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Logik

• altgriechisch
”
logos“: Vernunft

• die Lehre des vernünftigen Schlussfolgerns

• Teilgebiet u.a. der Disziplinen Philosophie, Mathematik und Informatik

• zentrale Frage:

Wie kann man Aussagen miteinander verknüpfen, und auf welche
Weise kann man formal Schlüsse ziehen und Beweise durchführen?
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Das Lügnerparadoxon von Epimenides

Brief des Paulus an Titus 1:12-13:

Es hat einer von ihnen gesagt, ihr eigener Prophet:
Die Kreter sind immer Lügner, böse Tiere und faule Bäuche.

Angenommen, die Aussage des Propheten ist wahr.
Da der Prophet selbst Kreter ist, lügt er also immer (und ist ein
böses Tier und ein fauler Bauch). Dann hat er aber insbesondere
in dem Satz

”
Die Kreter sind immer Lügner, böse Tiere und faule

Bäuche“ gelogen. D.h. die Aussage des Propheten ist nicht wahr.
Dies ist ein Widerspruch!

Angenommen, die Aussage des Propheten ist falsch.
Dann gibt es Kreter, die nicht immer Lügner, böse Tiere und
faule Bäuche sind. Dies stellt keinen Widerspruch dar.

Insgesamt wissen wir also, dass der Prophet in seiner obigen Aussage nicht die
Wahrheit gesagt hat.

Christoph Berkholz · HU Berlin · Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 2



Kapitel 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons
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Angenommen, die Aussage des Propheten ist wahr.
Da der Prophet selbst Kreter ist, lügt er also immer (und ist ein
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Bäuche“ gelogen. D.h. die Aussage des Propheten ist nicht wahr.
Dies ist ein Widerspruch!

Angenommen, die Aussage des Propheten ist falsch.
Dann gibt es Kreter, die nicht immer Lügner, böse Tiere und
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Protagoras und sein Student Euthalus vor Gericht

Protagoras (490 – 420 v.Chr.)
Quelle: http://www.greatthoughtstreasury.com/author/protagoras

Euthalus studierte die Kunst der Argumentation beim Meister
Protagoras, um Anwalt zu werden.
Er vereinbart mit Protagoras, die Gebühren für den Unterricht zu
bezahlen, sobald er seinen ersten Prozess gewonnen hat.

Aber dann zögert Euthalus seine Anwaltstätigkeit immer weiter hinaus,
und schließlich beschließt Protagoras, seine Gebühren einzuklagen.
Euthalus verteidigt sich selbst . . .
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Protagoras denkt:
Wenn ich den Prozess gewinne, muss Euthalus gemäß
Gerichtsbeschluss zahlen.
Wenn ich den Prozess verliere, muss Euthalus gemäß unserer
Vereinbarung zahlen, da er dann seinen ersten Prozess gewonnen
hat.

Euthalus denkt:
Wenn ich den Prozess gewinne, muss ich gemäß
Gerichtsbeschluss nicht zahlen.
Wenn ich den Prozess verliere, muss ich gemäß unserer
Vereinbarung nicht zahlen.
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Achilles und die Schildkröte
Achilles und die Schildkröte laufen ein Wettrennen. Achilles gewährt
der Schildkröte einen Vorsprung. Zenon behauptet, dass Achilles die
Schildkröte niemals einholen kann.

Zenon von Elea (490 – 425 v.Chr.) Quelle:
http://aefucr.blogspot.de/2008/04/resolucin-de-la-paradoja-de-zenn-de.html

Zenons Begründung: Zu dem Zeitpunkt, an dem Achilles den Startpunkt der
Schildkröte erreicht, ist die Schildkröte schon ein Stück weiter.
Etwas später erreicht Achilles diesen Punkt, aber die Schildkröte
ist schon etwas weiter. Wenn Achilles diesen Punkt erreicht, ist
die Schildkröte wieder etwas weiter. So kann Achilles zwar immer
näher an die Schildkröte herankommen, sie aber niemals einholen.
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Auflösung durch die Infinitesimalrechnung:

Gottfried Wilhelm von Leibniz (1646 – 1716)
und Isaac Newton (1643 – 1727)

Quelle: http://www-history.mcs.st-and.ac.uk/PictDisplay/Leibniz.html
und Quelle: http://de.wikipedia.org/wiki/Isaac_Newton
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Der Barbier von Sonnenthal

Im Städtchen Sonnenthal (in dem bekanntlich viele seltsame Dinge
passieren) wohnt ein Barbier, der genau diejenigen männlichen
Einwohner von Sonnenthal rasiert, die sich nicht selbst rasieren.

Frage: Rasiert der Barbier sich selbst?

Angenommen, der Barbier rasiert sich selbst.
Da er ein männlicher Einwohner von Sonnenthal ist, der sich
selbst rasiert, wird er nicht vom Barbier rasiert. Aber er selbst ist
der Barbier. Dies ist ein Widerspruch!

Angenommen, der Barbier rasiert sich nicht selbst.
Da er in Sonnenthal wohnt und dort alle Einwohner rasiert, die
sich nicht selbst rasieren, muss er sich rasieren. Dies ist ein
Widerspruch!
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Der Barbier von Sonnenthal
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Die Anfänge der formalen Logik
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Aristoteles’ Syllogismen

Die folgende Schlussweise ist aus rein formalen Gründen korrekt.

Annahme 1: Alle Menschen sind sterblich.
Annahme 2: Sokrates ist ein Mensch.

Folgerung: Also ist Sokrates sterblich.

Diese Art von Schluss und eine Reihe verwandter Schlussweisen nennt man
Syllogismen.

Annahme 1: Alle A sind B.
Annahme 2: C ist ein A.

Folgerung: Also ist C B.
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Beispiele

Annahme 1: Alle Borg sind assimiliert worden.
Annahme 2: Seven of Nine ist eine Borg.

Folgerung: Also ist Seven of Nine assimiliert worden.

Annahme 1: Alle Substitutionschiffren sind
anfällig gegen Brute-Force-Angriffe.

Annahme 2: Der Julius-Cäsar-Chiffre ist ein Substitutionschiffre.

Folgerung: Also ist der Julius-Cäsar-Chiffre anfällig
gegen Brute-Force-Angriffe.
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Aristoteles (384 - 322 v.Chr.)
Quelle: http://de.wikipedia.org/wiki/Aristoteles
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Charles Lutwidge Dodgson a.k.a. Lewis Carroll (1838 – 1898)
Quelle: http://en.wikiquote.org/wiki/Lewis_Carroll

“Contrariwise,” continued Tweedledee, “if it was so, it might be; and
if it were so, it would be; but as it isn’t, it ain’t. That’s logic.”

aus: Alice in Wonderland
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Carrolls formaler Schluss

Annahme 1: Es gibt keine Schweine, die fliegen können.
Annahme 2: Alle Schweine sind gefräßige Tiere.
Annahme 3: Es gibt Schweine.

Folgerung: Also gibt es gefräßige Tiere, die nicht fliegen können.

Die Form des Schlusses ist:

Annahme 1: Es gibt keine A, die B (sind).
Annahme 2: Alle A sind C.
Annahme 3: Es gibt A.

Folgerung: Also gibt es C, die nicht B (sind).
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Nicht jeder formale Schluss ist korrekt

Annahme 1: Es gibt Vögel, die fliegen können.
Annahme 2: Es gibt keine fliegenden (Tiere),

die Klavier spielen können.

Folgerung: Also gibt es keine Vögel, die Klavier spielen können.

Kein korrekter Schluss, auch wenn in diesem Fall die Folgerung wahr ist.

Der folgende, offensichtlich falsche, Schluss hat dieselbe Form:

Annahme 1: Es gibt Menschen, die stumm sind.
Annahme 2: Es gibt keine stummen (Lebewesen),

die sprechen können.

Folgerung: Also gibt es keine Menschen, die sprechen können.
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Aber wie merkt man es?

Man kann einen falschen Schluss entlarven, indem man einen formal gleichen
Schluss findet, der klar falsch ist.

Annahme 1: Erbeeren schmecken gut.
Annahme 2: Schlagsahne schmeckt gut.

Folgerung: Also schmecken Erdbeeren mit Schlagsahne gut.

Aber:

Annahme 1: Pizza schmeckt gut.
Annahme 2: Schlagsahne schmeckt gut.

Folgerung: Also schmeckt Pizza mit Schlagsahne gut.
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Wasons Auswahlaufgabe (Wason’s selection task)

Uns stehen vier Karten der folgenden Art zur Verfügung:
Auf jeder Karte steht auf der Vorderseite eine Ziffer zwischen 0 und 9. Die
Rückseite jeder Karte ist komplett rot oder komplett blau.

Wir sehen Folgendes:

Jemand hat folgende Hypothese aufgestellt:

Wenn auf der Vorderseite eine gerade Zahl steht,
dann ist die Rückseite rot.

Welche Karte(n) müssen Sie umdrehen, um zu überprüfen, ob die Hypothese
stimmt? Übermitteln Sie Ihre Lösung jetzt hier: http://pingo.upb.de/160267
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Und was sagen die Simpsons?

Quelle: http://en.

wikipedia.org/wiki/

Simpson_family

Homer: Not a bear in sight. The Bear Patrol
must be working like a charm.

Lisa: That’s specious reasoning, Dad.
Homer: Thank you, dear.
Lisa: By your logic I could claim that

this rock keeps tigers away.
Homer: Oh, how does it work?
Lisa: It doesn’t work.
Homer: Uh-huh.
Lisa: It’s just a stupid rock.
Homer: Uh-huh.
Lisa: But I don’t see any tigers around,

do you?
(Pause)

Homer: Lisa, I want to buy your rock.

[Lisa refuses at first, then takes the exchange]
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Die Rolle der Logik in der Informatik

Halpern, Harper, Immerman, Kolaitis, Vardi, Vianu (2001):

Concepts and methods of logic occupy a central place in computer
science, insomuch that logic has been called
“the calculus of computer science”.

aus: On the unusual effectiveness of logic in computer science, Bulletin of
Symbolic Logic 7(2): 213-236 (2001)
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Anwendungsbereiche der Logik in der Informatik

• Repräsentation von Wissen (z.B. im Bereich der künstlichen Intelligenz)
[siehe Kapitel 2 und 3]

• Grundlage für Datenbank-Anfragesprachen [siehe Kapitel 3]

• Bestandteil von Programmiersprachen
(z.B. um Bedingungen in IF-Anweisungen zu formulieren) [siehe Kapitel 2]

• automatische Generierung von Beweisen
(so genannte Theorembeweiser) [siehe Kapitel 4]

• Berechenbarkeits- und Komplexitätstheorie

• Verifikation von

• Schaltkreisen (Ziel: beweise, dass ein Schaltkreis bzw. Chip
”
richtig“

funktioniert)

• Programmen (Ziel: beweise, dass ein Programm gewisse wünschenswerte
Eigenschaften hat)

• Protokollen (Ziel: beweise, dass die Kommunikation zwischen zwei

”
Agenten“, die nach einem gewissen Protokoll abläuft,

”
sicher“ ist)

• Logik-Programmierung [siehe folgende Folien und Kapitel 5]
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Einführung in die Logik-Programmierung
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”
Was“ statt

”
Wie“ am Beispiel von Tiramisu

Tiramisu — Deklarativ
Aus Eigelb, Mascarpone
und in Likör und Kaffee
getränkten Biskuits
hergestellte cremige
Süßspeise

(aus: DUDEN,

Fremdwörterbuch, 6. Auflage)

Tiramisu — Imperativ

1/4 l Milch mit 2 EL Kakao und 2 EL Zucker
aufkochen. 1/4 l starken Kaffee und 4 EL Amaretto
dazugeben.

5 Eigelb mit 75 g Zucker weißschaumig rühren,
dann 500 g Mascarpone dazumischen.

ca 200 g Löffelbiskuit.

Eine Lage Löffelbiskuit in eine Auflaufform legen,
mit der Flüssigkeit tränken und mit der Creme
überziehen. Dann wieder Löffelbiskuit darauflegen,
mit der restlichen Flüssigkeit tränken und mit der
restlichen Creme überziehen.

Über Nacht im Kühlschrank durchziehen lassen und
vor dem Servieren mit Kakao bestäuben.

(aus: Gisela Schweikardt, handschriftliche Kochrezepte)
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Der große Traum der Informatik

Imperative Vorgehensweise:
Beschreibung, wie das gewünschte Ergebnis erzeugt wird . . . . . . . . . . . . . . . . . . . . .

”
Wie“

Deklarative Vorgehensweise:
Beschreibung der Eigenschaften des gewünschten Ergebnisses . . . . . . . . . . . . . . . . .

”
Was“

Traum der Informatik:
Möglichst wenig

”
wie“, möglichst viel

”
was“

D.h.: Automatische Generierung eines Ergebnisses aus seiner Spezifikation

Realität:

Datenbanken: Deklarative Anfragesprache ist Industriestandard (SQL)

Software-Entwicklung: Generierungs-Tools

Programmiersprachen: Logik-Programmierung, insbes. Prolog

ABER: Imperativer Ansatz überwiegt in der Praxis
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Beschreibung, wie das gewünschte Ergebnis erzeugt wird . . . . . . . . . . . . . . . . . . . . .

”
Wie“

Deklarative Vorgehensweise:
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Logik-Programmierung

• Logik-Programmierung bezeichnet die Idee, Logik direkt als
Programmiersprache zu verwenden.

• Logik-Programmierung (in Sprachen wie Prolog) und die verwandte
funktionale Programmierung (in Sprachen wie LISP, ML, Haskell) sind
deklarativ,
im Gegensatz zur imperativen Programmierung (in Sprachen wie Java, C,
Perl).

• Die Idee er deklarativen Programmierung besteht darin, dem Computer
lediglich sein Wissen über das Anwendungsszenario und sein Ziel mitzuteilen
und dann die Lösung des Problems dem Computer zu überlassen.

Bei der imperativen Programmierung hingegen gibt man dem Computer die
einzelnen Schritte zur Lösung des Problems vor.
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Prolog

• Prolog

• ist die wichtigste logische Programmiersprache,

• geht zurück auf Kowalski und Colmerauer
(Anfang der 1970er Jahre, Marseilles),

• steht für (franz.) Programmation en logique.

• Mitte/Ende der 1970er Jahre: effiziente Prolog-Implementierung durch den
von Warren (in Edinburgh) entwickelten Prolog-10 Compiler.

• Aus Effizienzgründen werden in Prolog die abstrakten Ideen der logischen
Programmierung nicht in Reinform umgesetzt, Prolog hat auch

”
nichtlogische“ Elemente.

• Prolog ist eine voll entwickelte und mächtige Programmiersprache, die vor
allem für symbolische Berechnungsprobleme geeignet ist.
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Anwendungen

Die wichtigsten Anwendungsgebiete sind die künstliche Intelligenz und die
Computerlinguistik.

Beispiele
Das Interface für natürliche Sprache

• in der International Space Station wurde von der NASA

• beim IBM Watson System, das in 2011 die Jeopardy! Man vs. Machine
Challenge gewonnen hat, wurde

in Prolog implementiert.

Mehr Informationen dazu finden sich z.B. unter
https://sicstus.sics.se/customers.html und
http://www.cs.nmsu.edu/ALP/2011/03/

natural-language-processing-with-prolog-in-the-ibm-watson-system/
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Learn Prolog Now!

Im Rahmen der Übungsaufgaben zur Vorlesung werden wir jede Woche eins der
12 Kapitel des Buchs

”
Learn Prolog Now!“ von Patrick Blackburn, Johan Bos und Kristina

Striegnitz (Kings College Publications, 2006)

. . . auch erhältlich als Online-Kurs unter
http://www.learnprolognow.org

durcharbeiten.

Als Unterstützung dazu gibt es jede Woche eine 2-stündige Prolog-Übung.

Am Ende des Semesters, in Kapitel 5, werden wir von Prolog abstrahieren und
uns die Grundprinzipien der Logik-Programmierung anschauen.

Christoph Berkholz · HU Berlin · Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 24
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Lernziele

Mein teurer Freund, ich rat Euch drum
Zuerst Collegium Logicum.
Da wird der Geist Euch wohl dressiert,
In spanische Stiefeln eingeschnürt,
Daß er bedächtiger so fortan
Hinschleiche die Gedankenbahn,
Und nicht etwa, die Kreuz und Quer,
Irrlichteliere hin und her.

Mephistopheles in Faust

Aus der Studienordnung:

• Studierende erlangen die Fähigkeit, Sachverhalte in geeigneten formalen
Systemen zu formalisieren und die grundlegenden Begriffe und Ergebnisse
der mathematischen Logik zu verstehen und anzuwenden.

• Darüber hinaus erlernen sie anhand der deklarativen Programmiersprache
Prolog ein neues Programmierparadigma.
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Semesterüberblick

1. Einleitung heute

2. Aussagenlogik Woche 1–6
Syntax und Semantik, Normalformen, Modellierung,

Resolution, Erfüllbarkeitsalgorithmen

3. Logik erster Stufe Woche 7–10
Syntax und Semantik, Normalformen, Modellierung,

Nichtausdrückbarkeit

4. Grundlagen des automatischen Schließens Woche 11–14
Sequenzenkalkül, Vollständigkeits- und Endlichkeitssatz,

Grenzen der Berechenbarkeit, automatische Theorembeweiser

5. Logik-Programmierung Woche 15–16
theoretische Grundlagen der Logik-Programmierung

Learn Prolog Now! Einführung in Prolog findet semesterbegleitend statt.
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Aussagen

Die Frage
”
Was ist eigentlich ein Wort?“ ist analog der

”
Was ist eine

Schachfigur?“ Ludwig Wittgenstein, Philosophische Untersuchungen

• Aussagen (im Sinne der Aussagenlogik) sind sprachliche Gebilde, die
entweder wahr oder falsch sind.

