphie ist eine Aquivalenzrelation

Lemma 3.9 )
Isomorphie ist eine Aquivalenzrelation auf der Klasse aller o-Strukturen.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Isomorphie ist eine Aquivalenzrelation

Lemma 3.9 )
Isomorphie ist eine Aquivalenzrelation auf der Klasse aller o-Strukturen. D.h.:
Fiir alle o-Strukturen A, B,C gilt:

L A=A (Reflexivitit),
2. A2B = B=A (Symmetrie),
3. AZBund B=C = A=C (Transitivitat).
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Kapitel 3: Logik erster Stufe - Abschnitt 3.1: Strukturen

Isomorphie ist eine Aquivalenzrelation

Lemma 3.9 )
Isomorphie ist eine Aquivalenzrelation auf der Klasse aller o-Strukturen. D.h.:
Fiir alle o-Strukturen A, B,C gilt:

L A=A (Reflexivitit),
2. A2B = B=A (Symmetrie),
3. AZBund B=C = A=C (Transitivitat).

Beweis: Ubung.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.2: Terme der Logik erster Stufe

Individuenvariablen

Definition 3.10
Eine Individuenvariable (auch: Variable erster Stufe; kurz: Variable) hat die
Form v; fiir ein i € N.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.2: Terme der Logik erster Stufe

Individuenvariablen

Definition 3.10

Eine Individuenvariable (auch: Variable erster Stufe; kurz: Variable) hat die
Form v; fiir ein i € N.

Die Menge aller Variablen bezeichnen wir mit VAR, d.h.

VAR = {w, vi, vo, v3, ...} = {v : ieN}L
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Kapitel 3: Logik erster Stufe - Abschnitt 3.2: Terme der Logik erster Stufe

Terme der Logik erster Stufe
Definition 3.11

(a) Fiir eine Signatur o sei As.Terme das Alphabet, das aus allen Elementen in VAR,
allen Konstanten- und Funktionssymbolen in o, den Klammern (, ) und dem
Komma | besteht.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.2: Terme der Logik erster Stufe

Terme der Logik erster Stufe
Definition 3.11

(a) Fiir eine Signatur o sei As.Terme das Alphabet, das aus allen Elementen in VAR,
allen Konstanten- und Funktionssymbolen in o, den Klammern (, ) und dem
Komma | besteht.

(b) Die Menge T, aller o-Terme ist die wie folgt rekursiv definierte Teilmenge von

*.
Acr—Terme .
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Kapitel 3: Logik erster Stufe - Abschnitt 3.2: Terme der Logik erster Stufe

Terme der Logik erster Stufe
Definition 3.11

(a) Fiir eine Signatur o sei As.Terme das Alphabet, das aus allen Elementen in VAR,
allen Konstanten- und Funktionssymbolen in o, den Klammern (, ) und dem
Komma | besteht.

(b) Die Menge T, aller o-Terme ist die wie folgt rekursiv definierte Teilmenge von

*.
Acr—Terme .

Basisregeln:

® Fiir jedes Konstantensymbol c € g ist ¢ € T,.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.2: Terme der Logik erster Stufe

Terme der Logik erster Stufe
Definition 3.11

(a) Fiir eine Signatur o sei As.Terme das Alphabet, das aus allen Elementen in VAR,
allen Konstanten- und Funktionssymbolen in o, den Klammern (, ) und dem
Komma | besteht.

(b) Die Menge T, aller o-Terme ist die wie folgt rekursiv definierte Teilmenge von

*.
Acr—Terme .

Basisregeln:

® Fiir jedes Konstantensymbol c € g ist ¢ € T,.
® Fiir jede Variable x € VAR ist x € T,.
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Terme der Logik erster Stufe
Definition 3.11

(a) Fiir eine Signatur o sei As.Terme das Alphabet, das aus allen Elementen in VAR,
allen Konstanten- und Funktionssymbolen in o, den Klammern (, ) und dem
Komma | besteht.

(b) Die Menge T, aller o-Terme ist die wie folgt rekursiv definierte Teilmenge von

* .
Acf—Terme .

Basisregeln:
® Fiir jedes Konstantensymbol c € g ist ¢ € T,.
® Fiir jede Variable x € VAR ist x € T,.
Rekursive Regel:

® Fiir jedes Funktionssymbol 7 € o und fiir k := ar(f) gilt:
Sind €Ts, ..., 1 €Ty, soist auch €T,
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Terme der Logik erster Stufe
Definition 3.11

(a) Fiir eine Signatur o sei As.Terme das Alphabet, das aus allen Elementen in VAR,
allen Konstanten- und Funktionssymbolen in o, den Klammern (, ) und dem
Komma | besteht.

(b) Die Menge T, aller o-Terme ist die wie folgt rekursiv definierte Teilmenge von

*.
Acf—Terme .

Basisregeln:
® Fiir jedes Konstantensymbol c € g ist ¢ € T,.
® Fiir jede Variable x € VAR ist x € T,.
Rekursive Regel:

® Fiir jedes Funktionssymbol 7 € o und fiir k := ar(f) gilt:

Sind €Ts, ..., 1k €Ty, soist auch eT,.
(c) Die Menge aller Terme der Logik der ersten Stufe ist T := U T,.
o Signatur
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Beispiele

Sei 0:={f/2, c}.

Folgende Worte sind o-Terme:
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Beispiele

Sei 0:={f/2, c}.

Folgende Worte sind o-Terme:
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Beispiele

Sei 0:={f/2, c}.

Folgende Worte sind o-Terme:
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Beispiele

Sei 0:={f/2, c}.

Folgende Worte sind o-Terme:
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Beispiele

Sei 0:={f/2, c}.

Folgende Worte sind o-Terme:
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Beispiele

Sei 0:={f/2, c}.

Folgende Worte sind o-Terme:

Folgende Worte sind keine o-Terme:
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Beispiele

Sei 0:={f/2, c}.

Folgende Worte sind o-Terme:

Folgende Worte sind keine o-Terme:
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Beispiele

Sei 0:={f/2, c}.

Folgende Worte sind o-Terme:

Folgende Worte sind keine o-Terme:
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Beispiele

Sei 0:={f/2, c}.

Folgende Worte sind o-Terme:

Folgende Worte sind keine o-Terme:

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 183



Kapitel 3: Logik erster Stufe - Abschnitt 3.2: Terme der Logik erster Stufe

Beispiele

Sei 0:={f/2, c}.

Folgende Worte sind o-Terme:

Folgende Worte sind keine o-Terme:

f.A
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Belegungen und Interpretationen

Definition 3.12

Sei o eine Signatur.

(a) Eine Belegung in einer o-Struktur A ist eine Abbildung S : VAR — A.

D.h.: j3 ordnet jeder Variablen x € VAR ein Element 3(x) aus dem
Universum von A zu.
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Belegungen und Interpretationen

Definition 3.12

Sei o eine Signatur.

(a) Eine Belegung in einer o-Struktur A ist eine Abbildung (: VAR — A.

D.h.: 3 ordnet jeder Variablen x € VAR ein Element 3(x) aus dem
Universum von A zu.

(b) Eine o-Interpretation ist ein Paar
= (A5,

bestehend aus einer o-Struktur A und einer Belegung 5 in A.
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Die Auswertung von Termen in Interpretationen
Wir wollen Terme nun in Interpretationen ,, auswerten®.

Die Auswertung von Term  in einer Interpretation Z = (A, 8) soll dasjenige
Element aus A liefern, das man erhalt, wenn man
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Die Auswertung von Termen in Interpretationen
Wir wollen Terme nun in Interpretationen ,, auswerten®.

Die Auswertung von Term  in einer Interpretation Z = (A, 8) soll dasjenige
Element aus A liefern, das man erhalt, wenn man

® die in t vorkommenden
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Die Auswertung von Termen in Interpretationen
Wir wollen Terme nun in Interpretationen ,, auswerten®.

Die Auswertung von Term ¢ in einer Interpretation Z = (A, ) soll dasjenige
Element aus A liefern, das man erhalt, wenn man

® die in t vorkommenden gemalB der Belegung [ interpretiert,
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Die Auswertung von Termen in Interpretationen
Wir wollen Terme nun in Interpretationen ,, auswerten®.

Die Auswertung von Term ¢ in einer Interpretation Z = (A, ) soll dasjenige
Element aus A liefern, das man erhalt, wenn man

® die in t vorkommenden gemalB der Belegung [ interpretiert,

® die in t vorkommenden Konstantensymbole
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Die Auswertung von Termen in Interpretationen

Wir wollen Terme nun in Interpretationen ,, auswerten®.

Die Auswertung von Term ¢ in einer Interpretation Z = (A, ) soll dasjenige
Element aus A liefern, das man erhalt, wenn man

® die in t vorkommenden gemalB der Belegung [ interpretiert,

® die in t vorkommenden Konstantensymbole ¢ gemaB ihrer Interpretation
c? in A belegt,
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Die Auswertung von Termen in Interpretationen

Wir wollen Terme nun in Interpretationen ,, auswerten®.

Die Auswertung von Term ¢ in einer Interpretation Z = (A, ) soll dasjenige
Element aus A liefern, das man erhalt, wenn man

® die in t vorkommenden gemalB der Belegung [ interpretiert,

® die in t vorkommenden Konstantensymbole ¢ gemaB ihrer Interpretation
c? in A belegt,

® die in t vorkommenden Funktionssymbole
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Die Auswertung von Termen in Interpretationen

Wir wollen Terme nun in Interpretationen ,, auswerten®.

Die Auswertung von Term ¢ in einer Interpretation Z = (A, ) soll dasjenige
Element aus A liefern, das man erhalt, wenn man

® die in t vorkommenden gemalB der Belegung [ interpretiert,

® die in t vorkommenden Konstantensymbole ¢ gemaB ihrer Interpretation
c? in A belegt,

e die in t vorkommenden Funktionssymbole 7 gemaB ihrer Interpretation £+
in A belegt
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Die Auswertung von Termen in Interpretationen

Wir wollen Terme nun in Interpretationen ,, auswerten®.

Die Auswertung von Term ¢ in einer Interpretation Z = (A, ) soll dasjenige
Element aus A liefern, das man erhalt, wenn man

® die in t vorkommenden gemalB der Belegung [ interpretiert,

® die in t vorkommenden Konstantensymbole ¢ gemaB ihrer Interpretation
c? in A belegt,

e die in t vorkommenden Funktionssymbole 7 gemaB ihrer Interpretation £+
in A belegt

und dann nach und nach den resultierenden Term ausrechnet.

Dies wird in der folgenden Definition prazisiert.
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Semantik von o-Termen

Definition 3.13

Sei o eine Signatur. Rekursiv iiber den Aufbau von T, definieren wir eine
Funktion [-], die jedem o-Term ¢ und jeder o-Interpretation Z = (A, 3) einen

Wert []* € A zuordnet:

* Fiiralle x € VAR ist [<]” :=
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Semantik von o-Termen

Definition 3.13

Sei o eine Signatur. Rekursiv iiber den Aufbau von T, definieren wir eine
Funktion [-], die jedem o-Term ¢ und jeder o-Interpretation Z = (A, 3) einen

Wert []* € A zuordnet:

e Fiiralle x € VAR ist [x]” := B(x).
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Semantik von o-Termen

Definition 3.13

Sei o eine Signatur. Rekursiv iiber den Aufbau von T, definieren wir eine
Funktion [-], die jedem o-Term ¢ und jeder o-Interpretation Z = (A, 3) einen

Wert []* € A zuordnet:

e Fiiralle x € VAR ist [x]” := B(x).

* Fiir alle Konstantensymbole ¢ € o ist [c]” :=

Version vom 25. Januar 2024 Folie 186

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik



Kapitel 3: Logik erster Stufe - Abschnitt 3.2: Terme der Logik erster Stufe

Semantik von o-Termen

Definition 3.13

Sei o eine Signatur. Rekursiv iiber den Aufbau von T, definieren wir eine
Funktion [-], die jedem o-Term ¢ und jeder o-Interpretation Z = (A, 3) einen

Wert []* € A zuordnet:

e Fiiralle x € VAR ist [x]” := B(x).

* Fiir alle Konstantensymbole ¢ € o ist [c]” := cA.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.2: Terme der Logik erster Stufe

Semantik von o-Termen

Definition 3.13

Sei o eine Signatur. Rekursiv iiber den Aufbau von T, definieren wir eine
Funktion [-], die jedem o-Term ¢ und jeder o-Interpretation Z = (A, 3) einen

Wert []* € A zuordnet:

e Fiiralle x € VAR ist [x]” := B(x).
* Fiir alle Konstantensymbole ¢ € o ist [c]” := cA.

® Fiir alle Funktionssymbole / € o, fiir k := ar(f), und
fur alle o-Terme 4, ..., t,. € T, gilt:

[ I o=
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Kapitel 3: Logik erster Stufe - Abschnitt 3.2: Terme der Logik erster Stufe

Semantik von o-Termen

Definition 3.13

Sei o eine Signatur. Rekursiv iiber den Aufbau von T, definieren wir eine
Funktion [-], die jedem o-Term ¢ und jeder o-Interpretation Z = (A, 3) einen

Wert []* € A zuordnet:

e Fiiralle x € VAR ist [x]” := B(x).
* Fiir alle Konstantensymbole ¢ € o ist [c]” := cA.

® Fiir alle Funktionssymbole / € o, fiir k := ar(f), und
fur alle o-Terme 4, ..., t,. € T, gilt:

[ IF o= Al ]
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Sei o ={f/2, ¢}, undsei A= (A, 4 c*) die o-Struktur mit A =N,
fA = 44 (die Addition auf den natiirlichen Zahlen) und c* = 0 (die
natiirliche Zahl 0).
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Sei o ={f/2, ¢}, undsei A= (A, 4 c*) die o-Struktur mit A =N,
fA = 44 (die Addition auf den natiirlichen Zahlen) und c* = 0 (die
natiirliche Zahl 0).

Sei 8:VAR — A eine Belegung mit G(vi) =1 und B(w) =7
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Kapitel 3: Logik erster Stufe - Abschnitt 3.2: Terme der Logik erster Stufe

Sei o ={f/2, ¢}, undsei A= (A, 4 c*) die o-Struktur mit A =N,
fA = 44 (die Addition auf den natiirlichen Zahlen) und c* = 0 (die
natiirliche Zahl 0).

Sei B:VAR — A eine Belegung mit 5(v1) =1 und S(wv) =7,
und sei 7 := (A, f).

Sei der o-Term . Dann gilt:

" =
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Kapitel 3: Logik erster Stufe - Abschnitt 3.2: Terme der Logik erster Stufe

Sei o ={f/2, ¢}, undsei A= (A, 4 c*) die o-Struktur mit A =N,
fA = 44 (die Addition auf den natiirlichen Zahlen) und c* = 0 (die
natiirliche Zahl 0).

Sei B:VAR — A eine Belegung mit 5(v1) =1 und S(wv) =7,
und sei 7 := (A, f).

Sei der o-Term . Dann gilt:

L7 = FA(B(), FA(B(n), )
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Beispiel

Sei o ={f/2, ¢}, undsei A= (A, 4 c*) die o-Struktur mit A =N,
fA = 44 (die Addition auf den natiirlichen Zahlen) und c* = 0 (die

natiirliche Zahl 0).

Sei B:VAR — A eine Belegung mit 5(v1) =1 und S(wv) =7,

und sei 7 := (A, B).

Sei der o-Term . Dann gilt:

L7 = FA(B(), FA(B(n), )
- fA(7, FA(1, 0)

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik
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Kapitel 3: Logik erster Stufe - Abschnitt 3.2: Terme der Logik erster Stufe

Sei o ={f/2, ¢}, undsei A= (A, 4 c*) die o-Struktur mit A =N,
fA = 44 (die Addition auf den natiirlichen Zahlen) und c* = 0 (die
natiirliche Zahl 0).

Sei B:VAR — A eine Belegung mit 5(v1) =1 und S(wv) =7,
und sei 7 := (A, f).

Sei der o-Term . Dann gilt:

L7 = FA(B(), FA(B(n), )
- fA(7, fA(l,O))

= <7+(1+0)>
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Sei o ={f/2, ¢}, undsei A= (A, 4 c*) die o-Struktur mit A =N,
fA = 44 (die Addition auf den natiirlichen Zahlen) und c* = 0 (die
natiirliche Zahl 0).

Sei 8:VAR — A eine Belegung mit G(vi) =1 und B(w) =
und sei 7 := (A, B).

Sei der o-Term . Dann gilt:

L7 = FA(B(), FA(B(n), )
= (7, FA(1,0))

g (1+0))

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 187



Abschnitt 3.3:
Syntax der Logik erster Stufe



Kapitel 3: Logik erster Stufe - Abschnitt 3.3: Syntax der Logik erster Stufe

Vergleich zwischen Aussagenlogik und Logik erster Stufe

Die Logik erster Stufe iibernimmt, verandert und erweitert die Syntax der

Aussagenlogik.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.3: Syntax der Logik erster Stufe

Vergleich zwischen Aussagenlogik und Logik erster Stufe

Die Logik erster Stufe iibernimmt, verandert und erweitert die Syntax der

Aussagenlogik.

® Was gleich bleibt:

® Die Junktoren —, A, V, werden iibernommen.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.3: Syntax der Logik erster Stufe

Vergleich zwischen Aussagenlogik und Logik erster Stufe

Die Logik erster Stufe iibernimmt, verandert und erweitert die Syntax der

Aussagenlogik.

® Was gleich bleibt:

® Die Junktoren —, A, V, werden iibernommen.

® Was sich verdndert:
® Variablen stehen nicht mehr fiir ,,wahre" oder , falsche" Ausagen, sondern

fiir Elemente im Universum einer o-Struktur.
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Vergleich zwischen Aussagenlogik und Logik erster Stufe

Die Logik erster Stufe iibernimmt, verandert und erweitert die Syntax der

Aussagenlogik.

® Was gleich bleibt:

® Die Junktoren —, A, V, werden iibernommen.
® Was sich verdndert:
® Variablen stehen nicht mehr fiir ,,wahre" oder , falsche" Ausagen, sondern

fiir Elemente im Universum einer o-Struktur.

® Variablen sind keine atomaren Formeln mehr.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.3: Syntax der Logik erster Stufe

Vergleich zwischen Aussagenlogik und Logik erster Stufe

Die Logik erster Stufe iibernimmt, verandert und erweitert die Syntax der

Aussagenlogik.

® Was gleich bleibt:

® Die Junktoren —, A, V, werden iibernommen.
® Was sich verdndert:
® Variablen stehen nicht mehr fiir ,,wahre" oder , falsche" Ausagen, sondern

fiir Elemente im Universum einer o-Struktur.

® Variablen sind keine atomaren Formeln mehr.

® \Was neu hinzukommt:

® Es gibt Quantoren = und V (fiir , es existiert” und ,fiir alle").
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Vergleich zwischen Aussagenlogik und Logik erster Stufe

Die Logik erster Stufe iibernimmt, verandert und erweitert die Syntax der

Aussagenlogik.

® Was gleich bleibt:

® Die Junktoren —, A, V, werden iibernommen.
® Was sich verdndert:
® Variablen stehen nicht mehr fiir ,,wahre" oder , falsche" Ausagen, sondern

fiir Elemente im Universum einer o-Struktur.

® Variablen sind keine atomaren Formeln mehr.

® \Was neu hinzukommt:

® Es gibt Quantoren = und V (fiir , es existiert” und ,fiir alle").

® Es gibt Symbole fiir Elemente aus der Signatur o.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.3: Syntax der Logik erster Stufe

Vergleich zwischen Aussagenlogik und Logik erster Stufe

Die Logik erster Stufe iibernimmt, verandert und erweitert die Syntax der
Aussagenlogik.

® Was gleich bleibt:

® Die Junktoren —, A, V, werden iibernommen.

® \Was sich verandert:

® Variablen stehen nicht mehr fiir ,,wahre" oder , falsche" Ausagen, sondern
fiir Elemente im Universum einer o-Struktur.

® Variablen sind keine atomaren Formeln mehr.

® Was neu hinzukommt:
® Es gibt Quantoren = und V (fiir , es existiert” und ,fiir alle").
® Es gibt Symbole fiir Elemente aus der Signatur o.

® Es konnen o-Terme benutzt werden, um Elemente im Universum einer
o-Struktur zu bezeichnen.
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Das Alphabet der Logik erster Stufe

Definition 3.14

Sei o eine Signatur.
Das Alphabet Arg[,) der Logik erster Stufe iiber o besteht aus

® allen Symbolen in Ay Termes
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Das Alphabet der Logik erster Stufe

Definition 3.14

Sei o eine Signatur.
Das Alphabet Arg[,) der Logik erster Stufe iiber o besteht aus

® allen Symbolen in Ay Termes

® allen Symbolen in o,
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Das Alphabet der Logik erster Stufe

Definition 3.14

Sei o eine Signatur.
Das Alphabet Arg[,) der Logik erster Stufe iiber o besteht aus

® allen Symbolen in Ay Termes
® allen Symbolen in o,

® den Quantoren - (Existenzquantor) und  (Allquantor),
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Kapitel 3: Logik erster Stufe - Abschnitt 3.3: Syntax der Logik erster Stufe

Das Alphabet der Logik erster Stufe

Definition 3.14
Sei o eine Signatur.
Das Alphabet Arg[,) der Logik erster Stufe iiber o besteht aus

allen Symbolen in Ay Terme,

allen Symbolen in o,

® den Quantoren - (Existenzquantor) und  (Allquantor),

dem Gleichheitssymbol =,
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Kapitel 3: Logik erster Stufe - Abschnitt 3.3: Syntax der Logik erster Stufe

Das Alphabet der Logik erster Stufe

Definition 3.14

Sei o eine Signatur.
Das Alphabet Arg[,) der Logik erster Stufe iiber o besteht aus

® allen Symbolen in A Terme,

allen Symbolen in o,

® den Quantoren - (Existenzquantor) und  (Allquantor),

dem Gleichheitssymbol =,

den Junktoren —, A\, V/,
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Kapitel 3: Logik erster Stufe - Abschnitt 3.3: Syntax der Logik erster Stufe

Das Alphabet der Logik erster Stufe

Definition 3.14

Sei o eine Signatur.
Das Alphabet Arg[,) der Logik erster Stufe iiber o besteht aus

® allen Symbolen in Ay Termes

allen Symbolen in o,

® den Quantoren - (Existenzquantor) und  (Allquantor),

dem Gleichheitssymbol

den Junktoren —, A\, V/,

D.h.:

AFO[J]:VARUUU{a}U{}U{777}U{7}U{}'
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Syntax der Logik erster Stufe

Definition 3.15
Sei o eine Signatur. Die Menge FO[o] aller Formeln der Logik erster Stufe iiber

der Signatur o (kurz: FO[o]-Formeln; ,,FO* steht fiir die englische Bezeichnung
der Logik erster Stufe: first-order logic) ist die folgendermaBen rekursiv
definierte Teilmenge von A*F‘O[U]:
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Syntax der Logik erster Stufe

Definition 3.15
Sei o eine Signatur. Die Menge FO[o] aller Formeln der Logik erster Stufe iiber

der Signatur o (kurz: FO[o]-Formeln; ,FO" steht fiir die englische Bezeichnung
der Logik erster Stufe: first-order logic) ist die folgendermaBen rekursiv

definierte Teilmenge von A*F‘O[U]:
Basisregeln:

® Fiir alle o-Terme ; und t, in T, gilt:

€ FOlo].
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Syntax der Logik erster Stufe

Definition 3.15
Sei o eine Signatur. Die Menge FO[o] aller Formeln der Logik erster Stufe iiber

der Signatur o (kurz: FO[o]-Formeln; ,FO" steht fiir die englische Bezeichnung
der Logik erster Stufe: first-order logic) ist die folgendermaBen rekursiv

definierte Teilmenge von A*F‘O[U]:

Basisregeln:

® Fiir alle o-Terme ; und t, in T, gilt:

€ FOlo].

® Fiir jedes Relationssymbol € o, fiir k := ar(R) und fiir alle o-Terme

in T, gilt:

geeey

€ FO[o].
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Syntax der Logik erster Stufe

Definition 3.15
Sei o eine Signatur. Die Menge FO[o] aller Formeln der Logik erster Stufe iiber

der Signatur o (kurz: FO[o]-Formeln; ,FO" steht fiir die englische Bezeichnung
der Logik erster Stufe: first-order logic) ist die folgendermaBen rekursiv

definierte Teilmenge von A*F‘O[U]:

Basisregeln:

® Fiir alle o-Terme ; und t, in T, gilt:

€ FOlo].

® Fiir jedes Relationssymbol € o, fiir k := ar(R) und fiir alle o-Terme

in T, gilt:

geeey

€ FO[o].

FO[o]-Formeln der Form oder heiBen atomare o-Formeln.
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Rekursive Regeln:

® Ist » € FOJo], so ist auch € FOlo].
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Kapitel 3: Logik erster Stufe - Abschnitt 3.3: Syntax der Logik erster Stufe

Rekursive Regeln:

® Ist » € FOJo], so ist auch € FOlo].

® Ist © € FO[o] und > € FO[o], so ist auch

° € FOlg],
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Rekursive Regeln:

® Ist » € FOJo], so ist auch € FOlo].

® Ist © € FO[o] und > € FO[o], so ist auch
° € FO[d],

4 € FOJg],
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Rekursive Regeln:

® Ist » € FOJo], so ist auch € FOlo].

® Ist © € FO[o] und > € FO[o], so ist auch

° € FOlg],
4 € FOJg],
° € FOlo].
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Kapitel 3: Logik erster Stufe - Abschnitt 3.3: Syntax der Logik erster Stufe

Rekursive Regeln:

® Ist » € FOJo], so ist auch € FOlo].

® Ist © € FO[o] und > € FO[o], so ist auch

° € FOlg],
4 € FOJg],
° € FOlo].

® Ist » € FO[o] und x € VAR, so ist auch
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Kapitel 3: Logik erster Stufe - Abschnitt 3.3: Syntax der Logik erster Stufe

Rekursive Regeln:

® Ist » € FOJo], so ist auch € FOlo].

® Ist © € FO[o] und > € FO[o], so ist auch

° € FOlg],
4 € FOJg],
° € FOlo].

® Ist » € FO[o] und x € VAR, so ist auch

° € FO[a],
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Kapitel 3: Logik erster Stufe - Abschnitt 3.3: Syntax der Logik erster Stufe

Rekursive Regeln:

® Ist » € FOJo], so ist auch € FOlo].

® Ist © € FO[o] und > € FO[o], so ist auch

° € FOlg],
4 € FOJg],
° € FOlo].

® Ist » € FO[o] und x € VAR, so ist auch
° € FO[a],
° € FO[o].
Nicole Schweikardt - HU Berlin -
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Beispiel 3.16
Sei 0 ={f/2, c}.

Folgende Worte aus Af,,; sind FO[o]-Formeln:
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Beispiel 3.16
Sei 0 ={f/2, c}.

Folgende Worte aus Af,,; sind FO[o]-Formeln:

. (atomare o-Formel)
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Beispiel 3.16
Sei 0 ={f/2, c}.

Folgende Worte aus Af,,; sind FO[o]-Formeln:

. (atomare o-Formel)
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Beispiel 3.16
Sei 0 ={f/2, c}.

Folgende Worte aus Af,,; sind FO[o]-Formeln:

. (atomare o-Formel)
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Beispiel 3.16

Sei 0 ={f/2, c}.

Folgende Worte aus Af,,; sind FO[o]-Formeln:
o (atomare o-Formel)
[ )

Folgende Worte sind keine FO[o]-Formeln:
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Beispiel 3.16
Sei 0 ={f/2, c}.

Folgende Worte aus Af,,; sind FO[o]-Formeln:
o (atomare o-Formel)
[ )

Folgende Worte sind keine FO[o]-Formeln:
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Kapitel 3: Logik erster Stufe - Abschnitt 3.3: Syntax der Logik erster Stufe

Beispiel 3.16
Sei 0 ={f/2, c}.

Folgende Worte aus Af,,; sind FO[o]-Formeln:
o (atomare o-Formel)
[ )

Folgende Worte sind keine FO[o]-Formeln:
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Kapitel 3: Logik erster Stufe - Abschnitt 3.3: Syntax der Logik erster Stufe

Beispiel 3.16
Sei 0 ={f/2, c}.

Folgende Worte aus Af,,; sind FO[o]-Formeln:
o (atomare o-Formel)
[ )

Folgende Worte sind keine FO[o]-Formeln:

o (ist ein o-Term, aber keine FO[o]-Formel)
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Kapitel 3: Logik erster Stufe - Abschnitt 3.3: Syntax der Logik erster Stufe

Beispiel 3.16
Sei 0 ={f/2, c}.

Folgende Worte aus Af,,; sind FO[o]-Formeln:
o (atomare o-Formel)
[ )

Folgende Worte sind keine FO[o]-Formeln:

o (ist ein o-Term, aber keine FO[o]-Formel)
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Beispiel 3.17
Sei 0 = {E/2}.
Folgendes ist eine FO[o]-Formel:
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Beispiel 3.17
Sei 0 = {E/2}.
Folgendes ist eine FO[o]-Formel:

Intuition zur Semantik:

In einem gerichteten Graphen A = (A, E*) sagt diese Formel Folgendes aus:
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Kapitel 3: Logik erster Stufe - Abschnitt 3.3: Syntax der Logik erster Stufe

Beispiel 3.17
Sei 0 = {E/2}.
Folgendes ist eine FO[o]-Formel:

Intuition zur Semantik:
In einem gerichteten Graphen A = (A, E*) sagt diese Formel Folgendes aus:

, Fur alle Knoten ag € A
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Kapitel 3: Logik erster Stufe - Abschnitt 3.3: Syntax der Logik erster Stufe

Beispiel 3.17
Sei 0 = {E/2}.
Folgendes ist eine FO[o]-Formel:

Intuition zur Semantik:
In einem gerichteten Graphen A = (A, E*) sagt diese Formel Folgendes aus:
., Fur alle Knoten ag € A und
fir alle Knoten a; € A gilt:
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Kapitel 3: Logik erster Stufe - Abschnitt 3.3: Syntax der Logik erster Stufe

Beispiel 3.17
Sei 0 = {E/2}.
Folgendes ist eine FO[o]-Formel:

Intuition zur Semantik:
In einem gerichteten Graphen A = (A, E*) sagt diese Formel Folgendes aus:
., Fur alle Knoten ag € A und
fir alle Knoten a; € A gilt:
falls (ap, a1) € EA und (a1, a0) € EA, so ist ag = ay."
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Kapitel 3: Logik erster Stufe - Abschnitt 3.3: Syntax der Logik erster Stufe

Beispiel 3.17
Sei 0 = {E/2}.
Folgendes ist eine FO[o]-Formel:

Intuition zur Semantik:
In einem gerichteten Graphen A = (A, E*) sagt diese Formel Folgendes aus:
., Fur alle Knoten ag € A und
fir alle Knoten a; € A gilt:
falls (ap, a1) € EA und (a1, a0) € EA, so ist ag = ay."

Die Formel sagt in einem Digraph A = (A, EA) also aus, dass

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 193



Kapitel 3: Logik erster Stufe - Abschnitt 3.3: Syntax der Logik erster Stufe

Beispiel 3.17
Sei 0 = {E/2}.
Folgendes ist eine FO[o]-Formel:

Intuition zur Semantik:
In einem gerichteten Graphen A = (A, E*) sagt diese Formel Folgendes aus:

., Fur alle Knoten ag € A und
fir alle Knoten a; € A gilt:
falls (ag,a1) € E* und (a1, a0) € E*, so ist ag = a;."

Die Formel sagt in einem Digraph A = (A, E4) also aus, dass die
Kantenrelation E4 antisymmetrisch ist.
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Notation

® Statt mit vy, vi, v»,... bezeichnen wir Variablen oft auch mit x, y, 7, ...
oder mit Varianten wie x| y1,vo,.. ..
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Notation

® Statt mit vy, vi, v»,... bezeichnen wir Variablen oft auch mit x, y, 7, ...
oder mit Varianten wie x| y1,vo,.. ..

e Ahnlich wie bei der Aussagenlogik schreiben wir als Abkiirzung
fiir die Formel
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Kapitel 3: Logik erster Stufe - Abschnitt 3.3: Syntax der Logik erster Stufe

Notation

® Statt mit vy, vi, v»,... bezeichnen wir Variablen oft auch mit
oder mit Varianten wie x| y1,vo,.. ..

e Ahnlich wie bei der Aussagenlogik schreiben wir als Abkiirzung

fir die Formel

® Die Menge aller Formeln der Logik der ersten Stufe ist

FO = U FO[o].

o Signatur
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Kapitel 3: Logik erster Stufe - Abschnitt 3.4: Semantik der Logik erster Stufe

Bevor wir die Semantik der Logik erster Stufe formal definieren, betrachten wir
zunichst einige Beispiele, um ein intuitives Verstandnis der Semantik der Logik
erster Stufe zu erlangen.
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Beispiele zur Semantik der Logik erster Stufe



Kapitel 3: Logik erster Stufe - Abschnitt 3.4: Semantik der Logik erster Stufe

Gerichtete Graphen

Beispiel 3.18
Sei o = {E/2}.

(a) Die FO[o]-Formel

besagt:
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Kapitel 3: Logik erster Stufe - Abschnitt 3.4: Semantik der Logik erster Stufe

Gerichtete Graphen

Beispiel 3.18
Sei o = {E/2}.

(a) Die FO[o]-Formel
@ = VxVy(E(x,y)— E(y,x))

besagt:
, Fiir alle Knoten x und fiir alle Knoten y gilt: Falls es eine Kante von

x nach y gibt, so gibt es auch eine Kante von y nach x."
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Kapitel 3: Logik erster Stufe - Abschnitt 3.4: Semantik der Logik erster Stufe

Gerichtete Graphen

Beispiel 3.18
Sei o = {E/2}.

(a) Die FO[o]-Formel

besagt:
, Fiir alle Knoten x und fiir alle Knoten y gilt: Falls es eine Kante von

x nach y gibt, so gibt es auch eine Kante von y nach x."

Fiir jeden Digraphen A = (A, E*) gilt daher:
Aerfillt ¢ <= EAist
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Gerichtete Graphen

Beispiel 3.18
Sei o = {E/2}.

(a) Die FO[o]-Formel

besagt:
, Fiir alle Knoten x und fiir alle Knoten y gilt: Falls es eine Kante von

x nach y gibt, so gibt es auch eine Kante von y nach x."

Fiir jeden Digraphen A = (A, E*) gilt daher:
Aerfilllt ¢ <=  E# ist symmetrisch.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.4: Semantik der Logik erster Stufe

Gerichtete Graphen

Beispiel 3.18
Sei o = {E/2}.

(a) Die FO[o]-Formel

besagt:
. Fiir alle Knoten x und fiir alle Knoten y gilt: Falls es eine Kante von

x nach y gibt, so gibt es auch eine Kante von y nach x."

Fiir jeden Digraphen A = (A, E*) gilt daher:
Aerfilllt ¢ <=  E# ist symmetrisch.

Umgangssprachlich sagen wir auch: ,, Die Formel ¢ sagt in einem
Digraphen A aus, dass dessen Kantenrelation symmetrisch ist."
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(b) Die folgende FO[o]-Formel driickt aus, dass es von Knoten x zu Knoten y
einen Weg der Lange 3 gibt:
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(b) Die folgende FO[o]-Formel driickt aus, dass es von Knoten x zu Knoten y
einen Weg der Lange 3 gibt:

o(x,y) =
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Kapitel 3: Logik erster Stufe - Abschnitt 3.4: Semantik der Logik erster Stufe

(b) Die folgende FO[o]-Formel driickt aus, dass es von Knoten x zu Knoten y

einen Weg der Lange 3 gibt:

o(x,y) =

(c) Die FO[o]-Formel

sagt in einem Digraph A aus, dass
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Kapitel 3: Logik erster Stufe - Abschnitt 3.4: Semantik der Logik erster Stufe

(b) Die folgende FO[o]-Formel driickt aus, dass es von Knoten x zu Knoten y
einen Weg der Lange 3 gibt:

o(x,y) =

(c) Die FO[o]-Formel

sagt in einem Digraph A aus, dass es zwischen je 2 Knoten einen Weg der
Lange 3 gibt.
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Verwandtschaftsbeziehungen

Wir betrachten eine Datensammlung, in der die Stammb&ume von Pferden aus dem
Sport Dressurreiten verwaltet werden.

Um Verwandtschaftsbeziehungen zwischen den Pferden zu modellieren, kénnen wir
eine Signatur o nutzen, die aus den folgenden Symbolen besteht:
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Kapitel 3: Logik erster Stufe - Abschnitt 3.4: Semantik der Logik erster Stufe

Verwandtschaftsbeziehungen
Wir betrachten eine Datensammlung, in der die Stammb&ume von Pferden aus dem

Sport Dressurreiten verwaltet werden.
Um Verwandtschaftsbeziehungen zwischen den Pferden zu modellieren, kénnen wir

eine Signatur o nutzen, die aus den folgenden Symbolen besteht:

® 1-stellige Funktionssymbole Vater, Mutter

(Bedeutung: besagt: ,, x ist die Mutter von y".)
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Kapitel 3: Logik erster Stufe - Abschnitt 3.4: Semantik der Logik erster Stufe

Verwandtschaftsbeziehungen
Wir betrachten eine Datensammlung, in der die Stammb&ume von Pferden aus dem

Sport Dressurreiten verwaltet werden.
Um Verwandtschaftsbeziehungen zwischen den Pferden zu modellieren, kénnen wir

eine Signatur o nutzen, die aus den folgenden Symbolen besteht:

® 1-stellige Funktionssymbole Vater, Mutter

(Bedeutung: besagt: ,, x ist die Mutter von y".)

® 2-stellige Relationssymbole Geschwister, Vorfahr

(Bedeutung: besagt, dass x und y Geschwister sind;
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Verwandtschaftsbeziehungen
Wir betrachten eine Datensammlung, in der die Stammb&ume von Pferden aus dem

Sport Dressurreiten verwaltet werden.
Um Verwandtschaftsbeziehungen zwischen den Pferden zu modellieren, kénnen wir

eine Signatur o nutzen, die aus den folgenden Symbolen besteht:

® 1-stellige Funktionssymbole Vater, Mutter

(Bedeutung: besagt: ,, x ist die Mutter von y".)

® 2-stellige Relationssymbole Geschwister, Vorfahr
besagt, dass x und y Geschwister sind;

(Bedeutung:
besagt, dass x ein Vorfahr von y ist.)
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Verwandtschaftsbeziehungen
Wir betrachten eine Datensammlung, in der die Stammb&ume von Pferden aus dem

Sport Dressurreiten verwaltet werden.
Um Verwandtschaftsbeziehungen zwischen den Pferden zu modellieren, kénnen wir

eine Signatur o nutzen, die aus den folgenden Symbolen besteht:

® 1-stellige Funktionssymbole Vater, Mutter

(Bedeutung: besagt: ,, x ist die Mutter von y".)

® 2-stellige Relationssymbole Geschwister, Vorfahr
besagt, dass x und y Geschwister sind;

(Bedeutung:
besagt, dass x ein Vorfahr von y ist.)

Generelles Wissen iiber Verwandtschaftsbeziehungen lasst sich durch Formeln der

Logik erster Stufe reprasentieren, z.B.:

®  Pferde mit gleichem Vater und gleicher Mutter sind Geschwister":
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Verwandtschaftsbeziehungen
Wir betrachten eine Datensammlung, in der die Stammb&ume von Pferden aus dem

Sport Dressurreiten verwaltet werden.
Um Verwandtschaftsbeziehungen zwischen den Pferden zu modellieren, kénnen wir

eine Signatur o nutzen, die aus den folgenden Symbolen besteht:

® 1-stellige Funktionssymbole Vater, Mutter

(Bedeutung: besagt: ,, x ist die Mutter von y".)

® 2-stellige Relationssymbole Geschwister, Vorfahr
besagt, dass x und y Geschwister sind;

(Bedeutung:
besagt, dass x ein Vorfahr von y ist.)

Generelles Wissen iiber Verwandtschaftsbeziehungen lasst sich durch Formeln der

Logik erster Stufe reprasentieren, z.B.:

®  Pferde mit gleichem Vater und gleicher Mutter sind Geschwister":
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e  Eltern sind gerade die unmittelbaren Vorfahren":
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e  Eltern sind gerade die unmittelbaren Vorfahren":

VxVy ((x:Vater(y) V x=Mutter(y))
< (Vorfahr(x,y) N =3z (Vorfahr(x,z) A Vorfahr(z, y))))
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e  Eltern sind gerade die unmittelbaren Vorfahren":

VxVy ((X:Vater(y) V x=Mutter(y))
< (Vorfahr(x,y) A =3z (Vorfahr(x,z) A Vorfahr(z,,y))))

® Die Relation Vorfahr ist transitiv":
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e  Eltern sind gerade die unmittelbaren Vorfahren":

VxVy ((x:Vater(y) V x=Mutter(y))
< (Vorfahr(x,y) N =3z (Vorfahr(x,z) A Vorfahr(z, y))))

® Die Relation Vorfahr ist transitiv":

VxVyVz ((Vorfahr(x,y) A Vorfahr(y.z)) — Vorfahr(x,z))
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e  Eltern sind gerade die unmittelbaren Vorfahren":

VxVy <(X:Vater(y) V x=Mutter(y))
< (Vorfahr(x,y) A =3z (Vorfahr(x,z) A Vorfahr(zy))))

® Die Relation Vorfahr ist transitiv":

VxVyVz <(Vorfahr(><,y) A Vorfahr(y.z)) — Vorfahr(x,z))

® Die folgende Formel ¢(x, y) besagt , x ist Tante oder Onkel von y*:

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 199



Kapitel 3: Logik erster Stufe - Abschnitt 3.4: Semantik der Logik erster Stufe

e  Eltern sind gerade die unmittelbaren Vorfahren":

VxVy ((X:Vater(y) V x=Mutter(y))
< (Vorfahr(x,y) A =3z (Vorfahr(x,z) A Vorfahr(z,,y))))

® Die Relation Vorfahr ist transitiv":

VxVyVz <(Vorfahr(x,y) A Vorfahr(y.z)) — Vorfahr(x,z))

® Die folgende Formel ¢(x, y) besagt , x ist Tante oder Onkel von y*:

o(x,y) = Iz (Geschwister(x,z) A (z=Mutter(y) Vv Z:Vater(y))>
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® Die folgende Formel ¢(x) besagt , x ist Vater von genau 2 Kindern":
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® Die folgende Formel ¢(x) besagt , x ist Vater von genau 2 Kindern":

PY(x) = Dty <((x: Vater(y1) A x=Vater(y»)) A = y1=y»)
A Vz (x=Vater(z) — (z=y1 V z:yQ))>
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Formale Definition der Semantik der Logik erster Stufe
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Um die formale Definition der Semantik der Logik erster Stufe angeben zu
kdnnen, bendtigen wir noch folgende Begriffe:
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Notation

® [st /3 eine Belegung in einer o-Struktur A, ist x € VAR und ist a € A, so sei
B3
die Belegung mit 32(x) =a und 32(y) = p(y) fiiralle y € VAR\ {x}.
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Notation

® [st /3 eine Belegung in einer o-Struktur A, ist x € VAR und ist a € A, so sei
By
die Belegung mit $2(x) =a und B2(y) = B(y) firalle y € VAR\ {x}.

® Ist 7 = (A, ) eine o-Interpretation, ist x € VAR und ist a € A, so sei

72 = (A pB2).
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Semantik der Logik erster Stufe
Definition 3.19

Sei ¢ eine Signatur. Rekursiv liber den Aufbau von FO[o] definieren wir eine
Funktion [-], die jeder FO[o]-Formel (v und jeder o-Interpretation Z = (A, 3)

einen Wahrheitswert (kurz: Wert) [-]” € {0, 1} zuordnet:

Version vom 25. Januar 2024 Folie 203
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Semantik der Logik erster Stufe
Definition 3.19

Sei ¢ eine Signatur. Rekursiv liber den Aufbau von FO[o] definieren wir eine
Funktion [-], die jeder FO[o]-Formel (v und jeder o-Interpretation Z = (A, 3)

einen Wahrheitswert (kurz: Wert) [-]” € {0, 1} zuordnet:

Rekursionsanfang:
® Fiir alle o-Terme ; und t, in T, gilt:

[o=t]” =
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Semantik der Logik erster Stufe
Definition 3.19

Sei ¢ eine Signatur. Rekursiv liber den Aufbau von FO[o] definieren wir eine
Funktion [-], die jeder FO[o]-Formel (v und jeder o-Interpretation Z = (A, 3)

einen Wahrheitswert (kurz: Wert) [-]” € {0, 1} zuordnet:

Rekursionsanfang:
® Fiir alle o-Terme ; und t, in T, gilt:

T _ T
[t = {1, falls [t,]" = [t-]

0, sonst.
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Semantik der Logik erster Stufe
Definition 3.19

Sei ¢ eine Signatur. Rekursiv liber den Aufbau von FO[o] definieren wir eine
Funktion [-], die jeder FO[o]-Formel (v und jeder o-Interpretation Z = (A, 3)

einen Wahrheitswert (kurz: Wert) [-]” € {0, 1} zuordnet:

Rekursionsanfang:
® Fiir alle o-Terme ; und t, in T, gilt:

T _ T
[t = {1, falls [t,]" = [t-]

0, sonst.

® Fiir jedes Relationssymbol < € o, fiir k := ar(R) und fiir alle o-Terme
eT, gilt:

geeey

[ " =
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Semantik der Logik erster Stufe
Definition 3.19

Sei ¢ eine Signatur. Rekursiv liber den Aufbau von FO[o] definieren wir eine
Funktion [-], die jeder FO[o]-Formel (v und jeder o-Interpretation Z = (A, 3)

einen Wahrheitswert (kurz: Wert) [-]” € {0, 1} zuordnet:

Rekursionsanfang:
® Fiir alle o-Terme ; und t, in T, gilt:

T _ T
[t = {1, falls [t,]" = [t-]

0, sonst.

® Fiir jedes Relationssymbol < € o, fiir k := ar(R) und fiir alle o-Terme
eT, gilt:

7 { 1, falls ([o]%,...,[0]7) € RA

geeey

0, sonst.
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Rekursionsschritt:
® Ist © € FO[o] und ist x € VAR, so ist

E s
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Rekursionsschritt:
® Ist © € FO[o] und ist x € VAR, so ist

1, falls es (mind.) ein a € A gibt, so dass []7* =1

0, sonst

Bxel” =
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Rekursionsschritt:
® Ist © € FO[o] und ist x € VAR, so ist

—

. falls es (mind.) ein a € A gibt, so dass []7F =1

0, sonst

Bxel” =
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Rekursionsschritt:
® Ist © € FO[o] und ist x € VAR, so ist

a
X

[ay

falls es (mind.) ein a € A gibt, so dass [ /]"* =1

sonst

=

[y

falls fiir jedes a € A gilt: []"* =1

, sonst

o
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® Die Semantik der Junktoren —, A, V, ist wie in der Aussagenlogik
definiert, d.h. fiir alle » € FO[o] und ¢/ € FO[o] gilt:
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® Die Semantik der Junktoren —, A, V, ist wie in der Aussagenlogik
definiert, d.h. fiir alle » € FO[o] und ¢/ € FO[o] gilt:

1, falls[-]" =0

0, sonst

[-]*
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® Die Semantik der Junktoren —, A, V, ist wie in der Aussagenlogik
definiert, d.h. fiir alle » € FO[o] und ¢/ € FO[o] gilt:

falls [-]* =0

sonst

[

[y

, falls [/]"=1 und [/]" =1
sonst

o
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® Die Semantik der Junktoren —, A, V, ist wie in der Aussagenlogik
definiert, d.h. fiir alle » € FO[o] und ¢/ € FO[o] gilt:

[of = 1, falls[-]" =0
B 0, sonst
1, falls [-]"=1 und [/]" =1

0, sonst
[ o= 0, falls [-]"=0 und [/]" =0
B 1, sonst
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® Die Semantik der Junktoren —, A, V, ist wie in der Aussagenlogik
definiert, d.h. fiir alle » € FO[o] und ¢/ € FO[o] gilt:

o= {1, falls [-]* =0

0, sonst

1, falls [-]"=1 und [/]" =1
0, sonst

0, falls [-]"=0 und [/]" =0
1

, sonst

0, falls [/]"=1 und []" =0
1

, sonst
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Beispiel 3.20
Sei 0 = {E/2}. Betrachte die FO[o]-Formel

p =
Fiir jede o-Interpretation Z = (A, f) gilt:

=1 <
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Beispiel 3.20
Sei 0 = {E/2}. Betrachte die FO[o]-Formel

p =

Fiir jede o-Interpretation Z = (A, ) gilt:

[[]F=1 < firalleacAgilt: [ I** =1
< fiir alle a € A gilt: fiir alle b € A gilt:
[[ I =1
<= fiiralle a€ A und alle b € A gilt:
Falls [ ]]Igyé =1, so [ ]]Iff =1

<= fiiralle a € A und alle b € B gilt:
Falls (a,b) € EA, so (b,a) € EA

<= E*ist symmetrisch
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Die Modellbeziehung

Definition 3.21

Sei o eine Signatur.

(a) Eine o-Interpretation Z erfiillt eine Formel
TE ), wenn []F =1.
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Die Modellbeziehung

Definition 3.21

Sei o eine Signatur.
(a) Eine o-Interpretation Z erfiillt eine Formel » € FO[o] (wir schreiben:

Tk ), wenn []F =1.

(b) Eine o-Interpretation Z erfiillt eine Formelmenge ® C FO[o] (wir schreiben:
T = ), wenn Z |= o fiir alle ¢ € ¢ gilt.
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Die Modellbeziehung

Definition 3.21

Sei o eine Signatur.
(a) Eine o-Interpretation Z erfiillt eine Formel » € FO[o] (wir schreiben:

Tk ), wenn []F =1.

(b) Eine o-Interpretation Z erfiillt eine Formelmenge ® C FO[o] (wir schreiben:
T = ), wenn Z |= o fiir alle ¢ € ¢ gilt.

(c) Ein Modell einer Formel ¢ (bzw. einer Formelmenge ®) ist eine
Interpretation Z mit Z |= ¢ (bzw. Z = ).
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Konventionen

® Terme bezeichnen wir mit £, s und Varianten s’ 1, to,....
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Konventionen

® Terme bezeichnen wir mit £, s und Varianten s’ 1, to,....

® Formeln bezeichnen wir mit ©, ¢, v und Varianten /') o1, 00, .. ..
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Konventionen

® Terme bezeichnen wir mit £, s und Varianten s’ 1, to,....

® Formeln bezeichnen wir mit ©, ¢, v und Varianten /') o1, 00, .. ..

® Formelmengen bezeichnen wir mit ©, WV und Varianten W' &, &, ...
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Subformeln, Subterme und Syntaxbaume

® Eine Formel ¢ ist Subformel einer Formel ¢, wenn v als Teilwort in ¢
vorkommt (insbes. ist jede Formel eine Subformel von sich selbst).

Beispiel: 1 := E(vp, v1) ist Subformel der Formel JvoVvy E(vo, v1)
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Subformeln, Subterme und Syntaxbaume

® Eine Formel ¢ ist Subformel einer Formel ¢, wenn v als Teilwort in ¢
vorkommt (insbes. ist jede Formel eine Subformel von sich selbst).

Beispiel: 1 := E(vp, v1) ist Subformel der Formel JvoVvy E(vo, v1)

® Ein Term s ist Subterm eines Terms t, wenn s als Teilwort in t vorkommt
(insbes. ist jeder Term ein Subterm von sich selbst).

Beispiel: f(c,c) ist Subterm des Terms (v, f(c, c)).
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Subformeln, Subterme und Syntaxbaume

® Eine Formel ¢ ist Subformel einer Formel ¢, wenn v als Teilwort in ¢
vorkommt (insbes. ist jede Formel eine Subformel von sich selbst).

Beispiel: 1 := E(vp, v1) ist Subformel der Formel JvoVvy E(vo, v1)

® Ein Term s ist Subterm eines Terms t, wenn s als Teilwort in t vorkommt
(insbes. ist jeder Term ein Subterm von sich selbst).

Beispiel: f(c,c) ist Subterm des Terms (v, f(c, c)).
® Sei £ € TUFO, d.h. £ ist ein Term oder eine Formel der Logik erster Stufe.

¢ Ahnlich wie bei aussagenlogischen Formeln kénnen wir einen Syntaxbaum
fiir £ definieren.

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 209



Kapitel 3: Logik erster Stufe - Abschnitt 3.4: Semantik der Logik erster Stufe

Subformeln, Subterme und Syntaxbaume

® Eine Formel ¢ ist Subformel einer Formel ¢, wenn v als Teilwort in ¢
vorkommt (insbes. ist jede Formel eine Subformel von sich selbst).

Beispiel: 1 := E(vp, v1) ist Subformel der Formel JvoVvy E(vo, v1)

® Ein Term s ist Subterm eines Terms t, wenn s als Teilwort in t vorkommt
(insbes. ist jeder Term ein Subterm von sich selbst).

Beispiel: f(c,c) ist Subterm des Terms (v, f(c, c)).

® Sei £ € TUFO, d.h. £ ist ein Term oder eine Formel der Logik erster Stufe.

¢ Ahnlich wie bei aussagenlogischen Formeln kénnen wir einen Syntaxbaum
fiir £ definieren.

® Das Lemma iiber die eindeutige Lesbarkeit von Termen und Formeln besagt,
dass jeder Term und jede Formel genau einen Syntaxbaum hat.
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Subformeln, Subterme und Syntaxbaume
® Eine Formel ¢ ist Subformel einer Formel ¢, wenn v als Teilwort in ¢
vorkommt (insbes. ist jede Formel eine Subformel von sich selbst).

Beispiel: 1 := E(vp, v1) ist Subformel der Formel JvoVvy E(vo, v1)

® Ein Term s ist Subterm eines Terms t, wenn s als Teilwort in t vorkommt
(insbes. ist jeder Term ein Subterm von sich selbst).

Beispiel: f(c,c) ist Subterm des Terms (v, f(c, c)).

® Sei £ € TUFO, d.h. £ ist ein Term oder eine Formel der Logik erster Stufe.

¢ Ahnlich wie bei aussagenlogischen Formeln kénnen wir einen Syntaxbaum
fiir £ definieren.

® Das Lemma iiber die eindeutige Lesbarkeit von Termen und Formeln besagt,
dass jeder Term und jede Formel genau einen Syntaxbaum hat.

® Die Subterme von & (falls £ € T) bzw. Subformeln von £ (falls £ € FO) sind
dann alle Terme bzw. Formeln, die im Syntaxbaum vorkommen.
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Das Isomorphielemma
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Das Isomorphielemma besagt, dass isomorphe Objekte (Strukturen bzw.
Interpretationen) dieselben Formeln der Logik erster Stufe erfiillen.

Um diese Aussage prazise formulieren zu kdnnen, bendtigen wir die folgende
Notation.
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Isomorphismen, Belegungen und Interpretationen
Definition 3.22

Sei o eine Signatur, seien A, B isomorphe o-Strukturen und sei 7 ein
Isomorphismus von A nach B (kurz: 7 : A2 B).
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Isomorphismen, Belegungen und Interpretationen
Definition 3.22

Sei o eine Signatur, seien A, B isomorphe o-Strukturen und sei 7 ein
Isomorphismus von A nach B (kurz: 7 : A2 B).

(a) Fiir jede Belegung 3 in A sei 7/3 die Belegung in B, so dass fiir alle

€ VAR gilt:
mB(x) = m(B(x)):
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Isomorphismen, Belegungen und Interpretationen
Definition 3.22

Sei o eine Signatur, seien A, B isomorphe o-Strukturen und sei 7 ein
Isomorphismus von A nach B (kurz: 7 : A2 B).

(a) Fiir jede Belegung 3 in A sei 7/3 die Belegung in B, so dass fiir alle
€ VAR gilt:
mB(x) = w(B(x)).

(b) Fiir eine Interpretation Z = (A, 3) schreiben wir ©Z fiir die Interpretation

7L = (B,w8).
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Isomorphismen, Belegungen und Interpretationen
Definition 3.22

Sei o eine Signatur, seien A, B isomorphe o-Strukturen und sei 7 ein
Isomorphismus von A nach B (kurz: 7 : A2 B).

(a) Fiir jede Belegung 3 in A sei 7/3 die Belegung in B, so dass fiir alle

€ VAR gilt:
mB(x) = m(B(x)):

(b) Fiir eine Interpretation Z = (A, 3) schreiben wir ©Z fiir die Interpretation
7 = (B,7p).

Aus dieser Definition folgt direkt:
Lemma 3.23

Sei o eine Signatur, seien A, B isomorphe o-Strukturen, sei 7w : A= 13, sei 3
eine Belegung in A und sei T := (A, 3).
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Isomorphismen, Belegungen und Interpretationen
Definition 3.22

Sei o eine Signatur, seien A, B isomorphe o-Strukturen und sei 7 ein
Isomorphismus von A nach B (kurz: 7 : A2 B).

(a) Fiir jede Belegung 3 in A sei 7/3 die Belegung in B, so dass fiir alle

€ VAR gilt:
mB(x) = m(B(x)):

(b) Fiir eine Interpretation Z = (A, 3) schreiben wir ©Z fiir die Interpretation
7 = (B,7p).

Aus dieser Definition folgt direkt:
Lemma 3.23

Sei o eine Signatur, seien A, B isomorphe o-Strukturen, sei 7w : A= 13, sei 3
eine Belegung in A und sei T := (A, 3).
Fiir jedes x € VAR, fiir jedes a € A, fiir 7' := T2 und fiir b := 7(a) gilt:
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Isomorphismen, Belegungen und Interpretationen
Definition 3.22

Sei o eine Signatur, seien A, B isomorphe o-Strukturen und sei 7 ein
Isomorphismus von A nach B (kurz: 7 : A2 B).

(a) Fiir jede Belegung 3 in A sei 7/3 die Belegung in B, so dass fiir alle

€ VAR gilt:
mB(x) = m(B(x)):

(b) Fiir eine Interpretation Z = (A, 3) schreiben wir ©Z fiir die Interpretation
7 = (B,7p).

Aus dieser Definition folgt direkt:
Lemma 3.23

Sei o eine Signatur, seien A, B isomorphe o-Strukturen, sei 7w : A= 13, sei 3

eine Belegung in A und sei T := (A, 3).

Fiir jedes x € VAR, fiir jedes a € A, fiir 7' := T2 und fiir b := 7(a) gilt:
Tl = (WI);b(.
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Das Isomorphielemma

Satz 3.24 (Das Isomorphielemma der Logik erster Stufe)
Sei o eine Signatur, seien A, B isomorphe o-Strukturen und sei 7w : A = 5.

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 212



Kapitel 3: Logik erster Stufe - Abschnitt 3.4: Semantik der Logik erster Stufe

Das Isomorphielemma

Satz 3.24 (Das Isomorphielemma der Logik erster Stufe)
Sei o eine Signatur, seien A, B isomorphe o-Strukturen und sei w: A = . Fiir
Jede Belegung 3 in A und die o-Interpretation T := (A, ) gilt:
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Das Isomorphielemma

Satz 3.24 (Das Isomorphielemma der Logik erster Stufe)
Sei o eine Signatur, seien A, B isomorphe o-Strukturen und sei w: A = . Fiir
Jede Belegung 3 in A und die o-Interpretation T := (A, ) gilt:

(a) Fiir jeden o-Term t € T, ist | ]}WI = ([ ]]I)
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Das Isomorphielemma

Satz 3.24 (Das Isomorphielemma der Logik erster Stufe)

Sei o eine Signatur, seien A, B isomorphe o-Strukturen und sei w: A = . Fiir
Jede Belegung 3 in A und die o-Interpretation T := (A, ) gilt:

(a) Fiir jeden o-Term t € T, ist [(]™" = =([:]").

(b) Fiir jede FO[o]-Formel - gilt: =T |= » = T}
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Das Isomorphielemma

Satz 3.24 (Das Isomorphielemma der Logik erster Stufe)

Sei o eine Signatur, seien A, B isomorphe o-Strukturen und sei w: A = . Fiir
Jede Belegung 3 in A und die o-Interpretation T := (A, ) gilt:

(a) Fiir jeden o-Term t € T, st [1]™ = n([]").
(b) Fiir jede FO[o]-Formel - gilt: 7T, « T

Wir werden das Isomorphielemma per Induktion iiber den Aufbau von Termen
und Formeln beweisen. Hierzu zunachst ein kurzer Uberblick dariiber, wie solche
Induktionsbeweise prinzipiell aufgebaut sind.
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Beweise per Induktion iiber den Aufbau von Termen und
Formeln

e Ahnlich wie Aussagen iiber die aussagenlogischen Formeln kdnnen wir
Aussagen iiber Terme und Formeln der Logik der erster Stufe per Induktion
iber den Aufbau von T, bzw. FO[o] beweisen.
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Beweise per Induktion iiber den Aufbau von Termen und
Formeln

e Ahnlich wie Aussagen iiber die aussagenlogischen Formeln kdnnen wir
Aussagen iiber Terme und Formeln der Logik der erster Stufe per Induktion
iber den Aufbau von T, bzw. FO[o] beweisen.

® Im Induktionsanfang beweisen wir die Aussagen fiir die gemaB Basisregeln
definierten Terme bzw. Formeln.
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Beweise per Induktion iiber den Aufbau von Termen und
Formeln

e Ahnlich wie Aussagen iiber die aussagenlogischen Formeln kdnnen wir
Aussagen iiber Terme und Formeln der Logik der erster Stufe per Induktion
iber den Aufbau von T, bzw. FO[o] beweisen.

® Im Induktionsanfang beweisen wir die Aussagen fiir die gemaB Basisregeln
definierten Terme bzw. Formeln. Im Induktionschritt schlieBen wir von den
Subtermen bzw. Subformeln auf den Term bzw. die Formel selbst.
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Beweise per Induktion iiber den Aufbau von Termen und
Formeln

e Ahnlich wie Aussagen iiber die aussagenlogischen Formeln kdnnen wir
Aussagen iiber Terme und Formeln der Logik der erster Stufe per Induktion
iiber den Aufbau von T, bzw. FO[o] beweisen.

® Im Induktionsanfang beweisen wir die Aussagen fiir die gemaB Basisregeln
definierten Terme bzw. Formeln. Im Induktionschritt schlieBen wir von den
Subtermen bzw. Subformeln auf den Term bzw. die Formel selbst.

® Wie bei der Aussagenlogik ist dieses Vorgehen gerechtfertigt, weil es sich
auch als vollstandige Induktion iiber die Hohe des Syntaxbaums auffassen
|&sst.
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Beweise per Induktion iiber den Aufbau von Termen

Schematisch sieht der Beweis einer Aussage A(1) fiir alle Terme ¢ € T,, wie

folgt aus:
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Beweise per Induktion iiber den Aufbau von Termen

Schematisch sieht der Beweis einer Aussage A(1) fiir alle Terme ¢ € T,, wie

folgt aus:

Induktionsanfang:
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Beweise per Induktion iiber den Aufbau von Termen

Schematisch sieht der Beweis einer Aussage A(1) fiir alle Terme ¢ € T,, wie

folgt aus:

Induktionsanfang:
® Beweise, dass fiir alle Konstantensymbole ¢ € o die Aussage A(c) gilt.
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Beweise per Induktion iiber den Aufbau von Termen

Schematisch sieht der Beweis einer Aussage A(1) fiir alle Terme ¢ € T,, wie

folgt aus:
Induktionsanfang:
® Beweise, dass fiir alle Konstantensymbole ¢ € o die Aussage A(c) gilt.
® Beweise, dass fiir alle Variablen x € VAR die Aussage A(x) gilt.
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Beweise per Induktion iiber den Aufbau von Termen

Schematisch sieht der Beweis einer Aussage A(1) fiir alle Terme ¢ € T,, wie
folgt aus:
Induktionsanfang:

® Beweise, dass fiir alle Konstantensymbole ¢ € o die Aussage A(c) gilt.

® Beweise, dass fiir alle Variablen x € VAR die Aussage A(x) gilt.

Induktionsschritt:

® Betrachte jedes Funktionssymbol / € o, sei k := ar(f), und seien t1,...,
beliebige o-Terme. Beweise, dass A( ) gilt, und verwende dazu
die Induktionsannahme, dass A(t;) fiir jedes i € [k] gilt.
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Beweise per Induktion iiber den Aufbau von Termen

Schematisch sieht der Beweis einer Aussage A(1) fiir alle Terme ¢ € T,, wie
folgt aus:
Induktionsanfang:

® Beweise, dass fiir alle Konstantensymbole ¢ € o die Aussage A(c) gilt.

® Beweise, dass fiir alle Variablen x € VAR die Aussage A(x) gilt.

Induktionsschritt:

® Betrachte jedes Funktionssymbol / € o, sei k := ar(f), und seien t1,...,
beliebige o-Terme. Beweise, dass A( ) gilt, und verwende dazu
die Induktionsannahme, dass A(t;) fiir jedes i € [k] gilt.

Mit dieser Vorgehensweise beweisen wir nun Teil (a) des Isomorphielemmas.
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Teil (b) des Isomorphielemmas beweisen wir per Induktion iiber den Aufbau von
Formeln. Prinzipiell sind solche Induktionsbeweise wie folgt aufgebaut.
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Beweise per Induktion iiber den Aufbau von Formeln

Schematisch sieht der Beweis einer Aussage A() fiir alle FO[o]-Formeln » wie
folgt aus:
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Beweise per Induktion iiber den Aufbau von Formeln

Schematisch sieht der Beweis einer Aussage A() fiir alle FO[o]-Formeln » wie
folgt aus:

Induktionsanfang:
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Beweise per Induktion iiber den Aufbau von Formeln

Schematisch sieht der Beweis einer Aussage A() fiir alle FO[o]-Formeln » wie
folgt aus:

Induktionsanfang:

® Beweise, dass fiir alle o-Terme 11,1, € T, die Aussage A( ) gilt.
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Beweise per Induktion iiber den Aufbau von Formeln

Schematisch sieht der Beweis einer Aussage A() fiir alle FO[o]-Formeln » wie
folgt aus:

Induktionsanfang:
® Beweise, dass fiir alle o-Terme 11,1, € T, die Aussage A( ) gilt.

® Beweise, dass fiir alle Relationssymbole < € o, fiir k := ar(R) und fiir alle
o-Terme t1,...,t € T, die Aussage A( ) gilt
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Induktionsschritt:
Seien » und ¢ beliebige FO[o]-Formeln. Die Induktionsannahme besagt, dass

die Aussagen A() und A(1)) gelten.
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Induktionsschritt:
Seien » und ¢ beliebige FO[o]-Formeln. Die Induktionsannahme besagt, dass

die Aussagen A() und A()) gelten.

Im Induktionsschritt muss dann gezeigt werden, dass

e fiir jede Variable x € VAR die Aussage A( ) gilt,
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Induktionsschritt:
Seien » und ¢ beliebige FO[o]-Formeln. Die Induktionsannahme besagt, dass

die Aussagen A() und A()) gelten.

Im Induktionsschritt muss dann gezeigt werden, dass
e fiir jede Variable x € VAR die Aussage A( ) gilt,
e fiir jede Variable x € VAR die Aussage A( ) gilt,
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Induktionsschritt:

Seien > und
die Aussagen A() und A()) gelten.

Im Induktionsschritt muss dann gezeigt werden, dass
e fiir jede Variable x € VAR die Aussage A( ) gilt,

e fiir jede Variable x € VAR die Aussage A( ) gilt,

® die Aussage A(—) gilt,
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Induktionsschritt:

Seien » und ¢ beliebige FO[o]-Formeln. Die Induktionsannahme besagt, dass
die Aussagen A() und A()) gelten.

Im Induktionsschritt muss dann gezeigt werden, dass
e fiir jede Variable x € VAR die Aussage A( ) gilt,
e fiir jede Variable x € VAR die Aussage A( ) gilt,

® die Aussage A(—) gilt,

* die Aussage A( ) gilt,
* die Aussage A( ) gilt,
* die Aussage A( ) gilt.
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Induktionsschritt:

Seien » und ¢ beliebige FO[o]-Formeln. Die Induktionsannahme besagt, dass
die Aussagen A() und A()) gelten.

Im Induktionsschritt muss dann gezeigt werden, dass
e fiir jede Variable x € VAR die Aussage A( ) gilt,
e fiir jede Variable x € VAR die Aussage A( ) gilt,

® die Aussage A(—) gilt,

* die Aussage A( ) gilt,
* die Aussage A( ) gilt,
* die Aussage A( ) gilt.

Mit dieser Vorgehensweise beweisen wir nun Teil (b) des Isomorphielemmas.
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Ahnlich wie fiir die Aussagenlogik gilt auch fiir die Logik erster Stufe ein
Koinzidenzlemma, das besagt, dass
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Ahnlich wie fiir die Aussagenlogik gilt auch fiir die Logik erster Stufe ein
Koinzidenzlemma, das besagt, dass der Wert | ]}I eines Terms © bzw. der Wert

[-]" einer Formel > nur abhingt von
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Ahnlich wie fiir die Aussagenlogik gilt auch fiir die Logik erster Stufe ein
Koinzidenzlemma, das besagt, dass der Wert | ]}I eines Terms © bzw. der Wert

[-]" einer Formel > nur abhingt von

® denjenigen Bestandteilen von A, die explizit in t bzw. ¢ vorkommen,
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Ahnlich wie fiir die Aussagenlogik gilt auch fiir die Logik erster Stufe ein
Koinzidenzlemma, das besagt, dass der Wert | ]}I eines Terms © bzw. der Wert

[-]" einer Formel > nur abhingt von
® denjenigen Bestandteilen von A, die explizit in t bzw. ¢ vorkommen, und

® den Belegungen 5(x) derjenigen Variablen x, die in t vorkommen
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Ahnlich wie fiir die Aussagenlogik gilt auch fiir die Logik erster Stufe ein
Koinzidenzlemma, das besagt, dass der Wert | ]}I eines Terms © bzw. der Wert

[-]" einer Formel > nur abhingt von
® denjenigen Bestandteilen von A, die explizit in t bzw. ¢ vorkommen, und

® den Belegungen 3(x) derjenigen Variablen x, die in ¢t vorkommen bzw. die
in ¢ vorkommen und nicht im Wirkungsbereich eines Quantors stehen.
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Ahnlich wie fiir die Aussagenlogik gilt auch fiir die Logik erster Stufe ein
Koinzidenzlemma, das besagt, dass der Wert | ]}I eines Terms © bzw. der Wert

[-]" einer Formel > nur abhingt von
® denjenigen Bestandteilen von A, die explizit in t bzw. ¢ vorkommen, und

® den Belegungen 3(x) derjenigen Variablen x, die in ¢t vorkommen bzw. die
in ¢ vorkommen und nicht im Wirkungsbereich eines Quantors stehen.

Um diese Aussage prazise zu formulieren, sind folgende Begriffe niitzlich.
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Definition 3.25

(a) Ist £ ein Term oder eine Formel der Logik erster Stufe, so schreiben wir

® 5(¢£), um die Menge aller Relations-, Funktions- und Konstantensymbole zu
bezeichnen, die in £ vorkommen,
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Definition 3.25

(a) Ist £ ein Term oder eine Formel der Logik erster Stufe, so schreiben wir

® 5(¢£), um die Menge aller Relations-, Funktions- und Konstantensymbole zu
bezeichnen, die in £ vorkommen,

® var(¢), um die Menge aller in ¢ vorkommenden Variablen zu bezeichnen.
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Definition 3.25

(a) Ist £ ein Term oder eine Formel der Logik erster Stufe, so schreiben wir

® 5(¢£), um die Menge aller Relations-, Funktions- und Konstantensymbole zu
bezeichnen, die in £ vorkommen,

® var(¢), um die Menge aller in ¢ vorkommenden Variablen zu bezeichnen.

(b) Ist - eine Formel und x eine Variable, so heiit jedes Vorkommen von x in
einer Subformel von », die von der Form oder ist, gebunden.
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Definition 3.25

(a) Ist £ ein Term oder eine Formel der Logik erster Stufe, so schreiben wir

® 5(¢£), um die Menge aller Relations-, Funktions- und Konstantensymbole zu
bezeichnen, die in £ vorkommen,

® var(¢), um die Menge aller in ¢ vorkommenden Variablen zu bezeichnen.

(b) Ist - eine Formel und x eine Variable, so heiit jedes Vorkommen von x in
einer Subformel von », die von der Form oder ist, gebunden.
Jedes andere Vorkommen von x in © heiBt frei.

Beispiel:
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Definition 3.25

(a) Ist £ ein Term oder eine Formel der Logik erster Stufe, so schreiben wir

® 5(¢£), um die Menge aller Relations-, Funktions- und Konstantensymbole zu
bezeichnen, die in £ vorkommen,

® var(¢), um die Menge aller in ¢ vorkommenden Variablen zu bezeichnen.

(b) Ist - eine Formel und x eine Variable, so heiit jedes Vorkommen von x in
einer Subformel von », die von der Form oder ist, gebunden.
Jedes andere Vorkommen von x in ¢ heiBt frei.

