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Kapitel 1:
Einleitung



Abschnitt 1.1:

Von der Bibel bis zu den Simpsons



Kapitel 1: Einleitung - Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Logik

altgriechisch , logos": Vernunft

die Lehre des verniinftigen Schlussfolgerns

Teilgebiet u.a. der Disziplinen Philosophie, Mathematik und Informatik

zentrale Frage:

Wie kann man Aussagen miteinander verkniipfen, und auf welche
Weise kann man formal Schliisse ziehen und Beweise durchfiihren?
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Das Liignerparadoxon von Epimenides

Brief des Paulus an Titus 1:12-13:
Es hat einer von ihnen gesagt, ihr eigener Prophet:
Die Kreter sind immer Liigner, bése Tiere und faule Biuche.
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Es hat einer von ihnen gesagt, ihr eigener Prophet:
Die Kreter sind immer Liigner, bése Tiere und faule Biuche.

Angenommen, die Aussage des Propheten ist wahr.
Da der Prophet selbst Kreter ist, liigt er also immer (und ist ein
boses Tier und ein fauler Bauch). Dann hat er aber insbesondere
in dem Satz ,Die Kreter sind immer Liigner, bése Tiere und faule
Bauche* gelogen. D.h. die Aussage des Propheten ist nicht wahr.
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Es hat einer von ihnen gesagt, ihr eigener Prophet:
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Das Liignerparadoxon von Epimenides

Brief des Paulus an Titus 1:12-13:
Es hat einer von ihnen gesagt, ihr eigener Prophet:
Die Kreter sind immer Liigner, bése Tiere und faule Biuche.

Angenommen, die Aussage des Propheten ist wahr.
Da der Prophet selbst Kreter ist, liigt er also immer (und ist ein
boses Tier und ein fauler Bauch). Dann hat er aber insbesondere
in dem Satz ,Die Kreter sind immer Liigner, bése Tiere und faule
Bauche* gelogen. D.h. die Aussage des Propheten ist nicht wahr.
Dies ist ein Widerspruch!

Angenommen, die Aussage des Propheten ist falsch.
Dann gibt es Kreter, die nicht immer Liigner, bose Tiere und
faule Bauche sind. Dies stellt keinen Widerspruch dar.

Insgesamt wissen wir also, dass der Prophet in seiner obigen Aussage nicht die
Wahrheit gesagt hat.
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Protagoras und sein Student Euthalus vor Gericht

; ~ B Protagoras (490 — 420 v.Chr.)
Quelle: http://wuw. greatthoughtstreasury com/author/protagoras

Euthalus studierte die Kunst der Argumentation beim Meister
Protagoras, um Anwalt zu werden.

Er vereinbart mit Protagoras, die Gebiihren fiir den Unterricht zu
bezahlen, sobald er seinen ersten Prozess gewonnen hat.
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Protagoras und sein Student Euthalus vor Gericht

s ~ B Protagoras (490 — 420 v.Chr.)
Quelle: http: //www greatthoughtstreasury.com/author/protagoras

Euthalus studierte die Kunst der Argumentation beim Meister
Protagoras, um Anwalt zu werden.

Er vereinbart mit Protagoras, die Gebiihren fiir den Unterricht zu
bezahlen, sobald er seinen ersten Prozess gewonnen hat.

Aber dann zégert Euthalus seine Anwaltstitigkeit immer weiter hinaus,
und schlieBlich beschlieBt Protagoras, seine Gebiihren einzuklagen.
Euthalus verteidigt sich selbst . ..
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Protagoras denkt:
Wenn ich den Prozess gewinne, muss Euthalus gemaB
Gerichtsbeschluss zahlen.
Wenn ich den Prozess verliere, muss Euthalus gemaB unserer
Vereinbarung zahlen, da er dann seinen ersten Prozess gewonnen
hat.
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Wenn ich den Prozess gewinne, muss Euthalus gemaB
Gerichtsbeschluss zahlen.
Wenn ich den Prozess verliere, muss Euthalus gemaB unserer
Vereinbarung zahlen, da er dann seinen ersten Prozess gewonnen
hat.

Euthalus denkt:
Wenn ich den Prozess gewinne, muss ich gemaB
Gerichtsbeschluss nicht zahlen.
Wenn ich den Prozess verliere, muss ich gemaB unserer
Vereinbarung nicht zahlen.
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Achilles und die Schildkrote

Achilles und die Schildkréte laufen ein Wettrennen. Achilles gewahrt
der Schildkréte einen Vorsprung. Zenon behauptet, dass Achilles die
Schildkréte niemals einholen kann.

1 Zenon von Elea (490 — 425 v.Chr.) Quelle:
http://aefucr.blogspot.de/2008/04/resolucin-de-la-paradoja-de-zenn-de.html
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Achilles und die Schildkrote

Achilles und die Schildkréte laufen ein Wettrennen. Achilles gewahrt
der Schildkréte einen Vorsprung. Zenon behauptet, dass Achilles die
Schildkréte niemals einholen kann.

‘1 Zenon von Elea (490 — 425 v.Chr.) Quelle:
http://aefucr. blogspot de/2008/04/resolucin-de-la-paradoja-de-zenn-de.html

Zenons Begriindung: Zu dem Zeitpunkt, an dem Achilles den Startpunkt der
Schildkrote erreicht, ist die Schildkrote schon ein Stiick weiter.
Etwas spater erreicht Achilles diesen Punkt, aber die Schildkrote
ist schon etwas weiter. Wenn Achilles diesen Punkt erreicht, ist
die Schildkrote wieder etwas weiter. So kann Achilles zwar immer
naher an die Schildkréte herankommen, sie aber niemals einholen.
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Aufldsung durch die Infinitesimalrechnung:

Gottfried Wilhelm von Leibniz (1646 — 1716)

und Isaac Newton (1643 — 1727)
Quelle: http://wuw-history.mcs.st-and.ac.uk/PictDisplay/Leibniz.html
und Quelle: http://de.wikipedia.org/wiki/Isaac_Newton
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Der Barbier von Sonnenthal

Im Stadtchen Sonnenthal (in dem bekanntlich viele seltsame Dinge
passieren) wohnt ein Barbier, der genau diejenigen minnlichen
Einwohner von Sonnenthal rasiert, die sich nicht selbst rasieren.

Frage: Rasiert der Barbier sich selbst?
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Angenommen, der Barbier rasiert sich nicht selbst.
Da er in Sonnenthal wohnt und dort alle Einwohner rasiert, die
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Die Anfange der formalen Logik



Kapitel 1: Einleitung - Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Aristoteles’ Syllogismen

Die folgende Schlussweise ist aus rein formalen Griinden korrekt.

Annahme 1:  Alle Menschen sind sterblich.
Annahme 2:  Sokrates ist ein Mensch.

Folgerung:  Also ist Sokrates sterblich.
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Aristoteles’ Syllogismen

Die folgende Schlussweise ist aus rein formalen Griinden korrekt.

Annahme 1:  Alle Menschen sind sterblich.
Annahme 2:  Sokrates ist ein Mensch.

Folgerung:  Also ist Sokrates sterblich.

Diese Art von Schluss und eine Reihe verwandter Schlussweisen nennt man
Syllogismen.

Annahme 1:  Alle A sind B.
Annahme 2:  C ist ein A.

Folgerung: Also ist C B.
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Beispiele
Annahme 1:  Alle Borg sind assimiliert worden.
Annahme 2:  Seven of Nine ist eine Borg.

Folgerung:

Also ist Seven of Nine assimiliert worden.

Christoph Berkholz -

HU Berlin - Vorlesung Logik in der Informatik

Version vom 13. November 2018
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Beispiele

Annahme 1:  Alle Borg sind assimiliert worden.
Annahme 2:  Seven of Nine ist eine Borg.

Folgerung:  Also ist Seven of Nine assimiliert worden.

Annahme 1:  Alle Substitutionschiffren sind
anfillig gegen Brute-Force-Angriffe.
Annahme 2:  Der Julius-Céasar-Chiffre ist ein Substitutionschiffre.
Folgerung:  Also ist der Julius-Casar-Chiffre anfallig
gegen Brute-Force-Angriffe.
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Aristoteles (384 - 322 v.Chr.)
Quelle: http://de.wikipedia.org/wiki/Aristoteles
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Charles Lutwidge Dodgson a.k.a. Lewis Carroll (1838 — 1898)
Quelle: http://en.wikiquote.org/wiki/Lewis_Carroll

“Contrariwise,” continued Tweedledee, “if it was so, it might be; and
if it were so, it would be; but as it isn't, it ain't. That's logic.”

aus: Alice in Wonderland

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 11


http://en.wikiquote.org/wiki/Lewis_Carroll

Kapitel 1: Einleitung - Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Carrolls formaler Schluss

Annahme 1:  Es gibt keine Schweine, die fliegen konnen.
Annahme 2:  Alle Schweine sind gefraBige Tiere.
Annahme 3.  Es gibt Schweine.

Folgerung:  Also gibt es gefraBige Tiere, die nicht fliegen kdnnen.

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 12



Kapitel 1: Einleitung - Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Carrolls formaler Schluss

Annahme 1:  Es gibt keine Schweine, die fliegen konnen.
Annahme 2:  Alle Schweine sind gefraBige Tiere.
Annahme 3.  Es gibt Schweine.

Folgerung:  Also gibt es gefraBige Tiere, die nicht fliegen kdnnen.

Die Form des Schlusses ist:

Annahme 1:  Es gibt keine A, die B (sind).
Annahme 2:  Alle A sind C.
Annahme 3: Es gibt A.

Folgerung:  Also gibt es C, die nicht B (sind).
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Nicht jeder formale Schluss ist korrekt

Annahme 1: Es gibt Vogel, die fliegen kdnnen.
Annahme 2:  Es gibt keine fliegenden (Tiere),
die Klavier spielen kdnnen.

Folgerung:  Also gibt es keine Vogel, die Klavier spielen kdnnen.
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Nicht jeder formale Schluss ist korrekt

Annahme 1: Es gibt Vogel, die fliegen kdnnen.
Annahme 2:  Es gibt keine fliegenden (Tiere),
die Klavier spielen kdnnen.

Folgerung:  Also gibt es keine Vogel, die Klavier spielen kdnnen.

Kein korrekter Schluss, auch wenn in diesem Fall die Folgerung wahr ist.

Der folgende, offensichtlich falsche, Schluss hat dieselbe Form:

Annahme 1:  Es gibt Menschen, die stumm sind.
Annahme 2:  Es gibt keine stummen (Lebewesen),
die sprechen kdnnen.

Folgerung:  Also gibt es keine Menschen, die sprechen kénnen.
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Kapitel 1: Einleitung - Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Aber wie merkt man es?

Man kann einen falschen Schluss entlarven, indem man einen formal gleichen
Schluss findet, der klar falsch ist.

Annahme 1:  Erbeeren schmecken gut.
Annahme 2:  Schlagsahne schmeckt gut.
Folgerung:  Also schmecken Erdbeeren mit Schlagsahne gut.
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Aber wie merkt man es?

Man kann einen falschen Schluss entlarven, indem man einen formal gleichen
Schluss findet, der klar falsch ist.

Annahme 1:  Erbeeren schmecken gut.
Annahme 2:  Schlagsahne schmeckt gut.
Folgerung:  Also schmecken Erdbeeren mit Schlagsahne gut.

Aber:

Annahme 1:  Pizza schmeckt gut.
Annahme 2:  Schlagsahne schmeckt gut.

Folgerung:  Also schmeckt Pizza mit Schlagsahne gut.

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 14



Kapitel 1: Einleitung - Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Wasons Auswahlaufgabe (Wason's selection task)

Uns stehen vier Karten der folgenden Art zur Verfligung:
Auf jeder Karte steht auf der Vorderseite eine Ziffer zwischen 0 und 9. Die
Riickseite jeder Karte ist komplett rot oder komplett blau.

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 15


http://pingo.upb.de/160267

Kapitel 1: Einleitung - Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Wasons Auswahlaufgabe (Wason's selection task)

Uns stehen vier Karten der folgenden Art zur Verfligung:
Auf jeder Karte steht auf der Vorderseite eine Ziffer zwischen 0 und 9. Die
Riickseite jeder Karte ist komplett rot oder komplett blau.

Wir sehen Folgendes:

74

Jemand hat folgende Hypothese aufgestellt:

Wenn auf der Vorderseite eine gerade Zahl steht,
dann ist die Riickseite rot.
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Wasons Auswahlaufgabe (Wason's selection task)

Uns stehen vier Karten der folgenden Art zur Verfligung:
Auf jeder Karte steht auf der Vorderseite eine Ziffer zwischen 0 und 9. Die
Riickseite jeder Karte ist komplett rot oder komplett blau.

Wir sehen Folgendes:

74

Jemand hat folgende Hypothese aufgestellt:

Wenn auf der Vorderseite eine gerade Zahl steht,
dann ist die Riickseite rot.

Welche Karte(n) miissen Sie umdrehen, um zu iiberpriifen, ob die Hypothese

stimmt?
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Wasons Auswahlaufgabe (Wason's selection task)

Uns stehen vier Karten der folgenden Art zur Verfligung:
Auf jeder Karte steht auf der Vorderseite eine Ziffer zwischen 0 und 9. Die
Riickseite jeder Karte ist komplett rot oder komplett blau.

Wir sehen Folgendes:

74

Jemand hat folgende Hypothese aufgestellt:

Wenn auf der Vorderseite eine gerade Zahl steht,
dann ist die Riickseite rot.

Welche Karte(n) miissen Sie umdrehen, um zu iiberpriifen, ob die Hypothese
stimmt? Ubermitteln Sie Ihre Losung jetzt hier: http://pingo.upb.de/160267
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Und was sagen die Simpsons?

Homer:

Lisa:
Homer:
Lisa:

Homer:
Lisa:
Homer:
Lisa:
Homer:
Quelle: http://en. Lisa:
wikipedia.org/wiki/

Simpson_family

Homer:

Not a bear in sight. The Bear Patrol
must be working like a charm.
That's specious reasoning, Dad.
Thank you, dear.

By your logic | could claim that
this rock keeps tigers away.

Oh, how does it work?

It doesn't work.

Uh-huh.

It's just a stupid rock.

Uh-huh.

But | don't see any tigers around,
do you?

(Pause)

Lisa, | want to buy your rock.

[Lisa refuses at first, then takes the exchange]

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik
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Die Rolle der Logik in der Informatik

Halpern, Harper, Immerman, Kolaitis, Vardi, Vianu (2001):

Concepts and methods of logic occupy a central place in computer
science, insomuch that logic has been called
“the calculus of computer science”.

aus: On the unusual effectiveness of logic in computer science, Bulletin of
Symbolic Logic 7(2): 213-236 (2001)
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Anwendungsbereiche der Logik in der Informatik

e Reprasentation von Wissen (z.B. im Bereich der kiinstlichen Intelligenz)
[sieche Kapitel 2 und 3]
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e Schaltkreisen (Ziel: beweise, dass ein Schaltkreis bzw. Chip , richtig"
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Anwendungsbereiche der Logik in der Informatik

e Reprasentation von Wissen (z.B. im Bereich der kiinstlichen Intelligenz)
[sieche Kapitel 2 und 3]

Grundlage fiir Datenbank-Anfragesprachen [siehe Kapitel 3]

Bestandteil von Programmiersprachen
(z.B. um Bedingungen in IF-Anweisungen zu formulieren) [siche Kapitel 2]

automatische Generierung von Beweisen
(so genannte Theorembeweiser) [siche Kapitel 4]

Berechenbarkeits- und Komplexitatstheorie

Verifikation von

e Schaltkreisen (Ziel: beweise, dass ein Schaltkreis bzw. Chip , richtig"
funktioniert)

e Programmen (Ziel: beweise, dass ein Programm gewisse wiinschenswerte
Eigenschaften hat)

e Protokollen (Ziel: beweise, dass die Kommunikation zwischen zwei
,Agenten", die nach einem gewissen Protokoll ablduft, , sicher” ist)

o Logik-Programmierung [siehe folgende Folien und Kapitel 5]
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Einfiihrung in die Logik-Programmierung
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»Was" statt ,, Wie" am Beispiel von Tiramisu

Tiramisu — Deklarativ
Aus Eigelb, Mascarpone
und in Likdr und Kaffee
getrankten Biskuits
hergestellte cremige
SiiBspeise

(aus: DUDEN,
Fremdwdrterbuch, 6. Auflage)

Tiramisu — Imperativ
1/4 1 Milch mit 2 EL Kakao und 2 EL Zucker

aufkochen. 1/4 | starken Kaffee und 4 EL Amaretto
dazugeben.

5 Eigelb mit 75 g Zucker weiBschaumig riihren,
dann 500 g Mascarpone dazumischen.

ca 200 g Loffelbiskuit.

Eine Lage Loffelbiskuit in eine Auflaufform legen,
mit der Flissigkeit tranken und mit der Creme
iiberziehen. Dann wieder Léffelbiskuit darauflegen,
mit der restlichen Fliissigkeit tranken und mit der
restlichen Creme iiberziehen.

Uber Nacht im Kiihlschrank durchziehen lassen und
vor dem Servieren mit Kakao bestiuben.

(aus: Gisela Schweikardt, handschriftliche Kochrezepte)
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Der groBe Traum der Informatik

Imperative Vorgehensweise:

Beschreibung, wie das gewiinschte Ergebnis erzeugt wird ..................... » Wie"

Deklarative Vorgehensweise:
Beschreibung der Eigenschaften des gewiinschten Ergebnisses ................. ,» Was"

Traum der Informatik:
Moglichst wenig , wie", moglichst viel ,,was"

D.h.: Automatische Generierung eines Ergebnisses aus seiner Spezifikation
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D.h.: Automatische Generierung eines Ergebnisses aus seiner Spezifikation

Realitat:
Datenbanken: Deklarative Anfragesprache ist Industriestandard (SQL)
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Der groBe Traum der Informatik

Imperative Vorgehensweise:

Beschreibung, wie das gewiinschte Ergebnis erzeugt wird ....................., Wie"

Deklarative Vorgehensweise:

Beschreibung der Eigenschaften des gewiinschten Ergebnisses ................. ,» Was"

Traum der Informatik:
Moglichst wenig , wie", moglichst viel ,,was"

D.h.: Automatische Generierung eines Ergebnisses aus seiner Spezifikation

Realitat:

Datenbanken: Deklarative Anfragesprache ist Industriestandard (SQL)
Software-Entwicklung: Generierungs-Tools

Programmiersprachen: Logik-Programmierung, insbes. Prolog

ABER: Imperativer Ansatz iiberwiegt in der Praxis
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Logik-Programmierung

e Logik-Programmierung bezeichnet die Idee, Logik direkt als
Programmiersprache zu verwenden.
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Logik-Programmierung

e Logik-Programmierung bezeichnet die Idee, Logik direkt als
Programmiersprache zu verwenden.

o Logik-Programmierung (in Sprachen wie Prolog) und die verwandte
funktionale Programmierung (in Sprachen wie LISP, ML, Haskell) sind
deklarativ,

im Gegensatz zur imperativen Programmierung (in Sprachen wie Java, C,
Perl).

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 21
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Logik-Programmierung

e Logik-Programmierung bezeichnet die Idee, Logik direkt als
Programmiersprache zu verwenden.

o Logik-Programmierung (in Sprachen wie Prolog) und die verwandte
funktionale Programmierung (in Sprachen wie LISP, ML, Haskell) sind
deklarativ,

im Gegensatz zur imperativen Programmierung (in Sprachen wie Java, C,
Perl).

e Die Idee er deklarativen Programmierung besteht darin, dem Computer
lediglich sein Wissen iiber das Anwendungsszenario und sein Ziel mitzuteilen
und dann die Losung des Problems dem Computer zu iiberlassen.

Bei der imperativen Programmierung hingegen gibt man dem Computer die
einzelnen Schritte zur Lésung des Problems vor.
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Prolog

e Prolog
e ist die wichtigste logische Programmiersprache,

e geht zuriick auf Kowalski und Colmerauer
(Anfang der 1970er Jahre, Marseilles),

e steht fiir (franz.) Programmation en logique.

e Mitte/Ende der 1970er Jahre: effiziente Prolog-Implementierung durch den
von Warren (in Edinburgh) entwickelten Prolog-10 Compiler.
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e steht fiir (franz.) Programmation en logique.

e Mitte/Ende der 1970er Jahre: effiziente Prolog-Implementierung durch den
von Warren (in Edinburgh) entwickelten Prolog-10 Compiler.

o Aus Effizienzgriinden werden in Prolog die abstrakten Ideen der logischen
Programmierung nicht in Reinform umgesetzt, Prolog hat auch
»nichtlogische” Elemente.
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Prolog

e Prolog

e ist die wichtigste logische Programmiersprache,

e geht zuriick auf Kowalski und Colmerauer
(Anfang der 1970er Jahre, Marseilles),

e steht fiir (franz.) Programmation en logique.

e Mitte/Ende der 1970er Jahre: effiziente Prolog-Implementierung durch den
von Warren (in Edinburgh) entwickelten Prolog-10 Compiler.

o Aus Effizienzgriinden werden in Prolog die abstrakten Ideen der logischen
Programmierung nicht in Reinform umgesetzt, Prolog hat auch
»nichtlogische” Elemente.

e Prolog ist eine voll entwickelte und méachtige Programmiersprache, die vor
allem fiir symbolische Berechnungsprobleme geeignet ist.

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 22



Kapitel 1: Einleitung - Abschnitt 1.2: Logik in der Informatik

Anwendungen

Die wichtigsten Anwendungsgebiete sind die kiinstliche Intelligenz und die

Computerlinguistik.
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Anwendungen

Die wichtigsten Anwendungsgebiete sind die kiinstliche Intelligenz und die
Computerlinguistik.

Beispiele
Das Interface fiir natiirliche Sprache

e in der International Space Station wurde von der NASA

e beim IBM Watson System, das in 2011 die Jeopardy! Man vs. Machine
Challenge gewonnen hat, wurde

in Prolog implementiert.
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Anwendungen

Die wichtigsten Anwendungsgebiete sind die kiinstliche Intelligenz und die
Computerlinguistik.

Beispiele
Das Interface fiir natiirliche Sprache

e in der International Space Station wurde von der NASA

e beim IBM Watson System, das in 2011 die Jeopardy! Man vs. Machine
Challenge gewonnen hat, wurde

in Prolog implementiert.
Mehr Informationen dazu finden sich z.B. unter
https://sicstus.sics.se/customers.html und

http://www.cs.nmsu.edu/ALP/2011/03/
natural-language-processing-with-prolog-in-the-ibm-watson-system/
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Learn Prolog Now!

Im Rahmen der Ubungsaufgaben zur Vorlesung werden wir jede Woche eins der
12 Kapitel des Buchs

»Learn Prolog Now!" von Patrick Blackburn, Johan Bos und Kristina
Striegnitz (Kings College Publications, 2006)

. auch erhiltlich als Online-Kurs unter
http://www.learnprolognow.org

durcharbeiten.
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Learn Prolog Now!

Im Rahmen der Ubungsaufgaben zur Vorlesung werden wir jede Woche eins der
12 Kapitel des Buchs

»Learn Prolog Now!" von Patrick Blackburn, Johan Bos und Kristina
Striegnitz (Kings College Publications, 2006)

. auch erhiltlich als Online-Kurs unter
http://www.learnprolognow.org

durcharbeiten. )
Als Unterstiitzung dazu gibt es jede Woche eine 2-stiindige Prolog-Ubung.

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 24


http://www.learnprolognow.org

Kapitel 1: Einleitung - Abschnitt 1.2: Logik in der Informatik

Learn Prolog Now!

Im Rahmen der Ubungsaufgaben zur Vorlesung werden wir jede Woche eins der
12 Kapitel des Buchs

»Learn Prolog Now!" von Patrick Blackburn, Johan Bos und Kristina
Striegnitz (Kings College Publications, 2006)

. auch erhiltlich als Online-Kurs unter
http://www.learnprolognow.org

durcharbeiten. )
Als Unterstiitzung dazu gibt es jede Woche eine 2-stiindige Prolog-Ubung.

Am Ende des Semesters, in Kapitel 5, werden wir von Prolog abstrahieren und
uns die Grundprinzipien der Logik-Programmierung anschauen.
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Lernziele und Semesterausblick



Kapitel 1: Einleitung - Abschnitt 1.2: Logik in der Informatik

Lernziele

Mein teurer Freund, ich rat Euch drum
Zuerst Collegium Logicum.

Da wird der Geist Euch wohl dressiert,
In spanische Stiefeln eingeschniirt,

DaB er bedachtiger so fortan
Hinschleiche die Gedankenbahn,

Und nicht etwa, die Kreuz und Quer,
Irrlichteliere hin und her.

Mephistopheles in Faust
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Lernziele

Mein teurer Freund, ich rat Euch drum
Zuerst Collegium Logicum.

Da wird der Geist Euch wohl dressiert,
In spanische Stiefeln eingeschniirt,

DaB er bedachtiger so fortan
Hinschleiche die Gedankenbahn,

Und nicht etwa, die Kreuz und Quer,
Irrlichteliere hin und her.

Mephistopheles in Faust
Aus der Studienordnung:

o Studierende erlangen die Fahigkeit, Sachverhalte in geeigneten formalen
Systemen zu formalisieren und die grundlegenden Begriffe und Ergebnisse
der mathematischen Logik zu verstehen und anzuwenden.
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Kapitel 1: Einleitung - Abschnitt 1.2: Logik in der Informatik

Lernziele

Mein teurer Freund, ich rat Euch drum
Zuerst Collegium Logicum.

Da wird der Geist Euch wohl dressiert,
In spanische Stiefeln eingeschniirt,

DaB er bedachtiger so fortan
Hinschleiche die Gedankenbahn,

Und nicht etwa, die Kreuz und Quer,
Irrlichteliere hin und her.