• Aussagen können mit Junktoren wie nicht, und, oder oder wenn . . . dann
zu komplexeren Aussagen verknüpft werden.

• Aussagenlogik beschäftigt sich mit allgemeinen Prinzipien des korrekten
Argumentierens und Schließens mit Aussagen und Kombinationen von
Aussagen.
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Ludwig Wittgenstein (1889 – 1951)
Quelle: http://en.wikipedia.org/wiki/Ludwig_Wittgenstein
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Beispiel 2.1 (Geburtstagsfeier)

Fred möchte mit möglichst vielen seiner Freunde Anne, Bernd, Christine, Dirk
und Eva seinen Geburtstag feiern. Er weiß Folgendes:
Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf keinen Fall
kommen. Und Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur
Feier kommen. Aber Eva kommt allenfalls dann, wenn Christine und Dirk
kommen. Andererseits kommt Christine nur dann, wenn auch Anne kommt.
Anne wiederum wird nur dann kommen, wenn auch Bernd oder Christine dabei
sind.

Frage: Wie viele Freunde (und welche) werden im besten Fall zur Party
kommen?
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Das Wissen, das in dem Text wiedergegeben ist, lässt sich in
”
atomare

Aussagen“ zerlegen, die mit Junktoren verknüpft werden können.
Die atomaren Aussagen, um die sich der Text dreht, kürzen wir folgendermaßen
ab:

A : Anne kommt zur Feier

B : Bernd kommt zur Feier

C : Christine kommt zur Feier

D : Dirk kommt zur Feier

E : Eva kommt zur Feier

Das im Text zusammengefasste Wissen lässt sich wie folgt repräsentieren.
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(1) Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf keinen
Fall kommen.

kurz: Wenn (B und A), dann nicht E kürzer: (B ∧ A)→ ¬E

(2) Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier
kommen.

kurz: Wenn (B und E ), dann nicht D kürzer: (B ∧ E )→ ¬D

(3) Eva kommt allenfalls dann, wenn Christine und Dirk kommen.

kurz: Wenn E , dann (C und D) kürzer: E → (C ∧ D)

(4) Christine kommt nur dann, wenn auch Anne kommt.

kurz: Wenn C , dann A kürzer: C → A

(5) Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind.

kurz: Wenn A, dann (B oder C ) kürzer: A→ (B ∨ C )
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Fallstricke natürlichsprachlicher Aussagen
Die Verwendung der Wörter und, wenn . . . dann, oder, nicht in der
Alltagssprache entspricht nicht immer exakt unseren logischen Junktoren.

(1) Anne hat mit dem Kaffeetrinken aufgehört.

kurz: V und nicht G kürzer: V ∧ ¬G

(2) Anne hat nicht mit dem Kaffeetrinken aufgehört.

kurz: V und G kürzer: V ∧ G

Ist (2) die Negation von (1)? In dem Fall, dass Anne noch nie Kaffee getrunken
hat, ist keine der beiden Aussagen wahr.

V : Anne war in der Vergangenheit Kaffeetrinkerin.

G : Anne ist zur Zeit Kaffeetrinkerin.

Zwei weitere Beispiele:

• Ich werde mir ein rotes oder ein blaues Fahrrad kaufen.

• Wenn Regen vorhergesagt ist, dann nehme ich einen Schirm mit.
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kurz: V und G kürzer: V ∧ G

Ist (2) die Negation von (1)?

In dem Fall, dass Anne noch nie Kaffee getrunken
hat, ist keine der beiden Aussagen wahr.

V : Anne war in der Vergangenheit Kaffeetrinkerin.

G : Anne ist zur Zeit Kaffeetrinkerin.

Zwei weitere Beispiele:

• Ich werde mir ein rotes oder ein blaues Fahrrad kaufen.

• Wenn Regen vorhergesagt ist, dann nehme ich einen Schirm mit.

Christoph Berkholz · HU Berlin · Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 32



Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik
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Fallstricke natürlichsprachlicher Aussagen
Die Verwendung der Wörter und, wenn . . . dann, oder, nicht in der
Alltagssprache entspricht nicht immer exakt unseren logischen Junktoren.

(1) Anne hat mit dem Kaffeetrinken aufgehört.
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Syntax und Semantik

Syntax: legt fest, welche Zeichenketten Formeln der Aussagenlogik sind

Semantik: legt fest, welche
”
Bedeutung“ einzelne Formeln haben

Dies ist analog zur Syntax und Semantik von Java-Programmen:

Die Syntax legt fest, welche Zeichenketten Java-Programme sind, während die
Semantik bestimmt, was das Programm tut.

Zur Verdeutlichung werden wir im Folgenden syntaktische Objekte oft in orange
darstellen, während wir semantische Aussagen in grün angeben.
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Syntax der Aussagenlogik
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Notationen

• Die Menge N der natürlichen Zahlen besteht aus allen nicht-negativen
ganzen Zahlen, d.h.

N := { 0, 1, 2, 3, . . . }.

• Für ein n ∈ N ist

[n] := {1, . . . , n} = { i ∈ N : 1 6 i 6 n }.
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Definition 2.2
Ein Aussagensymbol (oder eine Aussagenvariable, kurz: Variable) hat die Form
Ai für ein i ∈ N.
Die Menge aller Aussagensymbole bezeichnen wir mit AS, d.h.

AS = {Ai : i ∈ N} = {A0, A1, A2, A3, . . . }

Aussagenlogische Formeln sind Wörter, die über dem folgenden Alphabet
gebildet sind.

Definition 2.3
Das Alphabet der Aussagenlogik besteht aus

• den Aussagesymbolen in AS,

• den Junktoren ¬, ∧, ∨, →,

• den booleschen Konstanten 0, 1,

• den Klammersymbolen (, ).

Wir schreiben AAL, um das Alphabet der Aussagenlogik zu bezeichnen, d.h.

AAL := AS ∪ { ¬, ∧, ∨, →, 0, 1, (, ) }
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• den booleschen Konstanten 0, 1,

• den Klammersymbolen (, ).

Wir schreiben AAL, um das Alphabet der Aussagenlogik zu bezeichnen, d.h.

AAL := AS ∪ { ¬, ∧, ∨, →, 0, 1, (, ) }
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Definition 2.4 (Syntax der Aussagenlogik)

Die Menge AL der aussagenlogischen Formeln (kurz: Formeln) ist die
folgendermaßen rekursiv definierte Teilmenge von A∗AL:

Basisregeln: (zum Bilden der so genannten atomaren Formeln)

(B0) 0 ∈ AL

(B1) 1 ∈ AL

(BS) Für jedes Aussagensymbol Ai ∈ AS gilt: Ai ∈ AL

Rekursive Regeln:

(R1) Ist ϕ ∈ AL, so ist auch ¬ϕ ∈ AL (Negation)

(R2) Ist ϕ ∈ AL und ψ ∈ AL, so ist auch

• (ϕ ∧ ψ) ∈ AL (Konjunktion)

• (ϕ ∨ ψ) ∈ AL (Disjunktion)

• (ϕ→ ψ) ∈ AL (Implikation)
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Beispiele

• (¬A0 ∨ (A0 → A1))

∈ AL

• ¬ ((A0 ∧ 0)→ ¬A3)

∈ AL

• A1 ∨ A2 ∧ A3

6∈ AL

• (¬A1)

6∈ AL
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Griechische Buchstaben

In der Literatur werden Formeln einer Logik traditionell meistens mit
griechischen Buchstaben bezeichnet.

Hier eine Liste der gebräuchlichsten Buchstaben:

Buchstabe ϕ ψ χ θ bzw. ϑ λ µ ν τ κ

Aussprache phi psi chi theta lambda mü nü tau kappa

Buchstabe σ ρ ξ ζ α β γ δ ω

Aussprache sigma rho xi zeta alpha beta gamma delta omega

Buchstabe ε ι π ∆ Γ Σ Π Φ

Aussprache epsilon iota pi Delta Gamma Sigma Pi Phi
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Syntaxbäume

Die Struktur einer Formel lässt sich bequem in einem Syntaxbaum (englisch:
parse tree) darstellen.

Beispiel: Syntaxbaum der Formel (((A4 ∧ 1) ∨ ¬A5)→ (A5 ∧ ¬(A4 ∧ 1)))

Ausführlich:

(((A4 ∧ 1) ∨ ¬A5)→(A5 ∧ ¬(A4 ∧ 1)))

((A4 ∧ 1)∨¬A5)

(A4∧1)

A4 1

¬A5

A5

(A5∧¬(A4 ∧ 1))

A5 ¬(A4 ∧ 1)

(A4∧1)

A4 1

Kurzform:

→

∨

∧

A4 1

¬

A5

∧

A5 ¬

∧

A4 1
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Subformeln und eindeutige Lesbarkeit

• Jede Formel hat genau einen Syntaxbaum. Diese Aussage ist als das
Lemma über die eindeutige Lesbarkeit aussagenlogischer Formeln bekannt.

• Die Formeln ψ, die im ausführlichen Syntaxbaum einer Formel ϕ als
Knotenbeschriftung vorkommen, nennen wir Subformeln (bzw. Teilformeln)
von ϕ.

• Eine Subformel ψ von ϕ kann an mehreren Knoten des Syntaxbaums
vorkommen. Wir sprechen dann von verschiedenen Vorkommen von ψ in ϕ.
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Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Vorüberlegung zur Semantik

• Eine aussagenlogische Formel wird erst zur Aussage, wenn wir alle in ihr
vorkommenden Aussagensymbole durch Aussagen ersetzen.

• Wir interessieren uns hier nicht so sehr für die tatsächlichen Aussagen,
sondern nur für ihren Wahrheitswert, also dafür, ob sie wahr oder falsch
sind.

• Um das festzustellen, reicht es, den Aussagensymbolen die Wahrheitswerte
der durch sie repräsentierten Aussagen zuzuordnen.

• Die Bedeutung einer Formel besteht also aus ihren Wahrheitswerten unter
allen möglichen Wahrheitswerten für die in der Formel vorkommenden
Aussagensymbole.
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Interpretationen (d.h. Variablenbelegungen)

Wir repräsentieren die Wahrheitswerte wahr und falsch durch 1 und 0.

Definition 2.5
Eine aussagenlogische Interpretation (kurz: Interpretation oder Belegung) ist
eine Abbildung

I : AS→ {0, 1}.

D.h.: I
”
belegt“ jedes Aussagensymbol X ∈ AS mit einem der beiden

Wahrheitswerte 1 (für
”
wahr“) oder 0 (für

”
falsch“); und I(X ) ist der

Wahrheitswert, mit dem das Aussagensymbol X belegt wird.
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Wahrheitswerte 1 (für
”
wahr“) oder 0 (für

”
falsch“); und I(X ) ist der

Wahrheitswert, mit dem das Aussagensymbol X belegt wird.
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Semantik der Aussagenlogik

Definition 2.6
Zu jeder Formel ϕ ∈ AL und jeder Interpretation I definieren wir einen
Wahrheitswert JϕKI rekursiv wie folgt:

Rekursionsanfang:

• J0KI := 0.

• J1KI := 1.

• Für alle X ∈ AS gilt: JX KI := I(X ).

Rekursionsschritt:

• Ist ϕ ∈ AL, so ist J¬ϕKI :=

{
1 falls JϕKI = 0,

0 sonst.
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Semantik der Aussagenlogik (Fortsetzung)

• Ist ϕ ∈ AL und ψ ∈ AL, so ist

• J(ϕ ∧ ψ)KI :=

{
1 falls JϕKI = JψKI = 1,

0 sonst.

• J(ϕ ∨ ψ)KI :=

{
0 falls JϕKI = JψKI = 0,

1 sonst.

• J(ϕ→ ψ)KI :=

{
0 falls JϕKI = 1 und JψKI = 0,

1 sonst.
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Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Intuitive Bedeutung der Semantik

Boolesche Konstanten: 1 und 0 bedeuten einfach
”
wahr“ und

”
falsch“.

Aussagensymbole: Die Aussagensymbole stehen für irgendwelche Aussagen, von
denen uns aber nur der Wahrheitswert interessiert. Dieser wird
durch die Interpretation festgelegt.

Negation: ¬ϕ bedeutet
”
nicht ϕ“.

Konjunktion: (ϕ ∧ ψ) bedeutet
”
ϕ und ψ“.

Disjunktion: (ϕ ∨ ψ) bedeutet
”
ϕ oder ψ“.

Implikation: (ϕ→ ψ) bedeutet
”
ϕ impliziert ψ“ (oder

”
wenn ϕ dann ψ“).
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Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Rekursive Definitionen über Formeln

• Ähnlich wie Funktionen auf den natürlichen Zahlen, wie zum Beispiel die
Fakultätsfunktion oder die Fibonacci Folge, können wir Funktionen auf den
aussagenlogischen Formeln rekursiv definieren.

• Dabei gehen wir von den atomaren Formeln aus und definieren dann den
Funktionswert einer zusammengesetzten Formel aus den Funktionswerten
ihrer Bestandteile.

• Zur Rechtfertigung solcher Definitionen benötigt man die eindeutige
Lesbarkeit aussagenlogischer Formeln, die besagt, dass sich jede Formel
eindeutig in ihre Bestandteile zerlegen lässt.

• Wir haben auf diese Weise die Semantik definiert. Wir haben nämlich für
jede Interpretation I rekursiv eine Funktion J · KI : AL→ {0, 1} definiert.
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• Wir haben auf diese Weise die Semantik definiert. Wir haben nämlich für
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Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Rekursive Definitionen (Forts.)

Schematisch sieht die rekursive Definition einer Funktion f : AL→ M
(für eine beliebige Menge M) folgendermaßen aus:

Rekursionsanfang:

• Definiere f (0) und f (1).

• Definiere f (X ) für alle X ∈ AS.

Rekursionsschritt:

• Definiere f (¬ϕ) aus f (ϕ).

• Definiere f ((ϕ ∧ ψ)) aus f (ϕ) und f (ψ).

• Definiere f ((ϕ ∨ ψ)) aus f (ϕ) und f (ψ).

• Definiere f ((ϕ→ ψ)) aus f (ϕ) und f (ψ).
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Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Beispiel 2.7
Betrachte die Formel ϕ :=

(
¬A0 ∨ (A5 → A1)

)
und die Interpretation I : AS→ {0, 1} mit

I(A0) = 1, I(A1) = 1, I(A5) = 0

und I(Y ) = 0 für alle Y ∈ AS \ {A0,A1,A5}.

Der Wahrheitswert JϕKI ist der Wert

JϕKI Def. 2.6
=

{
0, falls J¬A0K

I = 0 und J(A5 → A1)KI = 0

1, sonst

Def. 2.6
=

{
0, falls JA0K

I = 1 und
(
JA5K

I = 1 und JA1K
I = 0

)
1, sonst

Def. 2.6
=

{
0, falls I(A0) = 1 und I(A5) = 1 und I(A1) = 0

1, sonst

= 1 (denn gemäß obiger Wahl von I gilt I(A5) = 0).
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Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Alternative Art, den Wert JϕKI zu bestimmen

• Ersetze in ϕ jedes Aussagensymbol X durch seinen gemäß I festgelegten
Wahrheitswert, d.h. durch den Wert I(X ), und rechne dann den Wert des
resultierenden booleschen Ausdrucks aus.

• Speziell für die Formel ϕ und die Interpretation I aus Beispiel 2.7 ergibt die
Ersetzung der Aussagensymbole durch die gemäß I festgelegten
Wahrheitswerte den booleschen Ausdruck(

¬1 ∨ (0→ 1)
)
.

• Ausrechnen von ¬1 ergibt den Wert 0.

Ausrechnen von (0→ 1) ergibt den Wert 1.

• Insgesamt erhalten wir also (0 ∨ 1), was sich zum Wert 1 errechnet.

Somit erhalten wir, dass JϕKI = 1 ist.
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Wahrheitswerte den booleschen Ausdruck(

¬1 ∨ (0→ 1)
)
.

• Ausrechnen von ¬1 ergibt den Wert 0.

Ausrechnen von (0→ 1) ergibt den Wert 1.

• Insgesamt erhalten wir also (0 ∨ 1), was sich zum Wert 1 errechnet.

Somit erhalten wir, dass JϕKI = 1 ist.

Christoph Berkholz · HU Berlin · Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 49



Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Alternative Art, den Wert JϕKI zu bestimmen

• Ersetze in ϕ jedes Aussagensymbol X durch seinen gemäß I festgelegten
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Wahrheitswert, d.h. durch den Wert I(X ), und rechne dann den Wert des
resultierenden booleschen Ausdrucks aus.

• Speziell für die Formel ϕ und die Interpretation I aus Beispiel 2.7 ergibt die
Ersetzung der Aussagensymbole durch die gemäß I festgelegten
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Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Die Modellbeziehung

Definition 2.8

(a) Eine Interpretation I erfüllt eine Formel ϕ ∈ AL (wir schreiben: I |= ϕ),

wenn JϕKI = 1.

Wir schreiben kurz I 6|= ϕ um auszudrücken, dass I die Formel ϕ

nicht erfüllt (d.h., es gilt JϕKI = 0).

(b) Eine Interpretation I erfüllt eine Formelmenge Φ ⊆ AL (wir schreiben:
I |= Φ), wenn I |= ϕ für alle ϕ ∈ Φ.

(c) Ein Modell einer Formel ϕ

(bzw. einer Formelmenge Φ)

ist eine
Interpretation I mit I |= ϕ

(bzw. I |= Φ).
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(b) Eine Interpretation I erfüllt eine Formelmenge Φ ⊆ AL (wir schreiben:
I |= Φ), wenn I |= ϕ für alle ϕ ∈ Φ.