Beispiel:

P =
Das erste Vorkommen von v in ¢ ist frei, das zweite und dritte Vorkommen
von vy in o ist gebunden. Die Vorkommen von v; und v3 in ¢ sind frei.
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Freie Variablen

Definition 3.26

Die Menge frei(») aller freien Variablen einer Formel
Variablen, die mindestens ein freies Vorkommen in ¢ haben.

besteht aus allen
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Freie Variablen

Definition 3.26

Die Menge frei(,») aller freien Variablen einer Formel v besteht aus allen
Variablen, die mindestens ein freies Vorkommen in ¢ haben.
Die Menge frei(,0) lasst sich rekursiv iiber den Aufbau von Formeln wie folgt

definieren:

frei(

N—r
Il
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Freie Variablen

Definition 3.26

Die Menge frei(,») aller freien Variablen einer Formel v besteht aus allen
Variablen, die mindestens ein freies Vorkommen in ¢ haben.
Die Menge frei(,0) lasst sich rekursiv iiber den Aufbau von Formeln wie folgt

definieren:
frei( ) = wvar(t)U---Uvar(t)
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Freie Variablen

Definition 3.26

Die Menge frei(,») aller freien Variablen einer Formel v besteht aus allen
Variablen, die mindestens ein freies Vorkommen in ¢ haben.
Die Menge frei(,0) lasst sich rekursiv iiber den Aufbau von Formeln wie folgt

definieren:
frei( ) = wvar(t)U---Uvar(t)
frei( ) =
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Freie Variablen

Definition 3.26

Die Menge frei(,») aller freien Variablen einer Formel v besteht aus allen
Variablen, die mindestens ein freies Vorkommen in ¢ haben.
Die Menge frei(,0) lasst sich rekursiv iiber den Aufbau von Formeln wie folgt

definieren:
frei( ) = var(t)U---Uvar(t)
frei( ) = var(t) Uvar(t)
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Freie Variablen

Definition 3.26

Die Menge frei(,») aller freien Variablen einer Formel v besteht aus allen
Variablen, die mindestens ein freies Vorkommen in ¢ haben.
Die Menge frei(,0) lasst sich rekursiv iiber den Aufbau von Formeln wie folgt

definieren:

frei( ) = wvar(t)U---Uvar(t)
frei( ) = wvar(t)Uvar(i)
frei(—yp) =
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Freie Variablen

Definition 3.26

Die Menge frei(,») aller freien Variablen einer Formel v besteht aus allen
Variablen, die mindestens ein freies Vorkommen in ¢ haben.
Die Menge frei(,0) lasst sich rekursiv iiber den Aufbau von Formeln wie folgt

definieren:

frei( ) = wvar(t)U---Uvar(t)
frei( ) = wvar(t)Uvar(i)
frei(—yp) = frei(y)
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Freie Variablen

Definition 3.26

Die Menge frei(,») aller freien Variablen einer Formel v besteht aus allen
Variablen, die mindestens ein freies Vorkommen in ¢ haben.

Die Menge frei(,0) lasst sich rekursiv iiber den Aufbau von Formeln wie folgt

definieren:
frei( ) var(t;)U--- Uvar(ty)
frei( ) = wvar(t)Uvar(i)
frei(—yp) = frei(y)
frei( )
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Freie Variablen

Definition 3.26

Die Menge frei(,») aller freien Variablen einer Formel v besteht aus allen
Variablen, die mindestens ein freies Vorkommen in ¢ haben.

Die Menge frei(,0) lasst sich rekursiv iiber den Aufbau von Formeln wie folgt
definieren:

frei( ) var(t;)U--- Uvar(ty)
frei( ) = var(t;)Uvar(i)
frei(—yp) = frei(y)
frei( ) = frei(p)Ufrei(v) firalle < € {1, v, —~}

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 220



Kapitel 3: Logik erster Stufe - Abschnitt 3.4: Semantik der Logik erster Stufe

Freie Variablen

Definition 3.26
Die Menge frei(,») aller freien Variablen einer Formel v besteht aus allen
Variablen, die mindestens ein freies Vorkommen in ¢ haben.
Die Menge frei(,0) lasst sich rekursiv iiber den Aufbau von Formeln wie folgt
definieren:
frei( ) (1)
frei( ) (1)
frei(—yp) = frei(y)
) ()
) (

Il
<
%)
=

Ufrei(«)  fiiralle = € {1, Vv, —~}
)

I
-
=
o]

frei(
frei(
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Freie Variablen

Definition 3.26
Die Menge frei(,») aller freien Variablen einer Formel v besteht aus allen
Variablen, die mindestens ein freies Vorkommen in ¢ haben.
Die Menge frei(,0) lasst sich rekursiv iiber den Aufbau von Formeln wie folgt
definieren:
frei( ) (1)
frei( ) (1)
frei(—yp) = frei(y)
) ()
) (

Il
<
%)
=

Ufrei(«)  fiiralle = € {1, Vv, —~}
) = frei()\ ()

I
-
=
o]

frei(
frei(
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Freie Variablen

Definition 3.26

Die Menge frei(,») aller freien Variablen einer Formel v besteht aus allen
Variablen, die mindestens ein freies Vorkommen in ¢ haben.

Die Menge frei(,0) lasst sich rekursiv iiber den Aufbau von Formeln wie folgt
definieren:

frei( ) var(t;)U--- Uvar(ty)
frei( ) = wvar(t)Uvar(i)
frei(—yp) = frei(y)
frei( ) = frei(p)Ufrei(v) firalle < € {1, v, —~}
frei( ) frei( ) = frei(p) \ {x}.
Beispiele:
o frei( ) =
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Freie Variablen

Definition 3.26

Die Menge frei(,») aller freien Variablen einer Formel v besteht aus allen
Variablen, die mindestens ein freies Vorkommen in ¢ haben.

Die Menge frei(,0) lasst sich rekursiv iiber den Aufbau von Formeln wie folgt
definieren:

frei( ) var(t;)U--- Uvar(ty)
frei( ) = var(t;)Uvar(i)
frei(—yp) = frei(y)
frei( ) = frei(p)Ufrei(v) firalle < € {1, v, —~}
frei( ) frei( ) = frei(p) \ {x}.
Beispiele:
* frei( ) = {vo, v}
o frei( ) =
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Freie Variablen

Definition 3.26

Die Menge frei(,») aller freien Variablen einer Formel v besteht aus allen
Variablen, die mindestens ein freies Vorkommen in ¢ haben.

Die Menge frei(,0) lasst sich rekursiv iiber den Aufbau von Formeln wie folgt
definieren:

frei( ) var(t;)U--- Uvar(ty)
frei( ) = wvar(t)Uvar(i)
frei(—yp) = frei(y)
frei( ) = frei(p)Ufrei(v) firalle < € {1, v, —~}
frei( ) frei( ) = frei(p) \ {x}.
Beispiele:

o frei( ) = {vo, 3}
. el ) = (v}
o frei( ) =
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Freie Variablen

Definition 3.26

Die Menge frei(,») aller freien Variablen einer Formel v besteht aus allen
Variablen, die mindestens ein freies Vorkommen in ¢ haben.

Die Menge frei(,0) lasst sich rekursiv iiber den Aufbau von Formeln wie folgt
definieren:

frei( ) var(t;)U--- Uvar(ty)
frei( ) = wvar(t)Uvar(i)
frei(—yp) = frei(y)
frei( ) = frei(p)Ufrei(v) firalle < € {1, v, —~}
frei( ) frei( ) = frei(p) \ {x}.
Beispiele:

o frei( ) = {vo, 3}
o frei ) = ()
o frei( ) = {w, 3,1}
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Das Koinzidenzlemma

Satz 3.27 (Koinzidenzlemma fiir Terme)
Sei I = (A1, B1) eine o1-Interpretation und sei I, = (A, 52) eine o»-Interpretation,

wobei o1 und oy Signaturen seien.

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 221



Kapitel 3: Logik erster Stufe - Abschnitt 3.4: Semantik der Logik erster Stufe

Das Koinzidenzlemma

Satz 3.27 (Koinzidenzlemma fiir Terme)
Sei I = (A1, B1) eine o1-Interpretation und sei I, = (A, 52) eine o»-Interpretation,
wobei o1 und o, Signaturen seien. Sei t € T ein Term mit o(t) C 01N o2, so dass gilt:
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Das Koinzidenzlemma

Satz 3.27 (Koinzidenzlemma fiir Terme)
Sei I = (A1, B1) eine o1-Interpretation und sei I, = (A, 52) eine o»-Interpretation,
wobei o1 und o, Signaturen seien. Sei t € T ein Term mit o(t) C 01N o2, so dass gilt:

1L Aoy = Azlog
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Das Koinzidenzlemma

Satz 3.27 (Koinzidenzlemma fiir Terme)
Sei I = (A1, B1) eine o1-Interpretation und sei I, = (A, 52) eine o»-Interpretation,
wobei o1 und o, Signaturen seien. Sei t € T ein Term mit o(t) C 01N o2, so dass gilt:

1L Aoy = Azlog
(d.h., die o(t)-Redukte von Ay und A, sind identisch),
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Das Koinzidenzlemma

Satz 3.27 (Koinzidenzlemma fiir Terme)
Sei I = (A1, B1) eine o1-Interpretation und sei I, = (A, 52) eine o»-Interpretation,
wobei o1 und o, Signaturen seien. Sei t € T ein Term mit o(t) C 01N o2, so dass gilt:

1L Aoy = Azlog
(d.h., die o(t)-Redukte von A, und A sind identisch), und

2. Bi(x) = Ba(x), fiir alle x € var(t).
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Das Koinzidenzlemma

Satz 3.27 (Koinzidenzlemma fiir Terme)
Sei I = (A1, B1) eine o1-Interpretation und sei I, = (A, 52) eine o»-Interpretation,
wobei o1 und o, Signaturen seien. Sei t € T ein Term mit o(t) C 01N o2, so dass gilt:

1L Aoy = Azlog
(d.h., die o(t)-Redukte von A, und A sind identisch), und

2. Bi(x) = Ba(x), fiir alle x € var(t).
Dann gilt:  [:]" = [:]™.
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Das Koinzidenzlemma

Satz 3.27 (Koinzidenzlemma fiir Terme)
Sei I = (A1, B1) eine o1-Interpretation und sei I, = (A, 52) eine o»-Interpretation,
wobei o1 und o, Signaturen seien. Sei t € T ein Term mit o(t) C 01N o2, so dass gilt:

L Aoy = Aoy
(d.h., die o(t)-Redukte von A, und A sind identisch), und
2. Bi(x) = Ba(x), fiir alle x € var(t).

Dann gilt: [:]" = [:]™.
Beweis: Per Induktion liber den Aufbau von Termen.
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Das Koinzidenzlemma

Satz 3.27 (Koinzidenzlemma fiir Terme)
Sei I = (A1, B1) eine o1-Interpretation und sei I, = (A, 52) eine o»-Interpretation,
wobei o1 und o, Signaturen seien. Sei t € T ein Term mit o(t) C 01N o2, so dass gilt:

L Aoy = Aoy
(d.h., die o(t)-Redukte von A, und A sind identisch), und
2. Bi(x) = Ba(x), fiir alle x € var(t).

Dann gilt: [:]" = [:]™.
Beweis: Per Induktion iiber den Aufbau von Termen. Details: Ubung.
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Das Koinzidenzlemma
Satz 3.27 (Koinzidenzlemma fiir Terme)

Sei I = (A1, B1) eine o1-Interpretation und sei I, = (A, 52) eine o»-Interpretation,
wobei o1 und o, Signaturen seien. Sei t € T ein Term mit o(t) C 01N o2, so dass gilt:
1L Aoy = Azlog
(d.h., die o(t)-Redukte von A, und A sind identisch), und
2. Bi(x) = Ba(x), fiir alle x € var(t).

Dann gilt: [:]" = [:]™.
Beweis: Per Induktion iiber den Aufbau von Termen. Details: Ubung. O

Satz 3.28 (Koinzidenzlemma fiir FO-Formeln)
Sei I = (A1, B1) eine o1-Interpretation und sei I, = (A, 5») eine o»-Interpretation,

wobei o1 und o2 Signaturen seien.
Sei € FO eine Formel der Logik erster Stufe mit o(y) C o1 N o2, so dass gilt:
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Das Koinzidenzlemma

Satz 3.27 (Koinzidenzlemma fiir Terme)

Sei I = (A1, B1) eine o1-Interpretation und sei I, = (A, 52) eine o»-Interpretation,
wobei o1 und o, Signaturen seien. Sei t € T ein Term mit o(t) C 01N o2, so dass gilt:

L Aoy = Aoy
(d.h., die o(t)-Redukte von A, und A sind identisch), und
2. Bi(x) = Ba(x), fiir alle x € var(t).

Dann gilt: [:]" = [:]™.
Beweis: Per Induktion iiber den Aufbau von Termen. Details: Ubung. O

Satz 3.28 (Koinzidenzlemma fiir FO-Formeln)
Sei I = (A1, B1) eine o1-Interpretation und sei I, = (A, 5») eine o»-Interpretation,

wobei o1 und o2 Signaturen seien.
Sei € FO eine Formel der Logik erster Stufe mit o(y) C o1 N o2, so dass gilt:

Lo Ailoe) = Aoy
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Das Koinzidenzlemma

Satz 3.27 (Koinzidenzlemma fiir Terme)

Sei I = (A1, B1) eine o1-Interpretation und sei I, = (A, 52) eine o»-Interpretation,
wobei o1 und o, Signaturen seien. Sei t € T ein Term mit o(t) C 01N o2, so dass gilt:

L Aoy = Aoy
(d.h., die o(t)-Redukte von A, und A sind identisch), und
2. Bi(x) = Ba(x), fiir alle x € var(t).

Dann gilt: [:]" = [:]™.
Beweis: Per Induktion iiber den Aufbau von Termen. Details: Ubung. O

Satz 3.28 (Koinzidenzlemma fiir FO-Formeln)
Sei I = (A1, B1) eine o1-Interpretation und sei I, = (A, 5») eine o»-Interpretation,

wobei o1 und o2 Signaturen seien.
Sei € FO eine Formel der Logik erster Stufe mit o(y) C o1 N o2, so dass gilt:

1. Ailoe) = A2lo(e), und
2. Pi(x) = Ba(x), fiir alle x € frei(y).
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Das Koinzidenzlemma
Satz 3.27 (Koinzidenzlemma fiir Terme)

Sei I = (A1, B1) eine o1-Interpretation und sei I, = (A, 52) eine o»-Interpretation,
wobei o1 und o, Signaturen seien. Sei t € T ein Term mit o(t) C 01N o2, so dass gilt:

Lo Aoy = Aoy
(d.h., die o(t)-Redukte von A, und A sind identisch), und
2. Bi(x) = Ba(x), fiir alle x € var(t).
Dann gilt: [:]" = [:]™.
Beweis: Per Induktion iiber den Aufbau von Termen. Details: Ubung. O

Satz 3.28 (Koinzidenzlemma fiir FO-Formeln)

Sei I = (A1, B1) eine o1-Interpretation und sei I, = (A, 5») eine o»-Interpretation,
wobei o1 und o2 Signaturen seien.
Sei € FO eine Formel der Logik erster Stufe mit o(y) C o1 N o2, so dass gilt:

L Ailoe) = Aolo(y), und
2. Bu(x) = B2(x), fiir alle x € frei(p).
Dann gilt: 7, = = L E
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Das Koinzidenzlemma
Satz 3.27 (Koinzidenzlemma fiir Terme)

Sei 71 = (Ai, 1) eine o1-Interpretation und sei T, = (Ao, 52) eine o»-Interpretation,
wobei o1 und o, Signaturen seien. Sei t € T ein Term mit o(t) C 01N o2, so dass gilt:
L Aoy = Aolop
(d.h., die o(t)-Redukte von A, und A sind identisch), und
2. Bi(x) = Ba(x), fiir alle x € var(t).
Dann gilt:  [:]" = [:]™.
Beweis: Per Induktion iiber den Aufbau von Termen. Details: Ubung. O

Satz 3.28 (Koinzidenzlemma fiir FO-Formeln)

Sei I = (A1, B1) eine o1-Interpretation und sei I, = (A, 5») eine o»-Interpretation,
wobei o1 und o2 Signaturen seien.
Sei € FO eine Formel der Logik erster Stufe mit o(y) C o1 N o2, so dass gilt:

L Ailoe) = Aolo(y), und
2. Bu(x) = B2(x), fiir alle x € frei(p).
Dann gilt: 7, = = L E

Beweis: Per Induktion iiber den Aufbau von Formeln. Details: Ubung. O
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Notation fiir Terme

® Fiir einen Term t € T, schreiben wir , um anzudeuten, dass
var(t) C {x1,...,Xxn}-
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Notation fiir Terme

® Fiir einen Term t € T, schreiben wir , um anzudeuten, dass
var(t) C {x1,...,Xxn}-

® Sei A eine o-Struktur und seien ay,...,a, € A.
Auf Grund des Koinzidenzlemmas gilt

HH(AB) _ [H](A,ﬁ')

fir alle Belegungen 3, 8" : VAR — A, so dass 3(x;) = a; = 0'(x) fiir alle
i€ [n] gilt.
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Notation flir Terme

® Fiir einen Term t € T, schreiben wir , um anzudeuten, dass
var(t) C {x1,...,Xxn}-
® Sei A eine o-Struktur und seien ay,...,a, € A.

Auf Grund des Koinzidenzlemmas gilt

HH(AB) _ [H](A,ﬁ')

fir alle Belegungen 3, 8" : VAR — A, so dass 3(x;) = a; = 0'(x) fiir alle
i € [n] gilt. Wir schreiben oft

tA[al, .. .,a,,],

um das Element [ ]](A'ﬂ) zu bezeichnen.
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Notation flir Terme

® Fiir einen Term t € T, schreiben wir , um anzudeuten, dass
var(t) C {x1,...,Xxn}-

® Sei A eine o-Struktur und seien ay,...,a, € A.
Auf Grund des Koinzidenzlemmas gilt

HH(A-,B) _ [H](A,ﬁ')

fir alle Belegungen 3, 8" : VAR — A, so dass 3(x;) = a; = 0'(x) fiir alle
i € [n] gilt. Wir schreiben oft

um das Element [ ]](A'ﬂ) zu bezeichnen.

® Fiir Terme ¢ € T,, in denen keine Variable vorkommt, d.h. var(t) = (
(so genannte Grundterme), schreiben wir einfach t.
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Notation fiir Formeln

® Fiir eine FO[o]-Formel ¢ schreiben wir , um anzudeuten, dass
frei(v) C {x1,..., X0}
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Notation flir Formeln

® Fiir eine FO[o]-Formel ¢ schreiben wir , um anzudeuten, dass
frei(v) C {x1,..., X0}

® |st A eine o-Struktur und sind ay,...,a, € A, so schreiben wir
A E olar,...,a)

wenn (A, B) =  fiir eine Belegung 3 : VAR — A mit 5(x;) = a; fiir alle
i€ [n] gilt.
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Notation flir Formeln

® Fiir eine FO[o]-Formel ¢ schreiben wir , um anzudeuten, dass
frei(v) C {x1,..., X0}

® |st A eine o-Struktur und sind ay,...,a, € A, so schreiben wir
A E olar,...,a)

wenn (A, B) =  fiir eine Belegung 3 : VAR — A mit 5(x;) = a; fiir alle
i€ [n] gilt.

Auf Grund des Koinzidenzlemmas gilt dann auch fiir alle Belegungen
B’ VAR — A mit 3'(x;) = a; fir alle i € [n], dass (A, 8') E .
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Satze der Logik erster Stufe
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Definition 3.29

Sei o eine Signatur.
(a) Ein FO[o]-Satz (kurz: Satz) ist eine FO[o]-Formel > mit frei(¢) = 0.
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Definition 3.29

Sei o eine Signatur.
(a) Ein FO[o]-Satz (kurz: Satz) ist eine FO[o]-Formel > mit frei(¢) = 0.

(b) Wir schreiben S, um die Menge aller FO[o]-Satze zu bezeichnen und

setzen
s= J S

o Signatur
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Definition 3.29

Sei o eine Signatur.
(a) Ein FO[o]-Satz (kurz: Satz) ist eine FO[o]-Formel » mit frei(y) = 0.

(b) Wir schreiben S,, um die Menge aller FO[o]-S&tze zu bezeichnen und

setzen
s= J S

o Signatur
(c) Fiir einen FO[o]-Satz ¢ und eine o-Struktur A schreiben wir A |= o, um

auszudriicken, dass (A, 8) =  fiir eine (und gemiB Koinzidenzlemma
daher fiir jede) Belegung 3 in A gilt.
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Definition 3.29

Sei o eine Signatur.
(a) Ein FO[o]-Satz (kurz: Satz) ist eine FO[o]-Formel » mit frei(y) = 0.

(b) Wir schreiben S,, um die Menge aller FO[o]-S&tze zu bezeichnen und

setzen
s= J S

o Signatur

(c) Fiir einen FO[o]-Satz ¢ und eine o-Struktur A schreiben wir A |= o, um
auszudriicken, dass (A, 8) =  fiir eine (und gemiB Koinzidenzlemma
daher fiir jede) Belegung 3 in A gilt.

(d) Fir eine Menge ® C S, von FO[o]-Sitzen schreiben wir A |= @, falls
A = o fir jedes © €  gilt.
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Definition 3.29

Sei o eine Signatur.
(a) Ein FO[o]-Satz (kurz: Satz) ist eine FO[o]-Formel » mit frei(y) = 0.

(b) Wir schreiben S,, um die Menge aller FO[o]-S&tze zu bezeichnen und

setzen
s= J S

o Signatur

(c) Fiir einen FO[o]-Satz ¢ und eine o-Struktur A schreiben wir A |= o, um
auszudriicken, dass (A, 8) =  fiir eine (und gemiB Koinzidenzlemma
daher fiir jede) Belegung 3 in A gilt.

(d) Fir eine Menge ® C S, von FO[o]-Sitzen schreiben wir A |= @, falls
A = o fir jedes © €  gilt.

Als direkte Folgerung aus dem Isomorphielemma erhalten wir, dass fiir
isomorphe o-Strukturen A und B und fiir alle FO[o]-Satze ¢ gilt:

A= — BE
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Modellklassen und Definierbarkeit
Definition 3.30

Sei ¢ eine Signatur und sei ® C S, (d.h. ¢ ist eine Menge von FO[o]-S&tzen).
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Modellklassen und Definierbarkeit
Definition 3.30

Sei o eine Signatur und sei
(a) Die Modellklasse von @ ist die Klasse MOD, (%) aller o-Strukturen A fiir

die gilt: A |

C S, (d.h. & ist eine Menge von FO[o]-S&tzen).
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Modellklassen und Definierbarkeit
Definition 3.30

Sei o eine Signatur und sei
(a) Die Modellklasse von ¢ ist die Klasse MOD,(®) aller o-Strukturen A fiir
die gilt: A |
(b) Fiir eine Klasse € von o-Strukturen sagen wir
definiert (oder axiomatisiert) €,

C S, (d.h. & ist eine Menge von FO[o]-S&tzen).

falls € = MOD,(®).
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Modellklassen und Definierbarkeit
Definition 3.30

Sei o eine Signatur und sei
(a) Die Modellklasse von ¢ ist die Klasse MOD,(®) aller o-Strukturen A fiir
die gilt: A |
(b) Fiir eine Klasse € von o-Strukturen sagen wir
definiert (oder axiomatisiert) €,

C S, (d.h. & ist eine Menge von FO[o]-S&tzen).

falls € = MOD,(®).
(c) Fir einen FO[o]-Satz > setzen wir MOD, () := MOD,({»})
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Modellklassen und Definierbarkeit

Definition 3.30
Sei ¢ eine Signatur und sei ® C S, (d.h. ¢ ist eine Menge von FO[o]-S&tzen).

(a) Die Modellklasse von ¢ ist die Klasse MOD,(®) aller o-Strukturen A fiir
die gilt: A=
(b) Fiir eine Klasse € von o-Strukturen sagen wir

definiert (oder axiomatisiert) €,

falls € = MOD,(®).

(c) Fir einen FO[o]-Satz ¢ setzen wir MOD, () := MOD,({}) und sagen,
dass ¢ die Klasse € := MOD,(») definiert (bzw. axiomatisiert).
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Modellklassen und Definierbarkeit

Definition 3.30
Sei ¢ eine Signatur und sei ® C S, (d.h. ¢ ist eine Menge von FO[o]-S&tzen).

(a) Die Modellklasse von @ ist die Klasse MOD, (%) aller o-Strukturen A fiir
die gilt: A=
(b) Fiir eine Klasse € von o-Strukturen sagen wir
definiert (oder axiomatisiert) €,
falls € = MOD,(®).

(c) Fir einen FO[o]-Satz ¢ setzen wir MOD, () := MOD,({}) und sagen,
dass ¢ die Klasse € := MOD,(») definiert (bzw. axiomatisiert).

Als direkte Folgerung aus dem Isomorphielemma erhalten wir:

Korollar 3.31
Fiir jede Signatur o und jedes ® C S, ist MOD, (%) unter Isomorphie

abgeschlossen. D.h. fiir isomorphe o-Strukturen A und BB gilt:
A€ MOD,(®) <= Be&MOD,(®).
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Notation

® Ab jetzt verwenden wir fiir die Logik erster Stufe dhnliche
Klammerkonventionen wie bei der Aussagenlogik.
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Notation

® Ab jetzt verwenden wir fiir die Logik erster Stufe dhnliche
Klammerkonventionen wie bei der Aussagenlogik.

® Fiir gewisse zweistellige Funktionssymbole wie 4+, - und zweistellige
Relationssymbole wie < verwenden wir Infix- statt Prafixnotation. Dabei
setzen wir auf natiirliche Weise Klammern, um die eindeutige Lesbarkeit zu
gewshrleisten.
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Notation

® Ab jetzt verwenden wir fiir die Logik erster Stufe dhnliche
Klammerkonventionen wie bei der Aussagenlogik.

® Fiir gewisse zweistellige Funktionssymbole wie 4+, - und zweistellige
Relationssymbole wie < verwenden wir Infix- statt Prafixnotation. Dabei
setzen wir auf natiirliche Weise Klammern, um die eindeutige Lesbarkeit zu
gewshrleisten.

® Wir schreiben x < y als Abkiirzung fiir die Formel (x <y A —x=y).
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Ordnungen

Beispiel 3.32

Wir betrachten Strukturen und Formeln iiber der Signatur o := {<}.

Zur Erinnerung: Eine o-Struktur A = (A, <*) ist eine lineare Ordnung, falls
gilt:
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Ordnungen

Beispiel 3.32

Wir betrachten Strukturen und Formeln iiber der Signatur o := {<}.

Zur Erinnerung: Eine o-Struktur A = (A, <*) ist eine lineare Ordnung, falls
gilt:

(1) <A st reflexiv,
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Ordnungen

Beispiel 3.32
Wir betrachten Strukturen und Formeln iiber der Signatur o := {<}.

Zur Erinnerung: Eine o-Struktur A = (A, <*) ist eine lineare Ordnung, falls
gilt:
(1) <A st reflexiv,

® dh. firalleac Agit: a<*a
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Ordnungen

Beispiel 3.32
Wir betrachten Strukturen und Formeln iiber der Signatur o := {<}.
Zur Erinnerung: Eine o-Struktur A = (A, <*) ist eine lineare Ordnung, falls
gilt:
(1) <A st reflexiv,
® dh. firalleac Agit: a<*a

® d.h. A e, wobei
Prefl
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Ordnungen

Beispiel 3.32
Wir betrachten Strukturen und Formeln iiber der Signatur o := {<}.
Zur Erinnerung: Eine o-Struktur A = (A, <*) ist eine lineare Ordnung, falls
gilt:
(1) <A st reflexiv,
® dh. firalleac Agit: a<*a

® d.h. A e, wobei
Prefl = Vx x <x
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Ordnungen
Beispiel 3.32

Wir betrachten Strukturen und Formeln iiber der Signatur o := {<}.
Zur Erinnerung: Eine o-Struktur A = (A, <*) ist eine lineare Ordnung, falls
gilt:
(1) <A st reflexiv,
® dh. firalleac Agit: a<*a

® d.h. A e, wobei
Prefl = Vx x <x

(2) <A st transitiv,
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Ordnungen
Beispiel 3.32
Wir betrachten Strukturen und Formeln iiber der Signatur o := {<}.
Zur Erinnerung: Eine o-Struktur A = (A, <*) ist eine lineare Ordnung, falls
gilt:
(1) <A st reflexiv,
® dh. firalleac Agit: a<*a

® d.h. A e, wobei
Prefl = Vx x <x

(2) <A st transitiv,

® d.h. fiir alle a,b,c € A gilt: Wenn a <A bund b<? ¢, dann auch a <* ¢
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Ordnungen
Beispiel 3.32
Wir betrachten Strukturen und Formeln iiber der Signatur o := {<}.
Zur Erinnerung: Eine o-Struktur A = (A, <*) ist eine lineare Ordnung, falls
gilt:
(1) <A st reflexiv,
® dh. firalleac Agit: a<*a

® d.h. A e, wobei
Prefl = Vx x <x

(2) <A st transitiv,
® d.h. fiir alle a,b,c € A gilt: Wenn a <A bund b<? ¢, dann auch a <* ¢
® d.h. A ©trans, wobei
Ptrans =
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Ordnungen
Beispiel 3.32
Wir betrachten Strukturen und Formeln iiber der Signatur o := {<}.
Zur Erinnerung: Eine o-Struktur A = (A, <*) ist eine lineare Ordnung, falls
gilt:
(1) <A st reflexiv,
® dh. firalleac Agit: a<*a

® d.h. A e, wobei
Prefl = Vx x <x

(2) <A st transitiv,
® d.h. fiir alle a,b,c € A gilt: Wenn a <A bund b<? ¢, dann auch a <* ¢
® d.h. A ©trans, wobei
Dtrans ‘= VxVyVz ((X <y N y< z) — x < z)
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Kapitel 3: Logik erster Stufe - Abschnitt 3.5: Beispiele fiir Formeln der Logik erster Stufe in versc

(3) <A ist antisymmetrisch,
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(3) <A ist antisymmetrisch,
® d.h. fiiralle a,b € A mit a # b gilt: Wenn a <* b, dann b ¢4 a
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(3) <A ist antisymmetrisch,
® d.h. fiiralle a,b € A mit a # b gilt: Wenn a <* b, dann b ¢4 a
® d.h. A= @antisym, wobei

Pantisym =
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(3) <A ist antisymmetrisch,
® d.h. fiiralle a,b € A mit a # b gilt: Wenn a <* b, dann b ¢4 a
® d.h. A= @antisym, wobei
Pantisym = VXVy (ﬂx =y = (x<y = -y< X))

(4) <A ist konnex,
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(3) <A ist antisymmetrisch,
® d.h. fiiralle a,b € A mit a # b gilt: Wenn a <* b, dann b ¢4 a
® d.h. A= @antisym, wobei
Pantisym = VxVy (_'X =y — (X Sy — 7y < X))

(4) <A ist konnex,

® d.h. fiiralle a,b e Agilt: a <*boder b<* aodera=b
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(3) <A ist antisymmetrisch,
® d.h. fiiralle a,b € A mit a # b gilt: Wenn a <* b, dann b ¢4 a
® d.h. A= @antisym, wobei
Pantisym = VxVy (_'X =y — (X Sy — 7y < X))

(4) <A ist konnex,
® d.h. fiiralle a,b e Agilt: a <*boder b<* aodera=b

® d.h. A= @romex, wobei

Pkonnex
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(3) <A ist antisymmetrisch,
® d.h. fiiralle a,b € A mit a # b gilt: Wenn a <* b, dann b ¢4 a
® d.h. A= @antisym, wobei
Qantisym = VxVy (ﬂx =y = (x<y = ~y< x))

(4) <A ist konnex,
® d.h. fiiralle a,b e Agilt: a <*boder b<* aodera=b
® d.h. A= @romex, wobei
Pronnex = VxVy <X<y Vy<xV x:y)
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(3) <A ist antisymmetrisch,
® d.h. fiiralle a,b € A mit a # b gilt: Wenn a <* b, dann b ¢4 a
® d.h. A= @antisym, wobei
Pantisym = VxVy (_'X =y — (X Sy — 7y < X))

(4) <A ist konnex,
® d.h. fiiralle a,b e Agilt: a <*boder b<* aodera=b
® d.h. A= @romex, wobei
Pronnex = VxVy <X<y Vy<xV x:y)

Insgesamt gilt fiir jede {<}-Struktur A = (A, <4):
A = (A, <A) ist eine lineare Ordnung <= A = ©jin.0rd, Wobei

Plin.Ord =
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(3) <A ist antisymmetrisch,
® d.h. fiiralle a,b € A mit a # b gilt: Wenn a <* b, dann b ¢4 a
® d.h. A= @antisym, wobei
Pantisym = VxVy (_'X =y — (X Sy — 7y < X))

(4) <A ist konnex,
® d.h. fiiralle a,b e Agilt: a <*boder b<* aodera=b
® d.h. A= @romex, wobei
Pronnex = VxVy <X<y Vy<xV x:y)

Insgesamt gilt fiir jede {<}-Struktur A = (A, <4):
A = (A, <A) ist eine lineare Ordnung <= A = ©jin.0rd, Wobei

Plin.Ord = Prefl N\ Pantisym N Otrans N Pkonnex
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(3) <A ist antisymmetrisch,
® d.h. fiiralle a,b € A mit a # b gilt: Wenn a <* b, dann b ¢4 a
® d.h. A= @antisym, wobei
Pantisym = VxVy (_'X =y — (X Sy — 7y < X))

(4) <A ist konnex,
® d.h. fiiralle a,b e Agilt: a <A boder b<* aodera=b
® d.h. A= @romex, wobei
Pronnex = VxVy <X<y Vy<xV x:y)

Insgesamt gilt fiir jede {<}-Struktur A = (A, <4):
A = (A, <A) ist eine lineare Ordnung <= A = ©jin.0rd, Wobei

Plin.Ord = Prefl N\ Pantisym N Otrans N Pkonnex

Der FO[o]-Satz @jin.ora definiert (bzw. axiomatisiert) also die Klasse aller
linearen Ordnungen.
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Arithmetik

Beispiel 3.33
Wir betrachten Formeln iiber der Signatur o := {+,-,<,0,1
Bedeutung im Standardmodell Ay der Arithmetik.

} und ihre

“

® Gesucht: Eine FO[o]-Formel ¢_(x,y,z), die besagt ,x —y =z
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Arithmetik

Beispiel 3.33
Wir betrachten Formeln iiber der Signatur o := {+,-,<,0,1} und ihre
Bedeutung im Standardmodell Ay der Arithmetik.

“

® Gesucht: Eine FO[o]-Formel ¢_(x,y,z), die besagt , x —y = z*.
Prazise: Fiir alle a, b, c € N soll gelten:

An E ¢_[a,b,c]
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Arithmetik

Beispiel 3.33
Wir betrachten Formeln iiber der Signatur o := {+,-,<,0,1} und ihre
Bedeutung im Standardmodell Ay der Arithmetik.

“

® Gesucht: Eine FO[o]-Formel ¢_(x,y,z), die besagt , x —y = z*.
Prazise: Fiir alle a, b, c € N soll gelten:

AvE ¢_[a,b,c] < a—b=c

Version vom 25. Januar 2024 Folie 229

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik



Kapitel 3: Logik erster Stufe - Abschnitt 3.5: Beispiele fiir Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

Arithmetik

Beispiel 3.33
Wir betrachten Formeln iiber der Signatur o := {+,-,<,0,1} und ihre
Bedeutung im Standardmodell Ay der Arithmetik.

“

® Gesucht: Eine FO[o]-Formel ¢_(x,y,z), die besagt , x —y = z*.
Prazise: Fiir alle a, b, c € N soll gelten:

AvE ¢_[a,b,c] < a—b=c

Losung: p-(xy,2) =
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Arithmetik

Beispiel 3.33
Wir betrachten Formeln iiber der Signatur o := {+,-,<,0,1} und ihre
Bedeutung im Standardmodell Ay der Arithmetik.

“

® Gesucht: Eine FO[o]-Formel ¢_(x,y,z), die besagt , x —y = z*.
Prazise: Fiir alle a, b, c € N soll gelten:

AvE ¢_[a,b,c] < a—b=c

Losune: p-(xy,2) == x=z+y
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Arithmetik

Beispiel 3.33
Wir betrachten Formeln iiber der Signatur o := {+,-,<,0,1} und ihre
Bedeutung im Standardmodell Ay der Arithmetik.

“

® Gesucht: Eine FO[o]-Formel ¢_(x,y,z), die besagt , x —y = z*.

Prazise: Fiir alle a, b, c € N soll gelten:

AvE ¢_[a,b,c] < a—b=c

Losune: p-(xy,2) == x=z+y

® Gesucht: Eine FO[o]-Formel ¢ |(x,y), die besagt , x teilt y".
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Arithmetik

Beispiel 3.33
Wir betrachten Formeln iiber der Signatur o := {+,-,<,0,1} und ihre
Bedeutung im Standardmodell Ay der Arithmetik.

® Gesucht: Eine FO[o]-Formel ¢_(x,y,z), die besagt , x —y = z*.
Prazise: Fiir alle a, b, c € N soll gelten:

AvE ¢_[a,b,c] < a—b=c

Losung: p-(xy2) = x=z+y

® Gesucht: Eine FO[o]-Formel ¢ |(x,y), die besagt , x teilt y".
Prazise: Fiir alle a, b € N soll gelten:

An Eo(la,b] =
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Arithmetik

Beispiel 3.33
Wir betrachten Formeln iiber der Signatur o := {+,-,<,0,1} und ihre
Bedeutung im Standardmodell Ay der Arithmetik.

® Gesucht: Eine FO[o]-Formel ¢_(x,y,z), die besagt , x —y = z*.
Prazise: Fiir alle a, b, c € N soll gelten:

AvE ¢_[a,b,c] < a—b=c

Losung: p-(xy2) = x=z+y

® Gesucht: Eine FO[o]-Formel ¢ |(x,y), die besagt , x teilt y".
Prazise: Fiir alle a, b € N soll gelten:

Anv E ¢|la,b] <= esgibteince N, sodassa-c=b.
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Arithmetik

Beispiel 3.33
Wir betrachten Formeln iiber der Signatur o := {+,-,<,0,1} und ihre
Bedeutung im Standardmodell Ay der Arithmetik.

® Gesucht: Eine FO[o]-Formel ¢_(x,y,z), die besagt , x —y = z*.
Prazise: Fiir alle a, b, c € N soll gelten:

AvE ¢_[a,b,c] < a—b=c

Losung: p-(xy2) = x=z+y

® Gesucht: Eine FO[o]-Formel ¢ |(x,y), die besagt , x teilt y".
Prazise: Fiir alle a, b € N soll gelten:

Anv E ¢|la,b] <= esgibteince N, sodassa-c=b.

Losung: ei(xy) ==
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Arithmetik

Beispiel 3.33
Wir betrachten Formeln iiber der Signatur o := {+,-,<,0,1} und ihre
Bedeutung im Standardmodell Ay der Arithmetik.

® Gesucht: Eine FO[o]-Formel ¢_(x,y,z), die besagt , x —y = z*.
Prazise: Fiir alle a, b, c € N soll gelten:

AvE ¢_[a,b,c] < a—b=c

Losung: p-(xy2) = x=z+y

® Gesucht: Eine FO[o]-Formel ¢ |(x,y), die besagt , x teilt y".
Prazise: Fiir alle a, b € N soll gelten:

Anv E ¢|la,b] <= esgibteince N, sodassa-c=b.

Losung: pi(xy) = Fzx-z=y
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® Gesucht: Eine FO[o]-Formel p=(x,y, z), die besagt ,x =y (mod z)".

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 230



Kapitel 3: Logik erster Stufe - Abschnitt 3.5: Beispiele fiir Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

® Gesucht: Eine FO[o]-Formel p=(x,y, z), die besagt ,x =y (mod z)".
Prazise: Fiir alle a, b, c € N soll gelten:

AN ': @E[aa ba C] <~
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® Gesucht: Eine FO[o]-Formel p=(x,y, z), die besagt ,x =y (mod z)".
Prazise: Fiir alle a, b, c € N soll gelten:

Ay E p=[a,b,c] <= a=b(modc)
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® Gesucht: Eine FO[o]-Formel p=(x,y,z), die besagt ,x =y (mod z)".
Prazise: Fiir alle a, b, c € N soll gelten:

Ay E=[a,b,c] <= a=b(modc) dh c||a—0b|
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® Gesucht: Eine FO[o]-Formel p=(x,y,z), die besagt ,x =y (mod z)".
Prazise: Fiir alle a, b, c € N soll gelten:

Ay E=[a,b,c] <= a=b(modc) dh c||a—0b|

Losung:

(p;(X,y,Z) =
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® Gesucht: Eine FO[o]-Formel p=(x,y,z), die besagt ,x =y (mod z)".
Prazise: Fiir alle a, b, c € N soll gelten:

Ay E=[a,b,c] <= a=b(modc) dh c||a—0b|

Losung:

p=(x,y,2) = 3w ((sof(x,y, w) Voo-(y.x,w)) A (2 W))
——

W= |x =yl .z |w
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® Gesucht: Eine FO[o]-Formel @pim(x), die besagt , x ist eine Primzahl".

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 231



Kapitel 3: Logik erster Stufe - Abschnitt 3.5: Beispiele fiir Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen
® Gesucht: Eine FO[o]-Formel @pim(x), die besagt , x ist eine Primzahl".
Prazise: Fiir alle a € N soll gelten:

An E ¢prim[a] <= aist eine Primzahl
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® Gesucht: Eine FO[o]-Formel @pim(x), die besagt , x ist eine Primzahl".
Prazise: Fiir alle a € N soll gelten:
An = @primla] <= a ist eine Primzahl

d.h. a > 2 und a ist nur durch sich selbst und
durch 1 teilbar.
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® Gesucht: Eine FO[o]-Formel @pim(x), die besagt , x ist eine Primzahl".
Prazise: Fiir alle a € N soll gelten:
An = @primla] <= a ist eine Primzahl

d.h. a > 2 und a ist nur durch sich selbst und
durch 1 teilbar.
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® Gesucht: Eine FO[o]-Formel @pim(x), die besagt , x ist eine Primzahl".

Prazise: Fiir alle a € N soll gelten:

An E ¢prim[a] <= aist eine Primzahl

d.h. a > 2 und a ist nur durch sich selbst und
durch 1 teilbar.

Losung:

Pprim(x) =
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® Gesucht: Eine FO[o]-Formel @pim(x), die besagt , x ist eine Primzahl".
Prazise: Fiir alle a € N soll gelten:

An E ¢prim[a] <= aist eine Primzahl

d.h. a > 2 und a ist nur durch sich selbst und
durch 1 teilbar.

Losung:

Cprim(x) == 14+1<x A Vz <<,9|(z,x) — (z:x vV z:l))
N————— ——
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® Gesucht: Eine FO[o]-Formel @pim(x), die besagt , x ist eine Primzahl".
Prazise: Fiir alle a € N soll gelten:
An = @primla] <= a ist eine Primzahl

d.h. a > 2 und a ist nur durch sich selbst und
durch 1 teilbar.

Losung:

Cprim(x) == 14+1<x A Vz <<,9|(z,x) — (z:x vV z:l))
N————— ——

® Gesucht: Ein FO[o]-Satz ¢, der in Ay besagt
» Es gibt unendlich viele Primzahlen®.

Losung:
Poo =
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® Gesucht: Eine FO[o]-Formel @pim(x), die besagt , x ist eine Primzahl".

Prazise: Fiir alle a € N soll gelten:

An E ¢prim[a] <= aist eine Primzahl

d.h. a > 2 und a ist nur durch sich selbst und
durch 1 teilbar.

Losung:

Cprim(x) == 14+1<x A Vz <<,9|(z,x) — (z:x vV z:l))
——

X

vV

N
N
x

® Gesucht: Ein FO[o]-Satz ¢, der in Ay besagt
» Es gibt unendlich viele Primzahlen®.

Losung:
Yoo = Vy dx ()/ <X A @prim(x))

In Ay besagt dieser Satz, dass es fiir jede natiirliche Zahl b eine natiirliche
Zahl a > b gibt, die eine Primzahl ist.
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Worte

Beispiel 3.34
Wir betrachten das Alphabet X := {a, b} und die Signatur oy = {<, P,, Py}.
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Worte

Beispiel 3.34

Wir betrachten das Alphabet X := {a, b} und die Signatur oy = {<, P,, Py}.
Zur Erinnerung: Wir représentieren ein nicht-leeres Wort w € ¥* durch die
ox-Struktur A,
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Anwendt bereichen

Kapitel 3: Logik erster Stufe - Abschnitt 3.5: Beispiele fiir Formeln der Logik erster Stufe in verschied

Worte

Beispiel 3.34

Wir betrachten das Alphabet ¥ := {a, b} und die Signatur ox = {<, P,, Pp}.
Zur Erinnerung: Wir représentieren ein nicht-leeres Wort w € ¥* durch die
ox-Struktur A, deren Universum aus der Menge {1,...,|w|} aller Positionen
in w besteht, und bei der Py** (bzw. P[:‘W) aus allen Positionen besteht, an

denen der Buchstabe a (bzw. b) steht.
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Worte
Beispiel 3.34
Wir betrachten das Alphabet X := {a, b} und die Signatur oy = {<, P,, Py}.

Zur Erinnerung: Wir représentieren ein nicht-leeres Wort w € ¥* durch die
ox-Struktur A, deren Universum aus der Menge {1,...,|w|} aller Positionen
in w besteht, und bei der Py** (bzw. P[:‘W) aus allen Positionen besteht, an

denen der Buchstabe a (bzw. b) steht.

Gesucht: Ein FO[ox]-Satz ¢, so dass fiir jedes nicht-leere Wort w € * gilt:

Ay Ew <=  wist von der Form a*b".
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Worte

Beispiel 3.34
Wir betrachten das Alphabet X := {a, b} und die Signatur oy = {<, P,, Py}.

Zur Erinnerung: Wir représentieren ein nicht-leeres Wort w € ¥* durch die
ox-Struktur A, deren Universum aus der Menge {1,...,|w|} aller Positionen
in w besteht, und bei der Py** (bzw. P[:‘W) aus allen Positionen besteht, an
denen der Buchstabe a (bzw. b) steht.

Gesucht: Ein FO[ox]-Satz ¢, so dass fiir jedes nicht-leere Wort w € * gilt:
Ay Ew <=  wist von der Form a*b".

Losung:
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Worte

Beispiel 3.34

Wir betrachten das Alphabet ¥ := {a, b} und die Signatur ox = {<, P,, Pp}.
Zur Erinnerung: Wir représentieren ein nicht-leeres Wort w € ¥* durch die
ox-Struktur A, deren Universum aus der Menge {1,...,|w|} aller Positionen

in w besteht, und bei der Py** (bzw. P[:‘W) aus allen Positionen besteht, an
denen der Buchstabe a (bzw. b) steht.

Gesucht: Ein FO[ox]-Satz ¢, so dass fiir jedes nicht-leere Wort w € * gilt:
Ay E¢ <= wist von der Form a*b".
Losung: Wir konstruieren eine Formel ¢, die besagt, dass es eine Position x

gibt, so dass alle Positionen links von x den Buchstaben a tragen und alle
Positionen rechts von x den Buchstaben b tragen.

p =
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Worte

Beispiel 3.34
Wir betrachten das Alphabet ¥ := {a, b} und die Signatur ox = {<, P,, Pp}.

Zur Erinnerung: Wir représentieren ein nicht-leeres Wort w € ¥* durch die
ox-Struktur A, deren Universum aus der Menge {1,...,|w|} aller Positionen
in w besteht, und bei der Py** (bzw. P[:‘W) aus allen Positionen besteht, an
denen der Buchstabe a (bzw. b) steht.

Gesucht: Ein FO[ox]-Satz ¢, so dass fiir jedes nicht-leere Wort w € * gilt:
Ay Ew <=  wist von der Form a*b".

Losung: Wir konstruieren eine Formel ¢, die besagt, dass es eine Position x
gibt, so dass alle Positionen links von x den Buchstaben a tragen und alle
Positionen rechts von x den Buchstaben b tragen.

@ = 3dxVy ((y < X — Pa(y)) A (X <y— Pb(y))>

Wie bereits vereinbart, schreiben wir hier als Abkiirzung fiir die
Formel
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Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

Datenbanken

Zur Erinnerung: Wir reprasentieren eine Kinodatenbank, die Informationen iiber
Kinos, Filme und das aktuelle Programm enthalt, durch eine Struktur iiber der

Signatur OKINO ‘=

{ Rkino/4, RFim/3, Rprog/3 }

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 233



Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

Datenbanken

Zur Erinnerung: Wir reprasentieren eine Kinodatenbank, die Informationen iiber
Kinos, Filme und das aktuelle Programm enthalt, durch eine Struktur iiber der
Signatur OKINO ‘=

{RKino/4> RF/'/m/37 RProg/3} @] {‘Cv : CEASCII*}

und kénnen so z.B. die folgende Kinodatenbank als okino-Struktur D auffassen,
deren Universum D aus der Menge aller Worte iiber dem ASCII-Alphabet
besteht.
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Beispiel: Eine Kinodatenbank

Kino

Name Adresse Stadtteil Telefonnummer
Babylon Dresdner Str. 126 Kreuzberg 030 61 60 96 93
Casablanca Friedenstr. 12-13 Adlershof 030 67 75 75 2

Filmtheater am Friedrichshain
Kino International
Moviemento

Urania

Botzowstr. 1-5
Karl-Marx-Allee 33
Kotbusser Damm 22
An der Urania 17

Prenzlauer Berg
Mitte
Kreuzberg
Schdneberg

030 42 84 51 88
030 24 75 60 11
030 692 47 85
0302189091
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Kapitel 3: Logik erster Stufe -

Abschnitt 3.6: Logik und Datenbanken

Beispiel: Eine Kinodatenbank

Kino

Name Adresse Stadtteil Telefonnummer
Babylon Dresdner Str. 126 Kreuzberg 030 61 60 96 93
Casablanca Friedenstr. 12-13 Adlershof 030 67 75 75 2

Filmtheater am Friedrichshain

Kino International

Botzowstr. 1-5
Karl-Marx-Allee 33

Prenzlauer Berg
Mitte

030 42 84 51 88
030 24 75 60 11

Moviemento Kotbusser Damm 22 Kreuzberg 030 692 47 85
Urania An der Urania 17 Schéneberg 0302189091
Film

Name Regisseur Schauspieler

Alien Ridley Scott Sigourney Weaver

Blade Runner Ridley Scott Harrison Ford

Blade Runner Ridley Scott Sean Young

Brazil Terry Gilliam Jonathan Pryce

Brazil Terry Gilliam Kim Greist

Casablanca Michael Curtiz Humphrey Bogart

Casablanca Michael Curtiz Ingrid Bergmann

Gravity Alfonso Cuaron Sandra Bullock

Gravity Alfonso Cuaron George Clooney

Monuments Men
Monuments Men
Resident Evil
Terminator
Terminator
Terminator

George Clooney
George Clooney
Paul Anderson

James Cameron
James Cameron
James Cameron

George Clooney
Matt Damon
Milla Jovovich
Arnold Schwarzen
Linda Hamilton
Michael Biehn

egger
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Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

Programm

Kino Film Zeit
Babylon Casablanca 17:30
Babylon Gravity 20:15
Casablanca Blade Runner 15:30
Casablanca Alien 18:15
Casablanca Blade Runner 20:30
Casablanca Resident Evil 20:30
Filmtheater am Friedrichshain Resident Evil 20:00
Filmtheater am Friedrichshain Resident Evil 21:30
Filmtheater am Friedrichshain Resident Evil 23:00
Kino International Casablanca 18:00
Kino International Brazil 20:00
Kino International Brazil 22:00
Moviemento Gravity 17:00
Moviemento Gravity 19:30
Moviemento Alien 22:00
Urania Monuments Men 17:00
Urania Monuments Men 20:00
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Die Kinodatenbank als Struktur

Signatur: OKINO = {:‘?}(,‘,,0/4-7 RF,'/m/3, R,Dmg/3}
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Die Kinodatenbank als Struktur

Signatur: OKINO ‘= {RK,',,O/Z]-7 R,E,'/m/:‘;7 Rp,og/3} U {‘CY . CEASCII*}
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Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

Die Kinodatenbank als Struktur
{:‘?;(,',,0/4-7 R,E,'/m/:‘;7 R,Dmg/3} U {‘C’ CEASCII*}

Signatur: OKINO =

Die Kinodatenbank wird dargestellt als okno-Struktur D.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken
Die Kinodatenbank als Struktur
Signatur: OKINO ‘= { :‘?;(,',,0/4-7 R,E,'/m/:‘;7 Rp,og/3 } U { ‘¢’ ¢ S ASCII* }

Die Kinodatenbank wird dargestellt als okno-Struktur D.

Universum:
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Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

Die Kinodatenbank als Struktur

Signatur: OKINO = { RKino/47 RFilm/37 Rp,og/3 } U { ‘c’ : ¢ € ASCII* }
Die Kinodatenbank wird dargestellt als okino-Struktur D.
Universum:

D := ASCII® D { Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93,

Casablanca, ..., 20:00}.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

Die Kinodatenbank als Struktur
Signatur: OKINO = {RK,',,D/4, RF,'/m/3, Rpmg/3} U {‘CY . CGASCII*}

Die Kinodatenbank wird dargestellt als ok no-Struktur D.

Universum:
D := ASCII® D { Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93,
Casablanca, ..., 20:00}.
Relationen:
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Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

Die Kinodatenbank als Struktur
Signatur: OKINO = {RK,',,D/4, RF,'/m/3, R,Dmg/3} U {‘CY : CGASCII*}

Die Kinodatenbank wird dargestellt als ok no-Struktur D.

Universum:
D := ASCII® D { Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93,
Casablanca, ..., 20:00}.
Relationen:

REHO := { (Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93),
(Casablanca, Friedenstr. 12-13, Adlershof, 030 67 75 75 2),

(Urania, An der Urania 17, Schdneberg, 030 21 89 09 1) }
RE. = { (Alien, Ridley Scott, Sigourney Weaver),

(Blade Runner, Ridley Scott, Harrison Ford), ... }
Rgog := { (Babylon, Casablanca, 17:30),

(Babylon, Gravity, 20:15), ... }.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

Die Kinodatenbank als Struktur
Signatur: OKINO = {RK,',,D/4, RF,'/m/3, R,Dmg/3} U {‘CY : CGASCII*}

Die Kinodatenbank wird dargestellt als ok no-Struktur D.

Universum:

D := ASCII® D { Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93,
Casablanca, ..., 20:00}.

Relationen:

REHO := { (Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93),
(Casablanca, Friedenstr. 12-13, Adlershof, 030 67 75 75 2),

)

(Urania, An der Urania 17, Schdneberg, 030 21 89 09 1) }

R = { (Alien, Ridley Scott, Sigourney Weaver),
(Blade Runner, Ridley Scott, Harrison Ford), ... }

Rgog := { (Babylon, Casablanca, 17:30),
(Babylon, Gravity, 20:15), ... }.

Konstanten:
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Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

Die Kinodatenbank als Struktur

Signatur: OKINO = { RK,',,D/4, RF,'/m/3, Rpmg/3 } U { ‘c’ : c € ASCII* }
Die Kinodatenbank wird dargestellt als ok no-Struktur D.
Universum:
D := ASCII® D { Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93,
Casablanca, ..., 20:00}.
Relationen:
REHO := { (Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93),
(Casablanca, Friedenstr. 12-13, Adlershof, 030 67 75 75 2),
(Urania, An der Urania 17, Schdneberg, 030 21 89 09 1) }
RE. = { (Alien, Ridley Scott, Sigourney Weaver),
(Blade Runner, Ridley Scott, Harrison Ford), ... }
Rgog := { (Babylon, Casablanca, 17:30),
(Babylon, Gravity, 20:15), ... }.
Konstanten: ‘P = ¢, fiir jedes ¢ € ASCII*.

D.h.: jedes Konstantensymbol wird durch den zwischen den Hochkommas stehenden Text interpretiert.
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Beispiel 3.35
(a) Die Anfrage

,Gib die Titel aller Filme aus, die um 22:00 Uhr beginnen. "

Iasst sich durch folgende FO[okino]-Formel 1 (x7) beschreiben:

p1(xr) =
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Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

Beispiel 3.35

(a) Die Anfrage
,Gib die Titel aller Filme aus, die um 22:00 Uhr beginnen. "

Iasst sich durch folgende FO[okino]-Formel 1 (x7) beschreiben:

(,Dl(XT) = E|XK R,Dmg(XK7 XT, ‘22200')
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Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

Beispiel 3.35

(a) Die Anfrage
,Gib die Titel aller Filme aus, die um 22:00 Uhr beginnen. "

Iasst sich durch folgende FO[okino]-Formel 1 (x7) beschreiben:

(,Ol(XT) = E|XK R,Dmg(XK7 XT, ‘22200')

(b) Die Anfrage
,Gib die Titel aller Filme aus, in denen George Clooney mitspielt oder
Regie fiihrt"

|asst sich durch folgende FO[okino]-Formel beschreiben: o (x7) 1=
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Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

Beispiel 3.35

(a) Die Anfrage
,Gib die Titel aller Filme aus, die um 22:00 Uhr beginnen. "

Iasst sich durch folgende FO[okino]-Formel 1 (x7) beschreiben:

(,Dl(XT) = E|XK R,Dmg(XK7 XT, ‘22200')

(b) Die Anfrage
,Gib die Titel aller Filme aus, in denen George Clooney mitspielt oder
Regie fiihrt"

|asst sich durch folgende FO[okino]-Formel beschreiben: o (x7) 1=

Ixr REiim(XT, xR, ‘George Clooney’) V Ixs Rrim(xT, ‘George Clooney’, xs)
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Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

(c) Die Anfrage
,,Gib Name und Stadtteil aller Kinos aus, in denen ein Film l3uft, in dem
George Clooney mitspielt oder Regie fiihrt*

lasst sich durch folgende FO[okno]-Formel beschreiben:  p3(xk, xs¢) ==
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Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

(c) Die Anfrage
,,Gib Name und Stadtteil aller Kinos aus, in denen ein Film l3uft, in dem
George Clooney mitspielt oder Regie fiihrt*

lasst sich durch folgende FO[okno]-Formel beschreiben:  p3(xk, xs¢) ==
Ixa Ix7er Rikino(Xk, XA, Xst, XTe1) A
Ax7 dxz (Rprog(XK,XT,Xz) A

(3xr Rerim(xT, xr, ‘George Clooney’) V 3xs Rrim(xT, George Clooney’,xs)))
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Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

(c) Die Anfrage
,,Gib Name und Stadtteil aller Kinos aus, in denen ein Film l3uft, in dem
George Clooney mitspielt oder Regie fiihrt*

lasst sich durch folgende FO[okno]-Formel beschreiben:  p3(xk, xs¢) ==
Ixa Ixter Rkino(Xk, XA, Xst, XTel) A
Ax7 dxz (Rprog(XK,XT,Xz) A
(3xr Reim(xT, xr, ‘George Clooney’) V 3Ixs RFim(xT, ' George Clooney',xs))>
Die erste Zeile der Formel stellt sicher, dass xx ein Kino und xs dessen

Stadtteil ist; die Zeilen 2 und 3 stellen sicher, dass im Kino xx ein Film
lduft, in dem George Clooney mitspielt oder Regie fiihrt.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

Eine andere Sichtweise auf die Semantik

® Anstatt Wahrheitswerte in Interpretationen definieren Formeln der Logik
der ersten Stufe auch Relationen in Strukturen.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

Eine andere Sichtweise auf die Semantik

® Anstatt Wahrheitswerte in Interpretationen definieren Formeln der Logik
der ersten Stufe auch Relationen in Strukturen.

® Junktoren und Quantoren entsprechen dann algebraischen Operatoren auf
Relationen.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

Eine andere Sichtweise auf die Semantik

® Anstatt Wahrheitswerte in Interpretationen definieren Formeln der Logik
der ersten Stufe auch Relationen in Strukturen.

® Junktoren und Quantoren entsprechen dann algebraischen Operatoren auf
Relationen.

® Diese Sichtweise ist insbesondere in der Datenbanktheorie wichtig und
bildet die Grundlage effizienter Algorithmen zur Auswertung von
Datenbankanfragen.

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 239



Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

Definition 3.36
Sei o eine Signatur, sei
o-Struktur.

Die von ¢(x1, ...

eine FO[o]-Formel und sei A eine

,Xn) in A definierte n-stellige Relation ist

[ I = {(ar,...,an) €A" : A= lay,...,a, }
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Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken
Definition 3.36
Sei o eine Signatur, sei eine FO[o]-Formel und sei A eine

o-Struktur.
Die von ¢(x1,...,x,) in A definierte n-stellige Relation ist

[ I = {(ar,...,an) €A" : A= lay,...,a, }

Vorsicht: Die Relation [p(xq, ... ,xn)]]A hangt nicht nur von der Formel ¢ ab,
sondern auch von dem Tupel (xi,...,x,) € VAR".
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Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

Definition 3.36

Sei o eine Signatur, sei eine FO[o]-Formel und sei A eine
o-Struktur.

Die von ¢(x1,...,x,) in A definierte n-stellige Relation ist

[ I = {(ar,...,an) €A" : A= lay,...,a, }

Vorsicht: Die Relation [p(xq, ... ,xn)]]A hangt nicht nur von der Formel ¢ ab,
sondern auch von dem Tupel (xi,...,x,) € VAR".

Beispiel 3.37
Die FO[okino]-Formeln @o(x7) und @3(xk, xs¢) aus Beispiel 3.35 definieren in
unserer Beispiel-Datenbank D die Relationen

[e2(er)]® =
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Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

Definition 3.36

Sei o eine Signatur, sei eine FO[o]-Formel und sei A eine
o-Struktur.

Die von ¢(x1,...,x,) in A definierte n-stellige Relation ist

[ I = {(ar,...,an) €A" : A= lay,...,a, }

Vorsicht: Die Relation [p(xq, ... ,x,,)]]A hangt nicht nur von der Formel ¢ ab,
sondern auch von dem Tupel (xi,...,x,) € VAR".

Beispiel 3.37
Die FO[okino]-Formeln @o(x7) und @3(xk, xs¢) aus Beispiel 3.35 definieren in
unserer Beispiel-Datenbank D die Relationen

[p2(xr)]” = { (Gravity),
(Monuments Men) }

und
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Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

Definition 3.36

Sei o eine Signatur, sei eine FO[o]-Formel und sei A eine
o-Struktur.

Die von ¢(x1,...,x,) in A definierte n-stellige Relation ist

[ I = {(ar,...,an) €A" : A= lay,...,a, }

Vorsicht: Die Relation [p(xq, ... ,x,,)]]A hangt nicht nur von der Formel ¢ ab,
sondern auch von dem Tupel (xi,...,x,) € VAR".

Beispiel 3.37
Die FO[okino]-Formeln @o(x7) und @3(xk, xs¢) aus Beispiel 3.35 definieren in
unserer Beispiel-Datenbank D die Relationen

[p2(xr)]” = { (Gravity),
(Monuments Men) }

und 5
[os(xk; xs)]~ =
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Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

Definition 3.36

Sei o eine Signatur, sei eine FO[o]-Formel und sei A eine
o-Struktur.

Die von ¢(x1,...,x,) in A definierte n-stellige Relation ist

[ I = {(ar,...,an) €A" : A= lay,...,a, }

Vorsicht: Die Relation [p(xq, ... ,x,,)]]A hangt nicht nur von der Formel ¢ ab,
sondern auch von dem Tupel (xi,...,x,) € VAR".

Beispiel 3.37
Die FO[okino]-Formeln @o(x7) und @3(xk, xs¢) aus Beispiel 3.35 definieren in
unserer Beispiel-Datenbank D die Relationen

[p2(xr)]” = { (Gravity),
(Monuments Men) }

und
leos(xk, xs0)]° = { (Babylon, Kreuzberg) ,
( Moviemento, Kreuzberg) ,
(Urania, Schéneberg) }
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Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

Andern der Variablen

Lemma 3.38
Sei o eine Signatur, sei A eine o-Struktur und sei o(x1,...,x,) € FO[o].
(a) Fiir jede Permutation® m von [n] ist

[[<P(X7r(1),---7x7r(n))]]A = {(ar@) > anm) -

(a1, an) € [p(xas )] )



Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

Andern der Variablen

Lemma 3.38
Sei o eine Signatur, sei A eine o-Struktur und sei o(x1,...,x,) € FO[o].

(a) Fiir jede Permutation® m von [n] ist

[Cteys-- - xa@)]™ = {(@na)s s 3n()
(a1, an) € [p(xas )] )

2Eine Permutation einer Menge M ist eine bijektive Abbildung von M nach M.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

Andern der Variablen

Lemma 3.38
Sei o eine Signatur, sei A eine o-Struktur und sei o(x1,...,x,) € FO[o].

(a) Fiir jede Permutation® m von [n] ist

[(teys-- - xe@)]™ = {@na)s - 3n()
(a1, an) € [p(xas )] )

(b) Fiir jede Variable y € VAR\ {x1,...,xn} ist

loGa, . om )t = Tela,. ., x)" x A

2Eine Permutation einer Menge M ist eine bijektive Abbildung von M nach M.

Version vom 25. Januar 2024 Folie 241
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Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

Andern der Variablen

Lemma 3.38
Sei o eine Signatur, sei A eine o-Struktur und sei o(x1,...,x,) € FO[o].

(a) Fiir jede Permutation® m von [n] ist

[[<P(X7r(1),---7x7r(n))]]A = {(ar@) > anm) -

(a1, an) € [p(xas )] )

(b) Fiir jede Variable y € VAR\ {x1,...,xn} ist

le(xas - xo)I = [elas .. x)]* x A
(c) Falls x, ¢ frei(p), so ist

[[‘P(X17--~7Xn—1)]]A = {(31,--~73n—1) :
es gibt (mind.) ein a € A so dass (a1, ...,ap_1,a) € [p(x, ... ,x,,)]]A }.

2Eine Permutation einer Menge M ist eine bijektive Abbildung von M nach M.

Version vom 25. Januar 2024 Folie 241

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik



Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

Rekursive Beschreibung von [p(xi, . . . , xa)]*

Beobachtung 3.39
Ist o eine Signatur und A eine o-Struktur, so kénnen wir fiir FO[o]-Formeln ¢ und

Variablentupel (x1,...,x,) mit frei(p) C {x1,...,x,} die Relation
le(xa, - .. ,x,,)]]A C A" rekursiv wie folgt beschreiben:

® Falls ¢ von der Form t; = t, fiir o-Terme ti, t, ist, so ist

[[W(Xla s sX")]]A =
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Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

Rekursive Beschreibung von [p(xi, . . . , xa)]*

Beobachtung 3.39
Ist o eine Signatur und A eine o-Struktur, so kénnen wir fiir FO[o]-Formeln ¢ und

Variablentupel (x1,...,x,) mit frei(p) C {x1,...,x,} die Relation
le(xa, - .. ,x,,)]]A C A" rekursiv wie folgt beschreiben:

® Falls ¢ von der Form t; = t, fiir o-Terme ti, t, ist, so ist

leCxa,....x)]* = {(a1,...,a) € A":
ti'[a1, ..., a0 = t'[a1,..., a0 }
Zur Erinnerung: Fiir einen o-Term t(xi, ..., x,) schreiben wir t*[a1, ..., a,] um

das Element [t]***) € A zu bezeichnen, wobei 3 eine Belegung mit 5(x;) = aj,
fiir alle i € [n], ist.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

Rekursive Beschreibung von [p(xi, . . . , xa)]*

Beobachtung 3.39

Ist o eine Signatur und A eine o-Struktur, so kénnen wir fiir FO[o]-Formeln ¢ und
Variablentupel (x1,...,x,) mit frei(p) C {x1,...,x,} die Relation
le(xa, - .. ,x,,)]]A C A" rekursiv wie folgt beschreiben:

® Falls ¢ von der Form t; = t, fiir o-Terme ti, t, ist, so ist

leCxa,....x)]* = {(a1,...,a) € A":
ti'[a1, ..., a0 = t'[a1,..., a0 }
Zur Erinnerung: Fiir einen o-Term t(xi, ..., x,) schreiben wir t*[a1, ..., a,] um

das Element [t]***) € A zu bezeichnen, wobei 3 eine Belegung mit 5(x;) = aj,
fiir alle i € [n], ist.

® Falls ¢ von der Form R(t1, ..., t) fiir ein R € o, fiir k := ar(R) und fiir o-Terme
ti,..., tx ist, so ist

le(x, .. vX")HA =
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Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

Rekursive Beschreibung von [p(xi, . . . , xa)]*

Beobachtung 3.39

Ist o eine Signatur und A eine o-Struktur, so kénnen wir fiir FO[o]-Formeln ¢ und
Variablentupel (x1,...,x,) mit frei(p) C {x1,...,x,} die Relation
le(xa, - .. ,x,,)]]A C A" rekursiv wie folgt beschreiben:

® Falls ¢ von der Form t; = t, fiir o-Terme ti, t, ist, so ist

leCxa,....x)]* = {(a1,...,a) € A":
ti'[a1, ..., a0 = t'[a1,..., a0 }
Zur Erinnerung: Fiir einen o-Term t(xi, ..., x,) schreiben wir t*[a1, ..., a,] um

das Element [t]***) € A zu bezeichnen, wobei 3 eine Belegung mit 5(x;) = aj,
fiir alle i € [n], ist.

® Falls ¢ von der Form R(ti,...,tk) fiir ein R € o, fiir k := ar(R) und fiir o-Terme
ti,..., tx ist, so ist
leCa, ..., x)]* = {(ar,...,an) € A":
(t{“[al,...,a,,], e, t,f‘[ah...,an]) e RA }
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® Falls ¢ von der Form —) ist, so ist

le(x, - - - xa)]™
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® Falls ¢ von der Form —) ist, so ist

HW(Xl""axn)HA = A"\ [¥(xa,...
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® Falls ¢ von der Form —) ist, so ist

le(x, - - - xa)]™

AN\ [, . xa)]

® Falls ¢ von der Form (i1 A 1)7) ist, so ist

lo(a, o)l =
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® Falls ¢ von der Form —) ist, so ist

le(x, - - - xa)]™ AN\ [, . xa)]

® Falls ¢ von der Form (i1 A 1)7) ist, so ist

[o(xas - xa)l = [1(xas o xa)]™ 0 [h2(0s o xa)]
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® Falls ¢ von der Form —) ist, so ist

le(x, - - - xa)]™ AN\ [, . xa)]

® Falls ¢ von der Form (i1 A 1)7) ist, so ist

[o(x, )] = [a(x, )] 0 [a(x, .

® Falls ¢ von der Form (11 V 13) ist, so ist

le(xa, - xa)]* =
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® Falls ¢ von der Form —) ist, so ist

le(x, - - - xa)]™ AN\ [, . xa)]

® Falls ¢ von der Form (i1 A 1)7) ist, so ist

[o(x, )] = [a(x, )] 0 [a(x, .

® Falls ¢ von der Form (11 V 13) ist, so ist

lo(xt, - oxa)[* = [a(x, .- xa)] U o, ..
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® Falls ¢ von der Form —) ist, so ist

le(x, - - - xa)]™ AN\ [, . xa)]

® Falls ¢ von der Form (i1 A 1)7) ist, so ist

[o(x, )] = [a(x, )] 0 [a(x, .

® Falls ¢ von der Form (11 V 13) ist, so ist

lo(xt, - oxa)[* = [a(x, .- xa)] U o, ..

® Falls ¢ von der Form (¢1 — 12) ist, so ist

lo(xas - x)]* =
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Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

® Falls ¢ von der Form —) ist, so ist

le(x, - - - xa)]™ AN\ [, . xa)]

® Falls ¢ von der Form (i1 A 1)7) ist, so ist

[o(x, )] = [a(x, )] 0 [a(x, .

® Falls ¢ von der Form (11 V 13) ist, so ist

lo(xt, - oxa)[* = [a(x, .- xa)] U o, ..

® Falls ¢ von der Form (¢1 — 12) ist, so ist

[o(xs - xa)l® = [~a(xas - xa)]* U (3, -
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® Falls ¢ von der Form Jy v ist, so ist

[o(xt, ..., x)]"* =
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® Falls ¢ von der Form Jy v ist, so ist

[o(xt, - xa)]? = { (a1,...,3) € A" : es gibt (mind.) ein
be Amit (ay,...,anb) € [[@D(xl,...,xn,y)]]A }
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® Falls ¢ von der Form Jy v ist, so ist

[o(xt, - xa)]? = { (a1,...,3) € A" : es gibt (mind.) ein
be Amit (ay,...,anb) € [[@D(xl,...,xn,y)]]A }

Somit ist [¢(x1, ... ,x,,)]]A die Projektion von [1(x,. .. ,x,,,y)ﬂA auf die
ersten n Stellen.
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® Falls ¢ von der Form Jy v ist, so ist

[o(xt, - xa)]? = { (a1,...,3) € A" : es gibt (mind.) ein
be Amit (ay,...,anb) € [[w(xl,...,xn,y)]]A }
Somit ist [¢(x1, ... ,x,,)]]A die Projektion von [1(x,. .. ,xn,y)ﬂA auf die

ersten n Stellen.

® Falls ¢ von der Form Vy v ist, so ist

[o(xt, ..., x)]" =
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® Falls ¢ von der Form Jy v ist, so ist

[o(xt, - xa)]? = { (a1,...,3) € A" : es gibt (mind.) ein
be Amit (ay,...,anb) € [[w(xl,...,xn,y)]]A }
Somit ist [¢(x1, ... ,x,,)]]A die Projektion von [1(x,. .. ,xn,y)ﬂA auf die

ersten n Stellen.

® Falls ¢ von der Form Vy v ist, so ist

[[tp(xl,...,x,,)]]A = { (a1,...,a,) € A"
fiir jedes b€ Aist (a1,...,an b) € [¥(x,... ,x,,,y)]]A }
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Das Auswertungsproblem fiir FO

Eingabe: Eine endliche Signatur o,
eine o-Struktur A
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Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

Das Auswertungsproblem fiir FO

Eingabe: Eine endliche Signatur o,
eine o-Struktur A, deren Universum A endlich ist,
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Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

Das Auswertungsproblem fiir FO

Eingabe: Eine endliche Signatur o,
eine o-Struktur A, deren Universum A endlich ist,
eine FO[o]-Formel ¢,
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Das Auswertungsproblem fiir FO

Eingabe: Eine endliche Signatur o,
eine o-Struktur A, deren Universum A endlich ist,
eine FO[o]-Formel ¢,
eine Zahl n € N und
ein Variablentupel (xi,...,x,) € VAR", so dass frei(¢) C

{x1,...,Xn} ist.