Mephistopheles in Faust
Aus der Studienordnung:

o Studierende erlangen die Fahigkeit, Sachverhalte in geeigneten formalen
Systemen zu formalisieren und die grundlegenden Begriffe und Ergebnisse
der mathematischen Logik zu verstehen und anzuwenden.

e Dariiber hinaus erlernen sie anhand der deklarativen Programmiersprache
Prolog ein neues Programmierparadigma.
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Semesteriberblick

1. Einleitung heute
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Semesteriberblick

1. Einleitung heute

2. Aussagenlogik Woche 1-6
Syntax und Semantik, Normalformen, Modellierung,
Resolution, Erfiillbarkeitsalgorithmen
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Semesteriberblick

1. Einleitung heute

2. Aussagenlogik Woche 1-6
Syntax und Semantik, Normalformen, Modellierung,
Resolution, Erfiillbarkeitsalgorithmen

3. Logik erster Stufe Woche 7-10
Syntax und Semantik, Normalformen, Modellierung,
Nichtausdriickbarkeit
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Semesteriberblick

1. Einleitung heute
2. Aussagenlogik Woche 1-6
Syntax und Semantik, Normalformen, Modellierung,
Resolution, Erfiillbarkeitsalgorithmen
3. Logik erster Stufe Woche 7-10
Syntax und Semantik, Normalformen, Modellierung,
Nichtausdriickbarkeit
4. Grundlagen des automatischen SchlieBens Woche 11-14

Sequenzenkalkiil, Vollstandigkeits- und Endlichkeitssatz,
Grenzen der Berechenbarkeit, automatische Theorembeweiser
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4. Grundlagen des automatischen SchlieBens Woche 11-14
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theoretische Grundlagen der Logik-Programmierung
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Semesteriberblick

1. Einleitung heute
2. Aussagenlogik Woche 1-6
Syntax und Semantik, Normalformen, Modellierung,
Resolution, Erfiillbarkeitsalgorithmen
3. Logik erster Stufe Woche 7-10
Syntax und Semantik, Normalformen, Modellierung,
Nichtausdriickbarkeit
4. Grundlagen des automatischen SchlieBens Woche 11-14
Sequenzenkalkiil, Vollstandigkeits- und Endlichkeitssatz,
Grenzen der Berechenbarkeit, automatische Theorembeweiser
5. Logik-Programmierung Woche 15-16

theoretische Grundlagen der Logik-Programmierung

Learn Prolog Now! Einfiihrung in Prolog findet semesterbegleitend statt.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Aussagen

Die Frage ,Was ist eigentlich ein Wort?" ist analog der ,Was ist eine
5Ch8Chfigur?“ Ludwig Wittgenstein, Philosophische Untersuchungen
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Aussagen

Die Frage ,Was ist eigentlich ein Wort?" ist analog der ,Was ist eine
5Ch8Chfigur?“ Ludwig Wittgenstein, Philosophische Untersuchungen

e Aussagen (im Sinne der Aussagenlogik) sind sprachliche Gebilde, die
entweder wahr oder falsch sind.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Aussagen

Die Frage ,Was ist eigentlich ein Wort?" ist analog der ,Was ist eine
Schachfigur?” Ludwig Wittgenstein, Philosophische Untersuchungen

e Aussagen (im Sinne der Aussagenlogik) sind sprachliche Gebilde, die
entweder wahr oder falsch sind.

e Aussagen konnen mit Junktoren wie nicht, und, oder oder wenn ... dann
zu komplexeren Aussagen verkniipft werden.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Aussagen

Die Frage ,Was ist eigentlich ein Wort?" ist analog der ,Was ist eine
Schachfigur?” Ludwig Wittgenstein, Philosophische Untersuchungen

e Aussagen (im Sinne der Aussagenlogik) sind sprachliche Gebilde, die
entweder wahr oder falsch sind.

e Aussagen konnen mit Junktoren wie nicht, und, oder oder wenn ... dann
zu komplexeren Aussagen verkniipft werden.

o Aussagenlogik beschiftigt sich mit allgemeinen Prinzipien des korrekten

Argumentierens und SchlieBens mit Aussagen und Kombinationen von
Aussagen.

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 27



Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Ludwig Wittgenstein (1889 — 1951)

Quelle: http://en.wikipedia.org/wiki/Ludwig_Wittgenstein
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiel 2.1 (Geburtstagsfeier)

Fred méchte mit moglichst vielen seiner Freunde Anne, Bernd, Christine, Dirk
und Eva seinen Geburtstag feiern. Er weiB Folgendes:

Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf keinen Fall
kommen. Und Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur
Feier kommen. Aber Eva kommt allenfalls dann, wenn Christine und Dirk
kommen. Andererseits kommt Christine nur dann, wenn auch Anne kommt.
Anne wiederum wird nur dann kommen, wenn auch Bernd oder Christine dabei
sind.

Frage: Wie viele Freunde (und welche) werden im besten Fall zur Party
kommen?
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Das Wissen, das in dem Text wiedergegeben ist, ldsst sich in ,atomare
Aussagen” zerlegen, die mit Junktoren verkniipft werden kdnnen.
Die atomaren Aussagen, um die sich der Text dreht, kiirzen wir folgendermaBen

ab:

Anne kommt zur Feier
Bernd kommt zur Feier
Christine kommt zur Feier

Dirk kommt zur Feier

m T O T >

Eva kommt zur Feier

Das im Text zusammengefasste Wissen l&sst sich wie folgt reprasentieren.
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(1) Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf keinen

Fall kommen.

(2) Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier
kommen.

(3) Eva kommt allenfalls dann, wenn Christine und Dirk kommen.

(4) Christine kommt nur dann, wenn auch Anne kommt.

(5) Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind.
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(1) Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf keinen
Fall kommen.

kurz: Wenn (B und A), dann nicht E

(2) Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier
kommen.

(3) Eva kommt allenfalls dann, wenn Christine und Dirk kommen.

(4) Christine kommt nur dann, wenn auch Anne kommt.

(5) Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind.
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(1) Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf keinen
Fall kommen.

kurz: Wenn (B und A), dann nicht E kiirzer:

(2) Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier
kommen.

(3) Eva kommt allenfalls dann, wenn Christine und Dirk kommen.

(4) Christine kommt nur dann, wenn auch Anne kommt.

(5) Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind.
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(1) Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf keinen
Fall kommen.
kurz: Wenn (B und A), dann nicht E kiirzer:

(2) Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier
kommen.

kurz: Wenn (B und E), dann nicht D

(3) Eva kommt allenfalls dann, wenn Christine und Dirk kommen.

(4) Christine kommt nur dann, wenn auch Anne kommt.

(5) Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind.
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(1)

Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf keinen
Fall kommen.

kurz: Wenn (B und A), dann nicht E kiirzer:

Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier
kommen.

kurz: Wenn (B und E), dann nicht D kiirzer:

Eva kommt allenfalls dann, wenn Christine und Dirk kommen.

Christine kommt nur dann, wenn auch Anne kommt.

Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind.
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(1) Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf keinen
Fall kommen.
kurz: Wenn (B und A), dann nicht E kiirzer:

(2) Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier
kommen.

kurz: Wenn (B und E), dann nicht D kiirzer:

(3) Eva kommt allenfalls dann, wenn Christine und Dirk kommen.
kurz: Wenn E, dann (C und D)

(4) Christine kommt nur dann, wenn auch Anne kommt.

(5) Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind.
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(1) Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf keinen
Fall kommen.
kurz: Wenn (B und A), dann nicht E kiirzer:

(2) Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier
kommen.

kurz: Wenn (B und E), dann nicht D kiirzer:

(3) Eva kommt allenfalls dann, wenn Christine und Dirk kommen.
kurz: Wenn E, dann (C und D) kiirzer:

(4) Christine kommt nur dann, wenn auch Anne kommt.

(5) Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

(1) Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf keinen
Fall kommen.

kurz: Wenn (B und A), dann nicht E kiirzer:
(2) Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier
kommen.

kurz: Wenn (B und E), dann nicht D kiirzer:

(3) Eva kommt allenfalls dann, wenn Christine und Dirk kommen.
kurz: Wenn E, dann (C und D) kiirzer:

(4) Christine kommt nur dann, wenn auch Anne kommt.
kurz: Wenn C, dann A

(5) Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind.
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(1) Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf keinen

Fall kommen.
kurz: Wenn (B und A), dann nicht E kiirzer:

(2) Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier

kommen.
kurz: Wenn (B und E), dann nicht D kiirzer:

(3) Eva kommt allenfalls dann, wenn Christine und Dirk kommen.
kurz: Wenn E, dann (C und D) kiirzer:

(4) Christine kommt nur dann, wenn auch Anne kommt.
kurz: Wenn C, dann A kiirzer:

(5) Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind.
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(1) Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf keinen

Fall kommen.
kurz: Wenn (B und A), dann nicht E kiirzer:

(2) Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier

kommen.
kurz: Wenn (B und E), dann nicht D kiirzer:

(3) Eva kommt allenfalls dann, wenn Christine und Dirk kommen.
kurz: Wenn E, dann (C und D) kiirzer:

(4) Christine kommt nur dann, wenn auch Anne kommt.

kurz: Wenn C, dann A kiirzer:

(5) Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind.

kurz: Wenn A, dann (B oder C)
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(1) Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf keinen

Fall kommen.
kurz: Wenn (B und A), dann nicht E kiirzer:

(2) Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier

kommen.
kurz: Wenn (B und E), dann nicht D kiirzer:

(3) Eva kommt allenfalls dann, wenn Christine und Dirk kommen.
kurz: Wenn E, dann (C und D) kiirzer:

(4) Christine kommt nur dann, wenn auch Anne kommt.

kurz: Wenn C, dann A kiirzer:

(5) Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind.

kurz: Wenn A, dann (B oder C) kiirzer:
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Fallstricke natiirlichsprachlicher Aussagen

Die Verwendung der Worter und, wenn . ..dann, oder, nicht in der
Alltagssprache entspricht nicht immer exakt unseren logischen Junktoren.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Fallstricke natiirlichsprachlicher Aussagen

Die Verwendung der Worter und, wenn . ..dann, oder, nicht in der
Alltagssprache entspricht nicht immer exakt unseren logischen Junktoren.

(1) Anne hat mit dem Kaffeetrinken aufgehdort.

(2) Anne hat nicht mit dem Kaffeetrinken aufgehort.

Ist (2) die Negation von (1)?
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Fallstricke natiirlichsprachlicher Aussagen

Die Verwendung der Worter und, wenn . ..dann, oder, nicht in der
Alltagssprache entspricht nicht immer exakt unseren logischen Junktoren.

(1) Anne hat mit dem Kaffeetrinken aufgehdort.

(2) Anne hat nicht mit dem Kaffeetrinken aufgehort.
Ist (2) die Negation von (1)? In dem Fall, dass Anne noch nie Kaffee getrunken
hat, ist keine der beiden Aussagen wahr.

V. Anne war in der Vergangenheit Kaffeetrinkerin.

G : Anneist zur Zeit Kaffeetrinkerin.
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Fallstricke natiirlichsprachlicher Aussagen

Die Verwendung der Worter und, wenn . ..dann, oder, nicht in der
Alltagssprache entspricht nicht immer exakt unseren logischen Junktoren.

(1) Anne hat mit dem Kaffeetrinken aufgehort.
kurz: 'V und nicht G kiirzer:

(2) Anne hat nicht mit dem Kaffeetrinken aufgehort.

kurz: V und G kiirzer:

Ist (2) die Negation von (1)? In dem Fall, dass Anne noch nie Kaffee getrunken
hat, ist keine der beiden Aussagen wahr.

V. Anne war in der Vergangenheit Kaffeetrinkerin.

G : Anneist zur Zeit Kaffeetrinkerin.
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Fallstricke natiirlichsprachlicher Aussagen

Die Verwendung der Worter und, wenn . ..dann, oder, nicht in der
Alltagssprache entspricht nicht immer exakt unseren logischen Junktoren.

(1) Anne hat mit dem Kaffeetrinken aufgehort.
kurz: 'V und nicht G kiirzer:

(2) Anne hat nicht mit dem Kaffeetrinken aufgehort.
kurz: 'V und G kiirzer:

Ist (2) die Negation von (1)? In dem Fall, dass Anne noch nie Kaffee getrunken
hat, ist keine der beiden Aussagen wahr.

V. Anne war in der Vergangenheit Kaffeetrinkerin.

G : Anneist zur Zeit Kaffeetrinkerin.

Zwei weitere Beispiele:
e |ch werde mir ein rotes oder ein blaues Fahrrad kaufen.
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Fallstricke natiirlichsprachlicher Aussagen

Die Verwendung der Worter und, wenn . ..dann, oder, nicht in der
Alltagssprache entspricht nicht immer exakt unseren logischen Junktoren.

(1) Anne hat mit dem Kaffeetrinken aufgehort.
kurz: 'V und nicht G kiirzer:

(2) Anne hat nicht mit dem Kaffeetrinken aufgehort.
kurz: 'V und G kiirzer:

Ist (2) die Negation von (1)? In dem Fall, dass Anne noch nie Kaffee getrunken
hat, ist keine der beiden Aussagen wahr.

V. Anne war in der Vergangenheit Kaffeetrinkerin.

G : Anneist zur Zeit Kaffeetrinkerin.

Zwei weitere Beispiele:
e Ich werde mir ein rotes oder ein blaues Fahrrad kaufen.
e Wenn Regen vorhergesagt ist, dann nehme ich einen Schirm mit.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Syntax und Semantik

Syntax: legt fest, welche Zeichenketten Formeln der Aussagenlogik sind

Semantik: legt fest, welche ,, Bedeutung" einzelne Formeln haben

Dies ist analog zur Syntax und Semantik von Java-Programmen:

Die Syntax legt fest, welche Zeichenketten Java-Programme sind, wahrend die
Semantik bestimmt, was das Programm tut.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Syntax und Semantik

Syntax: legt fest, welche Zeichenketten Formeln der Aussagenlogik sind

Semantik: legt fest, welche ,, Bedeutung" einzelne Formeln haben

Dies ist analog zur Syntax und Semantik von Java-Programmen:

Die Syntax legt fest, welche Zeichenketten Java-Programme sind, wahrend die
Semantik bestimmt, was das Programm tut.

Zur Verdeutlichung werden wir im Folgenden oft in
darstellen, wahrend wir semantische Aussagen in griin angeben.
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Syntax der Aussagenlogik



Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Notationen

e Die Menge N der natiirlichen Zahlen besteht aus allen nicht-negativen
ganzen Zahlen, d.h.

N:={0,1,23, ...}

e Fiirein n € N ist
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Definition 2.2

Ein Aussagensymbol (oder eine Aussagenvariable, kurz: Variable) hat die Form

fiir ein i € N.
Die Menge aller Aussagensymbole bezeichnen wir mit AS, d.h.

AS = {A : ieN} = {Ay, A, Aoy As, o)
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik
Definition 2.2
Ein Aussagensymbol (oder eine Aussagenvariable, kurz: Variable) hat die Form

fiir ein i € N.
Die Menge aller Aussagensymbole bezeichnen wir mit AS, d.h.

AS = {A; 1 ieN} = {Ao, A, Aoy A,y oot}

Aussagenlogische Formeln sind Woérter, die iiber dem folgenden Alphabet
gebildet sind.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik
Definition 2.2
Ein Aussagensymbol (oder eine Aussagenvariable, kurz: Variable) hat die Form

fiir ein i € N.
Die Menge aller Aussagensymbole bezeichnen wir mit AS, d.h.

AS = {A; 1 ieN} = {Ao, A, Aoy A,y oot}

Aussagenlogische Formeln sind Woérter, die iiber dem folgenden Alphabet
gebildet sind.

Definition 2.3
Das Alphabet der Aussagenlogik besteht aus
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik
Definition 2.2
Ein Aussagensymbol (oder eine Aussagenvariable, kurz: Variable) hat die Form

fiir ein i € N.
Die Menge aller Aussagensymbole bezeichnen wir mit AS, d.h.

AS = {A; 1 ieN} = {Ao, A, Aoy A,y oot}

Aussagenlogische Formeln sind Woérter, die iiber dem folgenden Alphabet
gebildet sind.

Definition 2.3
Das Alphabet der Aussagenlogik besteht aus

e den Aussagesymbolen in AS,
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik
Definition 2.2
Ein Aussagensymbol (oder eine Aussagenvariable, kurz: Variable) hat die Form

fiir ein i € N.
Die Menge aller Aussagensymbole bezeichnen wir mit AS, d.h.

AS = {A; 1 ieN} = {Ao, A, Aoy A,y oot}

Aussagenlogische Formeln sind Woérter, die iiber dem folgenden Alphabet
gebildet sind.

Definition 2.3
Das Alphabet der Aussagenlogik besteht aus
e den Aussagesymbolen in AS,

e den Junktoren —, A, V, —,
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik
Definition 2.2
Ein Aussagensymbol (oder eine Aussagenvariable, kurz: Variable) hat die Form

fiir ein i € N.
Die Menge aller Aussagensymbole bezeichnen wir mit AS, d.h.

AS = {A; 1 ieN} = {Ao, A, Aoy A,y oot}

Aussagenlogische Formeln sind Woérter, die iiber dem folgenden Alphabet
gebildet sind.

Definition 2.3
Das Alphabet der Aussagenlogik besteht aus

e den Aussagesymbolen in AS,
e den Junktoren —, A, V/, —,
e den booleschen Konstanten 0, 1,
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Definition 2.2

Ein Aussagensymbol (oder eine Aussagenvariable, kurz: Variable) hat die Form

fiir ein i € N.
Die Menge aller Aussagensymbole bezeichnen wir mit AS, d.h.

AS = {A; 1 ieN} = {Ao, A, Aoy A,y oot}

Aussagenlogische Formeln sind Woérter, die iiber dem folgenden Alphabet
gebildet sind.

Definition 2.3
Das Alphabet der Aussagenlogik besteht aus

e den Aussagesymbolen in AS,
e den Junktoren —, A, V/, —,
e den booleschen Konstanten 0, 1,

e den Klammersymbolen (,
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Definition 2.2

Ein Aussagensymbol (oder eine Aussagenvariable, kurz: Variable) hat die Form
fiir ein i € N.

Die Menge aller Aussagensymbole bezeichnen wir mit AS, d.h.

AS = {A; 1 ieN} = {Ao, A, Aoy A,y oot}

Aussagenlogische Formeln sind Woérter, die iiber dem folgenden Alphabet
gebildet sind.

Definition 2.3
Das Alphabet der Aussagenlogik besteht aus

e den Aussagesymbolen in AS,

e den Junktoren —, A, V/, —,

e den booleschen Konstanten 0, 1,
e den Klammersymbolen (,

Wir schreiben AL, um das Alphabet der Aussagenlogik zu bezeichnen, d.h.
A/—\L = AS U { ) ) ) y Uy by }
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Definition 2.4 ( der Aussagenlogik)

Die Menge AL der aussagenlogischen Formeln (kurz: Formeln) ist die
folgendermaBen rekursiv definierte Teilmenge von A3, :
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Definition 2.4 ( der Aussagenlogik)
Die Menge AL der aussagenlogischen Formeln (kurz: Formeln) ist die
folgendermaBen rekursiv definierte Teilmenge von A3, :

Basisregeln: (zum Bilden der so genannten atomaren Formeln)

(BO) 0 € AL
(B1) 1€ AL

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik Version vom 13. November 2018
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Definition 2.4 ( der Aussagenlogik)

Die Menge AL der aussagenlogischen Formeln (kurz: Formeln) ist die
folgendermaBen rekursiv definierte Teilmenge von A3, :

Basisregeln: (zum Bilden der so genannten atomaren Formeln)

(B0O) 0 e AL
(B1) 1€ AL
(BS) Fiir jedes Aussagensymbol A; € AS gilt: € AL
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Definition 2.4 ( der Aussagenlogik)

Die Menge AL der aussagenlogischen Formeln (kurz: Formeln) ist die
folgendermaBen rekursiv definierte Teilmenge von A3, :

Basisregeln: (zum Bilden der so genannten atomaren Formeln)
(BO) 0 e AL

(B1) 1€ AL
(BS) Fiir jedes Aussagensymbol A; € AS gilt: € AL

Rekursive Regeln:
(R1) Ist » € AL, so ist auch € AL (Negation)
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Definition 2.4 ( der Aussagenlogik)

Die Menge AL der aussagenlogischen Formeln (kurz: Formeln) ist die

folgendermaBen rekursiv definierte Teilmenge von A3, :

Basisregeln: (zum Bilden der so genannten atomaren Formeln)
(BO) 0 e AL
(Bl) 1 € AL
(BS) Fiir jedes Aussagensymbol A; € AS gilt: € AL

Rekursive Regeln:
(R1) Ist » € AL, so ist auch € AL (Negation)
(R2) Ist v € AL und > € AL, so ist auch

. € AL (Konjunktion)
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Definition 2.4 ( der Aussagenlogik)

Die Menge AL der aussagenlogischen Formeln (kurz: Formeln) ist die

folgendermaBen rekursiv definierte Teilmenge von A3, :

Basisregeln: (zum Bilden der so genannten atomaren Formeln)
(BO) 0 e AL
(Bl) 1 € AL
(BS) Fiir jedes Aussagensymbol A; € AS gilt: € AL

Rekursive Regeln:
(R1) Ist » € AL, so ist auch € AL (Negation)
(R2) Ist v € AL und > € AL, so ist auch
. € AL (Konjunktion)
. € AL (Disjunktion)
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Definition 2.4 ( der Aussagenlogik)

Die Menge AL der aussagenlogischen Formeln (kurz: Formeln) ist die

folgendermaBen rekursiv definierte Teilmenge von A3, :

Basisregeln: (zum Bilden der so genannten atomaren Formeln)
(BO) 0 e AL
(Bl) 1 € AL
(BS) Fiir jedes Aussagensymbol A; € AS gilt: € AL

Rekursive Regeln:
(R1) Ist » € AL, so ist auch € AL (Negation)
(R2) Ist v € AL und > € AL, so ist auch

. € AL (Konjunktion)
. € AL (Disjunktion)
. € AL (Implikation)
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiele

° (ﬁAO V (Ao — Al))
e ((AoA0) = —A;)
° A1 V A2 A\ A3

o (A
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiele

° (ﬁAO V (Ao — Al)) € AL
e ((AoA0) = —A;)
° A1 V A2 A\ A3

o (A
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiele

o (“AV(As— A1) €AL
o ((Agn0)— A €AL
° Al\/Ag/\Ag

o (A
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiele

o (“AV(As— A1) €AL
o ((Agn0)— A €AL
° A1VA2/\A3 gAL

o (A
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiele

o (“AV(As— A1) €AL
o ((Agn0)— A €AL
° A1VA2AA3 gAL

o (WA ZAL
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Griechische Buchstaben

In der Literatur werden Formeln einer Logik traditionell meistens mit
griechischen Buchstaben bezeichnet.

Hier eine Liste der gebrauchlichsten Buchstaben:

Buchstabe © ‘ P ‘ X ‘ 0 bzw. 9 ‘ A ‘ I ‘ v ‘ T ‘ K
Aussprache | phi ‘ psi ‘ chi ‘ theta ‘ lambda ‘ mii ‘ ni | tau ‘ kappa
Buchstabe o ‘ p ‘ 13 ¢ «@ B8 ‘ ¥ ‘ 0 w
Aussprache | sigma ‘ rho ‘ xi ‘ zeta ‘ alpha ‘ beta ‘ gamma ‘ delta ‘ omega
Buchstabe € L ‘77‘ A r > ‘ n ‘ $
Aussprache | epsilon ‘ iota ‘ pi ‘ Delta ‘ Gamma ‘ Sigma ‘ Pi ‘ Phi

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 38



Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Syntaxbdume

Die Struktur einer Formel lasst sich bequem in einem Syntaxbaum (englisch:

parse tree) darstellen.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Syntaxbdume

Die Struktur einer Formel lasst sich bequem in einem Syntaxbaum (englisch:
parse tree) darstellen.

Beispiel: Syntaxbaum der Formel

Ausfiihrlich: Kurzform:

] (((As A1)V —As)—(As A =(As A 1)) \

’ ((As A 1)V-As) ‘ (A5/\—'(A4 A 1)

9 o B

Version vom 13. November 2018 Folie 39
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Subformeln und eindeutige Lesbarkeit

e Jede Formel hat genau einen Syntaxbaum. Diese Aussage ist als das
Lemma iiber die eindeutige Lesbarkeit aussagenlogischer Formeln bekannt.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Subformeln und eindeutige Lesbarkeit

o Jede Formel hat genau einen Syntaxbaum. Diese Aussage ist als das
Lemma iiber die eindeutige Lesbarkeit aussagenlogischer Formeln bekannt.

e Die Formeln ¢, die im ausfiihrlichen Syntaxbaum einer Formel ¢ als

Knotenbeschriftung vorkommen, nennen wir Subformeln (bzw. Teilformeln)
von .
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Subformeln und eindeutige Lesbarkeit

o Jede Formel hat genau einen Syntaxbaum. Diese Aussage ist als das
Lemma iiber die eindeutige Lesbarkeit aussagenlogischer Formeln bekannt.

e Die Formeln ¢, die im ausfiihrlichen Syntaxbaum einer Formel ¢ als
Knotenbeschriftung vorkommen, nennen wir Subformeln (bzw. Teilformeln)
von .

e Eine Subformel ¢ von ¢ kann an mehreren Knoten des Syntaxbaums
vorkommen. Wir sprechen dann von verschiedenen Vorkommen von 1) in ¢.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Semantik der Aussagenlogik



Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Voriiberlegung zur Semantik

o Eine aussagenlogische Formel wird erst zur Aussage, wenn wir alle in ihr
vorkommenden durch Aussagen ersetzen.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Voriiberlegung zur Semantik

o Eine aussagenlogische Formel wird erst zur Aussage, wenn wir alle in ihr
vorkommenden durch Aussagen ersetzen.

o Wir interessieren uns hier nicht so sehr fiir die tatsachlichen Aussagen,
sondern nur fiir ihren Wahrheitswert, also dafiir, ob sie wahr oder falsch

sind.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Voriiberlegung zur Semantik

o Eine aussagenlogische Formel wird erst zur Aussage, wenn wir alle in ihr
vorkommenden durch Aussagen ersetzen.

o Wir interessieren uns hier nicht so sehr fiir die tatsachlichen Aussagen,
sondern nur fiir ihren Wahrheitswert, also dafiir, ob sie wahr oder falsch
sind.

e Um das festzustellen, reicht es, den Aussagensymbolen die Wahrheitswerte
der durch sie reprasentierten Aussagen zuzuordnen.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Voriiberlegung zur Semantik

o Eine aussagenlogische Formel wird erst zur Aussage, wenn wir alle in ihr
vorkommenden durch Aussagen ersetzen.

o Wir interessieren uns hier nicht so sehr fiir die tatsachlichen Aussagen,
sondern nur fiir ihren Wahrheitswert, also dafiir, ob sie wahr oder falsch
sind.

e Um das festzustellen, reicht es, den Aussagensymbolen die Wahrheitswerte
der durch sie reprasentierten Aussagen zuzuordnen.

e Die Bedeutung einer Formel besteht also aus ihren Wahrheitswerten unter

allen moglichen Wahrheitswerten fiir die in der Formel vorkommenden
Aussagensymbole.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Interpretationen (d.h. Variablenbelegungen)

Wir reprasentieren die Wahrheitswerte wahr und falsch durch 1 und 0.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Interpretationen (d.h. Variablenbelegungen)

Wir reprasentieren die Wahrheitswerte wahr und falsch durch 1 und 0.