(c) Ein Modell einer Formel ϕ (bzw. einer Formelmenge Φ) ist eine
Interpretation I mit I |= ϕ (bzw. I |= Φ).

Christoph Berkholz · HU Berlin · Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 50



Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Das Koinzidenzlemma

• Offensichtlich hängt der Wert JϕKI nur von den Werten I(X ) der
Aussagensymbole X ∈ AS ab, die auch in ϕ vorkommen.

Diese Aussage ist als das Koinzidenzlemma der Aussagenlogik bekannt.

• Um JϕKI festzulegen, reicht es also, die Werte I(X ) nur für diejenigen
Aussagensymbole X ∈ AS anzugeben, die in ϕ vorkommen.
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Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Vereinbarungen zu Interpretationen

• Statt der vollen Interpretation I : AS→ {0, 1} geben wir in der Regel nur
endlich viele Werte I(X1), . . . , I(Xn) an und legen fest, dass I(Y ) := 0 für
alle Y ∈ AS \ {X1, . . . ,Xn}.

• In den Beispielen legen wir eine Interpretation oft durch eine Wertetabelle
fest.

Beispielsweise beschreibt die Tabelle

X A0 A1 A5

I(X ) 1 1 0

die Interpretation I mit I(A0) = I(A1) = 1 und I(A5) = 0 und I(Y ) = 0
für alle Y ∈ AS \ {A0,A1,A5}.

• Wir schreiben ϕ(X1, . . . ,Xn), um anzudeuten, dass in ϕ nur
Aussagensymbole aus der Menge {X1, . . . ,Xn} vorkommen.

Für Wahrheitswerte b1, . . . , bn ∈ {0, 1} schreiben wir dann ϕ[b1, . . . , bn]

anstatt JϕKI für eine (bzw. alle) Interpretationen I mit I(Xi ) = bi für alle
i ∈ [n] := {1, . . . , n}.
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Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Vereinbarungen

• Wir schreiben (ϕ↔ ψ) als Abkürzung für ((ϕ→ ψ) ∧ (ψ → ϕ)).

• Statt mit A0,A1,A2, . . . bezeichnen wir Aussagensymbole auch oft mit
A,B,C , . . . ,X ,Y ,Z , . . . oder mit Varianten wie X ′,Y1, . . . .

• Die äußeren Klammern einer Formel lassen wir manchmal weg und
schreiben z.B. (X ∧ Y )→ Z an Stelle des (formal korrekten)
((X ∧ Y )→ Z ).

• Bezüglich Klammerung vereinbaren wir, dass ¬ am stärksten bindet, und
dass ∧ und ∨ stärker binden als →.

Wir können also z.B. X ∧ ¬Y → Z ∨ X schreiben und meinen damit
((X ∧ ¬Y )→ (Z ∨ X )).

Nicht schreiben können wir z.B. X ∧ Y ∨ Z (da wir nichts darüber
vereinbart haben, wie fehlende Klammern hier zu setzen sind).
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• Die äußeren Klammern einer Formel lassen wir manchmal weg und
schreiben z.B. (X ∧ Y )→ Z an Stelle des (formal korrekten)
((X ∧ Y )→ Z ).
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• Die äußeren Klammern einer Formel lassen wir manchmal weg und
schreiben z.B. (X ∧ Y )→ Z an Stelle des (formal korrekten)
((X ∧ Y )→ Z ).
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((X ∧ Y )→ Z ).

• Bezüglich Klammerung vereinbaren wir, dass ¬ am stärksten bindet, und
dass ∧ und ∨ stärker binden als →.

Wir können also z.B. X ∧ ¬Y → Z ∨ X schreiben und meinen damit
((X ∧ ¬Y )→ (Z ∨ X )).

Nicht schreiben können wir z.B. X ∧ Y ∨ Z (da wir nichts darüber
vereinbart haben, wie fehlende Klammern hier zu setzen sind).
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vereinbart haben, wie fehlende Klammern hier zu setzen sind).

Christoph Berkholz · HU Berlin · Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 53



Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

• Wir schreiben
n∧

i=1

ϕi bzw. (ϕ1 ∧ . . . ∧ ϕn) an Stelle von

(· · · ((ϕ1 ∧ ϕ2) ∧ ϕ3) ∧ . . . ∧ ϕn)

und nutzen analoge Schreibweisen auch für
”
∨“ an Stelle von

”
∧“.

• Ist M eine endliche Menge aussagenlogischer Formeln, so schreiben wir∧
ϕ∈M

ϕ

um die Formel (ϕ1 ∧ · · · ∧ϕn) zu bezeichnen, wobei n = |M| die Anzahl der
Formeln in M ist und ϕ1, . . . , ϕn die Auflistung aller Formeln in M in
lexikographischer Reihenfolge ist. Formeln sind hierbei Worte über dem
Alphabet der Aussagenlogik, wobei die einzelnen Symbole dieses Alphabets
folgendermaßen aufsteigend sortiert sind:

0, 1, ¬, ∧, ∨, →, (, ), A0, A1, A2, A3, . . . .

Die analoge Schreibweise nutzen wir auch für
”
∨“ an Stelle von

”
∧“.
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• Diese Schreibweisen werden wir manchmal auch kombinieren. Sind zum
Beispiel I = {i1, . . . , im} und J = {j1, . . . , jn} endliche Mengen und ist für
jedes i ∈ I und j ∈ J eine Formel ϕi,j gegeben, so schreiben wir∧

i∈I

∨
j∈J

ϕi,j

um die Formel (ψi1 ∧ · · · ∧ ψim) zu bezeichnen, wobei für jedes i ∈ I die
Formel ψi durch ψi := (ϕi,j1 ∨ · · · ∨ ϕi,jn ) definiert ist.
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Wahrheitstafeln
Für jede Formel ϕ(X1, . . . ,Xn) kann man die Wahrheitswerte unter allen
möglichen Interpretationen in einer Wahrheitstafel darstellen. Für alle
(b1, . . . , bn) ∈ {0, 1}n enthält die Tafel eine Zeile mit den Werten
b1 · · · bn | ϕ[b1, . . . , bn].

Um die Wahrheitstafel für ϕ auszufüllen, ist es bequem, auch Spalten für (alle
oder einige) Subformeln von ϕ einzufügen.

Beispiel: Wahrheitstafel für die Formel ϕ(X ,Y ,Z ) := X ∨ Y → X ∧ Z :

X Y Z X ∨ Y X ∧ Z ϕ

0 0 0 0 0 1
0 0 1 0 0 1
0 1 0 1 0 0
0 1 1 1 0 0
1 0 0 1 0 0
1 0 1 1 1 1
1 1 0 1 0 0
1 1 1 1 1 1

Die Reihenfolge der Zeilen ist dabei unerheblich. Wir vereinbaren allerdings, die
Zeilen stets so anzuordnen, dass die Werte b1 · · · bn ∈ {0, 1}n, aufgefasst als
Binärzahlen, in aufsteigender Reihenfolge aufgelistet werden.
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Um die Wahrheitstafel für ϕ auszufüllen, ist es bequem, auch Spalten für (alle
oder einige) Subformeln von ϕ einzufügen.
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Wahrheitstafeln für die Junktoren

Die Bedeutung der Junktoren kann man mittels ihrer Wahrheitstafeln
beschreiben:

X ¬X
0 1
1 0

X Y X∧Y
0 0 0
0 1 0
1 0 0
1 1 1

X Y X∨Y
0 0 0
0 1 1
1 0 1
1 1 1

X Y X→Y

0 0 1
0 1 1
1 0 0
1 1 1

Genauso kann man eine Wahrheitstafel für die Formel X↔Y , die ja eine
Abkürzung für (X → Y ) ∧ (Y → X ) ist, bestimmen:

X Y X↔Y

0 0 1
0 1 0
1 0 0
1 1 1

X↔Y bedeutet also
”
X genau dann wenn Y“.
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Ein Logikrätsel

Beispiel 2.9
Auf der Insel Wafa leben zwei Stämme: Die Was, die immer die Wahrheit sagen,
und die Fas, die immer lügen. Ein Reisender besucht die Insel und trifft auf drei
Einwohner A, B, C , die ihm Folgendes erzählen:

• A sagt:

”
B und C sagen genau dann die Wahrheit, wenn C die Wahrheit sagt.“

• B sagt:

”
Wenn A und C die Wahrheit sagen, dann ist es nicht der Fall, dass A die

Wahrheit sagt, wenn B und C die Wahrheit sagen.“

• C sagt:

”
B lügt genau dann, wenn A oder B die Wahrheit sagen.“

Frage: Welchen Stämmen gehören A, B und C an?
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Aussagenlogische Modellierung

Aussagensymbole:

• WA steht für
”
A sagt die Wahrheit.“

• WB steht für
”
B sagt die Wahrheit.“

• WC steht für
”
C sagt die Wahrheit.“

Aussagen der drei Inselbewohner:

• ϕA := (WB ∧WC ) ↔ WC

• ϕB := (WA ∧WC ) → ¬
(

(WB ∧WC ) → WA

)
• ϕC := ¬WB ↔ (WA ∨WB)

Wir suchen nach einer Interpretation, die die Formel

ψ := (WA ↔ ϕA) ∧ (WB ↔ ϕB) ∧ (WC ↔ ϕC )

erfüllt.
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Aussagensymbole:

• WA steht für
”
A sagt die Wahrheit.“

• WB steht für
”
B sagt die Wahrheit.“

• WC steht für
”
C sagt die Wahrheit.“

Aussagen der drei Inselbewohner:

• ϕA := (WB ∧WC ) ↔ WC

• ϕB := (WA ∧WC ) → ¬
(

(WB ∧WC ) → WA

)
• ϕC := ¬WB ↔ (WA ∨WB)

Wir suchen nach einer Interpretation, die die Formel

ψ := (WA ↔ ϕA) ∧ (WB ↔ ϕB) ∧ (WC ↔ ϕC )

erfüllt.
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Lösung mittels Wahrheitstafel

WA WB WC ϕA ϕB ϕC WA ↔ ϕA WB ↔ ϕB WC ↔ ϕC ψ

0 0 0 1 1 0 0 0 1 0
0 0 1 0 1 0 1 0 0 0
0 1 0 1 1 0 0 1 1 0
0 1 1 1 1 0 0 1 0 0
1 0 0 1 1 1 1 0 0 0
1 0 1 0 0 1 0 1 1 0
1 1 0 1 1 0 1 1 1 1
1 1 1 1 0 0 1 0 0 0

Die Interpretation I mit I(WA) = 1, I(WB) = 1, I(WC ) = 0 in Zeile 7 ist die
einzige, die die Formel ψ erfüllt.

Gemäß dieser Interpretation sind die Aussagen, die durch die Symbole WA und
WB repräsentiert werden, wahr, während die Aussage, die durch WC

repräsentiert wird, falsch ist.

Das heißt, die Personen A und B sagen die Wahrheit und sind somit Was, und
Person C lügt und ist daher ein Fa.
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Computerlesbare Darstellung von Formeln
Wir betrachten das Alphabet ASCII aller ASCII-Symbole.

Die Menge ASASCII aller ASCII-Repräsentationen von Aussagensymbolen besteht
aus allen nicht-leeren Worten über dem Alphabet ASCII, deren erstes Symbol
ein Buchstabe ist, und bei dem alle weiteren Symbole Buchstaben oder Ziffern
sind.

Die Menge ALASCII aller ASCII-Repräsentationen von aussagenlogischen Formeln
ist die rekursiv wie folgt definierte Teilmenge von ASCII∗:

Basisregeln:

• 0 ∈ ALASCII, 1 ∈ ALASCII und w ∈ ALASCII für alle w ∈ ASASCII.

Rekursive Regeln:

• Ist ϕ ∈ ALASCII, so ist auch ~ϕ ∈ ALASCII. (Negation)
• Ist ϕ ∈ ALASCII und ψ ∈ ALASCII, so ist auch

• (ϕ /\ψ) ∈ ALASCII (Konjunktion)

• (ϕ \/ψ) ∈ ALASCII (Disjunktion)

• (ϕ ->ψ) ∈ ALASCII (Implikation)

• (ϕ <->ψ) ∈ ALASCII (Biimplikation).
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Abstrakte vs. computerlesbare Syntax

Es ist offensichtlich, wie man Formeln aus AL in ihre entsprechende
ASCII-Repräsentation übersetzt und umgekehrt.

Zum Beispiel ist

(
(A0 ∧ 0)→ ¬A13

)
eine Formel in AL, deren ASCII-Repräsentation die folgende Zeichenkette aus
ALASCII ist:

( (A0 /\ 0) -> ~A13 ).

Wir werden meistens mit der
”
abstrakten Syntax“, d.h. mit der in Definition 2.4

festgelegten Menge AL, arbeiten. Um aber Formeln in Computer-Programme
einzugeben, können wir die ASCII-Repräsentation verwenden.
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Demo: snippets of logic

• ein Formelchecker für die Aussagenlogik

• entwickelt von André Frochaux

• Funktionalitäten u.a.:

• Syntaxcheck für eingegebene Formeln

• Ausgabe eines Syntaxbaums

• Ausgabe einer Wahrheitstafel

• Zugänglich via

http://www.snippets-of-logic.net/index_AL.php?lang=de
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Zurück zu Beispiel 2.1 (
”
Geburtstagsfeier“)

Das in Beispiel 2.1 aufgelistete Wissen kann durch folgende aussagenlogische
Formel repräsentiert werden:

ϕ :=
(
(B ∧ A)→ ¬E

)
∧
(
(B ∧ E )→ ¬D

)
∧(

E → (C ∧ D)
)
∧ (C → A) ∧

(
A→ (B ∨ C )

)

Die Frage

”
Wie viele (und welche) Freunde werden im besten Fall zur Party

kommen?“

kann nun durch Lösen der folgenden Aufgabe beantwortet werden:

Finde eine Interpretation I für ϕ, so dass gilt:

• I |= ϕ (d.h., I ist ein Modell von ϕ) und

• |{X ∈ {A,B,C ,D,E} : I(X ) = 1}| ist so groß wie möglich.
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Christoph Berkholz · HU Berlin · Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 64



Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Zurück zu Beispiel 2.1 (
”
Geburtstagsfeier“)

Das in Beispiel 2.1 aufgelistete Wissen kann durch folgende aussagenlogische
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kann nun durch Lösen der folgenden Aufgabe beantwortet werden:

Finde eine Interpretation I für ϕ, so dass gilt:

• I |= ϕ (d.h., I ist ein Modell von ϕ) und

• |{X ∈ {A,B,C ,D,E} : I(X ) = 1}| ist so groß wie möglich.
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Diese Frage können wir lösen, indem wir

(1) die Wahrheitstafel für ϕ ermitteln,

(2) alle Zeilen raussuchen, in denen in der mit
”
ϕ“ beschrifteten Spalte der

Wert 1 steht (das liefert uns genau die Modelle von ϕ) und

(3) aus diesen Zeilen all jene raussuchen, bei denen in den mit A, B, C , D, E
beschrifteten Spalten möglichst viele Einsen stehen. Jede dieser Zeilen
repräsentiert dann eine größtmögliche Konstellation von gleichzeitigen
Partybesuchern.

Prinzipiell führt diese Vorgehensweise zum Ziel.

Leider ist das Verfahren aber recht aufwändig, da die Wahrheitstafel, die man
dabei aufstellen muss, sehr groß wird: Sie hat 25 = 32 Zeilen.
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repräsentiert dann eine größtmögliche Konstellation von gleichzeitigen
Partybesuchern.

Prinzipiell führt diese Vorgehensweise zum Ziel.

Leider ist das Verfahren aber recht aufwändig, da die Wahrheitstafel, die man
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A B C D E E → (C ∧ D) C → A (B ∧ E) → ¬D A → (B ∨ C) (B ∧ A) → ¬E ϕ

0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 1 0 1 1 1 1 0
0 0 0 1 0 1 1 1 1 1 1
0 0 0 1 1 0 1 1 1 1 0
0 0 1 0 0 1 0 1 1 1 0
0 0 1 0 1 0 0 1 1 1 0
0 0 1 1 0 1 0 1 1 1 0
0 0 1 1 1 1 0 1 1 1 0
0 1 0 0 0 1 1 1 1 1 1
0 1 0 0 1 0 1 1 1 1 0
0 1 0 1 0 1 1 1 1 1 1
0 1 0 1 1 0 1 0 1 1 0
0 1 1 0 0 1 0 1 1 1 0
0 1 1 0 1 0 0 1 1 1 0
0 1 1 1 0 1 0 1 1 1 0
0 1 1 1 1 1 0 0 1 1 0
1 0 0 0 0 1 1 1 0 1 0
1 0 0 0 1 0 1 1 0 1 0
1 0 0 1 0 1 1 1 0 1 0
1 0 0 1 1 0 1 1 0 1 0
1 0 1 0 0 1 1 1 1 1 1
1 0 1 0 1 0 1 1 1 1 0
1 0 1 1 0 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1 1
1 1 0 0 0 1 1 1 1 1 1
1 1 0 0 1 0 1 1 1 0 0
1 1 0 1 0 1 1 1 1 1 1
1 1 0 1 1 0 1 0 1 0 0
1 1 1 0 0 1 1 1 1 1 1
1 1 1 0 1 0 1 1 1 0 0
1 1 1 1 0 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 0 0

Modelle für ϕ werden hier durch grau unterlegte Zeilen repräsentiert.
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In der Wahrheitstafel sieht man:

• Es gibt kein Modell für ϕ, bei dem in den mit A bis E beschrifteten Spalten
insgesamt 5 Einsen stehen.