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 245



Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

Das Auswertungsproblem fiir FO

Eingabe: Eine endliche Signatur o,
eine o-Struktur A, deren Universum A endlich ist,
eine FO[o]-Formel ¢,
eine Zahl n € N und
ein Variablentupel (xi,...,x,) € VAR", so dass frei(¢) C
{x1,...,Xa} ist.

Aufgabe: Berechne [p(xq,...,xn)]™.

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 245



Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

Das Auswertungsproblem fiir FO

Eingabe: Eine endliche Signatur o,
eine o-Struktur A, deren Universum A endlich ist,
eine FO[o]-Formel ¢,
eine Zahl n € N und
ein Variablentupel (xi,...,x,) € VAR", so dass frei(¢) C
{x1,...,Xa} ist.

Aufgabe: Berechne [p(xq,...,xn)]™.

Beobachtung 3.39 fiihrt unmittelbar zu einem rekursiven Algorithmus, der das
Auswertungsproblem fiir FO 10st.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

Das Auswertungsproblem fiir FO

Eingabe: Eine endliche Signatur o,
eine o-Struktur A, deren Universum A endlich ist,
eine FO[o]-Formel ¢,
eine Zahl n € N und
ein Variablentupel (xi,...,x,) € VAR", so dass frei(¢) C
{x1,...,Xa} ist.

Aufgabe: Berechne [p(xq,...,xn)]™.

Beobachtung 3.39 fiihrt unmittelbar zu einem rekursiven Algorithmus, der das
Auswertungsproblem fiir FO 10st.

Eine Laufzeitanalyse zeigt, dass Folgendes gilt:
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Satz 3.40

Es gibt einen Algorithmus, der das Auswertungsproblem fiir FO bei Eingabe
einer Signatur o, eine o-Struktur A, einer FO[c]-Formel ¢, einer Zahl n und
eines Variablentupels (xy, ..., x,) mit frei(p) C {x1,...,x,} in Zeit

O(lel + 1Al + leol-w-[Al")

6st
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Satz 3.40
Es gibt einen Algorithmus, der das Auswertungsproblem fiir FO bei Eingabe

einer Signatur o, eine o-Struktur A, einer FO[c]-Formel ¢, einer Zahl n und
eines Variablentupels (xy, ..., x,) mit frei(p) C {x1,...,x,} in Zeit

O(lel + 1Al + leol-w-[Al")

lost, wobei gilt:
* ol
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Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

Satz 3.40

Es gibt einen Algorithmus, der das Auswertungsproblem fiir FO bei Eingabe
einer Signatur o, eine o-Struktur A, einer FO[c]-Formel ¢, einer Zahl n und
eines Variablentupels (xy, ..., x,) mit frei(p) C {x1,...,x,} in Zeit

O(lel + 1Al + leol-w-[Al")

lost, wobei gilt:
® || ist die Lange von o, aufgefasst als Wort iiber dem Alphabet Arojq)
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Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

Satz 3.40

Es gibt einen Algorithmus, der das Auswertungsproblem fiir FO bei Eingabe
einer Signatur o, eine o-Struktur A, einer FO[c]-Formel ¢, einer Zahl n und
eines Variablentupels (xy, ..., x,) mit frei(p) C {x1,...,x,} in Zeit

O(lel + 1Al + leol-w-[Al")

lost, wobei gilt:
® || ist die Lange von o, aufgefasst als Wort iiber dem Alphabet Arojq)

®
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Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

Satz 3.40

Es gibt einen Algorithmus, der das Auswertungsproblem fiir FO bei Eingabe
einer Signatur o, eine o-Struktur A, einer FO[c]-Formel ¢, einer Zahl n und
eines Variablentupels (xy, ..., x,) mit frei(p) C {x1,...,x,} in Zeit

O(lel + 1Al + leol-w-[Al")

lost, wobei gilt:
® || ist die Lange von o, aufgefasst als Wort iiber dem Alphabet Arojq)

® w ist die maximale Anzahl freier Variablen in Subformeln von ¢
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Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

Satz 3.40

Es gibt einen Algorithmus, der das Auswertungsproblem fiir FO bei Eingabe
einer Signatur o, eine o-Struktur A, einer FO[c]-Formel ¢, einer Zahl n und
eines Variablentupels (xy, ..., x,) mit frei(p) C {x1,...,x,} in Zeit

O(lel + 1Al + leol-w-[Al")

lost, wobei gilt:
® || ist die Lange von o, aufgefasst als Wort iiber dem Alphabet Arojq)

® w ist die maximale Anzahl freier Variablen in Subformeln von ¢ — die so
genannte Breite (engl.: width) von ¢
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Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

Satz 3.40

Es gibt einen Algorithmus, der das Auswertungsproblem fiir FO bei Eingabe
einer Signatur o, eine o-Struktur A, einer FO[c]-Formel ¢, einer Zahl n und
eines Variablentupels (xy, ..., x,) mit frei(p) C {x1,...,x,} in Zeit

O(lel + 1Al + leol-w-[Al")

lost, wobei gilt:
® || ist die Lange von o, aufgefasst als Wort iiber dem Alphabet Arojq)
® w ist die maximale Anzahl freier Variablen in Subformeln von ¢ — die so
genannte Breite (engl.: width) von ¢

Al
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Satz 3.40
Es gibt einen Algorithmus, der das Auswertungsproblem fiir FO bei Eingabe

einer Signatur o, eine o-Struktur A, einer FO[c]-Formel ¢, einer Zahl n und
eines Variablentupels (xy, ..., x,) mit frei(p) C {x1,...,x,} in Zeit

O(lel + 1Al + leol-w-[Al")

lost, wobei gilt:
® || ist die Lange von o, aufgefasst als Wort iiber dem Alphabet Arojq)
® w ist die maximale Anzahl freier Variablen in Subformeln von ¢ — die so
genannte Breite (engl.: width) von ¢
o | A| ist ein MaB fiir die GréBe einer geeigneten Reprisentation von A als
Eingabe fiir einen Algorithmus
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Kapitel 3: Logik erster Stufe - Abschnitt 3.6: Logik und Datenbanken

Satz 3.40
Es gibt einen Algorithmus, der das Auswertungsproblem fiir FO bei Eingabe

einer Signatur o, eine o-Struktur A, einer FO[c]-Formel ¢, einer Zahl n und
eines Variablentupels (xy, ..., x,) mit frei(p) C {x1,...,x,} in Zeit

O(lel + 1Al + leol-w-[Al")

lost, wobei gilt:
® || ist die Lange von o, aufgefasst als Wort iiber dem Alphabet Arojq)
® w ist die maximale Anzahl freier Variablen in Subformeln von ¢ — die so
genannte Breite (engl.: width) von ¢
o | A| ist ein MaB fiir die GréBe einer geeigneten Reprisentation von A als
Eingabe fiir einen Algorithmus, prizise:

[Al = ol + Al + Y IRYar(R) + D IAP) (ar(f)+1)

Reo feo
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Satz 3.40
Es gibt einen Algorithmus, der das Auswertungsproblem fiir FO bei Eingabe

einer Signatur o, eine o-Struktur A, einer FO[c]-Formel ¢, einer Zahl n und
eines Variablentupels (xy, ..., x,) mit frei(p) C {x1,...,x,} in Zeit

O(lel + 1Al + leol-w-[Al")

lost, wobei gilt:
® || ist die Lange von o, aufgefasst als Wort iiber dem Alphabet Arojq)
® w ist die maximale Anzahl freier Variablen in Subformeln von ¢ — die so
genannte Breite (engl.: width) von ¢
o | A| ist ein MaB fiir die GréBe einer geeigneten Reprisentation von A als
Eingabe fiir einen Algorithmus, prizise:

[Al = ol + Al + Y IRYar(R) + D IAP) (ar(f)+1)

Reo feo

(Hier ohne Beweis)
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Kapitel 3: Logik erster Stufe - Abschnitt 3.7: Aquivalenz von Formeln der Logik erster Stufe

Aquivalenz

Definition 3.41
Sei o eine Signatur.
(a) Zwei FO[o]-Formeln ¢ und ) heiBen dquivalent (kurz: ¢ = 1)), wenn

3Zur Erinnerung: Z |= ® bedeutet, dass Z |= ¢ fiir jede Formel ¢ € & gilt.

Version vom 25. Januar 2024 Folie 247
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Aquivalenz

Definition 3.41

Sei o eine Signatur.

(a) Zwei FO[o]-Formeln ¢ und % heiBen dquivalent (kurz: ¢ = 1)), wenn fiir
jede o-Interpretation Z gilt:

Iy <= IEY.

3Zur Erinnerung: Z |= ® bedeutet, dass Z |= ¢ fiir jede Formel ¢ € & gilt.
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Aquivalenz

Definition 3.41

Sei o eine Signatur.

(a) Zwei FO[o]-Formeln ¢ und % heiBen dquivalent (kurz: ¢ = 1)), wenn fiir
jede o-Interpretation Z gilt:

Iy <= IEY.

(b) Zwei Formelmengen &, ¥ C FO[o] heiBen dquivalent (kurz: & = W), wenn

3Zur Erinnerung: Z |= ® bedeutet, dass Z |= ¢ fiir jede Formel ¢ € & gilt.

Version vom 25. Januar 2024 Folie 247
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Aquivalenz

Definition 3.41

Sei o eine Signatur.

(a) Zwei FO[o]-Formeln ¢ und % heiBen dquivalent (kurz: ¢ = 1)), wenn fiir
jede o-Interpretation Z gilt:

Iy <= IEY.

(b) Zwei Formelmengen &, ¥ C FO[o] heiBen dquivalent (kurz: & = W), wenn
fiir jede o-Interpretation T gilt:3

IE® «— Tk

3Zur Erinnerung: Z |= ® bedeutet, dass Z |= ¢ fiir jede Formel ¢ € & gilt.

Version vom 25. Januar 2024 Folie 247

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik



Kapitel 3: Logik erster Stufe - Abschnitt 3.7: Aquivalenz von Formeln der Logik erster Stufe

Beispiel 3.42

Welche der folgenden Formeln sind dquivalent, welche nicht?
° ¢1:= Iy E(x,y)
® = Jz E(x,2)

® p3:= Iz E(y,2)
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Aussagenlogische Aquivalenzen

Lemma 3.43

Ersetzt man in dquivalenten aussagenlogischen Formeln alle Aussagenymbole
durch FO[o]-Formeln, so erhilt man dquivalente FO[o]-Formeln.
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Aussagenlogische Aquivalenzen

Lemma 3.43

Ersetzt man in dquivalenten aussagenlogischen Formeln alle Aussagenymbole
durch FO[o]-Formeln, so erhilt man dquivalente FO[o]-Formeln.

Beispiel
Aus der aussagenlogische Aquivalenz (X—=Y) = -XVY folgt, dass

(p—=%) = —pVy

fiir alle FO[o]-Formeln ¢ und % gilt.
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Quantoren und Negation

Man sieht leicht, dass Folgendes gilt:

Lemma 3.44
Fiir alle FO[o]-Formeln ¢ und alle Variablen x € VAR gilt:

—dxp =
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Quantoren und Negation

Man sieht leicht, dass Folgendes gilt:

Lemma 3.44
Fiir alle FO[o]-Formeln ¢ und alle Variablen x € VAR gilt:

—dxp = Vx-p
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Quantoren und Negation

Man sieht leicht, dass Folgendes gilt:

Lemma 3.44
Fiir alle FO[o]-Formeln ¢ und alle Variablen x € VAR gilt:

—dxp = Vx-p und -Vxp =
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Quantoren und Negation

Man sieht leicht, dass Folgendes gilt:

Lemma 3.44
Fiir alle FO[o]-Formeln ¢ und alle Variablen x € VAR gilt:

—dxp = Vx-p und -Vxp = dx .
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Quantoren und Negation

Man sieht leicht, dass Folgendes gilt:

Lemma 3.44
Fiir alle FO[o]-Formeln ¢ und alle Variablen x € VAR gilt:

—dxp = Vx-p und -Vxp = dx .

Beweis: Folgt direkt aus der Definition der Semantik (Details: Ubung).

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024

Folie 250



Kapitel 3: Logik erster Stufe - Abschnitt 3.7: Aquivalenz von Formeln der Logik erster Stufe

Das Ersetzungslemma

Lemma 3.45
Sei o eine beliebige Signatur und sei ¢ eine FO[o]-Formel.
Ist ¢’ eine FO[o]-Formel, die aus ¢ entsteht, indem man eine Subformel 1 von

¢ durch eine zu ) dquivalente FO[o]-Formel v ersetzt, so ist ¢ = ¢'.

Beweis: Ubung.
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Das Ersetzungslemma

Lemma 3.45
Sei o eine beliebige Signatur und sei ¢ eine FO[o]-Formel.
Ist ¢’ eine FO[o]-Formel, die aus ¢ entsteht, indem man eine Subformel 1 von

¢ durch eine zu ) dquivalente FO[o]-Formel v ersetzt, so ist ¢ = ¢'.

Beweis: Ubung.

Satz 3.46

Jede FO[o]-Formel ist dquivalent zu einer FO[o]-Formel, in der

(a) keiner der Junktoren {\, —} vorkommt
(d.h., es kommen nur die Junktoren =,V und die Quantoren 3,V vor).
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Das Ersetzungslemma

Lemma 3.45
Sei o eine beliebige Signatur und sei ¢ eine FO[o]-Formel.
Ist ¢’ eine FO[o]-Formel, die aus ¢ entsteht, indem man eine Subformel 1 von

¢ durch eine zu ) dquivalente FO[o]-Formel v ersetzt, so ist ¢ = ¢'.

Beweis: Ubung.

Satz 3.46

Jede FO[o]-Formel ist dquivalent zu einer FO[o]-Formel, in der

(a) keiner der Junktoren {\, —} vorkommt
(d.h., es kommen nur die Junktoren =,V und die Quantoren 3,V vor).

(b) nur Existenzquantoren und die Junktoren -,V vorkommen.
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Das Ersetzungslemma

Lemma 3.45
Sei o eine beliebige Signatur und sei ¢ eine FO[o]-Formel.
Ist ¢’ eine FO[o]-Formel, die aus ¢ entsteht, indem man eine Subformel 1 von

¢ durch eine zu ) dquivalente FO[o]-Formel v ersetzt, so ist ¢ = ¢'.

Beweis: Ubung.

Satz 3.46

Jede FO[o]-Formel ist dquivalent zu einer FO[o]-Formel, in der

(a) keiner der Junktoren {\, —} vorkommt
(d.h., es kommen nur die Junktoren =,V und die Quantoren 3,V vor).

(b) nur Existenzquantoren und die Junktoren -,V vorkommen.

(c) nur Existenzquantoren und die Junktoren —, A vorkommen.
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Das Ersetzungslemma

Lemma 3.45
Sei o eine beliebige Signatur und sei ¢ eine FO[o]-Formel.
Ist ¢’ eine FO[o]-Formel, die aus ¢ entsteht, indem man eine Subformel 1 von

¢ durch eine zu ) dquivalente FO[o]-Formel v ersetzt, so ist ¢ = ¢'.

Beweis: Ubung.

Satz 3.46

Jede FO[o]-Formel ist dquivalent zu einer FO[o]-Formel, in der

(a) keiner der Junktoren {\, —} vorkommt
(d.h., es kommen nur die Junktoren =,V und die Quantoren 3,V vor).

(b) nur Existenzquantoren und die Junktoren -,V vorkommen.
(c) nur Existenzquantoren und die Junktoren —, A vorkommen.

(d) nur Allquantoren und die Junktoren -,V vorkommen.
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Das Ersetzungslemma

Lemma 3.45

Sei o eine beliebige Signatur und sei ¢ eine FO[o]-Formel.

Ist ¢’ eine FO[o]-Formel, die aus ¢ entsteht, indem man eine Subformel 1 von
¢ durch eine zu ) dquivalente FO[o]-Formel v ersetzt, so ist ¢ = ¢'.

Beweis: Ubung.

Satz 3.46

Jede FO[o]-Formel ist dquivalent zu einer FO[o]-Formel, in der

(a) keiner der Junktoren {\, —} vorkommt
(d.h., es kommen nur die Junktoren =,V und die Quantoren 3,V vor).

(b) nur Existenzquantoren und die Junktoren -,V vorkommen.
(c) nur Existenzquantoren und die Junktoren —, A vorkommen.
(d) nur Allquantoren und die Junktoren -,V vorkommen.
(e) nur Allquantoren und die Junktoren —, A vorkommen.
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Das Ersetzungslemma

Lemma 3.45
Sei o eine beliebige Signatur und sei ¢ eine FO[o]-Formel.
Ist ¢’ eine FO[o]-Formel, die aus ¢ entsteht, indem man eine Subformel 1 von

¢ durch eine zu ) dquivalente FO[o]-Formel v ersetzt, so ist ¢ = ¢'.

Beweis: Ubung.

Satz 3.46

Jede FO[o]-Formel ist dquivalent zu einer FO[o]-Formel, in der

(a) keiner der Junktoren {\, —} vorkommt

(d.h., es kommen nur die Junktoren =,V und die Quantoren 3,V vor).
(b) nur Existenzquantoren und die Junktoren -,V vorkommen.
(c) nur Existenzquantoren und die Junktoren —, A vorkommen.
(d) nur Allquantoren und die Junktoren -,V vorkommen.
(

e) nur Allquantoren und die Junktoren —, A vorkommen.

Daher geniigt es, bei Beweisen per Induktion iiber den Aufbau von Formeln von
nun an im Induktionsschritt i.d.R. nur noch die Falle fiir 3, —, VV zu betrachten.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.8: Ehrenfeucht-Fraissé-Spiele

In diesem Abschnitt werden Ehrenfeucht-Fraissé-Spiele (kurz: EF-Spiele)
eingefiihrt. Diese liefern ein Werkzeug, mit dessen Hilfe man zeigen kann, dass
bestimmte Anfragen oder Klassen von Strukturen nicht in Logik erster Stufe

definiert werden konnen.
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In diesem Abschnitt werden Ehrenfeucht-Fraissé-Spiele (kurz: EF-Spiele)
eingefiihrt. Diese liefern ein Werkzeug, mit dessen Hilfe man zeigen kann, dass
bestimmte Anfragen oder Klassen von Strukturen nicht in Logik erster Stufe
definiert werden kdnnen.

Der Einfachheit halber betrachten wir hier nur Signaturen, die keine
Funktionssymbole und keine Konstantensymbole enthalten. Solche Signaturen
werden im Folgenden relationale Signaturen genannt.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.8: Ehrenfeucht-Fraissé-Spiele

In diesem Abschnitt werden Ehrenfeucht-Fraissé-Spiele (kurz: EF-Spiele)
eingefiihrt. Diese liefern ein Werkzeug, mit dessen Hilfe man zeigen kann, dass
bestimmte Anfragen oder Klassen von Strukturen nicht in Logik erster Stufe
definiert werden kdnnen.

Der Einfachheit halber betrachten wir hier nur Signaturen, die keine
Funktionssymbole und keine Konstantensymbole enthalten. Solche Signaturen
werden im Folgenden relationale Signaturen genannt.

AuBerdem werden wir im Folgenden bei zwei gegebenen Strukturen A und B
immer 0.B.d.A. annehmen, dass ihre Universen disjunkt sind, d.h. AN B = ().
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Das m-Runden EF-Spiel

Sei o eine relationale Signatur und seien A, B zwei o-Strukturen.
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Das m-Runden EF-Spiel

Sei o eine relationale Signatur und seien A, B zwei o-Strukturen.

Fiir k € N seien a:=ay,...,ax € Aund b := by,..., b, € B Folgen der Linge
k von Elementen aus A bzw. B.
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Das m-Runden EF-Spiel

Sei o eine relationale Signatur und seien A, B zwei o-Strukturen.

Fiir k € N seien a:=ay,...,ax € Aund b := by,..., b, € B Folgen der Linge
k von Elementen aus A bzw. B.

Sei me N.
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Das m-Runden EF-Spiel

Sei o eine relationale Signatur und seien A, B zwei o-Strukturen.

Fiir k € N seien a:=ay,...,ax € Aund b := by,..., b, € B Folgen der Linge
k von Elementen aus A bzw. B.

Sei me N.

Das m-Runden EF-Spiel auf (A,3) und (B, b)
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Kapitel 3: Logik erster Stufe - Abschnitt 3.8: Ehrenfeucht-Fraissé-Spiele

Das m-Runden EF-Spiel

Sei o eine relationale Signatur und seien A, B zwei o-Strukturen.

Fiir k € N seien a:=ay,...,ax € Aund b := by,..., b, € B Folgen der Linge
k von Elementen aus A bzw. B.

Sei me N.

Das m-Runden EF-Spiel auf (A, 3) und (B,b) (bzw. auf A und B, falls k =0
ist) wird gemaB folgender Spielregeln gespielt:
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Spielregeln des m-Runden EF-Spiels auf (A, 3) und (B, b)
® Es gibt 2 Spieler
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Spielregeln des m-Runden EF-Spiels auf (A, 3) und (B, b)
® Es gibt 2 Spieler, genannt Spoiler (kurz: Sp) und Duplicator (kurz: Dupl).
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Kapitel 3: Logik erster Stufe - Abschnitt 3.8: Ehrenfeucht-Fraissé-Spiele

Spielregeln des m-Runden EF-Spiels auf (A, 3) und (B, b)
® Es gibt 2 Spieler, genannt Spoiler (kurz: Sp) und Duplicator (kurz: Dupl).

e Das Spielbrett besteht aus (A, 3) und (B, b).
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Kapitel 3: Logik erster Stufe - Abschnitt 3.8: Ehrenfeucht-Fraissé-Spiele
Spielregeln des m-Runden EF-Spiels auf (A4,3) und (B, b)
® Es gibt 2 Spieler, genannt Spoiler (kurz: Sp) und Duplicator (kurz: Dupl).
e Das Spielbrett besteht aus (A, 3) und (B, b).

® Eine Partie des Spiels besteht aus m Runden.

In jeder Runde i € {1,..., m} geschieht Folgendes:

1. Zunichst wahlt Spoiler entweder ein Element in A
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Kapitel 3: Logik erster Stufe - Abschnitt 3.8: Ehrenfeucht-Fraissé-Spiele
Spielregeln des m-Runden EF-Spiels auf (A4,3) und (B, b)
® Es gibt 2 Spieler, genannt Spoiler (kurz: Sp) und Duplicator (kurz: Dupl).
e Das Spielbrett besteht aus (A, 3) und (B, b).

® Eine Partie des Spiels besteht aus m Runden.

In jeder Runde i € {1,..., m} geschieht Folgendes:

1. Zunichst wahlt Spoiler entweder ein Element in A, das im Folgenden
mit ax;; bezeichnet wird
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Kapitel 3: Logik erster Stufe - Abschnitt 3.8: Ehrenfeucht-Fraissé-Spiele
Spielregeln des m-Runden EF-Spiels auf (A4,3) und (B, b)
® Es gibt 2 Spieler, genannt Spoiler (kurz: Sp) und Duplicator (kurz: Dupl).
e Das Spielbrett besteht aus (A, 3) und (B, b).

® Eine Partie des Spiels besteht aus m Runden.

In jeder Runde i € {1,..., m} geschieht Folgendes:

1. Zunichst wahlt Spoiler entweder ein Element in A, das im Folgenden
mit ax;; bezeichnet wird, oder er wahlt ein Element in B
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Kapitel 3: Logik erster Stufe - Abschnitt 3.8: Ehrenfeucht-Fraissé-Spiele
Spielregeln des m-Runden EF-Spiels auf (A4,3) und (B, b)
® Es gibt 2 Spieler, genannt Spoiler (kurz: Sp) und Duplicator (kurz: Dupl).
e Das Spielbrett besteht aus (A, 3) und (B, b).

® Eine Partie des Spiels besteht aus m Runden.

In jeder Runde i € {1,..., m} geschieht Folgendes:

1. Zunichst wahlt Spoiler entweder ein Element in A, das im Folgenden
mit ax.; bezeichnet wird, oder er wahlt ein Element in B, das im
Folgenden mit by; bezeichnet wird.
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Spielregeln des m-Runden EF-Spiels auf (A4,3) und (B, b)
® Es gibt 2 Spieler, genannt Spoiler (kurz: Sp) und Duplicator (kurz: Dupl).
e Das Spielbrett besteht aus (A, 3) und (B, b).

® Eine Partie des Spiels besteht aus m Runden.

In jeder Runde i € {1,..., m} geschieht Folgendes:

1. Zunichst wahlt Spoiler entweder ein Element in A, das im Folgenden
mit ax.; bezeichnet wird, oder er wahlt ein Element in B, das im
Folgenden mit by; bezeichnet wird.

Beachte: Insbes. kann Spoiler in jeder Runde neu entscheiden, in welcher der
beiden Strukturen er ein Element wihlen méchte.
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Spielregeln des m-Runden EF-Spiels auf (A4,3) und (B, b)
® Es gibt 2 Spieler, genannt Spoiler (kurz: Sp) und Duplicator (kurz: Dupl).
® Das Spielbrett besteht aus (A, 3) und (B, b).

® Eine Partie des Spiels besteht aus m Runden.

In jeder Runde i € {1,..., m} geschieht Folgendes:

1. Zunichst wahlt Spoiler entweder ein Element in A, das im Folgenden
mit ax.; bezeichnet wird, oder er wahlt ein Element in B, das im
Folgenden mit by; bezeichnet wird.

Beachte: Insbes. kann Spoiler in jeder Runde neu entscheiden, in welcher der

beiden Strukturen er ein Element wihlen méchte.

2. Danach antwortet Duplicator mit einem Element aus dem Universum
der anderen Struktur
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Kapitel 3: Logik erster Stufe - Abschnitt 3.8: Ehrenfeucht-Fraissé-Spiele

Spielregeln des m-Runden EF-Spiels auf (A4,3) und (B, b)
® Es gibt 2 Spieler, genannt Spoiler (kurz: Sp) und Duplicator (kurz: Dupl).
® Das Spielbrett besteht aus (A, 3) und (B, b).

® Eine Partie des Spiels besteht aus m Runden.

In jeder Runde i € {1,..., m} geschieht Folgendes:

1. Zunichst wahlt Spoiler entweder ein Element in A, das im Folgenden
mit ax.; bezeichnet wird, oder er wahlt ein Element in B, das im
Folgenden mit by; bezeichnet wird.

Beachte: Insbes. kann Spoiler in jeder Runde neu entscheiden, in welcher der

beiden Strukturen er ein Element wihlen méchte.

2. Danach antwortet Duplicator mit einem Element aus dem Universum
der anderen Struktur, d.h. er wahlt ein by, ; € B, falls Spoiler ein
ak+i € A gewidhlt hat
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Spielregeln des m-Runden EF-Spiels auf (A4,3) und (B, b)
® Es gibt 2 Spieler, genannt Spoiler (kurz: Sp) und Duplicator (kurz: Dupl).
® Das Spielbrett besteht aus (A, 3) und (B, b).

® Eine Partie des Spiels besteht aus m Runden.

In jeder Runde i € {1,..., m} geschieht Folgendes:

1. Zunichst wahlt Spoiler entweder ein Element in A, das im Folgenden
mit ax.; bezeichnet wird, oder er wahlt ein Element in B, das im
Folgenden mit by; bezeichnet wird.

Beachte: Insbes. kann Spoiler in jeder Runde neu entscheiden, in welcher der

beiden Strukturen er ein Element wihlen méchte.

2. Danach antwortet Duplicator mit einem Element aus dem Universum
der anderen Struktur, d.h. er wahlt ein by, ; € B, falls Spoiler ein
ak+i € A gewihlt hat, bzw. ein Element a,; € A, falls Spoiler ein
bk+i € B gewahlt hat.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.8: Ehrenfeucht-Fraissé-Spiele
Spielregeln des m-Runden EF-Spiels auf (A4,3) und (B, b)
® Es gibt 2 Spieler, genannt Spoiler (kurz: Sp) und Duplicator (kurz: Dupl).
® Das Spielbrett besteht aus (A, 3) und (B, b).

® Eine Partie des Spiels besteht aus m Runden.

In jeder Runde i € {1,..., m} geschieht Folgendes:

1. Zunichst wahlt Spoiler entweder ein Element in A, das im Folgenden
mit ax.; bezeichnet wird, oder er wahlt ein Element in B, das im
Folgenden mit by; bezeichnet wird.

Beachte: Insbes. kann Spoiler in jeder Runde neu entscheiden, in welcher der

beiden Strukturen er ein Element wihlen méchte.

2. Danach antwortet Duplicator mit einem Element aus dem Universum
der anderen Struktur, d.h. er wahlt ein by, ; € B, falls Spoiler ein
ak+i € A gewihlt hat, bzw. ein Element a,; € A, falls Spoiler ein
bk+i € B gewahlt hat.

Nach Runde m ist die Partie beendet und der Gewinner wird wie folgt
ermittelt:
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Gewinnbedingung
Duplicator hat gewonnen, falls die beiden folgenden Bedingungen erfiillt sind.
(1) Firallej,j/ € {1,...,k+m} gilt: aj=a;y <= bj=bj.
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Gewinnbedingung

Duplicator hat gewonnen, falls die beiden folgenden Bedingungen erfiillt sind.
(1) Furallej,j' € {1,...,k+m} gilt: aj=ay <= bj=bj.
(2) Die Abbildung 7 :{a1,...,akim} — {b1,..., bkrm} mit

m(aj) = b; fir jedes j e {1,..., k+m}

ist
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Kapitel 3: Logik erster Stufe - Abschnitt 3.8: Ehrenfeucht-Fraissé-Spiele

Gewinnbedingung

Duplicator hat gewonnen, falls die beiden folgenden Bedingungen erfiillt sind.
(1) Furallej,j' € {1,...,k+m} gilt: aj=ay <= bj=bj.
(2) Die Abbildung 7 :{a1,...,akim} — {b1,..., bkrm} mit

m(aj) = bj, fiir jedes j € {1,..., k+m}

ist ein partieller Isomorphismus von A nach B (siehe Definition 3.47).
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Kapitel 3: Logik erster Stufe - Abschnitt 3.8: Ehrenfeucht-Fraissé-Spiele

Gewinnbedingung

Duplicator hat gewonnen, falls die beiden folgenden Bedingungen erfiillt sind.
(1) Furallej,j' € {1,...,k+m} gilt: aj=ay <= bj=bj.
(2) Die Abbildung 7 :{a1,...,akim} — {b1,..., bkrm} mit

m(aj) = bj, fiir jedes j € {1,..., k+m}

ist ein partieller Isomorphismus von A nach B (siehe Definition 3.47).

Spoiler hat gewonnen, falls mindestens eine der beiden obigen Bedingungen
verletzt ist.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.8: Ehrenfeucht-Fraissé-Spiele

Gewinnbedingung

Duplicator hat gewonnen, falls die beiden folgenden Bedingungen erfiillt sind.
(1) Furallej,j' € {1,...,k+m} gilt: aj=ay <= bj=bj.
(2) Die Abbildung 7 :{a1,...,a3k+m} — {b1,..., brrm} mit

m(aj) = bj, fiir jedes j € {1,..., k+m}

ist ein partieller Isomorphismus von A nach B (siehe Definition 3.47).

Spoiler hat gewonnen, falls mindestens eine der beiden obigen Bedingungen
verletzt ist.

Definition 3.47 (partieller Isomorphismus)

Sei o eine relationale Signatur, seien A, B zwei o-Strukturen, sei X C A. Eine
Abbildung 7 : X — B heiBt partieller Isomorphismus von A nach B, falls gilt:
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Gewinnbedingung

Duplicator hat gewonnen, falls die beiden folgenden Bedingungen erfiillt sind.
(1) Furallej,j' € {1,...,k+m} gilt: aj=ay <= bj=bj.
(2) Die Abbildung 7 :{a1,...,a3k+m} — {b1,..., brrm} mit

m(aj) = bj, fir jedes j e {1,..., k+m}

ist ein partieller Isomorphismus von A nach B (siehe Definition 3.47).

Spoiler hat gewonnen, falls mindestens eine der beiden obigen Bedingungen
verletzt ist.

Definition 3.47 (partieller Isomorphismus)

Sei o eine relationale Signatur, seien A, B zwei o-Strukturen, sei X C A. Eine
Abbildung 7 : X — B heiBt partieller Isomorphismus von A nach B, falls gilt:

(1)  ist injektiv und
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Gewinnbedingung

Duplicator hat gewonnen, falls die beiden folgenden Bedingungen erfiillt sind.
(1) Furallej,j' € {1,...,k+m} gilt: aj=ay <= bj=bj.
(2) Die Abbildung 7 :{a1,...,a3k+m} — {b1,..., brrm} mit

m(aj) = bj, fir jedes j e {1,..., k+m}

ist ein partieller Isomorphismus von A nach B (siehe Definition 3.47).

Spoiler hat gewonnen, falls mindestens eine der beiden obigen Bedingungen
verletzt ist.

Definition 3.47 (partieller Isomorphismus)

Sei o eine relationale Signatur, seien A, B zwei o-Strukturen, sei X C A. Eine
Abbildung 7 : X — B heiBt partieller Isomorphismus von A nach B, falls gilt:

(1)  ist injektiv und
(2) fiir jedes R € o, fiir r := ar(R) und fir alle (x,...,x) € X" gilt:

(X1,....%) € RA  — (7(x1), ..., 7(x)) € R5.
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Beispiel 3.48
Sei o :={E/2} und sei k:=0.
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Beispiel 3.48
Sei o :={E/2} und sei k:=0.

In den folgenden Darstellungen von Graphen représentiert jede ungerichtete
Kante zwischen Knoten x, y die beiden gerichteten Kanten (x,y) und (y, x).

(a) Betrachte die folgenden beiden Graphen A, 5.

A

7\ ..

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 256



Kapitel 3: Logik erster Stufe - Abschnitt 3.8: Ehrenfeucht-Fraissé-Spiele

(b) Betrachte die beiden folgenden Graphen A, B.

A B:
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Die Ziele von Spoiler und Duplicator

Die Gewinnbedingung im EF-Spiel ist so gewahlt, dass die Ziele von Spoiler und
Duplicator anschaulich folgendermaBen beschrieben werden kdnnen:

® Spoilers Ziel ist es,
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Die Ziele von Spoiler und Duplicator

Die Gewinnbedingung im EF-Spiel ist so gewahlt, dass die Ziele von Spoiler und
Duplicator anschaulich folgendermaBen beschrieben werden kdnnen:

® Spoilers Ziel ist es, zu zeigen, dass die beiden Strukturen (A,3) und (B, b)
verschieden sind.
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Die Ziele von Spoiler und Duplicator

Die Gewinnbedingung im EF-Spiel ist so gewahlt, dass die Ziele von Spoiler und
Duplicator anschaulich folgendermaBen beschrieben werden kdnnen:

® Spoilers Ziel ist es, zu zeigen, dass die beiden Strukturen (A,3) und (B, b)
verschieden sind.

® Duplicators Ziel ist es,
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Die Ziele von Spoiler und Duplicator

Die Gewinnbedingung im EF-Spiel ist so gewahlt, dass die Ziele von Spoiler und
Duplicator anschaulich folgendermaBen beschrieben werden kdnnen:

® Spoilers Ziel ist es, zu zeigen, dass die beiden Strukturen (A,3) und (B, b)
verschieden sind.

® Duplicators Ziel ist es, einen etwaigen Unterschied zwischen den beiden
Strukturen zu vertuschen.
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Gewinnstrategien

Eine Strategie fiir einen der beiden Spieler im m-Runden EF-Spiel auf (A, 3)
und (B, b) ist eine Vorschrift, die ihm sagt, welchen Zug er als Nachstes machen

soll.
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Gewinnstrategien

Eine Strategie fiir einen der beiden Spieler im m-Runden EF-Spiel auf (A, 3)
und (B, b) ist eine Vorschrift, die ihm sagt, welchen Zug er als Nachstes machen

soll. Formal:

® Eine Strategie fiir Spoiler ist eine Abbildung
m—1 )
fso : | J(AxB)Y — AUB.
i=0
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Gewinnstrategien

Eine Strategie fiir einen der beiden Spieler im m-Runden EF-Spiel auf (A, 3)
und (B, b) ist eine Vorschrift, die ihm sagt, welchen Zug er als Nachstes machen

soll. Formal:

® Eine Strategie fiir Spoiler ist eine Abbildung

m—1
fso : | J(AxB)Y — AUB.
i=0

Sind agy1, ..., a3kt € Aund bgiq,..., by € B die in den ersten i Runden
gewahlten Elemente, so gibt

fsp(ak+1, brs1y- -5 Aksiy brti)

an, welches Element Spoiler in der (i+1)-ten Runde wéhlen soll.
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® Eine Strategie fiir Duplicator ist eine Abbildung

m—1
four = |J (AxB) x (AUB) — BUA,
i=0
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® Eine Strategie fiir Duplicator ist eine Abbildung

m—1
four = |J (AxB) x (AUB) — BUA,
i=0

so dass fiir alle i € {0,...,m—1}, alle aki1,...,ak+; € A, alle
bk+1, ceey bk+,' € B und alle Ck+i+1 € AUB gi|t:

Chrit1 €A <= fpupi(ak+1s brt1s - - - s Aktis biyis Chyiv1) € B.
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® Eine Strategie fiir Duplicator ist eine Abbildung

m—1
four = |J (AxB) x (AUB) — BUA,
i=0

so dass fiir alle i € {0,...,m—1}, alle aki1,...,ak+; € A, alle

bk+1, ceey bk+,' € B und alle Ck+i+1 € AUB g”t:

Chrit1 €A <= fpupi(ak+1s brt1s - - - s Aktis biyis Chyiv1) € B.

Sind agy1, ...,k € Aund bgiq,..., by € B die in den ersten i Runden
und ist cktir1 € AU B das von Spoiler in Runde i+1 gewahlte Element, so
gibt

foupl(@k+1, Bi41s - -+ ktiis Phtis Chtie1)

an, welches Element Duplicator in der (i+1)-ten Runde wihlen soll.
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® Eine Strategie fiir Duplicator ist eine Abbildung

m—1

four = |J (AxB) x(AUB) — BUA,
i=0

so dass fiir alle i € {0,...,m—1}, alle aki1,...,ak+; € A, alle
bk+1, ceey bk+,' € B und alle Ck+i+1 € AUB g”t:

Chrit1 €A <= fpupi(ak+1s brt1s - - - s Aktis biyis Chyiv1) € B.

Sind agy1, ...,k € Aund bgiq,..., by € B die in den ersten i Runden
und ist cktir1 € AU B das von Spoiler in Runde i+1 gewahlte Element, so
gibt

foupl(@k+1, Bi41s - -+ ktiis Phtis Chtie1)

an, welches Element Duplicator in der (i+1)-ten Runde wihlen soll.

® Eine Gewinnstrategie ist eine Strategie fiir einen der beiden Spieler, mit der
er jede Partie des m-Runden EF-Spiels auf (A,3) und (B, b) gewinnt.
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Der Satz von Ehrenfeucht

Sei o eine relationale Signatur, sei@ A, B zwei o-Strukturen, sei m € N, sei
keN,seia=ay,...,ak € Aund b= by,..., b € B.
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Der Satz von Ehrenfeucht

Sei o eine relationale Signatur, sei@ A, B zwei o-Strukturen, sei m € N, sei
keN,seia=ay,...,ak € Aund b= by,..., b € B.

Der Satz von Ehrenfeucht besagt, dass die beiden folgenden Aussagen

dquivalent sind:

(1) Duplicator hat eine Gewinnstrategie im m-Runden EF-Spiel auf (A, 3) und
(B, b).

(2) Fir jede FO[o]-Formel ¢(xi, ..., xx) der Quantorentiefe < m gilt:

A ': cp[al,...,ak] < B ': (p[bl,...,bk].
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Der Satz von Ehrenfeucht

Sei o eine relationale Signatur, sei@ A, B zwei o-Strukturen, sei m € N, sei
keN,seia=ay,...,ak € Aund b= by,..., b € B.

Der Satz von Ehrenfeucht besagt, dass die beiden folgenden Aussagen

dquivalent sind:

(1) Duplicator hat eine Gewinnstrategie im m-Runden EF-Spiel auf (A, 3) und
(B, b).

(2) Fir jede FO[o]-Formel ¢(xi, ..., xx) der Quantorentiefe < m gilt:

A ': @[al,...,ak] < B ': (p[bl,...,bk].

Die Quantorentiefe einer Formel ¢ ist dabei die maximale Anzahl von ineinander
geschachtelten Quantoren, die in ¢ vorkommen:
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Der Satz von Ehrenfeucht

Sei o eine relationale Signatur, sei@ A, B zwei o-Strukturen, sei m € N, sei

keN,seia=ay,...,ak € Aund b= by,..., b € B.

Der Satz von Ehrenfeucht besagt, dass die beiden folgenden Aussagen

dquivalent sind:

(1) Duplicator hat eine Gewinnstrategie im m-Runden EF-Spiel auf (A, 3) und
(B, b).

(2) Fir jede FO[o]-Formel ¢(xi, ..., xx) der Quantorentiefe < m gilt:
A |:<p[al,...,ak] <~ B ):(p[bl,...,bk].

Anschaulich bedeutet dies, dass (A,3) und (B, b) aus Perspektive von
FO[o]-Formeln der Quantorentiefe < m ,gleich” aussehen, d.h. dass (A, a)
und (B, b) von solchen Formeln nicht unterschieden werden kénnen.
Die Quantorentiefe einer Formel ¢ ist dabei die maximale Anzahl von ineinander
geschachtelten Quantoren, die in ¢ vorkommen:
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Definition 3.49

Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) qr(p) einer
FO[o]-Formel ¢ ist rekursiv wie folgt definiert:

® st ¢ atomar, so ist qr(p) =
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Definition 3.49
Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) qr(p) einer
FO[o]-Formel ¢ ist rekursiv wie folgt definiert:

® [st ¢ atomar, so ist qr(y) := 0.
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Definition 3.49

Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) qr(p) einer
FO[o]-Formel ¢ ist rekursiv wie folgt definiert:

® [st ¢ atomar, so ist qr(y) := 0.
® |st ¢ von der Form —¢, so ist qr(yp) :=
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Definition 3.49
Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) qr(p) einer
FO[o]-Formel ¢ ist rekursiv wie folgt definiert:

® [st ¢ atomar, so ist qr(y) := 0.
® [st ¢ von der Form —), soist qr(p) := qr(v).
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Definition 3.49

Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) qr(p) einer
FO[o]-Formel ¢ ist rekursiv wie folgt definiert:

® [st ¢ atomar, so ist qr(y) := 0.

® [st ¢ von der Form —), soist qr(p) := qr(v).

® |st ¢ von der Form (11 * 1) mit x € {A,V, —}, so ist
ar(e) =
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Definition 3.49

Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) qr(p) einer
FO[o]-Formel ¢ ist rekursiv wie folgt definiert:

® [st ¢ atomar, so ist qr(y) := 0.
® [st ¢ von der Form —), soist qr(p) := qr(v).

® |st ¢ von der Form (11 * 1) mit x € {A,V, —}, so ist
qr() := max{qr(y1), ar(¢2)}.
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Definition 3.49
Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) qr(p) einer
FO[o]-Formel ¢ ist rekursiv wie folgt definiert:

® [st ¢ atomar, so ist qr(y) := 0.

® [st ¢ von der Form —), soist qr(p) := qr(v).

® |st ¢ von der Form (11 * 1) mit x € {A,V, —}, so ist
ar() == max{qr(¥1), ar(v2)}.

® Ist ¢ von der Form 3x 1 oder Vx 1, so ist qr(y¢) :=
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Definition 3.49
Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) qr(p) einer
FO[o]-Formel ¢ ist rekursiv wie folgt definiert:

® [st ¢ atomar, so ist qr(y) := 0.
® [st ¢ von der Form —), soist qr(p) := qr(v).

® |st ¢ von der Form (11 * 1) mit x € {A,V, —}, so ist
ar(p) := max{qr(y1), ar(y2)}-
® Ist ¢ von der Form Jx 1 oder Vx 1, so ist qr(y) := qr(y) + 1.
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Definition 3.49
Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) qr(p) einer
FO[o]-Formel ¢ ist rekursiv wie folgt definiert:

® [st ¢ atomar, so ist qr(y) := 0.
® [st ¢ von der Form —), soist qr(p) := qr(v).
® |st ¢ von der Form (11 * 1) mit x € {A,V, —}, so ist
ar() == max{qr(¥1), ar(v2)}.
® Ist ¢ von der Form Jx 1 oder Vx 1, so ist qr(y) := qr(y) + 1.

Beispiele:
°* qr (HxVy (x:y \% E(x,y)) ) =
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Definition 3.49

Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) qr(p) einer

FO[o]-Formel ¢ ist rekursiv wie folgt definiert:
® [st ¢ atomar, so ist qr(y) := 0.
® [st ¢ von der Form —), soist qr(p) := qr(v).
® |st ¢ von der Form (11 * 1) mit x € {A,V, —}, so ist
qr() := max{qr(y1), ar(¢2)}.
® Ist ¢ von der Form Jx 1 oder Vx 1, so ist qr(y) := qr(y) + 1.

Beispiele:
* qr(3xVy (x=y VE(x,y))) = 2.
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Definition 3.49
Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) qr(p) einer
FO[o]-Formel ¢ ist rekursiv wie folgt definiert:

® [st ¢ atomar, so ist qr(y) := 0.

® [st ¢ von der Form —), soist qr(p) := qr(v).

® |st ¢ von der Form (11 * 1) mit x € {A,V, —}, so ist

qr() := max{qr(y1), ar(¢2)}.
® Ist ¢ von der Form Jx 1 oder Vx 1, so ist qr(y) := qr(y) + 1.

Beispiele:
] qr(ﬂxVy (x:y\/E(x,y))) = 2.
* qr(3x (E(x,x) VVy =E(x,y))) =
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Definition 3.49
Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) qr(p) einer
FO[o]-Formel ¢ ist rekursiv wie folgt definiert:

® [st ¢ atomar, so ist qr(y) := 0.

® [st ¢ von der Form —), soist qr(p) := qr(v).

® |st ¢ von der Form (11 * 1) mit x € {A,V, —}, so ist

qr() := max{qr(y1), ar(¢2)}.
® Ist ¢ von der Form Jx 1 oder Vx 1, so ist qr(y) := qr(y) + 1.

Beispiele:
] qr(ﬂxVy (x:y\/E(x,y))) = 2.
* gr(3x (E(x,x) VVy =E(x,y))) = 2.
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Definition 3.49
Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) qr(p) einer
FO[o]-Formel ¢ ist rekursiv wie folgt definiert:

® [st ¢ atomar, so ist qr(y) := 0.

® [st ¢ von der Form —), soist qr(p) := qr(v).

® |st ¢ von der Form (11 * 1) mit x € {A,V, —}, so ist

qr() := max{qr(y1), ar(¢2)}.
® Ist ¢ von der Form Jx 1 oder Vx 1, so ist qr(y) := qr(y) + 1.

Beispiele:
* qr(3xVy (x=y VE(x,y))) = 2.
* qr(3x (E(x,x) VVy =E(x,y))) =
* qr((3IxE(x,x)VVy —E(x,y))) =
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Definition 3.49
Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) qr(p) einer
FO[o]-Formel ¢ ist rekursiv wie folgt definiert:

® [st ¢ atomar, so ist qr(y) := 0.

® [st ¢ von der Form —), soist qr(p) := qr(v).

® |st ¢ von der Form (11 * 1) mit x € {A,V, —}, so ist

qr() := max{qr(y1), ar(¢2)}.
® Ist ¢ von der Form Jx 1 oder Vx 1, so ist qr(y) := qr(y) + 1.

Beispiele:
* qr(3xVy (x=y VE(x,y))) = 2.
* qr(3x (E(x,x) VVy =E(x,y))) =
* qr((3IxE(x,x)VVy —E(x,y))) =
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Definition 3.49
Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) qr(p) einer
FO[o]-Formel ¢ ist rekursiv wie folgt definiert:

® [st ¢ atomar, so ist qr(y) := 0.

® [st ¢ von der Form —), soist qr(p) := qr(v).

® |st ¢ von der Form (11 * 1) mit x € {A,V, —}, so ist

qr() := max{qr(y1), ar(¢2)}.
® Ist ¢ von der Form Jx 1 oder Vx 1, so ist qr(y) := qr(y) + 1.

Beispiele:
* qr(3xVy (x=y VE(x,y))) = 2.
* qr(3x (E(x,x) VVy =E(x,y))) =
* qr((3IxE(x,x)VVy —E(x,y))) =

Bemerkung 3.50

GemiB Satz 3.46 ist jede FO[o]-Formel ¢ dquivalent zu einer FO[o]-Formel ', in der
nur Existenzquantoren und die Junktoren =,V vorkommen (d.h.: in ¢’ kommt keins
der Symbole V, A, — vor).
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Definition 3.49
Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) qr(p) einer
FO[o]-Formel ¢ ist rekursiv wie folgt definiert:

® [st ¢ atomar, so ist qr(y) := 0.

® [st ¢ von der Form —), soist qr(p) := qr(v).

® |st ¢ von der Form (11 * 1) mit x € {A,V, —}, so ist

qr() := max{qr(y1), ar(¢2)}.
® Ist ¢ von der Form Jx 1 oder Vx 1, so ist qr(y) := qr(y) + 1.

Beispiele:
* qr(3xVy (x=y VE(x,y))) = 2.
* qr(3x (E(x,x) VVy =E(x,y))) =
* qr((3IxE(x,x)VVy —E(x,y))) =

Bemerkung 3.50

GemiB Satz 3.46 ist jede FO[o]-Formel ¢ dquivalent zu einer FO[o]-Formel ', in der
nur Existenzquantoren und die Junktoren =,V vorkommen (d.h.: in ¢’ kommt keins
der Symbole V, A, — vor). Man sieht leicht, dass ¢’ sogar so gewihlt werden kann,
dass gilt: qr(¢’) = qr(e) und frei(yp’) = frei(p).
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Wir beweisen hier nur die Richtung ,,(1) = (2)" des Satzes von Ehrenfeucht,
deren Kontraposition in folgendem Satz formuliert wird.
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Wir beweisen hier nur die Richtung ,,(1) = (2)" des Satzes von Ehrenfeucht,
deren Kontraposition in folgendem Satz formuliert wird.

Satz 3.51 (Satz von Ehrenfeucht, einfache Version)
Sei o eine relationale Signatur und seien A, B zwei o-Strukturen,
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Wir beweisen hier nur die Richtung ,,(1) = (2)" des Satzes von Ehrenfeucht,
deren Kontraposition in folgendem Satz formuliert wird.

Satz 3.51 (Satz von Ehrenfeucht, einfache Version)
Sei o eine relationale Signatur und seien A, B zwei o-Strukturen, sei m € N,
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Wir beweisen hier nur die Richtung ,,(1) = (2)" des Satzes von Ehrenfeucht,
deren Kontraposition in folgendem Satz formuliert wird.

Satz 3.51 (Satz von Ehrenfeucht, einfache Version)

Sei o eine relationale Signatur und seieni.A, B zwei o-Strukturen, sei m € N, sei
keN,sei a=ay,...,ax €A undsei b=by,...,b €B.
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Wir beweisen hier nur die Richtung ,,(1) = (2)" des Satzes von Ehrenfeucht,
deren Kontraposition in folgendem Satz formuliert wird.

Satz 3.51 (Satz von Ehrenfeucht, einfache Version)

Sei o eine relationale Signatur und seieni.A, B zwei o-Strukturen, sei m € N, sei
keN,sei a=ay,...,ax €A undsei b=by,...,b €B.

Falls es eine FO[o]-Formel p(x1, ..., xx) mit frei(¢) C {x1,...,xx} und
ar(yp) < m gibt, so dass

A E pla, ..., a] und B ¥ o[by,..., by,

so hat Spoiler eine Gewinnstrategie im m-Runden EF-Spiel auf (A,3) und (B, b).
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Beweisidee

Zuniachst illustrieren wir die Beweisidee an einem Beispiel. Betrachte dazu die

Formel
@ = 3X1VX2 (X1:X2 vV E(X17X2)>

und die beiden Graphen A, B aus Beispiel 3.48(a).

A

/\ |

Esgilt: A= und B¢, dh Bl -
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Beweis von Satz 3.51:
Per Induktion tiber den Aufbau von Formeln.
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Beweis von Satz 3.51:
Per Induktion iiber den Aufbau von Formeln. Es seien eine relationale Signatur
o und zwei o-Strukturen A und B gegeben. Die Aussage A(y), die wir fiir alle

FO[o]-Formeln ¢ beweisen wollen, besagt Folgendes:
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Beweis von Satz 3.51:
Per Induktion iiber den Aufbau von Formeln. Es seien eine relationale Signatur
o und zwei o-Strukturen A und B gegeben. Die Aussage A(y), die wir fiir alle

FO[o]-Formeln ¢ beweisen wollen, besagt Folgendes:

Fiirallem,k € N, alle 3a=ay,...,ax €A und alle b=by,..., bc €

B gilt:
Falls qr(p) < m
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Beweis von Satz 3.51:
Per Induktion iiber den Aufbau von Formeln. Es seien eine relationale Signatur
o und zwei o-Strukturen A und B gegeben. Die Aussage A(y), die wir fiir alle

FO[o]-Formeln ¢ beweisen wollen, besagt Folgendes:

Fiirallem,k € N, alle 3a=ay,...,ax €A und alle b=by,..., bc €
B gilt:
Falls qr(p) < m und |frei(y)] < k
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Beweis von Satz 3.51:
Per Induktion iiber den Aufbau von Formeln. Es seien eine relationale Signatur
o und zwei o-Strukturen A und B gegeben. Die Aussage A(y), die wir fiir alle

FO[o]-Formeln ¢ beweisen wollen, besagt Folgendes:

Fiirallem,k € N, alle 3a=ay,...,ax €A und alle b=by,..., bc €

B gilt:
Falls qr(p) < m und |frei(p)| < k und

.A‘Z (,9[81,...,ak] g B %g@[bl,...,bk],

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 265



Kapitel 3: Logik erster Stufe - Abschnitt 3.8: Ehrenfeucht-Fraissé-Spiele

Beweis von Satz 3.51:

Per Induktion iiber den Aufbau von Formeln. Es seien eine relationale Signatur
o und zwei o-Strukturen A und B gegeben. Die Aussage A(y), die wir fiir alle
FO[o]-Formeln ¢ beweisen wollen, besagt Folgendes:

Fiirallem,k € N, alle 3a=ay,...,ax €A und alle b=by,..., bc €

B gilt:
Falls qr(¢) < m und |frei(¢)| < k und

.A‘Z go[al,...,ak] g B %g@[bl,...,bk],

so hat Spoiler eine Gewinnstrategie im m-Runden EF-Spiel auf (A, 3)
und (B, b).
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Beweis von Satz 3.51:

Per Induktion iiber den Aufbau von Formeln. Es seien eine relationale Signatur
o und zwei o-Strukturen A und B gegeben. Die Aussage A(y), die wir fiir alle
FO[o]-Formeln ¢ beweisen wollen, besagt Folgendes:

Fiirallem,k € N, alle 3a=ay,...,ax €A und alle b=by,..., bc €

B gilt:
Falls qr(p) < m und |frei(p)| < k und

.A‘Z (,9[81,...,ak] g B %g@[bl,...,bk],
so hat Spoiler eine Gewinnstrategie im m-Runden EF-Spiel auf (A, 3)

und (B, b).

Um A(p) fiir eine gegebene Formel ¢ zu beweisen, seien im Folgenden
mkeN, a=aj,...,ak €A und b= by,...,bx € B beliebig gewihlt.
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Beweis von Satz 3.51:

Per Induktion iiber den Aufbau von Formeln. Es seien eine relationale Signatur
o und zwei o-Strukturen A und B gegeben. Die Aussage A(y), die wir fiir alle
FO[o]-Formeln ¢ beweisen wollen, besagt Folgendes:

Fiirallem,k € N, alle 3a=ay,...,ax €A und alle b=by,..., bc €

B gilt:
Falls qr(p) < m und |frei(p)| < k und

.A‘Z (,9[81,...,ak] g B %g@[bl,...,bk],

so hat Spoiler eine Gewinnstrategie im m-Runden EF-Spiel auf (A, 3)
und (B, b).

Um A(p) fiir eine gegebene Formel ¢ zu beweisen, seien im Folgenden
mkeN, a=aj,...,ak €A und b= by,...,bx € B beliebig gewihlt.

Es geniigt, den Fall zu betrachten, in dem gilt:

(x): m=ar(e), k=|frei(p)] und A= [a] <= Bl o[b],

denn andernfalls muss gemiB der Formulierung von A(y) nichts gezeigt werden.
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Folgerung aus dem Satz von Ehrenfeucht

Notation 3.52
Eine Klasse € von o-Strukturen heiBt FO-definierbar, falls es einen FO[c]-Satz ¢ gibt,

der € definiert.
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Folgerung aus dem Satz von Ehrenfeucht

Notation 3.52
Eine Klasse € von o-Strukturen heiBt FO-definierbar, falls es einen FO[c]-Satz ¢ gibt,

der € definiert.

Zur Erinnerung:
Fiir einen FO[o]-Satz ¢ und eine Klasse € von o-Strukturen sagen wir , ¢ definiert €*,

falls fiir jede o-Struktur A gilt: A€ € <= A= ¢.
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Folgerung aus dem Satz von Ehrenfeucht
Notation 3.52

Eine Klasse € von o-Strukturen heiBt FO-definierbar, falls es einen FO[c]-Satz ¢ gibt,
der € definiert.

Zur Erinnerung:

Fiir einen FO[o]-Satz ¢ und eine Klasse € von o-Strukturen sagen wir , ¢ definiert €*,
falls fiir jede o-Struktur A gilt: A€ € <= A= ¢.

Um fiir eine gegebene Klasse € von o-Strukturen zu zeigen, dass sie nicht

FO-definierbar ist, kdnnen wir das folgende Korollar nutzen, das wir als eine einfache
Folgerung aus Satz 3.51 erhalten.
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Folgerung aus dem Satz von Ehrenfeucht

Notation 3.52

Eine Klasse € von o-Strukturen heiBt FO-definierbar, falls es einen FO[c]-Satz ¢ gibt,
der € definiert.

Zur Erinnerung:

Fiir einen FO[o]-Satz ¢ und eine Klasse € von o-Strukturen sagen wir , ¢ definiert €*,
falls fiir jede o-Struktur A gilt: A€ € <= A= ¢.

Um fiir eine gegebene Klasse € von o-Strukturen zu zeigen, dass sie nicht
FO-definierbar ist, kdnnen wir das folgende Korollar nutzen, das wir als eine einfache
Folgerung aus Satz 3.51 erhalten.

Korollar 3.53

Sei o eine relationale Signatur und sei € eine Klasse von o-Strukturen.
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Folgerung aus dem Satz von Ehrenfeucht

Notation 3.52
Eine Klasse € von o-Strukturen heiBt FO-definierbar, falls es einen FO[c]-Satz ¢ gibt,
der € definiert.

Zur Erinnerung:
Fiir einen FO[o]-Satz ¢ und eine Klasse € von o-Strukturen sagen wir , ¢ definiert €*,
falls fiir jede o-Struktur A gilt: A€ € <= A= ¢.

Um fiir eine gegebene Klasse € von o-Strukturen zu zeigen, dass sie nicht
FO-definierbar ist, kdnnen wir das folgende Korollar nutzen, das wir als eine einfache
Folgerung aus Satz 3.51 erhalten.

Korollar 3.53

Sei o eine relationale Signatur und sei € eine Klasse von o-Strukturen.
Falls es fiir jedes m > 1 zwei o-Strukturen A, und B, gibt, so dass gilt:

1. A, €e¢ und
2. Bnégce
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Folgerung aus dem Satz von Ehrenfeucht

Notation 3.52

Eine Klasse € von o-Strukturen heiBt FO-definierbar, falls es einen FO[c]-Satz ¢ gibt,
der € definiert.

Zur Erinnerung:

Fiir einen FO[o]-Satz ¢ und eine Klasse € von o-Strukturen sagen wir , ¢ definiert €*,
falls fiir jede o-Struktur A gilt: A€ € <= A= ¢.

Um fiir eine gegebene Klasse € von o-Strukturen zu zeigen, dass sie nicht
FO-definierbar ist, kdnnen wir das folgende Korollar nutzen, das wir als eine einfache
Folgerung aus Satz 3.51 erhalten.

Korollar 3.53

Sei o eine relationale Signatur und sei € eine Klasse von o-Strukturen.
Falls es fiir jedes m > 1 zwei o-Strukturen A, und B, gibt, so dass gilt:

1. An € ¢ und

2. Bn &€ und
3. Duplicator hat eine Gewinnstrategie im m-Runden EF-Spiel auf An,
und B,
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Folgerung aus dem Satz von Ehrenfeucht

Notation 3.52

Eine Klasse € von o-Strukturen heiBt FO-definierbar, falls es einen FO[c]-Satz ¢ gibt,
der € definiert.

Zur Erinnerung:

Fiir einen FO[o]-Satz ¢ und eine Klasse € von o-Strukturen sagen wir , ¢ definiert €*,
falls fiir jede o-Struktur A gilt: A€ € <= A= ¢.

Um fiir eine gegebene Klasse € von o-Strukturen zu zeigen, dass sie nicht
FO-definierbar ist, kdnnen wir das folgende Korollar nutzen, das wir als eine einfache
Folgerung aus Satz 3.51 erhalten.

Korollar 3.53

Sei o eine relationale Signatur und sei € eine Klasse von o-Strukturen.
Falls es fiir jedes m > 1 zwei o-Strukturen A, und B, gibt, so dass gilt:

1. A, €e¢ und

2. Bn &€ und
3. Duplicator hat eine Gewinnstrategie im m-Runden EF-Spiel auf An,
und B,

dann ist € nicht FO-definierbar.
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Lineare Ordnungen gerader Kardinalitat

Wir werden nun Korollar 3.53 anwenden, um folgenden Satz zu zeigen.
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Lineare Ordnungen gerader Kardinalitat

Wir werden nun Korollar 3.53 anwenden, um folgenden Satz zu zeigen.

Satz 3.54
Die Klasse EVENc, die aus allen linearen Ordnungen A = (A, <*) gerader

Kardinalitat besteht
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Lineare Ordnungen gerader Kardinalitat

Wir werden nun Korollar 3.53 anwenden, um folgenden Satz zu zeigen.

Satz 3.54
Die Klasse EVENc, die aus allen linearen Ordnungen A = (A, <*) gerader

Kardinalitat besteht (d.h., A ist endlich und |A| ist durch 2 teilbar),
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Lineare Ordnungen gerader Kardinalitat

Wir werden nun Korollar 3.53 anwenden, um folgenden Satz zu zeigen.

Satz 3.54

Die Klasse EVENc, die aus allen linearen Ordnungen A = (A, <*) gerader
Kardinalitit besteht (d.h., A ist endlich und |A| ist durch 2 teilbar), ist
nicht FO-definierbar.
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Lineare Ordnungen gerader Kardinalitat

Wir werden nun Korollar 3.53 anwenden, um folgenden Satz zu zeigen.

Satz 3.54

Die Klasse EVENc, die aus allen linearen Ordnungen A = (A, <*) gerader
Kardinalitit besteht (d.h., A ist endlich und |A| ist durch 2 teilbar), ist
nicht FO-definierbar.

Um diesen Satz zu beweisen, geniigt es gemaB Korollar 3.53,
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Lineare Ordnungen gerader Kardinalitat

Wir werden nun Korollar 3.53 anwenden, um folgenden Satz zu zeigen.

Satz 3.54

Die Klasse EVENc, die aus allen linearen Ordnungen A = (A, <*) gerader
Kardinalitit besteht (d.h., A ist endlich und |A| ist durch 2 teilbar), ist
nicht FO-definierbar.

Um diesen Satz zu beweisen, geniigt es gemaB Korollar 3.53, fiir jede
Rundenzahl m >1
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Lineare Ordnungen gerader Kardinalitat

Wir werden nun Korollar 3.53 anwenden, um folgenden Satz zu zeigen.

Satz 3.54

Die Klasse EVENc, die aus allen linearen Ordnungen A = (A, <*) gerader
Kardinalitit besteht (d.h., A ist endlich und |A| ist durch 2 teilbar), ist
nicht FO-definierbar.

Um diesen Satz zu beweisen, geniigt es gemaB Korollar 3.53, fiir jede
Rundenzahl m > 1 eine lineare Ordnung A, gerader Kardinalitdt und
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Lineare Ordnungen gerader Kardinalitat

Wir werden nun Korollar 3.53 anwenden, um folgenden Satz zu zeigen.

Satz 3.54

Die Klasse EVENc, die aus allen linearen Ordnungen A = (A, <*) gerader
Kardinalitit besteht (d.h., A ist endlich und |A| ist durch 2 teilbar), ist
nicht FO-definierbar.

Um diesen Satz zu beweisen, geniigt es gemaB Korollar 3.53, fiir jede
Rundenzahl m > 1 eine lineare Ordnung A, gerader Kardinalitdt und eine
lineare Ordnung B, ungerader Kardinalitdt anzugeben,
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Lineare Ordnungen gerader Kardinalitat

Wir werden nun Korollar 3.53 anwenden, um folgenden Satz zu zeigen.

Satz 3.54

Die Klasse EVENc, die aus allen linearen Ordnungen A = (A, <*) gerader
Kardinalitit besteht (d.h., A ist endlich und |A| ist durch 2 teilbar), ist
nicht FO-definierbar.

Um diesen Satz zu beweisen, geniigt es gemaB Korollar 3.53, fiir jede
Rundenzahl m > 1 eine lineare Ordnung A, gerader Kardinalitdt und eine
lineare Ordnung B, ungerader Kardinalitdt anzugeben, fiir die wir zeigen
kdnnen, dass
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Lineare Ordnungen gerader Kardinalitat

Wir werden nun Korollar 3.53 anwenden, um folgenden Satz zu zeigen.

Satz 3.54

Die Klasse EVENc, die aus allen linearen Ordnungen A = (A, <*) gerader
Kardinalitit besteht (d.h., A ist endlich und |A| ist durch 2 teilbar), ist
nicht FO-definierbar.

Um diesen Satz zu beweisen, geniigt es gemaB Korollar 3.53, fiir jede
Rundenzahl m > 1 eine lineare Ordnung A, gerader Kardinalitdt und eine
lineare Ordnung B, ungerader Kardinalitdt anzugeben, fiir die wir zeigen
kénnen, dass Duplicator eine Gewinnstrategie im m-Runden EF-Spiel auf A,
und B,, hat.
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Als Vorbereitung dazu betrachten wir zunachst ein Beispiel.

Beispiel 3.55
Betrachte die linearen Ordnungen A = (A, <*) und B = (B, <5) mit
A={1,...,8} und B ={1,...,9}, wobei <* und <B die natiirlichen linearen

Ordnungen auf A und B sind.
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Als Vorbereitung dazu betrachten wir zunachst ein Beispiel.

Beispiel 3.55
Betrachte die linearen Ordnungen A = (A, <*) und B = (B, <5) mit
A={1,...,8} und B ={1,...,9}, wobei <* und <B die natiirlichen linearen

Ordnungen auf A und B sind.

Seien auBerdem k :=2 und 3 := ay,a und b := by, b, mit a; = by = 1 und
a; = 8 und by = 9 vorgegeben.
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Als Vorbereitung dazu betrachten wir zunachst ein Beispiel.

Beispiel 3.55
Betrachte die linearen Ordnungen A = (A, <*) und B = (B, <5) mit
A={1,...,8} und B ={1,...,9}, wobei <* und <B die natiirlichen linearen

Ordnungen auf A und B sind.

Seien auBerdem k :=2 und 3 := ay,a und b := by, b, mit a; = by = 1 und
a; = 8 und by = 9 vorgegeben.

Frage: Was ist die groBte Zahl m, so dass Duplicator eine Gewinnstrategie im
m-Runden EF-Spiel auf (A,3) und (B, b) hat?
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Die Gewinnstrategie fiir Duplicator l&sst sich zu folgendem Resultat
verallgemeinern.

Lemma 3.56

Seien A und B endliche lineare Ordnungen,
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Die Gewinnstrategie fiir Duplicator l&sst sich zu folgendem Resultat
verallgemeinern.

Lemma 3.56
§eien A und B endliche lineare Ordnungen, sei k := 2, und sei 3 := a;,a» und

b := by, by, wobei ay, by die kleinsten und a,, b, die gréBten Elemente in A
und B beziiglich <* und <8 sind.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.8: Ehrenfeucht-Fraissé-Spiele

Die Gewinnstrategie fiir Duplicator l&sst sich zu folgendem Resultat
verallgemeinern.

Lemma 3.56

Seien A und B endliche lineare Ordnungen, sei k := 2, und sei 3 := a;,a» und
b := by, by, wobei ay, by die kleinsten und ay, b, die gréBten Elemente in A
und B beziiglich <* und <8 sind.

’

N

Fiir jedes m > 1 gilt: Falls |A|,|B| > 2™ oder |A| = |B
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Kapitel 3: Logik erster Stufe - Abschnitt 3.8: Ehrenfeucht-Fraissé-Spiele

Die Gewinnstrategie fiir Duplicator l&sst sich zu folgendem Resultat
verallgemeinern.

Lemma 3.56

Seien A und B endliche lineare Ordnungen, sei k := 2, und sei 3 := a;,a» und
b := by, by, wobei ay, by die kleinsten und ay, b, die gréBten Elemente in A
und B beziiglich <* und <8 sind.

Fiir jedes m > 1 gilt: Falls |A|,|B| > 2™ oder |A| = |B|, so hat B
Duplicator eine Gewinnstrategie im m-Runden EF-Spiel auf (A,a) und (B, b).
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Wir zeigen nun, dass Duplicator so spielen kann, dass fiir jedes i € {0,1,..., m}
die folgende Invariante (x); erfiillt ist:
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Wir zeigen nun, dass Duplicator so spielen kann, dass fiir jedes i € {0,1,..., m}
die folgende Invariante (x); erfiillt ist:

(%);: Sind ap41,...,a804; und boi1, ..., boy; diein den Runden 1,... i
gewahlten Elemente in A und B,
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Kapitel 3: Logik erster Stufe - Abschnitt 3.8: Ehrenfeucht-Fraissé-Spiele

Wir zeigen nun, dass Duplicator so spielen kann, dass fiir jedes i € {0,1,..., m}
die folgende Invariante (x); erfiillt ist:

(%);: Sind ap41,...,a804; und boi1, ..., boy; diein den Runden 1,... i
gewihlten Elemente in A und B, so gilt fiir alle j,j/ € {1,...,2+i}:
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Kapitel 3: Logik erster Stufe - Abschnitt 3.8: Ehrenfeucht-Fraissé-Spiele

Wir zeigen nun, dass Duplicator so spielen kann, dass fiir jedes i € {0,1,..., m}
die folgende Invariante (x); erfiillt ist:

(%);: Sind ap41,...,a804; und boi1, ..., boy; diein den Runden 1,... i
gewihlten Elemente in A und B, so gilt fiir alle j,j/ € {1,...,2+i}:

1. aj SA aj <~ b_, éB bj’
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Wir zeigen nun, dass Duplicator so spielen kann, dass fiir jedes i € {0,1,..., m}
die folgende Invariante (x); erfiillt ist:

(%);: Sind ap41,...,a804; und boi1, ..., boy; diein den Runden 1,... i
gewihlten Elemente in A und B, so gilt fiir alle j,j/ € {1,...,2+i}:

1. aj QA aj bj éB bj/ und

2. Dist(aj, aj/) = DiSt(bj, bj/)
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Wir zeigen nun, dass Duplicator so spielen kann, dass fiir jedes i € {0,1,..., m}
die folgende Invariante (x); erfiillt ist:

(%);: Sind ap41,...,a804; und boi1, ..., boy; diein den Runden 1,... i
gewihlten Elemente in A und B, so gilt fiir alle j,j/ € {1,...,2+i}:

1. aj QA aj bj éB bj/ und

2. Dist(aj,aj) = Dist(b;, bj) oder Dist(a;, aj'), Dist(b;, by) > 2™~
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Wir zeigen nun, dass Duplicator so spielen kann, dass fiir jedes i € {0,1,..., m}
die folgende Invariante (x); erfiillt ist:

(%);: Sind ap41,...,a804; und boi1, ..., boy; diein den Runden 1,... i
gewihlten Elemente in A und B, so gilt fiir alle j,j/ € {1,...,2+i}:

1. aj QA aj bj éB bj/ und

2. Dist(aj,aj) = Dist(b;, bj) oder Dist(a;, aj'), Dist(b;, by) > 2™~

Der Beweis folgt per Induktion nach i.
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Satz 3.54 folgt nun direkt aus Korollar 3.53 und Lemma 3.56.
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Satz 3.54 folgt nun direkt aus Korollar 3.53 und Lemma 3.56.

Beweis von Satz 3.54.
Um nachzuweisen, dass die Klasse EVEN ¢ nicht FO-definierbar ist, geniigt es

laut Korollar 3.53,
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Satz 3.54 folgt nun direkt aus Korollar 3.53 und Lemma 3.56.

Beweis von Satz 3.54.

Um nachzuweisen, dass die Klasse EVEN ¢ nicht FO-definierbar ist, geniigt es
laut Korollar 3.53, fiir jede Zahl m > 1 eine endliche lineare Ordnung A,,
gerader Kardinalitdt und eine endliche lineare Ordnung B,, ungerader
Kardinalitat zu finden, so dass Duplicator eine Gewinnstrategie im m-Runden
EF-Spiel auf A, und B,, besitzt.
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Satz 3.54 folgt nun direkt aus Korollar 3.53 und Lemma 3.56.

Beweis von Satz 3.54.