Definition 2.5

Eine aussagenlogische Interpretation (kurz: Interpretation oder Belegung) ist

eine Abbildung
Z:AS —{0,1}.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Interpretationen (d.h. Variablenbelegungen)

Wir reprasentieren die Wahrheitswerte wahr und falsch durch 1 und 0.

Definition 2.5

Eine aussagenlogische Interpretation (kurz: Interpretation oder Belegung) ist

eine Abbildung
Z:AS—{0,1}.

D.h.: 7 ,belegt” jedes Aussagensymbol X € AS mit einem der beiden
Wahrheitswerte 1 (fiir ,,wahr") oder 0 (fiir ,falsch"); und Z(X) ist der
Wahrheitswert, mit dem das Aussagensymbol X belegt wird.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Semantik der Aussagenlogik

Definition 2.6

Zu jeder Formel » € AL und jeder Interpretation 7 definieren wir einen
Wahrheitswert [2]" rekursiv wie folgt:

Version vom 13. November 2018 Folie 43
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Semantik der Aussagenlogik

Definition 2.6

Zu jeder Formel » € AL und jeder Interpretation 7 definieren wir einen
Wahrheitswert [2]" rekursiv wie folgt:

Rekursionsanfang:

e [0]" :=0.

Version vom 13. November 2018 Folie 43
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Semantik der Aussagenlogik

Definition 2.6

Zu jeder Formel » € AL und jeder Interpretation 7 definieren wir einen
Wahrheitswert [2]" rekursiv wie folgt:

Rekursionsanfang:
e [0]" :=0.
o [1]" :=1.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Semantik der Aussagenlogik

Definition 2.6

Zu jeder Formel v € AL und jeder Interpretation 7 definieren wir einen

Wahrheitswert [2]" rekursiv wie folgt:

Rekursionsanfang:
e [0]" :=0.
. 1) =1
e Fiiralle X € AS gilt: [X]" :=

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Semantik der Aussagenlogik

Definition 2.6

Zu jeder Formel » € AL und jeder Interpretation 7 definieren wir einen
Wahrheitswert [2]" rekursiv wie folgt:

Rekursionsanfang:
e [0]" :=0.
o [ =1
o Fiir alle X € AS gilt: [X]" :=7(X).
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Semantik der Aussagenlogik

Definition 2.6
Zu jeder Formel » € AL und jeder Interpretation 7 definieren wir einen
Wahrheitswert [2]" rekursiv wie folgt:

Rekursionsanfang:
e [0]" :=0.
o [ =1
o Fiir alle X € AS gilt: [X]" :=7(X).

Rekursionsschritt:

o Ist p € AL, soist | }]I =
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Semantik der Aussagenlogik

Definition 2.6

Zu jeder Formel v € AL und jeder Interpretation 7 definieren wir einen

Wahrheitswert [2]" rekursiv wie folgt:

Rekursionsanfang:
e [0]" :=0.
o [ =1
o Fiir alle X € AS gilt: [X]" :=7(X).

Rekursionsschritt:

o Ist p € AL, soist |

7 {1 falls [ )]” =0,

0 sonst.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Semantik der Aussagenlogik (Fortsetzung)

e |st » € AL und v € AL, so ist
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Semantik der Aussagenlogik (Fortsetzung)

e |st » € AL und v € AL, so ist

. 7o {1 falls [¢]” = [¢]* =1,

0 sonst.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Semantik der Aussagenlogik (Fortsetzung)

e Ist v € AL und ¢/ € AL, so ist

1 falls [o]" = [v]" =1,

* lenvl™:= {O sonst.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Semantik der Aussagenlogik (Fortsetzung)

e |st » € AL und v € AL, so ist

. 7o {1 falls [¢]” = [¢]* =1,

0 sonst.

[ {o falls [2]" = [v]” =0,

1 sonst.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Semantik der Aussagenlogik (Fortsetzung)
e Ist v € AL und ¢/ € AL, so ist

0 sonst.

{1 falls [2])” = [¢v]F =1,

_ {o falls [2]” = [¢]* =0,

1 sonst.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Semantik der Aussagenlogik (Fortsetzung)
e Ist - € AL und ' € AL, so ist
Kool = g Lo T
1 sonst.

_ {o falls [2]” = [¢]* =0,

1 = un 4‘I:
o o 0] = {o falls [ 2]” =1 und []” =0,

1  sonst.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Intuitive Bedeutung der Semantik

Boolesche Konstanten: 1 und 0 bedeuten einfach ,, wahr" und , falsch®.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Intuitive Bedeutung der Semantik

Boolesche Konstanten: 1 und 0 bedeuten einfach ,, wahr" und , falsch®.
Aussagensymbole: Die Aussagensymbole stehen fiir irgendwelche Aussagen, von

denen uns aber nur der Wahrheitswert interessiert. Dieser wird
durch die Interpretation festgelegt.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Intuitive Bedeutung der Semantik

Boolesche Konstanten: 1 und 0 bedeuten einfach ,, wahr" und , falsch®.
Aussagensymbole: Die Aussagensymbole stehen fiir irgendwelche Aussagen, von
denen uns aber nur der Wahrheitswert interessiert. Dieser wird

durch die Interpretation festgelegt.

Negation: —¢ bedeutet , nicht ¢".
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Intuitive Bedeutung der Semantik

Boolesche Konstanten: 1 und 0 bedeuten einfach ,, wahr" und , falsch®.

Aussagensymbole: Die Aussagensymbole stehen fiir irgendwelche Aussagen, von
denen uns aber nur der Wahrheitswert interessiert. Dieser wird
durch die Interpretation festgelegt.

Negation: —¢ bedeutet , nicht ¢".

Konjunktion: (¢ A 1) bedeutet ,,¢ und ¥*.
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Boolesche Konstanten: 1 und 0 bedeuten einfach ,, wahr" und , falsch®.
Aussagensymbole: Die Aussagensymbole stehen fiir irgendwelche Aussagen, von
denen uns aber nur der Wahrheitswert interessiert. Dieser wird
durch die Interpretation festgelegt.
Negation: —¢ bedeutet , nicht ¢".

Konjunktion: (¢ A 1) bedeutet ,,¢ und ¥*.

Disjunktion: (¢ V 1) bedeutet ,, ¢ oder ¢".
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Intuitive Bedeutung der Semantik

Boolesche Konstanten: 1 und 0 bedeuten einfach ,, wahr" und , falsch®.
Aussagensymbole: Die Aussagensymbole stehen fiir irgendwelche Aussagen, von
denen uns aber nur der Wahrheitswert interessiert. Dieser wird
durch die Interpretation festgelegt.
Negation: —¢ bedeutet , nicht ¢".
Konjunktion: (¢ A 1) bedeutet ,,¢ und ¥*.
Disjunktion: (¢ V 1) bedeutet ,, ¢ oder ¢".

Implikation: (¢ — 1) bedeutet ,, o impliziert ¢»" (oder ,,wenn ¢ dann ).
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Rekursive Definitionen liber Formeln

e Ahnlich wie Funktionen auf den natiirlichen Zahlen, wie zum Beispiel die
Fakultatsfunktion oder die Fibonacci Folge, kdnnen wir Funktionen auf den
aussagenlogischen Formeln rekursiv definieren.
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e Ahnlich wie Funktionen auf den natiirlichen Zahlen, wie zum Beispiel die
Fakultatsfunktion oder die Fibonacci Folge, kdnnen wir Funktionen auf den
aussagenlogischen Formeln rekursiv definieren.

e Dabei gehen wir von den atomaren Formeln aus und definieren dann den

Funktionswert einer zusammengesetzten Formel aus den Funktionswerten
ihrer Bestandteile.
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Rekursive Definitionen liber Formeln

e Ahnlich wie Funktionen auf den natiirlichen Zahlen, wie zum Beispiel die
Fakultatsfunktion oder die Fibonacci Folge, kdnnen wir Funktionen auf den
aussagenlogischen Formeln rekursiv definieren.

e Dabei gehen wir von den atomaren Formeln aus und definieren dann den
Funktionswert einer zusammengesetzten Formel aus den Funktionswerten
ihrer Bestandteile.

e Zur Rechtfertigung solcher Definitionen ben&tigt man die eindeutige

Lesbarkeit aussagenlogischer Formeln, die besagt, dass sich jede Formel
eindeutig in ihre Bestandteile zerlegen lasst.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Rekursive Definitionen liber Formeln

e Ahnlich wie Funktionen auf den natiirlichen Zahlen, wie zum Beispiel die
Fakultatsfunktion oder die Fibonacci Folge, kdnnen wir Funktionen auf den
aussagenlogischen Formeln rekursiv definieren.

e Dabei gehen wir von den atomaren Formeln aus und definieren dann den
Funktionswert einer zusammengesetzten Formel aus den Funktionswerten
ihrer Bestandteile.

e Zur Rechtfertigung solcher Definitionen ben&tigt man die eindeutige
Lesbarkeit aussagenlogischer Formeln, die besagt, dass sich jede Formel
eindeutig in ihre Bestandteile zerlegen lasst.

e Wir haben auf diese Weise die Semantik definiert. Wir haben namlich fiir
jede Interpretation Z rekursiv eine Funktion [ - J* : AL — {0, 1} definiert.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Rekursive Definitionen (Forts.)

Schematisch sieht die rekursive Definition einer Funktion f : AL —» M
(fiir eine beliebige Menge M) folgendermaBen aus:

Rekursionsanfang:
o Definiere f(0) und f(1).
o Definiere f(X) fiir alle X € AS.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Rekursive Definitionen (Forts.)

Schematisch sieht die rekursive Definition einer Funktion f : AL —» M
(fiir eine beliebige Menge M) folgendermaBen aus:

Rekursionsanfang:
o Definiere f(0) und f(1).
o Definiere f(X) fiir alle X € AS.

Rekursionsschritt:
o Definiere f(—) aus f().
e Definiere f( ) aus f(») und f(2)).
e Definiere f( ) aus () und f(2)).
(

e Definiere f ) aus f() und f(2).
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiel 2.7
Betrachte die Formel ¢ = (—Ag V (As = A;))

und die Interpretation Z : AS — {0,1} mit
IZ(Ao) =1, Z(A)=1, Z(As5)=0
und Z(Y) =0 fiir alle Y € AS\ {Ap, A1, As }.

Der Wahrheitswert [¢]” ist der Wert

7 Def. 2.6
le]” =
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiel 2.7
Betrachte die Formel ¢ = (—Ag V (As = A;))

und die Interpretation Z : AS — {0,1} mit
IZ(Ao) =1, Z(A)=1, Z(As5)=0

und Z(Y) =0 fiir alle Y € AS\ {Ap, A1, As }.

Der Wahrheitswert [¢]” ist der Wert

[[QQHI Def.:2.6 {

Def. 2.6

0, falls [=Ao]% =0 und [(As — A)]* =0

1, sonst
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiel 2.7
Betrachte die Formel ¢ = (—Ag V (As = A;))

und die Interpretation Z : AS — {0,1} mit

I(A)) =1, Z(A) =1, I(As)=0
und Z(Y) =0 fiir alle Y € AS\ {Ap, A1, As }.
Der Wahrheitswert [[(p]]I ist der Wert

[ D26 0, falls [=Ao]" =0 und [(As — A)]* =0
i N 1, sonst

1, sonst

)

Def. 2.6 {0’ falls [Ao]” = 1 und ([[AS]]I =1und [A]" = 0)

Def. 2.6
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiel 2.7
Betrachte die Formel ¢ = (—Ag V (As = A;))

und die Interpretation Z : AS — {0,1} mit

I(A)) =1, Z(A) =1, I(As)=0
und Z(Y) =0 fiir alle Y € AS\ {Ap, A1, As }.
Der Wahrheitswert [[(p]]I ist der Wert

1, sonst

)

[o]f D2 {o, falls [-Aq]” = 0 und [(As — Ay)]* =0

1, sonst

)

Def. 2.6 {0’ falls [Ao]” = 1 und ([[As]]I =1und [A]" = 0)

1, sonst

)

Def. 2.6 {0, falls Z(Ag) = 1 und Z(As) = 1 und Z(A;) =0
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiel 2.7

Betrachte die Formel ¢ = (—Ag V (As = A;))
und die Interpretation Z : AS — {0,1} mit

Z(Ao) = 1,

I(A)) =1, I(As)=0

und Z(Y) =0 fiir alle Y € AS\ {Ap, A1, As }.

Der Wahrheitswert [¢]”

)

Def. 26 0,
L,
Def. 26 | 0,
L,

= 1

7 Def.26 |0,
[l 7= {1

Christoph Berkholz - HU Berlin -

Vorlesung Logik in der Informatik

ist der Wert

falls [~Ao]” = 0 und [(As — A1)]" =0

sonst

falls [Ao]” =1 und ([As]” =1 und [A;]" =0)
sonst

falls Z(Ag) = 1 und Z(As) = 1 und Z(A;) = 0
sonst

(denn gemiB obiger Wahl von Z gilt Z(As) = 0).
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Alternative Art, den Wert []” zu bestimmen

o Ersetze in ¢ jedes Aussagensymbol X durch seinen gemaB Z festgelegten
Wahrheitswert, d.h. durch den Wert Z(X), und rechne dann den Wert des
resultierenden booleschen Ausdrucks aus.
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Alternative Art, den Wert []” zu bestimmen

o Ersetze in ¢ jedes Aussagensymbol X durch seinen gemaB Z festgelegten
Wahrheitswert, d.h. durch den Wert Z(X), und rechne dann den Wert des
resultierenden booleschen Ausdrucks aus.

e Speziell fiir die Formel ¢ und die Interpretation Z aus Beispiel 2.7 ergibt die

Ersetzung der Aussagensymbole durch die gemiB 7 festgelegten
Wabhrheitswerte den booleschen Ausdruck
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o Ersetze in ¢ jedes Aussagensymbol X durch seinen gemaB Z festgelegten
Wahrheitswert, d.h. durch den Wert Z(X), und rechne dann den Wert des
resultierenden booleschen Ausdrucks aus.

e Speziell fiir die Formel ¢ und die Interpretation Z aus Beispiel 2.7 ergibt die
Ersetzung der Aussagensymbole durch die gemiB 7 festgelegten
Wabhrheitswerte den booleschen Ausdruck

(-1 v (0—=1)).
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o Ersetze in ¢ jedes Aussagensymbol X durch seinen gemaB Z festgelegten
Wahrheitswert, d.h. durch den Wert Z(X), und rechne dann den Wert des
resultierenden booleschen Ausdrucks aus.

e Speziell fiir die Formel ¢ und die Interpretation Z aus Beispiel 2.7 ergibt die
Ersetzung der Aussagensymbole durch die gemiB 7 festgelegten
Wabhrheitswerte den booleschen Ausdruck

(-1 v (0—=1)).

e Ausrechnen von —1 ergibt den Wert
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o Ersetze in ¢ jedes Aussagensymbol X durch seinen gemaB Z festgelegten
Wahrheitswert, d.h. durch den Wert Z(X), und rechne dann den Wert des
resultierenden booleschen Ausdrucks aus.

e Speziell fiir die Formel ¢ und die Interpretation Z aus Beispiel 2.7 ergibt die
Ersetzung der Aussagensymbole durch die gemiB 7 festgelegten
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o Ersetze in ¢ jedes Aussagensymbol X durch seinen gemaB Z festgelegten
Wahrheitswert, d.h. durch den Wert Z(X), und rechne dann den Wert des
resultierenden booleschen Ausdrucks aus.

e Speziell fiir die Formel ¢ und die Interpretation Z aus Beispiel 2.7 ergibt die
Ersetzung der Aussagensymbole durch die gemiB 7 festgelegten
Wabhrheitswerte den booleschen Ausdruck

(-1 v (0—=1)).

e Ausrechnen von —1 ergibt den Wert 0.
Ausrechnen von (0 — 1) ergibt den Wert
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Alternative Art, den Wert []” zu bestimmen

o Ersetze in ¢ jedes Aussagensymbol X durch seinen gemaB Z festgelegten
Wahrheitswert, d.h. durch den Wert Z(X), und rechne dann den Wert des
resultierenden booleschen Ausdrucks aus.

e Speziell fiir die Formel ¢ und die Interpretation Z aus Beispiel 2.7 ergibt die
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Alternative Art, den Wert []” zu bestimmen

o Ersetze in ¢ jedes Aussagensymbol X durch seinen gemaB Z festgelegten
Wahrheitswert, d.h. durch den Wert Z(X), und rechne dann den Wert des
resultierenden booleschen Ausdrucks aus.

e Speziell fiir die Formel ¢ und die Interpretation Z aus Beispiel 2.7 ergibt die
Ersetzung der Aussagensymbole durch die gemiB 7 festgelegten
Wabhrheitswerte den booleschen Ausdruck

(-1 v (0—=1)).

e Ausrechnen von —1 ergibt den Wert 0.
Ausrechnen von (0 — 1) ergibt den Wert 1.

e Insgesamt erhalten wir also
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Alternative Art, den Wert []” zu bestimmen

o Ersetze in ¢ jedes Aussagensymbol X durch seinen gemaB Z festgelegten
Wahrheitswert, d.h. durch den Wert Z(X), und rechne dann den Wert des
resultierenden booleschen Ausdrucks aus.

e Speziell fiir die Formel ¢ und die Interpretation Z aus Beispiel 2.7 ergibt die
Ersetzung der Aussagensymbole durch die gemiB 7 festgelegten
Wabhrheitswerte den booleschen Ausdruck

(-1 v (0—=1)).

e Ausrechnen von —1 ergibt den Wert 0.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Alternative Art, den Wert []” zu bestimmen

o Ersetze in ¢ jedes Aussagensymbol X durch seinen gemaB Z festgelegten
Wahrheitswert, d.h. durch den Wert Z(X), und rechne dann den Wert des
resultierenden booleschen Ausdrucks aus.

e Speziell fiir die Formel ¢ und die Interpretation Z aus Beispiel 2.7 ergibt die
Ersetzung der Aussagensymbole durch die gemiB 7 festgelegten
Wabhrheitswerte den booleschen Ausdruck

(-1 v (0—=1)).

e Ausrechnen von —1 ergibt den Wert 0.
Ausrechnen von (0 — 1) ergibt den Wert 1.

e Insgesamt erhalten wir also (0V 1), was sich zum Wert 1 errechnet.

Somit erhalten wir, dass [o]” =1 ist.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Die Modellbeziehung

Definition 2.8

(a) Eine Interpretation 7 erfilllt eine Formel > € AL (wir schreiben: 7 = ),
wenn []" = 1.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Die Modellbeziehung

Definition 2.8

(a) Eine Interpretation 7 erfiillt eine Formel » € AL (wir schreiben: 7 = ),
wenn []" = 1.
Wir schreiben kurz Z £ ¢ um auszudriicken, dass Z die Formel ¢

nicht erfiillt (d.h., es gilt []" = 0).

(b) Eine Interpretation Z erfiillt eine Formelmenge ® C AL (wir schreiben:
I @), wenn Z = o fiir alle ¢ € .
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Die Modellbeziehung

Definition 2.8

(a) Eine Interpretation 7 erfiillt eine Formel » € AL (wir schreiben: 7 = ),
wenn []" = 1.

Wir schreiben kurz Z £ ¢ um auszudriicken, dass Z die Formel ¢
nicht erfiillt (d.h., es gilt []" = 0).

(b) Eine Interpretation Z erfiillt eine Formelmenge ® C AL (wir schreiben:
I @), wenn Z = o fiir alle ¢ € .

(c) Ein Modell einer Formel ¢ ist eine
Interpretation Z mit Z = ¢
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Die Modellbeziehung

Definition 2.8

(a) Eine Interpretation 7 erfilllt eine Formel > € AL (wir schreiben: 7 = ),
wenn []" = 1.

Wir schreiben kurz Z £ ¢ um auszudriicken, dass Z die Formel ¢
nicht erfiillt (d.h., es gilt []" = 0).

(b) Eine Interpretation Z erfiillt eine Formelmenge ® C AL (wir schreiben:
I @), wenn Z = o fiir alle ¢ € .

(c) Ein Modell einer Formel ¢ (bzw. einer Formelmenge ®) ist eine
Interpretation Z mit Z = ¢ (bzw. Z = ®).

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 50



Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Das Koinzidenzlemma

e Offensichtlich hingt der Wert [¢]” nur von den Werten Z(X) der
Aussagensymbole X € AS ab, die auch in ¢ vorkommen.

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 51



Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Das Koinzidenzlemma

e Offensichtlich hingt der Wert [¢]” nur von den Werten Z(X) der
Aussagensymbole X € AS ab, die auch in ¢ vorkommen.

Diese Aussage ist als das Koinzidenzlemma der Aussagenlogik bekannt.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Das Koinzidenzlemma

e Offensichtlich hingt der Wert [¢]” nur von den Werten Z(X) der
Aussagensymbole X € AS ab, die auch in ¢ vorkommen.

Diese Aussage ist als das Koinzidenzlemma der Aussagenlogik bekannt.

o Um [¢]” festzulegen, reicht es also, die Werte Z(X) nur fiir diejenigen
Aussagensymbole X € AS anzugeben, die in ¢ vorkommen.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik
Vereinbarungen zu Interpretationen

e Statt der vollen Interpretation Z : AS — {0, 1} geben wir in der Regel nur
endlich viele Werte Z(X1),...,Z(X,) an und legen fest, dass Z(Y') := 0 fiir
alle Y € AS\ {X1,..., Xs}.
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Vereinbarungen zu Interpretationen

e Statt der vollen Interpretation Z : AS — {0, 1} geben wir in der Regel nur
endlich viele Werte Z(X1),...,Z(X,) an und legen fest, dass Z(Y') := 0 fiir
alle Y € AS\ {Xy,..., Xy}

e In den Beispielen legen wir eine Interpretation oft durch eine Wertetabelle
fest.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Vereinbarungen zu Interpretationen

e Statt der vollen Interpretation Z : AS — {0, 1} geben wir in der Regel nur
endlich viele Werte Z(X1),...,Z(X,) an und legen fest, dass Z(Y') := 0 fiir
alle Y € AS\ {Xy,..., Xy}

e In den Beispielen legen wir eine Interpretation oft durch eine Wertetabelle
fest. Beispielsweise beschreibt die Tabelle

X A A As
IX)|1 1 o0

die Interpretation Z mit Z(Ag) = Z(A1) =1 und Z(As) =0 und Z(Y) =0
fiir alle Y € AS\ {Ao, A1, As}.

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 52



Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Vereinbarungen zu Interpretationen

e Statt der vollen Interpretation Z : AS — {0, 1} geben wir in der Regel nur
endlich viele Werte Z(X1),...,Z(X,) an und legen fest, dass Z(Y') := 0 fiir
alle Y € AS\ {Xy,..., Xy}

e In den Beispielen legen wir eine Interpretation oft durch eine Wertetabelle
fest. Beispielsweise beschreibt die Tabelle

X A A As
IX)|1 1 o0

die Interpretation Z mit Z(Ag) = Z(A1) =1 und Z(As) =0 und Z(Y) =0
fiir alle Y € AS\ {Ao, A1, As}.

e Wir schreiben , um anzudeuten, dass in ¢ nur
Aussagensymbole aus der Menge {Xi, ..., X,} vorkommen.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Vereinbarungen zu Interpretationen

e Statt der vollen Interpretation Z : AS — {0, 1} geben wir in der Regel nur
endlich viele Werte Z(X1),...,Z(X,) an und legen fest, dass Z(Y') := 0 fiir
alle Y € AS\ {Xy,..., Xy}

e In den Beispielen legen wir eine Interpretation oft durch eine Wertetabelle

fest. Beispielsweise beschreibt die Tabelle

X A A As
IX)|1 1 o0

die Interpretation Z mit Z(Ag) = Z(A1) =1 und Z(As) =0 und Z(Y) =0
fiir alle Y € AS\ {Ao, A1, As}.

e Wir schreiben , um anzudeuten, dass in ¢ nur
Aussagensymbole aus der Menge {Xi, ..., X,} vorkommen.
Fir Wahrheitswerte by, . .., b, € {0, 1} schreiben wir dann ©[by, ..., b,]

anstatt [ 2] fiir eine (bzw. alle) Interpretationen Z mit Z(X;) = b; fiir alle
i€ln :={1,...,n}.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Vereinbarungen

e Wir schreiben als Abkiirzung fiir
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Vereinbarungen
e Wir schreiben als Abkiirzung fiir

e Statt mit Ag, A1, Ay, ... bezeichnen wir Aussagensymbole auch oft mit
AB,C,....X,Y,Z,... oder mit Varianten wie X', Y7, ...
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e Statt mit Ag, A1, Ay, ... bezeichnen wir Aussagensymbole auch oft mit
AB,C,....X,Y,Z,... oder mit Varianten wie X', Y7, ...

e Die duBeren Klammern einer Formel lassen wir manchmal weg und
schreiben z.B. an Stelle des (formal korrekten)
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Vereinbarungen
e Wir schreiben als Abkiirzung fiir

e Statt mit Ag, A1, Ay, ... bezeichnen wir Aussagensymbole auch oft mit
AB,C,....X,Y,Z,... oder mit Varianten wie X', Y7, ...

e Die duBeren Klammern einer Formel lassen wir manchmal weg und
schreiben z.B. an Stelle des (formal korrekten)

e Beziiglich Klammerung vereinbaren wir, dass = am stérksten bindet, und
dass A und V starker binden als —.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Vereinbarungen
e Wir schreiben als Abkiirzung fiir

e Statt mit Ag, A1, Ay, ... bezeichnen wir Aussagensymbole auch oft mit
AB,C,....X,Y,Z,... oder mit Varianten wie X', Y7, ...

e Die duBeren Klammern einer Formel lassen wir manchmal weg und
schreiben z.B. an Stelle des (formal korrekten)

e Beziiglich Klammerung vereinbaren wir, dass = am stérksten bindet, und
dass A und V starker binden als —.