• Es gibt genau zwei Modelle für ϕ, bei denen in den mit A bis E
beschrifteten Spalten insgesamt 4 Einsen stehen, nämlich die beiden
Interpretationen I1 und I2 mit

I1(A) = I1(C ) = I1(D) = I1(E ) = 1 und I1(B) = 0

und

I2(A) = I2(B) = I2(C ) = I2(D) = 1 und I2(E ) = 0.

Die Antwort auf die Frage
”
Wie viele (und welche) Freunde werden bestenfalls

zur Party kommen?“ lautet also:

Bestenfalls werden 4 der 5 Freunde kommen, und dafür gibt es zwei
Möglichkeiten, nämlich

(1) dass alle außer Bernd kommen, und

(2) dass alle außer Eva kommen.
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Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Erfüllbarkeit

Definition 2.10
Eine Formel ϕ ∈ AL heißt erfüllbar, wenn es eine Interpretation gibt, die ϕ
erfüllt.

Eine Formelmenge Φ heißt erfüllbar, wenn es eine Interpretation I gibt, die Φ
erfüllt (d.h. es gilt I |= ϕ für jedes ϕ ∈ Φ).

Eine Formel oder Formelmenge, die nicht erfüllbar ist, nennen wir unerfüllbar.

Beobachtung 2.11

(a) Eine aussagenlogische Formel ist genau dann erfüllbar, wenn in der letzten
Spalte ihrer Wahrheitstafel mindestens eine 1 steht.

(b) Eine endliche Formelmenge Φ = {ϕ1, . . . , ϕn} ist genau dann erfüllbar,
wenn die Formel

∧n
i=1 ϕi erfüllbar ist.

Beispiele:
• Die Formel X ist erfüllbar.
• Die Formel (X ∧ ¬X ) ist unerfüllbar.
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Christoph Berkholz · HU Berlin · Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 68



Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik
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Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Allgemeingültigkeit

Definition 2.12
Eine Formel ϕ ∈ AL ist allgemeingültig, wenn jede Interpretation I die Formel ϕ
erfüllt.

Bemerkung
Allgemeingültige Formeln nennt man auch Tautologien.
Man schreibt auch |= ϕ um auszudrücken, dass ϕ allgemeingültig ist.

Beobachtung 2.13
Eine aussagenlogische Formel ist genau dann allgemeingültig, wenn in der
letzten Spalte ihrer Wahrheitstafel nur 1en stehen.

Beispiel: Die Formel (X ∨ ¬X ) ist allgemeingültig.
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Christoph Berkholz · HU Berlin · Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 69



Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Allgemeingültigkeit
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Christoph Berkholz · HU Berlin · Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 69



Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Allgemeingültigkeit

Definition 2.12
Eine Formel ϕ ∈ AL ist allgemeingültig, wenn jede Interpretation I die Formel ϕ
erfüllt.

Bemerkung
Allgemeingültige Formeln nennt man auch Tautologien.
Man schreibt auch |= ϕ um auszudrücken, dass ϕ allgemeingültig ist.

Beobachtung 2.13
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Beispiel: Die Formel (X ∨ ¬X ) ist allgemeingültig.
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Beispiel 2.14
Die Formel (X ∨ Y ) ∧ (¬X ∨ Y ) ist

• erfüllbar, da z.B. die Interpretation I mit I(X ) = 0 und I(Y ) = 1 die
Formel erfüllt.

• nicht allgemeingültig, da z.B. die Interpretation I ′ mit I ′(X ) = 0 und
I ′(Y ) = 0 die Formel nicht erfüllt.
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Die Folgerungsbeziehung

Definition 2.15
Eine Formel ψ ∈ AL folgt aus einer Formelmenge Φ ⊆ AL (wir schreiben:
Φ |= ψ), wenn für jede Interpretation I gilt: Wenn I die Formelmenge Φ erfüllt,
dann erfüllt I auch die Formel ψ.

Notation
Für zwei Formeln ϕ,ψ ∈ AL schreiben wir kurz ϕ |= ψ an Stelle von {ϕ} |= ψ
und sagen, dass die Formel ψ aus der Formel ϕ folgt.
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Beispiel 2.16
Sei ϕ :=

(
(X ∨ Y ) ∧ (¬X ∨ Y )

)
und ψ :=

(
Y ∨ (¬X ∧ ¬Y )

)
.

Dann gilt ϕ |= ψ, aber es gilt nicht ψ |= ϕ (kurz: ψ 6|= ϕ), denn:

X Y (X ∨ Y ) (¬X ∨ Y ) ϕ ψ
0 0 0 1 0 1
0 1 1 1 1 1
1 0 1 0 0 0
1 1 1 1 1 1

In jeder Zeile der Wahrheitstafel, in der in der mit
”
ϕ“ beschrifteten Spalte eine

1 steht, steht auch in der mit
”
ψ“ beschrifteten Spalte eine 1. Somit gilt

ϕ |= ψ.

Andererseits steht in Zeile 1 in der mit
”
ψ“ beschrifteten Spalte eine 1 und in

der mit
”
ϕ“ beschrifteten Spalte eine 0. Für die entsprechende Interpretation I

(mit I(X ) = 0 und I(Y ) = 0) gilt also JψKI = 1 und JϕKI = 0. Daher gilt
ψ 6|= ϕ.
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Beispiel 2.17
Für alle Formeln ϕ,ψ ∈ AL gilt:

{ϕ, ϕ→ ψ } |= ψ.

Dies folgt unmittelbar aus der Definition der Semantik:
Sei I eine Interpretation mit I |= {ϕ, ϕ→ ψ}. Dann gilt:

(1) JϕKI = 1 und

(2) Jϕ→ ψKI = 1, d.h. es gilt JϕKI = 0 oder JψKI = 1.

Da JϕKI = 1 gemäß (1) gilt, folgt gemäß (2), dass JψKI = 1.

Bemerkung
Man kann die Folgerungsbeziehung {ϕ, ϕ→ ψ} |= ψ als eine formale
Schlussregel auffassen (ähnlich den Syllogismen in Kapitel 1):
Wenn ϕ und ϕ→ ψ gelten, so muss auch ψ gelten.
Diese Regel, die unter dem Namen Modus Ponens bekannt ist, ist von
grundlegender Bedeutung in der Logik.
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Pingo-Übung
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Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Zusammenhänge

Lemma 2.18 (Allgemeingültigkeit, Unerfüllbarkeit und Folgerung)

Für jede Formel ϕ ∈ AL gilt:

(a) ϕ ist allgemeingültig ⇐⇒ ¬ϕ ist unerfüllbar ⇐⇒ 1 |= ϕ.

(b) ϕ ist unerfüllbar ⇐⇒ ϕ |= 0.

Christoph Berkholz · HU Berlin · Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 75



Kapitel 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Zusammenhänge
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(b) ϕ ist unerfüllbar ⇐⇒ ϕ |= 0.
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Lemma 2.19 (Erfüllbarkeit und die Folgerungsbeziehung)

Für alle Formelmengen Φ ⊆ AL und für alle Formeln ψ ∈ AL gilt:

Φ |= ψ ⇐⇒ Φ ∪ {¬ψ} ist unerfüllbar.
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Lemma 2.20 (Allgemeingültigkeit und die Folgerungsbeziehung)

(a) Für jede Formel ϕ ∈ AL gilt:

ϕ ist allgemeingültig ⇐⇒ ϕ folgt aus der leeren Menge,

kurz:
|= ϕ ⇐⇒ ∅ |= ϕ.

(b) Für jede Formel ψ ∈ AL und jede endliche Formelmenge
Φ = {ϕ1, . . . , ϕn} ⊆ AL gilt:

Φ |= ψ ⇐⇒ (ϕ1 ∧ · · · ∧ ϕn)→ ψ ist allgemeingültig.
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Bemerkung 2.21
Aus den beiden vorigen Lemmas erhält man leicht, dass für alle Formeln
ϕ,ψ ∈ AL gilt:

ϕ |= ψ ⇐⇒ (ϕ→ ψ) ist allgemeingültig ⇐⇒ (ϕ ∧ ¬ψ) ist unerfüllbar.

Beweis.
Es sei Φ := {ϕ}. Gemäß Lemma 2.20 gilt:

Φ |= ψ ⇐⇒ (ϕ→ ψ) ist allgemeingültig.

Somit gilt: ϕ |= ψ ⇐⇒ (ϕ→ ψ) ist allgemeingültig.

Außerdem gilt gemäß Lemma 2.19:

Φ |= ψ ⇐⇒ Φ ∪ {¬ψ} ist unerfüllbar.

Somit gilt: ϕ |= ψ ⇐⇒ (ϕ ∧ ¬ψ) ist unerfüllbar.
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Somit gilt: ϕ |= ψ ⇐⇒ (ϕ ∧ ¬ψ) ist unerfüllbar.
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Somit gilt: ϕ |= ψ ⇐⇒ (ϕ ∧ ¬ψ) ist unerfüllbar.
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Somit gilt: ϕ |= ψ ⇐⇒ (ϕ→ ψ) ist allgemeingültig.
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Somit gilt: ϕ |= ψ ⇐⇒ (ϕ ∧ ¬ψ) ist unerfüllbar.
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Aussagenlogisches Modell

Koordinaten der Felder:
Feld (i , j) ist das Feld in Zeile i und Spalte j .

Aussagensymbole:
Aussagensymbol Pi,j,k , für i , j , k ∈ [9], steht für die Aussage

”
Das Feld mit den Koordinaten (i , j) enthält die Zahl k.“

Interpretationen beschreiben also Beschriftungen des 9×9-Gitters.

Ziel:
Für jede Anfangsbeschriftung A eine Formelmenge ΦA, so dass für alle
Interpretationen I gilt:

I |= ΦA ⇐⇒ I beschreibt eine korrekte Lösung.
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Interpretationen beschreiben also Beschriftungen des 9×9-Gitters.

Ziel:
Für jede Anfangsbeschriftung A eine Formelmenge ΦA, so dass für alle
Interpretationen I gilt:

I |= ΦA ⇐⇒ I beschreibt eine korrekte Lösung.

Christoph Berkholz · HU Berlin · Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 80



Kapitel 2: Aussagenlogik · Abschnitt 2.2: Aussagenlogische Modellierung
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Wir beschreiben zunächst eine Formelmenge Φ = {ϕ1, . . . , ϕ5}, die die
Grundregeln des Spiels beschreibt.

Beschriftungen:
“Auf jedem Feld steht mindestens eine Zahl“:

ϕ1 :=
9∧

i,j=1

9∨
k=1

Pi,j,k .

“Auf jedem Feld steht höchstens eine Zahl“:

ϕ2 :=
9∧

i,j=1

9∧
k,`=1
k 6=`

¬(Pi,j,k ∧ Pi,j,`).
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Zeilen:

”
Jede Zahl kommt in jeder Zeile

vor“:

ϕ3 :=
9∧

i=1

9∧
k=1

9∨
j=1

Pi,j,k .

Spalten:

”
Jede Zahl kommt in jeder Spalte

vor“:

ϕ4 :=
9∧

j=1

9∧
k=1

9∨
i=1

Pi,j.k .

Blöcke:

”
Jede Zahl kommt in jedem Block vor“:

ϕ5 :=
2∧

i,j=0

9∧
k=1

3∨
i ′,j′=1

P3i+i ′,3j+j′,k .
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Anfangsbeschriftung:
Sei A die Anfangsbeschriftung. Wir setzen

ΦA :=

Φ ∪ { Pi,j,k : A beschriftet Feld (i , j) mit der Zahl k }.

Automatische Lösung von Sudokus:
Um ein Sudoku mit Anfangsbeschriftung A zu lösen, können wir nun einfach die
Formel ψA :=

∧
ϕ∈ΦA

ϕ bilden und die Wahrheitstafel zu dieser Formel
aufstellen. Falls die Wahrheitstafel zeigt, dass ψA kein Modell besitzt, so ist das
Sudoku nicht lösbar. Andernfalls können wir ein beliebiges Modell I von ψA

hernehmen und daran die Lösung des Sudokus ablesen: Für jedes Feld (i , j) gibt
es gemäß unserer Konstruktion der Formel ψA genau eine Zahl k ∈ [9], so dass
I(Pi,j,k) = 1 ist. Diese Zahl k können wir in Feld (i , j) eintragen und erhalten
damit eine Lösung des Sudokus.
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Formel ψA :=

∧
ϕ∈ΦA

ϕ bilden und die Wahrheitstafel zu dieser Formel
aufstellen. Falls die Wahrheitstafel zeigt, dass ψA kein Modell besitzt, so ist das
Sudoku nicht lösbar.

Andernfalls können wir ein beliebiges Modell I von ψA

hernehmen und daran die Lösung des Sudokus ablesen: Für jedes Feld (i , j) gibt
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Beispiel 2: Automatische Hardwareverifikation



Kapitel 2: Aussagenlogik · Abschnitt 2.2: Aussagenlogische Modellierung

Digitale Schaltkreise

• Digitale Signale werden beschrieben durch 0 (
”
aus“) und 1 (

”
ein“).

• Schaltelemente berechnen ein oder mehrere Ausgangssignale aus einem
oder mehreren Eingangssignalen.

Das Ein-/Ausgabeverhalten eines
Schaltelements lässt sich durch Wahrheitstafeln beschreiben.

Beispiel:
A

E E

A

1 2

1 2

S

E1 E2 A1 A2

0 0 1 0
0 1 1 0
1 0 1 0
1 1 0 1

• Schaltkreise sind Kombinationen solcher Schaltelemente. Beispiel:

E1 E2 A1 A2 A3 A4

0 0 1 0 0 0
0 1 0 1 0 0
1 0 1 0 1 0
1 1 0 1 0 1
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Formalisierung in der Aussagenlogik

Schaltelement:

• Für jeden Ein- und Ausgang ein Aussagensymbol.

• Für jeden Ausgang eine Formel, die den Wert der Ausgangs in
Abhängigkeit von den Eingängen beschreibt.

Beispiel:

A

E E

A

1 2

1 2

S

E1 E2 A1 A2

0 0 1 0
0 1 1 0
1 0 1 0
1 1 0 1

Aussagensymbole:
P1, P2, Q1, Q2

Formeln:

Q1 ↔ ¬(P1 ∧ P2)
Q2 ↔ (P1 ∧ P2)
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0 1 1 0
1 0 1 0
1 1 0 1

Aussagensymbole:
P1, P2, Q1, Q2

Formeln:
Q1 ↔ ¬(P1 ∧ P2)
Q2 ↔ (P1 ∧ P2)
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Schaltkreis:

• Für jeden Ein- und Ausgang ein Aussagensymbol,
sowie für jedes Schaltelement ein Sortiment von Aussagensymbolen.

• Formeln für die Schaltelemente und Formeln für die
”
Verdrahtung“.
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Verifikation

Ziel:
Nachweis, dass der Schaltkreis eine gewisse Korrektheitsbedingung erfüllt.

Methode:

1. Beschreibe den Schaltkreis durch eine Menge Φ von Formeln.

2. Formuliere die Korrektheitsbedingung als Formel ψ.

3. Weise nach, dass ψ aus Φ folgt
(bzw., dass Φ ∪ {¬ψ} unerfüllbar ist).

Bemerkung
Bei Bedarf kann die Korrektheitsbedingung insbesondere so gewählt werden,
dass sie das gewünschte Ein-/Ausgabeverhalten des Schaltkreises vollständig
spezifiziert.
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Methode:

1. Beschreibe den Schaltkreis durch eine Menge Φ von Formeln.

2. Formuliere die Korrektheitsbedingung als Formel ψ.

3. Weise nach, dass ψ aus Φ folgt
(bzw., dass Φ ∪ {¬ψ} unerfüllbar ist).
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Beispiele für Korrektheitsbedingungen

Schaltkreis:

S

S

S

E
1

E2

A1 A2 A3 A4

Einige Korrektheitsbedingungen:

• Bei jeder Eingabe ist mindestens eine Ausgabe 1:

Q1 ∨ Q2 ∨ Q3 ∨ Q4.

• Bei keiner Eingabe sind mehr als zwei Ausgaben 1:

¬
∨

16i<j<k64

(Qi ∧ Qj ∧ Qk)

Vollständige Spezifikation des Ein-/Ausgabeverhaltens:(
¬P1 ∧ ¬P2 → Q1 ∧ ¬Q2 ∧ ¬Q3 ∧ ¬Q4

)
∧

(
¬P1 ∧ P2 → ¬Q1 ∧ Q2 ∧ ¬Q3 ∧ ¬Q4

)
∧

(
P1 ∧ ¬P2 → Q1 ∧ ¬Q2 ∧ Q3 ∧ ¬Q4

)
∧

(
P1 ∧ P2 → ¬Q1 ∧ Q2 ∧ ¬Q3 ∧ Q4

)
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Pingo-Übung

Welche Aussage gilt für ϕ = A ∧ B → C und ψ = (A→ C ) ∧ (B → C ) ?

(1) ϕ |= ψ und ψ |= ϕ

(2) ϕ |= ψ und ψ 6|= ϕ

(3) ϕ 6|= ψ und ψ |= ϕ

(4) ϕ 6|= ψ und ψ 6|= ϕ

http://pingo.upb.de/160267

Christoph Berkholz · HU Berlin · Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 89

http://pingo.upb.de/160267


Abschnitt 2.3:
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Äquivalenz

Definition 2.22
Zwei Formeln ϕ,ψ ∈ AL sind äquivalent (wir schreiben ϕ ≡ ψ), wenn sie von den
selben Interpretationen erfüllt werden

, d.h., wenn für alle Interpretationen I gilt:
I |= ϕ ⇐⇒ I |= ψ.

Zwei Formelmengen Φ,Ψ ⊆ AL sind äquivalent (wir schreiben Φ ≡ Ψ), wenn sie von
den selben Interpretationen erfüllt werden, d.h., wenn für alle Interpretationen I gilt:
I |= Φ ⇐⇒ I |= Ψ.