Um nachzuweisen, dass die Klasse EVEN ¢ nicht FO-definierbar ist, geniigt es
laut Korollar 3.53, fiir jede Zahl m > 1 eine endliche lineare Ordnung A,,
gerader Kardinalitdt und eine endliche lineare Ordnung B,, ungerader
Kardinalitat zu finden, so dass Duplicator eine Gewinnstrategie im m-Runden

EF-Spiel auf A, und B,, besitzt.
Wir wihlen fiir A,
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Satz 3.54 folgt nun direkt aus Korollar 3.53 und Lemma 3.56.

Beweis von Satz 3.54.

Um nachzuweisen, dass die Klasse EVEN ¢ nicht FO-definierbar ist, geniigt es
laut Korollar 3.53, fiir jede Zahl m > 1 eine endliche lineare Ordnung A,,
gerader Kardinalitdt und eine endliche lineare Ordnung B,, ungerader
Kardinalitat zu finden, so dass Duplicator eine Gewinnstrategie im m-Runden

EF-Spiel auf A, und B,, besitzt.

Wir wahlen fiir A, die natiirliche lineare Ordnung mit Universum
Am={1,...,2m42}, und fiir B,
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Satz 3.54 folgt nun direkt aus Korollar 3.53 und Lemma 3.56.

Beweis von Satz 3.54.

Um nachzuweisen, dass die Klasse EVEN ¢ nicht FO-definierbar ist, geniigt es
laut Korollar 3.53, fiir jede Zahl m > 1 eine endliche lineare Ordnung A,,
gerader Kardinalitdt und eine endliche lineare Ordnung B,, ungerader
Kardinalitat zu finden, so dass Duplicator eine Gewinnstrategie im m-Runden
EF-Spiel auf A, und B,, besitzt.

Wir wahlen fiir A, die natiirliche lineare Ordnung mit Universum
Am:=1{1,...,2m42}, und fiir B,, die natiirliche lineare Ordnung mit
Universum By, := {1,...,2m+1}.
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Satz 3.54 folgt nun direkt aus Korollar 3.53 und Lemma 3.56.

Beweis von Satz 3.54.

Um nachzuweisen, dass die Klasse EVEN ¢ nicht FO-definierbar ist, geniigt es
laut Korollar 3.53, fiir jede Zahl m > 1 eine endliche lineare Ordnung A,,
gerader Kardinalitdt und eine endliche lineare Ordnung B,, ungerader
Kardinalitat zu finden, so dass Duplicator eine Gewinnstrategie im m-Runden
EF-Spiel auf A, und B,, besitzt.

Wir wahlen fiir A, die natiirliche lineare Ordnung mit Universum
Am:=1{1,...,2m42}, und fiir B,, die natiirliche lineare Ordnung mit
Universum By, := {1,...,2m+1}.

GemaB Lemma 3.56 hat Duplicator eine Gewinnstrategie im m-Runden EF-Spiel
auf (Ap,3) und (Bn, b),
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Satz 3.54 folgt nun direkt aus Korollar 3.53 und Lemma 3.56.

Beweis von Satz 3.54.

Um nachzuweisen, dass die Klasse EVEN ¢ nicht FO-definierbar ist, geniigt es
laut Korollar 3.53, fiir jede Zahl m > 1 eine endliche lineare Ordnung A,,
gerader Kardinalitdt und eine endliche lineare Ordnung B,, ungerader
Kardinalitat zu finden, so dass Duplicator eine Gewinnstrategie im m-Runden
EF-Spiel auf A, und B,, besitzt.

Wir wahlen fiir A, die natiirliche lineare Ordnung mit Universum
Am:=1{1,...,2m42}, und fiir B,, die natiirliche lineare Ordnung mit
Universum By, := {1,...,2m+1}.

GemaB Lemma 3.56 hat Duplicator eine Gewinnstrategie im m-Runden EF-Spiel
auf (A, 3) und (B, b), wobei @ = aj, a, und b = by, by jeweils aus dem
kleinsten und dem gréBten Element der beiden linearen Ordnungen bestehen.
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Satz 3.54 folgt nun direkt aus Korollar 3.53 und Lemma 3.56.

Beweis von Satz 3.54.

Um nachzuweisen, dass die Klasse EVEN ¢ nicht FO-definierbar ist, geniigt es
laut Korollar 3.53, fiir jede Zahl m > 1 eine endliche lineare Ordnung A,,
gerader Kardinalitdt und eine endliche lineare Ordnung B,, ungerader
Kardinalitat zu finden, so dass Duplicator eine Gewinnstrategie im m-Runden
EF-Spiel auf A, und B,, besitzt.

Wir wahlen fiir A, die natiirliche lineare Ordnung mit Universum
Am:=1{1,...,2m42}, und fiir B,, die natiirliche lineare Ordnung mit
Universum By, := {1,...,2m+1}.

GemaB Lemma 3.56 hat Duplicator eine Gewinnstrategie im m-Runden EF-Spiel
auf (A, 3) und (B, b), wobei @ = aj, a, und b = by, by jeweils aus dem
kleinsten und dem gréBten Element der beiden linearen Ordnungen bestehen.

Offensichtlicherweise ist diese Gewinnstrategie auch eine Gewinnstrategie fiir
Duplicator im m-Runden EF-Spiel auf A,, und B,,. O
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Bemerkung 3.57

Der obige Beweis zeigt nicht nur, dass die Klasse EVEN ¢ nicht FO-definierbar
ist, sondern sogar die folgende stirkere Aussage:

Fiir jedes n € N gilt: Es gibt keinen FO[{<}|-Satz v, so dass fiir je-
de endliche lineare Ordnung B mit |B| > n gilt: B ¢ <<
|B| ist gerade.
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Graph-Zusammenhang und Erreichbarkeit sind
nicht FO-definierbar

Wir kdnnen die Aussage von Bemerkung 3.57 nutzen, um Folgendes zu zeigen.

Satz 3.58
Sei o= {E/2}.

(a) ,,Graph-Zusammenhang ist nicht FO-definierbar. *
D.h.: Es gibt keinen FO[o]-Satz @ conn, SO dass fiir jeden endlichen
ungerichteten Graphen G = (V9, E9Y) und die zugehbrige o-Struktur
A= (A EA) gilt: A ©conn <= G ist zusammenhangend.
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Graph-Zusammenhang und Erreichbarkeit sind
nicht FO-definierbar

Wir kdnnen die Aussage von Bemerkung 3.57 nutzen, um Folgendes zu zeigen.

Satz 3.58
Sei o= {E/2}.

(a) ,,Graph-Zusammenhang ist nicht FO-definierbar. *
D.h.: Es gibt keinen FO[o]-Satz @ conn, SO dass fiir jeden endlichen
ungerichteten Graphen G = (V9, E9Y) und die zugehbrige o-Struktur
A= (A EA) gilt: A ©conn <= G ist zusammenhangend.

(b) ,Erreichbarkeit ist nicht FO-definierbar. "
D.h.: Es gibt keine FO[c]|-Formel preach(x,y), so dass fiir alle endlichen
gerichteten Graphen A = (A, E*) und alle Knoten a, b € A gilt:
A E QReacn[a, b] <= es gibt in A einen Weg von Knoten a zu Knoten b.
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(b) folgt direkt aus (a), denn:
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(b) folgt direkt aus (a), denn:

Angenommen ©Reach(x, y) wire eine FO[o]-Formel, so dass fiir alle gerichteten
Graphen A = (A, E4) und alle Knoten a,b € A gilt: A = pRreach[a, b] <= es
gibt in A einen Weg von Knoten a zu Knoten b.

Version vom 25. Januar 2024 Folie 274
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(b) folgt direkt aus (a), denn:

Angenommen ©Reach(x, y) wire eine FO[o]-Formel, so dass fiir alle gerichteten
Graphen A = (A, E4) und alle Knoten a,b € A gilt: A = pRreach[a, b] <= es
gibt in A einen Weg von Knoten a zu Knoten b.

Dann ist
®Conn
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(b) folgt direkt aus (a), denn:

Angenommen ©Reach(x, y) wire eine FO[o]-Formel, so dass fiir alle gerichteten
Graphen A = (A, E4) und alle Knoten a,b € A gilt: A = pRreach[a, b] <= es
gibt in A einen Weg von Knoten a zu Knoten b.

Dann ist
®Conn = VXV}/ @Reach(x7)/)

ein FO[o]-Satz, der in einem gerichteten Graphen A genau dann erfiillt ist,
wenn
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(b) folgt direkt aus (a), denn:

Angenommen ©Reach(x, y) wire eine FO[o]-Formel, so dass fiir alle gerichteten
Graphen A = (A, E4) und alle Knoten a,b € A gilt: A = pRreach[a, b] <= es
gibt in A einen Weg von Knoten a zu Knoten b.

Dann ist
®Conn = VXV}/ @Reach(x7)/)

ein FO[o]-Satz, der in einem gerichteten Graphen A genau dann erfiillt ist,
wenn A stark zusammenhangend ist.
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(b) folgt direkt aus (a), denn:

Angenommen ©Reach(x, y) wire eine FO[o]-Formel, so dass fiir alle gerichteten
Graphen A = (A, E4) und alle Knoten a,b € A gilt: A = pRreach[a, b] <= es
gibt in A einen Weg von Knoten a zu Knoten b.

Dann ist
®Conn = VXV}/ @Reach(x7)/)

ein FO[o]-Satz, der in einem gerichteten Graphen A genau dann erfiillt ist,
wenn A stark zusammenhangend ist.

Insbesondere gilt dann fiir jeden ungerichteten Graphen G und die zu G
gehérende o-Struktur A: A | wconn <= G ist zusammenhingend.
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(b) folgt direkt aus (a), denn:

Angenommen ©Reach(x, y) wire eine FO[o]-Formel, so dass fiir alle gerichteten
Graphen A = (A, E4) und alle Knoten a,b € A gilt: A = pRreach[a, b] <= es
gibt in A einen Weg von Knoten a zu Knoten b.

Dann ist
®Conn = VXV)/ @Reach(x7)/)

ein FO[o]-Satz, der in einem gerichteten Graphen A genau dann erfiillt ist,
wenn A stark zusammenhangend ist.

Insbesondere gilt dann fiir jeden ungerichteten Graphen G und die zu G
gehérende o-Struktur A: A | wconn <= G ist zusammenhingend.

Dies ist ein Widerspruch zu (a).
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Logische Reduktionen

Bemerkung 3.59
Die im Beweis von Satz 3.58 benutzte Vorgehensweise ist unter dem Begriff
logische Reduktion (oder Transduktionen) bekannt.
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Logische Reduktionen

Bemerkung 3.59
Die im Beweis von Satz 3.58 benutzte Vorgehensweise ist unter dem Begriff
logische Reduktion (oder Transduktionen) bekannt.

Im Beweis von Teil (b) wurde gezeigt:
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Logische Reduktionen

Bemerkung 3.59
Die im Beweis von Satz 3.58 benutzte Vorgehensweise ist unter dem Begriff
logische Reduktion (oder Transduktionen) bekannt.

Im Beweis von Teil (b) wurde gezeigt: Falls es eine FO[{ E }]-Formel gibt, die
ausdriickt, dass Knoten y von Knoten x aus erreichbar ist, dann
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Logische Reduktionen

Bemerkung 3.59
Die im Beweis von Satz 3.58 benutzte Vorgehensweise ist unter dem Begriff
logische Reduktion (oder Transduktionen) bekannt.

Im Beweis von Teil (b) wurde gezeigt: Falls es eine FO[{ E }]-Formel gibt, die
ausdriickt, dass Knoten y von Knoten x aus erreichbar ist, dann gibt es auch
eine FO[{ E}]-Formel, die Graph-Zusammenhang definiert.
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Logische Reduktionen

Bemerkung 3.59
Die im Beweis von Satz 3.58 benutzte Vorgehensweise ist unter dem Begriff
logische Reduktion (oder Transduktionen) bekannt.

Im Beweis von Teil (b) wurde gezeigt: Falls es eine FO[{ E }]-Formel gibt, die
ausdriickt, dass Knoten y von Knoten x aus erreichbar ist, dann gibt es auch
eine FO[{ E}]-Formel, die Graph-Zusammenhang definiert.

Somit wurde das Problem, einen FO[{E}]-Satz zu finden, der
Graph-Zusammenhang definiert, auf das Problem reduziert, eine
FO[{E}]-Formel zu finden, die ausdriickt, dass Knoten y von Knoten x aus
erreichbar ist.
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Im Beweis von Teil (a) wurde das Problem, einen FO[{<}]-Satz zu finden, der
ausdriickt, dass eine endliche lineare Ordnung eine gerade Kardinalitdt besitzt,
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Graph-Zusammenhang definiert.
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Im Beweis von Teil (a) wurde das Problem, einen FO[{<}]-Satz zu finden, der
ausdriickt, dass eine endliche lineare Ordnung eine gerade Kardinalitdt besitzt,
auf das Problem reduziert, einen FO[{E}]-Satz zu finden, der
Graph-Zusammenhang definiert.

D.h. es wurde gezeigt:
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Im Beweis von Teil (a) wurde das Problem, einen FO[{<}]-Satz zu finden, der
ausdriickt, dass eine endliche lineare Ordnung eine gerade Kardinalitdt besitzt,
auf das Problem reduziert, einen FO[{E}]-Satz zu finden, der
Graph-Zusammenhang definiert.

D.h. es wurde gezeigt: Falls Graph-Zusammenhang FO-definierbar ist, so ist

auch
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Im Beweis von Teil (a) wurde das Problem, einen FO[{<}]-Satz zu finden, der
ausdriickt, dass eine endliche lineare Ordnung eine gerade Kardinalitdt besitzt,
auf das Problem reduziert, einen FO[{E}]-Satz zu finden, der
Graph-Zusammenhang definiert.

D.h. es wurde gezeigt: Falls Graph-Zusammenhang FO-definierbar ist, so ist
auch die Aussage ,,eine endliche lineare Ordnung besitzt eine gerade
Kardinalitat" FO-definierbar.
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ausdriickt, dass eine endliche lineare Ordnung eine gerade Kardinalitdt besitzt,
auf das Problem reduziert, einen FO[{E}]-Satz zu finden, der
Graph-Zusammenhang definiert.

D.h. es wurde gezeigt: Falls Graph-Zusammenhang FO-definierbar ist, so ist
auch die Aussage ,,eine endliche lineare Ordnung besitzt eine gerade
Kardinalitat" FO-definierbar.

Dies wurde dadurch erreicht, dass man
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Im Beweis von Teil (a) wurde das Problem, einen FO[{<}]-Satz zu finden, der
ausdriickt, dass eine endliche lineare Ordnung eine gerade Kardinalitdt besitzt,
auf das Problem reduziert, einen FO[{E}]-Satz zu finden, der
Graph-Zusammenhang definiert.

D.h. es wurde gezeigt: Falls Graph-Zusammenhang FO-definierbar ist, so ist
auch die Aussage ,,eine endliche lineare Ordnung besitzt eine gerade
Kardinalitat" FO-definierbar.

Dies wurde dadurch erreicht, dass man innerhalb einer linearen Ordnung einen
geeigneten Graphen ,simuliert”
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Im Beweis von Teil (a) wurde das Problem, einen FO[{<}]-Satz zu finden, der
ausdriickt, dass eine endliche lineare Ordnung eine gerade Kardinalitdt besitzt,
auf das Problem reduziert, einen FO[{E}]-Satz zu finden, der
Graph-Zusammenhang definiert.

D.h. es wurde gezeigt: Falls Graph-Zusammenhang FO-definierbar ist, so ist
auch die Aussage ,,eine endliche lineare Ordnung besitzt eine gerade
Kardinalitat" FO-definierbar.

Dies wurde dadurch erreicht, dass man innerhalb einer linearen Ordnung einen
geeigneten Graphen , simuliert” (bzw. “interpretiert"),
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Im Beweis von Teil (a) wurde das Problem, einen FO[{<}]-Satz zu finden, der
ausdriickt, dass eine endliche lineare Ordnung eine gerade Kardinalitdt besitzt,
auf das Problem reduziert, einen FO[{E}]-Satz zu finden, der
Graph-Zusammenhang definiert.

D.h. es wurde gezeigt: Falls Graph-Zusammenhang FO-definierbar ist, so ist
auch die Aussage ,,eine endliche lineare Ordnung besitzt eine gerade
Kardinalitat" FO-definierbar.

Dies wurde dadurch erreicht, dass man innerhalb einer linearen Ordnung einen
geeigneten Graphen ,,simuliert” (bzw. “interpretiert”), indem man die
Kantenrelation des Graphen durch eine FO[{<}]-Formel beschreibt.
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Im Beweis von Teil (a) wurde das Problem, einen FO[{<}]-Satz zu finden, der
ausdriickt, dass eine endliche lineare Ordnung eine gerade Kardinalitdt besitzt,
auf das Problem reduziert, einen FO[{E}]-Satz zu finden, der
Graph-Zusammenhang definiert.

D.h. es wurde gezeigt: Falls Graph-Zusammenhang FO-definierbar ist, so ist
auch die Aussage ,,eine endliche lineare Ordnung besitzt eine gerade
Kardinalitat" FO-definierbar.

Dies wurde dadurch erreicht, dass man innerhalb einer linearen Ordnung einen
geeigneten Graphen ,,simuliert” (bzw. “interpretiert”), indem man die
Kantenrelation des Graphen durch eine FO[{<}]-Formel beschreibt.

Generell ist diese Methode der logischen Reduktionen oft niitzlich, um
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Im Beweis von Teil (a) wurde das Problem, einen FO[{<}]-Satz zu finden, der
ausdriickt, dass eine endliche lineare Ordnung eine gerade Kardinalitdt besitzt,
auf das Problem reduziert, einen FO[{E}]-Satz zu finden, der
Graph-Zusammenhang definiert.

D.h. es wurde gezeigt: Falls Graph-Zusammenhang FO-definierbar ist, so ist
auch die Aussage ,,eine endliche lineare Ordnung besitzt eine gerade
Kardinalitat" FO-definierbar.

Dies wurde dadurch erreicht, dass man innerhalb einer linearen Ordnung einen
geeigneten Graphen ,,simuliert” (bzw. “interpretiert”), indem man die
Kantenrelation des Graphen durch eine FO[{<}]-Formel beschreibt.

Generell ist diese Methode der logischen Reduktionen oft niitzlich, um bereits
bekannte Nicht-Definierbarkeits-Resultate auf neue
Nicht-Definierbarkeits-Resultate zu iibertragen.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.9: Erfiillbarkeit, Allgemeingiiltigkeit und die Folgerungsbeziehung

Die im Folgenden eingefiihrten Begriffe der Erfiillbarkeit, Allgemeingiiltigkeit
und der Folgerungsbeziehung sind fiir die Logik erster Stufe dhnlich definiert wie

fur die Aussagenlogik.
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Die im Folgenden eingefiihrten Begriffe der Erfiillbarkeit, Allgemeingiiltigkeit
und der Folgerungsbeziehung sind fiir die Logik erster Stufe dhnlich definiert wie

fur die Aussagenlogik.

Im Folgenden sei o stets eine beliebige Signatur.
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Erfiillbarkeit und Allgemeingiiltigkeit

Definition 3.60
Eine FO[o]-Formel ¢ (bzw. eine Formelmenge ® C FO[o]) heiBt erfiillbar, wenn
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Erfiillbarkeit und Allgemeingiiltigkeit

Definition 3.60
Eine FO[o]-Formel ¢ (bzw. eine Formelmenge ® C FO[o]) heiBt erfiillbar, wenn

es eine o-Interpretation gibt, die ¢ (bzw. ) erfiillt.
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Erfiillbarkeit und Allgemeingiiltigkeit

Definition 3.60
Eine FO[o]-Formel ¢ (bzw. eine Formelmenge ® C FO[o]) heiBt erfiillbar, wenn

es eine o-Interpretation gibt, die ¢ (bzw. ) erfiillt.

Eine Formel oder Formelmenge, die nicht erfiillbar ist, nennen wir unerfiillbar.
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Erfiillbarkeit und Allgemeingiiltigkeit

Definition 3.60
Eine FO[o]-Formel ¢ (bzw. eine Formelmenge ® C FO[o]) heiBt erfiillbar, wenn
es eine o-Interpretation gibt, die ¢ (bzw. ) erfiillt.

Eine Formel oder Formelmenge, die nicht erfiillbar ist, nennen wir unerfiillbar.

Definition 3.61
Eine FO[o]-Formel ¢ heiBt allgemeingiiltig, wenn
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Erfiillbarkeit und Allgemeingiiltigkeit

Definition 3.60
Eine FO[o]-Formel ¢ (bzw. eine Formelmenge ® C FO[o]) heiBt erfiillbar, wenn
es eine o-Interpretation gibt, die ¢ (bzw. ) erfiillt.

Eine Formel oder Formelmenge, die nicht erfiillbar ist, nennen wir unerfiillbar.

Definition 3.61

Eine FO[o]-Formel ¢ heiBt allgemeingiiltig, wenn jede o-Interpretation die
Formel ¢ erfiillt.
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Erfiillbarkeit und Allgemeingiiltigkeit

Definition 3.60
Eine FO[o]-Formel ¢ (bzw. eine Formelmenge ® C FO[o]) heiBt erfiillbar, wenn

es eine o-Interpretation gibt, die ¢ (bzw. ) erfiillt.

Eine Formel oder Formelmenge, die nicht erfiillbar ist, nennen wir unerfiillbar.

Definition 3.61

Eine FO[o]-Formel ¢ heiBt allgemeingiiltig, wenn jede o-Interpretation die
Formel ¢ erfiillt.

Wir schreiben kurz |= ¢ um auszudriicken, dass ¢ allgemeingiiltig ist.
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Erfiillbarkeit und Allgemeingiiltigkeit

Definition 3.60
Eine FO[o]-Formel ¢ (bzw. eine Formelmenge ® C FO[o]) heiBt erfiillbar, wenn
es eine o-Interpretation gibt, die ¢ (bzw. ) erfiillt.

Eine Formel oder Formelmenge, die nicht erfiillbar ist, nennen wir unerfiillbar.

Definition 3.61
Eine FO[o]-Formel ¢ heiBt allgemeingiiltig, wenn jede o-Interpretation die
Formel ¢ erfiillt.

Wir schreiben kurz |= ¢ um auszudriicken, dass ¢ allgemeingiiltig ist.

Offensichtlicherweise gilt fiir alle FO[o]-Formeln ¢:

p ist allgemeingiiltig <= - ist unerfiillbar.
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Verum (T) und Falsum (L)

Beispiele:

¢ Die FO[o]-Formel ist allgemeingiiltig.
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Verum (T) und Falsum (L)

Beispiele:

® Die FO[o]-Formel Vvy vp=vp ist allgemeingiiltig.
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Verum (T) und Falsum (L)

Beispiele:
® Die FO[o]-Formel Vvy vp=vp ist allgemeingiiltig.

® Die FO[o]-Formel ist unerfiillbar.
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Verum (T) und Falsum (L)

Beispiele:
® Die FO[o]-Formel Vvy vp=vp ist allgemeingiiltig.

® Die FO[o]-Formel Jvg — vo=vy ist unerfiillbar.
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Verum (T) und Falsum (L)

Beispiele:
® Die FO[o]-Formel Vvy vp=vp ist allgemeingiiltig.

® Die FO[o]-Formel Jvg — vo=vy ist unerfiillbar.

Notation 3.62
Wir schreiben T (in Worten: Verum), um die allgemeingiiltige FO-Formel

Vvo Vo=Vvo zu bezeichnen.
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Verum (T) und Falsum (L)

Beispiele:
® Die FO[o]-Formel Vvy vp=vp ist allgemeingiiltig.

® Die FO[o]-Formel Jvg — vo=vy ist unerfiillbar.

Notation 3.62
Wir schreiben T (in Worten: Verum), um die allgemeingiiltige FO-Formel

Vvo Vo=Vvo zu bezeichnen.

Wir schreiben _L (in Worten: Falsum), um die unerfiillbare FO-Formel
dvp = vo=vy zu bezeichnen.
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Die Folgerungsbeziehung

Definition 3.63

Eine FO[o]-Formel v folgt aus einer Formelmenge ® C FO[o] (wir schreiben:
& = 1), wenn
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Die Folgerungsbeziehung

Definition 3.63
Eine FO[o]-Formel v folgt aus einer Formelmenge ® C FO[o] (wir schreiben:

® |= 1)), wenn fiir jede o-Interpretation Z gilt:
Falls Z = ¢, so gilt auch Z = 9.
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Die Folgerungsbeziehung

Definition 3.63

Eine FO[o]-Formel v folgt aus einer Formelmenge ® C FO[o] (wir schreiben:
® |= 1)), wenn fiir jede o-Interpretation Z gilt:

Falls Z = ¢, so gilt auch Z = 9.

Notation
Fiir zwei FO[o]-Formeln ¢, 1 schreiben wir kurz ¢ |= 1 an Stelle von {¢} = ¢
und sagen, dass die Formel i) aus der Formel ¢ folgt.
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Zusammenhange
Es bestehen dhnliche Zusammenhange wie bei der Aussagenlogik:
Lemma 3.64 (Allgemeingiiltigkeit, Unerfiillbarkeit und Folgerung)
Fiir jede FO[o]-Formel ¢ gilt:
(a) o ist allgemeingiiltig <~
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Zusammenhange
Es bestehen dhnliche Zusammenhange wie bei der Aussagenlogik:
Lemma 3.64 (Allgemeingiiltigkeit, Unerfiillbarkeit und Folgerung)
Fiir jede FO[o]-Formel ¢ gilt:
(a) o ist allgemeingiiltig <— =T
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Zusammenhange
Es bestehen dhnliche Zusammenhange wie bei der Aussagenlogik:
Lemma 3.64 (Allgemeingiiltigkeit, Unerfiillbarkeit und Folgerung)
Fiir jede FO[o]-Formel ¢ gilt:
(a) ¢ ist allgemeingiiltis <— =T <= T E .
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Zusammenhange

Es bestehen dhnliche Zusammenhange wie bei der Aussagenlogik:

Lemma 3.64 (Allgemeingiiltigkeit, Unerfiillbarkeit und Folgerung)
Fiir jede FO[o]-Formel ¢ gilt:

(a) ¢ ist allgemeingiiltis <— =T <= T E .

(b) ¢ ist unerfiillbar <=
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Zusammenhange

Es bestehen dhnliche Zusammenhange wie bei der Aussagenlogik:

Lemma 3.64 (Allgemeingiiltigkeit, Unerfiillbarkeit und Folgerung)
Fiir jede FO[o]-Formel ¢ gilt:

(a) ¢ ist allgemeingiiltis <— =T <= T E .

(b) ¢ ist unerfiillbar <— p=_1

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 281



Kapitel 3: Logik erster Stufe - Abschnitt 3.9: Erfiillbarkeit, Allgemeingiiltigkeit und die Folgerungsbeziehung

Zusammenhange

Es bestehen dhnliche Zusammenhange wie bei der Aussagenlogik:

Lemma 3.64 (Allgemeingiiltigkeit, Unerfiillbarkeit und Folgerung)
Fiir jede FO[o]-Formel ¢ gilt:

(a) ¢ ist allgemeingiiltis <— =T <= T E .

(b) ¢ ist unerfiillbar <— =1 <<= pkE= L.
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Zusammenhange

Es bestehen dhnliche Zusammenhange wie bei der Aussagenlogik:

Lemma 3.64 (Allgemeingiiltigkeit, Unerfiillbarkeit und Folgerung)
Fiir jede FO[o]-Formel ¢ gilt:

(a)  ist allgemeingiiltig <= ¢=T <<= T E=o.

(b) ¢ ist unerfiillbar <— =1 <<= pkE= L.

() Fy = 0E¢
D.h.: ¢ ist allgemeingiiltig <= ¢ folgt aus der leeren Menge.
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Zusammenhange

Es bestehen dhnliche Zusammenhange wie bei der Aussagenlogik:

Lemma 3.64 (Allgemeingiiltigkeit, Unerfiillbarkeit und Folgerung)
Fiir jede FO[o]-Formel ¢ gilt:

(a)  ist allgemeingiiltig <= ¢=T <<= T E=o.

(b) ¢ ist unerfiillbar <— =1 <<= pkE= L.

() Fy = 0E¢
D.h.: ¢ ist allgemeingiiltig <= ¢ folgt aus der leeren Menge.

Lemma 3.65 (Erfiillbarkeit und die Folgerungsbeziehung)
(a) Fiir alle Formelmengen ® C FO[o] und alle FO[o]-Formeln 4 gilt:

by ==
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Zusammenhange

Es bestehen dhnliche Zusammenhange wie bei der Aussagenlogik:

Lemma 3.64 (Allgemeingiiltigkeit, Unerfiillbarkeit und Folgerung)
Fiir jede FO[o]-Formel ¢ gilt:

(a)  ist allgemeingiiltig <= ¢=T <<= T E=o.

(b) ¢ ist unerfiillbar <— =1 <<= pkE= L.

() Fy = 0E¢
D.h.: ¢ ist allgemeingiiltig <= ¢ folgt aus der leeren Menge.

Lemma 3.65 (Erfiillbarkeit und die Folgerungsbeziehung)
(a) Fiir alle Formelmengen ® C FO[o] und alle FO[o]-Formeln 4 gilt:

by <<  SU{w} ist unerfiillbar.
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Zusammenhange
Es bestehen dhnliche Zusammenhange wie bei der Aussagenlogik:

Lemma 3.64 (Allgemeingiiltigkeit, Unerfiillbarkeit und Folgerung)
Fiir jede FO[o]-Formel ¢ gilt:

(a)  ist allgemeingiiltig <= ¢=T <<= T E=o.

(b) ¢ ist unerfiillbar <— =1 <<= pkE= L.

() Fy = 0E¢
D.h.: ¢ ist allgemeingiiltig <= ¢ folgt aus der leeren Menge.

Lemma 3.65 (Erfiillbarkeit und die Folgerungsbeziehung)
(a) Fiir alle Formelmengen ® C FO[o] und alle FO[o]-Formeln 4 gilt:

by <<  SU{w} ist unerfiillbar.

(b) Fiir alle FO[o]-Formeln ¢, gilt: =19 <
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Zusammenhange
Es bestehen dhnliche Zusammenhange wie bei der Aussagenlogik:

Lemma 3.64 (Allgemeingiiltigkeit, Unerfiillbarkeit und Folgerung)
Fiir jede FO[o]-Formel ¢ gilt:

(a)  ist allgemeingiiltig <= ¢=T <<= T E=o.

(b) ¢ ist unerfiillbar <— =1 <<= pkE= L.

() Fy = 0E¢
D.h.: ¢ ist allgemeingiiltig <= ¢ folgt aus der leeren Menge.

Lemma 3.65 (Erfiillbarkeit und die Folgerungsbeziehung)
(a) Fiir alle Formelmengen ® C FO[o] und alle FO[o]-Formeln 4 gilt:

by <<  SU{w} ist unerfiillbar.

(b) Fiir alle FO[o]-Formeln ¢, gilt: =19 < E (o ).
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Zusammenhange

Es bestehen dhnliche Zusammenhange wie bei der Aussagenlogik:

Lemma 3.64 (Allgemeingiiltigkeit, Unerfiillbarkeit und Folgerung)
Fiir jede FO[o]-Formel ¢ gilt:

(a)  ist allgemeingiiltig <= ¢=T <<= T E=o.

(b) ¢ ist unerfiillbar <— =1 <<= pkE= L.

() Fy = 0E¢
D.h.: ¢ ist allgemeingiiltig <= ¢ folgt aus der leeren Menge.

Lemma 3.65 (Erfiillbarkeit und die Folgerungsbeziehung)
(a) Fiir alle Formelmengen ® C FO[o] und alle FO[o]-Formeln 4 gilt:

b=y =  dU{} ist unerfiillbar.
(b) Fiir alle FO[o]-Formeln ¢, gilt: =19 < E (o ).

Beweis der beiden Lemmas: Analog zu den Beweisen der entsprechenden Resultate in
der Aussagenlogik. Details: Ubung.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.10: Normalformen

Negationsnormalform

Die Negationsnormalform fiir Formeln der Logik erster Stufe ist dhnlich definiert
wie die Negationsnormalform der Aussagenlogik.
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Negationsnormalform

Die Negationsnormalform fiir Formeln der Logik erster Stufe ist dhnlich definiert
wie die Negationsnormalform der Aussagenlogik.

Definition 3.66

Sei o eine beliebige Signatur. Eine FO[o]-Formel ¢ ist in Negationsnormalform
(kurz: NNF), wenn
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Negationsnormalform

Die Negationsnormalform fiir Formeln der Logik erster Stufe ist dhnlich definiert
wie die Negationsnormalform der Aussagenlogik.

Definition 3.66
Sei o eine beliebige Signatur. Eine FO[o]-Formel ¢ ist in Negationsnormalform
(kurz: NNF), wenn Negationszeichen in ¢ nur unmittelbar vor atomaren

Subformeln auftreten
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Kapitel 3: Logik erster Stufe - Abschnitt 3.10: Normalformen

Negationsnormalform

Die Negationsnormalform fiir Formeln der Logik erster Stufe ist dhnlich definiert
wie die Negationsnormalform der Aussagenlogik.

Definition 3.66

Sei o eine beliebige Signatur. Eine FO[o]-Formel ¢ ist in Negationsnormalform
(kurz: NNF), wenn Negationszeichen in ¢ nur unmittelbar vor atomaren
Subformeln auftreten und ¢ den Junktor ,,—" nicht enthalt.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.10: Normalformen

Negationsnormalform

Die Negationsnormalform fiir Formeln der Logik erster Stufe ist dhnlich definiert
wie die Negationsnormalform der Aussagenlogik.

Definition 3.66

Sei o eine beliebige Signatur. Eine FO[o]-Formel ¢ ist in Negationsnormalform
(kurz: NNF), wenn Negationszeichen in ¢ nur unmittelbar vor atomaren
Subformeln auftreten und ¢ den Junktor ,,—" nicht enthalt.

Satz 3.67

Jede FO[o]-Formel ¢ ist dquivalent zu einer Formel in NNF.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.10: Normalformen

Negationsnormalform

Die Negationsnormalform fiir Formeln der Logik erster Stufe ist dhnlich definiert
wie die Negationsnormalform der Aussagenlogik.

Definition 3.66

Sei o eine beliebige Signatur. Eine FO[o]-Formel ¢ ist in Negationsnormalform
(kurz: NNF), wenn Negationszeichen in ¢ nur unmittelbar vor atomaren
Subformeln auftreten und ¢ den Junktor ,,—" nicht enthalt.

Satz 3.67

Jede FO[o]-Formel ¢ ist dquivalent zu einer Formel in NNF.

Beweis.
GemaB Satz 3.46 kénnen wir 0.B.d.A. annehmen, dass ¢ den Junktor ,,—" nicht

enthilt.
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Negationsnormalform

Die Negationsnormalform fiir Formeln der Logik erster Stufe ist dhnlich definiert
wie die Negationsnormalform der Aussagenlogik.

Definition 3.66

Sei o eine beliebige Signatur. Eine FO[o]-Formel ¢ ist in Negationsnormalform
(kurz: NNF), wenn Negationszeichen in ¢ nur unmittelbar vor atomaren
Subformeln auftreten und ¢ den Junktor ,,—" nicht enthalt.

Satz 3.67
Jede FO[o]-Formel ¢ ist dquivalent zu einer Formel in NNF.

Beweis.
GemaB Satz 3.46 kénnen wir 0.B.d.A. annehmen, dass ¢ den Junktor ,,—" nicht

enthalt.
Ahnlich wie fiir die Aussagenlogik definieren wir per Induktion iiber den Aufbau

zu jeder FO[o]-Formel ¢
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Negationsnormalform

Die Negationsnormalform fiir Formeln der Logik erster Stufe ist dhnlich definiert
wie die Negationsnormalform der Aussagenlogik.

Definition 3.66

Sei o eine beliebige Signatur. Eine FO[o]-Formel ¢ ist in Negationsnormalform
(kurz: NNF), wenn Negationszeichen in ¢ nur unmittelbar vor atomaren
Subformeln auftreten und ¢ den Junktor ,,—" nicht enthalt.

Satz 3.67

Jede FO[o]-Formel ¢ ist dquivalent zu einer Formel in NNF.

Beweis.

GemaB Satz 3.46 kénnen wir 0.B.d.A. annehmen, dass ¢ den Junktor ,,—" nicht
enthalt.

Ahnlich wie fiir die Aussagenlogik definieren wir per Induktion iiber den Aufbau
zu jeder FO[o]-Formel ¢ zwei FO[o]-Formeln ¢’ und ¢” in NNF, so dass gilt:

p=¢ und —p ="
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Negationsnormalform

Die Negationsnormalform fiir Formeln der Logik erster Stufe ist dhnlich definiert
wie die Negationsnormalform der Aussagenlogik.

Definition 3.66

Sei o eine beliebige Signatur. Eine FO[o]-Formel ¢ ist in Negationsnormalform
(kurz: NNF), wenn Negationszeichen in ¢ nur unmittelbar vor atomaren
Subformeln auftreten und ¢ den Junktor ,,—" nicht enthalt.

Satz 3.67

Jede FO[o]-Formel ¢ ist dquivalent zu einer Formel in NNF.

Beweis.

GemaB Satz 3.46 kénnen wir 0.B.d.A. annehmen, dass ¢ den Junktor ,,—" nicht
enthalt.

Ahnlich wie fiir die Aussagenlogik definieren wir per Induktion iiber den Aufbau
zu jeder FO[o]-Formel ¢ zwei FO[o]-Formeln ¢’ und ¢” in NNF, so dass gilt:
0=y und —¢ = ¢". Details: Ubung. O
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Pranexe Normalform
Definition 3.68

Sei o eine beliebige Signatur.
(a) Eine FO[o]-Formel heiBt quantorenfrei, falls in ihr keins der Symbole 3,V

vorkommt.
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Pranexe Normalform
Definition 3.68

Sei o eine beliebige Signatur.
(a) Eine FO[o]-Formel heiBt quantorenfrei, falls in ihr keins der Symbole 3,V

vorkommt.
Die Menge aller quantorenfreien FO[o]-Formeln bezeichnen wir mit QF,,.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.10: Normalformen
Pranexe Normalform
Definition 3.68

Sei o eine beliebige Signatur.
(a) Eine FO[o]-Formel heiBt quantorenfrei, falls in ihr keins der Symbole 3,V

vorkommt.
Die Menge aller quantorenfreien FO[o]-Formeln bezeichnen wir mit QF,,.

(b) Eine FO[o]-Formel ¢ ist in pranexer Normalform (bzw. Prinex-Normalform,
kurz: PNF), wenn sie von der Form

Qix1 -+ QnXn X

ist,
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Kapitel 3: Logik erster Stufe - Abschnitt 3.10: Normalformen
Pranexe Normalform
Definition 3.68

Sei o eine beliebige Signatur.
(a) Eine FO[o]-Formel heiBt quantorenfrei, falls in ihr keins der Symbole 3,V

vorkommt.
Die Menge aller quantorenfreien FO[o]-Formeln bezeichnen wir mit QF,,.

(b) Eine FO[o]-Formel ¢ ist in pranexer Normalform (bzw. Prinex-Normalform,
kurz: PNF), wenn sie von der Form

Qix1 -+ QnXn X

ist, wobei n >0,
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Kapitel 3: Logik erster Stufe - Abschnitt 3.10: Normalformen
Pranexe Normalform
Definition 3.68

Sei o eine beliebige Signatur.
(a) Eine FO[o]-Formel heiBt quantorenfrei, falls in ihr keins der Symbole 3,V

vorkommt.
Die Menge aller quantorenfreien FO[o]-Formeln bezeichnen wir mit QF,,.

(b) Eine FO[o]-Formel ¢ ist in pranexer Normalform (bzw. Prinex-Normalform,
kurz: PNF), wenn sie von der Form

Qix1 -+ QnXn X

ist, wobei n >0, Q,...,Q, € {3,V},
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Kapitel 3: Logik erster Stufe - Abschnitt 3.10: Normalformen
Pranexe Normalform
Definition 3.68

Sei o eine beliebige Signatur.
(a) Eine FO[o]-Formel heiBt quantorenfrei, falls in ihr keins der Symbole 3,V

vorkommt.
Die Menge aller quantorenfreien FO[o]-Formeln bezeichnen wir mit QF,,.

(b) Eine FO[o]-Formel ¢ ist in pranexer Normalform (bzw. Prinex-Normalform,
kurz: PNF), wenn sie von der Form

Qix1 -+ QnXn X

ist, wobei n >0, Qq,...,Qn € {3,V}, x1,...,x, € VAR
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Kapitel 3: Logik erster Stufe - Abschnitt 3.10: Normalformen
Pranexe Normalform
Definition 3.68

Sei o eine beliebige Signatur.
(a) Eine FO[o]-Formel heiBt quantorenfrei, falls in ihr keins der Symbole 3,V

vorkommt.
Die Menge aller quantorenfreien FO[o]-Formeln bezeichnen wir mit QF,,.

(b) Eine FO[o]-Formel ¢ ist in pranexer Normalform (bzw. Prinex-Normalform,
kurz: PNF), wenn sie von der Form

Qix1 -+ QnXn X

ist, wobei n >0, Q,...,Q, € {3,V}, x1,...,x, € VAR und x € QF,.
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Pranexe Normalform
Definition 3.68

Sei o eine beliebige Signatur.

(a) Eine FO[o]-Formel heiBt quantorenfrei, falls in ihr keins der Symbole 3,V

vorkommt.
Die Menge aller quantorenfreien FO[o]-Formeln bezeichnen wir mit QF,,.

(b) Eine FO[o]-Formel ¢ ist in pranexer Normalform (bzw. Prinex-Normalform,
kurz: PNF), wenn sie von der Form

Qix1 -+ QnXn X

ist, wobei n >0, Q,...,Q, € {3,V}, x1,...,x, € VAR und x € QF,.
Qix1 - - Qnx, wird Quantoren-Prafix von ¢ genannt;
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Pranexe Normalform
Definition 3.68

Sei o eine beliebige Signatur.

(a) Eine FO[o]-Formel heiBt quantorenfrei, falls in ihr keins der Symbole 3,V
vorkommt.
Die Menge aller quantorenfreien FO[o]-Formeln bezeichnen wir mit QF,,.

(b) Eine FO[o]-Formel ¢ ist in pranexer Normalform (bzw. Prinex-Normalform,
kurz: PNF), wenn sie von der Form

Qix1 -+ QnXn X

ist, wobei n >0, Q,...,Q, € {3,V}, x1,...,x, € VAR und x € QF,.
Qix1 - - Qnx, wird Quantoren-Prafix von ¢ genannt;

x heiBt Kern (bzw. Matrix) von .
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Pranexe Normalform
Definition 3.68

Sei o eine beliebige Signatur.

(a) Eine FO[o]-Formel heiBt quantorenfrei, falls in ihr keins der Symbole 3,V
vorkommt.

Die Menge aller quantorenfreien FO[o]-Formeln bezeichnen wir mit QF,,.

(b) Eine FO[o]-Formel ¢ ist in pranexer Normalform (bzw. Prinex-Normalform,
kurz: PNF), wenn sie von der Form

Qix1 -+ QnXn X

ist, wobei n >0, Q,...,Q, € {3,V}, x1,...,x, € VAR und x € QF,.
Qix1 - - Qnx, wird Quantoren-Prafix von ¢ genannt;
x heiBt Kern (bzw. Matrix) von .

Satz 3.69

Jede FO[o]-Formel ¢ ist dquivalent zu einer FO[o]-Formel ¢’ in pranexer
Normalform
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Kapitel 3: Logik erster Stufe - Abschnitt 3.10: Normalformen
Pranexe Normalform
Definition 3.68

Sei o eine beliebige Signatur.

(a) Eine FO[o]-Formel heiBt quantorenfrei, falls in ihr keins der Symbole 3,V
vorkommt.

Die Menge aller quantorenfreien FO[o]-Formeln bezeichnen wir mit QF,,.

(b) Eine FO[o]-Formel ¢ ist in pranexer Normalform (bzw. Prinex-Normalform,
kurz: PNF), wenn sie von der Form

Qix1 -+ QnXn X

ist, wobei n >0, Q,...,Q, € {3,V}, x1,...,x, € VAR und x € QF,.
Qix1 - - Qnx, wird Quantoren-Prafix von ¢ genannt;
x heiBt Kern (bzw. Matrix) von .

Satz 3.69

Jede FO[o]-Formel ¢ ist dquivalent zu einer FO[o]-Formel ¢’ in pranexer
Normalform mit frei(¢') = frei(y).
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Bevor wir Satz 3.69 beweisen, betrachten wir zunichst ein Beispiel.

Beispiel 3.70
Sei
o(y) == Vx ﬂ(HyE(X,y) — dx E(X,y)).

Umformung in eine dquvivalente Formel in Pranex-Normalform:
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Beweis von Satz 3.69:

Wir zeigen zunichst drei Lemmas und schlieBen danach den Beweis ab.
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Beweis von Satz 3.69:

Wir zeigen zunichst drei Lemmas und schlieBen danach den Beweis ab

Lemma 3.71
Sei = @Qix1--- Qux, x, wobei n>20, @,...,Q,€ {3,V} und

x € FO[o].

Version vom 25. Januar 2024
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Beweis von Satz 3.69:

Wir zeigen zunichst drei Lemmas und schlieBen danach den Beweis ab.

Lemma 3.71
Sei = Qix1- - Quxy X, wobei n=0, Qq,...,Q, € {3,¥} und
X € FO[o]. Fiir jedes Q € {3,V} sei

6 o V falls Q =13,
)l 3 falls Q=V.
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Beweis von Satz 3.69:

Wir zeigen zunichst drei Lemmas und schlieBen danach den Beweis ab.

Lemma 3.71
Sei = Qix1- - Quxy X, wobei n=0, Qq,...,Q, € {3,¥} und
X € FO[o]. Fiir jedes Q € {3,V} sei

6 o V falls Q =13,
)l 3 falls Q=V.

Dann gilt: =y =
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Beweis von Satz 3.69:

Wir zeigen zunichst drei Lemmas und schlieBen danach den Beweis ab.

Lemma 3.71

Sei = Qix1- - Quxy X, wobei n=0, Qq,...,Q, € {3,¥} und

X € FO[o]. Fiir jedes Q € {3,V} sei

6 o V falls Q =13,
)l 3 falls Q=V.

Dann gilt:  —v¢y = @Qixq--- Qun —X-
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Beweis von Satz 3.69:

Wir zeigen zunichst drei Lemmas und schlieBen danach den Beweis ab.

Lemma 3.71
Sei = Qix1- - Quxy X, wobei n=0, Qq,...,Q, € {3,¥} und
X € FO[o]. Fiir jedes Q € {3,V} sei

5 o V falls Q =13,
Tl 3 falls Q=V.
Dann gilt: =y = Quxt -+ Qn —X-

Beweis.

Einfaches Nachrechnen per Induktion nach n unter Verwendung der Tatsache,
dass ~3x@ = Vx—p und =~Vxp = Ix-p (Lemma 3.44).

Details: Ubung. O
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Lemma 3.72
Fiir alle FO[o]-Formeln ¢ und ) und fiir alle Variablen x € VAR \ frei(y) gilt:

(<p A sz/)) =
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Lemma 3.72
Fiir alle FO[o]-Formeln ¢ und ) und fiir alle Variablen x € VAR \ frei(y) gilt:

(<p A sz/)) = dx (<p/\z/))
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Lemma 3.72
Fiir alle FO[o]-Formeln ¢ und ) und fiir alle Variablen x € VAR \ frei(y) gilt:

(<,0 A sz/)) = dx (<p/\z/)) , (go A sz/)) = Vx ((p/\1/1)
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Lemma 3.72
Fiir alle FO[o]-Formeln ¢ und ) und fiir alle Variablen x € VAR \ frei(y) gilt:

(go/\ﬂxz/)) = Hx(go/\z/)) , (ga/\sz/)) = Vx((p/\d}),

(<p vV sz/J) = dx (4,0\/1/1)

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 286



Kapitel 3: Logik erster Stufe - Abschnitt 3.10: Normalformen

Lemma 3.72

Fiir alle FO[o]-Formeln ¢ und ) und fiir alle Variablen x € VAR \ frei(y) gilt:
(gp/\ sz/)) = dx (<p/\z/)) , (go/\sz/)) = VX((p/\?[J),
((pvﬂxw) = 3x(<p\/z/1) , (g@\/wa) = Vx(go\/@[}).
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Lemma 3.72

Fiir alle FO[o]-Formeln ¢ und ) und fiir alle Variablen x € VAR \ frei(y) gilt:
(ap/\ﬂxz/;) = dx (go/\z/;) , (ga/\sz/)) = VX((p/\’(/J),
((pvﬂxw) = 3x(<p\/1/1) , (ngszp) = Vx(<p\/z/1).

Beweis. Die Beweise aller vier Aquivalenzen sind dhnlich. Wir beweisen hier nur
die erste:

(¢ A3xy) = 3x(pAY). (1)
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Lemma 3.73

Seien

P = Qixy- Qexe X1 und Vo= Qy1--- Qrym X2
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Lemma 3.73

Seien

P = Qixy- Qexe X1 und Vo= Qy1--- Qrym X2

wobei £, m > 0,
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Lemma 3.73

Seien

1= Qixy- - Quxe X1 und Vo= Qy1--- Qrym X2

wobei £,m>=0, Q,...,Qs, Qf,...,Q, €{3,V},
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Kapitel 3: Logik erster Stufe - Abschnitt 3.10: Normalformen

Lemma 3.73

Seien
1= Qixy- - Quxe X1 und

wobei £,m >0, Q..
Xiyeees Xty Y15---,Ym € VAR,
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Lemma 3.73

Seien

Y= Qxi--Quxe x1 und o= Qyr- QLym X2

wobei £,m >0, Qu,...,Qp, Q,..., QL €{3,V},
X1y oy Xey Y1+, ¥m € VAR, x1,x2 € FO[o].

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik

Version vom 25. Januar 2024

Folie 287



Kapitel 3: Logik erster Stufe - Abschnitt 3.10: Normalformen

Lemma 3.73

Seien

1= Quxa-- Quxe X1 und iy i= Qyp---

wobei £,m >0, Qu,...,Qp, Q,..., QL €{3,V},
X1y oy Xey Y1+, ¥m € VAR, x1,x2 € FO[o].

Es gelte: {xq,...,x¢} Nfrei(wy) =0

Qnym X2
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Kapitel 3: Logik erster Stufe - Abschnitt 3.10: Normalformen

Lemma 3.73

Seien
Y= Qxi--Quxe x1 und o= Qyr- QLym X2

wobei £,m >0, Qu,...,Qp, Q,..., QL €{3,V},
X1y oy Xey Y1+, ¥m € VAR, x1,x2 € FO[o].

Es gelte: {xq,...,x¢} Nfrei(vo) =0 und {y1,...,ym} Nfrei(x1) = 0.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.10: Normalformen

Lemma 3.73

Seien

Y= Qxi--Quxe x1 und o= Qyr- QLym X2

wobei £,m >0, Qi,...,Qu Q,..., Q. €{3,v},

X1y oy Xey Y1+, ¥m € VAR, x1,x2 € FO[o].

Es gelte: {x1,...,x¢} Nfrei(vn) =0 wund {1, ..

Dann gilt fiir = € {A,V}, dass

(1 x ) =

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik
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Kapitel 3: Logik erster Stufe - Abschnitt 3.10: Normalformen

Lemma 3.73

Seien
Y= Qxi--Quxe x1 und o= Qyr- QLym X2

wobei £,m >0, Qu,...,Qp, Q,..., QL €{3,V},
X1y oy Xey Y1+, ¥m € VAR, x1,x2 € FO[o].

Es gelte: {x1,...,x¢} Nfrei(yn) =0 und {y1,...,ym} Nfrei(x1) = 0.
Dann gilt fiir = € {A,V}, dass

(1 x92) = Quxi - Quxe Qiyr-+ Qmym (X1 * X2)-
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Kapitel 3: Logik erster Stufe - Abschnitt 3.10: Normalformen

Lemma 3.73

Seien
Y= Qxi--Quxe x1 und o= Qyr- QLym X2

wobei £,m >0, Qu,...,Qp, Q,..., QL €{3,V},
X1y oy Xey Y1+, ¥m € VAR, x1,x2 € FO[o].

Es gelte: {xq,...,x¢} Nfrei(vo) =0 und {y1,...,ym} Nfrei(x1) = 0.

Dann gilt fiir = € {A,V}, dass

(1 x92) = Quxi - Quxe Qiyr-+ Qmym (X1 * X2)-
Beweis.
Zwei Induktionen iiber £ bzw. m unter Verwendung von Lemma 3.72.
Details: Ubung. O
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Kapitel 3: Logik erster Stufe - Abschnitt 3.10: Normalformen

Abschluss des Beweises von Satz 3.69:

Sei ¢ eine FO[o]-Formel.

Gema3B Satz 3.46 kdnnen wir 0.B.d.A. annehmen, dass ¢ den Junktor ,,—" nicht
enthalt.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.10: Normalformen

Abschluss des Beweises von Satz 3.69:

Sei ¢ eine FO[o]-Formel.

Gema3B Satz 3.46 kdnnen wir 0.B.d.A. annehmen, dass ¢ den Junktor ,,—" nicht
enthalt.

Per Induktion iiber den Aufbau von ¢ zeigen wir, dass es eine zu ¢ dquivalente
Formel ¢’ in PNF gibt mit frei(¢') = frei(p).
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Kapitel 3: Logik erster Stufe - Abschnitt 3.10: Normalformen

Abschluss des Beweises von Satz 3.69:

Sei ¢ eine FO[o]-Formel.

Gema3B Satz 3.46 kdnnen wir 0.B.d.A. annehmen, dass ¢ den Junktor ,,—" nicht
enthalt.

Per Induktion iiber den Aufbau von ¢ zeigen wir, dass es eine zu ¢ dquivalente
Formel ¢’ in PNF gibt mit frei(¢') = frei(p).

Induktionsanfang: Atomare Formeln
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Kapitel 3: Logik erster Stufe - Abschnitt 3.10: Normalformen

Abschluss des Beweises von Satz 3.69:

Sei ¢ eine FO[o]-Formel.

Gema3B Satz 3.46 kdnnen wir 0.B.d.A. annehmen, dass ¢ den Junktor ,,—" nicht
enthalt.

Per Induktion iiber den Aufbau von ¢ zeigen wir, dass es eine zu ¢ dquivalente
Formel ¢’ in PNF gibt mit frei(¢') = frei(p).

Induktionsanfang: Atomare Formeln sind quantorenfrei
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Kapitel 3: Logik erster Stufe - Abschnitt 3.10: Normalformen

Abschluss des Beweises von Satz 3.69:

Sei ¢ eine FO[o]-Formel.

Gema3B Satz 3.46 kdnnen wir 0.B.d.A. annehmen, dass ¢ den Junktor ,,—" nicht
enthalt.

Per Induktion iiber den Aufbau von ¢ zeigen wir, dass es eine zu ¢ dquivalente
Formel ¢’ in PNF gibt mit frei(¢') = frei(p).

Induktionsanfang: Atomare Formeln sind quantorenfrei und daher insbesondere
in PNF.
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Kapitel 3: Logik erster Stufe - Abschnitt 3.10: Normalformen

Abschluss des Beweises von Satz 3.69:

Sei ¢ eine FO[o]-Formel.

Gema3B Satz 3.46 kdnnen wir 0.B.d.A. annehmen, dass ¢ den Junktor ,,—" nicht
enthalt.

Per Induktion iiber den Aufbau von ¢ zeigen wir, dass es eine zu ¢ dquivalente
Formel ¢’ in PNF gibt mit frei(¢') = frei(p).

Induktionsanfang: Atomare Formeln sind quantorenfrei und daher insbesondere
in PNF.

Induktionsschritt:
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Kapitel 4:

Grundlagen des automatischen

SchlieBens



Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.0:

Ziel: Automatisches SchlieBen
® |n typischen Anwendungen der Logik beschreibt man mit Hilfe einer

Formelmenge das Wissen iiber ein Anwendungsszenario und will aus diesem
Wissen dann, moglichst automatisch, Folgerungen ziehen.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.0

Ziel: Automatisches SchlieBen

® |n typischen Anwendungen der Logik beschreibt man mit Hilfe einer
Formelmenge das Wissen iiber ein Anwendungsszenario und will aus diesem
Wissen dann, moglichst automatisch, Folgerungen ziehen.

® |n diesem Kapitel werden wir untersuchen, inwieweit sich fiir die Logik
erster Stufe das Folgern automatiseren lasst.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.0

Ziel: Automatisches SchlieBen

® |n typischen Anwendungen der Logik beschreibt man mit Hilfe einer
Formelmenge das Wissen iiber ein Anwendungsszenario und will aus diesem
Wissen dann, moglichst automatisch, Folgerungen ziehen.

® |n diesem Kapitel werden wir untersuchen, inwieweit sich fiir die Logik
erster Stufe das Folgern automatiseren lasst.

® Wir werden einen syntaktischen Beweisbegriff einfiihren, der genau dem
semantischen Folgerungsbegriff entspricht (Vollstindigkeitssatz).
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.0

Ziel: Automatisches SchlieBen

® |n typischen Anwendungen der Logik beschreibt man mit Hilfe einer
Formelmenge das Wissen iiber ein Anwendungsszenario und will aus diesem
Wissen dann, moglichst automatisch, Folgerungen ziehen.

® |n diesem Kapitel werden wir untersuchen, inwieweit sich fiir die Logik
erster Stufe das Folgern automatiseren lasst.

® Wir werden einen syntaktischen Beweisbegriff einfiihren, der genau dem
semantischen Folgerungsbegriff entspricht (Vollstindigkeitssatz).

® Dadurch werden wir einen Algorithmus erhalten, der nach und nach alle
allgemeingiiltigen Satze der Logik erster Stufe aufzihlt.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.0

Ziel: Automatisches SchlieBen

® |n typischen Anwendungen der Logik beschreibt man mit Hilfe einer
Formelmenge das Wissen iiber ein Anwendungsszenario und will aus diesem
Wissen dann, moglichst automatisch, Folgerungen ziehen.

® |n diesem Kapitel werden wir untersuchen, inwieweit sich fiir die Logik
erster Stufe das Folgern automatiseren lasst.

® Wir werden einen syntaktischen Beweisbegriff einfiihren, der genau dem
semantischen Folgerungsbegriff entspricht (Vollstindigkeitssatz).

® Dadurch werden wir einen Algorithmus erhalten, der nach und nach alle
allgemeingiiltigen Satze der Logik erster Stufe aufzihlt.

® Andererseits werden wir zeigen, dass es keinen Algorithmus gibt, der bei
Eingabe eines beliebigen Satzes der Logik erster Stufe entscheidet, ob der
Satz allgemeingiiltig ist.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.0

Ziel: Automatisches SchlieBen

® |n typischen Anwendungen der Logik beschreibt man mit Hilfe einer
Formelmenge das Wissen iiber ein Anwendungsszenario und will aus diesem
Wissen dann, moglichst automatisch, Folgerungen ziehen.

® |n diesem Kapitel werden wir untersuchen, inwieweit sich fiir die Logik
erster Stufe das Folgern automatiseren lasst.

® Wir werden einen syntaktischen Beweisbegriff einfiihren, der genau dem
semantischen Folgerungsbegriff entspricht (Vollstindigkeitssatz).

® Dadurch werden wir einen Algorithmus erhalten, der nach und nach alle
allgemeingiiltigen Satze der Logik erster Stufe aufzihlt.

® Andererseits werden wir zeigen, dass es keinen Algorithmus gibt, der bei
Eingabe eines beliebigen Satzes der Logik erster Stufe entscheidet, ob der
Satz allgemeingiiltig ist.

® Als Folgerung aus dem Vollstandigkeitssatz werden wir auch den
Endlichkeitssatz fiir die Logik erster Stufe erhalten.
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Abschnitt 4.1:
Kalkiile und Ableitungen



Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

Ableitungsregeln und Kalkiile

Definition 4.1
Sei M eine beliebige Menge.

(a) Eine Ableitungsregel iiber M (kurz: Regel) hat die Form

ai -+ an

wobei n > 0 und a;,...,a,, b€ M.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

Ableitungsregeln und Kalkiile

Definition 4.1
Sei M eine beliebige Menge.
(a) Eine Ableitungsregel iiber M (kurz: Regel) hat die Form

ai -+ an

wobei n > 0 und a;,...,a,, b€ M.

Wir bezeichnen ay, ..., a, als die Voraussetzungen der Regel und b als die

Konsequenz.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

Ableitungsregeln und Kalkiile

Definition 4.1
Sei M eine beliebige Menge.

(a) Eine Ableitungsregel iiber M (kurz: Regel) hat die Form

ai -+ an

wobei n > 0 und a;,...,a,, b€ M.

Wir bezeichnen ay, ..., a, als die Voraussetzungen der Regel und b als die
Konsequenz.

Ableitungsregeln ohne Voraussetzungen (also mit n = 0) bezeichnen wir als
Axiome.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

Ableitungsregeln und Kalkiile
Definition 4.1
Sei M eine beliebige Menge.

(a) Eine Ableitungsregel iiber M (kurz: Regel) hat die Form

ai -+ an

wobei n > 0 und a;,...,a,, b€ M.

Wir bezeichnen ay, ..., a, als die Voraussetzungen der Regel und b als die
Konsequenz.

Ableitungsregeln ohne Voraussetzungen (also mit n = 0) bezeichnen wir als
Axiome.

(b) Ein Kalkiil iiber M ist eine Menge von Ableitungsregeln iiber M.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

Ableitungen

Definition 4.2
Sei 8 ein Kalkiil iiber einer Menge M, sei V C M und sei a € M.

(a) Eine Ableitung von a aus V in R ist
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

Ableitungen

Definition 4.2
Sei 8 ein Kalkiil iiber einer Menge M, sei V C M und sei a € M.

(a) Eine Ableitung von a aus V in £ ist eine endliche Folge (a1, ...,a;) € M*, so

dass
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

Ableitungen

Definition 4.2
Sei 8 ein Kalkiil iiber einer Menge M, sei V C M und sei a € M.

(a) Eine Ableitung von a aus V in £ ist eine endliche Folge (a1, ...,a;) € M*, so

dass ¢>1,
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

Ableitungen

Definition 4.2
Sei 8 ein Kalkiil iiber einer Menge M, sei V C M und sei a € M.

(a) Eine Ableitung von a aus V in £ ist eine endliche Folge (a1, ...,a;) € M*, so

dass £ >1, as = a
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

Ableitungen

Definition 4.2
Sei 8 ein Kalkiil iiber einer Menge M, sei V C M und sei a € M.

(a) Eine Ableitung von a aus V in £ ist eine endliche Folge (a1, ...,a;) € M*, so

dass £>1, ac=a und furalleie {1,...,¢} gilt:

e 5, cV
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

Ableitungen

Definition 4.2
Sei 8 ein Kalkiil iiber einer Menge M, sei V C M und sei a € M.

(a) Eine Ableitung von a aus V in £ ist eine endliche Folge (a1, ...,a;) € M*, so

dass £>1, ac=a und furalleie {1,...,¢} gilt:

® 5, ¢V oder
® — st ein Axiom in &
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

Ableitungen

Definition 4.2
Sei 8 ein Kalkiil iiber einer Menge M, sei V C M und sei a € M.

(a) Eine Ableitung von a aus V in R ist eine endliche Folge (ay, ..
dass £>1, ac=a und furalleie {1,...,¢} gilt:

® 5, ¢V oder
® — st ein Axiom in & oder

es gibt in K eine Ableitungsregel % so dass
bi,...,b, € {21,...,2,',1}.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

Ableitungen

Definition 4.2
Sei 8 ein Kalkiil iiber einer Menge M, sei V C M und sei a € M.

(a) Eine Ableitung von a aus V in £ ist eine endliche Folge (a1, ...,a;) € M*, so
dass £>1, ac=a und furalleie {1,...,¢} gilt:

® 5, ¢V oder
® — st ein Axiom in & oder

® es gibt in & eine Ableitungsregel 2 — br 50 dass
bi,...,b, € {21,...,2,',1}.
Der besseren Lesbarkeit halber schreiben wir in konkreten Beispielen Ableitungen

der Form (a1, ..., as) oft zeilenweise, also

(Z) ae
und geben am Ende jeder Zeile eine kurze Begriindung an.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

(b) Ein Element a € M ist aus V in 8 ableitbar, wenn es eine Ableitung von a
aus V' in R gibt.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

(b) Ein Element a € M ist aus V in 8 ableitbar, wenn es eine Ableitung von a
aus V' in R gibt.

(c) Wir schreiben ablg(V), um die Menge aller aus V in R ableitbaren
Elemente zu bezeichnen.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

(b) Ein Element a € M ist aus V in 8 ableitbar, wenn es eine Ableitung von a
aus V' in R gibt.

(c) Wir schreiben ablg(V), um die Menge aller aus V in R ableitbaren
Elemente zu bezeichnen.

(d) Fiir V = 0 nutzen wir folgende Notationen:
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

(b) Ein Element a € M ist aus V in 8 ableitbar, wenn es eine Ableitung von a
aus V' in R gibt.

(c) Wir schreiben ablg(V), um die Menge aller aus V in R ableitbaren
Elemente zu bezeichnen.

(d) Fiir V = 0 nutzen wir folgende Notationen:

Eine Ableitung von a in £ ist eine Ableitung von a aus ) in &.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

(b) Ein Element a € M ist aus V in 8 ableitbar, wenn es eine Ableitung von a
aus V' in R gibt.

(c) Wir schreiben ablg(V), um die Menge aller aus V in R ableitbaren
Elemente zu bezeichnen.

(d) Fiir V = 0 nutzen wir folgende Notationen:

Eine Ableitung von a in £ ist eine Ableitung von a aus ) in &.

Ein Element a € M heiBt ableitbar aus £, falls es eine Ableitung von a in &
gibt.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

(b) Ein Element a € M ist aus V in 8 ableitbar, wenn es eine Ableitung von a
aus V' in R gibt.

(c) Wir schreiben ablg(V), um die Menge aller aus V in R ableitbaren
Elemente zu bezeichnen.

(d) Fiir V = 0 nutzen wir folgende Notationen:

Eine Ableitung von a in £ ist eine Ableitung von a aus ) in &.

Ein Element a € M heiBt ableitbar aus £, falls es eine Ableitung von a in &
gibt.

Die Menge aller in R ableitbaren Elemente bezeichnen wir mit ablg, d.h.:
ablg := ablg(0).
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

Wir werden Kalkiile nutzen, um auf elegante Art rekursive Definitionen
bestimmter Mengen anzugeben:

Um eine bestimmte Teilmenge A einer Menge M rekursiv zu definieren, geniigt
es, einen Kalkiil 8 iiber M anzugeben, fiir den gilt: ablg = A.

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 293



Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

Beispiel: Mengen natiirlicher Zahlen

Beispiel 4.3
Sei R der Kalkiil iber M :=N mit folgenden Ableitungsregeln:

e Axi -
Xiom 1

® Weitere Regeln: 2i , fir jedes n € N,
n

Fragen:

® Was ist ablg ?
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

Beispiel: Mengen natiirlicher Zahlen

Beispiel 4.3
Sei R der Kalkiil iber M :=N mit folgenden Ableitungsregeln:

e Axi -
Xiom 1

® Weitere Regeln: 2i , fir jedes n € N,
n

Fragen:
® Was ist ablg ?

® Wasist ablg(V) fir V:={3}7
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Beispiel: Aussagenlogik

Beispiel 4.4
Sei ¥ := AaL das Alphabet der Aussagenlogik, d.h.

Y= ASU{-, AV, =01 ()},

wobei AS = {A; : i €N} die Menge aller Aussagensymbole ist.
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Beispiel: Aussagenlogik

Beispiel 4.4
Sei ¥ := AaL das Alphabet der Aussagenlogik, d.h.

Y= ASU{-, AV, =01 ()},

wobei AS = {A; : i €N} die Menge aller Aussagensymbole ist.

Gesucht: Ein Kalkiil 8 iilber M :=X*, aus dem genau die syntaktisch
korrekten aussagenlogischen Formeln ableitbar sind
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

Beispiel: Aussagenlogik

Beispiel 4.4
Sei ¥ := AaL das Alphabet der Aussagenlogik, d.h.

Y= ASU{-, AV, =01 ()},

wobei AS = {A; : i €N} die Menge aller Aussagensymbole ist.

Gesucht: Ein Kalkiil 8 iilber M :=X*, aus dem genau die syntaktisch
korrekten aussagenlogischen Formeln ableitbar sind, d.h. ablg = AL.
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Beispiel: Resolution

Die Kalkiil-Schreibweise lasst sich auch dazu nutzen, eine elegante Darstellung

der Resolutionswiderlegungen zu anzugeben.
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Beispiel: Resolution

Die Kalkiil-Schreibweise lasst sich auch dazu nutzen, eine elegante Darstellung
der Resolutionswiderlegungen zu anzugeben.

Zur Erinnerung:

® FEine Klausel ist eine endliche Menge von Literalen.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

Beispiel: Resolution

Die Kalkiil-Schreibweise lasst sich auch dazu nutzen, eine elegante Darstellung
der Resolutionswiderlegungen zu anzugeben.

Zur Erinnerung:

® FEine Klausel ist eine endliche Menge von Literalen.

Ein Literal ist eine aussagenlogische Formel der Form X oder —X, wobei
X € AS.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

Beispiel: Resolution

Die Kalkiil-Schreibweise lasst sich auch dazu nutzen, eine elegante Darstellung
der Resolutionswiderlegungen zu anzugeben.

Zur Erinnerung:

® FEine Klausel ist eine endliche Menge von Literalen.

Ein Literal ist eine aussagenlogische Formel der Form X oder —X, wobei
X € AS.

® Wir haben in Satz 2.59 gezeigt, dass fiir jede Menge I von Klauseln gilt:

I ist unerfiillbar <= T Fg0.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

Beispiel: Resolution

Die Kalkiil-Schreibweise lasst sich auch dazu nutzen, eine elegante Darstellung
der Resolutionswiderlegungen zu anzugeben.

Zur Erinnerung:

® FEine Klausel ist eine endliche Menge von Literalen.

Ein Literal ist eine aussagenlogische Formel der Form X oder —X, wobei
X € AS.

® Wir haben in Satz 2.59 gezeigt, dass fiir jede Menge I von Klauseln gilt:
I ist unerfiillbar <= T Fg0.

Hierbei ist () die leere Klausel.
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Beispiel: Resolution

Die Kalkiil-Schreibweise lasst sich auch dazu nutzen, eine elegante Darstellung
der Resolutionswiderlegungen zu anzugeben.

Zur Erinnerung:

® FEine Klausel ist eine endliche Menge von Literalen.

Ein Literal ist eine aussagenlogische Formel der Form X oder —X, wobei
X € AS.

® Wir haben in Satz 2.59 gezeigt, dass fiir jede Menge I von Klauseln gilt:
I ist unerfiillbar <= T Fg0.

Hierbei ist () die leere Klausel.

. Fr 0" bedeutet, dass es eine Resolutionswiderlegung von I gibt.
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Beispiel: Resolution

Die Kalkiil-Schreibweise lasst sich auch dazu nutzen, eine elegante Darstellung
der Resolutionswiderlegungen zu anzugeben.
Zur Erinnerung:

® FEine Klausel ist eine endliche Menge von Literalen.

Ein Literal ist eine aussagenlogische Formel der Form X oder —X, wobei
X € AS.

® Wir haben in Satz 2.59 gezeigt, dass fiir jede Menge I von Klauseln gilt:

I ist unerfiillbar <= T Fg0.

Hierbei ist () die leere Klausel.
. Fr 0" bedeutet, dass es eine Resolutionswiderlegung von I gibt.

Zur Erinnerung hier die Definition des Begriffs der
Resolutionswiderlegungen:
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Resolutionsableitungen und -widerlegungen

Definition 2.56

Sei I eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel 6 aus I ist
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Resolutionsableitungen und -widerlegungen

Definition 2.56

Sei I eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel 6 aus I ist ein Tupel (d1,...,d,)

von Klauseln, so dass gilt: ¢ > 1,
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

Resolutionsableitungen und -widerlegungen

Definition 2.56

Sei I eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel 6 aus I ist ein Tupel (d1,...,d,)

von Klauseln, so dass gilt: > 1, §, =9,
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

Resolutionsableitungen und -widerlegungen

Definition 2.56

Sei I eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel 6 aus I ist ein Tupel (d1,...,d,)
von Klauseln, so dass gilt: ¢ > 1, 6, =49, und fiir alle i € [{] ist
® 4 erl, oder
Folie 297
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

Resolutionsableitungen und -widerlegungen

Definition 2.56

Sei I eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel 6 aus I ist ein Tupel (d1,...,d,)
von Klauseln, so dass gilt: ¢ > 1, 6, =49, und fiir alle i € [{] ist
® 4 erl, oder
® es gibt j, k € [i—1], so dass §; eine Resolvente von d; und Jj ist.
Folie 297
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

Resolutionsableitungen und -widerlegungen

Definition 2.56

Sei I eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel 6 aus I ist ein Tupel (d1, ...,
von Klauseln, so dass gilt: ¢ > 1, 6, =49, und fiir alle i € [{] ist

® 4 erl, oder
® es gibt j, k € [i—1], so dass §; eine Resolvente von d; und Jj ist.

(b) Eine Resolutionswiderlegung von T ist eine Resolutionsableitung der
leeren Klausel aus T
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

Resolutionsableitungen und -widerlegungen

Definition 2.56

Sei I eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel 6 aus I ist ein Tupel (d1,...,d,)
von Klauseln, so dass gilt: ¢ > 1, 6, =49, und fiir alle i € [{] ist

® 5, el, oder

® es gibt j, k € [i—1], so dass §; eine Resolvente von d; und Jj ist.