Wir konnen also z.B. schreiben und meinen damit
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Vereinbarungen
e Wir schreiben als Abkiirzung fiir

e Statt mit Ag, A1, Ay, ... bezeichnen wir Aussagensymbole auch oft mit
AB,C,....X,Y,Z,... oder mit Varianten wie X', Y7, ...

e Die duBeren Klammern einer Formel lassen wir manchmal weg und
schreiben z.B. an Stelle des (formal korrekten)

e Beziiglich Klammerung vereinbaren wir, dass = am stérksten bindet, und
dass A und V starker binden als —.

Wir konnen also z.B. schreiben und meinen damit
(XA=Y) = (ZVX)).
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Vereinbarungen
e Wir schreiben als Abkiirzung fiir

e Statt mit Ag, A1, Ay, ... bezeichnen wir Aussagensymbole auch oft mit
AB,C,....X,Y,Z,... oder mit Varianten wie X', Y7, ...

e Die duBeren Klammern einer Formel lassen wir manchmal weg und
schreiben z.B. an Stelle des (formal korrekten)

e Beziiglich Klammerung vereinbaren wir, dass = am stérksten bindet, und
dass A und V starker binden als —.

Wir konnen also z.B. schreiben und meinen damit
(XA=Y) = (ZVX)).

Nicht schreiben kénnen wir z.B. X A Y vV Z (da wir nichts dariiber
vereinbart haben, wie fehlende Klammern hier zu setzen sind).
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik
n
e Wir schreiben /\ o bzw. (1 A .. A p,) an Stelle von
i=1

(- ((pr A2) Ap3) Ao Apn)
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e Wir schreiben bzw. an Stelle von

‘ “

und nutzen analoge Schreibweisen auch fiir ,,\/* an Stelle von ,,
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e Wir schreiben bzw. an Stelle von

‘ “

und nutzen analoge Schreibweisen auch fiir ,,\/* an Stelle von ,,

o Ist M eine endliche Menge aussagenlogischer Formeln, so schreiben wir
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

e Wir schreiben bzw. an Stelle von

‘ “

und nutzen analoge Schreibweisen auch fiir ,,\/* an Stelle von ,,

o Ist M eine endliche Menge aussagenlogischer Formeln, so schreiben wir

um die Formel (1 A--+ A p,) zu bezeichnen, wobei n = |M| die Anzahl der
Formeln in M ist und ¢1, ..., ¢, die Auflistung aller Formeln in M in
lexikographischer Reihenfolge ist.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

e Wir schreiben bzw. an Stelle von

‘ “

und nutzen analoge Schreibweisen auch fiir ,,\/* an Stelle von ,,

o Ist M eine endliche Menge aussagenlogischer Formeln, so schreiben wir

um die Formel (o1 A--- A @p) zu bezeichnen, wobei n = |M| die Anzahl der
Formeln in M ist und @1, ..., ¢, die Auflistung aller Formeln in M in
lexikographischer Reihenfolge ist. Formeln sind hierbei Worte iiber dem
Alphabet der Aussagenlogik, wobei die einzelnen Symbole dieses Alphabets
folgendermaBen aufsteigend sortiert sind:

0, 1, - A, V, =, (, ), Ao, Al, Az, A3, e
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

e Wir schreiben bzw. an Stelle von

‘ “

und nutzen analoge Schreibweisen auch fiir ,,\/* an Stelle von ,,

o Ist M eine endliche Menge aussagenlogischer Formeln, so schreiben wir

um die Formel (o1 A--- A @p) zu bezeichnen, wobei n = |M| die Anzahl der
Formeln in M ist und @1, ..., ¢, die Auflistung aller Formeln in M in
lexikographischer Reihenfolge ist. Formeln sind hierbei Worte iiber dem
Alphabet der Aussagenlogik, wobei die einzelnen Symbole dieses Alphabets
folgendermaBen aufsteigend sortiert sind:

0, 1, - A, V, =, (, ), Ao, Al, Az, A3, e

Die analoge Schreibweise nutzen wir auch fiir ,,\/" an Stelle von ,,
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

e Diese Schreibweisen werden wir manchmal auch kombinieren. Sind zum
Beispiel I = {i,...,im} und J={j1,...,ja} endliche Mengen und ist fiir
jedes i € [ und j € J eine Formel ; ; gegeben, so schreiben wir

um die Formel (3, A --- A1) zu bezeichnen, wobei fiir jedes i € [ die
Formel ¢; durch ; :== (i, V---Vi; ) definiert ist.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Wabhrheitstafeln

Fiir jede Formel (... .. X, ) kann man die Wahrheitswerte unter allen
moglichen Interpretationen in einer Wahrheitstafel darstellen. Fiir alle
(b1,-..,bp) € {0,1}" enthdlt die Tafel eine Zeile mit den Werten

b1 bn ‘ ;[bl ..... bn]
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Wahrheitstafeln

Fiir jede Formel kann man die Wahrheitswerte unter allen
moglichen Interpretationen in einer Wahrheitstafel darstellen. Fiir alle
(b1,-..,bp) € {0,1}" enthdlt die Tafel eine Zeile mit den Werten

by -+ b, | ¢lby,..., by].

Um die Wahrheitstafel fiir ¢ auszufiillen, ist es bequem, auch Spalten fiir (alle
oder einige) Subformeln von ¢ einzufiigen.
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Wahrheitstafeln

Fiir jede Formel kann man die Wahrheitswerte unter allen
moglichen Interpretationen in einer Wahrheitstafel darstellen. Fiir alle
(b1,-..,bp) € {0,1}" enthdlt die Tafel eine Zeile mit den Werten

by -+ b, | ¢lby,..., by].
Um die Wahrheitstafel fiir ¢ auszufiillen, ist es bequem, auch Spalten fiir (alle

oder einige) Subformeln von ¢ einzufiigen.

Beispiel: Wahrheitstafel fiir die Formel =
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Wahrheitstafeln

Fiir jede Formel (... .. X, ) kann man die Wahrheitswerte unter allen
moglichen Interpretationen in einer Wahrheitstafel darstellen. Fiir alle
(b1,-..,bp) € {0,1}" enthdlt die Tafel eine Zeile mit den Werten

b1 bn ‘ ;[bl ..... bn]

Um die Wahrheitstafel fiir ¢ auszufiillen, ist es bequem, auch Spalten fiir (alle
oder einige) Subformeln von ¢ einzufiigen.

Beispiel: Wahrheitstafel fiir die Formel (X, Y. 2Z) =XV Y — X N\ Z:

>
<
N
>
<
>
N

H R R R ER RO o<

H == O OOO
H O, OOOO O >

H = OOHKFEOO
HORFR,RORF,ORO
H O, OOORK KRG
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Wahrheitstafeln

Fiir jede Formel kann man die Wahrheitswerte unter allen
moglichen Interpretationen in einer Wahrheitstafel darstellen. Fiir alle
(b1,-..,bp) € {0,1}" enthdlt die Tafel eine Zeile mit den Werten

by -+ b, | ¢lby,..., by].

Um die Wahrheitstafel fiir ¢ auszufiillen, ist es bequem, auch Spalten fiir (alle
oder einige) Subformeln von ¢ einzufiigen.

Beispiel: Wahrheitstafel fiir die Formel =

=== 0 O0OO0OO
= = OOrFEFE OO

H R R R RFRROO

O, OF,ORFRO
H O, OOOOO
H O, OOORKHH

Die Reihenfolge der Zeilen ist dabei unerheblich. Wir vereinbaren allerdings, die
Zeilen stets so anzuordnen, dass die Werte by - - - b, € {0,1}", aufgefasst als

Bindrzahlen, in aufsteigender Reihenfolge aufgelistet werden.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Wahrheitstafeln fiir die Junktoren

Die Bedeutung der Junktoren kann man mittels ihrer Wahrheitstafeln
beschreiben:
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Wahrheitstafeln fiir die Junktoren

Die Bedeutung der Junktoren kann man mittels ihrer Wahrheitstafeln
beschreiben:

X Y |XY X Y |XvY X Y[X v
X | x 0 0] 0 0 0] o© 0 0] 1
01 0o 1| o0 0 1| 1 0o 1| 1
1|0 1 0| 0 1 0| 1 1 0| o0

1 1| 1 1 1| 1 1 1| 1
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Wahrheitstafeln fiir die Junktoren

Die Bedeutung der Junktoren kann man mittels ihrer Wahrheitstafeln
beschreiben:

X Y |XY X Y |XvY X Y[X v
X | x 0 0] 0 0 0] 0 0 0] 1
01 0o 1| o0 0 1| 1 0o 1| 1
1|0 1 0| 0 1 0| 1 1 0| o0

1 1| 1 1 1| 1 1 1| 1

Genauso kann man eine Wahrheitstafel fiir die Formel X<:Y, die ja eine
Abkiirzung fiir (X — Y)A (Y — X) ist, bestimmen:

X<>Y bedeutet also ,, X genau dann wenn Y".
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Ein Logikratsel

Beispiel 2.9

Auf der Insel Wafa leben zwei Stamme: Die Was, die immer die Wahrheit sagen,
und die Fas, die immer liigen. Ein Reisender besucht die Insel und trifft auf drei
Einwohner A, B, C, die ihm Folgendes erzihlen:

o A sagt:
B und C sagen genau dann die Wahrheit, wenn C die Wahrheit sagt. "

e B sagt:
.Wenn A und C die Wahrheit sagen, dann ist es nicht der Fall, dass A die
Wahrheit sagt, wenn B und C die Wahrheit sagen.

e (C sagt:
B liigt genau dann, wenn A oder B die Wahrheit sagen.’

‘

Frage: Welchen Stammen gehoren A, B und C an?
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Aussagenlogische Modellierung

Aussagensymbole:
o W), steht fiir ,, A sagt die Wahrheit."
o Wpg steht fiir , B sagt die Wahrheit."
o W¢ steht fiir , C sagt die Wahrheit."
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Aussagenlogische Modellierung

Aussagensymbole:
o W), steht fiir ,, A sagt die Wahrheit."

o Wpg steht fiir , B sagt die Wahrheit."
o W¢ steht fiir , C sagt die Wahrheit."

Aussagen der drei Inselbewohner:

[ ) (pA =
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Aussagenlogische Modellierung

Aussagensymbole:
o W), steht fiir ,, A sagt die Wahrheit."
o Wpg steht fiir , B sagt die Wahrheit."
o W¢ steht fiir , C sagt die Wahrheit."

Aussagen der drei Inselbewohner:
o wp:= (WgAWe) « We
o op:= (WanWc) — ﬂ((WB/\ We) — WA)
o oc:= -Wp & (WaV Wp)

Wir suchen nach einer Interpretation, die die Formel

b=
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Aussagenlogische Modellierung

Aussagensymbole:
o W), steht fiir ,, A sagt die Wahrheit."
o Wpg steht fiir , B sagt die Wahrheit."
o W¢ steht fiir , C sagt die Wahrheit."

Aussagen der drei Inselbewohner:
o wp:= (WgAWe) « We
o op:= (WanWc) — ﬂ((WB/\ We) — WA)
o oc:= -Wp & (WaV Wp)

Wir suchen nach einer Interpretation, die die Formel
P = (WA <—><pA) A (WB <—><p3) A (WC <—><p(;)

erfiillt.

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik Version vom 13. November 2018

Folie 59



Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Losung mittels Wahrheitstafel
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Losung mittels Wahrheitstafel

Wa We Wc | pal|lvs|wc| Wasrpa| Werpp | We e | ¥
0 0 0 1 1 0 0 0 1 0
0 0 1 0 1 0 1 0 0 0
0 1 0 1 1 0 0 1 1 0
0 1 1 1 1 0 0 1 0 0
1 0 0 1 1 1 1 0 0 0
1 0 1 0 0 1 0 1 1 0
1 1 0 1 1 0 1 1 1 1
1 1 1 1 0 0 1 0 0 0
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Kapitel 2: Aussagenlogik -

Abschnitt 2.1: Syntax und Semantik

Losung mittels Wahrheitstafel

Wa We Wc | pal|lvs|wc| Wasrpa| Werpp | We e | ¥
0 0 0 1 1 0 0 0 1 0
0 0 1 0 1 0 1 0 0 0
0 1 0 1 1 0 0 1 1 0
0 1 1 1 1 0 0 1 0 0
1 0 0 1 1 1 1 0 0 0
1 0 1 0 0 1 0 1 1 0
1 1 0 1 1 0 1 1 1 1
1 1 1 1 0 0 1 0 0 0

Die Interpretation Z mit Z(Wyx) = 1, Z(Wpg) = 1, Z(W¢) = 0 in Zeile 7 ist die
einzige, die die Formel v erfiillt.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Losung mittels Wahrheitstafel

Wa We Wc | pal|lvs|wc| Wasrpa| Werpp | We e | ¥
0 0 0 1 1 0 0 0 1 0
0 0 1 0 1 0 1 0 0 0
0 1 0 1 1 0 0 1 1 0
0 1 1 1 1 0 0 1 0 0
1 0 0 1 1 1 1 0 0 0
1 0 1 0 0 1 0 1 1 0
1 1 0 1 1 0 1 1 1 1
1 1 1 1 0 0 1 0 0 0

Die Interpretation Z mit Z(Wyx) = 1, Z(Wpg) = 1, Z(W¢) = 0 in Zeile 7 ist die
einzige, die die Formel v erfiillt.

GemaB dieser Interpretation sind die Aussagen, die durch die Symbole W, und
Wpg reprasentiert werden, wahr, wihrend die Aussage, die durch W¢
reprasentiert wird, falsch ist.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Losung mittels Wahrheitstafel

Wa W Wc | wa| s | pc | Wasroa| W g | We o oc | ¢
0 0 0 1 1 0 0 0 1 0
0 0 1 0 1 0 1 0 0 0
0 1 0 1 1 0 0 1 1 0
0 1 1 1 1 0 0 1 0 0
1 0 0 1 1 1 1 0 0 0
1 0 1 0 0 1 0 1 1 0
1 1 0 1 1 0 1 1 1 1
1 1 1 1 0 0 1 0 0 0

Die Interpretation Z mit Z(Wyx) = 1, Z(Wpg) = 1, Z(W¢) = 0 in Zeile 7 ist die
einzige, die die Formel v erfiillt.

GemaB dieser Interpretation sind die Aussagen, die durch die Symbole W, und
Wpg reprasentiert werden, wahr, wihrend die Aussage, die durch W¢
reprasentiert wird, falsch ist.

Das heiBt, die Personen A und B sagen die Wahrheit und sind somit Was, und
Person C liigt und ist daher ein Fa.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Computerlesbare Darstellung von Formeln

Wir betrachten das Alphabet ASCII aller ASCII-Symbole.

Die Menge ASjscrr aller ASCII-Reprasentationen von Aussagensymbolen besteht
aus allen nicht-leeren Worten iiber dem Alphabet ASCII, deren erstes Symbol
ein Buchstabe ist, und bei dem alle weiteren Symbole Buchstaben oder Ziffern

sind.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Computerlesbare Darstellung von Formeln

Wir betrachten das Alphabet ASCII aller ASCII-Symbole.

Die Menge ASjscrr aller ASCII-Reprasentationen von Aussagensymbolen besteht
aus allen nicht-leeren Worten iiber dem Alphabet ASCII, deren erstes Symbol
ein Buchstabe ist, und bei dem alle weiteren Symbole Buchstaben oder Ziffern
sind.

Die Menge ALscrr aller ASCII-Reprasentationen von aussagenlogischen Formeln
ist die rekursiv wie folgt definierte Teilmenge von ASCII*:
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Computerlesbare Darstellung von Formeln

Wir betrachten das Alphabet ASCII aller ASCII-Symbole.

Die Menge ASjscrr aller ASCII-Reprasentationen von Aussagensymbolen besteht
aus allen nicht-leeren Worten iiber dem Alphabet ASCII, deren erstes Symbol
ein Buchstabe ist, und bei dem alle weiteren Symbole Buchstaben oder Ziffern
sind.

Die Menge ALscrr aller ASCII-Reprasentationen von aussagenlogischen Formeln
ist die rekursiv wie folgt definierte Teilmenge von ASCII*:

Basisregeln:
e 0 € Alscrr, 1€ Alyserr
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Computerlesbare Darstellung von Formeln

Wir betrachten das Alphabet ASCII aller ASCII-Symbole.

Die Menge ASjscrr aller ASCII-Reprasentationen von Aussagensymbolen besteht
aus allen nicht-leeren Worten iiber dem Alphabet ASCII, deren erstes Symbol
ein Buchstabe ist, und bei dem alle weiteren Symbole Buchstaben oder Ziffern
sind.

Die Menge ALscrr aller ASCII-Reprasentationen von aussagenlogischen Formeln
ist die rekursiv wie folgt definierte Teilmenge von ASCII*:

Basisregeln:
e 0 € ALASCII: 1e ALASCII und w € ALASCII fur alle w € ASASCII-
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Computerlesbare Darstellung von Formeln

Wir betrachten das Alphabet ASCII aller ASCII-Symbole.

Die Menge ASjscrr aller ASCII-Reprasentationen von Aussagensymbolen besteht
aus allen nicht-leeren Worten iiber dem Alphabet ASCII, deren erstes Symbol
ein Buchstabe ist, und bei dem alle weiteren Symbole Buchstaben oder Ziffern
sind.

Die Menge ALscrr aller ASCII-Reprasentationen von aussagenlogischen Formeln
ist die rekursiv wie folgt definierte Teilmenge von ASCII*:

Basisregeln:
e 0¢€ ALASCII: 1e ALASCII und w € ALASCII fiir alle w € ASASCII-

Rekursive Regeln:
o Ist v € Alscrr, so ist auch ~¢ € Alyscrr. (Negation)
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Computerlesbare Darstellung von Formeln

Wir betrachten das Alphabet ASCII aller ASCII-Symbole.

Die Menge ASjscrr aller ASCII-Reprasentationen von Aussagensymbolen besteht
aus allen nicht-leeren Worten iiber dem Alphabet ASCII, deren erstes Symbol
ein Buchstabe ist, und bei dem alle weiteren Symbole Buchstaben oder Ziffern
sind.

Die Menge ALscrr aller ASCII-Reprasentationen von aussagenlogischen Formeln
ist die rekursiv wie folgt definierte Teilmenge von ASCII*:

Basisregeln:
e 0¢€ ALASCII: 1e ALASCII und w € ALASCII fiir alle w € ASASCII-

Rekursive Regeln:

o Ist v € Alscrr, so ist auch ~¢ € Alyscrr. (Negation)
e [st (TS AI—ASCII und w S ALASCII: so ist auch

o (@/\¢) € ALyscrr (Konjunktion)
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Computerlesbare Darstellung von Formeln

Wir betrachten das Alphabet ASCII aller ASCII-Symbole.

Die Menge ASjscrr aller ASCII-Reprasentationen von Aussagensymbolen besteht
aus allen nicht-leeren Worten iiber dem Alphabet ASCII, deren erstes Symbol
ein Buchstabe ist, und bei dem alle weiteren Symbole Buchstaben oder Ziffern
sind.

Die Menge ALscrr aller ASCII-Reprasentationen von aussagenlogischen Formeln
ist die rekursiv wie folgt definierte Teilmenge von ASCII*:
Basisregeln:

e 0 € Algerr, 1€ Alpgerr und w € Alpgerr fiir alle w € ASpserr.
Rekursive Regeln:

o Ist v € Alscrr, so ist auch ~¢ € Alyscrr. (Negation)
e [st (TS AI—ASCII und w S ALASCII: so ist auch

o (@/\¢) € ALyscrr (Konjunktion)
° ((,0 \/ ’(/J) c ALASCII (Disjunktion)
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Computerlesbare Darstellung von Formeln

Wir betrachten das Alphabet ASCII aller ASCII-Symbole.

Die Menge ASjscrr aller ASCII-Reprasentationen von Aussagensymbolen besteht
aus allen nicht-leeren Worten iiber dem Alphabet ASCII, deren erstes Symbol
ein Buchstabe ist, und bei dem alle weiteren Symbole Buchstaben oder Ziffern
sind.

Die Menge ALscrr aller ASCII-Reprasentationen von aussagenlogischen Formeln
ist die rekursiv wie folgt definierte Teilmenge von ASCII*:
Basisregeln:

e 0 € Algerr, 1€ Alpgerr und w € Alpgerr fiir alle w € ASpserr.
Rekursive Regeln:

o Ist v € Alscrr, so ist auch ~¢ € Alyscrr. (Negation)
e [st (TS AI—ASCII und w S ALASCII: so ist auch

o (@/\¢) € ALyscrr (Konjunktion)
° ((,0 \/ ’(/J) c ALASCII (Disjunktion)
e (p->1) € AlLpscrr  (Implikation)
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Computerlesbare Darstellung von Formeln

Wir betrachten das Alphabet ASCII aller ASCII-Symbole.

Die Menge ASjscrr aller ASCII-Reprasentationen von Aussagensymbolen besteht
aus allen nicht-leeren Worten iiber dem Alphabet ASCII, deren erstes Symbol
ein Buchstabe ist, und bei dem alle weiteren Symbole Buchstaben oder Ziffern
sind.

Die Menge ALscrr aller ASCII-Reprasentationen von aussagenlogischen Formeln
ist die rekursiv wie folgt definierte Teilmenge von ASCII*:
Basisregeln:
o 0 € Alyscrr, 1 € Alpserr und w € Alygerr fiir alle w € ASpgerr.
Rekursive Regeln:
o Ist v € Alscrr, so ist auch ~¢ € Alyscrr. (Negation)
o Ist ¢ € ALpgerr und ¢ € Algerr, so ist auch
e (0/\vY) € AlLyscrr (Konjunktion)
e (¢\/1) € ALpscrr  (Disjunktion)
e (p->1) € AlLpscrr  (Implikation)
o (p<=>1) € Alyscrr (Biimplikation).
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Abstrakte vs. computerlesbare Syntax

Es ist offensichtlich, wie man Formeln aus AL in ihre entsprechende
ASCII-Reprasentation iibersetzt und umgekehrt.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Abstrakte vs. computerlesbare Syntax

Es ist offensichtlich, wie man Formeln aus AL in ihre entsprechende
ASCII-Reprasentation iibersetzt und umgekehrt. Zum Beispiel ist

eine Formel in AL, deren ASCII-Reprasentation die folgende Zeichenkette aus
ALASCII ist:
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Abstrakte vs. computerlesbare Syntax

Es ist offensichtlich, wie man Formeln aus AL in ihre entsprechende
ASCII-Reprasentation iibersetzt und umgekehrt. Zum Beispiel ist

eine Formel in AL, deren ASCII-Reprasentation die folgende Zeichenkette aus
ALASCII ist:

( (A0O/\O) -> ~A13 ).
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Abstrakte vs. computerlesbare Syntax

Es ist offensichtlich, wie man Formeln aus AL in ihre entsprechende
ASCII-Reprasentation iibersetzt und umgekehrt. Zum Beispiel ist

eine Formel in AL, deren ASCII-Reprasentation die folgende Zeichenkette aus
ALASCII ist:

( (A0O/\O) -> ~A13 ).
Wir werden meistens mit der , abstrakten Syntax", d.h. mit der in Definition 2.4

festgelegten Menge AL, arbeiten. Um aber Formeln in Computer-Programme
einzugeben, konnen wir die ASCII-Reprasentation verwenden.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Demo: snippets of logic

ein Formelchecker fiir die Aussagenlogik

entwickelt von André Frochaux

Funktionalitdten u.a.:

e Syntaxcheck fiir eingegebene Formeln
e Ausgabe eines Syntaxbaums

e Ausgabe einer Wahrheitstafel

Zuganglich via

http://www.snippets-of-logic.net/index_AL.php?7lang=de
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http://www.snippets-of-logic.net/index_AL.php?lang=de

Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Zuriick zu Beispiel 2.1 (,, Geburtstagsfeier")
Das in Beispiel 2.1 aufgelistete Wissen kann durch folgende aussagenlogische
Formel reprasentiert werden:
¢ = ((BAA)Y—=—-E) A ((BANE)—=D) A
(E—=(CAD)) A (C=A) A (A= (BV))

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik Version vom 13. November 2018
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Zuriick zu Beispiel 2.1 (,, Geburtstagsfeier")

Das in Beispiel 2.1 aufgelistete Wissen kann durch folgende aussagenlogische
Formel reprasentiert werden:

¢ = ((BANA)—-E) A ((BANE)— =D) A
(E—=(CAD)) A (C=A) A (A= (BV))
Die Frage

.Wie viele (und welche) Freunde werden im besten Fall zur Party
kommen?*

kann nun durch Losen der folgenden Aufgabe beantwortet werden:
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Zuriick zu Beispiel 2.1 (,, Geburtstagsfeier")
Das in Beispiel 2.1 aufgelistete Wissen kann durch folgende aussagenlogische
Formel reprasentiert werden:
¢ = ((BAA)Y—=—-E) A ((BANE)—=D) A
(E—=(CAD)) A (C=A) A (A= (BV))

Die Frage

.Wie viele (und welche) Freunde werden im besten Fall zur Party
kommen?*

kann nun durch Losen der folgenden Aufgabe beantwortet werden:

Finde eine Interpretation Z fiir ¢, so dass gilt:
e 7= (d.h, Z ist ein Modell von ¢) und

o {Xe{AB,C,D,E} : Z(X) = 1}| ist so groB wie moglich.
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Diese Frage kdnnen wir I6sen, indem wir

(1) die Wahrheitstafel fiir ¢ ermitteln,
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Diese Frage kdnnen wir I6sen, indem wir

(1) die Wahrheitstafel fiir ¢ ermitteln,

(2) alle Zeilen raussuchen, in denen in der mit " beschrifteten Spalte der
Wert 1 steht (das liefert uns genau die Modelle von ¢) und
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Diese Frage kdnnen wir I6sen, indem wir
(1) die Wahrheitstafel fiir ¢ ermitteln,

(2) alle Zeilen raussuchen, in denen in der mit " beschrifteten Spalte der
Wert 1 steht (das liefert uns genau die Modelle von ¢) und

(3) aus diesen Zeilen all jene raussuchen, bei denen in den mit A, B, C, D, E
beschrifteten Spalten moglichst viele Einsen stehen. Jede dieser Zeilen
reprasentiert dann eine groBtmdgliche Konstellation von gleichzeitigen
Partybesuchern.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Diese Frage kdnnen wir I6sen, indem wir
(1) die Wahrheitstafel fiir ¢ ermitteln,

(2) alle Zeilen raussuchen, in denen in der mit " beschrifteten Spalte der
Wert 1 steht (das liefert uns genau die Modelle von ¢) und

(3) aus diesen Zeilen all jene raussuchen, bei denen in den mit A, B, C, D, E
beschrifteten Spalten moglichst viele Einsen stehen. Jede dieser Zeilen
reprasentiert dann eine groBtmdgliche Konstellation von gleichzeitigen
Partybesuchern.