Beobachtung 2.23

(a) Zwei Formeln ϕ,ψ ∈ AL sind genau dann äquivalent, wenn in den letzten Spalten
ihrer Wahrheitstafeln jeweils die gleichen Einträge stehen.

(b) Für endliche Formelmengen Φ = {ϕ1, . . . , ϕm}, Ψ = {ψ1, . . . , ψn} ⊆ AL gilt

Φ ≡ Ψ ⇐⇒

m∧
i=1

ϕi ≡
n∧

j=1

ψj .

Beispiel: Für alle X ,Y ∈ AS gilt: ¬(X ∨ Y ) ≡ (¬X ∧ ¬Y ) und X ≡ ¬¬X .
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den selben Interpretationen erfüllt werden, d.h., wenn für alle Interpretationen I gilt:
I |= Φ ⇐⇒ I |= Ψ.

Beobachtung 2.23

(a) Zwei Formeln ϕ,ψ ∈ AL sind genau dann äquivalent, wenn in den letzten Spalten
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Zwei Formeln ϕ,ψ ∈ AL sind äquivalent (wir schreiben ϕ ≡ ψ), wenn sie von den
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(b) Für endliche Formelmengen Φ = {ϕ1, . . . , ϕm}, Ψ = {ψ1, . . . , ψn} ⊆ AL gilt

Φ ≡ Ψ ⇐⇒
m∧
i=1

ϕi ≡
n∧

j=1

ψj .

Beispiel: Für alle X ,Y ∈ AS gilt: ¬(X ∨ Y ) ≡ (¬X ∧ ¬Y ) und X ≡ ¬¬X .
Christoph Berkholz · HU Berlin · Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 90



Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Äquivalenz und Allgemeingültigkeit

Lemma 2.24

(a) Für alle Formeln ϕ,ψ ∈ AL gilt:

ϕ ≡ ψ ⇐⇒ (ϕ↔ ψ) ist allgemeingültig.

(b) Für alle ϕ ∈ AL gilt:

ϕ ist allgemeingültig ⇐⇒ ϕ ≡ 1.

Christoph Berkholz · HU Berlin · Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 91



Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit
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Fundamentale Äquivalenzen

Satz 2.25
Für alle Formeln ϕ,ψ, χ ∈ AL gelten die folgenden Äquivalenzen:

(a) Idempotenz:
ϕ ∧ ϕ ≡ ϕ

, ϕ ∨ ϕ ≡ ϕ.

(b) Kommutativität:

ϕ ∧ ψ ≡ ψ ∧ ϕ , ϕ ∨ ψ ≡ ψ ∨ ϕ.

(c) Assoziativität:

(ϕ ∧ ψ) ∧ χ ≡ ϕ ∧ (ψ ∧ χ) , (ϕ ∨ ψ) ∨ χ ≡ ϕ ∨ (ψ ∨ χ).

(d) Absorption:

ϕ ∧ (ϕ ∨ ψ) ≡ ϕ , ϕ ∨ (ϕ ∧ ψ) ≡ ϕ.

(Fortsetzung: nächste Folie)
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(a) Idempotenz:
ϕ ∧ ϕ ≡ ϕ , ϕ ∨ ϕ ≡ ϕ.

(b) Kommutativität:

ϕ ∧ ψ ≡ ψ ∧ ϕ , ϕ ∨ ψ ≡ ψ ∨ ϕ.

(c) Assoziativität:

(ϕ ∧ ψ) ∧ χ ≡ ϕ ∧ (ψ ∧ χ) , (ϕ ∨ ψ) ∨ χ ≡ ϕ ∨ (ψ ∨ χ).

(d) Absorption:

ϕ ∧ (ϕ ∨ ψ) ≡ ϕ , ϕ ∨ (ϕ ∧ ψ) ≡ ϕ.

(Fortsetzung: nächste Folie)
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(e) Distributivität:

ϕ ∧ (ψ ∨ χ) ≡ (ϕ ∧ ψ) ∨ (ϕ ∧ χ)

, ϕ ∨ (ψ ∧ χ) ≡ (ϕ ∨ ψ) ∧ (ϕ ∨ χ).

(f) Doppelte Negation:
¬¬ϕ ≡ ϕ.

(g) De Morgansche Regeln:

¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ , ¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ.

(h) Tertium Non Datur:

ϕ ∧ ¬ϕ ≡ 0 , ϕ ∨ ¬ϕ ≡ 1.

(Fortsetzung: nächste Folie)
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Christoph Berkholz · HU Berlin · Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 93



Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit
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(i)

ϕ ∧ 1 ≡ ϕ , ϕ ∨ 0 ≡ ϕ ,

ϕ ∧ 0 ≡ 0 , ϕ ∨ 1 ≡ 1.

(j)
1 ≡ ¬0 , 0 ≡ ¬1.

(k) Elimination der Implikation:

ϕ→ ψ ≡ ¬ϕ ∨ ψ.

Christoph Berkholz · HU Berlin · Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 94



Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit
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Beweis.
Alle hier genannten Äquivalenzen können leicht mit Hilfe der
Wahrheitstafelmethode überprüft werden.

Zum Beispiel die erste de Morgansche Regel:

¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ.

Wir berechnen dazu folgende Wahrheitstafeln:

ϕ ψ ϕ ∧ ψ ¬(ϕ ∧ ψ)
0 0 0 1
0 1 0 1
1 0 0 1
1 1 1 0

ϕ ψ ¬ϕ ¬ψ ¬ϕ ∨ ¬ψ
0 0 1 1 1
0 1 1 0 1
1 0 0 1 1
1 1 0 0 0

Die letzten Spalten der beiden Wahrheitstafeln sind gleich, also sind die Formeln
äquivalent.

Rest: Übung.
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Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Bemerkung

• Sei
• ϕ ∈ AL,
• ψ ∈ AL eine Teilformel von ϕ,
• ψ′ ∈ AL mit ψ ≡ ψ′.

Wenn ϕ′ eine Formel ist, die aus ϕ entsteht,
indem ein oder mehrere Vorkommen von ψ in ϕ durch ψ′ ersetzt werden,
dann gilt ϕ′ ≡ ϕ.

• Durch schrittweises Anwenden der in Satz 2.25 aufgelisteten Äquivalenzen
auf Teilformeln kann man somit eine gegebene Formel in eine zu ihr
äquivalente Formel umformen.
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Das Dualitätsprinzip

Definition 2.26
Sei ϕ ∈ AL eine Formel, in der keine Implikationen vorkommt.
Die zu ϕ duale Formel ist die Formel ϕ̃ ∈ AL, die aus ϕ entsteht, indem man
überall 0 durch 1, 1 durch 0, ∧ durch ∨ und ∨ durch ∧ ersetzt.

Beobachtung 2.27
In Satz 2.25(a)–(e) und (g)–(j) stehen auf der linken Seite jeweils die dualen
Formeln der Formeln auf der rechten Seite.

Satz 2.28 (Dualitätssatz der Aussagenlogik)
Für alle Formeln ϕ,ψ ∈ AL, in denen keine Implikation vorkommt, gilt:

ϕ ≡ ψ ⇐⇒ ϕ̃ ≡ ψ̃.
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überall 0 durch 1, 1 durch 0, ∧ durch ∨ und ∨ durch ∧ ersetzt.

Beobachtung 2.27
In Satz 2.25(a)–(e) und (g)–(j) stehen auf der linken Seite jeweils die dualen
Formeln der Formeln auf der rechten Seite.

Satz 2.28 (Dualitätssatz der Aussagenlogik)
Für alle Formeln ϕ,ψ ∈ AL, in denen keine Implikation vorkommt, gilt:

ϕ ≡ ψ ⇐⇒ ϕ̃ ≡ ψ̃.

Christoph Berkholz · HU Berlin · Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 97



Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit
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Um den Dualitätssatz zu beweisen benötigen wir zunächst noch eine Definition.
Der Kern des Beweises steckt im darauf folgenden Lemma.

Definition 2.29
Sei I eine Interpretation. Die zu I duale Interpretation Ĩ ist definiert durch
Ĩ(X ) := 1− I(X ) für alle X ∈ AS.

D.h. für alle Aussagensymbole X gilt:

Ĩ(X ) =

{
0 , falls I(X ) = 1

1 , falls I(X ) = 0

Lemma 2.30
Für alle Formeln ϕ ∈ AL, in denen keine Implikation vorkommt, und alle
Interpretationen I gilt:

I |= ϕ̃ ⇐⇒ Ĩ 6|= ϕ.
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Der Kern des Beweises steckt im darauf folgenden Lemma.

Definition 2.29
Sei I eine Interpretation. Die zu I duale Interpretation Ĩ ist definiert durch
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Beweis von Satz 2.28 unter Verwendung von Lemma 2.30.
Seien ϕ,ψ ∈ AL Formeln, in denen keine Implikation vorkommt.

Wir wollen zeigen, dass gilt: ϕ ≡ ψ ⇐⇒ ϕ̃ ≡ ψ̃.

”
=⇒“: Es gilt:1

ϕ ≡ ψ

=⇒ F.a. Interpretationen I gilt:
(
Ĩ |= ϕ ⇐⇒ Ĩ |= ψ

)
Lemma 2.30

=⇒ F.a. Interpretationen I gilt:
(
I 6|= ϕ̃ ⇐⇒ I 6|= ψ̃

)
=⇒ F.a. Interpretationen I gilt:

(
I |= ϕ̃ ⇐⇒ I |= ψ̃

)
=⇒ ϕ̃ ≡ ψ̃.

”
⇐=“: Es gilt:

ϕ̃ ≡ ψ̃ =⇒ ˜̃ϕ ≡ ˜̃
ψ (andere Beweisrichtung)

=⇒ ϕ ≡ ψ (weil ˜̃ϕ = ϕ und
˜̃
ψ = ψ).

1Wir schreiben kurz
”
f.a.“ als Abkürzung für die Worte

”
für alle“
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für alle“
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Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Beweise per Induktion über den Aufbau von Formeln

• Ähnlich wie wir Aussagen über die natürlichen Zahlen durch vollständige
Induktion beweisen können, können wir Aussagen über Formeln per
Induktion über den Aufbau der Formeln beweisen.

• Im Induktionsanfang beweisen wir die Aussagen für die atomaren Formeln,
und im Induktionschritt schließen wir von den Bestandteilen einer Formel
auf die Formel selbst.

• Dieses Vorgehen ist z.B. dadurch gerechtfertigt, dass es sich auch als
vollständige Induktion über die Höhe des Syntaxbaumes auffassen lässt.
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Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Schematisch sieht der Beweis einer Aussage A(ϕ) für alle Formeln ϕ ∈ AL wie
folgt aus:

Induktionsanfang:

• Beweise A(0) und A(1).

• Beweise A(X ) für alle X ∈ AS.

Induktionsschritt:

• Beweise A(¬ϕ) unter der Annahme, dass A(ϕ) gilt.

• Beweise A(ϕ ∧ ψ) unter der Annahme, dass A(ϕ) und A(ψ) gelten.

• Beweise A(ϕ ∨ ψ) unter der Annahme, dass A(ϕ) und A(ψ) gelten.

• Beweise A(ϕ→ ψ) unter der Annahme, dass A(ϕ) und A(ψ) gelten.
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Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

Funktionale Vollständigkeit der Aussagenlogik
Im Folgenden bezeichnen wir als Wahrheitstafel eine Tabelle mit n+1 Spalten
und 2n Zeilen, die für jedes Tupel (b1, . . . , bn) ∈ {0, 1}n genau eine Zeile
enthält, deren erste n Einträge b1, . . . , bn sind.

Satz 2.31 (Funktionale Vollständigkeit der Aussagenlogik)
Zu jeder Wahrheitstafel gibt es eine Formel ϕ ∈ AL mit dieser Wahrheitstafel.

Mathematisch präzise lässt sich dieser Satzes wie folgt formulieren:

Für alle n ∈ N gibt es zu jeder Funktion F : {0, 1}n → {0, 1} eine Formel
ϕ(A1, . . . ,An) ∈ AL, so dass für alle (b1, . . . , bn) ∈ {0, 1}n gilt:

F (b1, . . . , bn) = 1 ⇐⇒ ϕ[b1, . . . , bn] = 1.

Definition 2.32
Funktionen F : {0, 1}n → {0, 1} (mit n ∈ N) nennt man Boolesche Funktionen
(der Stelligkeit n).

Bevor wir Satz 2.31 beweisen, betrachten wir zunächst ein Beispiel.
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Mathematisch präzise lässt sich dieser Satzes wie folgt formulieren:

Für alle n ∈ N gibt es zu jeder Funktion F : {0, 1}n → {0, 1} eine Formel
ϕ(A1, . . . ,An) ∈ AL, so dass für alle (b1, . . . , bn) ∈ {0, 1}n gilt:

F (b1, . . . , bn) = 1 ⇐⇒ ϕ[b1, . . . , bn] = 1.

Definition 2.32
Funktionen F : {0, 1}n → {0, 1} (mit n ∈ N) nennt man Boolesche Funktionen
(der Stelligkeit n).

Bevor wir Satz 2.31 beweisen, betrachten wir zunächst ein Beispiel.
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Funktionale Vollständigkeit der Aussagenlogik
Im Folgenden bezeichnen wir als Wahrheitstafel eine Tabelle mit n+1 Spalten
und 2n Zeilen, die für jedes Tupel (b1, . . . , bn) ∈ {0, 1}n genau eine Zeile
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Zu jeder Wahrheitstafel gibt es eine Formel ϕ ∈ AL mit dieser Wahrheitstafel.
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Mathematisch präzise lässt sich dieser Satzes wie folgt formulieren:

Für alle n ∈ N gibt es zu jeder Funktion F : {0, 1}n → {0, 1} eine Formel
ϕ(A1, . . . ,An) ∈ AL, so dass für alle (b1, . . . , bn) ∈ {0, 1}n gilt:

F (b1, . . . , bn) = 1 ⇐⇒ ϕ[b1, . . . , bn] = 1.

Definition 2.32
Funktionen F : {0, 1}n → {0, 1} (mit n ∈ N) nennt man Boolesche Funktionen
(der Stelligkeit n).

Bevor wir Satz 2.31 beweisen, betrachten wir zunächst ein Beispiel.
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Beispiel 2.33
Betrachte die Wahrheitstafel T :

b1 b2 b3 F (b1, b2, b3)
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

Eine Formel ϕ(A1,A2,A3), so dass T die Wahrheitstafel für ϕ ist, kann man
folgendermaßen erzeugen:

• Betrachte alle Zeilen von T , bei denen in der letzten Spalte eine
”
1“ steht.

• Für jede solche Zeile konstruiere eine Formel, die genau von der zu der
Zeile gehörenden Belegung von b1, b2, b3 erfüllt wird.

• Bilde die Disjunktion (d.h. die
”
Veroderung“) über all diese Formeln.

Dies liefert die gesuchte Formel ϕ.
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Beispiel 2.33
Betrachte die Wahrheitstafel T :

b1 b2 b3 F (b1, b2, b3)
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1 0 0 0
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In unserer Beispiel-Wahrheitstafel T gibt es genau 3 Zeilen, bei denen in der
letzten Spalte eine

”
1“ steht, nämlich die Zeilen

b1 b2 b3 F (b1, b2, b3) zur jeweiligen Zeile gehörende Formel:

0 0 0 1

( ¬A1 ∧ ¬A2 ∧ ¬A3 )

0 0 1 1

( ¬A1 ∧ ¬A2 ∧ A3 )

...
...

...
...

1 0 1 1

( A1 ∧ ¬A2 ∧ A3 )

...
...

...
...

Insgesamt erhalten wir dadurch die zur Wahrheitstafel T passende Formel

ϕ = (¬A1 ∧ ¬A2 ∧ ¬A3) ∨ (¬A1 ∧ ¬A2 ∧ A3) ∨ (A1 ∧ ¬A2 ∧ A3).
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1“ steht, nämlich die Zeilen

b1 b2 b3 F (b1, b2, b3) zur jeweiligen Zeile gehörende Formel:
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Adäquatheit

Satz 2.31 besagt, dass die Aussagenlogik AL die größtmögliche Aussdruckstärke
hat. Dafür reichen allerdings schon

”
kleinere“ Logiken, wie wir im Folgenden

sehen werden.

Definition 2.34
Sei τ ⊆ {0, 1,¬,∧,∨,→}.

(a) AL(τ) sei das Fragment der Logik AL, das aus den Formeln besteht, in
denen nur Junktoren und Konstanten aus τ vorkommen.

(b) τ heißt adäquat, wenn jede Formel ϕ ∈ AL äquivalent zu einer Formel in
AL(τ) ist.

Beispiele 2.35

(a) {¬,∧}, {¬,∨}, {0,→} sind adäquat.

(b) {∧,∨,→} ist nicht adäquat.
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AL(τ) ist.

Beispiele 2.35

(a) {¬,∧}, {¬,∨}, {0,→} sind adäquat.
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Andere Junktoren

• Die Auswahl der Junktoren ¬,∧,∨,→ (und ↔ als Abkürzung) für
”
unsere“

aussagenlogische Sprache richtet sich nach dem umgangssprachlichen
Gebrauch und den Erfordernissen des formalen Schließens, ist aber in
gewisser Weise willkürlich.

• Durch Festlegung ihrer Wahrheitstafeln können wir auch andere Junktoren
definieren und erhalten daraus andere aussagenlogische Sprachen.

• Für jede Menge τ von so definierten Junktoren und den boolschen
Konstanten (die wir als

”
nullstellige“ Junktoren auffassen können) sei

AL(τ) die daraus gebildete aussagenlogische Sprache.