(b) Eine Resolutionswiderlegung von T ist eine Resolutionsableitung der
leeren Klausel aus T

Zur Erinnerung:
Eine Klausel § ist genau dann eine Resolvente zweier Klauseln v; und 7y,, wenn
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

Resolutionsableitungen und -widerlegungen

Definition 2.56

Sei I eine Klauselmenge.
(a) Eine Resolutionsableitung einer Klausel 6 aus I ist ein Tupel (d1, ...,
von Klauseln, so dass gilt: ¢ > 1, 6, =49, und fiir alle i € [{] ist
® g;eTl, oder
® es gibt j, k € [i—1], so dass §; eine Resolvente von d; und Jj ist.

(b) Eine Resolutionswiderlegung von T ist eine Resolutionsableitung der
leeren Klausel aus T

Zur Erinnerung:
Eine Klausel § ist genau dann eine Resolvente zweier Klauseln v; und 7y,, wenn

es ein Literal \ gibt, so dass gilt:

A€, A€y und 6=
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

Resolutionsableitungen und -widerlegungen

Definition 2.56

Sei I eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel 6 aus I ist ein Tupel (d1, ...,
von Klauseln, so dass gilt: ¢ > 1, 6, =49, und fiir alle i € [{] ist

® 4 erl, oder
® es gibt j, k € [i—1], so dass §; eine Resolvente von d; und Jj ist.

(b) Eine Resolutionswiderlegung von T ist eine Resolutionsableitung der
leeren Klausel aus T

Zur Erinnerung:
Eine Klausel § ist genau dann eine Resolvente zweier Klauseln v; und 7y,, wenn

es ein Literal \ gibt, so dass gilt:

Aem, A€ und 5= (m\{\}) U (\{2}).
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Der Resolutionskalkiil der Aussagenlogik

Gesucht: Ein Kalkiil Rz lber der Menge aller Klauseln, so dass fiir jede
Klauselmenge I und jede Klausel ¢ gilt:

de€ablg,(lN <= TFkgd

d.h.: 4 ist genau dann aus I' in Kk ableitbar, wenn es eine Resolutionsableitung
von 0 aus [ gibt.
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Der Kalkiil 8z wird Resolutionskalkiil der Aussagenlogik genannt.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

Kalkiile und abgeschlossene Mengen

Definition 4.5
Sei R ein Kalkil iiber einer Menge M.
Eine Menge A C M heiBt abgeschlossen unter &, wenn fiir jede Ableitungsregel
ai -+ an
b

in R gilt: Falls a1,...,a, € A, soist auch b € A.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

Kalkiile und abgeschlossene Mengen

Definition 4.5
Sei R ein Kalkil iiber einer Menge M.
Eine Menge A C M heiBt abgeschlossen unter &, wenn fiir jede Ableitungsregel

ai -+ an
b

in R gilt: Falls a1,...,a, € A, soist auch b € A.

Satz 4.6
Sei R ein Kalkiil iiber einer Menge M und sei V C M.
Dann ist ablg (V) die bzgl. ,,C " kleinste unter & abgeschlossene Menge, die V' enthilt.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

Kalkiile und abgeschlossene Mengen

Definition 4.5
Sei R ein Kalkil iiber einer Menge M.
Eine Menge A C M heiBt abgeschlossen unter &, wenn fiir jede Ableitungsregel

ai -+ an
b

in R gilt: Falls a1,...,a, € A, soist auch b € A.

Satz 4.6
Sei R ein Kalkiil iiber einer Menge M und sei V C M.
Dann ist ablg (V) die bzgl. ,,C " kleinste unter & abgeschlossene Menge, die V' enthilt.

D.h. es gilt:
(a) V Cablg(V).
(b) ablg(V) ist abgeschlossen unter .
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

Kalkiile und abgeschlossene Mengen

Definition 4.5
Sei R ein Kalkil iiber einer Menge M.
Eine Menge A C M heiBt abgeschlossen unter &, wenn fiir jede Ableitungsregel

ai -+ an

b
in R gilt: Falls a1,...,a, € A, soist auch b € A.

Satz 4.6
Sei R ein Kalkiil iiber einer Menge M und sei V C M.

Dann ist ablg (V) die bzgl. ,,C " kleinste unter & abgeschlossene Menge, die V' enthilt.
D.h. es gilt:

(a) V Cablg(V).

(b) ablg(V) ist abgeschlossen unter .

(c) Fiir jede Menge A mit V C AC M gilt:

Falls A abgeschlossen ist unter &, so ist ablg(V) C A.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

Kalkiile und abgeschlossene Mengen

Definition 4.5
Sei R ein Kalkil iiber einer Menge M.
Eine Menge A C M heiBt abgeschlossen unter &, wenn fiir jede Ableitungsregel
ai -+ an
b

in R gilt: Falls a1,...,a, € A, soist auch b € A.

Satz 4.6

Sei R ein Kalkiil iiber einer Menge M und sei V C M.

Dann ist ablg (V) die bzgl. ,,C " kleinste unter & abgeschlossene Menge, die V' enthilt.
D.h. es gilt:

(a) V Cablg(V).
(b) ablg(V) ist abgeschlossen unter .
(c) Fiir jede Menge A mit V C AC M gilt:
Falls A abgeschlossen ist unter &, so ist ablg(V) C A.

(d) ablg(V) = N A.
VCACM,
A abgeschlossen unter &
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

Induktionsprinzip fiir die ableitbaren Elemente eines Kalkiils

Sei R ein Kalkiil Giber einer Menge M und sei V C M. Um zu zeigen, dass eine
bestimmte Aussage A(a) fiir alle aus V in £ ableitbaren Elemente a gilt, kdnnen wir
das Induktionsprinzip nutzen und einfach Folgendes zeigen:
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Induktionsprinzip fiir die ableitbaren Elemente eines Kalkiils

Sei R ein Kalkiil Giber einer Menge M und sei V C M. Um zu zeigen, dass eine
bestimmte Aussage A(a) fiir alle aus V in £ ableitbaren Elemente a gilt, kdnnen wir
das Induktionsprinzip nutzen und einfach Folgendes zeigen:

(1) Die Aussage A(a) gilt fiir jedes a € V,
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Kapitel 4: Grundlagen des automatischen SchlieBens -

Induktionsprinzip fiir die ableitbaren Elemente eines Kalkiils

Sei R ein Kalkiil Giber einer Menge M und sei V C M. Um zu zeigen, dass eine

Abschnitt 4.1: Kalkiile und Ableitungen

bestimmte Aussage A(a) fiir alle aus V in £ ableitbaren Elemente a gilt, kdnnen wir
das Induktionsprinzip nutzen und einfach Folgendes zeigen:

(1) Die Aussage A(a) gilt fiir jedes a € V, und
(2) fiir jede Ableitungsregel

in R gilt:
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Induktionsprinzip fiir die ableitbaren Elemente eines Kalkiils
Sei R ein Kalkiil Giber einer Menge M und sei V C M. Um zu zeigen, dass eine

bestimmte Aussage A(a) fiir alle aus V in £ ableitbaren Elemente a gilt, kdnnen wir
das Induktionsprinzip nutzen und einfach Folgendes zeigen:
(1) Die Aussage A(a) gilt fiir jedes a € V, und
(2) fiir jede Ableitungsregel
ai -+ an
b
in R gilt: Falls A(a;) fiir jedes i € [n] gilt, so gilt auch A(b).
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

Induktionsprinzip fiir die ableitbaren Elemente eines Kalkiils

Sei R ein Kalkiil Giber einer Menge M und sei V C M. Um zu zeigen, dass eine
bestimmte Aussage A(a) fiir alle aus V in £ ableitbaren Elemente a gilt, kdnnen wir
das Induktionsprinzip nutzen und einfach Folgendes zeigen:
(1) Die Aussage A(a) gilt fiir jedes a € V, und
(2) fiir jede Ableitungsregel
ai -+ an
b
in R gilt: Falls A(a;) fiir jedes i € [n] gilt, so gilt auch A(b).
Daraus folgt laut dem nichsten Lemma dann, dass A(a) fiir jedes a € ablg(V) gilt.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

Induktionsprinzip fiir die ableitbaren Elemente eines Kalkiils

Sei R ein Kalkiil Giber einer Menge M und sei V C M. Um zu zeigen, dass eine
bestimmte Aussage A(a) fiir alle aus V in £ ableitbaren Elemente a gilt, kdnnen wir
das Induktionsprinzip nutzen und einfach Folgendes zeigen:

(1) Die Aussage A(a) gilt fiir jedes a € V, und

(2) fiir jede Ableitungsregel
al e an

b
in R gilt: Falls A(a;) fiir jedes i € [n] gilt, so gilt auch A(b).
Daraus folgt laut dem nichsten Lemma dann, dass A(a) fiir jedes a € ablg(V) gilt.

Lemma 4.7

Sei R ein Kalkiil iiber einer Menge M und sei V' C M. Falls
(1) eine Aussage A(a) fiir jedes a € V gilt
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Induktionsprinzip fiir die ableitbaren Elemente eines Kalkiils

Sei R ein Kalkiil Giber einer Menge M und sei V C M. Um zu zeigen, dass eine
bestimmte Aussage A(a) fiir alle aus V in £ ableitbaren Elemente a gilt, kdnnen wir
das Induktionsprinzip nutzen und einfach Folgendes zeigen:

(1) Die Aussage A(a) gilt fiir jedes a € V, und

(2) fiir jede Ableitungsregel
al e an

b
in R gilt: Falls A(a;) fiir jedes i € [n] gilt, so gilt auch A(b).

Daraus folgt laut dem nichsten Lemma dann, dass A(a) fiir jedes a € ablg(V) gilt.

Lemma 4.7
Sei R ein Kalkiil iiber einer Menge M und sei V' C M. Falls

(1) eine Aussage A(a) fiir jedes a € V gilt und

(2) fiir jede Ableitungsregel
ai -+ an

b
in R gilt: falls A(a;) fiir jedes i € [n] gilt, so gilt auch A(b),
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Induktionsprinzip fiir die ableitbaren Elemente eines Kalkiils

Sei R ein Kalkiil Giber einer Menge M und sei V C M. Um zu zeigen, dass eine
bestimmte Aussage A(a) fiir alle aus V in £ ableitbaren Elemente a gilt, kdnnen wir
das Induktionsprinzip nutzen und einfach Folgendes zeigen:

(1) Die Aussage A(a) gilt fiir jedes a € V, und

(2) fiir jede Ableitungsregel
al e an

b
in R gilt: Falls A(a;) fiir jedes i € [n] gilt, so gilt auch A(b).

Daraus folgt laut dem nichsten Lemma dann, dass A(a) fiir jedes a € ablg(V) gilt.

Lemma 4.7
Sei R ein Kalkiil iiber einer Menge M und sei V' C M. Falls

(1) eine Aussage A(a) fiir jedes a € V gilt und

(2) fiir jede Ableitungsregel
ai -+ an

b
in R gilt: falls A(a;) fiir jedes i € [n] gilt, so gilt auch A(b),

dann gilt die Aussage A(a) fiir jedes a € ablgz (V).
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Beweis.
Es seien (1) und (2) erfiillt.
Betrachte die Menge

A = {ae M : die Aussage A(a) gilt} .
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Beweis.

Es seien (1) und (2) erfiillt.
Betrachte die Menge

A = {ae M : die Aussage A(a) gilt} .

Wegen (1) ist V C A.
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Beweis.

Es seien (1) und (2) erfiillt.
Betrachte die Menge

A = {ae M : die Aussage A(a) gilt} .

Wegen (1) ist V C A.
Wegen (2) ist A abgeschlossen unter K.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

Beweis.
Es seien (1) und (2) erfiillt.
Betrachte die Menge

A = {ae M : die Aussage A(a) gilt} .

Wegen (1) ist V C A.
Wegen (2) ist A abgeschlossen unter K.
Aus Satz 4.6 folgt daher: ablg(V) C A.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.1: Kalkiile und Ableitungen

Beweis.
Es seien (1) und (2) erfiillt.
Betrachte die Menge

A = {ae M : die Aussage A(a) gilt} .

Wegen (1) ist V C A.

Wegen (2) ist A abgeschlossen unter K.

Aus Satz 4.6 folgt daher: ablg(V) C A.

Somit gilt die Aussage A(a) fiir jedes a € ablg(V).
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Abschnitt 4.2:

Ein Beweiskalkiil fiir die Logik erster
Stufe — der Vollstandigkeitssatz



Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.2: Ein Beweiskalkiil fiir die Logik erster Stufe — der Vollstindigkeitssatz

Notation

® |n diesem Kapitel sei o eine beliebige fest gewahlte Signatur.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.2: Ein Beweiskalkiil fiir die Logik erster Stufe — der Vollstandigkeitssatz

Notation

® |n diesem Kapitel sei o eine beliebige fest gewahlte Signatur.

® Der Einfachheit halber werden wir 0.B.d.A. in diesem Kapitel nur FO[o]-Formeln
betrachten, in denen das Symbol ,,—" nicht vorkommt.
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Notation

® |n diesem Kapitel sei o eine beliebige fest gewahlte Signatur.

® Der Einfachheit halber werden wir 0.B.d.A. in diesem Kapitel nur FO[o]-Formeln
betrachten, in denen das Symbol ,,—" nicht vorkommt.

® tut,t, t',u, u’,... bezeichnen immer o-Terme.
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Notation

® |n diesem Kapitel sei o eine beliebige fest gewahlte Signatur.

® Der Einfachheit halber werden wir 0.B.d.A. in diesem Kapitel nur FO[o]-Formeln
betrachten, in denen das Symbol ,,—" nicht vorkommt.

® tut,t, t',u, u’,... bezeichnen immer o-Terme.

® o1, x,... bezeichnen immer FO[o]-Formeln.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.2: Ein Beweiskalkiil fiir die Logik erster Stufe — der Vollstandigkeitssatz

Notation

® |n diesem Kapitel sei o eine beliebige fest gewahlte Signatur.

® Der Einfachheit halber werden wir 0.B.d.A. in diesem Kapitel nur FO[o]-Formeln
betrachten, in denen das Symbol ,,—" nicht vorkommt.

® tut,t, t',u, u’,... bezeichnen immer o-Terme.
® o1, x,... bezeichnen immer FO[o]-Formeln.
® & W dy, b, W ... bezeichnen immer Mengen von FO[o]-Formeln.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.2: Ein Beweiskalkiil fiir die Logik erster Stufe — der Vollstandigkeitssatz

Notation

® |n diesem Kapitel sei o eine beliebige fest gewahlte Signatur.

® Der Einfachheit halber werden wir 0.B.d.A. in diesem Kapitel nur FO[o]-Formeln
betrachten, in denen das Symbol ,,—" nicht vorkommt.

® tut,t, t',u, u’,... bezeichnen immer o-Terme.

® o1, x,... bezeichnen immer FO[o]-Formeln.

S, W, &y, &, W' ... bezeichnen immer Mengen von FO[o]-Formeln.

o LA T Ay, As, ... bezeichnen immer endliche Mengen von FO[o]-Formeln.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.2: Ein Beweiskalkiil fiir die Logik erster Stufe — der Vollstandigkeitssatz

Notation

® |n diesem Kapitel sei o eine beliebige fest gewahlte Signatur.

® Der Einfachheit halber werden wir 0.B.d.A. in diesem Kapitel nur FO[o]-Formeln
betrachten, in denen das Symbol ,,—" nicht vorkommt.

® tut,t, t',u, u’,... bezeichnen immer o-Terme.

® o1, x,... bezeichnen immer FO[o]-Formeln.

S, W, &y, &, W' ... bezeichnen immer Mengen von FO[o]-Formeln.

o LA T Ay, As, ... bezeichnen immer endliche Mengen von FO[o]-Formeln.

Fir ® C FO[o] ist frei(®) := | J frei(y).
ped
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.2: Ein Beweiskalkiil fiir die Logik erster Stufe — der Vollstandigkeitssatz

Notation

® |n diesem Kapitel sei o eine beliebige fest gewahlte Signatur.

® Der Einfachheit halber werden wir 0.B.d.A. in diesem Kapitel nur FO[o]-Formeln
betrachten, in denen das Symbol ,,—" nicht vorkommt.

® tut,t, t',u, u’,... bezeichnen immer o-Terme.
® o1, x,... bezeichnen immer FO[o]-Formeln.
® & W dy, b, W ... bezeichnen immer Mengen von FO[o]-Formeln.

o LA T Ay, As, ... bezeichnen immer endliche Mengen von FO[o]-Formeln.

* Fiir ® CFO[o] ist frei(®) := [ ] frei(y).
ped

Manchmal schreiben wir auch frei(®, ¢) an Stelle von frei(® U {¢}).
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.2: Ein Beweiskalkiil fiir die Logik erster Stufe — der Vollstandigkeitssatz

Notation

® |n diesem Kapitel sei o eine beliebige fest gewahlte Signatur.

® Der Einfachheit halber werden wir 0.B.d.A. in diesem Kapitel nur FO[o]-Formeln
betrachten, in denen das Symbol ,,—" nicht vorkommt.

® tut,t, t',u, u’,... bezeichnen immer o-Terme.
® o1, x,... bezeichnen immer FO[o]-Formeln.
® & W dy, b, W ... bezeichnen immer Mengen von FO[o]-Formeln.

o LA T Ay, As, ... bezeichnen immer endliche Mengen von FO[o]-Formeln.

* Fiir ® CFO[o] ist frei(®) := [ ] frei(y).
ped

Manchmal schreiben wir auch frei(®, ¢) an Stelle von frei(® U {¢}).

® |st M eine Menge, so schreiben wir L C. M, um auszudriicken, dass L eine
endliche Teilmenge von M ist.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.2: Ein Beweiskalkiil fiir die Logik erster Stufe — der Vollstindigkeitssatz

Sequenzen

Definition 4.8

(a) Eine Sequenz ist ein Ausdruck der Form

wobei ¢ € FO[o] und T C. FO[o] (d.h., T ist eine endliche Menge von
FO[c]-Formeln).
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Sequenzen

Definition 4.8

(a) Eine Sequenz ist ein Ausdruck der Form

wobei ¢ € FO[o] und T C. FO[o] (d.h., T ist eine endliche Menge von
FO[c]-Formeln).

Wir bezeichnen I als das Antezedens
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Sequenzen

Definition 4.8

(a) Eine Sequenz ist ein Ausdruck der Form

wobei ¢ € FO[o] und T C. FO[o] (d.h., T ist eine endliche Menge von
FO[c]-Formeln).

Wir bezeichnen T als das Antezedens und v als das Sukzedens der Sequenz
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.2: Ein Beweiskalkiil fiir die Logik erster Stufe — der Vollstindigkeitssatz

Sequenzen

Definition 4.8

(a) Eine Sequenz ist ein Ausdruck der Form

wobei ¢ € FO[o] und T C. FO[o] (d.h., T ist eine endliche Menge von
FO[c]-Formeln).

Wir bezeichnen T als das Antezedens und v als das Sukzedens der Sequenz

(b) Wir schreiben Ms um die Menge aller Sequenzen zu bezeichnen, d.h.:

Ms = { . [ C.FO[o], ¥ € FO[o] }.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.2: Ein Beweiskalkiil fiir die Logik erster Stufe — der Vollstindigkeitssatz

Korrektheit einer Sequenz

Definition 4.9
Eine Sequenz heiBt korrekt, falls gilt: [ =

Zur Erinnerung: I =1 bedeutet:
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Korrektheit einer Sequenz

Definition 4.9
Eine Sequenz heiBt korrekt, falls gilt: [ =

Zur Erinnerung: I =1 bedeutet:
Fiir jede o-Interpretation Z gilt: Falls Z =1, so auch Z |=
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Korrektheit einer Sequenz

Definition 4.9
Eine Sequenz heiBt korrekt, falls gilt: [ =

Zur Erinnerung: I =1 bedeutet:
Fiir jede o-Interpretation Z gilt: Falls Z =1, so auch Z |=

Beispiel:
Welche der folgenden Sequenzen sind korrekt fiir alle ¢, 1) € FO[o] und alle
x,y € VAR; welche sind nicht korrekt?

(1)
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Korrektheit einer Sequenz

Definition 4.9
Eine Sequenz heiBt korrekt, falls gilt: [ =

Zur Erinnerung: I =1 bedeutet:
Fiir jede o-Interpretation Z gilt: Falls Z =1, so auch Z |=

Beispiel:
Welche der folgenden Sequenzen sind korrekt fiir alle ¢, 1) € FO[o] und alle
x,y € VAR; welche sind nicht korrekt?

(1)
()
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Korrektheit einer Sequenz

Definition 4.9
Eine Sequenz heiBt korrekt, falls gilt: [ =

Zur Erinnerung: I =1 bedeutet:
Fiir jede o-Interpretation Z gilt: Falls Z =1, so auch Z |=

Beispiel:
Welche der folgenden Sequenzen sind korrekt fiir alle ¢, 1) € FO[o] und alle
x,y € VAR; welche sind nicht korrekt?

(1)
()
(3)
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.2: Ein Beweiskalkiil fiir die Logik erster Stufe — der Vollstindigkeitssatz

Korrektheit einer Sequenz

Definition 4.9
Eine Sequenz heiBt korrekt, falls gilt: [ =

Zur Erinnerung: I =1 bedeutet:
Fiir jede o-Interpretation Z gilt: Falls Z =1, so auch Z |=

Beispiel:
Welche der folgenden Sequenzen sind korrekt fiir alle ¢, 1) € FO[o] und alle
x,y € VAR; welche sind nicht korrekt?

(1)
()
(3)
(4)
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Ziel

Wir wollen im Folgenden einen Kalkiil £ iiber Ms angeben, so dass gilt:

(1) R ist korrekt,
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Ziel

Wir wollen im Folgenden einen Kalkiil £ iiber Ms angeben, so dass gilt:

(1) R ist korrekt, d.h. jede in R ableitbare Sequenz ist korrekt.
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Ziel

Wir wollen im Folgenden einen Kalkiil £ iiber Ms angeben, so dass gilt:
(1) R ist korrekt, d.h. jede in R ableitbare Sequenz ist korrekt.

(2) 8 ist vollstandig,
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.2: Ein Beweiskalkiil fiir die Logik erster Stufe — der Vollstindigkeitssatz

Ziel

Wir wollen im Folgenden einen Kalkiil £ iiber Ms angeben, so dass gilt:
(1) R ist korrekt, d.h. jede in R ableitbare Sequenz ist korrekt.

(2) 8 ist vollstandig, d.h. jede korrekte Sequenz ist in & ableitbar.
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Ziel

Wir wollen im Folgenden einen Kalkiil £ iiber Ms angeben, so dass gilt:
(1) R ist korrekt, d.h. jede in R ableitbare Sequenz ist korrekt.
(2) 8 ist vollstandig, d.h. jede korrekte Sequenz ist in & ableitbar.

(3) £ ist effektiv,
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.2: Ein Beweiskalkiil fiir die Logik erster Stufe — der Vollstandigkeitssatz

Ziel

Wir wollen im Folgenden einen Kalkiil £ iiber Ms angeben, so dass gilt:
(1) R ist korrekt, d.h. jede in R ableitbare Sequenz ist korrekt.

(2) 8 ist vollstandig, d.h. jede korrekte Sequenz ist in & ableitbar.

(3) R ist effektiv, d.h. es gibt einen Algorithmus, der nach und nach genau die aus £

ableitbaren Sequenzen aufzihlt.

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024

Folie 306



Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.2: Ein Beweiskalkiil fiir die Logik erster Stufe — der Vollstandigkeitssatz

Ziel

Wir wollen im Folgenden einen Kalkiil £ iiber Ms angeben, so dass gilt:
(1) R ist korrekt, d.h. jede in R ableitbare Sequenz ist korrekt.
(2) 8 ist vollstandig, d.h. jede korrekte Sequenz ist in & ableitbar.

(3) R ist effektiv, d.h. es gibt einen Algorithmus, der nach und nach genau die aus £
ableitbaren Sequenzen aufzihlt.

Dies liefert dann insbesondere einen Algorithmus, der nach und nach alle
allgemeingiiltigen FO[o]-Formeln aufzihlt:
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.2: Ein Beweiskalkiil fiir die Logik erster Stufe — der Vollstandigkeitssatz

Ziel

Wir wollen im Folgenden einen Kalkiil £ iiber Ms angeben, so dass gilt:
(1) R ist korrekt, d.h. jede in R ableitbare Sequenz ist korrekt.
(2) 8 ist vollstandig, d.h. jede korrekte Sequenz ist in & ableitbar.

(3) R ist effektiv, d.h. es gibt einen Algorithmus, der nach und nach genau die aus £
ableitbaren Sequenzen aufzihlt.

Dies liefert dann insbesondere einen Algorithmus, der nach und nach alle
allgemeingiiltigen FO[o]-Formeln aufzihlt: Dazu lasse den gemiB (3) existierenden
Algorithmus laufen, und immer wenn dieser eine Sequenz der Form '~ mit [ =0

ausgeben will, gib 1 aus.
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Ziel

Wir wollen im Folgenden einen Kalkiil £ iiber Ms angeben, so dass gilt:
(1) R ist korrekt, d.h. jede in R ableitbare Sequenz ist korrekt.
(2) 8 ist vollstandig, d.h. jede korrekte Sequenz ist in & ableitbar.

(3) R ist effektiv, d.h. es gibt einen Algorithmus, der nach und nach genau die aus £
ableitbaren Sequenzen aufzihlt.

Dies liefert dann insbesondere einen Algorithmus, der nach und nach alle
allgemeingiiltigen FO[o]-Formeln aufzihlt: Dazu lasse den gemiB (3) existierenden
Algorithmus laufen, und immer wenn dieser eine Sequenz der Form '~ mit [ =0
ausgeben will, gib 1 aus.

Wegen (1) ist die Sequenz dann korrekt, d.h. es gilt @ =1, und daher ist v
allgemeingiiltig.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.2: Ein Beweiskalkiil fiir die Logik erster Stufe — der Vollstindigkeitssatz

Ziel

Wir wollen im Folgenden einen Kalkiil £ iiber Ms angeben, so dass gilt:
(1) R ist korrekt, d.h. jede in R ableitbare Sequenz ist korrekt.
(2) 8 ist vollstandig, d.h. jede korrekte Sequenz ist in & ableitbar.

(3) R ist effektiv, d.h. es gibt einen Algorithmus, der nach und nach genau die aus £
ableitbaren Sequenzen aufzihlt.

Dies liefert dann insbesondere einen Algorithmus, der nach und nach alle
allgemeingiiltigen FO[o]-Formeln aufzihlt: Dazu lasse den gemiB (3) existierenden
Algorithmus laufen, und immer wenn dieser eine Sequenz der Form '~ mit [ =0
ausgeben will, gib 1 aus.

Wegen (1) ist die Sequenz dann korrekt, d.h. es gilt @ =1, und daher ist v
allgemeingiiltig.

Wegen (2) werden tatsichlich alle allgemeingiiltigen FO[o]-Formeln aufgezihlt.
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Notationen fiir Sequenzen

Wir schreiben kurz

® [,o F v, um die Sequenz T'U{p} F 1 zu bezeichnen.
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Notationen fiir Sequenzen

Wir schreiben kurz
® ot ¢, umdie Sequenz T'U{p} F v zu bezeichnen.

® ©,...,0p b 1, um die Sequenz {p1,...,¢,} F 1 zu bezeichnen.
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Notationen fiir Sequenzen

Wir schreiben kurz
® ot ¢, umdie Sequenz T'U{p} F v zu bezeichnen.
® ©,...,0p b 1, um die Sequenz {p1,...,¢,} F 1 zu bezeichnen.

e |4, um die Sequenz () -1 zu bezeichnen.
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Sequenzenregeln

Eine Sequenzenregel ist eine Ableitungsregel tiber Ms.
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Sequenzenregeln

Eine Sequenzenregel ist eine Ableitungsregel tiber Ms.

Sequenzenregeln der Form
ai; '+ ap

schreiben wir meistens zeilenweise, als
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Sequenzenregeln

Eine Sequenzenregel ist eine Ableitungsregel tiber Ms.

Sequenzenregeln der Form
ai; '+ ap

schreiben wir meistens zeilenweise, als

wobei jedes a; eine Sequenz der Form T; | ¢); ist,
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Kapitel 4: Grundlagen des automatischen SchlieBens -

Sequenzenregeln

Eine Sequenzenregel ist eine Ableitungsregel tiber Ms.

Sequenzenregeln der Form
ai; '+ ap

schreiben wir meistens zeilenweise, als

wobei jedes a; eine Sequenz der Form T; | ¢); ist,
und b eine Sequenz der Form Al ¢ ist.
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Definition 4.10

Eine Sequenzenregel
M F

MnF
AF o

heiBt korrekt, wenn Folgendes gilt:
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Definition 4.10

Eine Sequenzenregel
Mk

MnF
AF o

heiBt korrekt, wenn Folgendes gilt: Sind die Sequenzen T; F 4); fiir alle
i€{1,...,n} korrekt, so
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Definition 4.10

Eine Sequenzenregel
Mk

MnF
AF o

heiBt korrekt, wenn Folgendes gilt: Sind die Sequenzen T; F 4); fiir alle
i €{1,...,n} korrekt, so ist auch die Sequenz A ¢ korrekt.
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Definition 4.10

Eine Sequenzenregel
Mk

Mo F Y
AF o

heiBt korrekt, wenn Folgendes gilt: Sind die Sequenzen T; F 4); fiir alle
i €{1,...,n} korrekt, so ist auch die Sequenz A ¢ korrekt.

Aus dem Induktionsprinzip fiir Kalkiile (Lemma 4.7) folgt direkt:

Lemma 4.11
Ein Kalkiil R iiber Ms ist korrekt, falls jede Sequenzenregel in R korrekt ist.
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Definition 4.10

Eine Sequenzenregel
Mk

Mo F Y
AF o

heiBt korrekt, wenn Folgendes gilt: Sind die Sequenzen T; F 4); fiir alle
i €{1,...,n} korrekt, so ist auch die Sequenz A ¢ korrekt.

Aus dem Induktionsprinzip fiir Kalkiile (Lemma 4.7) folgt direkt:

Lemma 4.11
Ein Kalkiil R iiber Ms ist korrekt, falls jede Sequenzenregel in R korrekt ist.

Wir werden nun eine Reihe von korrekten Sequenzenregeln zusammentragen, die
alle zusammen dann den von uns gesuchten korrekten, vollstdndigen und
effektiven Kalkiil iiber Ms bilden werden.

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 309



Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.2: Ein Beweiskalkiil fiir die Logik erster Stufe — der Vollstindigkeitssatz

Grundregeln:

Fiir alle I, T C, FO[o] und alle ¢ € FO[o] betrachten wir die folgenden

Sequenzenregeln:
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Grundregeln:

Fiir alle I, T C, FO[o] und alle ¢ € FO[o] betrachten wir die folgenden

Sequenzenregeln:

® \oraussetzungsregel (V):
Lek e
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Grundregeln:

Fiir alle I, T C, FO[o] und alle ¢ € FO[o] betrachten wir die folgenden

Sequenzenregeln:

® \oraussetzungsregel (V):
Lek e

® Erweiterungsregel (E):

I ,
m falls Fgr
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Grundregeln:

Fiir alle I, T C, FO[o] und alle ¢ € FO[o] betrachten wir die folgenden

Sequenzenregeln:

® \oraussetzungsregel (V):
Lek e

® Erweiterungsregel (E):

I p
m falls Fgr

Lemma 4.12
Jede der Grundregeln (V) bzw. (E) ist korrekt.
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Ausagenlogische Regeln:

Fir alle I' C FO[o] und alle ¢, ), x € FO[o] betrachten wir die folgenden
Sequenzenregeln:
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Ausagenlogische Regeln:

Fir alle I' C FO[o] und alle ¢, ), x € FO[o] betrachten wir die folgenden
Sequenzenregeln:

® Fallunterscheidungsregel (FU):
My Fo

rv_‘wkso
r Fo
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Ausagenlogische Regeln:

Fir alle I' C FO[o] und alle ¢, ), x € FO[o] betrachten wir die folgenden
Sequenzenregeln:

® Fallunterscheidungsregel (FU):

My Fo
rL—yF ¥
r Fo
e Widerspruchsregel (W):
M=
M-y (fiir alle ¢ € FO[o])
)
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® A-Einfiihrung im Antezedens (AA1), (AAz):

e FXx I, Fx
M (eAd)Fx F(eAY)Fx
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® A-Einfiihrung im Antezedens (AA1), (AAz):

e FXx r, Fx
r

M (eAd)Fx

® A-Einfiihrung im Sukzedens (AS):

M+ )
Tk v
M= (pA)
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® A-Einfiihrung im Antezedens (AA1), (AAz):

e FXx r, Fx
r

M (eAd)Fx

® A-Einfiihrung im Sukzedens (AS):

M+ )
Tk v
M= (pA)

e V-Einfiihrung im Antezedens (VA):

N Fx
I, Fx
M (eVy)kx
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® A-Einfiihrung im Antezedens (AA1), (AAz):

ey F X r F X
M (e ng)Fx M (e ny)Fx
® A-Einfiihrung im Sukzedens (AS):
r- o
e v
FE(pAd)
e V-Einfiihrung im Antezedens (VA):
% F X
Ly F X
Fp Vo)X
® \/-Einfiihrung im Sukzedens (VS1), (VSz):
TE e TF v
FE(eVve) ME(eVve)
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Lemma 4.13
Jede der aussagenlogischen Regeln (FU), (W), (AA1), (AAz), (AS), (VA),
(VS1), (VvS2) st korrekt.
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Substitutionen

Um weitere wichtige Sequenzenregeln einfiihren zu kdnnen, bendtigen wir eine
Mboglichkeit, fiir eine Variable x € VAR und einen o-Term t € T,, eine
FO[o]-Formel ¢ so zu einer FO[o]-Formel % abzuindern, dass gilt:
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Substitutionen

Um weitere wichtige Sequenzenregeln einfiihren zu kdnnen, bendtigen wir eine
Mboglichkeit, fiir eine Variable x € VAR und einen o-Term t € T,, eine
FO[o]-Formel ¢ so zu einer FO[o]-Formel % abzuindern, dass gilt:

Die Formel @t sagt iiber den Term t dasselbe aus, wie
die Formel ¢ liber die Variable x.
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Substitutionen

Abschnitt 4.2: Ein Beweiskalkiil fiir die Logik erster Stufe — der Vollstindigkeitssatz

Um weitere wichtige Sequenzenregeln einfiihren zu kdnnen, bendtigen wir eine

Mboglichkeit, fiir eine Variable x € VAR und einen o-Term t € T,, eine
t

FO[o]-Formel ¢ so zu einer FO[o]-Formel ¢ abzudndern, dass gilt:

Die Formel @t sagt iiber den Term t dasselbe aus, wie
die Formel ¢ liber die Variable x.

Prazise: Es soll fiir jede o-Interpretation Z gelten:

T E ot = It E o

Dabei ist die o-Interpretation Z£ fiir Z = (A, 3) wie folgt definiert:

It .= (A,B2), fir a:=[t]".
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Substitutionen

Um weitere wichtige Sequenzenregeln einfiihren zu kdnnen, bendtigen wir eine

Mboglichkeit, fiir eine Variable x € VAR und einen o-Term t € T,, eine

FO[o]-Formel ¢ so zu einer FO[o]-Formel % abzuindern, dass gilt:

Die Formel @t sagt iiber den Term t dasselbe aus, wie
die Formel ¢ liber die Variable x.

Prazise: Es soll fiir jede o-Interpretation Z gelten:
IE e = Iy E ¢ (2)

Dabei ist die o-Interpretation Z£ fiir Z = (A, 3) wie folgt definiert:
Tt = (A B2), fir a:=[t]".

AuBerdem soll gelten:
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Um zu gewihrleisten, dass (2) und (3) gilt, wahlen wir zu gegebenem ¢, t und
x die Formel @£ wie folgt:
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Um zu gewihrleisten, dass (2) und (3) gilt, wahlen wir zu gegebenem ¢, t und
x die Formel @£ wie folgt:
® Falls t = x, so
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Um zu gewihrleisten, dass (2) und (3) gilt, wahlen wir zu gegebenem ¢, t und
x die Formel @£ wie folgt:
® Falls t = x, so setze ot :=¢.
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Um zu gewihrleisten, dass (2) und (3) gilt, wahlen wir zu gegebenem ¢, t und
x die Formel @£ wie folgt:
® Falls t = x, so setze pX := ¢. Andernfalls gehe wie folgt vor:
® Sei y1,..., Y eine Liste aller Variablen aus var(t) U {x}, die gebundene
Vorkommen in ¢ besitzen.
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Um zu gewihrleisten, dass (2) und (3) gilt, wahlen wir zu gegebenem ¢, t und
x die Formel @£ wie folgt:
® Falls t = x, so setze pX := ¢. Andernfalls gehe wie folgt vor:
® Sei y1,..., Y eine Liste aller Variablen aus var(t) U {x}, die gebundene
Vorkommen in ¢ besitzen.
® Sei zj,...,z eine Liste von Variablen # x, die nicht in ¢ oder t
vorkommen.
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Um zu gewihrleisten, dass (2) und (3) gilt, wahlen wir zu gegebenem ¢, t und
x die Formel @£ wie folgt:
® Falls t = x, so setze pX := ¢. Andernfalls gehe wie folgt vor:
® Sei y1,..., Y eine Liste aller Variablen aus var(t) U {x}, die gebundene
Vorkommen in ¢ besitzen.
® Sei z1,..., 2z eine Liste von Variablen # x, die nicht in o oder t
vorkommen.
® Sei ¢’ die Formel, die aus ¢ entsteht, indem fiir jedes j € {1,...,¢} jedes
gebundene Vorkommen der Variablen y; ersetzt wird durch die Variable z;.
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Um zu gewihrleisten, dass (2) und (3) gilt, wahlen wir zu gegebenem ¢, t und
x die Formel @£ wie folgt:

Falls t = x, so setze ¢ £ := . Andernfalls gehe wie folgt vor:

Sei y1, ...,y eine Liste aller Variablen aus var(t) U {x}, die gebundene
Vorkommen in ¢ besitzen.

Sei z1,...,zs eine Liste von Variablen # x, die nicht in ¢ oder t
vorkommen.

Sei ¢’ die Formel, die aus ¢ entsteht, indem fiir jedes i € {1,...,¢} jedes
gebundene Vorkommen der Variablen y; ersetzt wird durch die Variable z;.
Sei <p£ die Formel, die aus ¢’ entsteht, indem jedes Vorkommen der
Variablen x durch den Term t ersetzt wird.

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 315



Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.2: Ein Beweiskalkiil fiir die Logik erster Stufe — der Vollstindigkeitssatz

Um zu gewihrleisten, dass (2) und (3) gilt, wahlen wir zu gegebenem ¢, t und
x die Formel @£ wie folgt:
® Falls t = x, so setze pX := ¢. Andernfalls gehe wie folgt vor:

® Sei y1,..., Y eine Liste aller Variablen aus var(t) U {x}, die gebundene
Vorkommen in ¢ besitzen.

® Sei zj,...,z eine Liste von Variablen # x, die nicht in ¢ oder t
vorkommen.

® Sei ¢’ die Formel, die aus ¢ entsteht, indem fiir jedes j € {1,...,¢} jedes
gebundene Vorkommen der Variablen y; ersetzt wird durch die Variable z;.

® Sej <p£ die Formel, die aus ¢’ entsteht, indem jedes Vorkommen der
Variablen x durch den Term t ersetzt wird.

Lemma 4.14 (Substitutionslemma)

Fiir jede FO[o]-Formel ¢, jeden o-Term t, jede Variable x € VAR und jede
o-Interpretation I gilt:

T E = It E o

Beweis.
Ubung. O
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Um zu gewihrleisten, dass (2) und (3) gilt, wahlen wir zu gegebenem ¢, t und

x die Formel @£ wie folgt:
® Falls t = x, so setze pX := ¢. Andernfalls gehe wie folgt vor:

® Sei y1,..., Y eine Liste aller Variablen aus var(t) U {x}, die gebundene
Vorkommen in ¢ besitzen.

® Sei zj,...,z eine Liste von Variablen # x, die nicht in ¢ oder t
vorkommen.

® Sei ¢’ die Formel, die aus ¢ entsteht, indem fiir jedes j € {1,...,¢} jedes
gebundene Vorkommen der Variablen y; ersetzt wird durch die Variable z;.
® Sej <p£ die Formel, die aus ¢’ entsteht, indem jedes Vorkommen der
Variablen x durch den Term t ersetzt wird.
Lemma 4.14 (Substitutionslemma)

Fiir jede FO[o]-Formel ¢, jeden o-Term t, jede Variable x € VAR und jede
o-Interpretation I gilt:

T E = It E o

Beweis.
Ubung. O

Wir kdnnen nun weitere wichtige Sequenzenregeln formulieren:
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Quantorenregeln:
Fiir alle I C, FO[o], alle p,9 € FO[o], alle x,y € VAR und alle t € T,,
betrachten wir die folgenden Sequenzenregeln:
e V-Einfiihrung im Antezedens (VA):
Fos Fo
I Vxp b9
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Quantorenregeln:
Fiir alle I C, FO[o], alle p,9 € FO[o], alle x,y € VAR und alle t € T,,
betrachten wir die folgenden Sequenzenregeln:
e V-Einfiihrung im Antezedens (VA):
Fos Fo
I Vxp b9

® V-Einfiihrung im Sukzedens (VS):

M= pf .
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Quantorenregeln:

Fiir alle I C, FO[o], alle p,9 € FO[o], alle x,y € VAR und alle t € T,,

betrachten wir die folgenden Sequenzenregeln:
e V-Einfiihrung im Antezedens (VA):
ey Fo
[Vxp 1

® V-Einfiihrung im Sukzedens (VS):

M= pf .

® J-Einfiihrung im Antezedens (3A):

Y
% falls y & frei(T, 3xp, V)
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Quantorenregeln:

Fiir alle I C, FO[o], alle p,9 € FO[o], alle x,y € VAR und alle t € T,,

betrachten wir die folgenden Sequenzenregeln:
e V-Einfiihrung im Antezedens (VA):
ey Fo
[Vxp 1

® V-Einfiihrung im Sukzedens (VS):

M= pf .

® J-Einfiihrung im Antezedens (3A):

Y
% falls y & frei(T, 3xp, V)

® J-Einfiihrung im Sukzedens (3S):
e pt
T
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Lemma 4.15
Jede der Quantorenregeln (VA), (¥S), (3A), (3S) st korrekt.
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Gleichheitsregeln:

Fiir alle I C FO[o], alle ¢ € FO[o], alle x € VAR und alle t, u € T, betrachten
wir die folgenden Sequenzenregeln:
® Reflexivitat der Gleichheit (G):

INFt=t
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Gleichheitsregeln:

Abschnitt 4.2: Ein Beweiskalkiil fiir die Logik erster Stufe — der Vollstandigkeitssatz

Fiir alle I C FO[o], alle ¢ € FO[o], alle x € VAR und alle t, u € T, betrachten

wir die folgenden Sequenzenregeln:
® Reflexivitat der Gleichheit (G):

M- t=t
® Substitutionsregel (S):
r F ot
Mt=ut v
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Gleichheitsregeln:

Abschnitt 4.2: Ein Beweiskalkiil fiir die Logik erster Stufe — der Vollstandigkeitssatz

Fiir alle I C FO[o], alle ¢ € FO[o], alle x € VAR und alle t, u € T, betrachten

wir die folgenden Sequenzenregeln:
® Reflexivitat der Gleichheit (G):

M- t=t
® Substitutionsregel (S):
r F ot
Mt=ut v

Lemma 4.16
Jede der Gleichheitsregeln (G) bzw. (S) ist korrekt.
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Der Sequenzenkalkiil K¢ fiir die Logik erster Stufe

Definition 4.17
Der Sequenzenkalkiil Rs ist der Kalkiil {iber der Menge Ms aller Sequenzen, der

fir alle T,I" C. FO[o], alle ¢,¢,x € FO[o], alle t,ue€ T, und alle
x,y € VAR aus
e den Grundregeln (V), (E),
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Der Sequenzenkalkiil Rs fiir die Logik erster Stufe

Definition 4.17
Der Sequenzenkalkiil Rs ist der Kalkiil iber der Menge Ms aller Sequenzen, der

fir alle T,I" C. FO[o], alle ¢,¢,x € FO[o], alle t,ue€ T, und alle
x,y € VAR aus
e den Grundregeln (V), (E),
® den aussagenlogischen Regeln
(FU), (W), (AA1), (AA2), (AS), (VA), (VS1), (VS2),
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Der Sequenzenkalkiil Rs fiir die Logik erster Stufe

Definition 4.17
Der Sequenzenkalkiil Rs ist der Kalkiil iber der Menge Ms aller Sequenzen, der

fir alle T,I" C. FO[o], alle ¢,¢,x € FO[o], alle t,ue€ T, und alle
x,y € VAR aus
e den Grundregeln (V), (E),
® den aussagenlogischen Regeln
(FU), (W), (AA1), (AA2), (AS), (VA), (VS1), (VS2),
® den Quantorenregeln (VA), (VS), (3A), (39)
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Der Sequenzenkalkiil Rs fiir die Logik erster Stufe

Definition 4.17
Der Sequenzenkalkiil Rs ist der Kalkiil iber der Menge Ms aller Sequenzen, der

fir alle T,I" C. FO[o], alle ¢,¢,x € FO[o], alle t,ue€ T, und alle
x,y € VAR aus

e den Grundregeln (V), (E),

® den aussagenlogischen Regeln

(FU), (W), (AA1), (AA2), (AS), (VA), (VS1), (VS2),

® den Quantorenregeln (VA), (VS), (3A), (39)
und den Gleichheitsregeln (G), (S)
besteht.
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Der Sequenzenkalkiil Rs fiir die Logik erster Stufe

Definition 4.17

Der Sequenzenkalkiil Rs ist der Kalkiil iber der Menge Ms aller Sequenzen, der
fir alle T,I" C. FO[o], alle ¢,¢,x € FO[o], alle t,ue€ T, und alle

x,y € VAR aus

e den Grundregeln (V), (E),
® den aussagenlogischen Regeln
(FU). (W), (AA1), (AA2), (AS), (VA), (VS1), (VS2),
® den Quantorenregeln (VA), (VS), (3A), (39)
® und den Gleichheitsregeln (G), (S)
besteht.

Aus der Korrektheit der Regeln des Sequenzenkalkiils (Lemmas 4.12, 4.13, 4.15,
4.16) folgt mit Lemma 4.11:

Satz 4.18
Der Sequenzenkalkiil Rs ist korrekt
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Der Sequenzenkalkiil Rs fiir die Logik erster Stufe

Definition 4.17
Der Sequenzenkalkiil Rs ist der Kalkiil iber der Menge Ms aller Sequenzen, der

fir alle T,I" C. FO[o], alle ¢,¢,x € FO[o], alle t,ue€ T, und alle
x,y € VAR aus

e den Grundregeln (V), (E),
® den aussagenlogischen Regeln
(FU). (W), (AA1), (AA2), (AS), (VA), (VS1), (VS2),
® den Quantorenregeln (VA), (VS), (3A), (39)
® und den Gleichheitsregeln (G), (S)
besteht.

Aus der Korrektheit der Regeln des Sequenzenkalkiils (Lemmas 4.12, 4.13, 4.15,
4.16) folgt mit Lemma 4.11:

Satz 4.18
Der Sequenzenkalkiil Rs ist korrekt,
d.h. jede in Rs ableitbare Sequenz ist korrekt.
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AuBerdem sieht man anhand der Definition der einzelnen Regeln leicht, dass es
einen Algorithmus gibt, der bei Eingabe einer Zahl £ > 1 und einer Folge

(a1,...,a;) € M entscheidet, ob (ay, ..., ar) eine Ableitung in fs ist.
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AuBerdem sieht man anhand der Definition der einzelnen Regeln leicht, dass es
einen Algorithmus gibt, der bei Eingabe einer Zahl £ > 1 und einer Folge

(a1,...,a;) € M entscheidet, ob (ay, ..., ar) eine Ableitung in fs ist.

Fiir abzdhlbare Signaturen o kann man auBerdem einen Algorithmus angeben,
der nach und nach alle Folgen in {(a1,...,a,) € M& : ¢ > 1} ausgibt.
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AuBerdem sieht man anhand der Definition der einzelnen Regeln leicht, dass es
einen Algorithmus gibt, der bei Eingabe einer Zahl £ > 1 und einer Folge
(a1,...,a;) € M entscheidet, ob (ay, ..., ar) eine Ableitung in fs ist.

Fiir abzdhlbare Signaturen o kann man auBerdem einen Algorithmus angeben,
der nach und nach alle Folgen in {(a1,...,a,) € M& : ¢ > 1} ausgibt.

Beides zusammen liefert fiir abzdhlbare Signaturen o, dass der Sequenzenkalkiil
Rs effektiv ist.
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AuBerdem sieht man anhand der Definition der einzelnen Regeln leicht, dass es
einen Algorithmus gibt, der bei Eingabe einer Zahl £ > 1 und einer Folge
(a1,...,a;) € M entscheidet, ob (ay, ..., ar) eine Ableitung in fs ist.

Fiir abzdhlbare Signaturen o kann man auBerdem einen Algorithmus angeben,
der nach und nach alle Folgen in {(a1,...,a,) € M& : ¢ > 1} ausgibt.

Beides zusammen liefert fiir abzdhlbare Signaturen o, dass der Sequenzenkalkiil
Rs efFekt"iv ist.
Details: Ubung.
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AuBerdem sieht man anhand der Definition der einzelnen Regeln leicht, dass es
einen Algorithmus gibt, der bei Eingabe einer Zahl £ > 1 und einer Folge
(a1,...,a;) € M entscheidet, ob (ay, ..., ar) eine Ableitung in fs ist.

Fiir abzdhlbare Signaturen o kann man auBerdem einen Algorithmus angeben,
der nach und nach alle Folgen in {(a1,...,a,) € M& : ¢ > 1} ausgibt.

Beides zusammen liefert fiir abzdhlbare Signaturen o, dass der Sequenzenkalkiil
Rs efFekt"iv ist.
Details: Ubung.

Unser nichstes Ziel ist, zu zeigen, dass der Sequenzenkalkiil s auch vollstindig
ist, d.h. dass es fiir jede korrekte Sequenz eine Ableitung in Ks gibt.
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AuBerdem sieht man anhand der Definition der einzelnen Regeln leicht, dass es
einen Algorithmus gibt, der bei Eingabe einer Zahl £ > 1 und einer Folge
(a1,...,a;) € M entscheidet, ob (ay, ..., ar) eine Ableitung in fs ist.

Fiir abzdhlbare Signaturen o kann man auBerdem einen Algorithmus angeben,
der nach und nach alle Folgen in {(a1,...,a,) € M& : ¢ > 1} ausgibt.

Beides zusammen liefert fiir abzdhlbare Signaturen o, dass der Sequenzenkalkiil
Rs efFekt"iv ist.
Details: Ubung.

Unser nichstes Ziel ist, zu zeigen, dass der Sequenzenkalkiil s auch vollstindig
ist, d.h. dass es fiir jede korrekte Sequenz eine Ableitung in Ks gibt.

Dazu betrachten wir zunichst einige Beispiele fiir Ableitungen im
Sequenzenkalkiil Ks.
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Darstellung von Ableitungen

Am Anfang des Kapitels haben wir bereits vereinbart, dass wir dhnlich wie bei
Resolutionsableitungen auch allgemein fiir einen Kalkiil & iiber einer Menge M
Ableitungen (a1,...,a;) der besseren Lesbarkeit halber oft zeilenweise

schreiben, also
(1) a
(2)

(0) a

und am Ende jeder Zeile eine kurze Begriindung angeben.
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Darstellung von Ableitungen

Am Anfang des Kapitels haben wir bereits vereinbart, dass wir dhnlich wie bei
Resolutionsableitungen auch allgemein fiir einen Kalkiil & iiber einer Menge M
Ableitungen (a1,...,a;) der besseren Lesbarkeit halber oft zeilenweise
schreiben, also

(1) a

(2) 2

(0) a

und am Ende jeder Zeile eine kurze Begriindung angeben.

Im Folgenden betrachten wir einige Beispiele fiir Ableitungen im
Sequenzenkalkiil Ks.
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Beispiele 4.19

(a) Fir jedes T C. FO[o] und jedes ¢ € FO[o] ist die Sequenz
I (p V) ableitbar in Rs:
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Beweisbarkeit: ® Fg. ¢

Definition 4.20

Sei ® C FO[o] und sei ¢ € FO[o].

Die Formel ¢ heiBt beweisbar aus ® (kurz: & kg, ¢), wenn es ein ' C. ¢ gibt,
so dass die Sequenz [ - ¢ in Rs ableitbar ist.
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Beweisbarkeit: & g, ¢

Definition 4.20
Sei ® C FO[o] und sei ¢ € FO[o].
Die Formel ¢ heiBt beweisbar aus ® (kurz: ® g, ¢), wenn es ein ' C. ® gibt,

so dass die Sequenz [ - ¢ in Rs ableitbar ist.

Ein Beweis von ¢ aus @ ist eine Ableitung einer Sequenz T F ¢ in Rs, wobei
MCe® ist.
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Beweisbarkeit: & g, ¢

Definition 4.20

Sei ® C FO[o] und sei ¢ € FO[o].

Die Formel ¢ heiBt beweisbar aus ® (kurz: ® g, ¢), wenn es ein ' C. ® gibt,
so dass die Sequenz [ - ¢ in Rs ableitbar ist.

Ein Beweis von ¢ aus @ ist eine Ableitung einer Sequenz T F ¢ in Rs, wobei

NCe ® st

Notation
An Stelle von @ Fg, ¢ schreiben wir auch kurz: Fg, ¢.
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Beweisbarkeit: ® Fg. ¢

Definition 4.20

Sei ® C FO[o] und sei ¢ € FO[o].

Die Formel ¢ heiBt beweisbar aus ® (kurz: ® g, ¢), wenn es ein ' C. ® gibt,
so dass die Sequenz [ - ¢ in Rs ableitbar ist.

Ein Beweis von ¢ aus @ ist eine Ableitung einer Sequenz T F ¢ in Rs, wobei
MCe® ist.

Notation
An Stelle von @ Fg, ¢ schreiben wir auch kurz: Fg, ¢.

Aus der Korrektheit des Sequenzenkalkiils Rs (Satz 4.18) folgt:

Korollar 4.21
Fiir jede FO[o]-Formel ¢ und fiir jede Formelmenge ® C FO[o] gilt:

Prp, o = OSEo
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Widerspruchsfreiheit

In der Mathematik nennen wir eine Menge von Aussagen widerspruchsvoll, falls
sich daraus ein Widerspruch (d.h. eine bestimmte Aussage und deren Negat)

herleiten |3sst.
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Widerspruchsfreiheit

In der Mathematik nennen wir eine Menge von Aussagen widerspruchsvoll, falls
sich daraus ein Widerspruch (d.h. eine bestimmte Aussage und deren Negat)

herleiten |3sst.
Wenn wir unter , herleiten” einen Beweis im Sequenzenkalkiil K5 verstehen,

ergibt sich folgender Begriff:
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Widerspruchsfreiheit

In der Mathematik nennen wir eine Menge von Aussagen widerspruchsvoll, falls
sich daraus ein Widerspruch (d.h. eine bestimmte Aussage und deren Negat)
herleiten lasst.

Wenn wir unter , herleiten” einen Beweis im Sequenzenkalkiil K5 verstehen,
ergibt sich folgender Begriff:

Definition 4.22
Sei & C FO[o].

(a) ® heiBt widerspruchsvoll, falls es eine FO[o]-Formel ¢ gibt, so dass
Slg.p und P g, .
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Widerspruchsfreiheit

In der Mathematik nennen wir eine Menge von Aussagen widerspruchsvoll, falls
sich daraus ein Widerspruch (d.h. eine bestimmte Aussage und deren Negat)
herleiten lasst.

Wenn wir unter , herleiten” einen Beweis im Sequenzenkalkiil K5 verstehen,
ergibt sich folgender Begriff:

Definition 4.22
Sei & C FO[o].

(a) ® heiBt widerspruchsvoll, falls es eine FO[o]-Formel ¢ gibt, so dass
Slg.p und P g, .

(b) @ heiBt widerspruchsfrei, falls ® nicht widerspruchsvoll ist.
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Widerspruchsfreiheit

In der Mathematik nennen wir eine Menge von Aussagen widerspruchsvoll, falls
sich daraus ein Widerspruch (d.h. eine bestimmte Aussage und deren Negat)
herleiten lasst.

Wenn wir unter , herleiten” einen Beweis im Sequenzenkalkiil K5 verstehen,
ergibt sich folgender Begriff:

Definition 4.22
Sei & C FO[o].

(a) ® heiBt widerspruchsvoll, falls es eine FO[o]-Formel ¢ gibt, so dass
Slg.p und P g, .

(b) @ heiBt widerspruchsfrei, falls ® nicht widerspruchsvoll ist.

Aus der Korrektheit des Sequenzenkalkiils folgt, dass erfiillbare Formelmengen
widerspruchsfrei sind:
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Widerspruchsfreiheit

In der Mathematik nennen wir eine Menge von Aussagen widerspruchsvoll, falls
sich daraus ein Widerspruch (d.h. eine bestimmte Aussage und deren Negat)
herleiten lasst.

Wenn wir unter , herleiten” einen Beweis im Sequenzenkalkiil K5 verstehen,
ergibt sich folgender Begriff:

Definition 4.22
Sei & C FO[o].

(a) ® heiBt widerspruchsvoll, falls es eine FO[o]-Formel ¢ gibt, so dass
Slg.p und P g, .

(b) @ heiBt widerspruchsfrei, falls ® nicht widerspruchsvoll ist.

Aus der Korrektheit des Sequenzenkalkiils folgt, dass erfiillbare Formelmengen
widerspruchsfrei sind:

Korollar 4.23
Fiir alle ® C FO[o] gilt: & erfiillbar = & widerspruchsfrei.
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Eigenschaften widerspruchsvoller Mengen

Lemma 4.24
Fiir jede Formelmenge ® C FO[o] sind folgende Aussagen &dquivalent:

(a) & ist widerspruchsvoll.

(b) Fiir jede FO[o]-Formel v gilt: ® =g ).
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Der Vollstandigkeitssatz

Satz 4.25

Fiir alle Signaturen o, alle Formelmengen & C FO[o] und alle Formeln
¢ € FO[o] gilt:

(1) dPFg o = oo
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Der Vollstandigkeitssatz

Satz 4.25

Fiir alle Signaturen o, alle Formelmengen & C FO[o] und alle Formeln
¢ € FO[o] gilt:

(1) kg, <= o

(2) & ist widerspruchsfrei <= ist erfiillbar.
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Der Vollstandigkeitssatz

Satz 4.25

Fiir alle Signaturen o, alle Formelmengen & C FO[o] und alle Formeln
¢ € FO[o] gilt:

(1) kg, <= o

(2) & ist widerspruchsfrei <= ist erfiillbar.

Die Richtung ,=" von (1) und die Richung ,,<=" von (2) haben wir bereits
in Korollar 4.21 und Korollar 4.23 bewiesen.
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Der Vollstandigkeitssatz

Satz 4.25

Fiir alle Signaturen o, alle Formelmengen & C FO[o] und alle Formeln
¢ € FO[o] gilt:

(1) kg, <= o

(2) & ist widerspruchsfrei <= ist erfiillbar.

Die Richtung ,=" von (1) und die Richung ,,<=" von (2) haben wir bereits

in Korollar 4.21 und Korollar 4.23 bewiesen.

Die Richtung ,,=—" von (2) wird von dem folgenden, schwer zu beweisenden

Erfiillbarkeitslemma bereitgestellt:
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Der Vollstandigkeitssatz

Satz 4.25

Fiir alle Signaturen o, alle Formelmengen & C FO[o] und alle Formeln
¢ € FO[o] gilt:

(1) kg, <= o
(2) & ist widerspruchsfrei <= ist erfiillbar.
Die Richtung ,=" von (1) und die Richung ,,<=" von (2) haben wir bereits

in Korollar 4.21 und Korollar 4.23 bewiesen.

Die Richtung ,,=—" von (2) wird von dem folgenden, schwer zu beweisenden
Erfiillbarkeitslemma bereitgestellt:

Lemma 4.26 (Erfiillbarkeitslemma)
Jede widerspruchsfreie Menge & C FO[o] ist erfiillbar.
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Beweis des Vollstandigkeitssatzes unter Verwendung des
Erfiillbarkeitslemmas:

Unter Verwendung des Erfiillbarkeitslemmas (Lemma 4.26) erhalten wir
zusammen mit Korollar 4.23, dass Teil (2) des Vollstandigkeitssatzes korrekt ist.
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Erfiillbarkeitslemmas:

Unter Verwendung des Erfiillbarkeitslemmas (Lemma 4.26) erhalten wir
zusammen mit Korollar 4.23, dass Teil (2) des Vollstandigkeitssatzes korrekt ist.

D.h. fiir jede Formelmenge ¢ C FO[o] gilt:

(2) o ist widerspruchsfrei <= & ist erfiillbar.
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Beweis des Vollstandigkeitssatzes unter Verwendung des
Erfiillbarkeitslemmas:

Unter Verwendung des Erfiillbarkeitslemmas (Lemma 4.26) erhalten wir
zusammen mit Korollar 4.23, dass Teil (2) des Vollstandigkeitssatzes korrekt ist.
D.h. fiir jede Formelmenge ¢ C FO[o] gilt:

(2) o ist widerspruchsfrei <= & ist erfiillbar.

Die Richtung ,,=" von (1) haben wir bereits in Korollar 4.21 gezeigt.
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Beweis des Vollstandigkeitssatzes unter Verwendung des
Erfiillbarkeitslemmas:

Unter Verwendung des Erfiillbarkeitslemmas (Lemma 4.26) erhalten wir
zusammen mit Korollar 4.23, dass Teil (2) des Vollstandigkeitssatzes korrekt ist.
D.h. fiir jede Formelmenge ¢ C FO[o] gilt:

(2) o ist widerspruchsfrei <= & ist erfiillbar.

Die Richtung ,,=" von (1) haben wir bereits in Korollar 4.21 gezeigt.

Die Richtung ,,<=" von Teil (1) des Vollstandigkeitssatzes l3sst sich wie folgt
beweisen:

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 327



Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.2: Ein Beweiskalkiil fiir die Logik erster Stufe — der Vollstindigkeitssatz

Zum Beweis des Erfiillbarkeitslemmas:

Zur Erinnerung: Das Erfiillbarkeitslemma besagt:
Jede widerspruchsfreie Formelmenge ® C FOlo] ist erfiillbar.
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Zum Beweis des Erfiillbarkeitslemmas:

Zur Erinnerung: Das Erfiillbarkeitslemma besagt:
Jede widerspruchsfreie Formelmenge ® C FOlo] ist erfiillbar.

Beweisidee:
Konstruiere eine o-Interpretation Zo = (A, 3), so dass gilt:
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Zur Erinnerung: Das Erfiillbarkeitslemma besagt:
Jede widerspruchsfreie Formelmenge ® C FOlo] ist erfiillbar.

Beweisidee:
Konstruiere eine o-Interpretation Zo = (A, 3), so dass gilt:

® Das Universum A von A ist die Menge T, aller o-Terme.
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Zum Beweis des Erfiillbarkeitslemmas:

Zur Erinnerung: Das Erfiillbarkeitslemma besagt:
Jede widerspruchsfreie Formelmenge ® C FOlo] ist erfiillbar.

Beweisidee:
Konstruiere eine o-Interpretation Zo = (A, 3), so dass gilt:

® Das Universum A von A ist die Menge T, aller o-Terme.

® Fiir jeden o-Term t gilt: [[t]]l =t.
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Zum Beweis des Erfiillbarkeitslemmas:

Zur Erinnerung: Das Erfiillbarkeitslemma besagt:
Jede widerspruchsfreie Formelmenge & C FO[o] ist erfiillbar.

Beweisidee:
Konstruiere eine o-Interpretation Zo = (A, 3), so dass gilt:

® Das Universum A von A ist die Menge T, aller o-Terme.

® Fiir jeden o-Term t gilt: [[t]]l =t.

® Fiir jedes Relationssymbol R € o, fiir k := ar(R), und fiir alle o-Terme ti, ...

gilt:
(t1,...,tk) € R4 =
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Zum Beweis des Erfiillbarkeitslemmas:

Zur Erinnerung: Das Erfiillbarkeitslemma besagt:
Jede widerspruchsfreie Formelmenge ® C FOlo] ist erfiillbar.

Beweisidee:
Konstruiere eine o-Interpretation Zo = (A, 3), so dass gilt:

® Das Universum A von A ist die Menge T, aller o-Terme.

® Fiir jeden o-Term t gilt: [[t]]l =t.

® Fiir jedes Relationssymbol R € o, fiir k := ar(R), und fiir alle o-Terme ti, ...

gilt:
(t,...,t) € R* <= & kg, R(ti,...,t)
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Zum Beweis des Erfiillbarkeitslemmas:

Zur Erinnerung: Das Erfiillbarkeitslemma besagt:
Jede widerspruchsfreie Formelmenge & C FO[o] ist erfiillbar.

Beweisidee:
Konstruiere eine o-Interpretation Zo = (A, 3), so dass gilt:

® Das Universum A von A ist die Menge T, aller o-Terme.
® Fiir jeden o-Term ¢ gilt: [t]” = t.
® Fiir jedes Relationssymbol R € o, fiir k := ar(R), und fiir alle o-Terme t1,. .., t«
gilt:
(t,...,t) € R* <= & kg, R(ti,...,t)

Diese Interpretation Zo wird Terminterpretation von ® genannt.

GemiB Definition erfiillt Zo alle atomaren Formeln der Form R(t1, ..., t) in ®.

Im Allgemeinen gilt jedoch noch nicht Zo |= ® (betrachte dazu beispielsweise die
Formelmenge ® := {wy=v1}, die offensichtlicherweise erfiillbar ist, fiir die aber gilt:

To £ ®).
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Zum Beweis des Erfiillbarkeitslemmas:

Zur Erinnerung: Das Erfiillbarkeitslemma besagt:
Jede widerspruchsfreie Formelmenge & C FO[o] ist erfiillbar.

Beweisidee:
Konstruiere eine o-Interpretation Zo = (A, 3), so dass gilt:

® Das Universum A von A ist die Menge T, aller o-Terme.
® Fiir jeden o-Term t gilt: [[t]]l =t.

® Fiir jedes Relationssymbol R € o, fiir k := ar(R), und fiir alle o-Terme t1,. .., t«
gilt:
(t,...,t) € R* <= & kg, R(ti,...,t)
Diese Interpretation Zo wird Terminterpretation von ® genannt.
GemiB Definition erfiillt Zo alle atomaren Formeln der Form R(t1, ..., t) in ®.
Im Allgemeinen gilt jedoch noch nicht Zo |= ® (betrachte dazu beispielsweise die
Formelmenge ® := {wy=v1}, die offensichtlicherweise erfiillbar ist, fiir die aber gilt:

To = O).
Aber nach einigen anspruchsvollen Modifikationen von Z¢ erhilt man eine
Interpretation Zg mit Zg, = ©.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.3: Der Endlichkeitssatz

Zur Erinnerung:

Wir haben bereits den Endlichkeitssatz der Aussagenlogik kennen gelernt, der
besagt, dass Folgendes fiir jede Menge ® C AL gilt:
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besagt, dass Folgendes fiir jede Menge ® C AL gilt:
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Zur Erinnerung:

Wir haben bereits den Endlichkeitssatz der Aussagenlogik kennen gelernt, der
besagt, dass Folgendes fiir jede Menge ® C AL und jede Formel ¢ € AL gilt:

(1) o ist erfiillbar <= Jede endliche Teilmenge von @ ist erfiillbar.

) oY
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Zur Erinnerung:

Wir haben bereits den Endlichkeitssatz der Aussagenlogik kennen gelernt, der
besagt, dass Folgendes fiir jede Menge ® C AL und jede Formel ¢ € AL gilt:

(1) o ist erfiillbar <= Jede endliche Teilmenge von @ ist erfiillbar.

(2) o v <= Es gibt eine endliche Teilmenge I von ®, so dass ' |= .
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Zur Erinnerung:

Wir haben bereits den Endlichkeitssatz der Aussagenlogik kennen gelernt, der
besagt, dass Folgendes fiir jede Menge ® C AL und jede Formel ¢ € AL gilt:

(1) o ist erfiillbar <= Jede endliche Teilmenge von @ ist erfiillbar.

(2) o v <= Es gibt eine endliche Teilmenge I von ®, so dass ' |= .

Der Endlichkeitssatz gilt auch fiir die Logik erster Stufe,
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.3: Der Endlichkeitssatz

Zur Erinnerung:

Wir haben bereits den Endlichkeitssatz der Aussagenlogik kennen gelernt, der
besagt, dass Folgendes fiir jede Menge ® C AL und jede Formel ¢ € AL gilt:

(1) o ist erfiillbar <= Jede endliche Teilmenge von @ ist erfiillbar.

(2) o v <= Es gibt eine endliche Teilmenge I von ®, so dass ' |= .

Der Endlichkeitssatz gilt auch fiir die Logik erster Stufe, d.h. die Aussagen (1)
und (2) gelten auch fiir alle Mengen ® C FO[o] und alle ¢ € FO[o].
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Zur Erinnerung:

Wir haben bereits den Endlichkeitssatz der Aussagenlogik kennen gelernt, der
besagt, dass Folgendes fiir jede Menge ® C AL und jede Formel ¢ € AL gilt:

(1) o ist erfiillbar <= Jede endliche Teilmenge von @ ist erfiillbar.

(2) o v <= Es gibt eine endliche Teilmenge I von ®, so dass ' |= .

Der Endlichkeitssatz gilt auch fiir die Logik erster Stufe, d.h. die Aussagen (1)
und (2) gelten auch fiir alle Mengen ® C FO[o] und alle ¢ € FO[o].

Zum Beweis der Endlichkeitssatzes der Logik erster Stufe nutzen wir den
Vollstandigkeitssatz sowie das folgende Lemma.
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Das syntaktische Endlichkeitslemma

Lemma 4.27
Fiir jede Signatur o und jede Formelmenge ® C FO[o] gilt:

& ist widerspruchsfrei <= Jede endliche Teilmenge von ® ist wider-
spruchsfrei.
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Der Endlichkeitssatz (auch bekannt als Kompaktheitssatz)

Satz 4.28
Fiir jede Signatur o, jede Formelmenge ® C FO[o] und jede Formel 1) € FO[o]

gilt:
(1) & ist erfiillbar < Jede endliche Teilmenge von & ist erfiillbar.
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Der Endlichkeitssatz (auch bekannt als Kompaktheitssatz)

Satz 4.28
Fiir jede Signatur o, jede Formelmenge ® C FO[o] und jede Formel 1) € FO[o]

gilt:
(1) & ist erfiillbar < Jede endliche Teilmenge von & ist erfiillbar.

(2) ® = <= Es gibt eine endliche Teilmenge I von ®, so dass [ |= 1.
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Der Endlichkeitssatz (auch bekannt als Kompaktheitssatz)

Satz 4.28
Fiir jede Signatur o, jede Formelmenge ® C FO[o] und jede Formel 1) € FO[o]
gilt:

(1) & ist erfiillbar < Jede endliche Teilmenge von & ist erfiillbar.

(2) ® = <= Es gibt eine endliche Teilmenge I von ®, so dass [ |= 1.

Beachte: Die Aussage des Endlichkeitssatzes ist nur fiir unendliche
Formelmengen & interessant (fiir endliche Mengen & ist sie trivial).
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Erststufige Axiomatisierbarkeit

Definition 4.29

Eine Klasse € von o-Strukturen heiBt erststufig axiomatisierbar, falls es eine Menge ¢
von FO[o]-Satzen gibt, so dass gilt: € = MOD,(®).
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Erststufige Axiomatisierbarkeit

Definition 4.29

Eine Klasse € von o-Strukturen heiBt erststufig axiomatisierbar, falls es eine Menge ¢
von FO[o]-Satzen gibt, so dass gilt: € = MOD,(®).

Zur Erinnerung:
MOD, (@) ist die Klasse aller o-Strukturen A, fiir die gilt: A = ®.
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Erststufige Axiomatisierbarkeit
Definition 4.29

Eine Klasse € von o-Strukturen heiBt erststufig axiomatisierbar, falls es eine Menge ¢
von FO[o]-Satzen gibt, so dass gilt: € = MOD,(®).

Zur Erinnerung:
MOD, (@) ist die Klasse aller o-Strukturen A, fiir die gilt: A = ®.

Definition 4.30

Die Machtigkeit einer o-Struktur ist die Machtigkeit ihres Universums.
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Erststufige Axiomatisierbarkeit
Definition 4.29

Eine Klasse € von o-Strukturen heiBt erststufig axiomatisierbar, falls es eine Menge ¢
von FO[o]-Satzen gibt, so dass gilt: ¢ = MOD,(®).

Zur Erinnerung:

MOD, (@) ist die Klasse aller o-Strukturen A, fiir die gilt: A = ®.

Definition 4.30

Die Machtigkeit einer o-Struktur ist die Machtigkeit ihres Universums.

Eine o-Struktur heiBt endlich, unendlich, abzahlbar, bzw. liberabzéhlbar, wenn ihr
Universum die entsprechende Méchtigkeit besitzt.
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Eine Klasse € von o-Strukturen heiBt erststufig axiomatisierbar, falls es eine Menge ¢
von FO[o]-Satzen gibt, so dass gilt: € = MOD,(®).

Zur Erinnerung:
MOD, (@) ist die Klasse aller o-Strukturen A, fiir die gilt: A = ®.

Definition 4.30

Die Machtigkeit einer o-Struktur ist die Machtigkeit ihres Universums.

Eine o-Struktur heiBt endlich, unendlich, abzahlbar, bzw. liberabzéhlbar, wenn ihr
Universum die entsprechende Méchtigkeit besitzt.