Prinzipiell fiihrt diese Vorgehensweise zum Ziel.

Leider ist das Verfahren aber recht aufwindig, da die Wahrheitstafel, die man
dabei aufstellen muss, sehr groB wird:
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Diese Frage kdnnen wir I6sen, indem wir
(1) die Wahrheitstafel fiir ¢ ermitteln,

(2) alle Zeilen raussuchen, in denen in der mit " beschrifteten Spalte der
Wert 1 steht (das liefert uns genau die Modelle von ¢) und

(3) aus diesen Zeilen all jene raussuchen, bei denen in den mit A, B, C, D, E
beschrifteten Spalten moglichst viele Einsen stehen. Jede dieser Zeilen
reprasentiert dann eine groBtmdgliche Konstellation von gleichzeitigen
Partybesuchern.

Prinzipiell fiihrt diese Vorgehensweise zum Ziel.

Leider ist das Verfahren aber recht aufwindig, da die Wahrheitstafel, die man
dabei aufstellen muss, sehr groB wird: Sie hat 2° = 32 Zeilen.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

A B C D E| E=(CAD) | C»A | (BAE)—»-D | A= (BVC) | (BAA) = —E | ¢

o o o o 1| o | 1 | 1 1 1 1o

R OoOR
O MO
R ORO

1 1 1 1
0 1 1 1
0 1 1 1
0 1 1 1
0 1 1 1

coocoo

Modelle fiir ¢ werden hier durch grau unterlegte Zeilen reprasentiert.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

A B C D E| E=(CAD) | CoA | (BAE)»—-D | A= (BVC) | (BAA = —E | ¢

o 0o o o 1| o | 1 | 1 | 1 1 ]y

mrROoOR
HOMOR
H o RO

1 1 1 1
0 1 1 1
0 1 1 1
0 1 1 1
0 1 1 1

coocoo

Modelle fiir ¢ werden hier durch grau unterlegte Zeilen reprasentiert.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik
In der Wahrheitstafel sieht man:

o Es gibt kein Modell fiir ¢, bei dem in den mit A bis E beschrifteten Spalten
insgesamt 5 Einsen stehen.
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In der Wahrheitstafel sieht man:

o Es gibt kein Modell fiir ¢, bei dem in den mit A bis E beschrifteten Spalten
insgesamt 5 Einsen stehen.

o Es gibt genau Modelle fiir , bei denen in den mit A bis E
beschrifteten Spalten insgesamt 4 Einsen stehen, niamlich die beiden
Interpretationen Z; und Zp mit

Ti(A)=T1(C)=T1(D)=Z1(E) =1 und Z4(B) =0
und
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik
In der Wahrheitstafel sieht man:

o Es gibt kein Modell fiir ¢, bei dem in den mit A bis E beschrifteten Spalten
insgesamt 5 Einsen stehen.

o Es gibt genau Modelle fiir , bei denen in den mit A bis E
beschrifteten Spalten insgesamt 4 Einsen stehen, niamlich die beiden
Interpretationen Z; und Zp mit

Ti(A)=T1(C)=T1(D)=Z1(E) =1 und Z4(B) =0
und

Die Antwort auf die Frage , Wie viele (und welche) Freunde werden bestenfalls
zur Party kommen?* lautet also:
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik
In der Wahrheitstafel sieht man:

o Es gibt kein Modell fiir ¢, bei dem in den mit A bis E beschrifteten Spalten
insgesamt 5 Einsen stehen.

o Es gibt genau Modelle fiir , bei denen in den mit A bis E
beschrifteten Spalten insgesamt 4 Einsen stehen, niamlich die beiden
Interpretationen Z; und Zp mit

Ti(A)=T1(C)=T1(D)=Z1(E) =1 und Z4(B) =0
und

Die Antwort auf die Frage , Wie viele (und welche) Freunde werden bestenfalls
zur Party kommen?* lautet also:

Bestenfalls werden 4 der 5 Freunde kommen, und dafiir gibt es zwei
Moglichkeiten, namlich

(1) dass alle auBer Bernd kommen, und

(2) dass alle auBer Eva kommen.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Erfiillbarkeit, Allgemeingiiltigkeit und die
Folgerungsbeziehung



Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Erfillbarkeit

Definition 2.10
Eine Formel ¢ € AL heiBt erfiillbar, wenn es eine Interpretation gibt, die ¢

erfillt.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Erfiillbarkeit

Definition 2.10

Eine Formel ¢ € AL heiBt erfiillbar, wenn es eine Interpretation gibt, die ¢
erfiillt.

Eine Formelmenge ® heiBt erfiillbar, wenn es eine Interpretation Z gibt, die ¢
erfiillt (d.h. es gilt Z |= o fiir jedes ¢ € ®).
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Erfillbarkeit

Definition 2.10

Eine Formel ¢ € AL heiBt erfiillbar, wenn es eine Interpretation gibt, die ¢
erfiillt.

Eine Formelmenge ® heiBt erfiillbar, wenn es eine Interpretation Z gibt, die ¢
erfiillt (d.h. es gilt Z |= o fiir jedes ¢ € ®).

Eine Formel oder Formelmenge, die nicht erfiillbar ist, nennen wir unerfiillbar.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Erfillbarkeit

Definition 2.10
Eine Formel ¢ € AL heiBt erfiillbar, wenn es eine Interpretation gibt, die ¢

erfillt.

Eine Formelmenge ® heiBt erfiillbar, wenn es eine Interpretation Z gibt, die ¢
erfiillt (d.h. es gilt Z |= o fiir jedes ¢ € ®).

Eine Formel oder Formelmenge, die nicht erfiillbar ist, nennen wir unerfiillbar.

Beobachtung 2.11

(a) Eine aussagenlogische Formel ist genau dann erfiillbar, wenn in der letzten
Spalte ihrer Wahrheitstafel mindestens eine 1 steht.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Erfillbarkeit

Definition 2.10
Eine Formel ¢ € AL heiBt erfiillbar, wenn es eine Interpretation gibt, die ¢
erfiillt.

Eine Formelmenge ® heiBt erfiillbar, wenn es eine Interpretation Z gibt, die ¢
erfiillt (d.h. es gilt Z |= o fiir jedes ¢ € ®).

Eine Formel oder Formelmenge, die nicht erfiillbar ist, nennen wir unerfiillbar.

Beobachtung 2.11

(a) Eine aussagenlogische Formel ist genau dann erfiillbar, wenn in der letzten
Spalte ihrer Wahrheitstafel mindestens eine 1 steht.

(b) Eine endliche Formelmenge ® = {1, ..., p,} ist genau dann erfiillbar,
wenn die Formel \_, ¢; erfiillbar ist.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Erfillbarkeit

Definition 2.10
Eine Formel ¢ € AL heiBt erfiillbar, wenn es eine Interpretation gibt, die ¢
erfiillt.

Eine Formelmenge ® heiBt erfiillbar, wenn es eine Interpretation Z gibt, die ¢
erfiillt (d.h. es gilt Z |= o fiir jedes ¢ € ®).

Eine Formel oder Formelmenge, die nicht erfiillbar ist, nennen wir unerfiillbar.

Beobachtung 2.11

(a) Eine aussagenlogische Formel ist genau dann erfiillbar, wenn in der letzten
Spalte ihrer Wahrheitstafel mindestens eine 1 steht.

(b) Eine endliche Formelmenge ® = {1, ..., p,} ist genau dann erfiillbar,
wenn die Formel \_, ¢; erfiillbar ist.
Beispiele:

e Die Formel X ist
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Erfillbarkeit

Definition 2.10
Eine Formel ¢ € AL heiBt erfiillbar, wenn es eine Interpretation gibt, die ¢
erfiillt.

Eine Formelmenge ® heiBt erfiillbar, wenn es eine Interpretation Z gibt, die ¢
erfiillt (d.h. es gilt Z |= o fiir jedes ¢ € ®).

Eine Formel oder Formelmenge, die nicht erfiillbar ist, nennen wir unerfiillbar.

Beobachtung 2.11

(a) Eine aussagenlogische Formel ist genau dann erfiillbar, wenn in der letzten
Spalte ihrer Wahrheitstafel mindestens eine 1 steht.

(b) Eine endliche Formelmenge ® = {1, ..., p,} ist genau dann erfiillbar,

wenn die Formel \_, ¢; erfiillbar ist.

Beispiele:
e Die Formel X ist erfiillbar.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Erfillbarkeit

Definition 2.10
Eine Formel ¢ € AL heiBt erfiillbar, wenn es eine Interpretation gibt, die ¢
erfiillt.

Eine Formelmenge ® heiBt erfiillbar, wenn es eine Interpretation Z gibt, die ¢
erfiillt (d.h. es gilt Z |= o fiir jedes ¢ € ®).

Eine Formel oder Formelmenge, die nicht erfiillbar ist, nennen wir unerfiillbar.

Beobachtung 2.11

(a) Eine aussagenlogische Formel ist genau dann erfiillbar, wenn in der letzten
Spalte ihrer Wahrheitstafel mindestens eine 1 steht.

(b) Eine endliche Formelmenge ® = {1, ..., p,} ist genau dann erfiillbar,
wenn die Formel \_, ¢; erfiillbar ist.

Beispiele:
e Die Formel X ist erfiillbar.
e Die Formel (X A—X) st
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Erfillbarkeit

Definition 2.10
Eine Formel ¢ € AL heiBt erfiillbar, wenn es eine Interpretation gibt, die ¢
erfiillt.

Eine Formelmenge ® heiBt erfiillbar, wenn es eine Interpretation Z gibt, die ¢
erfiillt (d.h. es gilt Z |= o fiir jedes ¢ € ®).

Eine Formel oder Formelmenge, die nicht erfiillbar ist, nennen wir unerfiillbar.

Beobachtung 2.11

(a) Eine aussagenlogische Formel ist genau dann erfiillbar, wenn in der letzten
Spalte ihrer Wahrheitstafel mindestens eine 1 steht.

(b) Eine endliche Formelmenge ® = {1, ..., p,} ist genau dann erfiillbar,
wenn die Formel \_, ¢; erfiillbar ist.

Beispiele:
e Die Formel X ist erfiillbar.
e Die Formel (X A —X) ist unerfiillbar.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Allgemeingiiltigkeit

Definition 2.12
Eine Formel ¢ € AL ist allgemeingiiltig, wenn jede Interpretation Z die Formel ¢

erfiillt.
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Allgemeingiiltigkeit

Definition 2.12
Eine Formel ¢ € AL ist allgemeingiiltig, wenn jede Interpretation Z die Formel ¢

erfiillt.

Bemerkung
Allgemeingiiltige Formeln nennt man auch Tautologien.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Allgemeingiiltigkeit

Definition 2.12

Eine Formel ¢ € AL ist allgemeingiiltig, wenn jede Interpretation Z die Formel ¢
erfiillt.

Bemerkung

Allgemeingiiltige Formeln nennt man auch Tautologien.
Man schreibt auch = ¢ um auszudriicken, dass ¢ allgemeingiiltig ist.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Allgemeingiiltigkeit

Definition 2.12
Eine Formel ¢ € AL ist allgemeingiiltig, wenn jede Interpretation Z die Formel ¢
erfiillt.

Bemerkung

Allgemeingiiltige Formeln nennt man auch Tautologien.
Man schreibt auch = ¢ um auszudriicken, dass ¢ allgemeingiiltig ist.

Beobachtung 2.13

Eine aussagenlogische Formel ist genau dann allgemeingiiltig, wenn in der
letzten Spalte ihrer Wahrheitstafel nur len stehen.
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Allgemeingiiltigkeit

Definition 2.12
Eine Formel ¢ € AL ist allgemeingiiltig, wenn jede Interpretation Z die Formel ¢
erfiillt.

Bemerkung

Allgemeingiiltige Formeln nennt man auch Tautologien.
Man schreibt auch = ¢ um auszudriicken, dass ¢ allgemeingiiltig ist.

Beobachtung 2.13
Eine aussagenlogische Formel ist genau dann allgemeingiiltig, wenn in der

letzten Spalte ihrer Wahrheitstafel nur len stehen.

Beispiel: Die Formel (X V —X) ist allgemeingiiltig.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiel 2.14
Die Formel (XV Y)A (=X VY) ist
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiel 2.14
Die Formel (XV Y)A (=X VY) ist

o erfiillbar, da z.B. die Interpretation Z mit Z(X) = 0 und Z(Y) = 1 die
Formel erfiillt.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiel 2.14
Die Formel (XV Y)A (=X VY) ist

o erfiillbar, da z.B. die Interpretation Z mit Z(X) = 0 und Z(Y) = 1 die
Formel erfiillt.

e nicht allgemeingiiltig, da z.B. die Interpretation Z' mit Z'(X) = 0 und
Z'(Y) = 0 die Formel nicht erfiillt.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Die Folgerungsbeziehung

Definition 2.15
Eine Formel ¢ € AL folgt aus einer Formelmenge ® C AL (wir schreiben:

® = 1), wenn fiir jede Interpretation Z gilt: Wenn Z die Formelmenge ¢ erfiillt,
dann erfiillt Z auch die Formel .
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Die Folgerungsbeziehung

Definition 2.15

Eine Formel ¢ € AL folgt aus einer Formelmenge ® C AL (wir schreiben:

® = 1), wenn fiir jede Interpretation Z gilt: Wenn Z die Formelmenge ¢ erfiillt,
dann erfiillt Z auch die Formel .

Notation
Fiir zwei Formeln ¢, € AL schreiben wir kurz ¢ |= 9 an Stelle von {p} = ¢
und sagen, dass die Formel v aus der Formel ¢ folgt.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiel 2.16
Sei v :=((XVY)A(=XVY)) und ¢:=(YV(=XA=Y)).
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiel 2.16
Sei p:=((XVY)A(=XVY)) und ¢:=(YV(=XA=Y)).

| (XVvY) [ (=XVY) |

— = O ol X
= o = ol
=== o<
= O~ OfS

(&
1
1
0
1

[ = S
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiel 2.16
Sei p:=((XVY)A(=XVY)) und ¢ :=(YV(=XAY)).

X Y [(XVY) [(XvY) | g | @
0 O 0 1 0|1
0 1 1 1 1)1
1 0 1 0 0|0
1 1 1 1 1)1

In jeder Zeile der Wahrheitstafel, in der in der mit ,,¢" beschrifteten Spalte eine
1 steht, steht auch in der mit ;7" beschrifteten Spalte eine 1. Somit gilt

o EYP.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiel 2.16
Sei p:=((XVY)A(=XVY)) und ¢ :=(YV(=XAY)).

X Y [(XVY) [(XvY) | g | @
0 O 0 1 0|1
0 1 1 1 1)1
1 0 1 0 0|0
1 1 1 1 1)1

In jeder Zeile der Wahrheitstafel, in der in der mit ,,¢" beschrifteten Spalte eine
1 steht, steht auch in der mit ;7" beschrifteten Spalte eine 1. Somit gilt

o EYP.

Andererseits steht in Zeile 1 in der mit , 9" beschrifteten Spalte eine 1 und in
der mit ,," beschrifteten Spalte eine 0. Fiir die entsprechende Interpretation 7
(mit Z(X) = 0 und Z(Y) = 0) gilt also [¢]" = 1 und [¢]” = 0. Daher gilt
(o
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiel 2.16
Sei p:=((XVY)A(=XVY)) und ¢ :=(YV(=XAY)).
Dann gilt ¢ [= 1, aber es gilt nicht ¢ = ¢ (kurz: ¥ £ ), denn:

X Y| (XVY) [(-XVY) || v
0 0 0 1 01
0 1 1 1 1|1
1 0 1 0 00
1 1 1 1 1|1

In jeder Zeile der Wahrheitstafel, in der in der mit ,,¢" beschrifteten Spalte eine
1 steht, steht auch in der mit ;3" beschrifteten Spalte eine 1. Somit gilt

o EYP.

Andererseits steht in Zeile 1 in der mit , 9" beschrifteten Spalte eine 1 und in
der mit ,," beschrifteten Spalte eine 0. Fiir die entsprechende Interpretation 7
(mit Z(X) = 0 und Z(Y) = 0) gilt also [¢]" = 1 und [¢]” = 0. Daher gilt
(o
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiel 2.17
Fiir alle Formeln ¢, € AL gilt:

{o =0} E o
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiel 2.17
Fiir alle Formeln ¢, € AL gilt:

{o =0} E o

Dies folgt unmittelbar aus der Definition der Semantik:
Sei Z eine Interpretation mit Z = {¢, ¢ — ¢ }. Dann gilt:
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiel 2.17
Fiir alle Formeln ¢, € AL gilt:

{o =0} E o

Dies folgt unmittelbar aus der Definition der Semantik:
Sei Z eine Interpretation mit Z = {¢, ¢ — ¢ }. Dann gilt:

(1) [¢l" =1 und
2) [e = ¥]F =1, d.h. es gilt [¢]” = 0 oder [¢]" = 1.
Da [[cp]]I =1 gemiB (1) gilt, folgt gemiB (2), dass [[1/)]}1 =1
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Beispiel 2.17
Fiir alle Formeln ¢, € AL gilt:

{o =0} E o

Dies folgt unmittelbar aus der Definition der Semantik:

Sei Z eine Interpretation mit Z = {¢, ¢ — ¢ }. Dann gilt:
(1) [[ga]]z =1 und

) [e = ¢]* =1, dh. esgilt [¢]" =0 oder [y]* = 1.

Da [¢]* = 1 gem3B (1) gilt, folgt gem3B (2), dass [¢]* = 1.

Bemerkung

Man kann die Folgerungsbeziehung {¢, ¢ — ¥} = als eine formale
Schlussregel auffassen (dhnlich den Syllogismen in Kapitel 1):

Wenn ¢ und ¢ — ¥ gelten, so muss auch v gelten.

Diese Regel, die unter dem Namen Modus Ponens bekannt ist, ist von
grundlegender Bedeutung in der Logik.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Pingo-Ubung

http://pingo.upb.de/160267
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Zusammenhange

Lemma 2.18 (Allgemeingiiltigkeit, Unerfiillbarkeit und Folgerung)
Fiir jede Formel p € AL gilt:

(a) o ist allgemeingiiltig <= - ist unerfiillbar <~ 1| .
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Zusammenhange

Lemma 2.18 (Allgemeingiiltigkeit, Unerfiillbarkeit und Folgerung)
Fiir jede Formel p € AL gilt:
(a) o ist allgemeingiiltig <= - ist unerfiillbar <~ 1| .

(b) @ ist unerfiillbar <— ¢ = 0.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Lemma 2.19 (Erfiillbarkeit und die Folgerungsbeziehung)

Fiir alle Formelmengen ® C AL und fiir alle Formeln i) € AL gilt:

b=y <«  dU{wp} ist unerfiillbar.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Lemma 2.20 (Allgemeingiiltigkeit und die Folgerungsbeziehung)
(a) Fiir jede Formel ¢ € AL gilt:
@ ist allgemeingiiltig <=  folgt aus der leeren Menge,

kurz:
Fe < 0OFe
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Lemma 2.20 (Allgemeingiiltigkeit und die Folgerungsbeziehung)
(a) Fiir jede Formel ¢ € AL gilt:
@ ist allgemeingiiltig <=  folgt aus der leeren Menge,

kurz:
Fe < 0OFe

(b) Fiir jede Formel 1) € AL und jede endliche Formelmenge
o= {()017 ceey (pn} - AL gl/t

bEY < (1A ANpp) = st allgemeingiiltig.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Bemerkung 2.21

Aus den beiden vorigen Lemmas erhdlt man leicht, dass fiir alle Formeln
p, Y € AL gilt:
v EY <= (¢ = ) ist allgemeingiiltig <= (¢ A =) ist unerfiillbar.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Bemerkung 2.21

Aus den beiden vorigen Lemmas erhdlt man leicht, dass fiir alle Formeln
p, Y € AL gilt:

v EY <= (¢ = ) ist allgemeingiiltig <= (¢ A =) ist unerfiillbar.

Beweis.
Es sei ¢ := {¢}. GemiB Lemma 2.20 gilt:

by < (p—1) ist allgemeingiiltig.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Bemerkung 2.21

Aus den beiden vorigen Lemmas erhdlt man leicht, dass fiir alle Formeln
p, Y € AL gilt:

v EY <= (¢ = ) ist allgemeingiiltig <= (¢ A =) ist unerfiillbar.

Beweis.
Es sei ¢ := {¢}. GemiB Lemma 2.20 gilt:

by < (p—1) ist allgemeingiiltig.

Somit gilt: pEY <= (p — ) ist allgemeingiiltig.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Bemerkung 2.21
Aus den beiden vorigen Lemmas erhdlt man leicht, dass fiir alle Formeln
p, Y € AL gilt:

v EY <= (¢ = ) ist allgemeingiiltig <= (¢ A =) ist unerfiillbar.

Beweis.
Es sei ¢ := {¢}. GemiB Lemma 2.20 gilt:

by < (p—1) ist allgemeingiiltig.

Somit gilt: pEY <= (p — ) ist allgemeingiiltig.
AuBerdem gilt gem3B Lemma 2.19:

b=y < PU{-w} ist unerfiillbar.
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Kapitel 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Bemerkung 2.21

Aus den beiden vorigen Lemmas erhdlt man leicht, dass fiir alle Formeln

p, Y € AL gilt:

v EY <= (¢ = ) ist allgemeingiiltig <= (¢ A =) ist unerfiillbar.

Beweis.
Es sei ¢ := {¢}. GemiB Lemma 2.20 gilt:

by < (p—1) ist allgemeingiiltig.

Somit gilt: pEY <= (p — ) ist allgemeingiiltig.
AuBerdem gilt gem3B Lemma 2.19:

b=y < PU{-w} ist unerfiillbar.

Somit gilt: @ E®¥ <= (@A) ist unerfiillbar.
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Beispiel 1: Sudoku



Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Sudoku
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Sudoku

=

w

[
wimlolw|lk|o|l=|o|wx
o[k | m|aloe|~|w
g~y = jw ool (0| &
pmlh(loa]lo|lo|lwv|w |k |o
@R | w9 e E(w |~
o |o(u]ls|lw|r |0 a|oe
| ® (oo |~|&]A|w|wo
~N | | ol |lw 0o e
w gk l|lo| R |w]|~ o0
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Aussagenlogisches Modell

Koordinaten der Felder:
Feld (i,/) ist das Feld in Zeile i und Spalte ;.
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Aussagenlogisches Modell

Koordinaten der Felder:
Feld (i,/) ist das Feld in Zeile i und Spalte ;.

Aussagensymbole:
Aussagensymbol P, fiir i,j, k € [9], steht fiir die Aussage

»Das Feld mit den Koordinaten (i, ) enthilt die Zahl k."
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Aussagenlogisches Modell

Koordinaten der Felder:
Feld (i,/) ist das Feld in Zeile i und Spalte ;.

Aussagensymbole:
Aussagensymbol P, fiir i,j, k € [9], steht fiir die Aussage

»Das Feld mit den Koordinaten (i, ) enthilt die Zahl k."

Interpretationen beschreiben also Beschriftungen des 9x9-Gitters.
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Aussagenlogisches Modell

Koordinaten der Felder:
Feld (i,/) ist das Feld in Zeile i und Spalte ;.

Aussagensymbole:
Aussagensymbol P, fiir i,j, k € [9], steht fiir die Aussage

»Das Feld mit den Koordinaten (i, ) enthilt die Zahl k."
Interpretationen beschreiben also Beschriftungen des 9x9-Gitters.
Ziel:

Fiir jede Anfangsbeschriftung A eine Formelmenge ® 4, so dass fiir alle
Interpretationen Z gilt:

ITE®4 <= T beschreibt eine korrekte Losung.
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Wir beschreiben zunichst eine Formelmenge ® = {1,...,¢s}, die die
Grundregeln des Spiels beschreibt.
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Wir beschreiben zunichst eine Formelmenge ® = {1,...,¢s}, die die
Grundregeln des Spiels beschreibt.

Beschriftungen:
“Auf jedem Feld steht mindestens eine Zahl":
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Wir beschreiben zunichst eine Formelmenge ® = {1,...,¢s}, die die
Grundregeln des Spiels beschreibt.

Beschriftungen:
“Auf jedem Feld steht mindestens eine Zahl":

9 9
Y1 = /\ \/'Di,j,k~

ij=1 k=1
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Wir beschreiben zunichst eine Formelmenge ® = {1,...,¢s}, die die
Grundregeln des Spiels beschreibt.

Beschriftungen:
“Auf jedem Feld steht mindestens eine Zahl":

9 9
Y1 = /\ \/'Di,j,k~

ij=1 k=1

“Auf jedem Feld steht héchstens eine Zahl":
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Wir beschreiben zunichst eine Formelmenge ® = {1,...,¢s}, die die
Grundregeln des Spiels beschreibt.

