Diskrete Strukturen

Wintersemester 2022/23

Übungsblatt 2

Abgabe: bis 21. November 2022, 10.00 Uhr über Moodle

Aufgabe 1:

 $(7 \cdot 4 + 3 \cdot 6 = 46 \text{ Punkte})$

- (a) Geben Sie für jede der folgenden Funktionen f an, ob die Funktion injektiv, surjektiv und/oder bijektiv ist. Geben Sie jeweils auch das Bild von f an.
 - (i) $f: \mathbb{Z} \to \mathbb{Z}$ mit f(x) := x 4 für alle $x \in \mathbb{Z}$.
 - (ii) $f: \mathbb{Z} \to \mathbb{Z}$ mit $f(x) := 2 \cdot x$ für alle $x \in \mathbb{Z}$.
 - (iii) $f: \mathbb{Z} \to \{1, -1\}$ mit $f(x) := (-1)^x$ für alle $x \in \mathbb{Z}$.
 - (iv) $f: \mathbb{Z} \to \mathbb{Z}$ mit $f(x) := x^2$ für alle $x \in \mathbb{Z}$.
 - (v) $f: \mathbb{N} \to \mathbb{N}_{\geq 1}$ mit f(x) := x + 1 für alle $x \in \mathbb{N}$.
 - (vi) $f: A^* \to \mathbb{N}$ für eine beliebige Menge A mit |A| = 1 und f(w) := |w| für alle $w \in A^*$.
 - (vii) $f: A^* \to \mathbb{N}$ für eine beliebige Menge A mit $|A| \ge 2$ und f(w) := |w| für alle $w \in A^*$.
- (b) Seien A, B und C Mengen und sei $f: A \to B$ eine Funktion von A nach B und $g: B \to C$ eine Funktion von B nach C. Wir definieren die Funktion $h: A \to C$ als Komposition, d.h. Hintereinanderausführung, von f und g als h(x) := g(f(x)) f.a. $x \in A$. Beweisen Sie die Gültigkeit der folgenden Aussagen:
 - (i) Wenn f und g surjektiv sind, so ist auch h surjektiv.
 - (ii) Wenn f und g injektiv sind, so ist auch h injektiv.
 - (iii) Wenn f und g bijektiv sind, so ist auch h bijektiv.

Aufgabe 2:

 $(3 \cdot 18 = 54 \text{ Punkte})$

(a) Beweisen Sie die erste Aussage von Satz 2.10(b) der Vorlesung, das heißt, beweisen Sie die folgende Aussage:

Sei U unser festes Universum, das selbst eine Menge ist, und seien $M, N \subseteq U$. Dann gilt:

$$\overline{M \cap N} = \overline{M} \cup \overline{N}$$

- (b) Beweisen Sie Satz 2.38(b) aus der Vorlesung, das heißt, zeigen Sie die folgende Aussage: Sei B eine Menge, sei A eine endliche Menge und sei k := |A|. Dann gibt es eine bijektive Funktion von Abb(A, B) nach B^k .
- (c) Es seien m Mengen M_1, \ldots, M_m für ein $m \in \mathbb{N}_{\geqslant 1}$ gegeben. Beweisen Sie die folgende Aussage:

Falls die Summe der Kardinalitäten der Mengen M_1, \ldots, M_m größer als $n \in \mathbb{N}$ ist, so existiert eine Menge $M \in \{M_1, \ldots, M_m\}$, deren Kardinalität größer als $\frac{n}{m}$ ist.

Aufgabe 3: Präsenz

Beweisen Sie: Falls M eine endliche Teilmenge einer unendlichen Menge U ist, so ist das Komplement von M in U unendlich.

Aufgabe 4: Präsenz

Betrachten Sie die beiden folgenden Algorithmen zur Sortierung der Komponenten eines Tupels $t = (a_1, \ldots, a_{2^k})$ der Länge 2^k , d.h. mit 2^k Komponenten, wobei $k \in \mathbb{N}$.

Algorithmus 1 (Bei Eingabe eines Tupels $t = (a_1, \ldots, a_{2^k})$)

- 1. Falls k = 0, dann gib t als Ergebnis zurück.
- 2. Sei t_1 die Ausgabe von **Algorithmus 1** bei Eingabe des Tupels $(a_1, \ldots, a_{2^{k-1}})$.
- 3. Sei t_2 die Ausgabe von **Algorithmus 1** bei Eingabe des Tupels $(a_{2^{k-1}+1}, \ldots, a_{2^k})$.
- 4. Gib $\mathbf{merge}(t_1, t_2)$ zurück.

Hierbei ist $\mathbf{merge}()$ eine Funktion, die bei Eingabe zweier sortierter Tupel t_1 und t_2 mit jeweils 2^{k-1} Komponenten ein sortiertes Tupel mit 2^k Komponenten zurückgibt. Man kann sich leicht überlegen, dass die Funktion $\mathbf{merge}()$ so implementiert werden kann, dass sie nicht mehr als $3 \cdot 2^k$ Schritte benötigt. Deshalb braucht **Algorithmus 1** insgesamt für ein Tupel der Länge 2^k nicht mehr als $f_1(k) = 2f_1(k-1) + 3 \cdot 2^k + 4$ Schritte, wobei $f_1(0) = 2$.

Algorithmus 2 (Bei Eingabe eines Tupels $t = (a_1, \ldots, a_{2^k})$)

- 1. Wiederhole für jedes i von 1 bis $(2^k 1)$:
- 2. Wiederhole für jedes j von 1 bis $(2^k i)$:
- 3. Falls $a_j > a_{j+1}$, dann tausche die Komponenten a_j und a_{j+1} in t.
- 4. Gib t zurück.

Insgesamt braucht **Algorithmus 2** für ein Tupel der Länge 2^k nicht mehr als $f_2(k) = 3 \cdot 2^{2k} + 2^k - 1$ Schritte.

- (a) Welcher der beiden Algorithmen läuft im Allgemeinen schneller? D.h. welche der beiden Funktionen f_1 und f_2 liefert kleinere Funktionswerte?
- (b) Beweisen Sie, dass Ihre Antwort aus (a) korrekt ist. Das heißt, falls Sie in (a) geantwortet haben, dass **Algorithmus** i im Allgemeinen schneller als **Algorithmus** j ist, dann finden Sie eine Zahl $n_0 \in \mathbb{N}$ und beweisen Sie per Induktion nach n, dass für alle $n \in \mathbb{N}$ mit $n > n_0$ gilt: $f_i(n) < f_j(n)$.