Beispiel 4.31

Die Klasse aller unendlichen o-Strukturen ist erststufig axiomatisierbar.
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Erststufige Axiomatisierbarkeit
Definition 4.29

Eine Klasse € von o-Strukturen heiBt erststufig axiomatisierbar, falls es eine Menge ¢
von FO[o]-Satzen gibt, so dass gilt: € = MOD,(®).

Zur Erinnerung:
MOD, (@) ist die Klasse aller o-Strukturen A, fiir die gilt: A = ®.

Definition 4.30

Die Machtigkeit einer o-Struktur ist die Machtigkeit ihres Universums.

Eine o-Struktur heiBt endlich, unendlich, abzahlbar, bzw. liberabzéhlbar, wenn ihr
Universum die entsprechende Méchtigkeit besitzt.

Beispiel 4.31

Die Klasse aller unendlichen o-Strukturen ist erststufig axiomatisierbar.

Wir konnen den Endlichkeitssatz anwenden, um zu zeigen, dass bestimmte Klassen
von Strukturen nicht erststufig axiomatisierbar sind.
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Definition 4.29

Eine Klasse € von o-Strukturen heiBt erststufig axiomatisierbar, falls es eine Menge ¢
von FO[o]-Satzen gibt, so dass gilt: ¢ = MOD,(®).

Zur Erinnerung:

MOD, (@) ist die Klasse aller o-Strukturen A, fiir die gilt: A = ®.

Definition 4.30

Die Machtigkeit einer o-Struktur ist die Machtigkeit ihres Universums.

Eine o-Struktur heiBt endlich, unendlich, abzahlbar, bzw. liberabzéhlbar, wenn ihr
Universum die entsprechende Méchtigkeit besitzt.

Beispiel 4.31

Die Klasse aller unendlichen o-Strukturen ist erststufig axiomatisierbar.

Wir konnen den Endlichkeitssatz anwenden, um zu zeigen, dass bestimmte Klassen
von Strukturen nicht erststufig axiomatisierbar sind.

Im Folgenden betrachten wir dazu zwei Beispiele: die Nicht-Axiomatisierbarkeit der
. Endlichkeit" von Strukturen
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Erststufige Axiomatisierbarkeit
Definition 4.29

Eine Klasse € von o-Strukturen heiBt erststufig axiomatisierbar, falls es eine Menge ¢
von FO[o]-Satzen gibt, so dass gilt: ¢ = MOD,(®).

Zur Erinnerung:

MOD, (@) ist die Klasse aller o-Strukturen A, fiir die gilt: A = ®.

Definition 4.30

Die Machtigkeit einer o-Struktur ist die Machtigkeit ihres Universums.

Eine o-Struktur heiBt endlich, unendlich, abzahlbar, bzw. liberabzéhlbar, wenn ihr
Universum die entsprechende Méchtigkeit besitzt.

Beispiel 4.31

Die Klasse aller unendlichen o-Strukturen ist erststufig axiomatisierbar.

Wir konnen den Endlichkeitssatz anwenden, um zu zeigen, dass bestimmte Klassen
von Strukturen nicht erststufig axiomatisierbar sind.

Im Folgenden betrachten wir dazu zwei Beispiele: die Nicht-Axiomatisierbarkeit der
., Endlichkeit" von Strukturen und die Nicht-Axiomatisierbarkeit von

., Graph-Zusammenhang".
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Nicht-Axiomatisierbarkeit der ,, Endlichkeit"” von
Strukturen

Lemma 4.32
Sei ® eine Menge von FO[o]-Satzen. Falls & beliebig groBe endliche Modelle

besitzt (d.h. fiir jedes n € N gibt es eine endliche o-Struktur A mit |A| = n und
A= @), so besitzt ® ein unendliches Modell.
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Nicht-Axiomatisierbarkeit der ,, Endlichkeit"” von
Strukturen

Lemma 4.32
Sei ® eine Menge von FO[o]-Satzen. Falls & beliebig groBe endliche Modelle

besitzt (d.h. fiir jedes n € N gibt es eine endliche o-Struktur A mit |A| = n und
A= @), so besitzt ® ein unendliches Modell.

Satz 4.33

Die Klasse aller endlichen o-Strukturen ist nicht erststufig axiomatisierbar.
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Nicht-Axiomatisierbarkeit der ,, Endlichkeit"” von
Strukturen

Lemma 4.32

Sei ® eine Menge von FO[o]-Satzen. Falls & beliebig groBe endliche Modelle
besitzt (d.h. fiir jedes n € N gibt es eine endliche o-Struktur A mit |A| = n und
A= @), so besitzt ® ein unendliches Modell.

Satz 4.33

Die Klasse aller endlichen o-Strukturen ist nicht erststufig axiomatisierbar.

Korollar 4.34
Es gibt keine endliche Menge von FO[o]-Sétzen, die die Klasse aller unendlichen

o-Strukturen erststufig axiomatisiert.
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Nicht-Axiomatisierbarkeit von ,,Graph-Zusammenhang"

Satz 4.35

Die Klasse aller zusammenhangenden Graphen ist nicht erststufig
axiomatisierbar.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.3: Der Endlichkeitssatz

Der Satz von Lowenheim und Skolem

Unter Verwendung von Teilergebnissen, die beim (in dieser Vorlesung nicht im
Detail behandelten) Beweis des Erfiillbarkeitslemmas anfallen, erhilt man das

folgende Resultat.

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 335



Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.3: Der Endlichkeitssatz

Der Satz von Lowenheim und Skolem

Unter Verwendung von Teilergebnissen, die beim (in dieser Vorlesung nicht im
Detail behandelten) Beweis des Erfiillbarkeitslemmas anfallen, erhilt man das
folgende Resultat.

Satz 4.36 (Der Satz von Léwenheim und Skolem)

Sei o eine abzihlbare Signatur. Dann hat jede erfiillbare Formelmenge
® C FO[o] ein héchstens abzdhlbares Modell.

(Hier ohne Beweis)
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Der Satz von Lowenheim und Skolem

Unter Verwendung von Teilergebnissen, die beim (in dieser Vorlesung nicht im
Detail behandelten) Beweis des Erfiillbarkeitslemmas anfallen, erhilt man das
folgende Resultat.

Satz 4.36 (Der Satz von Léwenheim und Skolem)

Sei o eine abzihlbare Signatur. Dann hat jede erfiillbare Formelmenge
® C FO[o] ein héchstens abzdhlbares Modell.

(Hier ohne Beweis)

Als direkte Folgerung aus dem Satz von Lowenheim und Skolem erhalten wir:

Korollar 4.37

Sei o eine abzidhlbare Signatur. Dann ist die Klasse aller iiberabzdhlbaren
o-Strukturen nicht erststufig axiomatisierbar.
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Abschnitt 4.4:

Die Grenzen der Berechenbarkeit



Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Zur Erinnerung:
Einige Begriffe zum Thema (Un)Entscheidbarkeit

Entscheidungsprobleme sind Probleme, die mit ,,ja" oder ,,nein* beantwortet

werden konnen. Genauer:
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Zur Erinnerung:
Einige Begriffe zum Thema (Un)Entscheidbarkeit

Entscheidungsprobleme sind Probleme, die mit ,,ja" oder ,,nein* beantwortet

werden konnen. Genauer:

® Sei M eine abzihlbar unendliche Menge,
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Zur Erinnerung:
Einige Begriffe zum Thema (Un)Entscheidbarkeit

Entscheidungsprobleme sind Probleme, die mit ,,ja" oder ,,nein* beantwortet

werden konnen. Genauer:

® Sei M eine abzihlbar unendliche Menge, zum Beispiel
® die Menge X* aller Worte iiber einem endlichen Alphabet X,
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Zur Erinnerung:
Einige Begriffe zum Thema (Un)Entscheidbarkeit

Entscheidungsprobleme sind Probleme, die mit ,,ja" oder ,,nein* beantwortet

werden konnen. Genauer:

® Sei M eine abzihlbar unendliche Menge, zum Beispiel
® die Menge X" aller Worte iiber einem endlichen Alphabet ¥, oder
® die Menge aller Graphen, deren Knotenmenge eine endliche Teilmenge der
natiirlichen Zahlen ist.
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Zur Erinnerung:
Einige Begriffe zum Thema (Un)Entscheidbarkeit

Entscheidungsprobleme sind Probleme, die mit ,,ja" oder ,,nein* beantwortet

werden konnen. Genauer:

® Sei M eine abzihlbar unendliche Menge, zum Beispiel
® die Menge X" aller Worte iiber einem endlichen Alphabet ¥, oder
® die Menge aller Graphen, deren Knotenmenge eine endliche Teilmenge der
natiirlichen Zahlen ist.

® Das Entscheidungsproblem fiir eine Menge L C M ist das folgende
Berechnungsproblem:
Das Entscheidungsproblem fiir L C M
Eingabe: Ein Element m € M.
Frage: Ist me L ?
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Beispiele fiir Entscheidungsprobleme

® Graphzusammenhang ist das Entscheidungsproblem fiir L C M, wobei
M
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Beispiele fiir Entscheidungsprobleme

® Graphzusammenhang ist das Entscheidungsproblem fiir L C M, wobei

M die Menge aller ungerichteten Graphen ist, deren Knotenmenge eine endliche
Teilmenge von N ist
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® Graphzusammenhang ist das Entscheidungsproblem fiir L C M, wobei

M die Menge aller ungerichteten Graphen ist, deren Knotenmenge eine endliche
Teilmenge von N ist und
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Beispiele fiir Entscheidungsprobleme

® Graphzusammenhang ist das Entscheidungsproblem fiir L C M, wobei

M die Menge aller ungerichteten Graphen ist, deren Knotenmenge eine endliche
Teilmenge von N ist und

L die Menge aller zusammenhangenden Graphen aus M ist.
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Beispiele fiir Entscheidungsprobleme

® Graphzusammenhang ist das Entscheidungsproblem fiir L C M, wobei

M die Menge aller ungerichteten Graphen ist, deren Knotenmenge eine endliche
Teilmenge von N ist und

L die Menge aller zusammenhangenden Graphen aus M ist.

® Das Halteproblem ist das Entscheidungsproblem fiir L C M, wobei
M
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Beispiele fiir Entscheidungsprobleme

® Graphzusammenhang ist das Entscheidungsproblem fiir L C M, wobei

M die Menge aller ungerichteten Graphen ist, deren Knotenmenge eine endliche
Teilmenge von N ist und

L die Menge aller zusammenhangenden Graphen aus M ist.

® Das Halteproblem ist das Entscheidungsproblem fiir L C M, wobei
M die Menge aller Worte w#x mit w,x € {0,1}" ist
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Beispiele fiir Entscheidungsprobleme

® Graphzusammenhang ist das Entscheidungsproblem fiir L C M, wobei

M die Menge aller ungerichteten Graphen ist, deren Knotenmenge eine endliche
Teilmenge von N ist und

L die Menge aller zusammenhangenden Graphen aus M ist.

® Das Halteproblem ist das Entscheidungsproblem fiir L C M, wobei
M die Menge aller Worte w#x mit w,x € {0,1}* ist und
L
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Beispiele fiir Entscheidungsprobleme

® Graphzusammenhang ist das Entscheidungsproblem fiir L C M, wobei

M die Menge aller ungerichteten Graphen ist, deren Knotenmenge eine endliche
Teilmenge von N ist und

L die Menge aller zusammenhangenden Graphen aus M ist.

® Das Halteproblem ist das Entscheidungsproblem fiir L C M, wobei
M die Menge aller Worte w#x mit w,x € {0,1}* ist und

L die Menge aller Worte w#x ist, so dass w eine deterministische
Turingmaschine beschreibt, die bei Eingabe x nach endlich vielen Schritten
anhalt.
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Entscheidungsprobleme fiir die Logik erster Stufe

Allgemeingiiltigkeitsproblem fiir FO[o]
Eingabe: Eine FO[o]-Formel ¢

Frage: Ist ¢ allgemeingiiltig?
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Entscheidungsprobleme fiir die Logik erster Stufe

Allgemeingiiltigkeitsproblem fiir FO[o]
Eingabe: Eine FO[o]-Formel ¢

Frage: Ist ¢ allgemeingiiltig?

Formal:
M
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Entscheidungsprobleme fiir die Logik erster Stufe

Allgemeingiiltigkeitsproblem fiir FO[o]
Eingabe: Eine FO[o]-Formel ¢

Frage: Ist ¢ allgemeingiiltig?

Formal:
M ist die Menge aller Worte iiber dem Alphabet Argjq]
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Entscheidungsprobleme fiir die Logik erster Stufe

Allgemeingiiltigkeitsproblem fiir FO[o]
Eingabe: Eine FO[o]-Formel ¢

Frage: Ist ¢ allgemeingiiltig?

Formal:
M ist die Menge aller Worte {iber dem Alphabet Arg[s; und

L
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Entscheidungsprobleme fiir die Logik erster Stufe

Allgemeingiiltigkeitsproblem fiir FO[o]
Eingabe: Eine FO[o]-Formel ¢

Frage: Ist ¢ allgemeingiiltig?

Formal:
M ist die Menge aller Worte {iber dem Alphabet Arg[s; und

L ist die Menge {¢ € FO[o] : ¢ ist allgemeingiiltig}
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Entscheidungsprobleme fiir die Logik erster Stufe

Allgemeingiiltigkeitsproblem fiir FO[o]
Eingabe: Eine FO[o]-Formel ¢

Frage: Ist ¢ allgemeingiiltig?

Formal:
M ist die Menge aller Worte {iber dem Alphabet Arg[s; und

L ist die Menge {¢ € FO[o] : ¢ ist allgemeingiiltig}

Erfiillbarkeitsproblem fiir FO[o]
Eingabe: FO[o]-Formel ¢

Frage: Ist ¢ erfiillbar?
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Entscheidungsprobleme fiir die Logik erster Stufe

Allgemeingiiltigkeitsproblem fiir FO[o]
Eingabe: Eine FO[o]-Formel ¢
Frage: Ist ¢ allgemeingiiltig?

Formal:
M ist die Menge aller Worte {iber dem Alphabet Arg[s; und

L ist die Menge {¢ € FO[o] : ¢ ist allgemeingiiltig}

Erfiillbarkeitsproblem fiir FO[o] Unerfiillbarkeitsproblem fiir FO[o]
Eingabe: FO[o]-Formel ¢ Eingabe: FO[o]-Formel ¢
Frage: Ist ¢ erfiillbar? Frage: Ist ¢ unerfiillbar?
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Entscheidungsprobleme fiir die Logik erster Stufe

Allgemeingiiltigkeitsproblem fiir FO[o]
Eingabe: Eine FO[o]-Formel ¢
Frage: Ist ¢ allgemeingiiltig?

Formal:

M ist die Menge aller Worte {iber dem Alphabet Arg[s; und

L ist die Menge {¢ € FO[o] : ¢ ist allgemeingiiltig}

Erfiillbarkeitsproblem fiir FO[o]
Eingabe: FO[o]-Formel ¢
Frage: Ist ¢ erfiillbar?

Unerfiillbarkeitsproblem fiir FO[o]
Eingabe: FO[o]-Formel ¢

Frage: Ist ¢ unerfiillbar?

Folgerungsproblem fiir FO[o]

Frage: Gilt o =4 ?

Eingabe: Zwei FO[o]-Formeln ¢, 1
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Entscheidbarkeit und Semi-Entscheidbarkeit
Definition 4.38

Sei M eine abzéhlbar unendliche Menge.
(a) Eine Menge L C M heiBt entscheidbar, falls
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Entscheidbarkeit und Semi-Entscheidbarkeit
Definition 4.38

Sei M eine abzéhlbar unendliche Menge.
(a) Eine Menge L C M heiBit entscheidbar, falls es einen Algorithmus gibt, der
bei Eingabe eines m € M nach endlich vielen Schritten anhalt und

® ja“ ausgibt, falls me L
® nein" ausgibt, falls m ¢ L.
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Entscheidbarkeit und Semi-Entscheidbarkeit
Definition 4.38

Sei M eine abzéhlbar unendliche Menge.
(a) Eine Menge L C M heiBit entscheidbar, falls es einen Algorithmus gibt, der
bei Eingabe eines m € M nach endlich vielen Schritten anhalt und
® ja“ ausgibt, falls me L
® nein" ausgibt, falls m ¢ L.

(b) L € M heiBt semi-entscheidbar, falls
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Entscheidbarkeit und Semi-Entscheidbarkeit
Definition 4.38

Sei M eine abzéhlbar unendliche Menge.
(a) Eine Menge L C M heiBit entscheidbar, falls es einen Algorithmus gibt, der
bei Eingabe eines m € M nach endlich vielen Schritten anhalt und
® .ja" ausgibt, falls me L
® nein" ausgibt, falls m ¢ L.

(b) L € M heiBt semi-entscheidbar, falls es einen Algorithmus gibt, der bei

Eingabe eines me M
® nach endlich vielen Schritten anhilt und ,,ja* ausgibt, falls me L

® nie anhilt, falls m ¢ L.
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Entscheidbarkeit und Semi-Entscheidbarkeit
Definition 4.38

Sei M eine abzéhlbar unendliche Menge.
(a) Eine Menge L C M heiBit entscheidbar, falls es einen Algorithmus gibt, der
bei Eingabe eines m € M nach endlich vielen Schritten anhalt und

® .ja" ausgibt, falls me L
® nein" ausgibt, falls m ¢ L.

(b) L € M heiBt semi-entscheidbar, falls es einen Algorithmus gibt, der bei

Eingabe eines me M
® nach endlich vielen Schritten anhilt und ,,ja* ausgibt, falls me L

® nie anhilt, falls m ¢ L.

Beispiele:

® Graphzusammenhang ist
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Entscheidbarkeit und Semi-Entscheidbarkeit
Definition 4.38

Sei M eine abzéhlbar unendliche Menge.
(a) Eine Menge L C M heiBit entscheidbar, falls es einen Algorithmus gibt, der
bei Eingabe eines m € M nach endlich vielen Schritten anhalt und
® .ja" ausgibt, falls me L
® nein" ausgibt, falls m ¢ L.

(b) L € M heiBt semi-entscheidbar, falls es einen Algorithmus gibt, der bei

Eingabe eines me M
® nach endlich vielen Schritten anhilt und ,,ja* ausgibt, falls me L

® nie anhilt, falls m ¢ L.

Beispiele:
® Graphzusammenhang ist entscheidbar (z.B. durch Tiefen- oder Breitensuche).
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Entscheidbarkeit und Semi-Entscheidbarkeit
Definition 4.38

Sei M eine abzéhlbar unendliche Menge.
(a) Eine Menge L C M heiBit entscheidbar, falls es einen Algorithmus gibt, der
bei Eingabe eines m € M nach endlich vielen Schritten anhalt und

® .ja" ausgibt, falls me L
® nein" ausgibt, falls m ¢ L.

(b) L € M heiBt semi-entscheidbar, falls es einen Algorithmus gibt, der bei

Eingabe eines me M
® nach endlich vielen Schritten anhilt und ,,ja* ausgibt, falls me L

® nie anhilt, falls m ¢ L.

Beispiele:
® Graphzusammenhang ist entscheidbar (z.B. durch Tiefen- oder Breitensuche).

® Das Halteproblem ist
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Entscheidbarkeit und Semi-Entscheidbarkeit
Definition 4.38

Sei M eine abzéhlbar unendliche Menge.
(a) Eine Menge L C M heiBit entscheidbar, falls es einen Algorithmus gibt, der
bei Eingabe eines m € M nach endlich vielen Schritten anhalt und

e ja“ ausgibt, falls me L
® nein" ausgibt, falls m ¢ L.

(b) L € M heiBt semi-entscheidbar, falls es einen Algorithmus gibt, der bei

Eingabe eines me M
® nach endlich vielen Schritten anhilt und ,,ja* ausgibt, falls me L

® nie anhilt, falls m ¢ L.
Beispiele:
® Graphzusammenhang ist entscheidbar (z.B. durch Tiefen- oder Breitensuche).

® Das Halteproblem ist semi-entscheidbar
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Entscheidbarkeit und Semi-Entscheidbarkeit

Definition 4.38
Sei M eine abzéhlbar unendliche Menge.

(a) Eine Menge L C M heiBit entscheidbar, falls es einen Algorithmus gibt, der
bei Eingabe eines m € M nach endlich vielen Schritten anhalt und

® .ja" ausgibt, falls me L
® nein" ausgibt, falls m ¢ L.

(b) L € M heiBt semi-entscheidbar, falls es einen Algorithmus gibt, der bei

Eingabe eines me M
® nach endlich vielen Schritten anhilt und ,,ja* ausgibt, falls me L

® nie anhilt, falls m ¢ L.

Beispiele:
® Graphzusammenhang ist entscheidbar (z.B. durch Tiefen- oder Breitensuche).
® Das Halteproblem ist semi-entscheidbar (bei Eingabe von w#x konstruiere die
von w reprasentierte deterministische Turingmaschine und lasse diese mit
Eingabe x laufen).
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Entscheidbarkeit und Semi-Entscheidbarkeit
Definition 4.38

Sei M eine abzéhlbar unendliche Menge.
(a) Eine Menge L C M heiBit entscheidbar, falls es einen Algorithmus gibt, der
bei Eingabe eines m € M nach endlich vielen Schritten anhalt und
® .ja" ausgibt, falls me L
® nein" ausgibt, falls m ¢ L.

(b) L € M heiBt semi-entscheidbar, falls es einen Algorithmus gibt, der bei

Eingabe eines me M
® nach endlich vielen Schritten anhilt und ,,ja* ausgibt, falls me L

® nie anhilt, falls m ¢ L.

Beispiele:
® Graphzusammenhang ist entscheidbar (z.B. durch Tiefen- oder Breitensuche).
® Das Halteproblem ist semi-entscheidbar (bei Eingabe von w#x konstruiere die
von w reprasentierte deterministische Turingmaschine und lasse diese mit

Eingabe x laufen).
Ist es auch entscheidbar?
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Entscheidbarkeit und Semi-Entscheidbarkeit
Definition 4.38

Sei M eine abzéhlbar unendliche Menge.
(a) Eine Menge L C M heiBit entscheidbar, falls es einen Algorithmus gibt, der
bei Eingabe eines m € M nach endlich vielen Schritten anhalt und
® .ja" ausgibt, falls me L
® nein" ausgibt, falls m ¢ L.

(b) L € M heiBt semi-entscheidbar, falls es einen Algorithmus gibt, der bei
Eingabe eines me M
® nach endlich vielen Schritten anhilt und ,,ja* ausgibt, falls me L
® nie anhilt, falls m ¢ L.

Beispiele:
® Graphzusammenhang ist entscheidbar (z.B. durch Tiefen- oder Breitensuche).

® Das Halteproblem ist semi-entscheidbar (bei Eingabe von w#x konstruiere die
von w reprasentierte deterministische Turingmaschine und lasse diese mit
Eingabe x laufen).
Ist es auch entscheidbar? Nein! — Das Halteproblem ist das Paradebeispiel eines
nicht entscheidbaren Problems.
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Einfache Beobachtungen

® Jede entscheidbare Menge L C M ist auch semi-entscheidbar
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Einfache Beobachtungen

® Jede entscheidbare Menge L C M ist auch semi-entscheidbar (anstatt
»nein' auszugeben und anzuhalten, gehen wir einfach in eine
Endlosschleife)
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Einfache Beobachtungen

® Jede entscheidbare Menge L C M ist auch semi-entscheidbar (anstatt
»nein' auszugeben und anzuhalten, gehen wir einfach in eine
Endlosschleife)

® Fiir jede entscheidbare Menge L C M ist auch die Menge L := (M\ L) C M
entscheidbar
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Einfache Beobachtungen

® Jede entscheidbare Menge L C M ist auch semi-entscheidbar (anstatt
»nein' auszugeben und anzuhalten, gehen wir einfach in eine
Endlosschleife)

® Fiir jede entscheidbare Menge L C M ist auch die Menge L :== (M\ L) C M
entscheidbar (vertausche einfach die Antworten ,ja” und ,,nein*)
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Einfache Beobachtungen

® Jede entscheidbare Menge L C M ist auch semi-entscheidbar (anstatt
»nein' auszugeben und anzuhalten, gehen wir einfach in eine
Endlosschleife)

® Fiir jede entscheidbare Menge L C M ist auch die Menge L := (M\ L) C M
entscheidbar (vertausche einfach die Antworten ,ja” und ,,nein*)

® Wenn sowohl L C M als auch L := (M \ L) C M semi-entscheidbar sind,
dann ist L C M sogar entscheidbar.
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Semi-Entscheidbarkeit einiger Logik-Probleme

Satz 4.39
Sei o eine héchstens abzihlbare Signatur.
Jedes der folgenden Probleme ist semi-enscheidbar:
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Semi-Entscheidbarkeit einiger Logik-Probleme

Satz 4.39
Sei o eine héchstens abzihlbare Signatur.
Jedes der folgenden Probleme ist semi-enscheidbar:

(a) das Aligemeingiiltigkeitsproblem fiir FO[o],
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Semi-Entscheidbarkeit einiger Logik-Probleme

Satz 4.39
Sei o eine héchstens abzihlbare Signatur.
Jedes der folgenden Probleme ist semi-enscheidbar:

(a) das Aligemeingiiltigkeitsproblem fiir FO[o],

(b) das Unerfiillbarkeitsproblem fiir FO[o],
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Semi-Entscheidbarkeit einiger Logik-Probleme

Satz 4.39
Sei o eine héchstens abzihlbare Signatur.
Jedes der folgenden Probleme ist semi-enscheidbar:

(a) das Aligemeingiiltigkeitsproblem fiir FO[o],
(b) das Unerfiillbarkeitsproblem fiir FO[o],

(c) das Folgerungsproblem fiir FO[o].
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Unentscheidbarkeit einiger Logik-Probleme

Unser nachstes Ziel ist, zu zeigen, dass fiir bestimmte Signaturen o gilt:
® Das Allgemeingiiltigkeitsproblem fiir FO[o],
® das Unerfiillbarkeitsproblem fiir FO[o],
® das Erfiillbarkeitsproblem fiir FO[o] und
® das Folgerungsproblem fiir FO[o]
ist nicht entscheidbar.
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Unentscheidbarkeit einiger Logik-Probleme

Unser nachstes Ziel ist, zu zeigen, dass fiir bestimmte Signaturen o gilt:
® Das Allgemeingiiltigkeitsproblem fiir FO[o],
® das Unerfiillbarkeitsproblem fiir FO[o],
® das Erfiillbarkeitsproblem fiir FO[o] und
® das Folgerungsproblem fiir FO[o]
ist nicht entscheidbar.

Wir werden dazu wie folgt vorgehen:

1. Wir nutzen das bekannte Resultat, das besagt, dass das Postsche
Korrespondenzproblem unentscheidbar ist.
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Unentscheidbarkeit einiger Logik-Probleme

Unser nachstes Ziel ist, zu zeigen, dass fiir bestimmte Signaturen o gilt:
® Das Allgemeingiiltigkeitsproblem fiir FO[o],
® das Unerfiillbarkeitsproblem fiir FO[o],
® das Erfiillbarkeitsproblem fiir FO[o] und
® das Folgerungsproblem fiir FO[o]
ist nicht entscheidbar.

Wir werden dazu wie folgt vorgehen:

1. Wir nutzen das bekannte Resultat, das besagt, dass das Postsche
Korrespondenzproblem unentscheidbar ist.

2. Wir zeigen, wie das Postsche Korrespondenzproblem unter Zuhilfenahme eines
Entscheidungs-Algorithmus fiir das Allgemeingiiltigkeitsproblem fiir FO[o] (fiir
eine geeignete Signatur o) geldst werden kdnnte.
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Unentscheidbarkeit einiger Logik-Probleme

Unser nachstes Ziel ist, zu zeigen, dass fiir bestimmte Signaturen o gilt:
® Das Allgemeingiiltigkeitsproblem fiir FO[o],
® das Unerfiillbarkeitsproblem fiir FO[o],
® das Erfiillbarkeitsproblem fiir FO[o] und
® das Folgerungsproblem fiir FO[o]
ist nicht entscheidbar.

Wir werden dazu wie folgt vorgehen:

1. Wir nutzen das bekannte Resultat, das besagt, dass das Postsche
Korrespondenzproblem unentscheidbar ist.

2. Wir zeigen, wie das Postsche Korrespondenzproblem unter Zuhilfenahme eines
Entscheidungs-Algorithmus fiir das Allgemeingiiltigkeitsproblem fiir FO[o] (fiir
eine geeignete Signatur o) geldst werden kdnnte.

Dadurch erhalten wir, dass das Allgemeingiiltigkeitsproblem fiir FO[o]
unentscheidbar ist.
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Unentscheidbarkeit einiger Logik-Probleme

Unser nachstes Ziel ist, zu zeigen, dass fiir bestimmte Signaturen o gilt:
® Das Allgemeingiiltigkeitsproblem fiir FO[o],
® das Unerfiillbarkeitsproblem fiir FO[o],
® das Erfiillbarkeitsproblem fiir FO[o] und
® das Folgerungsproblem fiir FO[o]
ist nicht entscheidbar.

Wir werden dazu wie folgt vorgehen:

1. Wir nutzen das bekannte Resultat, das besagt, dass das Postsche
Korrespondenzproblem unentscheidbar ist.

2. Wir zeigen, wie das Postsche Korrespondenzproblem unter Zuhilfenahme eines
Entscheidungs-Algorithmus fiir das Allgemeingiiltigkeitsproblem fiir FO[o] (fiir
eine geeignete Signatur o) geldst werden kdnnte.

Dadurch erhalten wir, dass das Allgemeingiiltigkeitsproblem fiir FO[o]
unentscheidbar ist.

3. Die Unentscheidbarkeit des Unerfiillbarkeitsproblems, des Erfiillbarkeitsproblems
und des Folgerungsproblems fiir FO[o] folgen dann leicht aus der
Unentscheidbarkeit des Allgemeingiiltigkeitsproblems fiir FO[o].
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Das Postsche Korrespondenzproblem

Das Postsche Korrespondenzproblem (PKP)
Eingabe: Eine Zahl k > 1 und k Paare (x1,y1), (x2,¥2), .-, (Xk, ¥k)
mit x1, Y1, ..., Xk, Yk € {0, 1}*.
Frage: Gibt es ein n > 1 und Indizes i1,...,i, € {1,...,k}, so dass
gilt: X Xi, X, = YV Vi, !
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Das Postsche Korrespondenzproblem

Das Postsche Korrespondenzproblem (PKP)
Eingabe: Eine Zahl k > 1 und k Paare (x1,y1), (x2,¥2), .-, (Xk, ¥k)
mit x1, Y1, ..., Xk, Yk € {0, 1}*.
Frage: Gibt es ein n > 1 und Indizes i1,...,i, € {1,...,k}, so dass
gilt: X Xi, X, = YV Vi, !

Beispiel:
Das PKP mit Eingabe k = 3 und

(Xlayl) = (1’ 111)7 (X2a)/2) = (101117 10)a (X3,}/3) = (10, O)
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Das Postsche Korrespondenzproblem

Das Postsche Korrespondenzproblem (PKP)
Eingabe: Eine Zahl k > 1 und k Paare (x1,y1), (x2,¥2), .-, (Xk, ¥k)
mit x1, Y1, ..., Xk, Yk € {0, 1}*.
Frage: Gibt es ein n > 1 und Indizes i1,...,i, € {1,...,k}, so dass
gilt: X Xi, X, = YV Vi, !

Beispiel:
Das PKP mit Eingabe k = 3 und

(xy1) = (1, 111),  (x,y2) = (10111, 10),  (x3,y3) = (10, 0).
hat eine Losung mit n=4und 4y =2, h =1, 3 =1, iy = 3, denn:

xxxyxyx3 = 10111 1 1 10

yYviviys = 10 111 111 0.
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Das Postsche Korrespondenzproblem

Das Postsche Korrespondenzproblem (PKP)
Eingabe: Eine Zahl k > 1 und k Paare (x1,y1), (x2,¥2), .-, (Xk, ¥k)
mit x1, Y1, ..., Xk, Yk € {0, 1}*.
Frage: Gibt es ein n > 1 und Indizes i1,...,i, € {1,...,k}, so dass
gilt: X Xi, X, = YV Vi, !

Beispiel:
Das PKP mit Eingabe k = 3 und

(xy1) = (1, 111),  (x,y2) = (10111, 10),  (x3,y3) = (10, 0).
hat eine Losung mit n=4und 4y =2, h =1, 3 =1, iy = 3, denn:

xxxyxyx3 = 10111 1 1 10

yYviviys = 10 111 111 0.

Bekannt:
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Das Postsche Korrespondenzproblem

Das Postsche Korrespondenzproblem (PKP)
Eingabe: Eine Zahl k > 1 und k Paare (x1,y1), (x2,¥2), .-, (Xk, ¥k)
mit x1, Y1, ..., Xk, Yk € {0, 1}*.
Frage: Gibt es ein n > 1 und Indizes i1,...,i, € {1,...,k}, so dass
gilt: X Xi, X, = YV Vi, !

Beispiel:
Das PKP mit Eingabe k = 3 und

(xy1) = (1, 111),  (x,y2) = (10111, 10),  (x3,y3) = (10, 0).
hat eine Losung mit n=4und 4y =2, h =1, 3 =1, iy = 3, denn:

xxxyxyx3 = 10111 1 1 10

yYviviys = 10 111 111 0.

Bekannt:
® Das PKP ist semi-entscheidbar.  (Dies sieht man leicht.)
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Das Postsche Korrespondenzproblem

Das Postsche Korrespondenzproblem (PKP)
Eingabe: Eine Zahl k > 1 und k Paare (x1,y1), (x2,¥2), .-, (Xk, ¥k)
mit x1, Y1, ..., Xk, Yk € {0, 1}*.
Frage: Gibt es ein n > 1 und Indizes i1,...,i, € {1,...,k}, so dass
gilt: XX, - xi, = YiYp Vi, ?

Beispiel:
Das PKP mit Eingabe k = 3 und
(Xla)/l) = (1’ 111)7 (X2a)/2) = (10111, 10)a (X3,}/3) = (107 O)
hat eine Losung mit n=4und 4y =2, h =1, 3 =1, iy = 3, denn:
X2 X1 X1 X3 = 10111 1 1 10

Bekannt:

® Das PKP ist semi-entscheidbar.  (Dies sieht man leicht.)

® Das PKP ist nicht entscheidbar.

(Dies wurde in der , Einfiihrung in die Theoretische Informatik" bewiesen.)
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Die Unentscheidbarkeit der Logik erster Stufe

Satz 4.40
Sei o :={R,fy, fi,c}, wobei c ein Konstantensymbol, R ein 2-stelliges
Relationssymbol und fy, fi zwei 1-stellige Funktionssymbole sind.

Das Allgemeingiiltigkeitsproblem fiir FO[o] ist nicht entscheidbar.
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Die Unentscheidbarkeit der Logik erster Stufe

Satz 4.40
Sei o :={R,fy, fi,c}, wobei c ein Konstantensymbol, R ein 2-stelliges
Relationssymbol und fy, fi zwei 1-stellige Funktionssymbole sind.

Das Allgemeingiiltigkeitsproblem fiir FO[o] ist nicht entscheidbar.

Beweis: Auf Grund der Unentscheidbarkeit des PKP reicht es, eine Reduktion
vom PKP zum Allgemeingiiltigkeitsproblem fiir FO[o] anzugeben.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Die Unentscheidbarkeit der Logik erster Stufe

Satz 4.40

Sei o :={R,fy, fi,c}, wobei c ein Konstantensymbol, R ein 2-stelliges
Relationssymbol und fy, fi zwei 1-stellige Funktionssymbole sind.

Das Allgemeingiiltigkeitsproblem fiir FO[o] ist nicht entscheidbar.

Beweis: Auf Grund der Unentscheidbarkeit des PKP reicht es, eine Reduktion
vom PKP zum Allgemeingiiltigkeitsproblem fiir FO[o] anzugeben. D.h. wir
zeigen, dass bei Eingabe eines Tupels | = (k, (x1, %), - (xk,yk)), das eine
Eingabe fiir's PKP reprisentiert, eine FO[o]-Formel ¢, konstruiert werden kann,
die genau dann allgemeingiiltig ist, wenn [ eine ,ja"-Instanz fiir's PKP ist

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 344



Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Die Unentscheidbarkeit der Logik erster Stufe

Satz 4.40
Sei o :={R,fy, fi,c}, wobei c ein Konstantensymbol, R ein 2-stelliges
Relationssymbol und fy, fi zwei 1-stellige Funktionssymbole sind.

Das Allgemeingiiltigkeitsproblem fiir FO[o] ist nicht entscheidbar.

Beweis: Auf Grund der Unentscheidbarkeit des PKP reicht es, eine Reduktion
vom PKP zum Allgemeingiiltigkeitsproblem fiir FO[o] anzugeben. D.h. wir
zeigen, dass bei Eingabe eines Tupels | = (k, (x1, %), - (xk,yk)), das eine
Eingabe fiir's PKP reprisentiert, eine FO[o]-Formel ¢, konstruiert werden kann,
die genau dann allgemeingiiltig ist, wenn | eine ,ja"-Instanz fiir's PKP ist (d.h.
es gibt n>1und i,... 0, € [k], sodass x;,---x, =i Vi)
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Die Unentscheidbarkeit der Logik erster Stufe

Satz 4.40
Sei o:={R,fy, fi,c}, wobei c ein Konstantensymbol, R ein 2-stelliges
Relationssymbol und fy, fi zwei 1-stellige Funktionssymbole sind.

Das Allgemeingiiltigkeitsproblem fiir FO[o] ist nicht entscheidbar.

Beweis: Auf Grund der Unentscheidbarkeit des PKP reicht es, eine Reduktion
vom PKP zum Allgemeingiiltigkeitsproblem fiir FO[o] anzugeben. D.h. wir
zeigen, dass bei Eingabe eines Tupels | = (k, (x,y1), ---, (Xk,y«)), das eine
Eingabe fiir's PKP reprisentiert, eine FO[o]-Formel ¢, konstruiert werden kann,
die genau dann allgemeingiiltig ist, wenn [ eine , ja"-Instanz fiir's PKP ist (d.h.
es gibt n>1und i,... 0, € [k], sodass x;,---x, =i Vi)

Wenn das Allgemeingiiltigkeitsproblem fiir FO[o] entscheidbar wire, wire daher
auch das PKP entscheidbar.
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Die Unentscheidbarkeit der Logik erster Stufe

Satz 4.40
Sei o:={R,fy, fi,c}, wobei c ein Konstantensymbol, R ein 2-stelliges
Relationssymbol und fy, fi zwei 1-stellige Funktionssymbole sind.

Das Allgemeingiiltigkeitsproblem fiir FO[o] ist nicht entscheidbar.

Beweis: Auf Grund der Unentscheidbarkeit des PKP reicht es, eine Reduktion
vom PKP zum Allgemeingiiltigkeitsproblem fiir FO[o] anzugeben. D.h. wir
zeigen, dass bei Eingabe eines Tupels | = (k, (x,y1), ---, (Xk,y«)), das eine
Eingabe fiir's PKP reprisentiert, eine FO[o]-Formel ¢, konstruiert werden kann,
die genau dann allgemeingiiltig ist, wenn [ eine , ja"-Instanz fiir's PKP ist (d.h.
es gibt n>1und i,... 0, € [k], sodass x;,---x, =i Vi)

Wenn das Allgemeingiiltigkeitsproblem fiir FO[o] entscheidbar wire, wire daher
auch das PKP entscheidbar.

Zur Konstruktion der Formel ¢, gehen wir in mehreren Schritten vor.
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Schritt 1: Fiir jede Eingabe [ = (k, (X1, %1)5 <+ ey (xk,yk)) fiir das PKP
definiere eine o-Struktur A;, so dass gilt:
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Schritt 1: Fiir jede Eingabe [ = (k, (X1, %1)5 <+ ey (xk,yk)) fiir das PKP
definiere eine o-Struktur A;, so dass gilt:

A E3zR(z,z) <= | ist eine ,ja"-Instanz fiir's PKP
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Schritt 1: Fiir jede Eingabe [ = (k, (X1, %1)5 <+ ey (xk,yk)) fiir das PKP
definiere eine o-Struktur A;, so dass gilt:

A E3zR(z,z) <= | ist eine ,ja"-Instanz fiir's PKP, d.h. es gibt
n>1lundiy,... i, € [k], sodass x;---x;, =
Yip = Yip-
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Schritt 1: Fiir jede Eingabe /= (k, (xi, 1), (xk,yx)) fiir das PKP

definiere eine o-Struktur A;, so dass gilt:

A E3zR(z,z) <= | ist eine ,ja"-Instanz fiir's PKP, d.h. es gibt
n>=1lundi,..., i, € [K], so dass x; - -x;, =

Yior Yin-

Dazu wahlen wir A; wie folgt:
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Schritt 2: Konstruiere FO[o]-Formeln 1?5 und 7", die A, hinreichend
genau beschreiben.
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Schritt 2: Konstruiere FO[o]-Formeln 1?5 und 7", die A, hinreichend
genau beschreiben.

Die Formel 7% soll besagen, dass die Relation R die Tupel (x;, ;) fiir alle
J € [K] enthélt.
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Schritt 2: Konstruiere FO[o]-Formeln /7% und /7' die A, hinreichend
genau beschreiben.

Die Formel 7% soll besagen, dass die Relation R die Tupel (x;, ;) fiir alle
J € [K] enthélt.

Die Formel ’tﬁfCh’iff soll besagen, dass die Relation R abgeschlossen ist unter
Konkatenation mit (x;,y;); d-h.: Ist (u,v) € R4 und j € [K], so ist auch
(ux;j, vyj) € R,
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Schritt 2: Konstruiere FO[o]-Formeln /7% und /7' die A, hinreichend
genau beschreiben.

Die Formel 7% soll besagen, dass die Relation R die Tupel (x;, ;) fiir alle
J € [K] enthélt.

Die Formel ’(bfcmitf soll besagen, dass die Relation R abgeschlossen ist unter
Konkatenation mit (x;,y;); d-h.: Ist (u,v) € R4 und j € [K], so ist auch
(ux;j, vyj) € R,

Um dies durch FO[o]-Formeln zu formulieren, nutzen wir folgende
Schreibweisen:
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Schritt 3:  Setze ¢, = ( (w7t A ppehritt) — 3z R(z, z) )

Klar: Es gibt einen Algorithmus, der bei Eingabe von / die Formel ¢,
konstruiert.

Behauptung 1:

py ist allgemeingiiltig <= [ ist eine ,,ja"“-Instanz fiir's PKP.
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Schritt 3:  Setze ¢, = ( (w7t A ppehritt) — 3z R(z, z) )

Klar: Es gibt einen Algorithmus, der bei Eingabe von / die Formel ¢,
konstruiert.

Behauptung 1:

py ist allgemeingiiltig <= [ ist eine ,,ja"“-Instanz fiir's PKP.

Behauptung 2: Fiir alle (u,v) € R4 gilt:  (h(u), h(v)) € RE.
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Aus Satz 4.39, Satz 4.40 und den bekannten Zusammenhingen zwischen
semi-entscheidbaren und entscheidbaren Problemen, sowie den Korrespondenzen
zwischen Allgemeingiiltigkeit, (Un)Erfiillbarkeit und logischer Folgerung, erhilt

man leicht:

Korollar 4.41
Sei o die Signatur aus Satz 4.40. Dann gilt:

(a) Das Aligemeingtiltigkeitsproblem fiir FO[o] ist
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Aus Satz 4.39, Satz 4.40 und den bekannten Zusammenhingen zwischen
semi-entscheidbaren und entscheidbaren Problemen, sowie den Korrespondenzen
zwischen Allgemeingiiltigkeit, (Un)Erfiillbarkeit und logischer Folgerung, erhilt

man leicht:

Korollar 4.41
Sei o die Signatur aus Satz 4.40. Dann gilt:

(a) Das Allgemeingiiltigkeitsproblem fiir FO[o] ist semi-entscheidbar
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Aus Satz 4.39, Satz 4.40 und den bekannten Zusammenhingen zwischen
semi-entscheidbaren und entscheidbaren Problemen, sowie den Korrespondenzen
zwischen Allgemeingiiltigkeit, (Un)Erfiillbarkeit und logischer Folgerung, erhilt

man leicht:

Korollar 4.41
Sei o die Signatur aus Satz 4.40. Dann gilt:

(a) Das Aligemeingiiltigkeitsproblem fiir FO[o] ist semi-entscheidbar aber
nicht entscheidbar.
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Aus Satz 4.39, Satz 4.40 und den bekannten Zusammenhingen zwischen
semi-entscheidbaren und entscheidbaren Problemen, sowie den Korrespondenzen
zwischen Allgemeingiiltigkeit, (Un)Erfiillbarkeit und logischer Folgerung, erhilt

man leicht:

Korollar 4.41

Sei o die Signatur aus Satz 4.40. Dann gilt:

(a) Das Aligemeingiiltigkeitsproblem fiir FO[o] ist semi-entscheidbar aber
nicht entscheidbar.

(b) Das Folgerungsproblem fiir FO[o] ist
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Aus Satz 4.39, Satz 4.40 und den bekannten Zusammenhingen zwischen
semi-entscheidbaren und entscheidbaren Problemen, sowie den Korrespondenzen
zwischen Allgemeingiiltigkeit, (Un)Erfiillbarkeit und logischer Folgerung, erhilt

man leicht:

Korollar 4.41

Sei o die Signatur aus Satz 4.40. Dann gilt:

(a) Das Aligemeingiiltigkeitsproblem fiir FO[o] ist semi-entscheidbar aber
nicht entscheidbar.

(b) Das Folgerungsproblem fiir FO[o] ist semi-entscheidbar
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Aus Satz 4.39, Satz 4.40 und den bekannten Zusammenhingen zwischen
semi-entscheidbaren und entscheidbaren Problemen, sowie den Korrespondenzen
zwischen Allgemeingiiltigkeit, (Un)Erfiillbarkeit und logischer Folgerung, erhilt

man leicht:

Korollar 4.41
Sei o die Signatur aus Satz 4.40. Dann gilt:

(a) Das Aligemeingiiltigkeitsproblem fiir FO[o] ist semi-entscheidbar aber
nicht entscheidbar.

(b) Das Folgerungsproblem fiir FO[o] ist semi-entscheidbar
aber nicht entscheidbar.

Version vom 25. Januar 2024 Folie 348
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Aus Satz 4.39, Satz 4.40 und den bekannten Zusammenhingen zwischen
semi-entscheidbaren und entscheidbaren Problemen, sowie den Korrespondenzen
zwischen Allgemeingiiltigkeit, (Un)Erfiillbarkeit und logischer Folgerung, erhilt

man leicht:
Korollar 4.41
Sei o die Signatur aus Satz 4.40. Dann gilt:

(a) Das Aligemeingiiltigkeitsproblem fiir FO[o] ist semi-entscheidbar aber
nicht entscheidbar.

(b) Das Folgerungsproblem fiir FO[o] ist semi-entscheidbar
aber nicht entscheidbar.

(c) Das Unerfiillbarkeitsproblem fiir FO[o] ist
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Aus Satz 4.39, Satz 4.40 und den bekannten Zusammenhingen zwischen
semi-entscheidbaren und entscheidbaren Problemen, sowie den Korrespondenzen
zwischen Allgemeingiiltigkeit, (Un)Erfiillbarkeit und logischer Folgerung, erhilt

man leicht:
Korollar 4.41
Sei o die Signatur aus Satz 4.40. Dann gilt:

(a) Das Aligemeingiiltigkeitsproblem fiir FO[o] ist semi-entscheidbar aber
nicht entscheidbar.

(b) Das Folgerungsproblem fiir FO[o] ist semi-entscheidbar
aber nicht entscheidbar.

(c) Das Unerfiillbarkeitsproblem fiir FO[o] ist
semi-entscheidbar
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Aus Satz 4.39, Satz 4.40 und den bekannten Zusammenhingen zwischen
semi-entscheidbaren und entscheidbaren Problemen, sowie den Korrespondenzen
zwischen Allgemeingiiltigkeit, (Un)Erfiillbarkeit und logischer Folgerung, erhilt

man leicht:
Korollar 4.41
Sei o die Signatur aus Satz 4.40. Dann gilt:

(a) Das Aligemeingiiltigkeitsproblem fiir FO[o] ist semi-entscheidbar aber
nicht entscheidbar.

(b) Das Folgerungsproblem fiir FO[o] ist semi-entscheidbar
aber nicht entscheidbar.

(c) Das Unerfiillbarkeitsproblem fiir FO[o] ist
semi-entscheidbar aber nicht entscheidbar.
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Aus Satz 4.39, Satz 4.40 und den bekannten Zusammenhingen zwischen
semi-entscheidbaren und entscheidbaren Problemen, sowie den Korrespondenzen
zwischen Allgemeingiiltigkeit, (Un)Erfiillbarkeit und logischer Folgerung, erhilt

man leicht:
Korollar 4.41
Sei o die Signatur aus Satz 4.40. Dann gilt:

(a) Das Aligemeingiiltigkeitsproblem fiir FO[o] ist semi-entscheidbar aber
nicht entscheidbar.

(b) Das Folgerungsproblem fiir FO[o] ist semi-entscheidbar
aber nicht entscheidbar.

(c) Das Unerfiillbarkeitsproblem fiir FO[o] ist
semi-entscheidbar aber nicht entscheidbar.

(d) Das Erfiillbarkeitsproblem fiir FO[o] ist
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Aus Satz 4.39, Satz 4.40 und den bekannten Zusammenhingen zwischen
semi-entscheidbaren und entscheidbaren Problemen, sowie den Korrespondenzen
zwischen Allgemeingiiltigkeit, (Un)Erfiillbarkeit und logischer Folgerung, erhilt
man leicht:

Korollar 4.41
Sei o die Signatur aus Satz 4.40. Dann gilt:

(a) Das Aligemeingiiltigkeitsproblem fiir FO[o] ist semi-entscheidbar aber
nicht entscheidbar.

(b) Das Folgerungsproblem fiir FO[o] ist semi-entscheidbar
aber nicht entscheidbar.

(c) Das Unerfiillbarkeitsproblem fiir FO[o] ist
semi-entscheidbar aber nicht entscheidbar.

(d) Das Erfiillbarkeitsproblem fiir FO[o] ist
nicht semi-entscheidbar.
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Aus Satz 4.39, Satz 4.40 und den bekannten Zusammenhingen zwischen
semi-entscheidbaren und entscheidbaren Problemen, sowie den Korrespondenzen
zwischen Allgemeingiiltigkeit, (Un)Erfiillbarkeit und logischer Folgerung, erhilt

man leicht:

Korollar 4.41
Sei o die Signatur aus Satz 4.40. Dann gilt:

(a) Das Aligemeingiiltigkeitsproblem fiir FO[o] ist semi-entscheidbar aber
nicht entscheidbar.

(b) Das Folgerungsproblem fiir FO[o] ist semi-entscheidbar
aber nicht entscheidbar.

(c) Das Unerfiillbarkeitsproblem fiir FO[o] ist
semi-entscheidbar aber nicht entscheidbar.

(d) Das Erfiillbarkeitsproblem fiir FO[o] ist
nicht semi-entscheidbar.

Beweis: Ubung.
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Bemerkung 4.42

Man kann zeigen, dass

(1) Korollar 4.41 fiir jede Signatur o gilt, die mindestens ein Relationssymbol
der Stelligkeit > 2 enthilt
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Bemerkung 4.42

Man kann zeigen, dass

(1) Korollar 4.41 fiir jede Signatur o gilt, die mindestens ein Relationssymbol
der Stelligkeit > 2 enthélt

(2) fiir Signaturen o, die ausschlieBlich aus Konstantensymbolen und
Relationssymbolen der Stelligkeit 1 bestehen, jedes der in Korollar 4.41
betrachteten Probleme entscheidbar ist.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.4: Die Grenzen der Berechenbarkeit

Bemerkung 4.42

Man kann zeigen, dass

(1) Korollar 4.41 fiir jede Signatur o gilt, die mindestens ein Relationssymbol
der Stelligkeit > 2 enthélt

(2) fiir Signaturen o, die ausschlieBlich aus Konstantensymbolen und
Relationssymbolen der Stelligkeit 1 bestehen, jedes der in Korollar 4.41
betrachteten Probleme entscheidbar ist.

(Hier ohne Beweis)
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Abschnitt 4.5:

Der Satz von Herbrand



Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.5: Der Satz von Herbrand

® |m letzten Abschnitt haben wir gesehen, dass es keinen Algorithmus gibt, der das
Erfiillbarkeitsproblem und das Allgemeingiiltigkeitsproblem der Logik erster Stufe
[6st und stets terminiert.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.5: Der Satz von Herbrand

® |m letzten Abschnitt haben wir gesehen, dass es keinen Algorithmus gibt, der das
Erfiillbarkeitsproblem und das Allgemeingiiltigkeitsproblem der Logik erster Stufe
[6st und stets terminiert.

® Trotzdem méchte man fiir verschiedene Anwendungsbereiche Verfahren haben,
die das Erfiillbarkeits- oder das Allgemeingiiltigkeitsproblem der Logik erster Stufe
,,S0 gut wie moglich" 16sen.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.5: Der Satz von Herbrand

® |m letzten Abschnitt haben wir gesehen, dass es keinen Algorithmus gibt, der das
Erfiillbarkeitsproblem und das Allgemeingiiltigkeitsproblem der Logik erster Stufe
[6st und stets terminiert.

® Trotzdem méchte man fiir verschiedene Anwendungsbereiche Verfahren haben,
die das Erfiillbarkeits- oder das Allgemeingiiltigkeitsproblem der Logik erster Stufe
,,S0 gut wie moglich" 16sen.

® Einen Ansatz fiir die Entwicklung solcher, in der Praxis nutzbarer, Verfahren
liefert die Herbrand-Theorie, die nach dem franzésischen Logiker Jacques
Herbrand (1908-1931) benannt ist.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.5: Der Satz von Herbrand

Im letzten Abschnitt haben wir gesehen, dass es keinen Algorithmus gibt, der das
Erfiillbarkeitsproblem und das Allgemeingiiltigkeitsproblem der Logik erster Stufe
[6st und stets terminiert.

® Trotzdem méchte man fiir verschiedene Anwendungsbereiche Verfahren haben,
die das Erfiillbarkeits- oder das Allgemeingiiltigkeitsproblem der Logik erster Stufe
,,S0 gut wie moglich" 16sen.

® Einen Ansatz fiir die Entwicklung solcher, in der Praxis nutzbarer, Verfahren
liefert die Herbrand-Theorie, die nach dem franzésischen Logiker Jacques
Herbrand (1908-1931) benannt ist.

® Ziel dieses Abschnitts ist, den Satz von Herbrand vorzustellen, der das
Allgemeingiiltigkeits- bzw. das Erfiillbarkeitsproblem der Logik erster Stufe auf
das entsprechende Problem der Aussagenlogik zuriickfiihrt.
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Notationen

® |n diesem Abschnitt bezeichnet o stets eine endliche oder abzihlbare Signatur,
die mindestens ein Konstantensymbol enthilt.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.5: Der Satz von Herbrand

Notationen

® |n diesem Abschnitt bezeichnet o stets eine endliche oder abzihlbare Signatur,
die mindestens ein Konstantensymbol enthilt.

® Die Menge aller quantorenfreien FO[o]-Formeln bezeichnen wir mit QF,,.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.5: Der Satz von Herbrand

Notationen

® |n diesem Abschnitt bezeichnet o stets eine endliche oder abzihlbare Signatur,
die mindestens ein Konstantensymbol enthilt.

® Die Menge aller quantorenfreien FO[o]-Formeln bezeichnen wir mit QF,,.

® Ein Grundterm uber o ist ein variablenfreier o-Term, d.h., ein o-Term, der keine
Variable enthilt.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.5: Der Satz von Herbrand

Notationen
® |n diesem Abschnitt bezeichnet o stets eine endliche oder abzihlbare Signatur,
die mindestens ein Konstantensymbol enthilt.

® Die Menge aller quantorenfreien FO[o]-Formeln bezeichnen wir mit QF,,.

® Ein Grundterm uber o ist ein variablenfreier o-Term, d.h., ein o-Term, der keine

Variable enthilt.
Die Menge aller Grundterme iiber o bezeichnen wir mit GT,.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.5: Der Satz von Herbrand

Notationen
® |n diesem Abschnitt bezeichnet o stets eine endliche oder abzihlbare Signatur,
die mindestens ein Konstantensymbol enthilt.

® Die Menge aller quantorenfreien FO[o]-Formeln bezeichnen wir mit QF,,.

® Ein Grundterm uber o ist ein variablenfreier o-Term, d.h., ein o-Term, der keine

Variable enthilt.
Die Menge aller Grundterme iiber o bezeichnen wir mit GT,.

Beispiele:

(a) Sei o:={c, /1, g/2, R/2}.
Grundterme iiber o sind dann z.B.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.5: Der Satz von Herbrand

Notationen
® |n diesem Abschnitt bezeichnet o stets eine endliche oder abzihlbare Signatur,
die mindestens ein Konstantensymbol enthilt.

® Die Menge aller quantorenfreien FO[o]-Formeln bezeichnen wir mit QF,,.

® Ein Grundterm uber o ist ein variablenfreier o-Term, d.h., ein o-Term, der keine

Variable enthilt.
Die Menge aller Grundterme iiber o bezeichnen wir mit GT,.

Beispiele:

(a) Sei o:={c, /1, g/2, R/2}.
Grundterme iiber o sind dann z.B.

c, f(c), glc,c), f(f(c)), fle(c,c)), &lc,f(c)), &(f(c) c),
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.5: Der Satz von Herbrand

Notationen

® |n diesem Abschnitt bezeichnet o stets eine endliche oder abzihlbare Signatur,
die mindestens ein Konstantensymbol enthilt.

® Die Menge aller quantorenfreien FO[o]-Formeln bezeichnen wir mit QF,,.

® Ein Grundterm uber o ist ein variablenfreier o-Term, d.h., ein o-Term, der keine

Variable enthilt.
Die Menge aller Grundterme iiber o bezeichnen wir mit GT,.

Beispiele:

(a) Sei o:={c, /1, g/2, R/2}.
Grundterme iiber o sind dann z.B.

c, f(c), glc,c), f(f(c)), fle(c,c)), &lc,f(c)), &(f(c) c),

(b) Sei o:={c, R/2}.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.5: Der Satz von Herbrand

Notationen
® |n diesem Abschnitt bezeichnet o stets eine endliche oder abzihlbare Signatur,
die mindestens ein Konstantensymbol enthilt.

® Die Menge aller quantorenfreien FO[o]-Formeln bezeichnen wir mit QF,,.

® Ein Grundterm uber o ist ein variablenfreier o-Term, d.h., ein o-Term, der keine

Variable enthilt.
Die Menge aller Grundterme iiber o bezeichnen wir mit GT,.

Beispiele:

(a) Sei o:={c, /1, g/2, R/2}.
Grundterme iiber o sind dann z.B.

c, f(c), glc,c), f(f(c)), fle(c,c)), &lc,f(c)), &(f(c) c),

(b) Sei o:={c, R/2}.
Dann ist ¢ der einzige Grundterm iiber o. D.h.

GT, = {c}

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 351



Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.5: Der Satz von Herbrand

Herbrandstrukturen

Definition 4.43

Sei o eine Signatur, die mindestens ein Konstantensymbol enthilt.
Eine o-Herbrandstruktur ist eine o-Struktur A mit folgenden Eigenschaften:
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.5: Der Satz von Herbrand

Herbrandstrukturen

Definition 4.43

Sei o eine Signatur, die mindestens ein Konstantensymbol enthilt.
Eine o-Herbrandstruktur ist eine o-Struktur A mit folgenden Eigenschaften:
® Das Universum A von A ist genau die Menge GT, aller Grundterme iiber o (d.h.

aller variablenfreien o-Terme).
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.5: Der Satz von Herbrand

Herbrandstrukturen

Definition 4.43
Sei o eine Signatur, die mindestens ein Konstantensymbol enthilt.
Eine o-Herbrandstruktur ist eine o-Struktur A mit folgenden Eigenschaften:

® Das Universum A von A ist genau die Menge GT, aller Grundterme iiber o (d.h.
aller variablenfreien o-Terme).

e Fiir jedes Konstantensymbol ¢ € o ist ¢ =
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Herbrandstrukturen

Definition 4.43
Sei o eine Signatur, die mindestens ein Konstantensymbol enthilt.
Eine o-Herbrandstruktur ist eine o-Struktur A mit folgenden Eigenschaften:

® Das Universum A von A ist genau die Menge GT, aller Grundterme iiber o (d.h.
aller variablenfreien o-Terme).

e Fiir jedes Konstantensymbol ¢ € o ist ¢ = c.
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Herbrandstrukturen

Definition 4.43
Sei o eine Signatur, die mindestens ein Konstantensymbol enthilt.
Eine o-Herbrandstruktur ist eine o-Struktur A mit folgenden Eigenschaften:
® Das Universum A von A ist genau die Menge GT, aller Grundterme iiber o (d.h.
aller variablenfreien o-Terme).
A

® Fiir jedes Konstantensymbol c € g ist ¢” = c.

® Fiir jedes Funktionssymbol f € o, fiir k := ar(f), und fiir alle variablenfreien
o-Terme ti,...,tx € Alist

fA(tl,...,tk) =

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 352



Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.5: Der Satz von Herbrand

Herbrandstrukturen

Definition 4.43
Sei o eine Signatur, die mindestens ein Konstantensymbol enthilt.
Eine o-Herbrandstruktur ist eine o-Struktur A mit folgenden Eigenschaften:
® Das Universum A von A ist genau die Menge GT, aller Grundterme iiber o (d.h.
aller variablenfreien o-Terme).
A

® Fiir jedes Konstantensymbol c € g ist ¢” = c.

® Fiir jedes Funktionssymbol f € o, fiir k := ar(f), und fiir alle variablenfreien
o-Terme ti,...,tx € Alist

fA(tl,...,tk) = f(i‘1,...,tk).
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Herbrandstrukturen

Definition 4.43
Sei o eine Signatur, die mindestens ein Konstantensymbol enthilt.
Eine o-Herbrandstruktur ist eine o-Struktur A mit folgenden Eigenschaften:
® Das Universum A von A ist genau die Menge GT, aller Grundterme iiber o (d.h.
aller variablenfreien o-Terme).
A

® Fiir jedes Konstantensymbol c € g ist ¢” = c.

® Fiir jedes Funktionssymbol f € o, fiir k := ar(f), und fiir alle variablenfreien
o-Terme ti,...,tx € Alist

f'A(tl,...,tk) = f(i‘1,...,tk).

Beachte: Alle o-Herbrandstrukturen haben dasselbe Universum und dieselbe
Interpretation der Konstanten- und Funktionssymbole.
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Herbrandstrukturen

Definition 4.43

Sei o eine Signatur, die mindestens ein Konstantensymbol enthilt.
Eine o-Herbrandstruktur ist eine o-Struktur A mit folgenden Eigenschaften:
® Das Universum A von A ist genau die Menge GT, aller Grundterme iiber o (d.h.

aller variablenfreien o-Terme).
A

® Fiir jedes Konstantensymbol c € g ist ¢” = c.
® Fiir jedes Funktionssymbol f € o, fiir k := ar(f), und fiir alle variablenfreien
o-Terme ti,...,tx € Alist
f'A(tl,...,tk) = f(t1,...,tk).

Beachte: Alle o-Herbrandstrukturen haben dasselbe Universum und dieselbe
Interpretation der Konstanten- und Funktionssymbole.
Lediglich die Interpretation der Relationssymbole kann in o-Herbrandstrukturen frei

gewahlt werden.
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Herbrandstrukturen

Definition 4.43
Sei o eine Signatur, die mindestens ein Konstantensymbol enthilt.
Eine o-Herbrandstruktur ist eine o-Struktur A mit folgenden Eigenschaften:
® Das Universum A von A ist genau die Menge GT, aller Grundterme iiber o (d.h.

aller variablenfreien o-Terme).
A

® Fiir jedes Konstantensymbol c € g ist ¢” = c.
® Fiir jedes Funktionssymbol f € o, fiir k := ar(f), und fiir alle variablenfreien
o-Terme ti,...,tx € Aist
f'A(tl,...,tk) = f(t1,...,tk).

Beachte: Alle o-Herbrandstrukturen haben dasselbe Universum und dieselbe
Interpretation der Konstanten- und Funktionssymbole.

Lediglich die Interpretation der Relationssymbole kann in o-Herbrandstrukturen frei
gewahlt werden.

Zur Angabe einer konkreten o-Herbrandstruktur A geniigt es also, die Interpretation
der Relationssymbole anzugeben, d.h. fiir jedes Relationssymbol R € o die Relation

R* anzugeben.
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Beispiel

Sei 0:={c, R/2}.

Frage: Wie sehen o-Herbrandstrukturen aus?
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Beispiel

Sei 0:={c, R/2}.
Frage: Wie sehen o-Herbrandstrukturen aus?
Antwort: Fiir jede o-Herbrandstruktur A gilt:
® Universum: A= {c}
o cA=c¢

o RAC {c}? d.h.

RY =90 oder R* = {(c,c) }.

Somit gibt es genau 2 verschiedene o-Herbrandstrukturen.
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Bemerkung 4.44

Sei A eine o-Herbrandstruktur.
Man sieht leicht, dass Folgendes gilt:

® Fiir jeden variablenfreien o-Term t (d.h. fiir jedes t € GT, = A) gilt:

M =
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Bemerkung 4.44

Sei A eine o-Herbrandstruktur.
Man sieht leicht, dass Folgendes gilt:

® Fiir jeden variablenfreien o-Term t (d.h. fiir jedes t € GT, = A) gilt:

[ = t.
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Bemerkung 4.44

Sei A eine o-Herbrandstruktur.
Man sieht leicht, dass Folgendes gilt:

® Fiir jeden variablenfreien o-Term t (d.h. fiir jedes t € GT, = A) gilt:

[ = t.

® Fiir jede quantorenfreie FO[o]-Formel ¢ gilt:
Ist var(¢) C {x1,...,Xxp} und sind t1,...,t, € GT,, so gilt:

A E Yt ..., t] = A | ol

Dabei ist < tl’ i’; die Formel, die aus 1 entsteht, indem fiir jedes i € [n] jedes
Vorkommen von x; ersetzt wird durch den Grundterm t;.
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Herbrand-Modelle und gleichheitsfreie Formeln in
Skolemform

Definition 4.45
(a) Ein Herbrand-Modell eines FO[o]-Satzes ¢ ist eine o-Herbrandstruktur, die ¢

erfiillt.
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Herbrand-Modelle und gleichheitsfreie Formeln in
Skolemform

Definition 4.45
(a) Ein Herbrand-Modell eines FO[o]-Satzes ¢ ist eine o-Herbrandstruktur, die ¢

erfiillt.
(b) Eine FO[o]-Formel ¢ heiBt gleichheitsfrei, falls das Symbol , =" nicht in ¢

vorkommt.
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Herbrand-Modelle und gleichheitsfreie Formeln in
Skolemform

Definition 4.45
(a) Ein Herbrand-Modell eines FO[o]-Satzes ¢ ist eine o-Herbrandstruktur, die ¢

erfiillt.

(b) Eine FO[o]-Formel ¢ heiBt gleichheitsfrei, falls das Symbol , =" nicht in ¢
vorkommt.

(c) Eine FO[o]-Formel ist in Skolemform (auch: Skolem-Normalform), falls sie von
der Form

VX1 . -VX,, 7,/)
ist, wobei gilt: n >0, xi,...,x, sind paarweise verschiedene Variablen, und 1
ist eine quantorenfreie FO[o]-Formel.
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Herbrand-Modelle und gleichheitsfreie Formeln in
Skolemform

Definition 4.45
(a) Ein Herbrand-Modell eines FO[o]-Satzes ¢ ist eine o-Herbrandstruktur, die ¢

erfiillt.

(b) Eine FO[o]-Formel ¢ heiBt gleichheitsfrei, falls das Symbol , =" nicht in ¢
vorkommt.

(c) Eine FO[o]-Formel ist in Skolemform (auch: Skolem-Normalform), falls sie von
der Form

VX1 . -VX,, 7,/)
ist, wobei gilt: n >0, xi,...,x, sind paarweise verschiedene Variablen, und 1
ist eine quantorenfreie FO[o]-Formel.

Satz 4.46

Sei o eine Signatur, die mindestens ein Konstantensymbol besitzt.
Fiir jeden gleichheitsfreien FO[o]-Satz ¢ in Skolemform gilt:

@ ist erfiillbar <= @ besitzt ein Herbrand-Modell.
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Die Herbrand-Expansion eines Satzes in Skolemform

Definition 4.47
Sei ¢ ein gleichheitsfreier FO[o]-Satz in Skolemform, d.h. ¢ ist von der Form

Vxi---Vx, ¥, wobei ¢ quantorenfrei und gleichheitsfrei ist.
Die Herbrand-Expansion von ¢ ist die Formelmenge
HE et 4yt € GT, }

-----

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 356



Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.5: Der Satz von Herbrand

Die Herbrand-Expansion eines Satzes in Skolemform

Definition 4.47
Sei ¢ ein gleichheitsfreier FO[o]-Satz in Skolemform, d.h. ¢ ist von der Form

Vxi---Vx, ¥, wobei ¢ quantorenfrei und gleichheitsfrei ist.
Die Herbrand-Expansion von ¢ ist die Formelmenge

-----

HE(e) = {wﬁii : t1,...,tn€GTU}

D.h.: Jede Formel in HE(¢) entsteht, indem in der quantorenfreien Formel ¢ jede
Variable x; ersetzt wird durch einen Grundterm t;.
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Die Herbrand-Expansion eines Satzes in Skolemform

Definition 4.47

Sei ¢ ein gleichheitsfreier FO[o]-Satz in Skolemform, d.h. ¢ ist von der Form
Vxi---Vx, ¥, wobei ¢ quantorenfrei und gleichheitsfrei ist.

Die Herbrand-Expansion von ¢ ist die Formelmenge

HE { g st oyt € GT, }

D.h.: Jede Formel in HE(¢) entsteht, indem in der quantorenfreien Formel ¢ jede
Variable x; ersetzt wird durch einen Grundterm t;.

Beispiel 4.48
Sei 0 ={c, f/1, g/2, R/3} undsei ¢ = VxVyVz R(x,f(y), g(z,x)).
Dann gehdren z.B. die folgenden Formeln zur Herbrand-Expansion HE(y):
® R(c,f(c),g(c,c)) (dies erh3lt man, indem jede der Variablen x, y, z durch den
Grundterm c ersetzt wird)
® R(f(c),f(c),glc, f(c))) (dies erhdlt man, indem x durch den Grundterm f(c) und
jede der Variablen y, z durch den Grundterm c ersetzt wird)
® R(g(c,c),f(f(c)),g(c, glc,c))) (dies erhdlt man, indem Variable x durch den
Grundterm g(c, ¢), Variable y durch den Grundterm f(c) und Variable z durch den

Grundterm ¢ ersetzt wird)
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Die aussagenlogische Version der Herbrand-Expansion

Fiir jeden gleichheitsfreien FO[o]-Satz ¢ in Skolemform gilt:
Jede Formel £ € HE(p) ist quantorenfrei, gleichheitsfrei und variablenfrei,
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Die aussagenlogische Version der Herbrand-Expansion

Fiir jeden gleichheitsfreien FO[o]-Satz ¢ in Skolemform gilt:

Jede Formel £ € HE(yp) ist quantorenfrei, gleichheitsfrei und variablenfrei, und
jede atomare Subformel von ¢ ist von der Form R(ty,...,tx), wobei R € o,

k=ar(R) und ty,...,tx € GT,.
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Die aussagenlogische Version der Herbrand-Expansion

Fiir jeden gleichheitsfreien FO[o]-Satz ¢ in Skolemform gilt:

Jede Formel £ € HE(yp) ist quantorenfrei, gleichheitsfrei und variablenfrei, und
jede atomare Subformel von ¢ ist von der Form R(ty,...,tx), wobei R € o,
k=ar(R) und ty,...,tx € GT,.

Fiir jede solche atomare Formel stellen wir ein Aussagensymbol
XR(tr,...t,) € AS bereit.
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Die aussagenlogische Version der Herbrand-Expansion

Fiir jeden gleichheitsfreien FO[o]-Satz ¢ in Skolemform gilt:

Jede Formel £ € HE(yp) ist quantorenfrei, gleichheitsfrei und variablenfrei, und
jede atomare Subformel von ¢ ist von der Form R(ty,...,tx), wobei R € o,
k=ar(R) und ty,...,tx € GT,.

Fiir jede solche atomare Formel stellen wir ein Aussagensymbol

Xp(tr,...t,) € AS bereit.

Fiir jedes £ € HE(¢p) sei al({) die aussagenlogische Formel, die aus £ entsteht,
indem jede atomare Subformel der Form R(ty, ..., tx) ersetzt wird durch das
Aussagensymbol Xg(t,, .. 1)

Ty
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Die aussagenlogische Version der Herbrand-Expansion

Fiir jeden gleichheitsfreien FO[o]-Satz ¢ in Skolemform gilt:

Jede Formel £ € HE(yp) ist quantorenfrei, gleichheitsfrei und variablenfrei, und
jede atomare Subformel von ¢ ist von der Form R(ty,...,tx), wobei R € o,
k=ar(R) und ty,...,tx € GT,.

Fiir jede solche atomare Formel stellen wir ein Aussagensymbol
XR(tr,...t,) € AS bereit.