Beschriftungen:
“Auf jedem Feld steht mindestens eine Zahl":

9 9
Y1 = /\ \/'Di,j,k~

ij=1 k=1

“Auf jedem Feld steht héchstens eine Zahl":

9 9
Y2 = /\ /\ ﬂ(P,',Lk/\P,',j,g).

ij=1 k=1
k0
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Zeilen:
,Jede Zahl kommt in jeder Zeile
vor':
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Zeilen:

~Jede Zahl kommt in jeder Zeile

vor

©3

Christoph Berkholz -

= AA Ve

i=1 k=1 j=1

HU Berlin - Vorlesung Logik in der Informatik

Version vom 13. November 2018
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Zeilen:

~Jede Zahl kommt in jeder Zeile

vor

©3

Christoph Berkholz -

= AA Ve

i=1 k=1 j=1

HU Berlin - Vorlesung Logik in der Informatik

Spalten:
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Zeilen:
»Jede Zahl kommt in jeder Zeile

vor .

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik

Spalten:

»Jede Zahl kommt in jeder Spalte
vor':

9 9
g = /\ /\ Pij.-

j=1 k=1 i=1
Version vom 13. November 2018 Folie 82



Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Zeilen:
»Jede Zahl kommt in jeder Zeile

vor .

Blocke:

»Jede Zahl kommt in jedem Block vor*:

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik

Spalten:

»Jede Zahl kommt in jeder Spalte
vor':

w= A A

j=1 k=1 i

P,'J,k.

9
=1
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Zeilen:
»Jede Zahl kommt in jeder Zeile

vor .

Blocke:

»Jede Zahl kommt in jedem Block vor*:

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik

Spalten:

»Jede Zahl kommt in jeder Spalte
vor':

w= A A

j=1 k=1 i

P,'J,k.

9
=1

Paitir 3j4j k-
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Anfangsbeschriftung:
Sei A die Anfangsbeschriftung. Wir setzen

(DA =
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Anfangsbeschriftung:
Sei A die Anfangsbeschriftung. Wir setzen

®s = & U {Pijr : Abeschriftet Feld (/) mit der Zahl k }.
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Anfangsbeschriftung:
Sei A die Anfangsbeschriftung. Wir setzen

®s = & U {Pijr : Abeschriftet Feld (/) mit der Zahl k }.

Automatische Losung von Sudokus:
Um ein Sudoku mit Anfangsbeschriftung A zu I6sen, kdnnen wir nun einfach
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Anfangsbeschriftung:
Sei A die Anfangsbeschriftung. Wir setzen

®s = & U {Pijr : Abeschriftet Feld (/) mit der Zahl k }.

Automatische Losung von Sudokus:

Um ein Sudoku mit Anfangsbeschriftung A zu 16sen, kénnen wir nun einfach die
Formel ¢4 := /\we% @ bilden und die Wahrheitstafel zu dieser Formel
aufstellen.
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Anfangsbeschriftung:
Sei A die Anfangsbeschriftung. Wir setzen

®s = & U {Pijr : Abeschriftet Feld (/) mit der Zahl k }.

Automatische Losung von Sudokus:

Um ein Sudoku mit Anfangsbeschriftung A zu 16sen, kénnen wir nun einfach die
Formel ¢4 := /\wG‘DA @ bilden und die Wahrheitstafel zu dieser Formel
aufstellen. Falls die Wahrheitstafel zeigt, dass 14 kein Modell besitzt, so ist das
Sudoku nicht |6sbar.
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Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Anfangsbeschriftung:
Sei A die Anfangsbeschriftung. Wir setzen

®s = & U {Pijr : Abeschriftet Feld (/) mit der Zahl k }.

Automatische Losung von Sudokus:

Um ein Sudoku mit Anfangsbeschriftung A zu 16sen, kénnen wir nun einfach die
Formel ¢4 := /\wG‘DA  bilden und die Wahrheitstafel zu dieser Formel
aufstellen. Falls die Wahrheitstafel zeigt, dass 14 kein Modell besitzt, so ist das
Sudoku nicht I8sbar. Andernfalls kdnnen wir ein beliebiges Modell Z von 4
hernehmen und daran die Lésung des Sudokus ablesen:
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Anfangsbeschriftung:
Sei A die Anfangsbeschriftung. Wir setzen

®s = & U {Pijr : Abeschriftet Feld (/) mit der Zahl k }.

Automatische Losung von Sudokus:

Um ein Sudoku mit Anfangsbeschriftung A zu 16sen, kénnen wir nun einfach die
Formel ¢4 := /\wG‘DA  bilden und die Wahrheitstafel zu dieser Formel
aufstellen. Falls die Wahrheitstafel zeigt, dass 14 kein Modell besitzt, so ist das
Sudoku nicht I8sbar. Andernfalls kdnnen wir ein beliebiges Modell Z von 4
hernehmen und daran die Lésung des Sudokus ablesen: Fiir jedes Feld (i, ) gibt
es gemaB unserer Konstruktion der Formel 14 genau eine Zahl k € [9], so dass
Z(P;jk) =1 ist. Diese Zahl k koénnen wir in Feld (i,) eintragen und erhalten
damit eine Losung des Sudokus.
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Beispiel 2: Automatische Hardwareverifikation



Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Digitale Schaltkreise

e Digitale Signale werden beschrieben durch 0 (,aus") und 1 (,ein").
e Schaltelemente berechnen ein oder mehrere Ausgangssignale aus einem
oder mehreren Eingangssignalen.

Beispiel:
A] AZ
E B
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Digitale Schaltkreise

e Digitale Signale werden beschrieben durch 0 (,aus") und 1 (,ein").

e Schaltelemente berechnen ein oder mehrere Ausgangssignale aus einem
oder mehreren Eingangssignalen. Das Ein-/Ausgabeverhalten eines
Schaltelements l3sst sich durch Wahrheitstafeln beschreiben.

Beispiel:
P A] A2 El E2 ‘ Al A2
0 0 1 0
0 1 1 0
1 0 1 0
1 1 0 1
E B
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Digitale Schaltkreise

e Digitale Signale werden beschrieben durch 0 (,aus") und 1 (,ein").

e Schaltelemente berechnen ein oder mehrere Ausgangssignale aus einem
oder mehreren Eingangssignalen. Das Ein-/Ausgabeverhalten eines
Schaltelements l3sst sich durch Wahrheitstafeln beschreiben.

Beispiel:
P A] A2 El E2 ‘ Al A2
0 0 1 0
0 1 1 0
1 0 1 0
1 1 0 1
E B

e Schaltkreise sind Kombinationen solcher Schaltelemente. Beispiel:
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Digitale Schaltkreise

e Digitale Signale werden beschrieben durch 0 (,aus") und 1 (,ein").

e Schaltelemente berechnen ein oder mehrere Ausgangssignale aus einem
oder mehreren Eingangssignalen. Das Ein-/Ausgabeverhalten eines
Schaltelements l3sst sich durch Wahrheitstafeln beschreiben.

Beispiel:
P A] A2 El E2 ‘ Al A2
0 0 1 0
0 1 1 0
1 0 1 0
1 1 0 1
E B

e Schaltkreise sind Kombinationen solcher Schaltelemente. Beispiel:
AjAy Az Ay

E E
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Digitale Schaltkreise

e Digitale Signale werden beschrieben durch 0 (,aus") und 1 (,ein").

e Schaltelemente berechnen ein oder mehrere Ausgangssignale aus einem
oder mehreren Eingangssignalen. Das Ein-/Ausgabeverhalten eines

Schaltelements lasst sich durch Wahrheitstafeln beschreiben.

Beispiel:
A] A2
E B

e Schaltkreise sind Kombinationen solcher Schaltelemente. Beispiel:

AjAz Az Ay

E;
0
0
1
1

— o~ o|m
Or—ln—tn—-}
~ o oo|l>

E>

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik

EL E|A A A A
0 0|1 0 0 0
o0 1/0 1 0 0
1 0|1 o0 1 o0
1 1]l0 1 o0 1

Version vom 13. November 2018
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Formalisierung in der Aussagenlogik

Schaltelement:
e Fiir jeden Ein- und Ausgang ein Aussagensymbol.

o Fiir jeden Ausgang eine Formel, die den Wert der Ausgangs in
Abhéangigkeit von den Eingdngen beschreibt.
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Formalisierung in der Aussagenlogik

Schaltelement:
e Fiir jeden Ein- und Ausgang ein Aussagensymbol.

o Fiir jeden Ausgang eine Formel, die den Wert der Ausgangs in
Abhéangigkeit von den Eingdngen beschreibt.

Beispiel:
A A E BE|A A Aussagensymbole:
0 0|1 o0 P1, Pa, @1, @
0 1 1 0 i
S 1 ol1 o Formeln:
1 1|0 1
E, B
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Formalisierung in der Aussagenlogik

Schaltelement:
e Fiir jeden Ein- und Ausgang ein Aussagensymbol.

o Fiir jeden Ausgang eine Formel, die den Wert der Ausgangs in
Abhéangigkeit von den Eingdngen beschreibt.

Beispiel:
A A E BE|A A Aussagensymbole:
0 0|1 o0 P1, Pa, @1, @
S (1) [1) } 8 Formeln:
1 10 1 Q1 & ~(PLAP2)
E, B
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Formalisierung in der Aussagenlogik

Schaltelement:
e Fiir jeden Ein- und Ausgang ein Aussagensymbol.

o Fiir jeden Ausgang eine Formel, die den Wert der Ausgangs in
Abhéangigkeit von den Eingdngen beschreibt.

Beispiel:
A A E BE|A A Aussagensymbole:
0 0|1 o0 P1, Pa, @1, @
S (1) [1) } 8 Formeln:
1 10 1 Q1 & ~(PLAP2)
E B @Q < (Pl A\ P2)
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Schaltkreis:

e Fiir jeden Ein- und Ausgang ein Aussagensymbol,
sowie fiir jedes Schaltelement ein Sortiment von Aussagensymbolen.

e Formeln fiir die Schaltelemente und Formeln fiir die , Verdrahtung”.
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Verifikation

Ziel:

Nachweis, dass der Schaltkreis eine gewisse Korrektheitsbedingung erfiillt.
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Verifikation

Ziel:

Nachweis, dass der Schaltkreis eine gewisse Korrektheitsbedingung erfiillt.

Methode:
1. Beschreibe den Schaltkreis durch eine Menge ® von Formeln.
2. Formuliere die Korrektheitsbedingung als Formel ).

3. Weise nach, dass ¢ aus ¢ folgt
(bzw., dass ® U {1} unerfiillbar ist).
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Verifikation

Ziel:

Nachweis, dass der Schaltkreis eine gewisse Korrektheitsbedingung erfiillt.

Methode:
1. Beschreibe den Schaltkreis durch eine Menge ® von Formeln.
2. Formuliere die Korrektheitsbedingung als Formel ).

3. Weise nach, dass ¢ aus ¢ folgt
(bzw., dass ® U {1} unerfiillbar ist).

Bemerkung
Bei Bedarf kann die Korrektheitsbedingung insbesondere so gewahlt werden,
dass sie das gewiinschte Ein-/Ausgabeverhalten des Schaltkreises vollstindig

spezifiziert.

Version vom 13. November 2018 Folie 87
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Beispiele fiir Korrektheitsbedingungen

Einige Korrektheitsbedingungen:

Schaltkreis:

AjAy Az Ay

e Bei jeder Eingabe ist mindestens eine Ausgabe 1:
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Beispiele fiir Korrektheitsbedingungen

Einige Korrektheitsbedingungen:

Schaltkreis:

AjAy Az Ay

e Bei jeder Eingabe ist mindestens eine Ausgabe 1:

Q1V @V Q3V Qs
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Beispiele fiir Korrektheitsbedingungen

Einige Korrektheitsbedingungen:

Schaltkreis:

AjAy Az Ay

e Bei jeder Eingabe ist mindestens eine Ausgabe 1:

Q1V @V Q3V Qs

o Bei keiner Eingabe sind mehr als zwei Ausgaben 1:
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Beispiele fiir Korrektheitsbedingungen

Einige Korrektheitsbedingungen:

Schaltkreis:

AjAy Az Ay

e Bei jeder Eingabe ist mindestens eine Ausgabe 1:

Q1V @V Q3V Qs

o Bei keiner Eingabe sind mehr als zwei Ausgaben 1:

- \/ (Qi N Qi A Q)

1<i<j<k<4

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 88



Kapitel 2: Aussagenlogik - Abschnitt 2.2: Aussagenlogische Modellierung

Beispiele fiir Korrektheitsbedingungen
Schaltkreis: Einige Korrektheitsbedingungen:

Ay Ay AL e Bei jeder Eingabe ist mindestens eine Ausgabe 1:

Q1V @V Q3V Qs

o Bei keiner Eingabe sind mehr als zwei Ausgaben 1:

- \/ (Qi N Qi A Q)

1<i<j<k<4

Vollstindige Spezifikation des Ein-/Ausgabeverhaltens:

(=PLA=P, — QA-QA-Q3A—Qs)
AN (PLAP, = QAR A-QA-Q)
A (PLA=P; = QA-QAQRA-Qs)
AN (PLAP, - QAR A-QAQ,)
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Pingo-Ubung

Welche Aussage gilt firp = AAB — Cund ¢y =(A—= CO)A(B—C)?
(1) ¢ Edundy =
(2) pl=¢und ¢ £ o
(3) pEYund Y=o
(4) ¢ und ¥ = o

http://pingo.upb.de/160267
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Aquivalenz

Definition 2.22
Zwei Formeln ¢, € AL sind dquivalent (wir schreiben ©» = ¢)), wenn sie von den

selben Interpretationen erfiillt werden
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Aquivalenz

Definition 2.22
Zwei Formeln ¢, € AL sind dquivalent (wir schreiben ©» = ¢)), wenn sie von den
selben Interpretationen erfiillt werden, d.h., wenn fiir alle Interpretationen Z gilt:

7Tk = I=
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Aquivalenz
Definition 2.22

Zwei Formeln ¢, € AL sind dquivalent (wir schreiben v = /), wenn sie von den
selben Interpretationen erfiillt werden, d.h., wenn fiir alle Interpretationen Z gilt:

7| — 7|

Zwei Formelmengen ®, W C AL sind dquivalent (wir schreiben ® = W), wenn sie von
den selben Interpretationen erfiillt werden, d.h., wenn fiir alle Interpretationen Z gilt:
IE® «— IEV.
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Aquivalenz
Definition 2.22

Zwei Formeln ¢, € AL sind dquivalent (wir schreiben ©» = ¢)), wenn sie von den
selben Interpretationen erfiillt werden, d.h., wenn fiir alle Interpretationen Z gilt:
7| — 7|

Zwei Formelmengen ®, W C AL sind dquivalent (wir schreiben ® = W), wenn sie von
den selben Interpretationen erfiillt werden, d.h., wenn fiir alle Interpretationen Z gilt:
IE® «— IEV.

Beobachtung 2.23

(a) Zwei Formeln ¢, € AL sind genau dann dquivalent, wenn in den letzten Spalten
ihrer Wahrheitstafeln jeweils die gleichen Eintrige stehen.

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 90



Kapitel 2: Aussagenlogik - Abschnitt 2.3: Aquivalenz und Adiquatheit

Aquivalenz
Definition 2.22

Zwei Formeln ¢, € AL sind dquivalent (wir schreiben ©» = ¢)), wenn sie von den
selben Interpretationen erfiillt werden, d.h., wenn fiir alle Interpretationen Z gilt:

7| — 7|

Zwei Formelmengen ®, W C AL sind dquivalent (wir schreiben ® = W), wenn sie von

den selben Interpretationen erfiillt werden, d.h., wenn fiir alle Interpretationen Z gilt:
IE® << IRV

Beobachtung 2.23

(a) Zwei Formeln ¢, € AL sind genau dann dquivalent, wenn in den letzten Spalten
ihrer Wahrheitstafeln jeweils die gleichen Eintrige stehen.

und

Beispiel:  Fiir alle X, Y € AS gilt:
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Aquivalenz
Definition 2.22

Zwei Formeln ¢, € AL sind dquivalent (wir schreiben ©» = ¢)), wenn sie von den
selben Interpretationen erfiillt werden, d.h., wenn fiir alle Interpretationen Z gilt:
7| — 7|

Zwei Formelmengen ®, W C AL sind dquivalent (wir schreiben ® = W), wenn sie von
den selben Interpretationen erfiillt werden, d.h., wenn fiir alle Interpretationen Z gilt:
IE® «— IEV.

Beobachtung 2.23

(a) Zwei Formeln ¢, € AL sind genau dann dquivalent, wenn in den letzten Spalten
ihrer Wahrheitstafeln jeweils die gleichen Eintrige stehen.

(b) Fiir endliche Formelmengen ® = {¢1,...,pm}, V= {t1,...,¥.} C AL gilt

b=V =

Beispiel:  Fiir alle X, Y € AS gilt:
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Aquivalenz

Definition 2.22

Zwei Formeln ¢, € AL sind dquivalent (wir schreiben ©» = ¢)), wenn sie von den
selben Interpretationen erfiillt werden, d.h., wenn fiir alle Interpretationen Z gilt:
7| — 7|

Zwei Formelmengen ®, W C AL sind dquivalent (wir schreiben ® = W), wenn sie von

den selben Interpretationen erfiillt werden, d.h., wenn fiir alle Interpretationen Z gilt:
IE® << IRV

Beobachtung 2.23

(a) Zwei Formeln ¢, € AL sind genau dann dquivalent, wenn in den letzten Spalten
ihrer Wahrheitstafeln jeweils die gleichen Eintrige stehen.

(b) Fiir endliche Formelmengen ® = {¢1,...,pm}, V= {t1,...,¥.} C AL gilt

o=V = Nei = Au.
i=1

j=t

Beispiel:  Fiir alle X, Y € AS gilt:

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 90

und



Kapitel 2: Aussagenlogik - Abschnitt 2.3: Aquivalenz und Adiquatheit

Aquivalenz und Allgemeingiiltigkeit

Lemma 2.24
(a) Fiir alle Formeln ¢, € AL gilt:

=1 = (¢ <> 1) st allgemeingiiltig.

¢
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Aquivalenz und Allgemeingiiltigkeit

Lemma 2.24
(a) Fiir alle Formeln ¢, € AL gilt:

=1 = (¢ <> 1) st allgemeingiiltig.

7" T

(b) Fiir alle ¢ € AL gilt:

If
=

o ist allgemeingliltig = %)

&
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Fundamentale Aquivalenzen
Satz 2.25 )
Fiir alle Formeln ¢,1, x € AL gelten die folgenden Aquivalenzen:

(a) Idempotenz:
PAp = ¢

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik Version vom 13. November 2018
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Fundamentale Aquivalenzen
Satz 2.25 )
Fiir alle Formeln ¢,1, x € AL gelten die folgenden Aquivalenzen:

(a) Idempotenz:
PAY = @, PV = e
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Fundamentale Aquivalenzen

Satz 2.25 )
Fiir alle Formeln ¢,1, x € AL gelten die folgenden Aquivalenzen:

(a) Idempotenz:
PAY = @, PV = e

(b) Kommutativitat:

PANY = Y Ap
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Fundamentale Aquivalenzen

Satz 2.25 )
Fiir alle Formeln ¢,1, x € AL gelten die folgenden Aquivalenzen:

(a) Idempotenz:

pAp = @, PV ¥-
(b) Kommutativitat:

eANY = YA, eV = PV

Version vom 13. November 2018
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Kapitel 2: Aussagenlogik - Abschnitt 2.3: Aquivalenz und Adiquatheit

Fundamentale Aquivalenzen

Satz 2.25 )
Fiir alle Formeln ¢,1, x € AL gelten die folgenden Aquivalenzen:

(a) Idempotenz:

PAY = @, PV ¥-

(b) Kommutativitat:
pAY = PAp, VY = PV
(c) Assoziativitat:

(eAP)AX = oA AX)
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Fundamentale Aquivalenzen

Satz 2.25 )
Fiir alle Formeln ¢,1, x € AL gelten die folgenden Aquivalenzen:

(a) Idempotenz:

PAY = @, PV ¥-

(b) Kommutativitat:
Ay =P ANp, eV = PV

(c) Assoziativitat:

(eAY)AX = AW AX), (pVY)VX = oV (P VX)
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Fundamentale Aquivalenzen

Satz 2.25 )
Fiir alle Formeln ¢,1, x € AL gelten die folgenden Aquivalenzen:

(a) Idempotenz:

PAY = @, PV ¥-

(b) Kommutativitat:
pAY = Ap, eV = PV
(c) Assoziativitat:
(PAYIAX = eA[WAX),  (pVY)VX = eV (P VX).
(d) Absorption:

eN(pVY) = o
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Kapitel 2: Aussagenlogik - Abschnitt 2.3: Aquivalenz und Adiquatheit

Fundamentale Aquivalenzen

Satz 2.25 )
Fiir alle Formeln ¢,1, x € AL gelten die folgenden Aquivalenzen:

(a) Idempotenz:

PAY = @, PV ¥-

(b) Kommutativitat:
Ay =P ANp, eV = PV

(c) Assoziativitat:

(eAP)AX = oA (WP AX), (e V)V x
(d) Absorption:

eA(pVY) = o, eV (pAY)

Il
s

(Fortsetzung: nichste Folie)
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(e) Distributivitat:

N (W VX) = (eAY)V(eAX)
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(e) Distributivitat:

eN (VX)) = (@AY)VI(eAX), eV AX) = (VYA (P VX).
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(e) Distributivitat:
eN (VX)) = (@AY)VI(eAX), eV AX) = (VYA (P VX).

(f) Doppelte Negation:
_|_|(p

Il
®
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(e) Distributivitat:
eN (VX)) = (@AY)VI(eAX), eV AX) = (VYA (P VX).

(f) Doppelte Negation:

Il
®

_|_|(p
(g) De Morgansche Regeln:

(pAY) = —pV
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(e) Distributivitat:
eN (VX)) = (@AY)VI(eAX), eV AX) = (VYA (P VX).

(f) Doppelte Negation:

Il
®

_|_|(p
(g) De Morgansche Regeln:

“(pAY) = ~pV -y, (pVY) = ~p A

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 93



Kapitel 2: Aussagenlogik - Abschnitt 2.3: Aquivalenz und Adiquatheit

(e) Distributivitat:
eN (VX)) = (@AY)VI(eAX), eV AX) = (VYA (P VX).

(f) Doppelte Negation:
_|_|(p

Il
®

(g) De Morgansche Regeln:
(pAY) = eV, S(eVY) = A
(h) Tertium Non Datur:

pNA-p =0
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(e) Distributivitat:
oA VX) = (@AY)V(eAX), @V AX) = (VYA (P VX).

(f) Doppelte Negation:

Il
®

ﬁﬁgo
(g) De Morgansche Regeln:

(pAY) = mpVh, (eVY) = e A
(h) Tertium Non Datur:

pA-p = 0, pV-op = 1.

(Fortsetzung: nichste Folie)

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 93



Kapitel 2: Aussagenlogik - Abschnitt 2.3: Aquivalenz und Adiquatheit

wNA1 V0 = ¢,

|
S
S
<
(e
=
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Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik

V0 = ¢,
V1

—
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wNA1

|
SRS
BS
<
o
1l
BS
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oAl = ¢, pVv0 = ¢,
N0 = 0, pVv1

—

—-1.

(i)
1 =-0, 0

(k) Elimination der Implikation:

p—=Y = eV

Version vom 13. November 2018
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Beweis. )
Alle hier genannten Aquivalenzen kdnnen leicht mit Hilfe der

Wahrheitstafelmethode tiberpriift werden.

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 95



Kapitel 2: Aussagenlogik - Abschnitt 2.3: Aquivalenz und Adiquatheit

Beweis. )
Alle hier genannten Aquivalenzen kdnnen leicht mit Hilfe der
Wahrheitstafelmethode tiberpriift werden.

Zum Beispiel die erste de Morgansche Regel:

(P AY) = —p V.

Wir berechnen dazu folgende Wahrheitstafeln:

e | ony | ~(pAy) e Plop| | eV
0 0| O 1 0 0] 1|1 1
0 1| o 1 0 1] 110 1
1 0| o 1 1 00| 1 1
1 1] 1 0 1 1|00 0
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Beweis. )
Alle hier genannten Aquivalenzen kdnnen leicht mit Hilfe der
Wahrheitstafelmethode tiberpriift werden.

Zum Beispiel die erste de Morgansche Regel:

(P AY) = —p V.

Wir berechnen dazu folgende Wahrheitstafeln:

e | ony | ~(pAy) e Plop| | eV
0 0| O 1 0 0] 1|1 1
0 1| o 1 0 1] 110 1
1 0| o 1 1 00| 1 1
1 1] 1 0 1 1|00 0

Die letzten Spalten der beiden Wahrheitstafeln sind gleich, also sind die Formeln
dquivalent.
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Beweis. )
Alle hier genannten Aquivalenzen kdnnen leicht mit Hilfe der
Wahrheitstafelmethode tiberpriift werden.

Zum Beispiel die erste de Morgansche Regel:

(P AY) = —p V.

Wir berechnen dazu folgende Wahrheitstafeln:

e | ony | ~(pAy) e Plop| | eV
0 0| O 1 0 0] 1|1 1
0 1| o 1 0 1] 110 1
1 0| o 1 1 00| 1 1
1 1] 1 0 1 1|00 0

Die letzten Spalten der beiden Wahrheitstafeln sind gleich, also sind die Formeln
dquivalent.

