Diskrete Strukturen

Wintersemester 2022/23

Übungsblatt 3

Abgabe: bis 5. Dezember 2022, 10.00 Uhr über Moodle

Aufgabe 1:

 $(3 \cdot 20 = 60 \text{ Punkte})$

(a) Beweisen Sie Satz 2.54 (a) mittels vollständiger Induktion. Das heißt, zeigen Sie:

Für alle $n \in \mathbb{N}$ mit $n \geq 1$ gilt: $\sum_{i=1}^{n} (2i - 1) = n^2$. (d.h. die Summe der ersten n ungeraden Zahlen ergibt gerade die Zahl n^2 .)

- (b) Beantworten Sie die Frage am Ende der Bemerkung 2.58. Beweisen Sie, dass Ihre Antwort korrekt ist.
- (c) Beweisen Sie Satz 2.64 (a). Das heißt, zeigen Sie:

Für jede Menge M gilt: $\mathcal{P}(M)$ ist echt mächtiger als M.

Aufgabe 2:

 $(4 \cdot 5 + 20 = 40 \text{ Punkte})$

Betrachten Sie das Alphabet $\Sigma := \{M, I, U\}$. Die Sprache $L \subseteq \Sigma^*$ sei auf die folgende Art rekursiv definiert:¹

Basis regel:

(B1) $MI \in L$.

Rekursive Regeln: Für alle $w, w' \in \Sigma^*$ gilt:

- (R1) Ist $wI \in L$, so ist auch $wIU \in L$,
- (R3) ist $wIIIw' \in L$, so ist auch $wUw' \in L$,
- (R2) ist $Mw \in L$, so ist auch $Mww \in L$,
- (R4) ist $wUUw' \in L$, so ist auch $ww' \in L$.
- (a) Geben Sie für die folgenden Aussagen an, ob Sie wahr oder falsch sind. Begründen Sie jeweils Ihre Antwort.
 - (i) $MIU \in L$.

(iii) MUII $\in L$.

(ii) UMII $\in L$.

- (iv) $MU \in L$.
- (b) Beweisen Sie per Induktion über die Definition der Menge L, dass für jedes Wort $w \in L$ gilt: Die Anzahl $|w|_{\mathbb{I}}$ der Vorkommen des Symbols I in w ist nicht durch 3 teilbar.

— auf der nächsten Seite geht's weiter —

¹Diese Sprache L wird im Buch Gödel, Escher, Bach von Douglas R. Hofstadter betrachtet.

Aufgabe 3: Präsenz

Beweisen Sie per vollständiger Induktion die folgende Aussage:

Für alle $n \in \mathbb{N}$ ist $(n^5 - n)$ durch 5 teilbar.

Aufgabe 4: Präsenz

Sei $s\in\mathbb{N}_{\geqslant 1}.$ Gegeben sei folgende rekursiv definierte Funktion:

$$\text{F\"{u}r alle } n \in \mathbb{N} \text{ sei} \quad g_s(n) \coloneqq \begin{cases} s, & \text{falls } n = 0 \\ \frac{1}{2} \cdot g_s(n-1), & \text{falls } g_s(n-1) \text{ gerade und } n \geq 1 \\ 3 \cdot g_s(n-1) + 1, & \text{falls } g_s(n-1) \text{ ungerade und } n \geq 1 \end{cases}$$

Das heißt, s ist der Startwert der Funktion. Berechnen Sie $g_5(5)$ und $g_{23}(15)$.

²Bei dieser Funktion handelt es sich um die sogenannte Collatz-Funktion für den Startwert $s \in \mathbb{N}_{\geq 1}$. Es ist kein konkreter Startwert s bekannt, für den g_s nicht irgendwann den Wert 1 erreicht. Es ist eine offene Forschungsfrage, ob tatsächlich für jedes $s \in \mathbb{N}_{\geq 1}$ ein $n_s \in \mathbb{N}$ existiert, sodass $g_s(n_s) = 1$.