Fiir jedes £ € HE(¢p) sei al({) die aussagenlogische Formel, die aus £ entsteht,
indem jede atomare Subformel der Form R(ty, ..., tx) ersetzt wird durch das
Aussagensymbol Xg(t,, .. 1)

Die aussagenlogische Version der Herbrand-Expansion von ¢ ist die Menge

AHE(p) = {al(€) : £€HE(p) }.
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Der Satz von Herbrand
Satz 4.49 (Satz von Godel-Herbrand-Skolem)

Sei o eine Signatur, die mindestens ein Konstantensymbol enthilt.
Fiir jeden gleichheitsfreien FO[o]-Satz ¢ in Skolemform gilt:

@ ist erfiillbar <= die aussagenlogische Formelmenge AHE() ist erfiillbar.
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Der Satz von Herbrand
Satz 4.49 (Satz von Godel-Herbrand-Skolem)

Sei o eine Signatur, die mindestens ein Konstantensymbol enthilt.
Fiir jeden gleichheitsfreien FO[o]-Satz ¢ in Skolemform gilt:
@ ist erfiillbar <= die aussagenlogische Formelmenge AHE() ist erfiillbar.

In Verbindung mit dem Endlichkeitssatz der Aussagenlogik erhalten wir:

Satz 4.50 (Satz von Herbrand)

Sei o eine Signatur, die mindestens ein Konstantensymbol enthilt.
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Der Satz von Herbrand
Satz 4.49 (Satz von Godel-Herbrand-Skolem)

Sei o eine Signatur, die mindestens ein Konstantensymbol enthilt.
Fiir jeden gleichheitsfreien FO[o]-Satz ¢ in Skolemform gilt:
@ ist erfiillbar <= die aussagenlogische Formelmenge AHE() ist erfiillbar.

In Verbindung mit dem Endlichkeitssatz der Aussagenlogik erhalten wir:

Satz 4.50 (Satz von Herbrand)

Sei o eine Signatur, die mindestens ein Konstantensymbol enthilt. Sei ) eine

gleichheitsfreie und quantorenfreie FO[o]-Formel und sei {xi, ..., xn} = frei(y).
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Der Satz von Herbrand
Satz 4.49 (Satz von Godel-Herbrand-Skolem)

Sei o eine Signatur, die mindestens ein Konstantensymbol enthilt.
Fiir jeden gleichheitsfreien FO[o]-Satz ¢ in Skolemform gilt:
@ ist erfiillbar <= die aussagenlogische Formelmenge AHE() ist erfiillbar.

In Verbindung mit dem Endlichkeitssatz der Aussagenlogik erhalten wir:

Satz 4.50 (Satz von Herbrand)

Sei o eine Signatur, die mindestens ein Konstantensymbol enthilt. Sei ) eine

gleichheitsfreie und quantorenfreie FO[o]-Formel und sei {xi, ..., xn} = frei(y).

Dann gilt fiir die FO[o]-Sdtze ¢ :=Vxy -+ Vxp )
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Der Satz von Herbrand
Satz 4.49 (Satz von Godel-Herbrand-Skolem)

Sei o eine Signatur, die mindestens ein Konstantensymbol enthilt.
Fiir jeden gleichheitsfreien FO[o]-Satz ¢ in Skolemform gilt:
@ ist erfiillbar <= die aussagenlogische Formelmenge AHE() ist erfiillbar.

In Verbindung mit dem Endlichkeitssatz der Aussagenlogik erhalten wir:

Satz 4.50 (Satz von Herbrand)

Sei o eine Signatur, die mindestens ein Konstantensymbol enthilt. Sei ) eine

gleichheitsfreie und quantorenfreie FO[o]-Formel und sei {xi, ..., xn} = frei(y).

Dann gilt fiir die FO[o]-Sétze ¢ :=Vx1-+-Vx,0 und ¢’ :=3xq - Ixptp :
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Der Satz von Herbrand
Satz 4.49 (Satz von Godel-Herbrand-Skolem)

Sei o eine Signatur, die mindestens ein Konstantensymbol enthilt.
Fiir jeden gleichheitsfreien FO[o]-Satz ¢ in Skolemform gilt:
@ ist erfiillbar <= die aussagenlogische Formelmenge AHE() ist erfiillbar.

In Verbindung mit dem Endlichkeitssatz der Aussagenlogik erhalten wir:

Satz 4.50 (Satz von Herbrand)

Sei o eine Signatur, die mindestens ein Konstantensymbol enthilt. Sei ) eine

gleichheitsfreie und quantorenfreie FO[o]-Formel und sei {xi, ..., xn} = frei(y).

Dann gilt fiir die FO[o]-Sétze ¢ :=Vx1-+-Vx,0 und ¢’ :=3xq - Ixptp :
(a) ¢ ist erfiillbar <= jede endliche Teilmenge von AHE(yp) ist erfiillbar.
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Der Satz von Herbrand
Satz 4.49 (Satz von Godel-Herbrand-Skolem)

Sei o eine Signatur, die mindestens ein Konstantensymbol enthilt.
Fiir jeden gleichheitsfreien FO[o]-Satz ¢ in Skolemform gilt:
@ ist erfiillbar <= die aussagenlogische Formelmenge AHE() ist erfiillbar.

In Verbindung mit dem Endlichkeitssatz der Aussagenlogik erhalten wir:

Satz 4.50 (Satz von Herbrand)

Sei o eine Signatur, die mindestens ein Konstantensymbol enthilt. Sei ) eine
gleichheitsfreie und quantorenfreie FO[o]-Formel und sei {xi, ..., xn} = frei(y).
Dann gilt fiir die FO[o]-Sétze ¢ :=Vx1-+-Vx,0 und ¢’ :=3xq - Ixptp :

(a) ¢ ist erfiillbar <= jede endliche Teilmenge von AHE(yp) ist erfiillbar.

(b)  ist unerfiillbar <= es gibt eine endliche Teilmenge von AHE(y), die un-
erfiillbar ist.
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Der Satz von Herbrand
Satz 4.49 (Satz von Godel-Herbrand-Skolem)

Sei o eine Signatur, die mindestens ein Konstantensymbol enthilt.
Fiir jeden gleichheitsfreien FO[o]-Satz ¢ in Skolemform gilt:
@ ist erfiillbar <= die aussagenlogische Formelmenge AHE() ist erfiillbar.

In Verbindung mit dem Endlichkeitssatz der Aussagenlogik erhalten wir:

Satz 4.50 (Satz von Herbrand)

Sei o eine Signatur, die mindestens ein Konstantensymbol enthilt. Sei ) eine
gleichheitsfreie und quantorenfreie FO[o]-Formel und sei {xi, ..., xn} = frei(y).
Dann gilt fiir die FO[o]-Sétze ¢ :=Vx1-+-Vx,0 und ¢’ :=3xq - Ixptp :

(a) ¢ ist erfiillbar <= jede endliche Teilmenge von AHE(yp) ist erfiillbar.

(b)  ist unerfiillbar <= es gibt eine endliche Teilmenge von AHE(y), die un-
erfiillbar ist.

(c) ' ist allgemeingiiltig <=
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Der Satz von Herbrand
Satz 4.49 (Satz von Godel-Herbrand-Skolem)

Sei o eine Signatur, die mindestens ein Konstantensymbol enthilt.
Fiir jeden gleichheitsfreien FO[o]-Satz ¢ in Skolemform gilt:
@ ist erfiillbar <= die aussagenlogische Formelmenge AHE() ist erfiillbar.

In Verbindung mit dem Endlichkeitssatz der Aussagenlogik erhalten wir:

Satz 4.50 (Satz von Herbrand)

Sei o eine Signatur, die mindestens ein Konstantensymbol enthilt. Sei ) eine

gleichheitsfreie und quantorenfreie FO[o]-Formel und sei {xi, ..., xn} = frei(y).
Dann gilt fiir die FO[o]-Sétze ¢ :=Vx1-+-Vx,0 und ¢’ :=3xq - Ixptp :
(a) ¢ ist erfiillbar <= jede endliche Teilmenge von AHE(yp) ist erfiillbar.

(b)  ist unerfiillbar <= es gibt eine endliche Teilmenge von AHE(y), die un-
erfiillbar ist.
(c) ' ist allgemeingiiltig <= es gibt eine Zahl m € N und Grundterme
ti1,...,tin fiir alle i € [m], so dass die folgende Formel allgemeingiiltig ist:
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Anwendung des Satzes von Herbrand

Um nachzuweisen, dass ein gleichheitsfreier FO[o]-Satz ¢ in Skolemform unerfiillbar
ist, kann man auf Grund des Satzes von Herbrand wie folgt vorgehen:
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Anwendung des Satzes von Herbrand

Um nachzuweisen, dass ein gleichheitsfreier FO[o]-Satz ¢ in Skolemform unerfiillbar
ist, kann man auf Grund des Satzes von Herbrand wie folgt vorgehen:

Fir i=1,2,3,... tue Folgendes:
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Anwendung des Satzes von Herbrand

Um nachzuweisen, dass ein gleichheitsfreier FO[o]-Satz ¢ in Skolemform unerfiillbar
ist, kann man auf Grund des Satzes von Herbrand wie folgt vorgehen:

Fir i=1,2,3,... tue Folgendes:

(1) Sei & die i-te Formel in AHE(yp)
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Anwendung des Satzes von Herbrand

Um nachzuweisen, dass ein gleichheitsfreier FO[o]-Satz ¢ in Skolemform unerfiillbar
ist, kann man auf Grund des Satzes von Herbrand wie folgt vorgehen:

Fir i=1,2,3,... tue Folgendes:

(1) Sei & die i-te Formel in AHE(p)
(2) Teste, ob die aussagenlogische Formel (&1 A---A&;) unerfiillbar ist.

Version vom 25. Januar 2024 Folie 359

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik



Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.5: Der Satz von Herbrand

Anwendung des Satzes von Herbrand

Um nachzuweisen, dass ein gleichheitsfreier FO[o]-Satz ¢ in Skolemform unerfiillbar
ist, kann man auf Grund des Satzes von Herbrand wie folgt vorgehen:

Fir i=1,2,3,... tue Folgendes:

(1) Sei & die i-te Formel in AHE(p)
(2) Teste, ob die aussagenlogische Formel (&1 A---A&;) unerfiillbar ist.

(3) Falls ja, halte an mit Ausgabe , ¢ ist unerfiillbar"
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Anwendung des Satzes von Herbrand

Um nachzuweisen, dass ein gleichheitsfreier FO[o]-Satz ¢ in Skolemform unerfiillbar
ist, kann man auf Grund des Satzes von Herbrand wie folgt vorgehen:

Fir i=1,2,3,... tue Folgendes:

(1) Sei & die i-te Formel in AHE(yp)
(2) Teste, ob die aussagenlogische Formel (&1 A---A&;) unerfiillbar ist.
(3) Falls ja, halte an mit Ausgabe , ¢ ist unerfiillbar"

Man sieht leicht, dass dies ein Semi-Entscheidungsverfahren ist, das eine gegebene
Formel ¢ auf Unerfiillbarkeit testet.

Durch die Einschrankung auf gleichheitsfreie FO[o]-S&tze in Skolemform scheint dieses

Verfahren auf den ersten Blick nur sehr eingeschrankt anwendbar zu sein.
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Anwendung des Satzes von Herbrand

Um nachzuweisen, dass ein gleichheitsfreier FO[o]-Satz ¢ in Skolemform unerfiillbar
ist, kann man auf Grund des Satzes von Herbrand wie folgt vorgehen:
Fir i=1,2,3,... tue Folgendes:

(1) Sei & die i-te Formel in AHE(yp)
(2) Teste, ob die aussagenlogische Formel (&1 A---A&;) unerfiillbar ist.
(3) Falls ja, halte an mit Ausgabe , ¢ ist unerfiillbar"

Man sieht leicht, dass dies ein Semi-Entscheidungsverfahren ist, das eine gegebene
Formel ¢ auf Unerfiillbarkeit testet.

Durch die Einschrankung auf gleichheitsfreie FO[o]-S&tze in Skolemform scheint dieses
Verfahren auf den ersten Blick nur sehr eingeschrankt anwendbar zu sein.

Im Folgenden zeigen wir jedoch, dass jede FO[o]-Formel in eine zu ihr
erfiillbarkeitsdquivalente Formel der richtigen Form transformiert werden kann.
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Definition 4.51

Seien o1, 02 Signaturen und ¢; eine FO[o;]-Formel, fiir jedes i € {1,2}.

Die Formel ¢, heiBt erfiillbarkeitsdquivalent zu 1, falls gilt:

o st erfiillbar = 1 ist erfiillbar.
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Definition 4.51
Seien o1, 02 Signaturen und ¢; eine FO[o;]-Formel, fiir jedes i € {1,2}.
Die Formel ¢, heiBt erfiillbarkeitsdquivalent zu 1, falls gilt:

o st erfiillbar = 1 ist erfiillbar.

Satz 4.52 (Skolemisierung)

Zu jeder Signatur o gibt es eine Signatur &, so dass jede FO[co]-Formel ¢ in
einen zu  erfiillbarkeitsiquivalenten gleichheitsfreien FO[5]-Satz ¢ in
Skolemform transformiert werden kann.
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Definition 4.51
Seien o1, 02 Signaturen und ¢; eine FO[o;]-Formel, fiir jedes i € {1,2}.
Die Formel ¢, heiBt erfiillbarkeitsdquivalent zu 1, falls gilt:

o st erfiillbar = 1 ist erfiillbar.

Satz 4.52 (Skolemisierung)

Zu jeder Signatur o gibt es eine Signatur &, so dass jede FO[co]-Formel ¢ in
einen zu  erfiillbarkeitsiquivalenten gleichheitsfreien FO[5]-Satz ¢ in
Skolemform transformiert werden kann.

Beispiel 4.53
Die Formel Vx3yVz3u R(x,y,z,u) ist erfiillbarkeitsdquivalent zum folgenden
gleichheitsfreien Satz in Skolemform:
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Definition 4.51
Seien o1, 02 Signaturen und ¢; eine FO[o;]-Formel, fiir jedes i € {1,2}.
Die Formel ¢, heiBt erfiillbarkeitsdquivalent zu 1, falls gilt:

o st erfiillbar = 1 ist erfiillbar.

Satz 4.52 (Skolemisierung)

Zu jeder Signatur o gibt es eine Signatur &, so dass jede FO[co]-Formel ¢ in
einen zu  erfiillbarkeitsiquivalenten gleichheitsfreien FO[5]-Satz ¢ in
Skolemform transformiert werden kann.

Beispiel 4.53
Die Formel Vx3yVz3u R(x,y,z,u) ist erfiillbarkeitsdquivalent zum folgenden
gleichheitsfreien Satz in Skolemform:

VxVz R(X, f(x),z,g(x, z))
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.6: Automatische Theorembeweiser

Einfaches Verfahren (ohne Unifikation)

Seien ¢ und v zwei FO[o]-Formeln.
Ziel: Automatischer Beweis, dass ¢ = ¢ gilt.
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Einfaches Verfahren (ohne Unifikation)

Seien ¢ und v zwei FO[o]-Formeln.
Ziel: Automatischer Beweis, dass ¢ = ¢ gilt.

Dazu reicht es, zu zeigen, dass die Formel (¢ A =) unerfiillbar ist.
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Einfaches Verfahren (ohne Unifikation)

Seien ¢ und v zwei FO[o]-Formeln.
Ziel: Automatischer Beweis, dass ¢ = ¢ gilt.

Dazu reicht es, zu zeigen, dass die Formel (¢ A =) unerfiillbar ist.

Verfahren:
1. Erzeuge einen zu (¢ A =) erfiillbarkeitséquivalenten gleichheitsfreien
FO[&]-Satz x in Skolemform (iiber der erweiterten Signatur &).
Nutze dazu das im Beweis von Satz 4.52 vorgestellte Verfahren.
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Einfaches Verfahren (ohne Unifikation)

Seien ¢ und v zwei FO[o]-Formeln.
Ziel: Automatischer Beweis, dass ¢ = ¢ gilt.

Dazu reicht es, zu zeigen, dass die Formel (¢ A =) unerfiillbar ist.

Verfahren:

1. Erzeuge einen zu (¢ A =) erfiillbarkeitséquivalenten gleichheitsfreien
FO[&]-Satz x in Skolemform (iiber der erweiterten Signatur &).
Nutze dazu das im Beweis von Satz 4.52 vorgestellte Verfahren.

2. Verwende das auf Folie 359 beschriebene Semi-Entscheidungsverfahren, um
zu herauszufinden, ob x unerfiillbar ist.
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Beispiel 4.54
Sei 0 :={R/1,c,f/1},
¢ = R(c) A ¥x3y ((R(x) = R(f(f(y)))) vV R(f(x)))

v = Ix R(F(F(x))).

Dannist (¢ A=) =
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Beispiel 4.54
Sei 0 :={R/1,c,f/1},

¢ = R(c) A V¥x3Iy ((R() = R(F(F(¥))) vV R(F(x)))
v = Ix R(F(F(x))).

Dannist (¢ A=) =
R(c) A ¥x3y ((R() = R(F(F())) V R(F(x))) A —3xR(f((x)))

ein gleichheitsfreier Satz.
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Beispiel 4.54
Sei 0 :={R/1,c,f/1},
¢ = R(c) A ¥x3y ((R(x) = R(f(f(y)))) vV R(f(x)))

v = Ix R(F(F(x))).
Dannist (¢ A=) =
R(c) A ¥x3y ((R() = R(F(F())) V R(F(x))) A —3xR(f((x)))

ein gleichheitsfreier Satz. Eine Umformung in Pranex-Normalform liefert den dazu
dquivalenten Satz
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Beispiel 4.54
Sei 0 :={R/1,c,f/1},
¢ = R(c) A ¥x3y ((R(x) = R(f(f(y)))) vV R(f(x)))

v = Ix R(F(F(x))).
Dannist (¢ A=) =
R(c) A ¥x3y ((R() = R(F(F())) V R(F(x))) A —3xR(f((x)))

ein gleichheitsfreier Satz. Eine Umformung in Pranex-Normalform liefert den dazu
dquivalenten Satz

w3y (R(e) A (=R() Vv RUF(F) V RIFX))) A =R(F(F(x))) ).

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 362



Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.6: Automatische Theorembeweiser

Beispiel 4.54
Sei 0 :={R/1,c,f/1},
¢ = R(c) A ¥x3y ((R(x) = R(f(f(y)))) vV R(f(x)))

v = Ix R(F(F(x))).
Dannist (¢ A=) =
R(c) A ¥x3y ((R() = R(F(F())) V R(F(x))) A —3xR(f((x)))

ein gleichheitsfreier Satz. Eine Umformung in Pranex-Normalform liefert den dazu
dquivalenten Satz

w3y (R(e) A (=R() Vv RUF(F) V RIFX))) A =R(F(F(x))) ).

Wir erweitern die Signatur um ein 1-stelliges Funktionssymbol g und erhalten den dazu
erfiillbarkeitsdquivalenten gleichheitsfreien Satz in Skolemform x =
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Beispiel 4.54
Sei 0 :={R/1,c,f/1},
¢ = R(c) A ¥x3y ((R(x) = R(f(f(y)))) vV R(f(x)))

v = Ix R(F(F(x))).
Dannist (¢ A=) =
R(c) A ¥x3y ((R() = R(F(F())) V R(F(x))) A —3xR(f((x)))

ein gleichheitsfreier Satz. Eine Umformung in Pranex-Normalform liefert den dazu
dquivalenten Satz

w3y (R(e) A (=R() Vv RUF(F) V RIFX))) A =R(F(F(x))) ).

Wir erweitern die Signatur um ein 1-stelliges Funktionssymbol g und erhalten den dazu
erfiillbarkeitsdquivalenten gleichheitsfreien Satz in Skolemform x =

v (R(e) A (=RE) v RF(FE()) V RIFX)) A ~R(F(F(x) )
tiber der Signatur 6 = {R,c,f,g}.
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x = W (R A (RE) Vv RIF(FE() V RIF())) A ~RF(F(x) ).

Fiir jeden Grundterm t € GT; enthilt die aussagenlogische Variante AHE(x) der
Herbrand-Expansion von x die aussagenlogische Formel

& = Xgre) A (ﬁXR ) vV Xr(rre)) vV Xrer( ) A = XR(e(f(t)))-
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X

v (R(e) A (=R() Vv RIF(FE())) v R(F(x))) A =RIF(F(x)) ).

Fiir jeden Grundterm t € GT; enthilt die aussagenlogische Variante AHE(x) der
Herbrand-Expansion von x die aussagenlogische Formel

& = Xrey A (ﬁXR )V Xreiree)) Vo Xres( ) N 2 XR(e(r(n))-

Wir z3hlen die Grundterme in GT; in der folgenden Reihenfolge auf
t=c, t=f(c), ts=g(c), t=>Ff(f(c), t=zg(f(c)),

und z3hlen die Formeln in AHE(x) in derselben Reihenfolge auf, also

&1 :éfu
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X

v (R(e) A (=R() Vv RIF(FE())) v R(F(x))) A =RIF(F(x)) ).

Fiir jeden Grundterm t € GT; enthilt die aussagenlogische Variante AHE(x) der
Herbrand-Expansion von x die aussagenlogische Formel

& = Xrey A (ﬁXR )V Xreiree)) Vo Xres( ) N 2 XR(e(r(n))-

Wir z3hlen die Grundterme in GT; in der folgenden Reihenfolge auf
t=c, t=f(c), ts=g(c), t=>Ff(f(c), t=zg(f(c)),

und z3hlen die Formeln in AHE(x) in derselben Reihenfolge auf, also

& = éfu & = gl‘za
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X

v (R(e) A (=R() Vv RIF(FE())) v R(F(x))) A =RIF(F(x)) ).

Fiir jeden Grundterm t € GT; enthilt die aussagenlogische Variante AHE(x) der
Herbrand-Expansion von x die aussagenlogische Formel

& = Xrey A (ﬁXR )V Xreiree)) Vo Xres( ) N 2 XR(e(r(n))-

Wir z3hlen die Grundterme in GT; in der folgenden Reihenfolge auf
t=c, t=f(c), ts=g(c), t=>Ff(f(c), t=zg(f(c)),

und z3hlen die Formeln in AHE(x) in derselben Reihenfolge auf, also

§1 - étn 52 = gl‘za 53 = &37
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x = W (R A (RE) Vv RIF(FE() V RIF())) A ~RF(F(x) ).

Fiir jeden Grundterm t € GT; enthilt die aussagenlogische Variante AHE(x) der
Herbrand-Expansion von x die aussagenlogische Formel

&= Xre) A ( “Xrw) V Xrren) Vo Xrir( ) A = XR((r(e)-
Wir z3hlen die Grundterme in GT; in der folgenden Reihenfolge auf
ti=c, tb=f(c) ts=g(c), t=7F(f(c)), t=ug(f(c)),
und z3hlen die Formeln in AHE(x) in derselben Reihenfolge auf, also

§1 - étn 52 = gl‘za 53 = &37

Bei dem auf Folie 359 beschriebenen Verfahren wird dann beispielsweise im
Schleifendurchlauf fiir i = 5 getestet,
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x = W (R A (RE) Vv RIF(FE() V RIF())) A ~RF(F(x) ).

Fiir jeden Grundterm t € GT; enthilt die aussagenlogische Variante AHE(x) der
Herbrand-Expansion von x die aussagenlogische Formel

&= Xre) A ( “Xrw) V Xrtren)) V' Xro) ) A = XR((r(e)-
Wir z3hlen die Grundterme in GT; in der folgenden Reihenfolge auf
ti=c, tb=f(c) ts=g(c), t=7F(f(c)), t=ug(f(c)),
und z3hlen die Formeln in AHE(x) in derselben Reihenfolge auf, also

§1 - étn 52 = gl‘za 53 = &37

Bei dem auf Folie 359 beschriebenen Verfahren wird dann beispielsweise im
Schleifendurchlauf fiir i = 5 getestet, ob die aussagenlogische Formel

(&G N & NG A &G ANE)

unerfiillbar ist.
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x = W (R A (RE) Vv RIF(FE() V RIF())) A ~RF(F(x) ).

Fiir jeden Grundterm t € GT; enthilt die aussagenlogische Variante AHE(x) der
Herbrand-Expansion von x die aussagenlogische Formel

&= Xre) A ( “Xrw) V Xrtren)) V' Xro) ) A = XR((r(e)-
Wir z3hlen die Grundterme in GT; in der folgenden Reihenfolge auf
ti=c, tb=f(c) ts=g(c), t=7F(f(c)), t=ug(f(c)),
und z3hlen die Formeln in AHE(x) in derselben Reihenfolge auf, also

§1 - étn 52 = gfza "53 = &37

Bei dem auf Folie 359 beschriebenen Verfahren wird dann beispielsweise im
Schleifendurchlauf fiir i = 5 getestet, ob die aussagenlogische Formel

(&G N & NG A &G ANE)

unerfiillbar ist. Dazu kénnen wir beispielsweise das Resolutionsverfahren oder den
DPLL-Algorithmus anwenden.
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In unserem Beispiel entspricht die Formel (51 A---A&s) der Klauselmenge
r:= {{XR(C)} ,
{ = XRre) » Xrit(r(e(en) » Xrirep b > " Xrerren t s
{2 XR(r(0)) » Xre(r(atr(e))) » Xeerreny b A~ Xrieeeren) oo
£(c)) » XR(F(F(a(e(0))) » XR((e(e) T+ L " Xr(r(r(g(e)) }
{2 XR(r(r0)) » XR(F(F(F(F))) » XRer(rre)) T o L XRee(rcr(re) b

{ ~XRe(r(e)) » Xr(e(F(ear())) » Xr(etre)) T+ { " Xrrratron) + }
Wir konstruieren eine Resolutionswiderlegung fiir I':

1) { X} in T

@) {Xrie) » Xris(reten)  Xrir(en ¥ in T

(3) {XR(,c(,c(g(C)))) s XR(F(c) } Resolvente aus 1,2
@ A Xre#eon in T

(5) { Xrer(ey } Resolvente aus 3,4
6)  {Xrirep » Xr(r (f(g( @) » Xr(r(rey b in T

(M A Xr((rtsr@)) » Xrirtren) ¥ Resolvente aus 5,6
®)  { " Xriry) } inT

(9) { Xrer(retrony) Resolvente aus 7,8
(10)  {~Xr((re(ron) inT

(11) o0 Resolvente aus 9,10
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Somit ist ' unerfiillbar (gem&B Satz 2.59). Das auf Folie 359 angegebene
Verfahren hilt daher (spatestens) im Schleifendurchlauf fiir i = 5 mit der

Ausgabe
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Somit ist ' unerfiillbar (gem&B Satz 2.59). Das auf Folie 359 angegebene
Verfahren hilt daher (spatestens) im Schleifendurchlauf fiir i = 5 mit der
Ausgabe ,, x ist unerfiillbar” an. Da x erfiillbarkeitsdquivalent zur Formel

(¢ A ) ist, wissen wir also, dass ¢ = v gilt.
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Kapitel 4: Grundlagen des automatischen SchlieBens - Abschnitt 4.6: Automatische Theorembeweiser

Somit ist ' unerfiillbar (gem&B Satz 2.59). Das auf Folie 359 angegebene
Verfahren hilt daher (spatestens) im Schleifendurchlauf fiir i = 5 mit der
Ausgabe ,, x ist unerfiillbar” an. Da x erfiillbarkeitsdquivalent zur Formel
(¢ A ) ist, wissen wir also, dass ¢ = v gilt.

Dies beendet Beispiel 4.54.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.1: Einfiihrung

Logik-Programmierung

Logik-Programmierung bezeichnet die ldee, Logik direkt als
Programmiersprache zu verwenden.
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Logik-Programmierung

Logik-Programmierung bezeichnet die ldee, Logik direkt als
Programmiersprache zu verwenden.

Logik-Programmierung (in Sprachen wie Prolog) und die verwandte funktionale
Programmierung (in Sprachen wie LISP, ML, Haskell) sind deklarativ,
im Gegensatz zur imperativen Programmierung (in Sprachen wie Java, C, Perl).
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Kapitel 5: Logik-Programmierung - Abschnitt 5.1: Einfiihrung

Logik-Programmierung

Logik-Programmierung bezeichnet die ldee, Logik direkt als
Programmiersprache zu verwenden.

Logik-Programmierung (in Sprachen wie Prolog) und die verwandte funktionale
Programmierung (in Sprachen wie LISP, ML, Haskell) sind deklarativ,
im Gegensatz zur imperativen Programmierung (in Sprachen wie Java, C, Perl).

Die Idee der deklarativen Programmierung besteht darin, dem Computer
lediglich sein Wissen iiber das Anwendungsszenario und sein Ziel mitzuteilen
und dann die Lésung des Problems dem Computer zu iiberlassen.

Bei der imperativen Programmierung hingegen gibt man dem Computer die
einzelnen Schritte zur Losung des Problems vor.
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Prolog

® ist die wichtigste logische Programmiersprache,

geht zuriick auf Kowalski und Colmerauer
(Anfang der 1970er Jahre, Marseilles),

steht fiir (franz.) Programmation en logique.

Mitte/Ende der 1970er Jahre: effiziente Prolog-Implementierung durch den
von Warren (in Edinburgh) entwickelten Prolog-10 Compiler.
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geht zuriick auf Kowalski und Colmerauer
(Anfang der 1970er Jahre, Marseilles),

steht fiir (franz.) Programmation en logique.

Mitte/Ende der 1970er Jahre: effiziente Prolog-Implementierung durch den
von Warren (in Edinburgh) entwickelten Prolog-10 Compiler.

Prolog ist eine voll entwickelte und machtige Programmiersprache, die vor allem
fiir symbolische Berechnungsprobleme geeignet ist.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.1: Einfiihrung

Prolog

® ist die wichtigste logische Programmiersprache,

geht zuriick auf Kowalski und Colmerauer
(Anfang der 1970er Jahre, Marseilles),

steht fiir (franz.) Programmation en logique.

Mitte/Ende der 1970er Jahre: effiziente Prolog-Implementierung durch den
von Warren (in Edinburgh) entwickelten Prolog-10 Compiler.

Prolog ist eine voll entwickelte und machtige Programmiersprache, die vor allem
fiir symbolische Berechnungsprobleme geeignet ist.

Aus Effizienzgriinden werden in Prolog die abstrakten ldeen der logischen
Programmierung nicht in Reinform umgesetzt, Prolog hat auch , nichtlogische"
Elemente.
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Dieses Kapitel

® setzt voraus, dass Sie bereits Grundkenntnisse der Programmiersprache
Prolog besitzen, die beispielsweise im Buch , Learn Prolog Now!" von
P. Blackburn, J. Bos und K. Striegnitz vermittelt werden, und die wahrend
des Semesters bereits im Ubungsbetrieb behandelt wurden.

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 368



Kapitel 5: Logik-Programmierung - Abschnitt 5.1: Einfiihrung

Dieses Kapitel

® setzt voraus, dass Sie bereits Grundkenntnisse der Programmiersprache
Prolog besitzen, die beispielsweise im Buch , Learn Prolog Now!" von
P. Blackburn, J. Bos und K. Striegnitz vermittelt werden, und die wahrend
des Semesters bereits im Ubungsbetrieb behandelt wurden.

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 368



Kapitel 5: Logik-Programmierung - Abschnitt 5.1: Einfiihrung

Dieses Kapitel

® setzt voraus, dass Sie bereits Grundkenntnisse der Programmiersprache
Prolog besitzen, die beispielsweise im Buch , Learn Prolog Now!" von
P. Blackburn, J. Bos und K. Striegnitz vermittelt werden, und die wahrend
des Semesters bereits im Ubungsbetrieb behandelt wurden.

® gibt eine Einfiihrung in die Grundlagen der Logik-Programmierung —
keine Einfiihrung in die Programmiersprache Prolog!
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Dieses Kapitel

® setzt voraus, dass Sie bereits Grundkenntnisse der Programmiersprache
Prolog besitzen, die beispielsweise im Buch , Learn Prolog Now!" von
P. Blackburn, J. Bos und K. Striegnitz vermittelt werden, und die wahrend
des Semesters bereits im Ubungsbetrieb behandelt wurden.

® gibt eine Einfiihrung in die Grundlagen der Logik-Programmierung —
keine Einfiihrung in die Programmiersprache Prolog!

Auf einige der Hauptunterschiede zwischen allgemeiner Logik-Programmierung
und Prolog werden wir im Laufe dieses Kapitels eingehen.
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Dieses Kapitel

® setzt voraus, dass Sie bereits Grundkenntnisse der Programmiersprache
Prolog besitzen, die beispielsweise im Buch , Learn Prolog Now!" von
P. Blackburn, J. Bos und K. Striegnitz vermittelt werden, und die wahrend
des Semesters bereits im Ubungsbetrieb behandelt wurden.

® gibt eine Einfiihrung in die Grundlagen der Logik-Programmierung —
keine Einfiihrung in die Programmiersprache Prolog!

Auf einige der Hauptunterschiede zwischen allgemeiner Logik-Programmierung
und Prolog werden wir im Laufe dieses Kapitels eingehen.

Alle in diesem Kapitel enthaltenen Beispiele von Logikprogrammen sind voll
lauffahige Prologprogramme,
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Kapitel 5: Logik-Programmierung - Abschnitt 5.1: Einfiihrung

Dieses Kapitel

® setzt voraus, dass Sie bereits Grundkenntnisse der Programmiersprache
Prolog besitzen, die beispielsweise im Buch , Learn Prolog Now!" von
P. Blackburn, J. Bos und K. Striegnitz vermittelt werden, und die wahrend
des Semesters bereits im Ubungsbetrieb behandelt wurden.

® gibt eine Einfiihrung in die Grundlagen der Logik-Programmierung —
keine Einfiihrung in die Programmiersprache Prolog!

Auf einige der Hauptunterschiede zwischen allgemeiner Logik-Programmierung
und Prolog werden wir im Laufe dieses Kapitels eingehen.

Alle in diesem Kapitel enthaltenen Beispiele von Logikprogrammen sind voll
lauffahige Prologprogramme, aber in einigen Fallen unterscheidet sich die
Semantik des Programms im Sinne der Logik-Programmierung von der
Semantik des Programms im Sinne von Prolog.
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Zunachst zwei Beispiele fiir Logikprogramme

Beispiel 5.1
Ein Logikprogramm zur Reprédsentation natiirlicher Zahlen in Uné&rdarstellung und der
zugehdrigen Arithmetik und der Kleiner-Relation.

Programm: unat.pl

unat (null).
unat(s(X)) :- unat(X).

plus(null, Y, V).
plus(s(X), Y, s(Z)) :- plus(X, Y, Z).

minus(X, Y, Z) :- plus(Y, Z, X).

mal(null, Y, null).
mal(s(X), Y, Z2) :- mal(X, Y, Z1), plus(Z1, Y, Z).

less(null, s(_)).
less(s(X), s(Y)) :- less(X, Y).
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Beispiel 5.2
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Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Logikprogramme
Logikprogramme sind ,,Wissensbasen", bestehend aus einer endlichen Menge von

Fakten und Regeln.
Eine Berechnung eines Logikprogramms besteht aus der Ableitung der Konsequenzen,
die aus den Fakten und den Regeln des Programms hergeleitet werden kdnnen.

Man fiihrt ein Programm aus, indem man Anfragen an die Wissensbasis stellt.
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Logikprogramme
Logikprogramme sind ,,Wissensbasen", bestehend aus einer endlichen Menge von
Fakten und Regeln.

Eine Berechnung eines Logikprogramms besteht aus der Ableitung der Konsequenzen,
die aus den Fakten und den Regeln des Programms hergeleitet werden kdnnen.

Man fiihrt ein Programm aus, indem man Anfragen an die Wissensbasis stellt.

Fakten beschreiben Relationen zwischen Objekten.

Beispiele: mutter(lominka,totilas)
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Logikprogramme
Logikprogramme sind ,,Wissensbasen", bestehend aus einer endlichen Menge von
Fakten und Regeln.

Eine Berechnung eines Logikprogramms besteht aus der Ableitung der Konsequenzen,
die aus den Fakten und den Regeln des Programms hergeleitet werden kdnnen.

Man fiihrt ein Programm aus, indem man Anfragen an die Wissensbasis stellt.

Fakten beschreiben Relationen zwischen Objekten.

Beispiele: mutter(lominka,totilas), maennlich(totilas)
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Logikprogramme
Logikprogramme sind ,,Wissensbasen", bestehend aus einer endlichen Menge von
Fakten und Regeln.

Eine Berechnung eines Logikprogramms besteht aus der Ableitung der Konsequenzen,
die aus den Fakten und den Regeln des Programms hergeleitet werden kdnnen.

Man fiihrt ein Programm aus, indem man Anfragen an die Wissensbasis stellt.

Fakten beschreiben Relationen zwischen Objekten.

Beispiele: mutter(lominka,totilas), maennlich(totilas), party
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Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Logikprogramme
Logikprogramme sind ,,Wissensbasen", bestehend aus einer endlichen Menge von

Fakten und Regeln.
Eine Berechnung eines Logikprogramms besteht aus der Ableitung der Konsequenzen,
die aus den Fakten und den Regeln des Programms hergeleitet werden kdnnen.

Man fiihrt ein Programm aus, indem man Anfragen an die Wissensbasis stellt.

Fakten beschreiben Relationen zwischen Objekten.
Beispiele: mutter(lominka,totilas), maennlich(totilas), party,
plus(s(null),s(s(null)),s(s(s(null)))).
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Logikprogramme
Logikprogramme sind ,,Wissensbasen", bestehend aus einer endlichen Menge von

Fakten und Regeln.

Eine Berechnung eines Logikprogramms besteht aus der Ableitung der Konsequenzen,
die aus den Fakten und den Regeln des Programms hergeleitet werden kdnnen.

Man fiihrt ein Programm aus, indem man Anfragen an die Wissensbasis stellt.

Fakten beschreiben Relationen zwischen Objekten.
Beispiele: mutter(lominka,totilas), maennlich(totilas), party,
plus(s(null),s(s(null)),s(s(s(null)))).

Relationen haben eine Stelligkeit k > 0.
Nullstellige Relationen sind einfach Aussagen (z.B. besagt ,,party", dass die Party
stattfindet).
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Logikprogramme
Logikprogramme sind ,,Wissensbasen", bestehend aus einer endlichen Menge von

Fakten und Regeln.

Eine Berechnung eines Logikprogramms besteht aus der Ableitung der Konsequenzen,
die aus den Fakten und den Regeln des Programms hergeleitet werden kdnnen.

Man fiihrt ein Programm aus, indem man Anfragen an die Wissensbasis stellt.

Fakten beschreiben Relationen zwischen Objekten.
Beispiele: mutter(lominka,totilas), maennlich(totilas), party,
plus(s(null),s(s(null)),s(s(s(null)))).

Relationen haben eine Stelligkeit k > 0.
Nullstellige Relationen sind einfach Aussagen (z.B. besagt ,,party", dass die Party
stattfindet).

Eine Anfrage ist eine durch Kommas getrennte Liste von Fakten; gefragt wird, ob
diese Fakten in der Wissenbasis gelten, d.h., ob sie aus der Wissensbasis ableitbar sind.

Beispiele: Die Anfrage 7- vorfahr(gribaldi, totalHope) fragt, ob Gribaldi ein
Vorfahr von Total Hope ist.

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 371



Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen
Logikprogramme
Logikprogramme sind ,,Wissensbasen", bestehend aus einer endlichen Menge von

Fakten und Regeln.

Eine Berechnung eines Logikprogramms besteht aus der Ableitung der Konsequenzen,
die aus den Fakten und den Regeln des Programms hergeleitet werden kdnnen.

Man fiihrt ein Programm aus, indem man Anfragen an die Wissensbasis stellt.

Fakten beschreiben Relationen zwischen Objekten.

Beispiele: mutter(lominka,totilas), maennlich(totilas), party,
plus(s(null),s(s(null)),s(s(s(null)))).

Relationen haben eine Stelligkeit k > 0.
Nullstellige Relationen sind einfach Aussagen (z.B. besagt ,,party", dass die Party
stattfindet).

Eine Anfrage ist eine durch Kommas getrennte Liste von Fakten; gefragt wird, ob
diese Fakten in der Wissenbasis gelten, d.h., ob sie aus der Wissensbasis ableitbar sind.

Beispiele: Die Anfrage 7- vorfahr(gribaldi, totalHope) fragt, ob Gribaldi ein
Vorfahr von Total Hope ist.

Die Anfrage 7- mutter(elsa, X), vater(kostolany, X) fragt, ob Elsa und
Kostolany ein gemeinsames Kind haben.
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Die Rolle der Terme

Terme sind in Logikprogrammen die universelle Datenstruktur.
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Die Rolle der Terme

Terme sind in Logikprogrammen die universelle Datenstruktur.

Je nach Kontext spielen sie die Rolle von Fakten
oder von Objekten, iiber die die Fakten sprechen.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Die Rolle der Terme

Terme sind in Logikprogrammen die universelle Datenstruktur.

Je nach Kontext spielen sie die Rolle von Fakten
oder von Objekten, iiber die die Fakten sprechen.

Die einfachste Art von Termen in Logikprogrammen sind die im Folgenden
definierten Konstanten und Variablen.
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Atome, Zahlen, Konstanten und Variablen der
Logik-Programmierung

Definition 5.3

(a) Atome sind die Grundbausteine von Logikprogrammen. Sie werden bezeichnet
durch Zeichenketten, die keins der Symbole ,, (* und ,,) " enthalten und die mit
einem Kleinbuchstaben beginnen oder in einfachen Hochkommata stehen. Atome
reprasentieren Individuen.

Beispiele: totilas, ’Totilas’, logikInDerInformatik
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Atome, Zahlen, Konstanten und Variablen der
Logik-Programmierung

Definition 5.3

(a) Atome sind die Grundbausteine von Logikprogrammen. Sie werden bezeichnet
durch Zeichenketten, die keins der Symbole ,, (* und ,,) " enthalten und die mit
einem Kleinbuchstaben beginnen oder in einfachen Hochkommata stehen. Atome
reprasentieren Individuen.

Beispiele: totilas, ’Totilas’, logikInDerInformatik

(b) Zahlen in Logikprogrammen sind entweder ganze Zahlen oder reelle Zahlen in
Gleitkommadarstellung.

Beispiele: 42, 1.2e-3
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Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Atome, Zahlen, Konstanten und Variablen der
Logik-Programmierung

Definition 5.3

(a) Atome sind die Grundbausteine von Logikprogrammen. Sie werden bezeichnet
durch Zeichenketten, die keins der Symbole ,, (* und ,,) " enthalten und die mit
einem Kleinbuchstaben beginnen oder in einfachen Hochkommata stehen. Atome
reprasentieren Individuen.

Beispiele: totilas, ’Totilas’, logikInDerInformatik

(b) Zahlen in Logikprogrammen sind entweder ganze Zahlen oder reelle Zahlen in
Gleitkommadarstellung.

Beispiele: 42, 1.2e-3

(c) Konstanten der Logik-Programmierung sind Atome oder Zahlen.
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Definition 5.4

Variablen der Logik-Programmierung werden durch Zeichenketten bezeichnet, die mit
einem GroBbuchstaben oder einem Unterstrich beginnen und keins der Symbole ,, (*
und ,,) " enthalten.

Eine Variable reprasentiert in einem Logikprogramm (&hnlich wie in der Logik erster

Stufe) ein nicht-spezifiziertes Individuum.
Man beachte den Gegensatz zur imperativen Programmierung, bei der eine Variable fiir eine
., Speicherzelle” steht, in der Werte gespeichert und verdndert werden kdnnen.

Beispiele: X, Mutter, _mutter, RUD26
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Terme der Logik-Programmierung

Definition 5.5

(a) Ein einfacher Term der Logik-Programmierung ist eine Konstante oder eine
Variable (d.h., ein Atom, eine Zahl oder eine Variable der
Logik-Programmierung).
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Terme der Logik-Programmierung

Definition 5.5

(a) Ein einfacher Term der Logik-Programmierung ist eine Konstante oder eine
Variable (d.h., ein Atom, eine Zahl oder eine Variable der
Logik-Programmierung).

(b) Die Menge Tip der Terme der Logik-Programmierung ist rekursiv wie folgt
definiert:

(1) Jeder einfache Term ist ein Term.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Terme der Logik-Programmierung

Definition 5.5

(a) Ein einfacher Term der Logik-Programmierung ist eine Konstante oder eine
Variable (d.h., ein Atom, eine Zahl oder eine Variable der
Logik-Programmierung).

(b) Die Menge Tip der Terme der Logik-Programmierung ist rekursiv wie folgt
definiert:

(1) Jeder einfache Term ist ein Term.
(2) Ist £ ein Atom, ist k € N mit k > 1 und sind t1,...,tx € TLp Terme, so ist

f(t1,...,t)
ein Term in Typ.
(c) Terme in Typ, die keine einfachen Terme sind, heiBen zusammengesetzte Terme

der Logik-Programmierung.

In einem zusammengesetzten Term der Form £(t1, ..., t) spielt das Atom £ die Rolle
eines k-stelligen Funktors, den wir mit £/k bezeichnen.

Spezialfall k = 0: Jedes Atom g wird als ein O-stelliger Funktor betrachtet, der mit g/0
bezeichnet wird, und der ein (einfacher) Term ist.
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Beispiele: party,
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Beispiele: party, mutter(lominka,totilas),
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Beispiele: party, mutter(lominka,totilas), s(s(s(null))),
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Beispiele: party, mutter(lominka,totilas), s(s(s(null)))

vorlesung(name (logikInDerInformatik),
zeit(di,11,13),
ort (gebaeude (rUD26) ,raum(0115))) .
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Gleichheit von Termen

Zwei Terme t und t’ der Logik-Programmierung werden nur dann als gleich
bezeichnet, wenn sie syntaktisch, d.h. als Zeichenketten betrachtet, identisch
sind.

Beispiel:
Die beiden Terme plus(null,X,X) und plus(null,Y,Y) sind nicht gleich.
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Substitutionen

Notation

Fiir eine partielle Funktion f schreiben wir Def(f) und Bild(f) um den
Definitionsbereich und den Bildbereich von f zu bezeichnen.

D.h. Def(f) ist die Menge aller Objekte x, fiir die der Wert f(x) definiert ist, und

Bild(f) = {f(x) : x € Def(f)}.
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Substitutionen

Notation

Fiir eine partielle Funktion f schreiben wir Def(f) und Bild(f) um den
Definitionsbereich und den Bildbereich von f zu bezeichnen.

D.h. Def(f) ist die Menge aller Objekte x, fiir die der Wert f(x) definiert ist, und
Bild(f) = {f(x) : x € Def(f)}.

Definition 5.6

Eine Substitution ist eine partielle Abbildung von der Menge der Variablen auf die
Menge der Terme.
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Substitutionen

Notation

Fiir eine partielle Funktion f schreiben wir Def(f) und Bild(f) um den
Definitionsbereich und den Bildbereich von f zu bezeichnen.

D.h. Def(f) ist die Menge aller Objekte x, fiir die der Wert f(x) definiert ist, und
Bild(f) = {f(x) : x € Def(f)}.

Definition 5.6
Eine Substitution ist eine partielle Abbildung von der Menge der Variablen auf die
Menge der Terme.

Eine Substitution fiir eine Menge V von Variablen der Logik-Programmierung ist eine
Substitution S mit Def(S) C V.
Beispiel:

S:= {X—c, Y=£X,g(e), 2—VY}

bezeichnet die Substitution mit Definitionsbereich Def(S) = {X, Y, Z}, fiir die gilt:
SX)=c, S(Y)=1£&,g)), S(2)=VY.
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Anwendung von Substitutionen

Durch Anwenden einer Substitution S auf einen Term t € T p erhalten wir den Term
tS € Typ, der aus t durch simultanes Ersetzen jeder Variablen X € Def(S) durch den

Term S(X) entsteht.
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Anwendung von Substitutionen

Durch Anwenden einer Substitution S auf einen Term t € T p erhalten wir den Term
tS € Typ, der aus t durch simultanes Ersetzen jeder Variablen X € Def(S) durch den
Term S(X) entsteht.

Beispiel: Sei
t = h(£&,X, Y, £(,g(2)))
und
S = {X—c Y—£X,gl)), 2V}
Dann ist
tS =
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Anwendung von Substitutionen

Durch Anwenden einer Substitution S auf einen Term t € T p erhalten wir den Term
tS € Typ, der aus t durch simultanes Ersetzen jeder Variablen X € Def(S) durch den
Term S(X) entsteht.

Beispiel: Sei
t = h(£X,X), Y, £(¥,g(2)))
und
S = {X—c Y—£X,gl)), 2V}
Dann ist
tS = h(f(c,c), £(X,gle)), £(£(X,glc)), g())).
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Anwendung von Substitutionen

Durch Anwenden einer Substitution S auf einen Term t € T p erhalten wir den Term
tS € Typ, der aus t durch simultanes Ersetzen jeder Variablen X € Def(S) durch den
Term S(X) entsteht.

Beispiel: Sei
t = h(&,X), Y, £(Y,g(2)))
und
S = {X—c Y—£X,gl)), 2V}
Dann ist
tS = h(f(c,c), £(X,gle)), £(£(X,glc)), g())).
Definition 5.7

Ein Term t’ ist eine Instanz eines Terms t, wenn es eine Substitution S gibt, so dass
t' =tS.
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Grundterme

Definition 5.8

Ein Grundterm der Logik-Programmierung ist ein Term, der keine Variable(n) enthilt.
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Grundterme

Definition 5.8

Ein Grundterm der Logik-Programmierung ist ein Term, der keine Variable(n) enthilt.

Eine Grundinstanz eines Terms t € T p ist eine Instanz von t, die ein Grundterm ist.

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 380



Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Grundterme

Definition 5.8

Ein Grundterm der Logik-Programmierung ist ein Term, der keine Variable(n) enthilt.

Eine Grundinstanz eines Terms t € T p ist eine Instanz von t, die ein Grundterm ist.

Eine Grundinstanz eines Terms t entsteht also, indem jede in t vorkommende Variable
durch einen Grundterm ersetzt wird.
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Grundterme

Definition 5.8

Ein Grundterm der Logik-Programmierung ist ein Term, der keine Variable(n) enthilt.

Eine Grundinstanz eines Terms t € T p ist eine Instanz von t, die ein Grundterm ist.
Eine Grundinstanz eines Terms t entsteht also, indem jede in t vorkommende Variable
durch einen Grundterm ersetzt wird.

Beispiele: h(c,c,f(c)) und h(f(f(c,c),g(d)),d,f(g(g(c)))) sind
Grundinstanzen des Terms h(X,Y,f(Z)).
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Grundterme

Definition 5.8

Ein Grundterm der Logik-Programmierung ist ein Term, der keine Variable(n) enthilt.

Eine Grundinstanz eines Terms t € T p ist eine Instanz von t, die ein Grundterm ist.

Eine Grundinstanz eines Terms t entsteht also, indem jede in t vorkommende Variable
durch einen Grundterm ersetzt wird.

Beispiele: h(c,c,f(c)) und h(f(f(c,c),g(d)),d,f(g(g(c)))) sind
Grundinstanzen des Terms h(X,Y,f(Z)).

Bemerkung

Grundterme sind wichtig, weil sie in dem Modell, das dem Logikprogramm zu Grunde
liegt, eine unmittelbare Bedeutung haben. Variablen hingegen haben keine direkte
Bedeutung, sondern sind nur Platzhalter fiir Objekte.
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Fakten der Logik-Programmierung

Definition 5.9

Ein Faktum der Logik-Programmierung ist ein Atom oder ein zusammengesetzter
Term der Logik-Programmierung.
Fakten beschreiben Tatsachen bzw. Relationen zwischen Objekten.

Beispiele: Das Faktum party beschreibt, dass eine Party stattfindet.
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Fakten der Logik-Programmierung

Definition 5.9

Ein Faktum der Logik-Programmierung ist ein Atom oder ein zusammengesetzter
Term der Logik-Programmierung.

Fakten beschreiben Tatsachen bzw. Relationen zwischen Objekten.

Beispiele: Das Faktum party beschreibt, dass eine Party stattfindet.
Das Faktum unat (s(s(null))) beschreibt, dass der Term s(s(null)) die
Unérdarstellung einer natiirlichen Zahl ist.
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Fakten der Logik-Programmierung

Definition 5.9

Ein Faktum der Logik-Programmierung ist ein Atom oder ein zusammengesetzter
Term der Logik-Programmierung.

Fakten beschreiben Tatsachen bzw. Relationen zwischen Objekten.

Beispiele: Das Faktum party beschreibt, dass eine Party stattfindet.

Das Faktum unat (s(s(null))) beschreibt, dass der Term s(s(null)) die

Unérdarstellung einer natiirlichen Zahl ist.
Das Faktum mutter (lominka,totilas) beschreibt, dass Lominka die Mutter von

Totilas ist.
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Fakten der Logik-Programmierung

Definition 5.9
Ein Faktum der Logik-Programmierung ist ein Atom oder ein zusammengesetzter
Term der Logik-Programmierung.

Fakten beschreiben Tatsachen bzw. Relationen zwischen Objekten.

Beispiele: Das Faktum party beschreibt, dass eine Party stattfindet.

Das Faktum unat (s(s(null))) beschreibt, dass der Term s(s(null)) die
Unérdarstellung einer natiirlichen Zahl ist.

Das Faktum mutter (lominka,totilas) beschreibt, dass Lominka die Mutter von
Totilas ist.

Fakten diirfen auch Variablen enthalten. Eine Variable in einem Faktum bedeutet, dass
die entsprechende Aussage fiir alle Objekte, durch die die Variable ersetzt werden
kann, gilt.

Beispiel: plus(null,Y,Y)
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Regeln

Definition 5.10

Eine Regel der Logik-Programmierung besteht aus
® einem Faktum (dem so genannten Kopf der Regel),

® gefolgt von :-
(in der Literatur wird an Stelle von ,, : =" oft auch , <" geschrieben) und

® einer durch Kommas getrennten Liste von Fakten (dem so genannten Rumpf der
Regel).
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Regeln

Definition 5.10

Eine Regel der Logik-Programmierung besteht aus

® einem Faktum (dem so genannten Kopf der Regel),

® gefolgt von :-
(in der Literatur wird an Stelle von ,, : =" oft auch , <" geschrieben) und

® einer durch Kommas getrennten Liste von Fakten (dem so genannten Rumpf der

Regel).

Wir interpretieren die Regel als Implikation:

Wenn alle Fakten im Rumpf gelten, dann gilt auch das Faktum im Kopf.
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Regeln

Definition 5.10

Eine Regel der Logik-Programmierung besteht aus

® einem Faktum (dem so genannten Kopf der Regel),

® gefolgt von :-
(in der Literatur wird an Stelle von ,, : =" oft auch , <" geschrieben) und

® einer durch Kommas getrennten Liste von Fakten (dem so genannten Rumpf der

Regel).

Wir interpretieren die Regel als Implikation:

Wenn alle Fakten im Rumpf gelten, dann gilt auch das Faktum im Kopf.

Beispiele:
minus(X,Y,Z) :- plus(Y,Z,X)
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Regeln

Definition 5.10

Eine Regel der Logik-Programmierung besteht aus

® einem Faktum (dem so genannten Kopf der Regel),

® gefolgt von :-
(in der Literatur wird an Stelle von ,, : =" oft auch , <" geschrieben) und

® einer durch Kommas getrennten Liste von Fakten (dem so genannten Rumpf der

Regel).

Wir interpretieren die Regel als Implikation:

Wenn alle Fakten im Rumpf gelten, dann gilt auch das Faktum im Kopf.

Beispiele:
minus(X,Y,Z) :- plus(Y,Z,X)
grossmutter(X,Z) :- mutter(X,Y), elternteil(Y,Z)
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Logikprogramme

Definition 5.11

Ein Logikprogramm ist eine endliche Menge von Fakten und Regeln der
Logik-Programmierung.
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Logikprogramme

Definition 5.11

Ein Logikprogramm ist eine endliche Menge von Fakten und Regeln der
Logik-Programmierung.

Es ist oft bequem, Fakten als spezielle Regeln mit leerem Rumpf aufzufassen. Dann
besteht ein Logikprogramm nur aus Regeln.
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Logikprogramme

Definition 5.11

Ein Logikprogramm ist eine endliche Menge von Fakten und Regeln der
Logik-Programmierung.

Es ist oft bequem, Fakten als spezielle Regeln mit leerem Rumpf aufzufassen. Dann
besteht ein Logikprogramm nur aus Regeln.

In konkreten Beispielen stellen wir Logikprogramme meistens als Liste der in ihnen
enthaltenen Fakten und Regeln dar, wobei das Ende jedes Eintrags dieser Liste durch

einen Punkt markiert wird.
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Logikprogramme

Definition 5.11
Ein Logikprogramm ist eine endliche Menge von Fakten und Regeln der
Logik-Programmierung.

Es ist oft bequem, Fakten als spezielle Regeln mit leerem Rumpf aufzufassen. Dann
besteht ein Logikprogramm nur aus Regeln.

In konkreten Beispielen stellen wir Logikprogramme meistens als Liste der in ihnen
enthaltenen Fakten und Regeln dar, wobei das Ende jedes Eintrags dieser Liste durch
einen Punkt markiert wird.

Beispiele: Das Programm unat.pl aus Beispiel 5.1 ist ein Logikprogramm im Sinne
von Definition 5.11. Das Programm pferdeDressurreiten.pl aus Beispiel 5.2 nicht,
da dort Ungleichheitspradikate der Form X \== Y vorkommen, die gemaB

Definition 5.10 nicht im Rumpf von Regeln vorkommen kénnen, da sie keine Fakten
gemaB Definition 5.9 sind.

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 383



Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Ableitungen aus Logikprogrammen

Definition 5.12
Eine Ableitung aus einem Logikprogramm I1 ist ein Tupel (t1,...,t;) von
Termen, so dass £ € N mit ¢ > 1 ist und fiir jedes i € [¢] (mindestens) eine der

beiden folgenden Aussagen zutrifft:

® t; ist eine Instanz eines Faktums in I1.

® Es gibt eine Regel
@ - wlv"'71/}m

in I, eine Substitution S und Indizes iy, ..., in € {1,...,i—1}, so dass gilt:
ti=@S und t; =1;S fiir jedes j € [m].
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Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Ableitungen aus Logikprogrammen

Definition 5.12
Eine Ableitung aus einem Logikprogramm I1 ist ein Tupel (t1,...,t;) von
Termen, so dass £ € N mit ¢ > 1 ist und fiir jedes i € [¢] (mindestens) eine der

beiden folgenden Aussagen zutrifft:

® t; ist eine Instanz eines Faktums in I1.

® Es gibt eine Regel
@ - wlv"'71/}m

in I, eine Substitution S und Indizes iy, ..., in € {1,...,i—1}, so dass gilt:
ti=@S und t; =1;S fiir jedes j € [m].

Eine Ableitung eines Terms t aus [ ist eine Ableitung (t1, ..., t¢) aus M mit
tp = t.

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 384



Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Ableitungen aus Logikprogrammen

Definition 5.12

Eine Ableitung aus einem Logikprogramm I1 ist ein Tupel (t1,...,t;) von
Termen, so dass £ € N mit ¢ > 1 ist und fiir jedes i € [¢] (mindestens) eine der
beiden folgenden Aussagen zutrifft:

® t; ist eine Instanz eines Faktums in I1.

® Es gibt eine Regel
@ - wlv"'71/}m

in I, eine Substitution S und Indizes iy, ..., in € {1,...,i—1}, so dass gilt:
ti=@S und t; =1;S fiir jedes j € [m].

Eine Ableitung eines Terms t aus [ ist eine Ableitung (t1, ..., t¢) aus M mit
tp = t.

Ein Term t ist ableitbar aus I, wenn es eine Ableitung von t aus 1 gibt.
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Die im Kapitel iiber Automatisches SchlieBen eingefiihrte Kalkiil-Schreibweise
lasst sich dazu nutzen, eine elegante Darstellung des Begriffs der Ableitungen
aus Logikprogrammen anzugeben.
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Verwendung der Kalkiil-Schreibweise fiir Ableitungen in
Logikprogrammen

Sei I ein Logikprogramm.

Gesucht: Ein Kalkiil 8p liber der Menge T\ p, so dass ablg, genau die Menge
aller aus 1 ableitbaren Terme ist.
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Darstellung von Ableitungen

® An Stelle von (t1,. .., t)
schreiben wir Ableitungen der besseren Lesbarkeit halber oft zeilenweise, also

(1) &
(2) t
(é) te

und geben am Ende jeder Zeile eine kurze Begriindung an.
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Darstellung von Ableitungen

® An Stelle von (t1,. .., t)
schreiben wir Ableitungen der besseren Lesbarkeit halber oft zeilenweise, also

(1) &
(2) t

(é) te

und geben am Ende jeder Zeile eine kurze Begriindung an.

® Ableitungen werden oft auch als Baume dargestellt; man bezeichnet diese
als Beweisbaume.
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Beispiel

Betrachte das Programm pferdeDressurreitenl.pl
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Beispiel 5.13

Ableitung von onkel (sirWeihbach,marigold) aus dem Programm
pferdeDressurreitenl.pl:
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Beispiel 5.13
Ableitung von onkel (sirWeihbach,marigold) aus dem Programm
pferdeDressurreitenl.pl:

(1) mutter(weihegold,totalHope) Faktum in Zeile 1
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Beispiel 5.13

Ableitung von onkel (sirWeihbach,marigold) aus dem Programm
pferdeDressurreitenl.pl
Faktum in Zeile 1

(1) mutter(weihegold,totalHope)
Regel in Zeile 17 und (1)

(2) elternteil(weihegold,totalHope)
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Beispiel 5.13

Ableitung von onkel (sirWeihbach,marigold) aus dem Programm
pferdeDressurreitenl.pl

Faktum in Zeile 1

Regel in Zeile 17 und (1)
Faktum in Zeile 1

(1) mutter(weihegold,totalHope)
(2) elternteil(weihegold,totalHope)
(3) mutter(weihegold,sirWeihbach)
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Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beispiel 5.13

Ableitung von onkel (sirWeihbach,marigold) aus dem Programm
pferdeDressurreitenl.pl:

(1) mutter(weihegold,totalHope) Faktum in Zeile 1
(2) elternteil(weihegold,totalHope) Regel in Zeile 17 und (1)
(3) mutter(weihegold,sirWeihbach) Faktum in Zeile 1
(4) elternteil(weihegold,sirWeihbach) Regel in Zeile 17 und (3)
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Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beispiel 5.13

Ableitung von onkel (sirWeihbach,marigold) aus dem Programm
pferdeDressurreitenl.pl:

(1) mutter(weihegold,totalHope) Faktum in Zeile 1
(2) elternteil(weihegold,totalHope) Regel in Zeile 17 und (1)
(3) mutter(weihegold,sirWeihbach) Faktum in Zeile 1
(4) elternteil(weihegold,sirWeihbach) Regel in Zeile 17 und (3)
(5) ungleich(sirWeihbach,totalHope) Regel in Zeile 23
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Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beispiel 5.13

Ableitung von onkel (sirWeihbach,marigold) aus dem Programm
pferdeDressurreitenl.pl:

(1) mutter(weihegold,totalHope) Faktum in Zeile 1
2) elternteil(weihegold,totalHope) Regel in Zeile 17 und (1
g p
(3) mutter(weihegold,sirWeihbach) Faktum in Zeile 1
(4) elternteil(weihegold,sirWeihbach) Regel in Zeile 17 und (3)
5) wungleich(sirWeihbach,totalHope) Regel in Zeile 23
g p
(6) maennlich(sirWeihbach) Faktum in Zeile 14
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Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beispiel 5.13

Ableitung von onkel (sirWeihbach,marigold) aus dem Programm
pferdeDressurreitenl.pl:

(1) mutter(weihegold,totalHope) Faktum in Zeile 1
(2) elternteil(weihegold,totalHope) Regel in Zeile 17 und (1)
(3) mutter(weihegold,sirWeihbach) Faktum in Zeile 1
(4) elternteil(weihegold,sirWeihbach) Regel in Zeile 17 und (3)
(5) ungleich(sirWeihbach,totalHope) Regel in Zeile 23
(6) maennlich(sirWeihbach) Faktum in Zeile 14
(7) bruder(sirWeihbach,totalHope) Regel in Z. 20 u. (4),(2),(6),(5)
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Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beispiel 5.13

Ableitung von onkel (sirWeihbach,marigold) aus dem Programm
pferdeDressurreitenl.pl:

(1) mutter(weihegold,totalHope) Faktum in Zeile 1
(2) elternteil(weihegold,totalHope) Regel in Zeile 17 und (1)
(3) mutter(weihegold,sirWeihbach) Faktum in Zeile 1
(4) elternteil(weihegold,sirWeihbach) Regel in Zeile 17 und (3)
(5) ungleich(sirWeihbach,totalHope) Regel in Zeile 23
(6) maennlich(sirWeihbach) Faktum in Zeile 14
(7) bruder(sirWeihbach,totalHope) Regel in Z. 20 u. (4),(2),(6),(5)
(8) vater(totalHope,marigold) Faktum in Zeile 6
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Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beispiel 5.13

Ableitung von onkel (sirWeihbach,marigold) aus dem Programm
pferdeDressurreitenl.pl:

(1) mutter(weihegold,totalHope) Faktum in Zeile 1
(2) elternteil(weihegold,totalHope) Regel in Zeile 17 und (1)
(3) mutter(weihegold,sirWeihbach) Faktum in Zeile 1
(4) elternteil(weihegold,sirWeihbach) Regel in Zeile 17 und (3)
(5) ungleich(sirWeihbach,totalHope) Regel in Zeile 23
(6) maennlich(sirWeihbach) Faktum in Zeile 14
(7) bruder(sirWeihbach,totalHope) Regel in Z. 20 u. (4),(2),(6),(5)
(8) vater(totalHope,marigold) Faktum in Zeile 6
(9) elternteil(totalHope,marigold) Regel in Zeile 17 und (8)
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Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beispiel 5.13

Ableitung von onkel (sirWeihbach,marigold) aus dem Programm
pferdeDressurreitenl.pl:

(1) mutter(weihegold,totalHope) Faktum in Zeile 1
(2) elternteil(weihegold,totalHope) Regel in Zeile 17 und (1)
(3) mutter(weihegold,sirWeihbach) Faktum in Zeile 1
(4) elternteil(weihegold,sirWeihbach) Regel in Zeile 17 und (3)
(5) ungleich(sirWeihbach,totalHope) Regel in Zeile 23
(6) maennlich(sirWeihbach) Faktum in Zeile 14
(7) bruder(sirWeihbach,totalHope) Regel in Z. 20 u. (4),(2),(6),(5)
(8) vater(totalHope,marigold) Faktum in Zeile 6
(9) elternteil(totalHope,marigold) Regel in Zeile 17 und (8)
(10) onkel(sirWeihbach,marigold) Regel in Zeile 22 und (9),(7)
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Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beweisbaume
Definition 5.14

Sei I ein Logikprogramm und sei t ein Term.
Ein Beweisbaum fiir t aus 1 ist ein endlicher Baum, dessen Knoten mit Termen

beschriftet sind, so dass gilt:
® die Wurzel ist mit dem ,, Ziel" t beschriftet,
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Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beweisbaume
Definition 5.14

Sei I ein Logikprogramm und sei t ein Term.
Ein Beweisbaum fiir t aus 1 ist ein endlicher Baum, dessen Knoten mit Termen

beschriftet sind, so dass gilt:
® die Wurzel ist mit dem ,, Ziel" t beschriftet,
® jedes Blatt ist mit einer Instanz eines Faktums in 1 beschriftet,
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Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beweisbaume
Definition 5.14

Sei I ein Logikprogramm und sei t ein Term.
Ein Beweisbaum fiir t aus 1 ist ein endlicher Baum, dessen Knoten mit Termen

beschriftet sind, so dass gilt:
® die Wurzel ist mit dem ,, Ziel" t beschriftet,
® jedes Blatt ist mit einer Instanz eines Faktums in 1 beschriftet, und
® fiir jeden inneren Knoten v und dessen Kinder vy, ..., v, gilt:
Es gibt eine Regel

@ - ¢17~-~7¢m
in I und eine Substitution S, so dass fiir die Beschriftung t, von v und die
Beschriftungen t,,, ..., t,, der Knoten vq,..., vy, gilt:

t, = (pS, t, = 1/)15, t, = d)zs, ceey t,, = me
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Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beweisbaume
Definition 5.14

Sei I ein Logikprogramm und sei t ein Term.
Ein Beweisbaum fiir t aus 1 ist ein endlicher Baum, dessen Knoten mit Termen

beschriftet sind, so dass gilt:

® die Wurzel ist mit dem ,, Ziel" t beschriftet,

® jedes Blatt ist mit einer Instanz eines Faktums in 1 beschriftet, und

® fiir jeden inneren Knoten v und dessen Kinder vy, ..., v, gilt:
Es gibt eine Regel

@ - ¢17~-~7¢m

in I und eine Substitution S, so dass fiir die Beschriftung t, von v und die
Beschriftungen t,,, ..., t,, der Knoten vq,..., vy, gilt:

t, = (pS, t, = 1/)15, t, = d)zs, ceey t,, = me

Man sieht leicht, dass es genaq.dann einen Beweisbaum fiir t aus [T gibt, wenn
t aus T ableitbar ist (Details: Ubung).
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Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Deklarative Semantik von Logikprogrammen

Definition 5.15
Sei I ein Logikprogramm.
Die Bedeutung von [ ist die Menge B(IM) aller Grundterme, die aus I ableitbar

sind.

Beispiel 5.16
Sei I1 das folgende Logikprogramm unat1.pl.

Programm: unatl.pl
unat (null) .
unat(s(X)) :- unat(X).
less(null, s(X)) :- unat(X).
less(s(X), s(Y)) :- less(X, Y).

Die Bedeutung von [ ist die Menge B(IM), und diese enthilt u.a. die Terme
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Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beispiel: Wege in Digraphen (d.h., gerichteten Graphen)

Wir reprasentieren einen gerichteten Graphen G durch die Auflistung node (v)
fiir alle Knoten v von G und edge (v,w) fiir alle Kanten (v,w) von G.

Ziel: path(X,Y) soll besagen, dass es in G einen Weg von Knoten X zu Knoten
Y gibt.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beispiel: Wege in Digraphen (d.h., gerichteten Graphen)

Wir reprasentieren einen gerichteten Graphen G durch die Auflistung node (v)
fiir alle Knoten v von G und edge (v,w) fiir alle Kanten (v,w) von G.

Ziel: path(X,Y) soll besagen, dass es in G einen Weg von Knoten X zu Knoten
Y gibt.

Losung:
path(X,X).
path(X,Y) :- edge(X,Z), path(Z,Y).
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Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beispiel: Wege in Digraphen (d.h., gerichteten Graphen)

Wir reprasentieren einen gerichteten Graphen G durch die Auflistung node (v)
fiir alle Knoten v von G und edge (v,w) fiir alle Kanten (v,w) von G.

Ziel: path(X,Y) soll besagen, dass es in G einen Weg von Knoten X zu Knoten
Y gibt.

Losung:
path(X,X).
path(X,Y) :- edge(X,Z), path(Z,Y).

Im folgenden Programm digraph.pl ist dies zusammen mit einem
Beispiel-Graphen gegeben.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Der in digraph.pl angegebene Graph sieht wie folgt aus:
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Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Der in digraph.pl angegebene Graph sieht wie folgt aus:

Ein Beweisbaum fiir path(a,g) aus digraph.pl:
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Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Ein Beweisbaum fiir path(h,a) aus digraph.pl:
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Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Ein Beweisbaum fiir path(h,a) aus digraph.pl:

oo - Walle deo, PLd Kot a.

Lo M 26,00 10
deted  @RED
Tl A el 1S
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Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Und was tut Prolog bei Eingabe von
?- consult(digraph) .
7- path(a,g).

und bei Eingabe von
?7- path(h,a).

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik
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Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Und was tut Prolog

bei Eingabe von

?- consult(digraph) .
7- path(a,g).

und bei Eingabe von
?

path(h,a).

Auf die Frage, ob path(a,g) gilt, antwortet Prolog mit ,true®”.

Nicole Schweikardt - HU Berlin -

Vorlesung Logik in der Informatik

Version vom 25. Januar 2024
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Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Und was tut Prolog bei Eingabe von
?- consult(digraph) .
7- path(a,g).

und bei Eingabe von
?7- path(h,a).

Auf die Frage, ob path(a,g) gilt, antwortet Prolog mit ,true®”.

Auf die Frage, ob path(h,a) gilt, antwortet Prolog mit , ERROR: Out of
local stack".
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Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Was passiert hier?

Die Details zur Berechnung, die Prolog hier durchfiihrt, kdnnen wir mit uns mit

?- trace.
?7- path(h,a).

anschauen.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Was passiert hier?

Die Details zur Berechnung, die Prolog hier durchfiihrt, kdnnen wir mit uns mit
?7- trace.
?7- path(h,a).

anschauen.

Dies zeigt, dass die Prolog-Suche nach einem Beweisbaum im Kreis

™

stecken bleibt.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Unterschied zwischen Theorie und Praxis

In der Theorie funktioniert die Pfadsuche aus digraph.pl fiir alle endlichen
gerichteten Graphen.

In der Praxis funktioniert sie aber nur fiir azyklische Graphen.

Die operationelle Semantik von Prolog entspricht also nicht genau der
deklarativen Semantik von Logikprogrammen!
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Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Anfragen an Logikprogramme

Definition 5.17
Eine Anfrage der Logik-Progammierung besteht aus den Symbolen ?7- gefolgt

von einem Faktum oder aus einer durch Kommas getrennten Liste von Fakten

der Logik-Programmierung.

Version vom 25. Januar 2024 Folie 398

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik



Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Anfragen an Logikprogramme

Definition 5.17

Eine Anfrage der Logik-Progammierung besteht aus den Symbolen ?7- gefolgt
von einem Faktum oder aus einer durch Kommas getrennten Liste von Fakten
der Logik-Programmierung.

Die Antwort auf eine Anfrage o der Form
- Qa1,...,Qp

an ein Logikprogramm I ist definiert als die Menge [a]" aller Substitutionen S
fiir die in o vorkommenden Variablen, so dass gilt:
a1S, ..., a,S sind Grundterme, die aus 1 ableitbar sind.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Anfragen an Logikprogramme

Definition 5.17

Eine Anfrage der Logik-Progammierung besteht aus den Symbolen ?7- gefolgt
von einem Faktum oder aus einer durch Kommas getrennten Liste von Fakten
der Logik-Programmierung.