Rest: Ubung. O
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Bemerkung

o Sej
e pe AL,
e 1 € AL eine Teilformel von ¢,
e ) e AL mitp =’
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Bemerkung

o Sei
e pe AL,
e 1 € AL eine Teilformel von ¢,
e ) € AL mitp =)'
Wenn ¢’ eine Formel ist, die aus ¢ entsteht

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik
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Bemerkung

o Sei
o v c AL,
e 1 € AL eine Teilformel von ¢,
e ¢y € AL mit p =o',
Wenn ¢’ eine Formel ist, die aus ¢ entsteht,
indem ein oder mehrere Vorkommen von 1) in ¢ durch 1)’ ersetzt werden,
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Bemerkung

o Sei
e pe AL,
e 1 € AL eine Teilformel von ¢,
e 1)) € AL mit ¢p =)',
Wenn ¢’ eine Formel ist, die aus ¢ entsteht,
indem ein oder mehrere Vorkommen von 1) in ¢ durch 1)’ ersetzt werden,
dann gilt ¢’ = .
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Bemerkung

o Sei
e pc AL,
e 1 € AL eine Teilformel von ¢,
e 1)) € AL mit ¢p =)',
Wenn ¢’ eine Formel ist, die aus ¢ entsteht,
indem ein oder mehrere Vorkommen von 1) in ¢ durch 1)’ ersetzt werden,
dann gilt ¢’ = .
e Durch schrittweises Anwenden der in Satz 2.25 aufgelisteten Aquivalenzen
auf Teilformeln kann man somit eine gegebene Formel in eine zu ihr
dquivalente Formel umformen.
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Das Dualitatsprinzip

Definition 2.26

Sei ¢ € AL eine Formel, in der keine Implikationen vorkommt.

Die zu ¢ duale Formel ist die Formel ¢ € AL, die aus ¢ entsteht, indem man
tiberall 0 durch 1, 1 durch 0, A durch VvV und V durch A ersetzt.
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Das Dualitatsprinzip

Definition 2.26

Sei ¢ € AL eine Formel, in der keine Implikationen vorkommt.

Die zu ¢ duale Formel ist die Formel ¢ € AL, die aus ¢ entsteht, indem man
tiberall 0 durch 1, 1 durch 0, A durch VvV und V durch A ersetzt.

Beobachtung 2.27
In Satz 2.25(a)—(e) und (g)—(j) stehen auf der linken Seite jeweils die dualen
Formeln der Formeln auf der rechten Seite.
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Das Dualitatsprinzip

Definition 2.26

Sei ¢ € AL eine Formel, in der keine Implikationen vorkommt.

Die zu ¢ duale Formel ist die Formel ¢ € AL, die aus ¢ entsteht, indem man
tiberall 0 durch 1, 1 durch 0, A durch VvV und V durch A ersetzt.

Beobachtung 2.27

In Satz 2.25(a)—(e) und (g)—(j) stehen auf der linken Seite jeweils die dualen
Formeln der Formeln auf der rechten Seite.

Satz 2.28 (Dualitdtssatz der Aussagenlogik)
Fiir alle Formeln ¢, € AL, in denen keine Implikation vorkommt, gilt:

—
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Um den Dualitatssatz zu beweisen bendtigen wir zundchst noch eine Definition.
Der Kern des Beweises steckt im darauf folgenden Lemma.
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Um den Dualitatssatz zu beweisen bendtigen wir zundchst noch eine Definition.
Der Kern des Beweises steckt im darauf folgenden Lemma.

Definition 2.29

Sei 7 eine Interpretation. Die zu Z duale Interpretation 7 ist definiert durch
Z(X) :=1—Z(X) fiir alle X € AS.

D.h. fiir alle Aussagensymbole X gilt:

Fx) — 0, falsZ(X)=1
(X) = 1, falls Z(X)=0
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Um den Dualitatssatz zu beweisen bendtigen wir zundchst noch eine Definition.
Der Kern des Beweises steckt im darauf folgenden Lemma.

Definition 2.29 N
Sei 7 eine Interpretation. Die zu Z duale Interpretation Z ist definiert durch
Z(X) :=1—Z(X) fiir alle X € AS.

D.h. fiir alle Aussagensymbole X gilt:
. { 0, fallsZ(X)=

1
X =11 falls Z(X) = 0

)

Lemma 2.30

Fiir alle Formeln ¢ € AL, in denen keine Implikation vorkommt, und alle
Interpretationen I gilt:

IEG <« Ike
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Beweis von Satz 2.28 unter Verwendung von Lemma 2.30.
Seien ¢, 1 € AL Formeln, in denen keine Implikation vorkommt.

1Wir schreiben kurz ,f.a.“ als Abkiirzung fiir die Worte ,fiir alle”
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Beweis von Satz 2.28 unter Verwendung von Lemma 2.30.

Seien ¢,7 € AL Formeln, in denen keine Implikation vorkommt.
Wir wollen zeigen, dass gilt: p =19 < ¢ =1.

1Wir schreiben kurz ,f.a.“ als Abkiirzung fiir die Worte ,fiir alle”
Version vom 13. November 2018
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Beweis von Satz 2.28 unter Verwendung von Lemma 2.30.
Seien ¢,7 € AL Formeln, in denen keine Implikation vorkommt.
Wir wollen zeigen, dass gilt: p =19 < ¢ =1.
— " Es gilt:1
p=9

= F.a. Interpretationen Z gilt: (f o = Ik V)

1Wir schreiben kurz ,f.a.“ als Abkiirzung fiir die Worte ,fiir alle”
Version vom 13. November 2018 Folie 99
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Beweis von Satz 2.28 unter Verwendung von Lemma 2.30.
Seien ¢,7 € AL Formeln, in denen keine Implikation vorkommt.
Wir wollen zeigen, dass gilt: p =19 < ¢ =1.
— " Es gilt:1
p=9

= F.a. Interpretationen Z gilt: (f o = Ik V)

temma.230  F a. Interpretationen Z gilt: ZH§ = ITKEY)

1Wir schreiben kurz ,f.a.“ als Abkiirzung fiir die Worte ,fiir alle”
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Beweis von Satz 2.28 unter Verwendung von Lemma 2.30.
Seien ¢,7 € AL Formeln, in denen keine Implikation vorkommt.
Wir wollen zeigen, dass gilt: p =19 < ¢ =1.
— " Es gilt:1
p=9

= F.a. Interpretationen Z gilt: (f o = Ik V)

temma.230  F a. Interpretationen Z gilt: ZH§ = ITKEY)

—>  F.a. Interpretationen Z gilt: (Z}=¢ < I 1})

1Wir schreiben kurz ,f.a.“ als Abkiirzung fiir die Worte ,fiir alle”
Version vom 13. November 2018 Folie 99
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Beweis von Satz 2.28 unter Verwendung von Lemma 2.30.

Seien ¢,7 € AL Formeln, in denen keine Implikation vorkommt.
Wir wollen zeigen, dass gilt: p =19 < ¢ =1.

— " Es gilt:1

=Y

!

F.a. Interpretationen Z gilt: (f o = Ik V)

temma.230  F a. Interpretationen Z gilt: ZH§ = ITKEY)

=
—>  F.a. Interpretationen Z gilt: (Z}=¢ < I 1})
—

1Wir schreiben kurz ,f.a.“ als Abkiirzung fiir die Worte ,fiir alle”
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Beweis von Satz 2.28 unter Verwendung von Lemma 2.30.
Seien ¢,7 € AL Formeln, in denen keine Implikation vorkommt.
Wir wollen zeigen, dass gilt: p =19 < ¢ =1.

— " Es gilt:1
=19

= F.a. Interpretationen Z gilt: (f o = Ik V)
temma.230  F a. Interpretationen Z gilt: ZH§ = ITKEY)

—>  F.a. Interpretationen Z gilt: (Z}=¢ < I 1})

<" Esgilt:
p=¢9 = o=49 (andere Beweisrichtung)
() (weil é:gp und sz).
OJ

— (p

1Wir schreiben kurz ,f.a.“ als Abkiirzung fiir die Worte ,fiir alle"
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Beweise per Induktion iiber den Aufbau von Formeln

e Ahnlich wie wir Aussagen iiber die natiirlichen Zahlen durch vollstindige
Induktion beweisen kénnen, konnen wir Aussagen liber Formeln per
Induktion tiber den Aufbau der Formeln beweisen.
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Beweise per Induktion iiber den Aufbau von Formeln

e Ahnlich wie wir Aussagen iiber die natiirlichen Zahlen durch vollstindige
Induktion beweisen kénnen, konnen wir Aussagen liber Formeln per
Induktion tiber den Aufbau der Formeln beweisen.

e Im Induktionsanfang beweisen wir die Aussagen fiir die atomaren Formeln,
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Beweise per Induktion iiber den Aufbau von Formeln

e Ahnlich wie wir Aussagen iiber die natiirlichen Zahlen durch vollstindige
Induktion beweisen kénnen, konnen wir Aussagen liber Formeln per
Induktion tiber den Aufbau der Formeln beweisen.

e Im Induktionsanfang beweisen wir die Aussagen fiir die atomaren Formeln,
und im Induktionschritt schlieBen wir von den Bestandteilen einer Formel
auf die Formel selbst.
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Beweise per Induktion iiber den Aufbau von Formeln

e Ahnlich wie wir Aussagen iiber die natiirlichen Zahlen durch vollstindige
Induktion beweisen kénnen, konnen wir Aussagen liber Formeln per
Induktion tiber den Aufbau der Formeln beweisen.

e Im Induktionsanfang beweisen wir die Aussagen fiir die atomaren Formeln,
und im Induktionschritt schlieBen wir von den Bestandteilen einer Formel
auf die Formel selbst.

e Dieses Vorgehen ist z.B. dadurch gerechtfertigt, dass es sich auch als
vollstandige Induktion iiber die Hohe des Syntaxbaumes auffassen l3sst.
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Schematisch sieht der Beweis einer Aussage A(¢p) fiir alle Formeln ¢ € AL wie

folgt aus:

Induktionsanfang:

e Beweise A(0) und A(1).

Version vom 13. November 2018 Folie 101
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Schematisch sieht der Beweis einer Aussage A(¢p) fiir alle Formeln ¢ € AL wie

folgt aus:

Induktionsanfang:
e Beweise A(0) und A(1).
e Beweise A(X) fiir alle X € AS.
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Schematisch sieht der Beweis einer Aussage A(¢p) fiir alle Formeln ¢ € AL wie

folgt aus:

Induktionsanfang:
e Beweise A(0) und A(1).
e Beweise A(X) fiir alle X € AS.

Induktionsschritt:
e Beweise A(—¢p) unter der Annahme, dass A(y) gilt.
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Schematisch sieht der Beweis einer Aussage A(¢p) fiir alle Formeln ¢ € AL wie

folgt aus:

Induktionsanfang:
e Beweise A(0) und A(1).
e Beweise A(X) fiir alle X € AS.

Induktionsschritt:
e Beweise A(—¢p) unter der Annahme, dass A(y) gilt.
o Beweise A(¢ A1) unter der Annahme, dass A(p) und A(z)) gelten.
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Schematisch sieht der Beweis einer Aussage A(¢p) fiir alle Formeln ¢ € AL wie

folgt aus:

Induktionsanfang:
e Beweise A(0) und A(1).
e Beweise A(X) fiir alle X € AS.

Induktionsschritt:
e Beweise A(—¢p) unter der Annahme, dass A(y) gilt.
o Beweise A(¢ A1) unter der Annahme, dass A(p) und A(z)) gelten.
o Beweise A(p V 1) unter der Annahme, dass A(yp) und A(z)) gelten.
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Schematisch sieht der Beweis einer Aussage A(¢p) fiir alle Formeln ¢ € AL wie
folgt aus:

Induktionsanfang:

e Beweise A(0) und A(1).
e Beweise A(X) fiir alle X € AS.

Induktionsschritt:

Beweise A(—¢) unter der Annahme, dass A(yp) gilt.

o Beweise A(¢ A 1)) unter der Annahme, dass A(y) und A(y
(
(

gelten.

~— ~—

o Beweise A(p V 1) unter der Annahme, dass A(yp) und A(z)) gelten.

Beweise A(¢ — 1) unter der Annahme, dass A(p) und A(v) gelten.
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Funktionale Vollstandigkeit der Aussagenlogik

Im Folgenden bezeichnen wir als Wahrheitstafel eine Tabelle mit n+1 Spalten
und 2" Zeilen, die fiir jedes Tupel (by,..., b,) € {0,1}" genau eine Zeile
enthalt, deren erste n Eintrage by, ..., b, sind.
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Funktionale Vollstandigkeit der Aussagenlogik

Im Folgenden bezeichnen wir als Wahrheitstafel eine Tabelle mit n+1 Spalten
und 2" Zeilen, die fiir jedes Tupel (by,..., b,) € {0,1}" genau eine Zeile
enthalt, deren erste n Eintrage by, ..., b, sind.

Satz 2.31 (Funktionale Vollstandigkeit der Aussagenlogik)
Zu jeder Wahrheitstafel gibt es eine Formel ¢ € AL mit dieser Wahrheitstafel.

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 102



Kapitel 2: Aussagenlogik - Abschnitt 2.3: Aquivalenz und Adiquatheit

Funktionale Vollstandigkeit der Aussagenlogik

Im Folgenden bezeichnen wir als Wahrheitstafel eine Tabelle mit n+1 Spalten
und 2" Zeilen, die fiir jedes Tupel (by,..., b,) € {0,1}" genau eine Zeile
enthalt, deren erste n Eintrage by, ..., b, sind.

Satz 2.31 (Funktionale Vollstandigkeit der Aussagenlogik)
Zu jeder Wahrheitstafel gibt es eine Formel ¢ € AL mit dieser Wahrheitstafel.

Mathematisch prazise lasst sich dieser Satzes wie folgt formulieren:

Fiir alle n € N gibt es zu jeder Funktion F : {0,1}" — {0,1} eine Formel
©(A1,...,A,) € AL, so dass fiir alle (by,. .., b,) € {0,1}" gilt:

F(bl,...,bn):]. <~ (p[bh...,bn]:l.
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Funktionale Vollstandigkeit der Aussagenlogik

Im Folgenden bezeichnen wir als Wahrheitstafel eine Tabelle mit n+1 Spalten
und 2" Zeilen, die fiir jedes Tupel (by,..., b,) € {0,1}" genau eine Zeile
enthalt, deren erste n Eintrage by, ..., b, sind.

Satz 2.31 (Funktionale Vollstandigkeit der Aussagenlogik)
Zu jeder Wahrheitstafel gibt es eine Formel ¢ € AL mit dieser Wahrheitstafel.

Mathematisch prazise lasst sich dieser Satzes wie folgt formulieren:

Fiir alle n € N gibt es zu jeder Funktion F : {0,1}" — {0,1} eine Formel
©(A1,...,A,) € AL, so dass fiir alle (by,. .., b,) € {0,1}" gilt:

F(bl,...,bn):]. <~ (p[bh...,bn]:l.

Definition 2.32
Funktionen F : {0,1}" — {0,1} (mit n € N) nennt man Boolesche Funktionen
(der Stelligkeit n).
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Funktionale Vollstandigkeit der Aussagenlogik

Im Folgenden bezeichnen wir als Wahrheitstafel eine Tabelle mit n+1 Spalten
und 2" Zeilen, die fiir jedes Tupel (by,..., b,) € {0,1}" genau eine Zeile
enthalt, deren erste n Eintrage by, ..., b, sind.

Satz 2.31 (Funktionale Vollstandigkeit der Aussagenlogik)

Zu jeder Wahrheitstafel gibt es eine Formel ¢ € AL mit dieser Wahrheitstafel.
Mathematisch prazise lasst sich dieser Satzes wie folgt formulieren:

Fiir alle n € N gibt es zu jeder Funktion F : {0,1}" — {0,1} eine Formel
©(A1,...,A,) € AL, so dass fiir alle (by,. .., b,) € {0,1}" gilt:

F(bl,...,bn):]. <~ (p[bh...,bn]:l.

Definition 2.32
Funktionen F : {0,1}" — {0,1} (mit n € N) nennt man Boolesche Funktionen
(der Stelligkeit n).

Bevor wir Satz 2.31 beweisen, betrachten wir zunichst ein Beispiel.
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Beispiel 2.33
Betrachte die Wahrheitstafel T:

by by bs| F(by, by, bs)
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
11 1 0

Eine Formel (A1, Az, A3), so dass T die Wahrheitstafel fiir ¢ ist, kann man
folgendermalBen erzeugen:
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Beispiel 2.33
Betrachte die Wahrheitstafel T:

by by b3 | F(by, bo, b3)
0O 0 O 1
0 0 1 1
0O 1 0 0
0o 1 1 0
1 0 O 0
1 0 1 1
1 1 0 0
1 1 1 0

Eine Formel (A1, Az, A3), so dass T die Wahrheitstafel fiir ¢ ist, kann man
folgendermalBen erzeugen:

e Betrachte alle Zeilen von T, bei denen in der letzten Spalte eine , 1" steht.
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Betrachte die Wahrheitstafel T:

by by bs| F(by, by, bs)
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
11 1 0

Eine Formel (A1, Az, A3), so dass T die Wahrheitstafel fiir ¢ ist, kann man
folgendermaBen erzeugen:

e Betrachte alle Zeilen von T, bei denen in der letzten Spalte eine , 1" steht.

o Fiir jede solche Zeile konstruiere eine Formel, die genau von der zu der
Zeile gehorenden Belegung von by, by, bs erfiillt wird.

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 103



Kapitel 2: Aussagenlogik - Abschnitt 2.3: Aquivalenz und Adiquatheit

Beispiel 2.33
Betrachte die Wahrheitstafel T:

by by bs| F(by, by, bs)
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
11 1 0

Eine Formel (A1, Az, A3), so dass T die Wahrheitstafel fiir ¢ ist, kann man
folgendermaBen erzeugen:

e Betrachte alle Zeilen von T, bei denen in der letzten Spalte eine , 1" steht.

o Fiir jede solche Zeile konstruiere eine Formel, die genau von der zu der
Zeile gehorenden Belegung von by, by, bs erfiillt wird.

e Bilde die Disjunktion (d.h. die , Veroderung") iiber all diese Formeln.
Dies liefert die gesuchte Formel ¢.
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In unserer Beispiel-Wahrheitstafel T gibt es genau 3 Zeilen, bei denen in der
letzten Spalte eine ,,1" steht, namlich die Zeilen

bi by b3 ‘ F(b1, ba, b3) zur jeweiligen Zeile gehdrende Formel:
0 0 O 1
0 0 1 1
1 0 1 1
Version vom 13. November 2018 Folie 104
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In unserer Beispiel-Wahrheitstafel T gibt es genau 3 Zeilen, bei denen in der
letzten Spalte eine ,,1" steht, namlich die Zeilen

bi by b3 ‘ F(b1, ba, b3) zur jeweiligen Zeile gehdrende Formel:
0 0 0 1 (—\Al/\—‘Ag/\—‘Ag)

0 0 1 1

1 0 1 1
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In unserer Beispiel-Wahrheitstafel T gibt es genau 3 Zeilen, bei denen in der
letzten Spalte eine ,,1" steht, namlich die Zeilen

bi by b3 ‘ F(b1, ba, b3) zur jeweiligen Zeile gehdrende Formel:
0 0 0 1 (—\Al/\—‘Ag/\—‘Ag)

0 0 1 1 (ﬁAl/\ﬁAz/\A3)

1 0 1 1
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In unserer Beispiel-Wahrheitstafel T gibt es genau 3 Zeilen, bei denen in der
letzten Spalte eine ,,1" steht, namlich die Zeilen

bi by b3 ‘ F(b1, ba, b3) zur jeweiligen Zeile gehdrende Formel:
0 0 0 1 (—\Al/\—‘Ag/\—‘Ag)

0 0 1 1 (ﬁAl/\ﬁAz/\A3)

1 0 1 1 (AL A—A2 A A3)
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In unserer Beispiel-Wahrheitstafel T gibt es genau 3 Zeilen, bei denen in der
letzten Spalte eine ,,1" steht, namlich die Zeilen

by by bs | F(by, ba, bs)
0 0 O 1
0 0 1 1
1 0 1 1

zur jeweiligen Zeile gehorende Formel:

(ﬁAl/\ﬁAz/\A3)

(A]_/\_|A2/\A3)

Insgesamt erhalten wir dadurch die zur Wahrheitstafel T passende Formel

Christoph Berkholz -

HU Berlin -
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In unserer Beispiel-Wahrheitstafel T gibt es genau 3 Zeilen, bei denen in der
letzten Spalte eine ,,1" steht, namlich die Zeilen

by by bs | F(by, ba, bs)

zur jeweiligen Zeile gehorende Formel:

0
0

0
0

0
1

1
1

(ﬁAl/\ﬁAz/\A3)

(A]_/\_|A2/\A3)

Insgesamt erhalten wir dadurch die zur Wahrheitstafel T passende Formel

¥

Christoph Berkholz -

(mAL A —A A DA3) V(DAL A —A A As) V(AL A —A A As).

HU Berlin -

Version vom 13. November 2018

Vorlesung Logik in der Informatik
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Adadquatheit
Satz 2.31 besagt, dass die Aussagenlogik AL die groBtmdogliche Aussdruckstarke
hat. Dafiir reichen allerdings schon , kleinere" Logiken, wie wir im Folgenden

sehen werden.
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Adadquatheit

Satz 2.31 besagt, dass die Aussagenlogik AL die groBtmdogliche Aussdruckstarke

hat. Dafiir reichen allerdings schon , kleinere” Logiken, wie wir im Folgenden

sehen werden.

Definition 2.34
Sei T C{0,1,—,A,V,—}.
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Kapitel 2: Aussagenlogik - Abschnitt 2.3: Aquivalenz und Adiquatheit

Adadquatheit

Satz 2.31 besagt, dass die Aussagenlogik AL die groBtmdogliche Aussdruckstarke
hat. Dafiir reichen allerdings schon , kleinere" Logiken, wie wir im Folgenden
sehen werden.

Definition 2.34
Sei T C{0,1,—,A,V,—}.

(a) AL(7) sei das Fragment der Logik AL, das aus den Formeln besteht, in
denen nur Junktoren und Konstanten aus 7 vorkommen.
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Adadquatheit

Satz 2.31 besagt, dass die Aussagenlogik AL die groBtmdogliche Aussdruckstarke
hat. Dafiir reichen allerdings schon , kleinere" Logiken, wie wir im Folgenden
sehen werden.

Definition 2.34
Sei T C{0,1,—,A,V,—}.

(a) AL(7) sei das Fragment der Logik AL, das aus den Formeln besteht, in
denen nur Junktoren und Konstanten aus 7 vorkommen.

(b) 7 heiBt addquat, wenn jede Formel ¢ € AL dquivalent zu einer Formel in
AL(T) ist.
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Adadquatheit

Satz 2.31 besagt, dass die Aussagenlogik AL die groBtmdogliche Aussdruckstarke
hat. Dafiir reichen allerdings schon , kleinere" Logiken, wie wir im Folgenden
sehen werden.

Definition 2.34
Sei T C{0,1,—,A,V,—}.

(a) AL(7) sei das Fragment der Logik AL, das aus den Formeln besteht, in
denen nur Junktoren und Konstanten aus 7 vorkommen.

(b) 7 heiBt addquat, wenn jede Formel ¢ € AL dquivalent zu einer Formel in
AL(T) ist.

Beispiele 2.35
(a) {—,A}, {~,Vv}, {0,—} sind adiquat.
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Adadquatheit

Satz 2.31 besagt, dass die Aussagenlogik AL die groBtmdogliche Aussdruckstarke
hat. Dafiir reichen allerdings schon , kleinere" Logiken, wie wir im Folgenden
sehen werden.

Definition 2.34
Sei T C{0,1,—,A,V,—}.

(a) AL(7) sei das Fragment der Logik AL, das aus den Formeln besteht, in
denen nur Junktoren und Konstanten aus 7 vorkommen.

(b) 7 heiBt addquat, wenn jede Formel ¢ € AL dquivalent zu einer Formel in
AL(T) ist.

Beispiele 2.35
(a) {—,A}, {~,Vv}, {0,—} sind adiquat.

(b) {A,V,—} ist nicht adiquat.
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Kapitel 2: Aussagenlogik - Abschnitt 2.3: Aquivalenz und Ad3quatheit
Andere Junktoren

e Die Auswahl der Junktoren =, A, V,— (und < als Abkiirzung) fiir ,,unsere’
aussagenlogische Sprache richtet sich nach dem umgangssprachlichen
Gebrauch und den Erfordernissen des formalen SchlieBens, ist aber in
gewisser Weise willkiirlich.
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Andere Junktoren

e Die Auswahl der Junktoren =, A,V,— (und < als Abkiirzung) fiir ,,unsere*
aussagenlogische Sprache richtet sich nach dem umgangssprachlichen
Gebrauch und den Erfordernissen des formalen SchlieBens, ist aber in
gewisser Weise willkiirlich.

e Durch Festlegung ihrer Wahrheitstafeln kénnen wir auch andere Junktoren
definieren und erhalten daraus andere aussagenlogische Sprachen.
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Andere Junktoren

e Die Auswahl der Junktoren =, A,V,— (und < als Abkiirzung) fiir ,,unsere*
aussagenlogische Sprache richtet sich nach dem umgangssprachlichen
Gebrauch und den Erfordernissen des formalen SchlieBens, ist aber in
gewisser Weise willkiirlich.

e Durch Festlegung ihrer Wahrheitstafeln kénnen wir auch andere Junktoren
definieren und erhalten daraus andere aussagenlogische Sprachen.

e Fiir jede Menge 7 von so definierten Junktoren und den boolschen
Konstanten (die wir als ,,nullstellige” Junktoren auffassen kénnen) sei
AL(7) die daraus gebildete aussagenlogische Sprache.
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Andere Junktoren

e Die Auswahl der Junktoren =, A,V,— (und < als Abkiirzung) fiir ,,unsere*
aussagenlogische Sprache richtet sich nach dem umgangssprachlichen
Gebrauch und den Erfordernissen des formalen SchlieBens, ist aber in
gewisser Weise willkiirlich.

e Durch Festlegung ihrer Wahrheitstafeln kénnen wir auch andere Junktoren
definieren und erhalten daraus andere aussagenlogische Sprachen.

e Fiir jede Menge 7 von so definierten Junktoren und den boolschen
Konstanten (die wir als ,,nullstellige” Junktoren auffassen kénnen) sei
AL(7) die daraus gebildete aussagenlogische Sprache.

e Satz 2.31 besagt dann, dass jede Formel in AL(7) zu einer Formel in AL
dquivalent ist. Gilt die Umkehrung ebenfalls, so bezeichnen wir 7 als
adaquat.
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Beispiele 1: Exklusives Oder

Der 2-stellige Junktor & sei definiert durch

Intuitiv bedeutet ¢ @ 1 ,,entweder ¢ oder ¥".
Man nennt @ auch exklusives Oder.
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Der dreistellige Mehrheitsjunktor

Der 3-stellige Junktor M sei definiert durch

¢ Y x| Mpv,x)
0 0 0 0
0 0 1 0
01 0 0
01 1 1
1 00 0
1 0 1 1
1 10 1
11 1 1

Intuitiv ist M(p, 1, x) also genau dann wahr, wenn mindestens zwei (also die
Mehrheit) der Formeln ¢, 4, x wahr sind.
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NAND

Der folgende zweistellige Junktor ist bekannt als NAND-Gatter (not-and) oder
Sheffer-Strich:

Satz 2.36
{|} ist adiquat.
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NAND

Der folgende zweistellige Junktor ist bekannt als NAND-Gatter (not-and) oder
Sheffer-Strich:

Satz 2.36
{|} ist adiquat.