• Satz 2.31 besagt dann, dass jede Formel in AL(τ) zu einer Formel in AL
äquivalent ist. Gilt die Umkehrung ebenfalls, so bezeichnen wir τ als
adäquat.
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Beispiele 1: Exklusives Oder

Der 2-stellige Junktor ⊕ sei definiert durch

ϕ ψ ϕ⊕ ψ
0 0 0
0 1 1
1 0 1
1 1 0

Intuitiv bedeutet ϕ⊕ ψ
”
entweder ϕ oder ψ“.

Man nennt ⊕ auch exklusives Oder.
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Der dreistellige Mehrheitsjunktor

Der 3-stellige Junktor M sei definiert durch

ϕ ψ χ M(ϕ,ψ, χ)
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Intuitiv ist M(ϕ,ψ, χ) also genau dann wahr, wenn mindestens zwei (also die
Mehrheit) der Formeln ϕ,ψ, χ wahr sind.

Christoph Berkholz · HU Berlin · Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 108



Kapitel 2: Aussagenlogik · Abschnitt 2.3: Äquivalenz und Adäquatheit

NAND

Der folgende zweistellige Junktor ist bekannt als NAND-Gatter (not-and) oder
Sheffer-Strich:

ϕ ψ (ϕ |ψ)
0 0 1
0 1 1
1 0 1
1 1 0

Satz 2.36
{ | } ist adäquat.

Beweis.
Induktion über den Aufbau von AL({¬,∧}) unter Verwendung der Äquivalenzen

¬ϕ ≡ (ϕ |ϕ) und (ϕ ∧ ψ) ≡ ¬(ϕ |ψ) ≡
(
(ϕ |ψ) | (ϕ |ψ)

)
.

Details: Übung.
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Vereinfachende Annahme

In diesem Abschnitt betrachten wir nur Formeln in AL({¬,∨,∧}).

Rechtfertigung
Die Annahme bedeutet keine wesentliche Einschränkung, weil die Menge
{¬,∨,∧} adäquat ist.
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NNF

Definition 2.37
Eine Formel ist in Negationsnormalform (NNF), wenn sie zu AL({¬,∧,∨})
gehört und Negationszeichen nur unmittelbar vor Aussagensymbolen auftreten.

Satz 2.38
Jede aussagenlogische Formel ϕ ∈ AL({¬,∧,∨}) ist äquivalent zu einer Formel
in NNF, deren Länge linear in der Länge von ϕ ist.

• Da {¬,∨,∧} adäquat ist und jede Formel aus AL in Linearzeit in eine
äquivalente Formel aus AL({¬,∨,∧}) überführt werden kann, gilt der Satz
auch für alle ϕ ∈ AL.
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• Da {¬,∨,∧} adäquat ist und jede Formel aus AL in Linearzeit in eine
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Ein NNF-Algorithmus

Eingabe: Formel ϕ ∈ AL({¬,∧,∨}).

Ausgabe: Formel ϕ′ in NNF

Verfahren:

1. Wiederhole folgende Schritte:
2. Wenn ϕ in NNF ist, dann halte mit

Ausgabe ϕ.
3. Ersetze eine Subformel von ϕ der Gestalt

¬(ψ1 ∧ ψ2) durch (¬ψ1 ∨ ¬ψ2)
oder eine Subformel der Gestalt

¬(ψ1 ∨ ψ2) durch (¬ψ1 ∧ ¬ψ2)
oder eine Subformel der Gestalt

¬¬ψ durch ψ.
Sei ϕ′ die resultierende Formel.

4. ϕ := ϕ′.
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4. ϕ := ϕ′.
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Korrektheit des NNF-Algorithmus

Satz 2.39
Für jede Eingabeformel ϕ ∈ AL({¬,∧,∨}) gibt der NNF-Algorithmus nach
endlich vielen Schritten eine zu ϕ äquivalente Formel ϕ′ in NNF aus.

(hier ohne Beweis)

Bemerkung
Unter Verwendung geeigneter Datenstrukturen lässt sich der NNF-Algorithmus
mit linearer Laufzeit implementieren, d.h., Laufzeit O(n) bei Eingabe einer
Formel der Länge n.
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Beispiel 2.40
Das Ziel ist, die Formel

((
¬A0 ∧ ¬

(
(A0 ∨ A1)→ A0

))
→ 0

)
in NNF zu bringen, d.h. eine zu ihr äquivalente Formel in NNF zu finden.

Lösung : Wir ersetzen zunächst die Konstanten 0 und 1 sowie alle
Implikationspfeile durch geeignete Formeln aus AL({¬,∧,∨}) und wenden dann
den NNF-Algorithmus an. Der Teil einer Formel, der als Nächstes ersetzt wird,
ist im Folgenden jeweils unterstrichen.((

¬A0 ∧ ¬
(
(A0 ∨ A1)→ A0

))
→ 0

)
≡

((
¬A0 ∧ ¬

(
(A0 ∨ A1)→ A0

))
→ (A0 ∧ ¬A0)

)
≡

(
¬
(
¬A0 ∧ ¬

(
(A0 ∨ A1) → A0

))
∨ (A0 ∧ ¬A0)

)
≡

(
¬
(
¬A0 ∧ ¬

(
¬(A0 ∨ A1) ∨ A0

))
∨ (A0 ∧ ¬A0)

)
≡

((
¬¬A0 ∨ ¬¬

(
¬(A0 ∨ A1) ∨ A0

))
∨ (A0 ∧ ¬A0)

)
≡

((
A0 ∨

(
¬(A0 ∨ A1) ∨ A0

))
∨ (A0 ∧ ¬A0)

)
≡

((
A0 ∨

(
(¬A0 ∧ ¬A1) ∨ A0

))
∨ (A0 ∧ ¬A0)

)
.

Diese Formel ist offensichtlicherweise in NNF.
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in NNF zu bringen, d.h. eine zu ihr äquivalente Formel in NNF zu finden.
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Klammern bei Konjunktionen und Disjunktionen
Weil ∧ assoziativ ist, können wir Formeln der Gestalt

∧n
i=1 ϕi etwas

großzügiger interpretieren. Von nun an stehe
∧n

i=1 ϕi für ϕ1 ∧ · · · ∧ ϕn mit
irgendeiner Klammerung.

Entsprechend verfahren wir mit Disjunktionen.

Beispiel
Die Formel

∧4
i=1 ϕi kann für jede der folgenden Formeln stehen:

(((ϕ1 ∧ ϕ2) ∧ ϕ3) ∧ ϕ4) ,

((ϕ1 ∧ (ϕ2 ∧ ϕ3)) ∧ ϕ4) ,

((ϕ1 ∧ ϕ2) ∧ (ϕ3 ∧ ϕ4)) ,

(ϕ1 ∧ ((ϕ2 ∧ ϕ3) ∧ ϕ4)) ,

(ϕ1 ∧ (ϕ2 ∧ (ϕ3 ∧ ϕ4))) .

Christoph Berkholz · HU Berlin · Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 115



Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

Klammern bei Konjunktionen und Disjunktionen
Weil ∧ assoziativ ist, können wir Formeln der Gestalt

∧n
i=1 ϕi etwas
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DNF und KNF

Definition 2.41

(a) Ein Literal ist eine Formel der Gestalt X oder ¬X , wobei X ∈ AS.

Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem
negativen Literal.

(b) Eine Formel ist in disjunktiver Normalform (DNF), wenn sie eine
Disjunktion von Konjunktionen von Literalen ist, d.h., wenn sie die Form

n∨
i=1

( mi∧
j=1

λi,j

)
hat, wobei n,m1, . . . ,mn > 1 sind und die λi,j für alle i ∈ [n] und j ∈ [mi ]
Literale sind. Die Subformeln κi :=

∧mi

j=1 λi,j , für i ∈ [n], nennen wir die
(konjunktiven) Klauseln der Formel.

Beispiele:
• (A1 ∧ ¬A2 ∧ A3) ∨ (¬A2 ∧ ¬A3) ∨ (A2 ∧ A1) ist in DNF
• A1 ∨ ¬A2 ∨ A3 ist in DNF (mit n = 3 und m1 = m2 = m3 = 1)
• A1 ∧ ¬A2 ∧ A3 ist in DNF (mit n = 1 und m1 = 3) und gleichzeitig ist diese

Formel eine konjunktive Klausel
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(c) Eine Formel ist in konjunktiver Normalform (KNF), wenn sie eine
Konjunktion von Disjunktion von Literalen ist, d.h., wenn sie die Form

n∧
i=1

( mi∨
j=1

λi,j

)
hat, wobei n,m1, . . . ,mn > 1 sind und die λi,j für alle i ∈ [n] und j ∈ [mi ]
Literale sind.

Die Subformeln κi :=
∨mi

j=1 λi,j , für i ∈ [n], nennen wir die
(disjunktiven) Klauseln der Formel.

Beispiele:
• (A1 ∨ ¬A2 ∨ A3) ∧ (¬A2 ∨ ¬A3) ∧ (A2 ∨ A1) ist in KNF
• A1 ∨ ¬A2 ∨ A3 ist in KNF (mit n = 1 und m1 = 3) und gleichzeitig ist diese

Formel eine disjunktive Klausel
• A1 ∧ ¬A2 ∧ A3 ist in KNF (mit n = 3 und m1 = m2 = m3 = 1)
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Normalformen spielen in vielen Anwendungsgebieten eine wichtige Rolle.
Beispielsweise geht man in der Schaltungstechnik (Hardware-Entwurf) oft von
DNF-Formeln aus, während bei der aussagenlogischen Modellbildung oftmals
KNF-Formeln auftreten, da sich eine Sammlung von einfach strukturierten
Aussagen sehr gut durch eine Konjunktion von Klauseln ausdrücken lässt.
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Satz 2.42
Jede aussagenlogische Formel ist äquivalent zu einer Formel in DNF und zu
einer Formel in KNF.
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Bemerkung 2.43
Der Beweis von Satz 2.42 zeigt Folgendes:
Um für eine gegebene Formel ψ eine äquivalente Formel ϕ in

• DNF zu erzeugen, können wir

die Wahrheitstafel für ψ aufstellen und dann
wie in Beispiel 2.33 vorgehen (bzw. ϕ := A1 ∧ ¬A1 setzen, falls ψ
unerfüllbar ist).

• KNF zu erzeugen, können wir wie folgt vorgehen:

(1) Stelle die Wahrheitstafel für ψ auf.
(2) Falls in der letzten Spalte nur

”
1“en stehen, setze ϕ := A1 ∨ ¬A1.

(3) Ansonsten gehe wie folgt vor:
• Betrachte alle Zeilen der Wahrheitstafel, bei denen in der letzten Spalte eine

”
0“ steht.

• Für jede solche Zeile konstruiere die disjunktive Klausel, die von allen
Interpretationen außer der zur Zeile gehörenden erfüllt wird.

Beispiel: Wenn die Zeile der Wahrheitstafel die Form

0 1 1 | 0

hat, so gehört dazu die disjunktive Klausel

A1 ∨ ¬A2 ∨ ¬A3.

• Bilde die Konjunktion all dieser disjunktiven Klauseln.
Dies liefert die gesuchte KNF-Formel ϕ.

Christoph Berkholz · HU Berlin · Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 120



Kapitel 2: Aussagenlogik · Abschnitt 2.4: Normalformen

Bemerkung 2.43
Der Beweis von Satz 2.42 zeigt Folgendes:
Um für eine gegebene Formel ψ eine äquivalente Formel ϕ in
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Beispiel: Wenn die Zeile der Wahrheitstafel die Form

0 1 1 | 0
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unerfüllbar ist).

• KNF zu erzeugen, können wir wie folgt vorgehen:

(1) Stelle die Wahrheitstafel für ψ auf.
(2) Falls in der letzten Spalte nur

”
1“en stehen,

setze ϕ := A1 ∨ ¬A1.
(3) Ansonsten gehe wie folgt vor:

• Betrachte alle Zeilen der Wahrheitstafel, bei denen in der letzten Spalte eine

”
0“ steht.

• Für jede solche Zeile konstruiere die disjunktive Klausel, die von allen
Interpretationen außer der zur Zeile gehörenden erfüllt wird.
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Wenn eine Formel sehr viele verschiedene Aussagensymbole enthält, die zur
Formel gehörige Wahrheitstafel also sehr groß ist, ist das gerade beschriebene
Verfahren zur Umformung in DNF oder KNF sehr zeitaufwändig.

In solchen Fällen ist es ratsam, stattdessen zu versuchen, die gewünschte
Normalform durch Äquivalenzumformungen zu erzeugen.
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Beispiel 2.44
Sei ϕ :=

((
¬A0 ∧ (A0 → A1)

)
∨ (A2 → A3)

)
.

Transformation von ϕ in NNF : siehe Tafel

Transformation in DNF: siehe Tafel

Transformation in KNF: siehe Tafel

Je nach Formel muss man ggf. die Distributivitätsregel mehrmals anwenden, bis
man eine Formel der gewünschten Normalform erhält.
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Ein DNF-Algorithmus

Eingabe: Formel ϕ ∈ AL({¬,∧,∨}) in NNF.
Ausgabe: Formel ϕ′′ in DNF

Verfahren: 1. Wiederhole folgende Schritte:
2. Wenn ϕ in DNF ist, dann halte mit

Ausgabe ϕ.
3. Ersetze eine Subformel von ϕ der Gestalt

(ψ1 ∧ (ψ2 ∨ ψ3)) durch ((ψ1 ∧ ψ2) ∨ (ψ1 ∧ ψ3))
oder eine Subformel der Gestalt

((ψ1 ∨ ψ2) ∧ ψ3) durch ((ψ1 ∧ ψ3) ∨ (ψ2 ∧ ψ3)).
Sei ϕ′ die resultierende Formel.

4. ϕ := ϕ′.

Satz 2.45
Für jede Eingabeformel ϕ in NNF gibt der DNF-Algorithmus nach endlich vielen
Schritten eine zu ϕ äquivalente Formel ϕ′′ in DNF aus.

(hier ohne Beweis)

Analog kann man auch einen
”
KNF-Algorithmus“ angeben, der bei Eingabe

einer NNF-Formel eine äquivalente Formel in KNF erzeugt (Details: Übung).
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Eine kleine Formel mit großer DNF

Satz 2.46
Sei n ∈ N mit n > 1, seien X1, . . . ,Xn und Y1, . . . ,Yn genau 2n verschiedene
Aussagensymbole und sei

ϕn :=
n∧

i=1

(Xi ∨ ¬Yi ) .

Jede zu ϕn äquivalente Formel in DNF hat mindestens 2n konjunktive Klauseln.

Beweis: Übung

Korollar 2.47
Jeder Algorithmus, der bei Eingabe von beliebigen aussagenlogischen Formeln
dazu äquivalente Formeln in DNF erzeugt, hat eine Laufzeit, die im worst-case
exponentiell ist, d.h., 2Ω(n) bei Eingabe von Formeln der Länge n.
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Kapitel 2: Aussagenlogik · Abschnitt 2.5: Der Endlichkeitssatz

Der Endlichkeitssatz
(auch bekannt als Kompaktheitssatz)

Um nachzuweisen, dass eine gegebene unendliche Formelmenge erfüllbar ist, ist
der folgende Satz sehr nützlich.

Satz 2.48 (Der Endlichkeitssatz der Aussagenlogik)
Für jede Formelmenge Φ ⊆ AL gilt:

Φ ist erfüllbar ⇐⇒ Jede endliche Teilmenge von Φ ist erfüllbar.

Korollar 2.49 (Variante des Endlichkeitssatzes)
Sei Φ ⊆ AL und sei ψ ∈ AL. Dann gilt:

Φ |= ψ ⇐⇒ Es gibt eine endliche Teilmenge Γ von Φ, so dass Γ |= ψ.
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Anwendung: Färbbarkeit
Zur Erinnerung:
• Ein Graph G = (V ,E ) besteht aus einer nicht-leeren Menge V von Knoten

und einer Menge E ⊆
{
{x , y} : x , y ∈ V , x 6= y

}
von (ungerichteten)

Kanten.

• Ein Subgraph eines Graphen G = (V ,E ) ist ein Graph H = (V ′,E ′) mit
V ′ ⊆ V und E ′ ⊆ E .

• Ein Graph ist endlich (bzw. unendlich), wenn seine Knotenmenge endlich
(bzw. unendlich) ist.

Definition 2.50
Sei k ∈ N mit k > 1.
Eine k-Färbung eines Graphen G = (V ,E ) ist eine Abbildung f : V → [k], so
dass für alle Kanten {v ,w} ∈ E gilt: f (v) 6= f (w).
G heißt k-färbbar, falls es eine k-Färbung von G gibt.

Satz 2.51
Sei k ∈ N mit k > 1.
Ein unendlicher Graph G mit Knotenmenge N ist genau dann k-färbbar, wenn
jeder endliche Subgraph von G k-färbbar ist.
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Ein unendlicher Graph G mit Knotenmenge N ist genau dann k-färbbar, wenn
jeder endliche Subgraph von G k-färbbar ist.
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Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Um nachzuweisen, dass eine gegebene KNF-Formel unerfüllbar ist, ist das im
Folgenden vorgestellte Resolutionsverfahren nützlich.

Beispiel 2.52
Wir wollen nachweisen, dass die KNF-Formel

ϕ := (¬P ∨ ¬R) ∧ (P ∨ ¬R) ∧ (¬Q ∨ S) ∧ (Q ∨ R ∨ T ) ∧ ¬T ∧ (¬S ∨ R)

unerfüllbar ist.

Dazu können wir wie folgt argumentieren:

Angenommen, eine Interpretation I erfüllt ϕ.

• Dann gilt I |= ¬T .

• Aus I |= Q ∨ R ∨ T und I |= ¬T folgt dann I |= Q ∨ R.