Die Antwort auf eine Anfrage o der Form
- Qa1,...,Qp

an ein Logikprogramm I ist definiert als die Menge [a]" aller Substitutionen S
fiir die in o vorkommenden Variablen, so dass gilt:
a1S, ..., a,S sind Grundterme, die aus 1 ableitbar sind.

Hier reprisentiert die leere Menge () die Antwort , falsch*.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen
Beachte: Eine Variable X in einer Anfrage fragt also nach einem bzw. allen
Objekten, die die Anfrage erfiillen.

Beispiel 5.18

Betrachte die Anfrage
?7- vorfahr(gribaldi,X), vorfahr(weihegold,X)

angewendet auf das Logikprogramm pferdeDressurreitenl.pl.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beachte: Eine Variable X in einer Anfrage fragt also nach einem bzw. allen
Objekten, die die Anfrage erfiillen.

Beispiel 5.18
Betrachte die Anfrage

?7- vorfahr(gribaldi,X), vorfahr(weihegold,X)
angewendet auf das Logikprogramm pferdeDressurreitenl.pl.

D.h. wir wollen als Antwort alle Pferde X erhalten, die sowohl Gribaldi als auch
Weihegold als Vorfahren haben. Eine genaue Inspektion zeigt, dass dies genau
die Pferde Total Hope und Marigold sind. Die Antwort auf diese Anfrage
besteht also aus
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Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beachte: Eine Variable X in einer Anfrage fragt also nach einem bzw. allen
Objekten, die die Anfrage erfiillen.

Beispiel 5.18

Betrachte die Anfrage
?7- vorfahr(gribaldi,X), vorfahr(weihegold,X)

angewendet auf das Logikprogramm pferdeDressurreitenl.pl.

D.h. wir wollen als Antwort alle Pferde X erhalten, die sowohl Gribaldi als auch
Weihegold als Vorfahren haben. Eine genaue Inspektion zeigt, dass dies genau
die Pferde Total Hope und Marigold sind. Die Antwort auf diese Anfrage
besteht also aus den beiden Substitutionen

S { X — totalHope },
S, = {X — marigold }.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beachte: Eine Variable X in einer Anfrage fragt also nach einem bzw. allen
Objekten, die die Anfrage erfiillen.

Beispiel 5.18
Betrachte die Anfrage
?7- vorfahr(gribaldi,X), vorfahr(weihegold,X)

angewendet auf das Logikprogramm pferdeDressurreitenl.pl.

D.h. wir wollen als Antwort alle Pferde X erhalten, die sowohl Gribaldi als auch
Weihegold als Vorfahren haben. Eine genaue Inspektion zeigt, dass dies genau
die Pferde Total Hope und Marigold sind. Die Antwort auf diese Anfrage
besteht also aus den beiden Substitutionen

S { X — totalHope },
S, = {X — marigold }.

Beispiele von Anfragen an das Logikprogramm unat .pl:
?7- plus(s(null),s(s(null)),X).
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Kapitel 5: Logik-Programmierung - Abschnitt 5.2: Syntax und deklarative Semantik von Logikprogrammen

Beachte: Eine Variable X in einer Anfrage fragt also nach einem bzw. allen
Objekten, die die Anfrage erfiillen.

Beispiel 5.18
Betrachte die Anfrage
?7- vorfahr(gribaldi,X), vorfahr(weihegold,X)

angewendet auf das Logikprogramm pferdeDressurreitenl.pl.

D.h. wir wollen als Antwort alle Pferde X erhalten, die sowohl Gribaldi als auch
Weihegold als Vorfahren haben. Eine genaue Inspektion zeigt, dass dies genau
die Pferde Total Hope und Marigold sind. Die Antwort auf diese Anfrage
besteht also aus den beiden Substitutionen

S { X — totalHope },
S, = {X — marigold }.

Beispiele von Anfragen an das Logikprogramm unat .pl:
?7- plus(s(null),s(s(null)),X).
7- plus(X,Y,s(s(s(null)))).

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 399



Abschnitt 5.3:

Operationelle Semantik



Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Deklarative vs. Operationelle Semantik

® Die in Definition 5.15 festgelegte deklarative Semantik von
Logikprogrammen beruht auf einer logischen Interpretation von

Programmen (Regeln als Implikationen) und logischer Deduktion.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Deklarative vs. Operationelle Semantik

® Die in Definition 5.15 festgelegte deklarative Semantik von
Logikprogrammen beruht auf einer logischen Interpretation von
Programmen (Regeln als Implikationen) und logischer Deduktion.

® Jetzt werden wir dieser deklarativen Semantik eine operationelle Semantik
gegeniiberstellen, indem wir einen Algorithmus angeben, der Programme
ausfithrt (auf einem abstrakten, nichtdeterministischen Maschinenmodell).
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Deklarative vs. Operationelle Semantik

® Die in Definition 5.15 festgelegte deklarative Semantik von
Logikprogrammen beruht auf einer logischen Interpretation von
Programmen (Regeln als Implikationen) und logischer Deduktion.

® Jetzt werden wir dieser deklarativen Semantik eine operationelle Semantik
gegeniiberstellen, indem wir einen Algorithmus angeben, der Programme
ausfithrt (auf einem abstrakten, nichtdeterministischen Maschinenmodell).
Dadurch legen wir ebenfalls die Antworten auf die Anfragen fest und weisen
somit Programmen eine Bedeutung zu.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Deklarative vs. Operationelle Semantik

® Die in Definition 5.15 festgelegte deklarative Semantik von
Logikprogrammen beruht auf einer logischen Interpretation von
Programmen (Regeln als Implikationen) und logischer Deduktion.

® Jetzt werden wir dieser deklarativen Semantik eine operationelle Semantik
gegeniiberstellen, indem wir einen Algorithmus angeben, der Programme
ausfithrt (auf einem abstrakten, nichtdeterministischen Maschinenmodell).
Dadurch legen wir ebenfalls die Antworten auf die Anfragen fest und weisen
somit Programmen eine Bedeutung zu.

® Wir werden sehen, dass die deklarative Bedeutung von Logikprogrammen
mit der operationellen iibereinstimmt.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Semantik von Programmiersprachen im Allgemeinen

Generell unterscheidet man zwischen zwei Wegen, die Semantik von
Programmiersprachen zu definieren:

® Die deklarative oder denotationelle Semantik ordnet Programmen Objekte
in abstrakten mathematischen Raumen zu, in der Regel partielle
Funktionen, oder im Fall von Logikprogrammen Mengen von Grundtermen.

Zur Erinnerung: Die Bedeutung B(I1) eines Logikprogramms I1 ist gemaB
Definition 5.15 die die Menge aller Grundterme, die aus 1 ableitbar sind.
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Semantik von Programmiersprachen im Allgemeinen

Generell unterscheidet man zwischen zwei Wegen, die Semantik von
Programmiersprachen zu definieren:

® Die deklarative oder denotationelle Semantik ordnet Programmen Objekte
in abstrakten mathematischen Raumen zu, in der Regel partielle
Funktionen, oder im Fall von Logikprogrammen Mengen von Grundtermen.

Zur Erinnerung: Die Bedeutung B(I1) eines Logikprogramms I1 ist gemaB
Definition 5.15 die die Menge aller Grundterme, die aus 1 ableitbar sind.

® Die operationelle Semantik legt fest, wie Programme auf abstrakten
Maschinenmodellen ausgefiihrt werden.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Notation
® LP := die Menge aller Logikprogramme

® Ap := die Menge aller Atome der Logik-Programmierung
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Notation
® LP := die Menge aller Logikprogramme

® Ap := die Menge aller Atome der Logik-Programmierung
Vip

die Menge aller Variablen der Logik-Programmierung
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Notation
® LP := die Menge aller Logikprogramme

® Ap := die Menge aller Atome der Logik-Programmierung

Vip

die Menge aller Variablen der Logik-Programmierung

Kip := die Menge aller Konstanten der Logik-Programmierung
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Notation
® LP := die Menge aller Logikprogramme

® Ap := die Menge aller Atome der Logik-Programmierung
Vip := die Menge aller Variablen der Logik-Programmierung
Kip := die Menge aller Konstanten der Logik-Programmierung
Tip := die Menge aller Terme der Logik-Programmierung

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 402



Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Notation
® LP := die Menge aller Logikprogramme

® Ap := die Menge aller Atome der Logik-Programmierung
Vip := die Menge aller Variablen der Logik-Programmierung
Kip := die Menge aller Konstanten der Logik-Programmierung
Tip := die Menge aller Terme der Logik-Programmierung
Fip := die Menge aller Anfragen der Logik-Programmierung
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® LP := die Menge aller Logikprogramme

® Ap := die Menge aller Atome der Logik-Programmierung
Vip := die Menge aller Variablen der Logik-Programmierung
Kip := die Menge aller Konstanten der Logik-Programmierung
Tip := die Menge aller Terme der Logik-Programmierung
Fip := die Menge aller Anfragen der Logik-Programmierung
Rip := die Menge aller Regeln der Logik-Programmierung
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Notation
® LP := die Menge aller Logikprogramme

® Ap := die Menge aller Atome der Logik-Programmierung
Vip := die Menge aller Variablen der Logik-Programmierung
Kip := die Menge aller Konstanten der Logik-Programmierung
Tip := die Menge aller Terme der Logik-Programmierung
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Notation
® LP := die Menge aller Logikprogramme

® Ap := die Menge aller Atome der Logik-Programmierung
Vip := die Menge aller Variablen der Logik-Programmierung
Kip := die Menge aller Konstanten der Logik-Programmierung
Tip := die Menge aller Terme der Logik-Programmierung
Fip := die Menge aller Anfragen der Logik-Programmierung
Rip := die Menge aller Regeln der Logik-Programmierung

® Fiir jedes € aus Tip UFip URLp U LP bezeichnet Var(¢) die Menge aller
Variablen, die in & vorkommen.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Notation

® LP := die Menge aller Logikprogramme

® Ap := die Menge aller Atome der Logik-Programmierung
Vip := die Menge aller Variablen der Logik-Programmierung
Kip := die Menge aller Konstanten der Logik-Programmierung
Tip := die Menge aller Terme der Logik-Programmierung
Fip := die Menge aller Anfragen der Logik-Programmierung
Rip := die Menge aller Regeln der Logik-Programmierung

® Fiir jedes € aus Tip UFip URLp U LP bezeichnet Var(¢) die Menge aller
Variablen, die in & vorkommen.

Beispiel: Ist p die Regel path(X,Y) :- edge(X,Z), path(Z,Y), dann ist
Var(p) = {X,Y,2}.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Notation
® LP := die Menge aller Logikprogramme

® Ap := die Menge aller Atome der Logik-Programmierung
Vip := die Menge aller Variablen der Logik-Programmierung
Kip := die Menge aller Konstanten der Logik-Programmierung
Tip := die Menge aller Terme der Logik-Programmierung
Fip := die Menge aller Anfragen der Logik-Programmierung
Rip := die Menge aller Regeln der Logik-Programmierung

® Fiir jedes € aus Tip UFip URLp U LP bezeichnet Var(¢) die Menge aller
Variablen, die in & vorkommen.

Beispiel: Ist p die Regel path(X,Y) :- edge(X,Z), path(Z,Y), dann ist
Var(p) = {X,Y,2}.

® |st S eine Substitution und « € Fip eine Anfrage der Form 7- a1, ..., an ist, so
bezeichnet oS die Anfrage 7- a1 S, ..., amS.
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Notation
® LP := die Menge aller Logikprogramme

® Ap := die Menge aller Atome der Logik-Programmierung
Vip := die Menge aller Variablen der Logik-Programmierung
Kip := die Menge aller Konstanten der Logik-Programmierung
Tip := die Menge aller Terme der Logik-Programmierung
Fip := die Menge aller Anfragen der Logik-Programmierung
Rip := die Menge aller Regeln der Logik-Programmierung

® Fiir jedes € aus Tip UFip URLp U LP bezeichnet Var(¢) die Menge aller
Variablen, die in & vorkommen.
Beispiel: Ist p die Regel path(X,Y) :- edge(X,Z), path(Z,Y), dann ist
Var(p) = {X,Y,2}.

® |st S eine Substitution und « € Fip eine Anfrage der Form 7- a1, ..., an ist, so
bezeichnet oS die Anfrage 7- a1 S, ..., amS.
Entsprechend definieren wir fiir jede Regel p € R p die Regel pS.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Mehr tiber Substitutionen

® Zur Erinnerung: Eine Substitution ist eine partielle Abbildung S von V p
nach T p. Den Definitionsbereich von S bezeichnen wir mit Def(S), den
Bildbereich mit Bild(S).
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Mehr tiber Substitutionen

® Zur Erinnerung: Eine Substitution ist eine partielle Abbildung S von V p
nach T p. Den Definitionsbereich von S bezeichnen wir mit Def(S), den
Bildbereich mit Bild(S).

® Die Verkettung zweier Substitutionen S und T ist die Substitution ST mit
Def(ST) = Def(S) U Def(T) und X(ST) := (XS) T fiir alle X € Def(ST).
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Mehr tiber Substitutionen

® Zur Erinnerung: Eine Substitution ist eine partielle Abbildung S von V p
nach T p. Den Definitionsbereich von S bezeichnen wir mit Def(S), den
Bildbereich mit Bild(S).

® Die Verkettung zweier Substitutionen S und T ist die Substitution ST mit
Def(ST) = Def(S) U Def(T) und X(ST) := (XS) T fiir alle X € Def(ST).

® Die Einschrankung einer Substitution S auf eine Menge V von Variablen ist
die Substitution S|y mit Def(S|y) = Def(S) N V und XS|y := XS fiir alle
X € Def(S) N V.
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Mehr tiber Substitutionen

® Zur Erinnerung: Eine Substitution ist eine partielle Abbildung S von V p
nach T p. Den Definitionsbereich von S bezeichnen wir mit Def(S), den
Bildbereich mit Bild(S).

® Die Verkettung zweier Substitutionen S und T ist die Substitution ST mit
Def(ST) = Def(S) U Def(T) und X(ST) := (XS) T fiir alle X € Def(ST).

® Die Einschrankung einer Substitution S auf eine Menge V von Variablen ist
die Substitution S|y mit Def(S|y) = Def(S) N V und XS|y := XS fiir alle
X € Def(S) N V.

® Die leere Substitution bezeichnen wir mit /. Es gilt:

® t/ =t firalle Terme t € Tip
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Mehr tiber Substitutionen

® Zur Erinnerung: Eine Substitution ist eine partielle Abbildung S von V p
nach T p. Den Definitionsbereich von S bezeichnen wir mit Def(S), den
Bildbereich mit Bild(S).

® Die Verkettung zweier Substitutionen S und T ist die Substitution ST mit
Def(ST) = Def(S) U Def(T) und X(ST) := (XS) T fiir alle X € Def(ST).

® Die Einschrankung einer Substitution S auf eine Menge V von Variablen ist
die Substitution S|y mit Def(S|y) = Def(S) N V und XS|y := XS fiir alle
X € Def(S) N V.

® Die leere Substitution bezeichnen wir mit /. Es gilt:

® t/ =1t fiir alle Terme t € Tp, und

® |S =15/ =S fiir alle Substitutionen S.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Beispiel 5.19
Fiir die Substitutionen

S { X~ good(c,Y), Y rainy(d) },
T = {Y+— sunny(d), Z+ humid(e) }.

gilt:
ST =
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Beispiel 5.19
Fiir die Substitutionen

S { X+ good(c,Y), Y+ rainy(d) },
T = {Y+— sunny(d), Z+ humid(e) }.

gilt:
ST = { X+ good(c,sunny(d)), Y+ rainy(d), Z+> humid(e) }
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Beispiel 5.19
Fiir die Substitutionen

S { X+ good(c,Y), Y+ rainy(d) },
T = {Y+— sunny(d), Z+ humid(e) }.

gilt:
ST = { X+ good(c,sunny(d)), Y~ rainy(d), Z+— humid(e) }
TS
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Beispiel 5.19
Fiir die Substitutionen

S { X+ good(c,Y), Y+ rainy(d) },
T := {Y+ sunny(d), Z— humid(e) }.

gilt:
ST = { X+ good(c,sunny(d)), Y~ rainy(d), Z+— humid(e) }
TS = { X~ good(c,Y), Y sunny(d), Z+— humid(e) }.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Umbennungen

® Eine Umbenennung ist eine injektive partielle Abbildung von V| p nach V p.

Wegen Vi p C T_p, sind Umbenennungen spezielle Substitutionen.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Umbennungen

® Eine Umbenennung ist eine injektive partielle Abbildung von V| p nach V p.

Wegen Vi p C T_p, sind Umbenennungen spezielle Substitutionen.

® Eine Umbenennung fiir eine Menge V von Variablen ist eine Umbennung U
mit Def(U) = V.
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Umbennungen

® Eine Umbenennung ist eine injektive partielle Abbildung von V| p nach V p.

Wegen Vi p C T_p, sind Umbenennungen spezielle Substitutionen.

® Eine Umbenennung fiir eine Menge V von Variablen ist eine Umbennung U
mit Def(U) = V.

e Ist U eine Umbennung, so bezeichnet U~! ihre Umkehrung.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Umbennungen

® Eine Umbenennung ist eine injektive partielle Abbildung von V| p nach V p.

Wegen Vi p C T_p, sind Umbenennungen spezielle Substitutionen.

® Eine Umbenennung fiir eine Menge V von Variablen ist eine Umbennung U
mit Def(U) = V.

e Ist U eine Umbennung, so bezeichnet U~! ihre Umkehrung.

Beispiel: U :={X+—Y, Y+ Z} ist eine Umbenennung fiir
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Umbennungen

® Eine Umbenennung ist eine injektive partielle Abbildung von V| p nach V p.

Wegen Vi p C T_p, sind Umbenennungen spezielle Substitutionen.

® Eine Umbenennung fiir eine Menge V von Variablen ist eine Umbennung U
mit Def(U) = V.

e Ist U eine Umbennung, so bezeichnet U~! ihre Umkehrung.

Beispiel: U :={X+—Y, Y— Z} ist eine Umbenennung fiir {X,Y}.
u-t=
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Umbennungen

® Eine Umbenennung ist eine injektive partielle Abbildung von V| p nach V p.

Wegen Vi p C T_p, sind Umbenennungen spezielle Substitutionen.

® Eine Umbenennung fiir eine Menge V von Variablen ist eine Umbennung U
mit Def(U) = V.

e Ist U eine Umbennung, so bezeichnet U~! ihre Umkehrung.

Beispiel: U :={X+—Y, Y— Z} ist eine Umbenennung fiir {X,Y}.
Ul={Y+~ X, Z+— Y} ist die Umkehrung von U.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Ein einfacher Interpreter fiir Logikprogramme

Algorithmus ANTWORT(I1, o)

% Eingabe: Programm Tl € LP, Anfrage 7-a € Fip mit o = aq,...,an
% Ausgabe: eine Substitution S fiir Var(«) oder das Wort ,gescheitert”.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Ein einfacher Interpreter fiir Logikprogramme

Algorithmus ANTWORT(I1, o)

% Eingabe: Programm Tl € LP, Anfrage 7-a € Fip mit o = aq,...,an
% Ausgabe: eine Substitution S fiir Var(«) oder das Wort ,gescheitert”.

1. Wahle ein i € [m] % «; ist das nachste ,Ziel"
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Ein einfacher Interpreter fiir Logikprogramme

Algorithmus ANTWORT(IN, o)

% Eingabe: Programm Tl € LP, Anfrage 7-a € Fip mit o = aq,...,an

% Ausgabe: eine Substitution S fiir Var(«) oder das Wort ,gescheitert”.
1. Wahle ein i € [m] % «; ist das nachste ,Ziel"

2. Wahle eine Regel p aus I1. Sei ¢ :- #1,...,1, die Form von p.
% Fakten fassen wir als Regeln ohne Rumpf auf
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Ein einfacher Interpreter fiir Logikprogramme

Algorithmus ANTWORT(IN, o)

% Eingabe: Programm Tl € LP, Anfrage 7-a € Fip mit o = aq,...,an

% Ausgabe: eine Substitution S fiir Var(«) oder das Wort ,gescheitert”.
1. Wahle ein i € [m] % «; ist das nachste ,Ziel"

2. Wahle eine Regel p aus I1. Sei ¢ :- #1,...,1, die Form von p.
% Fakten fassen wir als Regeln ohne Rumpf auf

3. Sei U eine Umbennung fiir Var(p), so dass Var(pU) N Var(a) = 0.
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Ein einfacher Interpreter fiir Logikprogramme

Algorithmus ANTWORT(IN, o)
% Eingabe: Programm Tl € LP, Anfrage 7-a € Fip mit o = aq,...,an

% Ausgabe: eine Substitution S fiir Var(«) oder das Wort ,gescheitert”.

1. Wahle ein i € [m] % «; ist das nachste ,Ziel"

2. Wahle eine Regel p aus . Sei ¢ :- #1,...,%, die Form von p.
% Fakten fassen wir als Regeln ohne Rumpf auf

3. Sei U eine Umbennung fiir Var(p), so dass Var(pU) N Var(a) = .

4. Wahle eine Substitution T, so dass «; T = UT. Wenn dies nicht méglich
ist, gib ,gescheitert” aus und halte an.
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Ein einfacher Interpreter fiir Logikprogramme

Algorithmus ANTWORT(IN, o)
% Eingabe: Programm Tl € LP, Anfrage 7-a € Fip mit o = aq,...,an

% Ausgabe: eine Substitution S fiir Var(«) oder das Wort ,gescheitert”.

1. Wahle ein i € [m] % «; ist das nachste ,Ziel"

2. Wahle eine Regel p aus . Sei ¢ :- #1,...,%, die Form von p.
% Fakten fassen wir als Regeln ohne Rumpf auf

3. Sei U eine Umbennung fiir Var(p), so dass Var(pU) N Var(a) = .

4. Wahle eine Substitution T, so dass «; T = UT. Wenn dies nicht méglich
ist, gib ,gescheitert” aus und halte an.

5. Wenn m =1 und n =0, gib T|var(a) aus und halte an.
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Ein einfacher Interpreter fiir Logikprogramme

Algorithmus ANTWORT(IN, o)
% Eingabe: Programm Tl € LP, Anfrage 7-a € Fip mit o = aq,...,an

% Ausgabe: eine Substitution S fiir Var(«) oder das Wort ,gescheitert”.

1. Wahle ein i € [m] % «; ist das nachste ,Ziel"

2. Wahle eine Regel p aus . Sei ¢ :- #1,...,%, die Form von p.
% Fakten fassen wir als Regeln ohne Rumpf auf

3. Sei U eine Umbennung fiir Var(p), so dass Var(pU) N Var(a) = .

4. Wahle eine Substitution T, so dass «; T = UT. Wenn dies nicht méglich
ist, gib ,gescheitert” aus und halte an.

5. Wenn m =1 und n =0, gib T|var(a) aus und halte an.
6. Setze Oé, = 1 T, NN 7 | T, ¢1UT, vaesy ¢nUT, (RN} T, ey OémT.
7. Setze T’ := ANTWORT(IT, o)
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Ein einfacher Interpreter fiir Logikprogramme

Algorithmus ANTWORT(IN, o)

% Eingabe: Programm Tl € LP, Anfrage 7-a € Fip mit o = aq,...,an
% Ausgabe: eine Substitution S fiir Var(«) oder das Wort ,gescheitert”.
1. Wahle ein i € [m] % «; ist das nachste ,Ziel"
2. Wahle eine Regel p aus . Sei ¢ :- #1,...,%, die Form von p.
% Fakten fassen wir als Regeln ohne Rumpf auf

3. Sei U eine Umbennung fiir Var(p), so dass Var(pU) N Var(a) = .

4. Wahle eine Substitution T, so dass «; T = UT. Wenn dies nicht méglich
ist, gib ,gescheitert” aus und halte an.

5. Wenn m =1 und n =0, gib T|var(a) aus und halte an.

6. Setze o/ == a1 T,...,c; 1T, 01 UT,... .0, UT, aj1T,...,amT.

7. Setze T’ := ANTWORT(IT, o)

8. Wenn T’ eine Substitution ist, gib (7T")|var(a) aus und halte an.

9. Gib , gescheitert” aus und halte an.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Zum Nichtdeterminismus des Interpreters

® Das Programm ANTWORT ist nichtdeterministisch. Wir sprechen von
verschiedenen Liufen des Programms, die durch die Auswahlen in den
Zeilen 1-4 bestimmt sind.
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Zum Nichtdeterminismus des Interpreters

® Das Programm ANTWORT ist nichtdeterministisch. Wir sprechen von
verschiedenen Liufen des Programms, die durch die Auswahlen in den
Zeilen 1-4 bestimmt sind.

® Ein Lauf heiBt akzeptierend, wenn die Ausgabe eine Substitution ist.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Zum Nichtdeterminismus des Interpreters

® Das Programm ANTWORT ist nichtdeterministisch. Wir sprechen von
verschiedenen Liufen des Programms, die durch die Auswahlen in den
Zeilen 1-4 bestimmt sind.

® Ein Lauf heiBt akzeptierend, wenn die Ausgabe eine Substitution ist.

® \/on den nichtdeterministischen Auswahlschritten in den Zeilen 1-4 ist die
Wahl der Substitution in Zeile 4 am problematischsten, weil hier ein
Element einer unendlichen Menge ausgewahlt wird, und weil nicht klar ist,
wie man so ein Element {iberhaupt finden kann.
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Zum Nichtdeterminismus des Interpreters

® Das Programm ANTWORT ist nichtdeterministisch. Wir sprechen von
verschiedenen Liufen des Programms, die durch die Auswahlen in den
Zeilen 1-4 bestimmt sind.

® Ein Lauf heiBt akzeptierend, wenn die Ausgabe eine Substitution ist.

® \/on den nichtdeterministischen Auswahlschritten in den Zeilen 1-4 ist die
Wahl der Substitution in Zeile 4 am problematischsten, weil hier ein
Element einer unendlichen Menge ausgewahlt wird, und weil nicht klar ist,
wie man so ein Element {iberhaupt finden kann.

® Die Wahl der Umbennung in Zeile 3 hingegen ist unwesentlich. Jede
Umbennung U, fiir die Var(pU) N Var(a) = 0 gilt, fiihrt zum gleichen
Ergebnis, und es ist leicht, eine solche Umbennung zu finden.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Korrektheit und Vollstandigkeit des Interpreters

Satz 5.20

Seien N € LP ein Logikprogramm, sei 7- o € F p eine Anfrage mit

a = aq,...,Qm, und sei S eine Substitution fiir Var(«). Dann sind folgende
Aussagen aquivalent:

(a) Die Terme a4S,...,amS sind aus I ableitbar.

(b) Es gibt einen Lauf von ANTWORT(IN, @), der S ausgibt.

Die Richtung ,,(b) = (a)* wird Korrektheit des Interpreters genannt; die
Richtung ,(a) = (b)" Vollstindigkeit.
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Korrektheit und Vollstandigkeit des Interpreters

Satz 5.20
Seien N € LP ein Logikprogramm, sei 7- o € F p eine Anfrage mit
a = aq,...,Qm, und sei S eine Substitution fiir Var(«). Dann sind folgende

Aussagen aquivalent:
(a) Die Terme a4S,...,amS sind aus I ableitbar.
(b) Es gibt einen Lauf von ANTWORT(IN, @), der S ausgibt.

Die Richtung ,,(b) = (a)* wird Korrektheit des Interpreters genannt; die
Richtung ,(a) = (b)" Vollstindigkeit.

Fiir den Spezialfall, dass m = 1 und « ein Grundterm ist, erhalten wir das
folgende Korollar.
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Korrektheit und Vollstandigkeit des Interpreters

Satz 5.20
Seien N € LP ein Logikprogramm, sei 7- o € F p eine Anfrage mit
a = aq,...,Qm, und sei S eine Substitution fiir Var(«). Dann sind folgende

Aussagen aquivalent:
(a) Die Terme a4S,...,amS sind aus I ableitbar.
(b) Es gibt einen Lauf von ANTWORT(IN, @), der S ausgibt.

Die Richtung ,,(b) = (a)* wird Korrektheit des Interpreters genannt; die
Richtung ,(a) = (b)" Vollstindigkeit.

Fiir den Spezialfall, dass m = 1 und « ein Grundterm ist, erhalten wir das
folgende Korollar.

Korollar 5.21
Sei I € LP ein Programm und sei o ein Grundterm. Dann gilt:
a € B(M) <= es gibt einen akzeptierenden Lauf von ANTWORT(I, o).
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Nachstes Ziel:
Auflosen des Nichtdeterminismus in Zeile 4

Als ein Hauptproblem des nichtdeterministischen Interpreters ANTWORT haben
wir die Wahl der Substitution T in Zeile 4 identifiziert.

Mit Hilfe der im Folgenden vorgestellten Unifikatoren kdonnen die richtigen
Substitutionen auf deterministische Art gefunden werden.
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Unifikation
Definition 5.22

Seien t,s € Ty p Terme der Logik-Programmierung.
(a) Ein Unifikator fiir t und s ist eine Substitution S, so dass tS = sS.
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Unifikation
Definition 5.22

Seien t,s € Ty p Terme der Logik-Programmierung.
(a) Ein Unifikator fiir t und s ist eine Substitution S, so dass tS = sS.

(b) t und s sind unifizierbar, wenn es einen Unifikator fiir t und s gibt.
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Unifikation
Definition 5.22

Seien t,s € Ty p Terme der Logik-Programmierung.

(a) Ein Unifikator fiir t und s ist eine Substitution S, so dass tS = sS.

(b) t und s sind unifizierbar, wenn es einen Unifikator fiir t und s gibt.

Beispiel 5.23
t:=mal(s(X), Y, s(Z)) und s:=mal(s(s(null)), Y, Y) sind
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Unifikation

Definition 5.22

Seien t,s € Tip Terme der Logik-Programmierung.

(a) Ein Unifikator fiir t und s ist eine Substitution S, so dass tS = sS.

(b) t und s sind unifizierbar, wenn es einen Unifikator fiir t und s gibt.

Beispiel 5.23
t:=mal(s(X), Y, s(Z)) und s:=mal(s(s(null)), Y, Y) sind unifizierbar.

Ein Unifikator ist
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Unifikation
Definition 5.22

Seien t,s € Ty p Terme der Logik-Programmierung.

(a) Ein Unifikator fiir t und s ist eine Substitution S, so dass tS = sS.

(b) t und s sind unifizierbar, wenn es einen Unifikator fiir t und s gibt.

Beispiel 5.23

t:=mal(s(X), Y, s(Z)) und s:=mal(s(s(null)), Y, Y) sind unifizierbar.

Ein Unifikator ist
S = {Xrrsull), Y—s(2) }.

Die entstehende gemeinsame Instanz ist
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Unifikation

Definition 5.22

Seien t,s € Tip Terme der Logik-Programmierung.

(a) Ein Unifikator fiir t und s ist eine Substitution S, so dass tS = sS.

(b) t und s sind unifizierbar, wenn es einen Unifikator fiir t und s gibt.

Beispiel 5.23
t:=mal(s(X), Y, s(Z)) und s:=mal(s(s(null)), Y, Y) sind unifizierbar.
Ein Unifikator ist

S = {Xrrsull), Y—s(2) }.

Die entstehende gemeinsame Instanz ist
tS = mal(s(s(null)), s(Z), s(Z)) = sS.
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Unifikation

Definition 5.22

Seien t,s € Tip Terme der Logik-Programmierung.

(a) Ein Unifikator fiir t und s ist eine Substitution S, so dass tS = sS.

(b) t und s sind unifizierbar, wenn es einen Unifikator fiir t und s gibt.

Beispiel 5.23
t:=mal(s(X), Y, s(Z)) und s:=mal(s(s(null)), Y, Y) sind unifizierbar.
Ein Unifikator ist

S = {Xrrsull), Y—s(2) }.

Die entstehende gemeinsame Instanz ist
tS = mal(s(s(null)), s(Z), s(Z)) = sS.

Ein weiterer Unifikator fiir t und s ist
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Unifikation
Definition 5.22

Seien t,s € Ty p Terme der Logik-Programmierung.

(a) Ein Unifikator fiir t und s ist eine Substitution S, so dass tS = sS.

(b) t und s sind unifizierbar, wenn es einen Unifikator fiir t und s gibt.

Beispiel 5.23

t:=mal(s(X), Y, s(Z)) und s:=mal(s(s(null)), Y, Y) sind unifizierbar.

Ein Unifikator ist
S = {Xrrsull), Y—s(2) }.

Die entstehende gemeinsame Instanz ist
tS = mal(s(s(null)), s(Z), s(Z)) = sS.

Ein weiterer Unifikator fiir t und s ist
S = { X — s(aull), Y+~ s(null), Z+ null }

Die entstehende gemeinsame Instanz ist

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024

Folie 410
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Unifikation

Definition 5.22

Seien t,s € Tip Terme der Logik-Programmierung.

(a) Ein Unifikator fiir t und s ist eine Substitution S, so dass tS = sS.

(b) t und s sind unifizierbar, wenn es einen Unifikator fiir t und s gibt.

Beispiel 5.23

t:=mal(s(X), Y, s(Z)) und s:=mal(s(s(null)), Y, Y) sind unifizierbar.
Ein Unifikator ist
S = {Xrrsull), Y—s(2) }.

Die entstehende gemeinsame Instanz ist
tS = mal(s(s(null)), s(Z), s(Z)) = sS.

Ein weiterer Unifikator fiir t und s ist
S = { X — s(aull), Y+~ s(null), Z+ null }

Die entstehende gemeinsame Instanz ist
tS’ = mal(s(s(null)), s(null), s(null)) = sS’.
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Eine Ordnung auf den Substitutionen

Definition 5.24

Zwei Substitutionen S und T sind dquivalent (kurz: S = T), wenn fiir alle Variablen
X e Vep g”t: XS =XT.

Beobachtung:
S und T sind genau dann dquivalent, wenn XS = XT fiir alle X € Def(S) N Def(T)

und XS = X fiir alle X € Def(S) \ Def(T) und XT = X fiir alle X € Def(T) \ Def(S).
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Eine Ordnung auf den Substitutionen

Definition 5.24
Zwei Substitutionen S und T sind dquivalent (kurz: S = T), wenn fiir alle Variablen
X e Vep g”t: XS =XT.

Beobachtung:
S und T sind genau dann dquivalent, wenn XS = XT fiir alle X € Def(S) N Def(T)
und XS = X fiir alle X € Def(S) \ Def(T) und XT = X fiir alle X € Def(T) \ Def(S).

Definition 5.25
Seien S und T Substitutionen. S ist allgemeiner als T (wir schreiben S < T), wenn es
eine Substitution S’ gibt, so dass SS' = T.
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Eine Ordnung auf den Substitutionen

Definition 5.24

Zwei Substitutionen S und T sind dquivalent (kurz: S = T), wenn fiir alle Variablen
X e Vep g”t: XS =XT.

Beobachtung:
S und T sind genau dann dquivalent, wenn XS = XT fiir alle X € Def(S) N Def(T)
und XS = X fiir alle X € Def(S) \ Def(T) und XT = X fiir alle X € Def(T) \ Def(S).

Definition 5.25
Seien S und T Substitutionen. S ist allgemeiner als T (wir schreiben S < T), wenn es
eine Substitution S’ gibt, so dass SS' = T.

Beobachtung:
| ist eine allgemeinste Substitution, d.h. fiir jede Substitution T gilt /| < T.
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Allgemeinste Unifikatoren
(kurz: mgu, fiir ,,most general unifier")

Definition 5.26

Seien t,s € T p. Ein allgemeinster Unifikator fiir t und s ist ein Unifikator S fiir
t und s, so dass gilt: S < T fiir alle Unifikatoren T fiir t und s.
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Allgemeinste Unifikatoren
(kurz: mgu, fiir ,,most general unifier")

Definition 5.26

Seien t,s € T p. Ein allgemeinster Unifikator fiir t und s ist ein Unifikator S fiir
t und s, so dass gilt: S < T fiir alle Unifikatoren T fiir t und s.

Das folgende Lemma besagt, dass allgemeinste Unifikatoren bis auf
Umbenennung von Variablen eindeutig sind.
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Allgemeinste Unifikatoren
(kurz: mgu, fiir ,,most general unifier")

Definition 5.26
Seien t,s € T p. Ein allgemeinster Unifikator fiir t und s ist ein Unifikator S fiir
t und s, so dass gilt: S < T fiir alle Unifikatoren T fiir t und s.

Das folgende Lemma besagt, dass allgemeinste Unifikatoren bis auf
Umbenennung von Variablen eindeutig sind.

Lemma 5.27

Seien t,s € T\ p, und seien S, T allgemeinste Unifikatoren fiir t und s.
Dann gibt es eine Umbennenung U, so dass SU = T.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Ein Unifikationsalgorithmus
Algorithmus MGU(t, s)

% Eingabe: zwei Terme t,s € Tp.

% Ausgabe: eine Substitution S oder die Worte ,,nicht unifizierbar"
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Ein Unifikationsalgorithmus
Algorithmus MGU(t, s)
% Eingabe: zwei Terme t,s € Tp.
% Ausgabe: eine Substitution S oder die Worte ,,nicht unifizierbar"
1. Wenn t = s, dann gib / aus und halte an.
2. Wennt=X€ Vp
3. Wenn X € Var(s), dann gib ,, nicht unifizierbar* aus und halte an.
4 Gib {X — s} aus und halte an.
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Ein Unifikationsalgorithmus
Algorithmus MGU(t, s)
% Eingabe: zwei Terme t,s € Tp.
% Ausgabe: eine Substitution S oder die Worte ,,nicht unifizierbar"
1. Wenn t = s, dann gib / aus und halte an.
2. Wennt=X€ Vp
3 Wenn X € Var(s), dann gib ,, nicht unifizierbar* aus und halte an.
4. Gib {X — s} aus und halte an.
5. Wenns=X€ Vp
6 Wenn X € Var(t) dann gib , nicht unifizierbar* aus und halte an.
7 Gib {X — t} aus und halte an.
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Ein Unifikationsalgorithmus
Algorithmus MGU(t, s)
% Eingabe: zwei Terme t,s € T p.
% Ausgabe: eine Substitution S oder die Worte ,,nicht unifizierbar"
1. Wenn t = s, dann gib / aus und halte an.
2. Wennt=X€ Vp
Wenn X € Var(s), dann gib ,, nicht unifizierbar* aus und halte an.
Gib {X — s} aus und halte an.
Wenn s =X € Vip
Wenn X € Var(t) dann gib , nicht unifizierbar* aus und halte an.
Gib {X — t} aus und halte an.
. Wenn t=£(t1,...,t,) und s==£(s1,...,sk)
fiir ein Atom £ € A_p und eine Stelligkeit k € N mit k > 1
9. Setze 51 := 1.
10. Fir i =1,..., k tue Folgendes:

© NGO R ®

11. Setze T; := MGU(t;S;, siS;).

12. Wenn T; = , nicht unifizierbar" dann gib ,, nicht unifizierbar"
aus und halte an.

13. Setze Sj11 := S5;T;.

14. Gib S41 aus und halte an.
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Ein Unifikationsalgorithmus
Algorithmus MGU(t, s)
% Eingabe: zwei Terme t,s € T p.
% Ausgabe: eine Substitution S oder die Worte ,,nicht unifizierbar"
1. Wenn t = s, dann gib / aus und halte an.
2. Wennt=X€ Vp
Wenn X € Var(s), dann gib ,, nicht unifizierbar* aus und halte an.
Gib {X — s} aus und halte an.
Wenn s =X € Vip
Wenn X € Var(t) dann gib , nicht unifizierbar* aus und halte an.
Gib {X — t} aus und halte an.
. Wenn t=£(t1,...,t,) und s==£(s1,...,sk)
fiir ein Atom £ € A_p und eine Stelligkeit k € N mit k > 1
9. Setze 51 := 1.
10. Fir i =1,..., k tue Folgendes:

© NGO R ®

11. Setze T; := MGU(t;S;, siS;).

12. Wenn T; = , nicht unifizierbar" dann gib ,, nicht unifizierbar"
aus und halte an.

13. Setze Sj11 := S5;T;.

14. Gib S41 aus und halte an.

15. Gib ,,nicht unifizierbar® aus und halte an.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Korrektheit des Unifikationsalgorithmus

Satz 5.28
Fiir alle Terme t,s € T p gilt:

(a) Sind t und s unifizierbar, so gibt MGU(t,s) einen allgemeinsten Unifikator
fiir t und s aus.

(b) Sind t und s nicht unifizierbar, so gibt MGU(t, s) die Worte ,nicht
unifizierbar" aus.

(Hier ohne Beweis)
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Korrektheit des Unifikationsalgorithmus

Satz 5.28
Fiir alle Terme t,s € T p gilt:

(a) Sind t und s unifizierbar, so gibt MGU(t,s) einen allgemeinsten Unifikator
fiir t und s aus.

(b) Sind t und s nicht unifizierbar, so gibt MGU(t, s) die Worte ,nicht
unifizierbar" aus.

(Hier ohne Beweis)

Korollar 5.29
Sind zwei Terme unifizierbar, so gibt es fiir diese Terme einen allgemeinsten
Unifikator.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Beispiele 5.30

(a) Ein allgemeinster Unifikator fiir

t = gEE,Y),£(V,W) und s = gV,£(Z,g(X,V)))
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Beispiele 5.30
(a) Ein allgemeinster Unifikator fiir
t = g(EEX,V),£(V, W) und s = gV,£(Z,g(X,V)))
ist
S ={V=£fX,V), Z£f&, V), V=g, V) }
{(VefED} {Z2— & D} {W— g, N},

und es gilt tS =55 =g X,Y),f(f(X,Y),gX,V))).
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Beispiele 5.30
(a) Ein allgemeinster Unifikator fiir
t = g(EEX,V),£(V, W) und s = gV,£(Z,g(X,V)))
ist
S ={V=£fX,V), Z£f&, V), V=g, V) }
= {VefEXN} {Z— XN} {Weg&, D},

und es gilt tS =55 =g X,Y),f(f(X,Y),gX,V))).
(b) g(£(X,Y),Y) und g(c,Y) sind
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Beispiele 5.30
(a) Ein allgemeinster Unifikator fiir
t = g(EEX,V),£(V, W) und s = gV,£(Z,g(X,V)))
ist
S ={V=£fX,V), Z£f&, V), V=g, V) }
= {VefEXN} {Z— XN} {Weg&, D},

und es gilt tS =55 =g X,Y),f(f(X,Y),gX,V))).
(b) g(£(X,Y),Y) und g(c,Y) sind nicht unifizierbar.
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Beispiele 5.30
(a) Ein allgemeinster Unifikator fiir
t = g(EEX,V),£(V, W) und s = gV,£(Z,g(X,V)))
ist
S ={V=£fX,V), Z£f&, V), V=g, V) }
= {VefEXN} {Z— XN} {Weg&, D},

und es gilt tS =55 =g X,Y),f(f(X,Y),gX,V))).
(b) g(£(X,Y),Y) und g(c,Y) sind nicht unifizierbar.

(c) Seien n > 1 und seien Xy,..., X, € Vip paarweise verschieden.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Beispiele 5.30
(a) Ein allgemeinster Unifikator fiir
t = g(EEX,V),£(V, W) und s = gV,£(Z,g(X,V)))
ist
S ={V=£fX,V), Z£f&, V), V=g, V) }
= {VefEXN} {Z— XN} {Weg&, D},

und es gilt tS =55 =g X,Y),f(f(X,Y),gX,V))).
(b) g(£(X,Y),Y) und g(c,Y) sind nicht unifizierbar.

(c) Seien n > 1 und seien Xo,..., X, € Vip paarweise verschieden. Sei

t, = £(X1,Xo...,Xp)
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Beispiele 5.30
(a) Ein allgemeinster Unifikator fiir
t = g(EEX,V),£(V, W) und s = gV,£(Z,g(X,V)))
ist
S ={V=£fX,V), Z£f&, V), V=g, V) }
= {VefEXN} {Z— XN} {Weg&, D},

und es gilt tS =55 =g X,Y),f(f(X,Y),gX,V))).
(b) g(£(X,Y),Y) und g(c,Y) sind nicht unifizierbar.

(c) Seien n > 1 und seien Xo,..., X, € Vip paarweise verschieden. Sei
t, = £(X1,Xo...,Xp)
sp = f(g(Xo,X0),g( X1, X1),...,8(Xo1,X0-1)) .
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Beispiele 5.30
(a) Ein allgemeinster Unifikator fiir
t = g(EEX,V),£(V, W) und s = gV,£(Z,g(X,V)))
ist
S ={V=£fX,V), Z£f&, V), V=g, V) }
= {VefEXN} {Z— XN} {Weg&, D},

und es gilt tS =55 =g X,Y),f(f(X,Y),gX,V))).
(b) g(£(X,Y),Y) und g(c,Y) sind nicht unifizierbar.

(c) Seien n > 1 und seien Xo,..., X, € Vip paarweise verschieden. Sei
t, = £(X1,Xo...,Xp)
sp = f(g(Xo,X0),g( X1, X1),...,8(Xo1,X0-1)) .

Dann sind t, und s,
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Beispiele 5.30
(a) Ein allgemeinster Unifikator fiir
t = g(EEX,V),£(V, W) und s = gV,£(Z,g(X,V)))
ist
S ={V=£fX,V), Z£f&, V), V=g, V) }
= {VefEXN} {Z— XN} {Weg&, D},

und es gilt tS =55 =g X,Y),f(f(X,Y),gX,V))).
(b) g(£(X,Y),Y) und g(c,Y) sind nicht unifizierbar.

(c) Seien n > 1 und seien Xo,..., X, € Vip paarweise verschieden. Sei
t, = £(X1,Xo...,Xp)
sp = f(g(Xo,X0),g( X1, X1),...,8(Xo1,X0-1)) .

Dann sind t, und s, unifizierbar durch einen allgemeinsten Unifikator S, fiir den
gilt:
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Beispiele 5.30
(a) Ein allgemeinster Unifikator fiir
t = g(EEX,V),£(V, W) und s = gV,£(Z,g(X,V)))
ist
S ={V=£fX,V), Z£f&, V), V=g, V) }
= {VefEXN} {Z— XN} {Weg&, D},

und es gilt tS =55 =g X,Y),f(f(X,Y),gX,V))).
(b) g(£(X,Y),Y) und g(c,Y) sind nicht unifizierbar.

(c) Seien n > 1 und seien Xo,..., X, € Vip paarweise verschieden. Sei
t, = £(X1,Xo...,Xp)
sp = f(g(Xo,X0),g( X1, X1),...,8(Xo1,X0-1)) .

Dann sind t, und s, unifizierbar durch einen allgemeinsten Unifikator S, fiir den
gilt:  — siehe Tafel —

Es gilt: Fiir jeden Unifikator T fiir t, und s, ist der Term T(X,) exponentiell groB
in n, und jede gemeinsame Instanz von t, und s, ist exponentiell lang in n.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Auflosen des Nichtdeterminismus in Zeile 4

Wir kénnen nun den Nichtdeterminismus in Zeile 4 unseres einfachen
Interpreters fiir Logikprogramme, ANTWORT(IN, ), aufldsen, indem wir als
Substitution T einen allgemeinsten Unifikator von a; und U wéhlen, und zwar
den allgemeinsten Unifikator, der vom Algorithmus MGU(«;, U) ausgegeben
wird.

Dadurch erhalten wir den folgenden Algorithmus UANTWORT(, o).
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Interpreter fiir Logikprogramme mit allgemeinsten

Unifikatoren
Algorithmus UANTWORT(I, o)

% Eingabe: Programm T € LP, Anfrage 7-a € Flp mita = aq,...,an
% Ausgabe: eine Substitution S fiir Var(a) oder das Wort ,gescheitert*.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Interpreter fiir Logikprogramme mit allgemeinsten

Unifikatoren
Algorithmus UANTWORT(I, o)

% Eingabe: Programm T € LP, Anfrage 7-a € Flp mita = aq,...,an
% Ausgabe: eine Substitution S fiir Var(a) oder das Wort ,gescheitert*.
1. Wihle ein i € [m] % «j ist das nichste ,Ziel”
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Interpreter fiir Logikprogramme mit allgemeinsten

Unifikatoren

Algorithmus UANTWORT(I, o)

% Eingabe: Programm T € LP, Anfrage 7-a € Flp mita = aq,...,an

% Ausgabe: eine Substitution S fiir Var(a) oder das Wort ,gescheitert*.
1. Wihle ein i € [m] % «j ist das nichste ,Ziel”

2. Wahle eine Regel p aus . Sei ¢ :- #1,...,9, die Form von p.
% Fakten fassen wir als Regeln ohne Rumpf auf
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Interpreter fiir Logikprogramme mit allgemeinsten

Unifikatoren
Algorithmus UANTWORT(I, o)

% Eingabe: Programm 1 € LP, Anfrage 7-a € Flp mita = aq,...,0n
% Ausgabe: eine Substitution S fiir Var(a) oder das Wort ,gescheitert*.
1. Wihle ein i € [m] % «j ist das nichste ,Ziel”

2. Wahle eine Regel p aus . Sei ¢ :- #1,...,9, die Form von p.
% Fakten fassen wir als Regeln ohne Rumpf auf

3. Sei U eine Umbennung fiir Var(p), so dass Var(pU) N Var(a) = 0.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Interpreter fiir Logikprogramme mit allgemeinsten
Unifikatoren
Algorithmus UANTWORT(I, o)

% Eingabe: Programm 1 € LP, Anfrage 7-a € Flp mita = aq,...,0n
% Ausgabe: eine Substitution S fiir Var(a) oder das Wort ,gescheitert*.
1. Wihle ein i € [m] % «j ist das nichste ,Ziel”

2. Wahle eine Regel p aus . Sei ¢ :- #1,...,9, die Form von p.
% Fakten fassen wir als Regeln ohne Rumpf auf

3. Sei U eine Umbennung fiir Var(p), so dass Var(pU) N Var(a) = 0.
4. Setze T := MGU(oy, pU)

% T soll ein allgemeinster Unifikator von a; und oU sein
5 Wenn T = »hicht unifizierbar®, gib , gescheitert" aus und halte an.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Interpreter fiir Logikprogramme mit allgemeinsten

Unifikatoren
Algorithmus UANTWORT(I, o)

% Eingabe: Programm 1 € LP, Anfrage 7-a € Flp mita = aq,...,0n
% Ausgabe: eine Substitution S fiir Var(a) oder das Wort ,gescheitert*.
1. Wihle ein i € [m] % «j ist das nichste ,Ziel”

2. Wahle eine Regel p aus . Sei ¢ :- #1,...,9, die Form von p.
% Fakten fassen wir als Regeln ohne Rumpf auf

3. Sei U eine Umbennung fiir Var(p), so dass Var(pU) N Var(a) = 0.
4. Setze T := MGU(oy, pU)

% T soll ein allgemeinster Unifikator von a; und oU sein
5 Wenn T = »hicht unifizierbar®, gib , gescheitert" aus und halte an.
6. Wenn m=1und n=0, gib 7~'|Va,(a) aus und halte an.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Interpreter fiir Logikprogramme mit allgemeinsten

Unifikatoren
Algorithmus UANTWORT(I, o)

% Eingabe: Programm 1 € LP, Anfrage 7-a € Flp mita = aq,...,0n
% Ausgabe: eine Substitution S fiir Var(a) oder das Wort ,gescheitert*.
1. Wahle ein i € [m] % o ist das nachste ,Ziel”

2. Wahle eine Regel p aus . Sei ¢ := 1,...,%, die Form von p.
% Fakten fassen wir als Regeln ohne Rumpf auf

3. Sei U eine Umbennung fiir Var(p), so dass Var(pU) N Var(a) = 0.

4. Setze T := MGU(oy, pU)

% T soll ein allgemeinster Unifikator von a; und oU sein
5 Wenn T = »hicht unifizierbar®, gib , gescheitert" aus und halte an.
6. Wenn m=1und n=0, gib 7~'|Va,(a) aus und halte an.
7. Setze & == T,...,0i 1T, 0 UT,... . 0nUT, aijaT,...,amT.
8. Setze T’ := UANTWORT(I, &)
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Interpreter fiir Logikprogramme mit allgemeinsten

Unifikatoren
Algorithmus UANTWORT(I, o)

% Eingabe: Programm 1 € LP, Anfrage 7-a € Flp mita = aq,...,0n
% Ausgabe: eine Substitution S fiir Var(a) oder das Wort ,gescheitert*.
1. Wahle ein i € [m] % o ist das nachste ,Ziel”

2. Wahle eine Regel p aus . Sei ¢ := 1,...,%, die Form von p.
% Fakten fassen wir als Regeln ohne Rumpf auf

3. Sei U eine Umbennung fiir Var(p), so dass Var(pU) N Var(a) = 0.

4. Setze T := MGU(oy, pU)

% T soll ein allgemeinster Unifikator von «; und U sein
5 Wenn T = »hicht unifizierbar®, gib , gescheitert" aus und halte an.
6. Wenn m=1und n=0, gib 7~'|Va,(a) aus und halte an.
7. Setze & == T,...,0i 1T, 0 UT,... . 0nUT, aijaT,...,amT.
8. Setze T’ := UANTWORT(I, &)
9. Wenn T eine Substitution ist, gib (ff’)|\/a,(a) aus und halte an.

10. Gib , gescheitert” aus und halte an.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Korrektheit und Vollstandigkeit des Interpreters

Satz 5.31
., Qm, und

Sei 1 € LP ein Logikprogramm, sei 7- o € Fip eine Anfrage mit « = o, ..
sei S eine Substitution fiir Var(«). Dann sind folgende Aussagen dquivalent:
(a) Die Terme ai1S,...,am$S sind aus I ableitbar.
(b) Es gibt einen Lauf von UANTWORT(I, o), der eine Substitution S fiir Var(c) mit
S < S ausgibt.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Korrektheit und Vollstandigkeit des Interpreters

Satz 5.31
., Qm, und

Sei 1 € LP ein Logikprogramm, sei 7- o € Fip eine Anfrage mit « = o, ..
sei S eine Substitution fiir Var(«). Dann sind folgende Aussagen dquivalent:
(a) Die Terme ai1S,...,am$S sind aus I ableitbar.
(b) Es gibt einen Lauf von UANTWORT(I, o), der eine Substitution S fiir Var(c) mit
S < S ausgibt.

Korollar 5.32
Sei 1 € LP ein Logikprogramm und sei o ein Grundterm. Dann gilt:
a € B(M) <= es gibt einen akzeptierenden Lauf von UANTWORT(IT, ).
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Korrektheit und Vollstandigkeit des Interpreters

Satz 5.31
Sei N € LP ein Logikprogramm, sei 7= a € Fpp eine Anfrage mit « = o, ..., am, und
sei S eine Substitution fiir Var(«). Dann sind folgende Aussagen dquivalent:
(a) Die Terme ai1S,...,am$S sind aus I ableitbar.
(b) Es gibt einen Lauf von UANTWORT(I, o), der eine Substitution S fiir Var(c) mit
S < S ausgibt.
Korollar 5.32

Sei 1 € LP ein Logikprogramm und sei o ein Grundterm. Dann gilt:
a € B(M) <= es gibt einen akzeptierenden Lauf von UANTWORT(IT, ).

Fiir den Beweis der Richtung ,(a) = (b)" von Satz 5.31 verwenden wir:

Lemma 5.33

Seil € LP und sei 7- o € Flp mit o = a1, ...,am € Fip, und sei S’ eine
Substitution fiir o. Dann gibt es zu jedem Lauf von ANTWORT(I, aS"), der eine
Substitution S ausgibt, einen Lauf von UANTWORT(I, o), der eine Substitution 5 mit
5 < 5'S ausgibt.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Bemerkungen

® Indem wir das nichtdeterministische Auswahlen einer Substitution im
Algorithmus ANTWORT im Algorithmus UANTWORT durch das
deterministische Berechnen eines allgemeinsten Unifikators ersetzt haben,
sind wir einen entscheidenden Schritt in Richtung ,, praktische
Ausfiihrbarkeit” gegangen.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Bemerkungen

® Indem wir das nichtdeterministische Auswahlen einer Substitution im
Algorithmus ANTWORT im Algorithmus UANTWORT durch das
deterministische Berechnen eines allgemeinsten Unifikators ersetzt haben,
sind wir einen entscheidenden Schritt in Richtung ,, praktische
Ausfiihrbarkeit” gegangen.

® Es bleiben aber immer noch die nichtdeterministischen Auswahlschritte
eines Ziels in Zeile 1 und einer Regel in Zeile 2. Diese miissen bei einer
praktischen Implementierung durch eine systematische Suche durch alle
Mboglichkeiten ersetzt werden.

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 419



Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Bemerkungen

® Indem wir das nichtdeterministische Auswahlen einer Substitution im
Algorithmus ANTWORT im Algorithmus UANTWORT durch das
deterministische Berechnen eines allgemeinsten Unifikators ersetzt haben,
sind wir einen entscheidenden Schritt in Richtung ,, praktische
Ausfiihrbarkeit” gegangen.

® Es bleiben aber immer noch die nichtdeterministischen Auswahlschritte
eines Ziels in Zeile 1 und einer Regel in Zeile 2. Diese miissen bei einer
praktischen Implementierung durch eine systematische Suche durch alle
Mboglichkeiten ersetzt werden.

(Die Wahl der Umbennenung in Zeile 3 unproblematisch.)
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Bemerkungen

® Indem wir das nichtdeterministische Auswahlen einer Substitution im
Algorithmus ANTWORT im Algorithmus UANTWORT durch das
deterministische Berechnen eines allgemeinsten Unifikators ersetzt haben,
sind wir einen entscheidenden Schritt in Richtung ,, praktische
Ausfiihrbarkeit” gegangen.

® Es bleiben aber immer noch die nichtdeterministischen Auswahlschritte
eines Ziels in Zeile 1 und einer Regel in Zeile 2. Diese miissen bei einer
praktischen Implementierung durch eine systematische Suche durch alle
Mboglichkeiten ersetzt werden.

(Die Wahl der Umbennenung in Zeile 3 unproblematisch.)

® Verschiedene logische Programmiersprachen unterscheiden sich in den
verwendeten Suchstrategien.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.3: Operationelle Semantik

Bemerkungen

® Indem wir das nichtdeterministische Auswahlen einer Substitution im
Algorithmus ANTWORT im Algorithmus UANTWORT durch das
deterministische Berechnen eines allgemeinsten Unifikators ersetzt haben,
sind wir einen entscheidenden Schritt in Richtung ,, praktische
Ausfiihrbarkeit” gegangen.

® Es bleiben aber immer noch die nichtdeterministischen Auswahlschritte
eines Ziels in Zeile 1 und einer Regel in Zeile 2. Diese miissen bei einer
praktischen Implementierung durch eine systematische Suche durch alle
Mboglichkeiten ersetzt werden.

(Die Wahl der Umbennenung in Zeile 3 unproblematisch.)

® Verschiedene logische Programmiersprachen unterscheiden sich in den
verwendeten Suchstrategien.

® Prolog verwendet Tiefensuche.
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Abschnitt 5.4:

Logik-Programmierung und Prolog



Kapitel 5: Logik-Programmierung - Abschnitt 5.4: Logik-Programmierung und Prolog

Reines Prolog

Reines Prolog ist das Fragment der Programmiersprache Prolog, dessen
Programme gerade die Logikprogramme in LP sind.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.4: Logik-Programmierung und Prolog

Reines Prolog

Reines Prolog ist das Fragment der Programmiersprache Prolog, dessen
Programme gerade die Logikprogramme in LP sind.

Insbesondere enthilt reines Prolog keine speziellen Prolog-Operatoren wie Cut

K
neo
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Kapitel 5: Logik-Programmierung - Abschnitt 5.4: Logik-Programmierung und Prolog

Reines Prolog

Reines Prolog ist das Fragment der Programmiersprache Prolog, dessen
Programme gerade die Logikprogramme in LP sind.

Insbesondere enthilt reines Prolog keine speziellen Prolog-Operatoren wie Cut
1", arithmetische Pradikate
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Kapitel 5: Logik-Programmierung - Abschnitt 5.4: Logik-Programmierung und Prolog

Reines Prolog

Reines Prolog ist das Fragment der Programmiersprache Prolog, dessen
Programme gerade die Logikprogramme in LP sind.

Insbesondere enthilt reines Prolog keine speziellen Prolog-Operatoren wie Cut
. 1", arithmetische Pradikate oder Ein-/Ausgabe-Pradikate (d.h. Pridikate mit

Seiteneffekten).

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 420



Kapitel 5: Logik-Programmierung - Abschnitt 5.4: Logik-Programmierung und Prolog

Reines Prolog

Reines Prolog ist das Fragment der Programmiersprache Prolog, dessen
Programme gerade die Logikprogramme in LP sind.

Insbesondere enthilt reines Prolog keine speziellen Prolog-Operatoren wie Cut
. 1", arithmetische Pradikate oder Ein-/Ausgabe-Pradikate (d.h. Pridikate mit

Seiteneffekten).

Die Semantik von reinem Prolog stimmt nicht mit der deklarativen Semantik
der Logik-Programmierung iiberein.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.4: Logik-Programmierung und Prolog

Reines Prolog

Reines Prolog ist das Fragment der Programmiersprache Prolog, dessen
Programme gerade die Logikprogramme in LP sind.

Insbesondere enthilt reines Prolog keine speziellen Prolog-Operatoren wie Cut
. 1", arithmetische Pradikate oder Ein-/Ausgabe-Pradikate (d.h. Pridikate mit
Seiteneffekten).

Die Semantik von reinem Prolog stimmt nicht mit der deklarativen Semantik
der Logik-Programmierung iiberein.

Die erste vom Prolog-Interpreter ausgegebene Antwort wird gemaB dem
folgenden Interpreter PERSTEANTWORT ermittelt.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.4: Logik-Programmierung und Prolog

Ein Prolog-Interpreter
Algorithmus PERSTEANTWORT(IN, )

% Eingabe: Programm I € LP, Anfrage 7- o € Fip mita = aa,...,am
% Ausgabe: eine Substitution S fiir Var(«) oder das Wort , false"
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Kapitel 5: Logik-Programmierung - Abschnitt 5.4: Logik-Programmierung und Prolog

Ein Prolog-Interpreter

Algorithmus PERSTEANTWORT(IN, )
% Eingabe: Programm I € LP, Anfrage 7- o € Fip mita = aa,...,am
% Ausgabe: eine Substitution S fiir Var(a) oder das Wort ,false*

1. Betrachte alle Regeln p in I in der Reihenfolge ihres Vorkommens in I und tue
Folgendes: % Fakten fassen wir als Regeln ohne Rumpf auf
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Kapitel 5: Logik-Programmierung - Abschnitt 5.4: Logik-Programmierung und Prolog

Ein Prolog-Interpreter

Algorithmus PERSTEANTWORT(IN, )

% Eingabe: Programm I € LP, Anfrage 7- o € Fip mita = aa,...,am
% Ausgabe: eine Substitution S fiir Var(a) oder das Wort ,false*

1. Betrachte alle Regeln p in 1 in der Reihenfolge ihres Vorkommens in 1 und tue

Folgendes: % Fakten fassen wir als Regeln ohne Rumpf auf
2. Sei ¢ := 1,...,%, die Form von p
3. Sei U eine Umbennung fiir Var(p), so dass Var(pU) N Var(a) = 0
4. Setze T := MGU(ayq, ¢U)
5. Wenn T eine Substitution ist
6. Wenn m =1 und n =0, gib T|var(a) aus und halte an
7. Setze o/ == Y UT,...,oUT,cT,...,amT
8. Setze T’ := PERSTEANTWORT(I, o)
9. Wenn T’ eine Substitution ist, gib (TT")|var(a) aus und halte an

10. Gib ,false" aus und halte an
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Vergleich zur deklarativen Semantik

PERSTEANTWORT(IN, ) gibt héchstens eine Substitution aus, kann u.U. aber auch in
eine Endlosschleife gelangen und nicht terminieren.
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Der folgende Satz besagt, dass im Falle der Terminierung die ausgegebene Antwort
korrekt ist.
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Vergleich zur deklarativen Semantik

PERSTEANTWORT(IN, ) gibt héchstens eine Substitution aus, kann u.U. aber auch in
eine Endlosschleife gelangen und nicht terminieren.

Der folgende Satz besagt, dass im Falle der Terminierung die ausgegebene Antwort
korrekt ist.

Satz 5.34

Sei M € LP ein Logikprogramm und sei 7- o € FLp mit & = a1, ..., am eine Anfrage.
Dann gilt:

(a) Wenn PERSTEANTWORT(IN, ) eine Substitution S ausgibt, dann sind die Terme
a1S,...,amS aus I ableitbar.

(b) Wenn PERSTEANTWORT(I, o) das Wort ,false” ausgibt, dann gibt es keine
Substitution S, so dass die Terme a1 S, ...,amS aus I ableitbar sind.

(Hier ohne Beweis)
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Terminierung

Intuitiv besagt Satz 5.34, dass im Falle der Terminierung die vom
Prolog-Interpreter bei Eingabe eines Logikprogramms I und einer Anfrage 7- «

gegebene erste Antwort korrekt ist.
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Terminierung

Intuitiv besagt Satz 5.34, dass im Falle der Terminierung die vom
Prolog-Interpreter bei Eingabe eines Logikprogramms I und einer Anfrage 7- «
gegebene erste Antwort korrekt ist.

Moglicherweise halt der Prolog-Interpreter aber gar nicht an, obwohl es laut
Definition der deklarativen Semantik korrekte Antworten gibt.
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Moglicherweise halt der Prolog-Interpreter aber gar nicht an, obwohl es laut
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Es ist Aufgabe des Programmierers, dies zu verhindern!
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Intuitiv besagt Satz 5.34, dass im Falle der Terminierung die vom
Prolog-Interpreter bei Eingabe eines Logikprogramms I und einer Anfrage 7- «
gegebene erste Antwort korrekt ist.

Moglicherweise halt der Prolog-Interpreter aber gar nicht an, obwohl es laut
Definition der deklarativen Semantik korrekte Antworten gibt.

Es ist Aufgabe des Programmierers, dies zu verhindern!

Typische Probleme dabei sind Dummbheit und linksrekursive Regeln.
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Terminierung

Intuitiv besagt Satz 5.34, dass im Falle der Terminierung die vom
Prolog-Interpreter bei Eingabe eines Logikprogramms I und einer Anfrage 7- «
gegebene erste Antwort korrekt ist.

Moglicherweise halt der Prolog-Interpreter aber gar nicht an, obwohl es laut
Definition der deklarativen Semantik korrekte Antworten gibt.

Es ist Aufgabe des Programmierers, dies zu verhindern!
Typische Probleme dabei sind Dummbheit und linksrekursive Regeln.

Beispiel: vorfahre(X,Y) :- vorfahre(X,Z), elternteil(Z,Y)
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Unterschied zwischen Theorie und Praxis

Beispiel 5.35
Die folgenden Logikprogramme myplusi.pl, myplus2.pl, myplus3.pl haben
die gleiche Bedeutung hinsichtlich der deklarativen Semantik im folgenden

Sinne:

Aus allen drei Programmen kdnnen genau dieselben Grundterme der Form
myplus(...) abgeleitet werden.

Alle drei Programme erzeugen jedoch unterschiedliche Ausgaben in Prolog.
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Programm: myplusi.pl
myplus(X,Y,Z) :- myplus(Y,X,Z).
myplus(0,X,X) .
myplus(1,1,2). myplus(1,2,3). myplus(1,3,4).
myplus(2,2,4). myplus(2,3,5).
myplus(3,3,6).
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Programm: myplusi.pl

myplus(X,Y,Z)

;- myplus(Y,X,Z).

myplus(0,X,X).

myplus(1,1,2).

Programm: myplus2.pl

myplus(0,X,X).

myplus(X,Y,Z)

Nicole Schweikardt -

HU Berlin -

myplus(1,1,2).

;- myplus(Y,X,Z).

Vorlesung Logik in der Informatik

myplus(1,2,3).
myplus(2,2,4).

myplus(1,2,3).
myplus(2,2,4).

myplus(1,3,4).
myplus(2,3,5).
myplus(3,3,6) .

myplus(1,3,4).
myplus(2,3,5).
myplus(3,3,6).
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Programm: myplusi.pl
myplus(X,Y,Z) :- myplus(Y,X,Z).
myplus(0,X,X) .
myplus(1,1,2). myplus(1,2,3).
myplus(2,2,4).

Programm: myplus2.pl
myplus(0,X,X) .
myplus(1,1,2). myplus(1,2,3).
myplus(2,2,4).

myplus(X,Y,Z) :- myplus(Y,X,Z).

Programm: myplus3.pl
myplusH(0,X,X) .

myplusH(1,1,2). myplusH(1,2,3).
myplusH(2,2,4).

myplus(X,Y,Z) :- myplusH(X,Y,Z).
myplus(X,Y,Z) :- myplusH(Y,X,Z).

myplus(1,3,4).
myplus(2,3,5).
myplus(3,3,6) .

myplus(1,3,4).
myplus(2,3,5).
myplus(3,3,6).

myplusH(1,3,4).
myplusH(2,3,5).
myplusH(3,3,6) .
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Aus Sicht des Prolog-Interpreters (und des Interpreters PERSTEANTWORT) ist
das Programm myplus1.pl idiotisch und liefert auf keine Anfrage der Form
,myplus(...)" eine Antwort, da die Auswertung des Programms stets mit der
ersten Regel in eine Endlosschleife gerat.
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das Programm myplus1.pl idiotisch und liefert auf keine Anfrage der Form
,myplus(...)" eine Antwort, da die Auswertung des Programms stets mit der
ersten Regel in eine Endlosschleife gerat.

Das Programm myplus2.pl ist besser, hilt aber auch bei , falschen” Anfragen
wie z.B. ,myplus(1,1,3)" nicht an, da die Auswertung des Programms dann
mit der letzten Regel in eine Endlosschleife gerat.
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Aus Sicht des Prolog-Interpreters (und des Interpreters PERSTEANTWORT) ist
das Programm myplus1.pl idiotisch und liefert auf keine Anfrage der Form
,myplus(...)" eine Antwort, da die Auswertung des Programms stets mit der
ersten Regel in eine Endlosschleife gerat.

Das Programm myplus2.pl ist besser, hilt aber auch bei , falschen” Anfragen
wie z.B. ,myplus(1,1,3)" nicht an, da die Auswertung des Programms dann
mit der letzten Regel in eine Endlosschleife gerat.

Das Programm myplus3.pl leistet das, was es soll.
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Beweisbaume vs. Suchbaume

Beweisbaume
sind in Definition 5.14 definiert. Ein Beweisbaum ist eine graphische Darstellung

einer Ableitung eines Terms t € T p aus einem Logikprogramm [1 € LP.

Nicole Schweikardt - HU Berlin - Vorlesung Logik in der Informatik Version vom 25. Januar 2024 Folie 427



Kapitel 5: Logik-Programmierung - Abschnitt 5.4: Logik-Programmierung und Prolog

Beweisbaume vs. Suchbaume

Beweisbaume
sind in Definition 5.14 definiert. Ein Beweisbaum ist eine graphische Darstellung

einer Ableitung eines Terms t € T p aus einem Logikprogramm [1 € LP.

Somit stellt ein Beweisbaum eine einzelne Ableitung dar. Diese entspricht einem
erfolgreichen Lauf unseres nichtdeterministischen Interpreters ANTWORT.
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Kapitel 5: Logik-Programmierung - Abschnitt 5.4: Logik-Programmierung und Prolog

Beweisbaume vs. Suchbaume

Beweishaume
sind in Definition 5.14 definiert. Ein Beweisbaum ist eine graphische Darstellung
einer Ableitung eines Terms t € T p aus einem Logikprogramm [1 € LP.

Somit stellt ein Beweisbaum eine einzelne Ableitung dar. Diese entspricht einem
erfolgreichen Lauf unseres nichtdeterministischen Interpreters ANTWORT.

Suchbiume

stellen die vollstandige Suche des Prolog-Interpreters bei Eingabe eines
Logikprogramms [T und einer Anfrage ?- « dar. Insbesondere enthilt der
Suchbaum Informationen iiber alle erfolgreichen Laufe des
nichtdeterministischen Interpreters ANTWORT.
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Unifikation in Prolog

In Prolog testet der Ausdruck t =s nicht, ob die Terme t und s gleich sind,
sondern ob sie unifizierbar sind.
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Unifikation in Prolog

In Prolog testet der Ausdruck t =s nicht, ob die Terme t und s gleich sind,
sondern ob sie unifizierbar sind.

Der in den meisten Prologimplementierungen verwendete
Unifikationsalgorithmus testet aus Effizienzgriinden bei der Unifikation einer
Variablen X mit einem Term t nicht, ob X in t vorkommt.
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Der in den meisten Prologimplementierungen verwendete
Unifikationsalgorithmus testet aus Effizienzgriinden bei der Unifikation einer
Variablen X mit einem Term t nicht, ob X in t vorkommt.

Diesen Test bezeichnet man als Occurs-Check, er findet in den Zeilen 3 und 6
unseres Unifikationsalgorithmus MGU statt.
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Unifikation in Prolog
In Prolog testet der Ausdruck t =s nicht, ob die Terme t und s gleich sind,
sondern ob sie unifizierbar sind.

Der in den meisten Prologimplementierungen verwendete
Unifikationsalgorithmus testet aus Effizienzgriinden bei der Unifikation einer
Variablen X mit einem Term t nicht, ob X in t vorkommt.

Diesen Test bezeichnet man als Occurs-Check, er findet in den Zeilen 3 und 6
unseres Unifikationsalgorithmus MGU statt.

In Prolog ist es eine Aufgabe des Programmierers, sicherzustellen, dass niemals
eine Variable mit einem Term unifiziert wird, der diese Variable enthalt.
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