• Aus I |= Q ∨ R und I |= ¬Q ∨ S folgt I |= R ∨ S .

• Aus I |= R ∨ S und I |= ¬S ∨ R folgt I |= R.

• Aus I |= ¬P ∨ ¬R und I |= P ∨ ¬R folgt I |= ¬R.

Das ist ein Widerspruch. Somit ist ϕ nicht erfüllbar.
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Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Umwandlung in kleine KNF-Formeln

Das Resolutionsverfahren, das wir im Folgenden vorstellen, funktioniert nur für
KNF-Formeln.

Wir wissen bereits:

• Zu jeder Formel ϕ gibt es eine äquivalente Formel in KNF.

• Aber möglicherweise ist die kleinste zu ϕ äquivalente KNF-Formel
exponentiell groß in der Größe von ϕ.

Wenn es uns nur um die Frage geht, ob eine Formel ϕ (un)erfüllbar ist, ist es
aber auch gar nicht nötig, eine zu ϕ äquivalente KNF-Formel zu finden. Es
reicht, eine zu ϕ erfüllbarkeitsäquivalente KNF-Formel zu konstruieren.

Definition 2.53
Zwei Formeln ϕ und ψ heißen erfüllbarkeitsäquivalent, falls gilt:

ϕ ist erfüllbar ⇐⇒ ψ ist erfüllbar.
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reicht, eine zu ϕ erfüllbarkeitsäquivalente KNF-Formel zu konstruieren.

Definition 2.53
Zwei Formeln ϕ und ψ heißen erfüllbarkeitsäquivalent, falls gilt:
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Es
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Christoph Berkholz · HU Berlin · Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 128



Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Umwandlung in kleine KNF-Formeln

Das Resolutionsverfahren, das wir im Folgenden vorstellen, funktioniert nur für
KNF-Formeln.

Wir wissen bereits:

• Zu jeder Formel ϕ gibt es eine äquivalente Formel in KNF.
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Wenn es uns nur um die Frage geht, ob eine Formel ϕ (un)erfüllbar ist, ist es
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Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Eine beliebige Formel in eine erfüllbarkeitsäquivalente KNF-Formel
umzuwandeln, ist in Linearzeit möglich.

Beispiel 2.54
Um die Formel

ϕ := (P → ¬Q ) ∨ ( ¬ (P ∧ Q ) ∧ R )

in eine erfüllbarkeitsäquivalente KNF-Formel umzuformen, können wir wie folgt
vorgehen.
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Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Das Tseitin-Verfahren
Auf die gleiche Weise wie in Beispiel 2.54 können wir jede beliebige
aussagenlogische Formel in eine erfüllbarkeitsäquivalente KNF-Formel
umwandeln.

Dieses Verfahren wird Tseitin-Verfahren genannt. Eine
Laufzeitanalyse zeigt, dass das Tseitin-Verfahren in Linearzeit durchgeführt
werden kann. Insgesamt erhalten wir so den folgenden Satz.

Satz 2.55
Zu jeder aussagenlogischen Formel ϕ gibt es eine aussagenlogische Formel ϕK

mit folgenden Eigenschaften:

(a) ϕK ist erfüllbarkeitsäquivalent zu ϕ.

(b) ϕK ist in 3-KNF, d.h., in KNF, wobei jede disjunktive Klausel aus höchstens
3 Literalen besteht (wir sagen: die Klauseln haben Länge 6 3).

(c) |ϕK | = O(|ϕ|).

Außerdem gibt es einen Algorithmus, der ϕK bei Eingabe von ϕ in Linearzeit
berechnet.

Notation
|ϕ| bezeichnet die Länge (bzw. Größe) einer aussagenlogischen Formel ϕ, d.h.
die Länge von ϕ aufgefasst als Wort über dem Alphabet AAL.
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umwandeln. Dieses Verfahren wird Tseitin-Verfahren genannt. Eine
Laufzeitanalyse zeigt, dass das Tseitin-Verfahren in Linearzeit durchgeführt
werden kann. Insgesamt erhalten wir so den folgenden Satz.

Satz 2.55
Zu jeder aussagenlogischen Formel ϕ gibt es eine aussagenlogische Formel ϕK

mit folgenden Eigenschaften:
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Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Repräsentation von KNF-Formeln
Für den Rest diese Abschnitts werden wir nur noch KNF-Formeln betrachten,
und wenn wir von Klauseln sprechen, meinen wir stets disjunktive Klauseln, also
Disjunktionen von Literalen.

Für das Resolutionsverfahren ist die folgende Repräsentation von Klauseln und
KNF-Formeln sehr hilfreich:

• Eine Klausel (λ1 ∨ · · · ∨ λ`), die aus Literalen λ1, . . . , λ` besteht,
identifizieren wir mit der Menge {λ1, . . . , λ`} ihrer Literale.

Beispiel: Wir schreiben z.B. {A1,¬A2,A3} um die Klausel (A1 ∨¬A2 ∨A3)
zu bezeichnen.

D.h.: Ab jetzt sind disjunktive Klauseln für uns dasselbe wie endliche
Mengen von Literalen. Wenn wir von einer Klausel sprechen, meinen wir
eine endliche Menge von Literalen und identifizieren diese mit der Formel,
die aus der Disjunktion all dieser Literale besteht.

Spezialfall: Die leere Menge ∅ entspricht der unerfüllbaren Formel 0 (die
wiederum der

”
Formel“ entspricht, die aus der Disjunktion aller Literale aus

∅ besteht).
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KNF-Formeln sehr hilfreich:

• Eine Klausel (λ1 ∨ · · · ∨ λ`), die aus Literalen λ1, . . . , λ` besteht,
identifizieren wir mit der Menge {λ1, . . . , λ`} ihrer Literale.

Beispiel: Wir schreiben z.B. {A1,¬A2,A3} um die Klausel (A1 ∨¬A2 ∨A3)
zu bezeichnen.

D.h.: Ab jetzt sind disjunktive Klauseln für uns dasselbe wie endliche
Mengen von Literalen. Wenn wir von einer Klausel sprechen, meinen wir
eine endliche Menge von Literalen und identifizieren diese mit der Formel,
die aus der Disjunktion all dieser Literale besteht.

Spezialfall: Die leere Menge ∅ entspricht der unerfüllbaren Formel 0 (die
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Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

• Eine KNF-Formel ϕ =
m∧
i=1

γi , die aus (disjunktiven) Klauseln γ1, . . . , γm

besteht, identifizieren wir mit der Menge Γ := {γ1, . . . , γm} ihrer Klauseln.

Offensichtlicherweise gilt für alle Interpretationen I:

I |= ϕ ⇐⇒ I |= Γ.

Beispiel: Die KNF-Formel ϕ = A1 ∧ (¬A2 ∨ A1) ∧ (A3 ∨ ¬A2 ∨ ¬A1)
repräsentieren wir durch die endliche Klauselmenge{

A1, (¬A2 ∨ A1), (A3 ∨ ¬A2 ∨ ¬A1)
}

bzw. durch {
{A1}, {¬A2,A1}, {A3,¬A2,¬A1}

}
”
Erfüllbarkeit von KNF-Formeln“ ist damit im Wesentlichen dasselbe Problem

wie
”
Erfüllbarkeit von endlichen Mengen von Klauseln“.
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Erfüllbarkeit von KNF-Formeln“ ist damit im Wesentlichen dasselbe Problem

wie
”
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Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Resolution
Notation
Für ein Literal λ sei

λ̄ :=

{
¬X , falls λ von der Form X für ein X ∈ AS ist

X , falls λ von der Form ¬X für ein X ∈ AS ist.

Wir nennen λ auch das Negat von λ.

Definition 2.56 (Resolutionsregel)
Seien γ1, γ2 und δ endliche Mengen von Literalen (d.h. disjunktive Klauseln). Dann ist
δ eine Resolvente von γ1 und γ2, wenn es ein Literal λ gibt, so dass gilt:

λ ∈ γ1, λ ∈ γ2 und δ =
(
γ1 \ {λ}

)
∪
(
γ2 \ {λ }

)
.

Graphische Darstellung:

δ

γ1 γ2

”
δ ist eine Resolvente von γ1 und γ2.“
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Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Das Resolutionslemma

Notation
Ein Klausel ist eine endliche Menge von Literalen (eine solche Klausel
repräsentiert die Disjunktion der in ihr enthaltenen Literale).

Eine Klauselmenge ist eine (endliche oder unendliche) Menge von Klauseln.

Lemma 2.57 (Resolutionslemma)
Sei Γ eine Klauselmenge, seien γ1, γ2 ∈ Γ und sei δ eine Resolvente von γ1 und
γ2. Dann sind die Klauselmengen Γ und Γ ∪ {δ} äquivalent.
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Christoph Berkholz · HU Berlin · Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 134



Kapitel 2: Aussagenlogik · Abschnitt 2.6: Resolution

Resolutionsableitungen und -widerlegungen

Definition
Sei Γ eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel δ aus Γ ist

ein Tupel (δ1, . . . , δ`)
von Klauseln, so dass gilt: ` > 1, δ` = δ, und für alle i ∈ [`] ist

• δi ∈ Γ, oder

• es gibt j , k ∈ [i−1], so dass δi eine Resolvente von δj und δk ist.

(b) Eine Resolutionswiderlegung von Γ ist eine Resolutionsableitung der
leeren Klausel aus Γ.

Zur Erinnerung:
Eine Klausel δ ist genau dann eine Resolvente zweier Klauseln γ1 und γ2, wenn
es ein Literal λ gibt, so dass gilt:

λ ∈ γ1, λ ∈ γ2 und δ =
(
γ1 \ {λ}

)
∪
(
γ2 \ {λ }

)
.
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Notation 2.58

(a) Wir schreiben kurz Γ `R δ um auszudrücken, dass es eine
Resolutionsableitung von δ aus Γ gibt.

Insbesondere bedeutet Γ `R ∅, dass es eine Resolutionswiderlegung von Γ
gibt.

(b) An Stelle von (δ1, . . . , δ`) schreiben wir Resolutionsableitungen der besseren
Lesbarkeit halber oft zeilenweise, also

(1) δ1

(2) δ2
...

(`) δ`

und geben am Ende jeder Zeile eine kurze Begründung an.
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Beispiel 2.59
Sei

Γ :=
{
{¬P,¬R} , {P,¬R} , {¬Q,S} , {Q,R,T} , {¬T} , {¬S ,R}

}
Eine Resolutionswiderlegung von Γ ist:

(1) {¬T} (in Γ)

(2) {Q,R,T} (in Γ)

(3) {Q,R} (Resolvente von (1), (2))

(4) {¬Q, S} (in Γ)

(5) {S ,R} (Resolvente von (3), (4))

(6) {¬S ,R} (in Γ)

(7) {R} (Resolvente von (5), (6))

(8) {¬P,¬R} (in Γ)

(9) {P,¬R} (in Γ)

(10) {¬R} (Resolvente von (8), (9))

(11) ∅ (Resolvente von (7), (10))
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Graphische Darstellung der Resolutionswiderlegung

∅

{R}

{S ,R}

{Q,R}

{¬T} {Q,R,T}

{¬Q,S}

{¬S ,R}

{¬R}

{¬P,¬R} {P,¬R}
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Korrektheit und Vollständigkeit der Resolution

Satz 2.60
Für jede Klauselmenge Γ gilt:

Γ `R ∅ ⇐⇒ Γ ist unerfüllbar.

D.h.: Eine Klauselmenge hat genau dann eine Resolutionswiderlegung, wenn sie
unerfüllbar ist.
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Vorsicht

Beim Anwenden der Resolutionsregel (Definition 2.56) darf immer nur
ein Literal λ betrachtet werden.

Beispiel:

Betrachte die Klauselmenge Γ := {γ1, γ2} mit γ1 := {X ,Y } und
γ2 := {¬X ,¬Y } (wobei X und Y zwei verschiedene Ausagensymbole sind).
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Der Satz von Haken
Für eine endliche Klauselmenge Γ sei die Größe von Γ die Zahl

||Γ|| :=
∑
γ∈Γ

|γ|,

wobei |γ| die Anzahl der Literale in γ bezeichnet.

Der folgende (schwer zu beweisende) Satz zeigt, dass es im Worst-Case
exponentiell lange dauern kann, eine Resolutionswiderlegung zu finden.

Satz 2.61 (Satz von Haken, 1985)
Es gibt Konstanten c , d > 0 und endliche Klauselmengen Γn für n > 1, so dass
für alle n ∈ N mit n > 1 gilt:

1. ||Γn|| 6 nc ,

2. Γn ist unerfüllbar, und

3. jede Resolutionswiderlegung von Γn hat Länge > 2dn.

(Hier ohne Beweis)
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Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

Das aussagenlogische Erfüllbarkeitsproblem

Wir betrachten im Folgenden Algorithmen für das

Aussagenlogische Erfüllbarkeitsproblem:

Eingabe: eine Formel ϕ ∈ AL
Ausgabe:

”
erfüllbar“, falls ϕ erfüllbar ist;

”
unerfüllbar“, sonst.

Notation
Im Folgenden bezeichnet n immer die Anzahl der in ϕ vorkommenden
verschiedenen Aussagensymbole, und m := |ϕ| bezeichnet die Länge von ϕ
(aufgefasst als Wort über dem Alphabet der Aussagenlogik).
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Das aussagenlogische Erfüllbarkeitsproblem
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unerfüllbar“, sonst.

Notation
Im Folgenden bezeichnet n immer die Anzahl der in ϕ vorkommenden
verschiedenen Aussagensymbole, und m := |ϕ| bezeichnet die Länge von ϕ
(aufgefasst als Wort über dem Alphabet der Aussagenlogik).

Christoph Berkholz · HU Berlin · Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 142



Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

Varianten des Erfüllbarkeitsproblems

Berechnen einer erfüllenden Interpretation:
Zusätzlich soll bei erfüllbaren Formeln ϕ(A1, . . . ,An) noch ein Modell berechnet
werden, d.h., ein Tupel (b1, . . . , bn) ∈ {0, 1}n, so dass ϕ[b1, . . . , bn] = 1.

Einschränkung auf KNF-Formeln:
Oft beschränkt man sich auf Eingabeformeln in KNF oder sogar 3-KNF. Das ist
keine wesentliche Einschränkung, weil sich mit Hilfe des Tseitin-Verfahrens jede
Formel in Linearzeit in eine erfüllbarkeitsäquivalente Formel in 3-KNF
transformieren lässt (Satz 2.55).
Das Erfüllbarkeitsproblem für Formeln in KNF bzw. 3-KNF bezeichnet man mit
SAT bzw. 3-SAT.
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Komplexität des Erfüllbarkeitsproblems

Satz 2.62 (Satz von Cook und Levin, ≈1971)
Das aussagenlogische Erfüllbarkeitsproblem (und sogar die Einschränkung
3-SAT) ist NP-vollständig.

Die Komplexitätsklassen P und NP, der Begriff der NP-Vollständigkeit, sowie ein
Beweis des Satzes von Cook und Levin werden in der Vorlesung Einführung in
die Theoretische Informatik behandelt.

Bemerkung

• Wenn also P 6= NP ist (was allgemein vermutet wird), gibt es für das
aussagenlogische Erfüllbarkeitsproblem keinen Polynomialzeitalgorithmus.

• Man vermutet sogar, dass es eine Konstante c > 1 gibt, so dass jeder
Algorithmus für 3-SAT eine worst-case Laufzeit von Ω(cn) hat.
Diese Vermutung ist unter dem Namen

”
Exponential Time Hypothesis“

(ETH) bekannt.

• Der im Worst-Case beste derzeit bekannte Algorithmus für 3-SAT hat eine
Laufzeit von etwa O(1.4n).
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Satz 2.62 (Satz von Cook und Levin, ≈1971)
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aussagenlogische Erfüllbarkeitsproblem keinen Polynomialzeitalgorithmus.

• Man vermutet sogar, dass es eine Konstante c > 1 gibt, so dass jeder
Algorithmus für 3-SAT eine worst-case Laufzeit von Ω(cn) hat.

Diese Vermutung ist unter dem Namen
”
Exponential Time Hypothesis“

(ETH) bekannt.

• Der im Worst-Case beste derzeit bekannte Algorithmus für 3-SAT hat eine
Laufzeit von etwa O(1.4n).

Christoph Berkholz · HU Berlin · Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 144



Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen
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aussagenlogische Erfüllbarkeitsproblem keinen Polynomialzeitalgorithmus.

• Man vermutet sogar, dass es eine Konstante c > 1 gibt, so dass jeder
Algorithmus für 3-SAT eine worst-case Laufzeit von Ω(cn) hat.
Diese Vermutung ist unter dem Namen

”
Exponential Time Hypothesis“

(ETH) bekannt.

• Der im Worst-Case beste derzeit bekannte Algorithmus für 3-SAT hat eine
Laufzeit von etwa O(1.4n).

Christoph Berkholz · HU Berlin · Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 144



Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen

Der Wahrheitstafelalgorithmus

Lemma 2.63
Es gibt einen Linearzeitalgorithmus, der bei Eingabe einer Formel
ϕ(A1, . . . ,An) ∈ AL und eines Tupels (b1, . . . , bn) ∈ {0, 1}n den Wert
ϕ[b1, . . . , bn] berechnet.

Beweis: Übung.

Der folgende Algorithmus löst das aussagenlogische Erfüllbarkeitsproblem.

Wahrheitstafelalgorithmus
Eingabe: eine Formel ϕ ∈ AL

1. Berechne die Wahrheitstafel für ϕ.

2. Falls in der letzten Spalte mindestens eine 1 auftaucht, gib
”
erfüllbar“ aus,

sonst gib
”
unerfüllbar“ aus.

Laufzeit: O(m · 2n) (sogar im
”
Best-Case“)

Speicherplatz: O(m + 2n) . . . bei zeilenweiser Auswertung: O(m + n)
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unerfüllbar“ aus.

Laufzeit:

O(m · 2n) (sogar im
”
Best-Case“)

Speicherplatz: O(m + 2n) . . . bei zeilenweiser Auswertung: O(m + n)

Christoph Berkholz · HU Berlin · Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 145



Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen
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Der Resolutionsalgorithmus

Der Resolutionsalgorithmus probiert einfach alle möglichen
Resolutionsableitungen durch und testet so, ob es eine Resolutionswiderlegung
gibt (d.h. die Klauselmenge unerfüllbar ist).

Resolutionsalgorithmus
Eingabe: eine endliche Klauselmenge Γ (entspricht einer KNF-Formel)

1. Wiederhole, bis keine neuen Klauseln mehr generiert werden:
Füge alle Resolventen aller Klauseln aus Γ zu Γ hinzu.

2. Falls ∅ ∈ Γ, gib
”
unerfüllbar“ aus, sonst gib

”
erfüllbar“ aus.

Laufzeit: 2O(n) (weil es bei n Aussagensymbolen 4n verschiedene Klauseln gibt).

Speicherplatz: 2O(n)

Mit geschicktem
”
vergessen“ nicht mehr benötigter Klausen ist auch

Speicherplatz O(m + n) möglich.

Christoph Berkholz · HU Berlin · Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 146



Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen
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Resolutionsalgorithmus
Eingabe: eine endliche Klauselmenge Γ (entspricht einer KNF-Formel)

1. Wiederhole, bis keine neuen Klauseln mehr generiert werden:
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erfüllbar“ aus.

Laufzeit: 2O(n) (weil es bei n Aussagensymbolen 4n verschiedene Klauseln gibt).

Speicherplatz: 2O(n)

Mit geschicktem
”
vergessen“ nicht mehr benötigter Klausen ist auch

Speicherplatz O(m + n) möglich.
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Der Davis-Putnam-Logemann-Loveland Algorithmus

Der DPLL-Algorithmus ist ein in der Praxis sehr erfolgreicher Algorithmus, der
die Wahrheitstafelmethode mit Resolution kombiniert.

Ähnlich wie bei dem Wahrheitstafelalgorithmus durchsucht der
DPLL-Algorithmus systematisch den Raum aller möglichen Interpretationen und
testet, ob diese die gegebene Klauselmenge erfüllen. Resolution wird dabei dazu
verwendet, die Suche geschickt zu steuern und Dinge, die während der Suche
bereits über die Klauselmenge

”
gelernt“ wurden, weiterzuverwenden.

Der DPLL-Algorithmus ist die Basis moderner SAT-Solver, die Klauselmengen,
die aus Millionen von Klauseln und Hunderttausenden von Aussagensymbolen
bestehen, auf Erfüllbarkeit testen können.
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DPLL-Algorithmus
Eingabe: eine endliche Klauselmenge Γ (entspricht einer KNF-Formel)

1. Vereinfache Γ. % Details dazu: siehe nächste Folie

2. Falls Γ = ∅, gib
”
erfüllbar“ aus.

3. Falls ∅ ∈ Γ, gib
”
unerfüllbar“ aus.

4. Wähle ein Literal λ.

5. % probiere aus, ob Γ ein Modell hat, bei dem das Literal λ erfüllt wird:
Löse rekursiv Γ ∪

{
{λ}
}

. Falls dies erfüllbar ist, gib
”
erfüllbar“ aus.

6. % probiere aus, ob Γ ein Modell hat, bei dem das Literal λ erfüllt wird:
Löse rekursiv Γ ∪

{
{λ}
}

. Falls dies erfüllbar ist, gib
”
erfüllbar“ aus. Sonst

gib
”
unerfüllbar“ aus.
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unerfüllbar“ aus.

4. Wähle ein Literal λ.

5. % probiere aus, ob Γ ein Modell hat, bei dem das Literal λ erfüllt wird:
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”
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Vereinfachungsheuristiken, die in Schritt 1. angewendet werden:

• Unit Propagation: Für alle
”
Einerklauseln“ {λ} ∈ Γ (wobei λ ein Literal ist),

bilde alle Resolventen von {λ} mit anderen Klauseln und streiche anschließend
alle Klauseln, die λ enthalten. Wiederhole dies, so lange es Einerklauseln gibt.

Präzise:
Für jede

”
Einerklausel“ {λ} ∈ Γ tue Folgendes:

1. Ersetze jede Klausel γ ∈ Γ durch die Klausel γ \ {λ}.
2. Entferne aus Γ jede Klausel, die das Literal λ enthält.

Wiederhole dies, so lange es in Γ Einerklauseln gibt.

• Pure Literal Rule: Literale λ, deren Negat λ nirgendwo in der Klauselmenge
auftaucht, können auf 1 gesetzt werden. Alle Klauseln, die ein solches Literal
enthalten, sind dann wahr und können gestrichen werden.

• Streiche Klauseln, die Obermengen von anderen Klauseln sind (dies ist allerdings
ineffizient und wird in der Praxis zumeist weggelassen).

Man sieht leicht, dass der DPLL-Algorithmus stets die korrekte Antwort gibt (d.h., er
terminiert immer, und er gibt genau dann

”
erfüllbar“ aus, wenn die eingegebene

Klauselmenge Γ erfüllbar ist).

Laufzeit des DPLL-Algorithmus:
O(m · 2n) im Worst-Case, in der Praxis aber häufig sehr effizient.
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Beispiel 2.64
Sei Γ :={

{X1,¬X5,¬X6,X7}, {¬X1,X2,¬X5}, {¬X1,¬X2,¬X3,¬X5,¬X6},
{X1,X2,¬X4,X7}, {¬X4,¬X6,¬X7}, {X3,¬X5,X7},
{X3,¬X4,¬X5}, {X5,¬X6}, {X5,X4,¬X8},
{X1,X3,X5,X6,X7}, {¬X7,X8}, {¬X6,¬X7,¬X8}

}
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DPLL auf unerfüllbaren Klauselmengen

DPLL und Resolution
Wenn der DPLL-Algorithmus auf einer unerfüllbaren Formelmenge Γ nach N
Vereinfachungs- und Rekursionsschritten unerfüllbar ausgibt,

dann gibt es eine Resolutionswiderlegung der der Länge O(|Γ|+ N).

(Hier ohne Beweis)

• Der Suchbaum des DPLL-Algorithmus kann in den Ableitungsbaum der
Resolutionswiderlegung überführt werden.

• Damit sind Klauselmengen, die eine lange Resolutionswiderlegung
benötigen (wie in Satz 2.61) auch schwer für den DPLL-Algorithmus.

SAT-Solver
Moderne SAT-Solver erweitern DPLL auf vielfältige Weise, insbesondere durch
das geschickte Hinzufügen zusätzlicher Resolventen der aktuellen Klauselmenge,
geeignete Suchheuristiken und das gelegentliche Neustarten der Suche.

• Aus dem Lauf gängiger SAT-Solver auf unerfüllbaren Instanzen lassen sich
ebenfalls Resolutionswiderlegungen generieren. Diese sind aber nicht
notwendigerweise baumartig (wie es bei DPLL der Fall ist).

Christoph Berkholz · HU Berlin · Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 151



Kapitel 2: Aussagenlogik · Abschnitt 2.7: Erfüllbarkeitsalgorithmen
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das geschickte Hinzufügen zusätzlicher Resolventen der aktuellen Klauselmenge,
geeignete Suchheuristiken und das gelegentliche Neustarten der Suche.
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Hornklauseln und Hornformeln
Hornformeln sind spezielle aussagenlogische Formeln, die die Basis der logischen
Programmierung bilden, und für die das Erfüllbarkeitsproblem effizient gelöst
werden kann.

Definition 2.65
Eine Hornklausel ist eine disjunktive Klausel, in der höchstens ein positives
Literal vorkommt.
Eine Hornformel ist eine Konjunktion endlich vieler Hornklauseln.

Beispiele

• {¬X ,¬Y ,¬Z} (bzw. ¬X ∨ ¬Y ∨ ¬Z ) ist eine Hornklausel.

• {¬X ,¬Y ,Z} (bzw. ¬X ∨ ¬Y ∨ Z ) ist eine Hornklausel.

• {¬X ,Y ,Z} (bzw. ¬X ∨ Y ∨ Z ) ist keine Hornklausel.

• {X} (bzw. X ) ist eine Hornklausel.

• ∅ ist eine Hornklausel.

• (X ∨ ¬Y ) ∧ (¬Z ∨ ¬X ∨ ¬Y ) ∧ Y ist eine Hornformel.
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Literal vorkommt.
Eine Hornformel ist eine Konjunktion endlich vieler Hornklauseln.

Beispiele

• {¬X ,¬Y ,¬Z} (bzw. ¬X ∨ ¬Y ∨ ¬Z ) ist eine Hornklausel.

• {¬X ,¬Y ,Z} (bzw. ¬X ∨ ¬Y ∨ Z )

ist eine Hornklausel.

• {¬X ,Y ,Z} (bzw. ¬X ∨ Y ∨ Z ) ist keine Hornklausel.

• {X} (bzw. X ) ist eine Hornklausel.

• ∅ ist eine Hornklausel.

• (X ∨ ¬Y ) ∧ (¬Z ∨ ¬X ∨ ¬Y ) ∧ Y ist eine Hornformel.

Christoph Berkholz · HU Berlin · Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 152



Kapitel 2: Aussagenlogik · Abschnitt 2.8: Hornformeln

Hornklauseln und Hornformeln
Hornformeln sind spezielle aussagenlogische Formeln, die die Basis der logischen
Programmierung bilden, und für die das Erfüllbarkeitsproblem effizient gelöst
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Literal vorkommt.
Eine Hornformel ist eine Konjunktion endlich vieler Hornklauseln.

Beispiele

• {¬X ,¬Y ,¬Z} (bzw. ¬X ∨ ¬Y ∨ ¬Z ) ist eine Hornklausel.

• {¬X ,¬Y ,Z} (bzw. ¬X ∨ ¬Y ∨ Z ) ist eine Hornklausel.

• {¬X ,Y ,Z} (bzw. ¬X ∨ Y ∨ Z ) ist keine Hornklausel.

• {X} (bzw. X ) ist eine Hornklausel.

• ∅

ist eine Hornklausel.

• (X ∨ ¬Y ) ∧ (¬Z ∨ ¬X ∨ ¬Y ) ∧ Y ist eine Hornformel.

Christoph Berkholz · HU Berlin · Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 152



Kapitel 2: Aussagenlogik · Abschnitt 2.8: Hornformeln

Hornklauseln und Hornformeln
Hornformeln sind spezielle aussagenlogische Formeln, die die Basis der logischen
Programmierung bilden, und für die das Erfüllbarkeitsproblem effizient gelöst
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Hornklauseln als Implikationen

• Eine Hornklausel der Form {¬X1, . . . ,¬Xn−1,Xn} (bzw.
¬X1 ∨ · · · ∨ ¬Xn−1 ∨ Xn) ist äquivalent zur Formel

(X1 ∧ · · · ∧ Xn−1)→ Xn.

Solche Klauseln werden auch
”
Regeln“ (oder

”
Prozedurklauseln“) genannt.

• Eine Hornklausel der Form {¬X1, . . . ,¬Xn−1} ist äquivalent zur Formel

(X1 ∧ . . . ∧ Xn−1)→ 0.

Solche Klauseln werden auch
”
Zielklauseln“ (oder

”
Frageklauseln“)

genannt.

• Eine Hornklausel der Form {X1} ist äquivalent zur Formel

1→ X1.

Solche Klauseln werden auch
”
Tatsachenklausel“ genannt.

• Die leere (Horn-)Klausel ∅ ist unerfüllbar und daher äquivalent zur Formel

1→ 0.
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Der Streichungsalgorithmus

Der folgende Algorithmus löst das Erfüllbarkeitsproblem für Hornformeln in
Polynomialzeit.

Wir geben zunächst den Algorithmus an, betrachten dann Beispielläufe davon,
analysieren die Laufzeit und zeigen danach, dass der Algorithmus korrekt ist,
d.h. stets die richtige Antwort gibt.
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Streichungsalgorithmus
Eingabe: eine endliche Menge Γ von Hornklauseln

1. Wiederhole:

2. Falls ∅ ∈ Γ

, so halte mit Ausgabe
”
unerfüllbar“.

3. Falls Γ keine Tatsachenklausel (d.h. Klausel {X} mit X ∈ AS)
enthält, so halte mit Ausgabe

”
erfüllbar“.

% Γ wird erfüllt, indem jedes Aussagensymbol mit 0 belegt wird

4. Wähle eine Tatsachenklausel {X} ∈ Γ.
% Idee: Um Γ zu erfüllen, muss X mit dem Wert 1 belegt werden

5. Streiche ¬X aus allen Klauseln δ ∈ Γ, die das Literal ¬X
enthalten.
% Wenn X den Wert 1 hat, trägt ¬X nichts zum Erfüllen einer Klausel bei

6. Streiche aus Γ alle Klauseln δ ∈ Γ, die das Literal X enthalten
(d.h. entferne aus Γ alle δ ∈ Γ, für die gilt: X ∈ δ).
% Wenn X den Wert 1 hat, sind solche Klauseln erfüllt
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6. Streiche aus Γ alle Klauseln δ ∈ Γ, die das Literal X enthalten
(d.h. entferne aus Γ alle δ ∈ Γ, für die gilt: X ∈ δ).
% Wenn X den Wert 1 hat, sind solche Klauseln erfüllt
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Streichungsalgorithmus
Eingabe: eine endliche Menge Γ von Hornklauseln

1. Wiederhole:

2. Falls ∅ ∈ Γ, so halte mit Ausgabe
”
unerfüllbar“.

3. Falls Γ keine Tatsachenklausel (d.h. Klausel {X} mit X ∈ AS)
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”
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Beispiele 2.66
Wir wenden den Streichungsalgorithmus auf die beiden folgenden Mengen von
Hornklauseln an.

(a) Γa :=
{
S → 0, (P ∧ Q)→ R, (S ∧ R)→ 0, (U ∧ T ∧ Q)→ P,

(U ∧ T )→ Q, 1→ U, 1→ T
}

(b) Γb :=
{

(Q ∧ P)→ T , (U ∧ T ∧ Q)→ R, (U ∧ T )→ Q,

1→ U, R → 0, 1→ T
}
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Laufzeit des Streichungsalgorithmus

Man sieht leicht, dass in jedem Schleifendurchlauf die Anzahl der Klauseln in Γ
kleiner wird. Daher terminiert der Algorithmus nach maximal
m Schleifendurchläufen, wobei m die Anzahl der Klauseln in der Eingabemenge
Γ ist.

In jedem einzelnen Schleifendurchlauf betrachtet der Algorithmus alle Klauseln
der aktuellen Klauselmenge und führt dabei O(n) Schritte durch, wobei n = ||Γ||
die Größe der Klauselmenge ist.

Insgesamt terminiert der Streichungsalgorithmus also nach O(m·n) Schritten,
d.h. in Zeit polynomiell in der Größe von Γ.

Satz 2.67
Die Laufzeit des Streichungsalgorithmus ist O(m·n), wobei m = |Γ| die Anzahl
der Hornklauseln in der eingegebenen Menge Γ und n = ||Γ|| die Größe von Γ ist.

Bemerkung
Eine Variante des Streichungsalgorithmus läuft sogar in Linearzeit, d.h. in Zeit
O(n).

Christoph Berkholz · HU Berlin · Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 157



Kapitel 2: Aussagenlogik · Abschnitt 2.8: Hornformeln

Laufzeit des Streichungsalgorithmus

Man sieht leicht, dass in jedem Schleifendurchlauf die Anzahl der Klauseln in Γ
kleiner wird.

Daher terminiert der Algorithmus nach maximal
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die Größe der Klauselmenge ist.

Insgesamt terminiert der Streichungsalgorithmus also nach O(m·n) Schritten,
d.h. in Zeit polynomiell in der Größe von Γ.
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Bemerkung
Eine Variante des Streichungsalgorithmus läuft sogar in Linearzeit, d.h. in Zeit
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Der Streichungsalgorithmus und Resolution

Lemma 2.68
Sei Γ0 eine endliche Menge von Hornklauseln und δ eine Klausel, die zu
irgendeinem Zeitpunkt während des Laufs des Streichungsalgorithmus bei
Eingabe Γ0 in der vom Algorithmus gespeicherten Menge Γ liegt. Dann gilt:
Γ0 `R δ.
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Korrektheit des Streichungsalgorithmus

Satz 2.69
Der Streichungsalgorithmus ist korrekt.

Das heißt, bei Eingabe einer endlichen Menge Γ0 von Hornklauseln hält der
Algorithmus mit Ausgabe

”
erfüllbar“, falls Γ0 erfüllbar ist, und mit Ausgabe

”
nicht erfüllbar“, falls Γ0 unerfüllbar ist.
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Semesterüberblick

1. Einleitung heute

2. Aussagenlogik Woche 1–6
Syntax und Semantik, Normalformen, Modellierung,

Resolution, Erfüllbarkeitsalgorithmen

3. Logik erster Stufe Woche 7–10
Syntax und Semantik, Normalformen, Modellierung,

Nichtausdrückbarkeit

4. Grundlagen des automatischen Schließens Woche 11–14
Sequenzenkalkül, Vollständigkeits- und Endlichkeitssatz,

Grenzen der Berechenbarkeit, automatische Theorembeweiser

5. Logik-Programmierung Woche 15–16
theoretische Grundlagen der Logik-Programmierung

Learn Prolog Now! Einführung in Prolog findet semesterbegleitend statt.
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