Beweis. )
Induktion iiber den Aufbau von AL({—, A}) unter Verwendung der Aquivalenzen

o = (ple) und  (pAY) = =(e]¥) = ((pl¥) ] (plV)) .
Details: Ubung. U
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Vereinfachende Annahme

In diesem Abschnitt betrachten wir nur Formeln in AL({—, V, A}).

Rechtfertigung
Die Annahme bedeutet keine wesentliche Einschrankung, weil die Menge
{—, V, A} adiquat ist.

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik Version vom 13. November 2018

Folie 110



Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

NNF

Definition 2.37
Eine Formel ist in Negationsnormalform (NNF), wenn sie zu AL({—, A, V})
gehort und Negationszeichen nur unmittelbar vor Aussagensymbolen auftreten.
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NNF

Definition 2.37
Eine Formel ist in Negationsnormalform (NNF), wenn sie zu AL({—, A, V})
gehort und Negationszeichen nur unmittelbar vor Aussagensymbolen auftreten.

Satz 2.38

Jede aussagenlogische Formel ¢ € AL({—, A\, V}) ist dquivalent zu einer Formel
in NNF,
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Definition 2.37
Eine Formel ist in Negationsnormalform (NNF), wenn sie zu AL({—, A, V})
gehort und Negationszeichen nur unmittelbar vor Aussagensymbolen auftreten.

Satz 2.38
Jede aussagenlogische Formel ¢ € AL({—, A\, V}) ist dquivalent zu einer Formel
in NNF, deren Lange linear in der Linge von  ist.
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NNF

Definition 2.37
Eine Formel ist in Negationsnormalform (NNF), wenn sie zu AL({—, A, V})
gehort und Negationszeichen nur unmittelbar vor Aussagensymbolen auftreten.

Satz 2.38
Jede aussagenlogische Formel ¢ € AL({—, A\, V}) ist dquivalent zu einer Formel
in NNF, deren Lange linear in der Linge von  ist.

e Da {—,V, A} addquat ist und jede Formel aus AL in Linearzeit in eine
dquivalente Formel aus AL({—, V, A}) iiberfiihrt werden kann, gilt der Satz
auch fiir alle ¢ € AL.
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Ein NNF-Algorithmus

Eingabe: Formel ¢ € AL({—, A, V}).

Ausgabe: Formel ¢’ in NNF

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik
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Ein NNF-Algorithmus

Eingabe: Formel ¢ € AL({—, A, V}).
Ausgabe: Formel ¢’ in NNF

Verfahren:
1. Wiederhole folgende Schritte:
2. Wenn ¢ in NNF ist, dann halte mit
Ausgabe .
3. Ersetze eine Subformel von ¢ der Gestalt

(11 A th2) durch (=¢p1 V =hs)

oder eine Subformel der Gestalt

(%1 V 9h2) durch (=91 A =tha)

oder eine Subformel der Gestalt

==t durch .
Sei ¢’ die resultierende Formel.
4, o=,
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Korrektheit des NNF-Algorithmus

Satz 2.39
Fiir jede Eingabeformel ¢ € AL({—, A, V}) gibt der NNF-Algorithmus nach
endlich vielen Schritten eine zu ¢ adquivalente Formel ©' in NNF aus.

(hier ohne Beweis)

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 113



Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Korrektheit des NNF-Algorithmus

Satz 2.39
Fiir jede Eingabeformel ¢ € AL({—, A, V}) gibt der NNF-Algorithmus nach
endlich vielen Schritten eine zu  dquivalente Formel ¢’ in NNF aus.

(hier ohne Beweis)

Bemerkung

Unter Verwendung geeigneter Datenstrukturen l3sst sich der NNF-Algorithmus
mit linearer Laufzeit implementieren, d.h., Laufzeit O(n) bei Eingabe einer
Formel der Lange n.
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Beispiel 2.40
Das Ziel ist, die Formel <<ﬂAo A= ((Ao V A1) — Ao)> - 0)

in NNF zu bringen, d.h. eine zu ihr dquivalente Formel in NNF zu finden.
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Beispiel 2.40

Das Ziel ist, die Formel <<ﬂAo A= ((Ao V A1) — Ao)> — 0)

in NNF zu bringen, d.h. eine zu ihr dquivalente Formel in NNF zu finden.
Lésung: Wir ersetzen zunéchst die Konstanten 0 und 1 sowie alle

Implikationspfeile durch geeignete Formeln aus AL({—, A, V}) und wenden dann
den NNF-Algorithmus an. Der Teil einer Formel, der als Nichstes ersetzt wird,

ist im Folgenden jeweils unterstrichen.
((ﬁAo N ﬁ((Ao \Y A1) — Ao)) — Q)
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Beispiel 2.40

Das Ziel ist, die Formel <<ﬂAo A= ((Ao V A1) — Ao)> — 0)

in NNF zu bringen, d.h. eine zu ihr dquivalente Formel in NNF zu finden.
Lésung: Wir ersetzen zunéchst die Konstanten 0 und 1 sowie alle

Implikationspfeile durch geeignete Formeln aus AL({—, A, V}) und wenden dann
den NNF-Algorithmus an. Der Teil einer Formel, der als Nichstes ersetzt wird,

ist im Folgenden jeweils unterstrichen.
((ﬁAo N ﬁ((Ao \Y A1) — Ao)) — Q)

= ((ﬂAo A=((AoV AL) — Ao)) = (Ao A —\Ao))
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Beispiel 2.40

Das Ziel ist, die Formel <<ﬂAo A= ((Ao V A1) — Ao)> — 0)

in NNF zu bringen, d.h. eine zu ihr dquivalente Formel in NNF zu finden.
Lésung: Wir ersetzen zunéchst die Konstanten 0 und 1 sowie alle

Implikationspfeile durch geeignete Formeln aus AL({—, A, V}) und wenden dann
den NNF-Algorithmus an. Der Teil einer Formel, der als Nichstes ersetzt wird,

ist im Folgenden jeweils unterstrichen.
((ﬁAo N ﬁ((Ao \Y A1) — Ao)) — Q)

((ﬂAo A=((AoV AL) — Ao)> = (Ao A ﬁAO))

= (—\ (—\Ao A=((AoV Ar) = Ao)) V (Ao A —'Ao))
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Beispiel 2.40

Das Ziel ist, die Formel <<ﬂAo A= ((Ao V A1) — Ao)> — 0)

in NNF zu bringen, d.h. eine zu ihr dquivalente Formel in NNF zu finden.
Lésung: Wir ersetzen zunéchst die Konstanten 0 und 1 sowie alle

Implikationspfeile durch geeignete Formeln aus AL({—, A, V}) und wenden dann
den NNF-Algorithmus an. Der Teil einer Formel, der als Nichstes ersetzt wird,

ist im Folgenden jeweils unterstrichen.
((ﬁAo N ﬁ((Ao \Y A1) — Ao)) — Q)

(ﬂAo A= ((Ao VAL — Ao)) = (Ao A —\Ao))

(
( (ﬂAo/\ Ao\/Al)jAo)) \/(AOA—|A0))
= (=

(ﬂAo A =(=(Ao V A1) v Ao)) V (Ao A ﬂAo))
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Beispiel 2.40
Das Ziel ist, die Formel <<ﬂAo A= ((Ao V A1) — Ao)> - 0)

in NNF zu bringen, d.h. eine zu ihr dquivalente Formel in NNF zu finden.

Lésung: Wir ersetzen zunéchst die Konstanten 0 und 1 sowie alle
Implikationspfeile durch geeignete Formeln aus AL({—, A, V}) und wenden dann
den NNF-Algorithmus an. Der Teil einer Formel, der als Nichstes ersetzt wird,
ist im Folgenden jeweils unterstrichen.

((ﬁAo A =((Ao V A1) — Ao)) . Q)

(ﬁAo A=((AoV A1) = Ao)> (Ao A —\Ao))
)
)

(2240 V == (=(A0 V A1) V Ao) ) V (A0 A —Ad))

—\(—\Ao/\—\((Ao\/Al *)Ao )\/ AoA‘!Ao)

:(—\Ao/\ ( (Ao\/Al)\/Ao )\/(Ao/\—‘Ao

Il
/N N N N
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Beispiel 2.40
Das Ziel ist, die Formel <<ﬂAo A= ((Ao V A1) — Ao)> - 0)

in NNF zu bringen, d.h. eine zu ihr dquivalente Formel in NNF zu finden.

Lésung: Wir ersetzen zunéchst die Konstanten 0 und 1 sowie alle
Implikationspfeile durch geeignete Formeln aus AL({—, A, V}) und wenden dann
den NNF-Algorithmus an. Der Teil einer Formel, der als Nichstes ersetzt wird,
ist im Folgenden jeweils unterstrichen.

((ﬁAo A =((Ao V A1) — Ao)) . Q)

(ﬁAO A=((Ao v Ar) — Ao)> (Ao A —\Ao))

-
-

(
(
(=
(
(

(—\Ao N —\((Ao Vv Al) — Ao)) Ao A\ —|Ao)
(

)
(ﬂAo A=(=(Ao V A1) V Ao)) V (Ao A —Ao) )

(:Ao V (Ao V Ar) V Ao)) V (Ao A —|Ao))

(Ao V (2(A0 V A1) V Ao)) V (Ao A —\A0)>
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Beispiel 2.40
Das Ziel ist, die Formel <<ﬂAo A= ((Ao V A1) — Ao)> - 0)

in NNF zu bringen, d.h. eine zu ihr dquivalente Formel in NNF zu finden.

Lésung: Wir ersetzen zunéchst die Konstanten 0 und 1 sowie alle
Implikationspfeile durch geeignete Formeln aus AL({—, A, V}) und wenden dann
den NNF-Algorithmus an. Der Teil einer Formel, der als Nichstes ersetzt wird,
ist im Folgenden jeweils unterstrichen.

((ﬁAo A =((Ao V A1) — Ao)) . Q)

(ﬁAo A= ((A0V A1) — Ao)> (Ao A —\Ao))

(—\Ao A~ Ao Vv Al) — Ao)) Ao A\ —|Ao)

(ﬁﬁAO V = (=(Ao V Ar) V Ao)) V (Ao A ﬁAO))

(
(- )
(=(A0 A= (A0 v A1) V A0) ) V (Ao A ~A0) )
(
(

(Ao V (2(A0 V A1) V Ao)) V (Ao A —\A0)>

= ((Ao V ((— A0 A ~A1) V Ao)> V (Ao A ﬁAo))‘

Diese Formel ist offensichtlicherweise in NNF.
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Klammern bei Konjunktionen und Disjunktionen

Weil A assoziativ ist, kénnen wir Formeln der Gestalt A", ¢; etwas
groBziigiger interpretieren. Von nun an stehe A7 ¢; fiir o1 A A, mit
irgendeiner Klammerung.

Entsprechend verfahren wir mit Disjunktionen.
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Klammern bei Konjunktionen und Disjunktionen

Weil A assoziativ ist, kénnen wir Formeln der Gestalt A", ¢; etwas
groBziigiger interpretieren. Von nun an stehe A7 ¢; fiir o1 A A, mit
irgendeiner Klammerung.

Entsprechend verfahren wir mit Disjunktionen.

Beispiel
Die Formel /\;‘:1 @i kann fiir jede der folgenden Formeln stehen:
(((p1 A @2) Aps) A ga)
((p1 A (2 A p3)) A pa)
((pr A p2) A3 Apa))
(1 A ((p2 A p3) A ea))
)

(1 A (02 A (3 A pa))) -

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 115



Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

DNF und KNF

Definition 2.41
(a) Ein Literal ist eine Formel der Gestalt X oder =X, wobei X € AS.
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

DNF und KNF

Definition 2.41

(a) Ein Literal ist eine Formel der Gestalt X oder =X, wobei X € AS.
Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem

negativen Literal.
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

DNF und KNF

Definition 2.41

(a) Ein Literal ist eine Formel der Gestalt X oder =X, wobei X € AS.
Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem
negativen Literal.

(b) Eine Formel ist in disjunktiver Normalform (DNF), wenn sie eine
Disjunktion von Konjunktionen von Literalen ist, d.h., wenn sie die Form

()

hat, wobei n,mq, ..., m, > 1 sind und die A, fiir alle i € [n] und j € [m]]
Literale sind.
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

DNF und KNF

Definition 2.41

(a) Ein Literal ist eine Formel der Gestalt X oder =X, wobei X € AS.
Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem
negativen Literal.

(b) Eine Formel ist in disjunktiver Normalform (DNF), wenn sie eine
Disjunktion von Konjunktionen von Literalen ist, d.h., wenn sie die Form

V (An)

=1 = j=1
hat, wobei n,mq, ..., m, > 1 sind und die A, fiir alle i € [n] und j € [m]]
Literale sind. Die Subformeln x; := /\Jm:1 Aij, fir i€ [n], nennen wir die

(konjunktiven) Klauseln der Formel.
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

DNF und KNF
Definition 2.41

(a)

(b)

Ein Literal ist eine Formel der Gestalt X oder =X, wobei X &€ AS.

Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem
negativen Literal.

Eine Formel ist in disjunktiver Normalform (DNF), wenn sie eine
Disjunktion von Konjunktionen von Literalen ist, d.h., wenn sie die Form

V (Ax)

=1 = j=1
hat, wobei n,mq, ..., m, > 1 sind und die A, fiir alle i € [n] und j € [m]]
Literale sind. Die Subformeln x; := /\Jm:1 Aij, fir i€ [n], nennen wir die
(konjunktiven) Klauseln der Formel.

Beispiele:
o (Al A=A A Ag) (‘\A7 *Ag) (Aj Al)
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

DNF und KNF
Definition 2.41

(a)

(b)

Ein Literal ist eine Formel der Gestalt X oder =X, wobei X &€ AS.

Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem
negativen Literal.

Eine Formel ist in disjunktiver Normalform (DNF), wenn sie eine
Disjunktion von Konjunktionen von Literalen ist, d.h., wenn sie die Form

V (Ax)

=1 = j=1
hat, wobei n,mq, ..., m, > 1 sind und die A, fiir alle i € [n] und j € [m]]
Literale sind. Die Subformeln x; := /\Jm:1 Aij, fir i€ [n], nennen wir die
(konjunktiven) Klauseln der Formel.

Beispiele:
° (Al —=As / Az) y (“A7 *Ag) y (Aj ! Al) ist in DNF
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

DNF und KNF
Definition 2.41

(a)

(b)

Ein Literal ist eine Formel der Gestalt X oder =X, wobei X &€ AS.

Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem
negativen Literal.

Eine Formel ist in disjunktiver Normalform (DNF), wenn sie eine
Disjunktion von Konjunktionen von Literalen ist, d.h., wenn sie die Form

V (An)

=1 j=1

hat, wobei n,mq, ..., m, > 1 sind und die A, fiir alle i € [n] und j € [m]]
Literale sind. Die Subformeln x; := /\Jm:1 Aij, fir i€ [n], nennen wir die
(konjunktiven) Klauseln der Formel.

Beispiele:
° (Al A=A N Ag) (“Ag *Ag) (Aj Al) ist in DNF
e A1V -AV Az
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

DNF und KNF
Definition 2.41

(a)

(b)

Ein Literal ist eine Formel der Gestalt X oder =X, wobei X &€ AS.

Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem
negativen Literal.

Eine Formel ist in disjunktiver Normalform (DNF), wenn sie eine
Disjunktion von Konjunktionen von Literalen ist, d.h., wenn sie die Form

V (An)

=1 j=1

hat, wobei n,mq, ..., m, > 1 sind und die A, fiir alle i € [n] und j € [m]]
Literale sind. Die Subformeln x; := /\Jm:1 Aij, fir i€ [n], nennen wir die
(konjunktiven) Klauseln der Formel.

Beispiele:
° (Al —=As / Az) y (“Ag *Ag) y (Aj ! Al) ist in DNF
o AV AV As istin DNF (mit n =3 und mi = mx=m3 =1)
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

DNF und KNF
Definition 2.41

(a)

(b)

Ein Literal ist eine Formel der Gestalt X oder =X, wobei X &€ AS.

Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem
negativen Literal.

Eine Formel ist in disjunktiver Normalform (DNF), wenn sie eine
Disjunktion von Konjunktionen von Literalen ist, d.h., wenn sie die Form

V (An)

=1 j=1

hat, wobei n,mq, ..., m, > 1 sind und die A, fiir alle i € [n] und j € [m]]
Literale sind. Die Subformeln x; := /\Jm:1 Aij, fir i€ [n], nennen wir die
(konjunktiven) Klauseln der Formel.

Beispiele:
° (Al A=A N Ag) (“Ag *Ag) (Aj Al) ist in DNF
o AV AV As istin DNF (mit n =3 und mi = mx=m3 =1)
o A1 N—-Ax N As
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

DNF und KNF
Definition 2.41

(a)

(b)

Ein Literal ist eine Formel der Gestalt X oder =X, wobei X &€ AS.

Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem
negativen Literal.

Eine Formel ist in disjunktiver Normalform (DNF), wenn sie eine
Disjunktion von Konjunktionen von Literalen ist, d.h., wenn sie die Form

V (An)

=1 j=1

hat, wobei n,mq, ..., m, > 1 sind und die A, fiir alle i € [n] und j € [m]]
Literale sind. Die Subformeln x; := /\Jm:1 Aij, fir i€ [n], nennen wir die
(konjunktiven) Klauseln der Formel.

Beispiele:
° (Al —=As / Az) y (“Ag *Ag) y (Aj ! Al) ist in DNF
o AV AV As istin DNF (mit n =3 und mi = mx=m3 =1)
e A1 A —A> A As istin DNF (mit n =1 und m; = 3)
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

DNF und KNF
Definition 2.41

(a)

(b)

Ein Literal ist eine Formel der Gestalt X oder =X, wobei X &€ AS.
Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem
negativen Literal.

Eine Formel ist in disjunktiver Normalform (DNF), wenn sie eine
Disjunktion von Konjunktionen von Literalen ist, d.h., wenn sie die Form

()

hat, wobei n,mq, ..., m, > 1 sind und die A, fiir alle i € [n] und j € [m]]

Literale sind. Die Subformeln x; := /\Jm:1 Aij, fir i€ [n], nennen wir die
(konjunktiven) Klauseln der Formel.
Beispiele:

° ist in DNF

° istin DNF (mit n=3und mi =m,=m3 =1)

. ist in DNF (mit n =1 und m; = 3) und gleichzeitig ist diese

Formel eine konjunktive Klausel
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

(c) Eine Formel ist in konjunktiver Normalform (KNF), wenn sie eine
Konjunktion von Disjunktion von Literalen ist, d.h., wenn sie die Form

AT

hat, wobei n,mq, ..., m, > 1 sind und die \;j fiir alle i € [n] und j € [m]]
Literale sind.
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

(c) Eine Formel ist in konjunktiver Normalform (KNF), wenn sie eine
Konjunktion von Disjunktion von Literalen ist, d.h., wenn sie die Form

AT

hat, wobei n,mq, ..., m, > 1 sind und die \;j fiir alle i € [n] und j € [m]]
Literale sind. Die Subformeln x; := \/Jm:1 Aij, fir i € [n], nennen wir die
(disjunktiven) Klauseln der Formel.
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

(c) Eine Formel ist in konjunktiver Normalform (KNF), wenn sie eine
Konjunktion von Disjunktion von Literalen ist, d.h., wenn sie die Form

AT

hat, wobei n,mq, ..., m, > 1 sind und die \;j fiir alle i € [n] und j € [m]]
Literale sind. Die Subformeln x; := \/Jm:1 Aij, fir i € [n], nennen wir die
(disjunktiven) Klauseln der Formel.

Beispiele:
° (Al V =As V Ag) (“Az V *Ag) AN (Ag Al)
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

(c) Eine Formel ist in konjunktiver Normalform (KNF), wenn sie eine
Konjunktion von Disjunktion von Literalen ist, d.h., wenn sie die Form

AT

hat, wobei n,mq, ..., m, > 1 sind und die \;j fiir alle i € [n] und j € [m]]
Literale sind. Die Subformeln x; := \/Jm:1 Aij, fir i € [n], nennen wir die
(disjunktiven) Klauseln der Formel.

Beispiele:
° (Al V =As V Ag) (“Az V *Ag) A (Ag Al) ist in KNF
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

(c) Eine Formel ist in konjunktiver Normalform (KNF), wenn sie eine
Konjunktion von Disjunktion von Literalen ist, d.h., wenn sie die Form

A (V)

i=1 = j=1
hat, wobei n,my,...,m, > 1 sind und die /\,J fiir alle 7 € [n] und j € [m]]
Literale sind. Die Subformeln Ki = \/ ~1Aij, fir i€ [n], nennen wir die

(disjunktiven) Klauseln der Formel.

Beispiele:
° (Al V =As V Ag) (“Az V *Ag) A (Ag Al) ist in KNF
e A1V —AV Az
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

(c) Eine Formel ist in konjunktiver Normalform (KNF), wenn sie eine
Konjunktion von Disjunktion von Literalen ist, d.h., wenn sie die Form

A (V)

i=1 = j=1
hat, wobei n,my,...,m, > 1 sind und die /\,J fiir alle 7 € [n] und j € [m]]
Literale sind. Die Subformeln Ki = \/ ~1Aij, fir i€ [n], nennen wir die

(disjunktiven) Klauseln der Formel.

Beispiele:
° (Al V =As V Ag) (“Az *Ag) (Ag Al) ist in KNF
o AV AV As ist in KNF (mit n =1 und my = 3)
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

(c) Eine Formel ist in konjunktiver Normalform (KNF), wenn sie eine
Konjunktion von Disjunktion von Literalen ist, d.h., wenn sie die Form

A (V)

i=1 = j=1
hat, wobei n,my,...,m, > 1 sind und die /\,J fiir alle 7 € [n] und j € [m]]
Literale sind. Die Subformeln Ki = \/ ~1Aij, fir i€ [n], nennen wir die

(disjunktiven) Klauseln der Formel.

Beispiele:
° (Al —-A> \ A),) ! (“AQ *A),) ! (Ag y Al) ist in KNF
o AV AV As ist in KNF (mit n =1 und my = 3) und gleichzeitig ist diese
Formel eine disjunktive Klausel
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

(c) Eine Formel ist in konjunktiver Normalform (KNF), wenn sie eine
Konjunktion von Disjunktion von Literalen ist, d.h., wenn sie die Form

A (V)

i=1 = j=1
hat, wobei n,my,...,m, > 1 sind und die /\,J fiir alle 7 € [n] und j € [m]]
Literale sind. Die Subformeln Ki = \/ ~1Aij, fir i€ [n], nennen wir die

(disjunktiven) Klauseln der Formel.

Beispiele:
° (Al V =As V Ag) (“Az *Ag) (Ag Al) ist in KNF
o AV AV As ist in KNF (mit n =1 und my = 3) und gleichzeitig ist diese
Formel eine disjunktive Klausel
o At A—Ar AN A3
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

(c) Eine Formel ist in konjunktiver Normalform (KNF), wenn sie eine
Konjunktion von Disjunktion von Literalen ist, d.h., wenn sie die Form

A (V)

i=1 = j=1
hat, wobei n,my,...,m, > 1 sind und die /\,J fiir alle 7 € [n] und j € [m]]
Literale sind. Die Subformeln Ki = \/ ~1Aij, fir i€ [n], nennen wir die

(disjunktiven) Klauseln der Formel.

Beispiele:
° (Al —-A> \ A),) ! (“AQ *A),) ! (Ag y Al) ist in KNF
o AV AV As ist in KNF (mit n =1 und my = 3) und gleichzeitig ist diese
Formel eine disjunktive Klausel
o A1 A=A AN As istin KNF (mitn=3und my=my,=m3=1)
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Normalformen spielen in vielen Anwendungsgebieten eine wichtige Rolle.
Beispielsweise geht man in der Schaltungstechnik (Hardware-Entwurf) oft von
DNF-Formeln aus, wahrend bei der aussagenlogischen Modellbildung oftmals
KNF-Formeln auftreten, da sich eine Sammlung von einfach strukturierten
Aussagen sehr gut durch eine Konjunktion von Klauseln ausdriicken |&sst.
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Satz 2.42

Jede aussagenlogische Formel ist dquivalent zu einer Formel in DNF und zu
einer Formel in KNF.
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Bemerkung 2.43
Der Beweis von Satz 2.42 zeigt Folgendes:
Um fiir eine gegebene Formel 1 eine dquivalente Formel ¢ in

o DNF zu erzeugen, konnen wir
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Bemerkung 2.43
Der Beweis von Satz 2.42 zeigt Folgendes:
Um fiir eine gegebene Formel 1 eine dquivalente Formel ¢ in
o DNF zu erzeugen, konnen wir die Wahrheitstafel fiir 1) aufstellen und dann

wie in Beispiel 2.33 vorgehen
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Bemerkung 2.43
Der Beweis von Satz 2.42 zeigt Folgendes:
Um fiir eine gegebene Formel 1 eine dquivalente Formel ¢ in
o DNF zu erzeugen, konnen wir die Wahrheitstafel fiir 1) aufstellen und dann
wie in Beispiel 2.33 vorgehen (bzw. ¢ := A; A —A; setzen, falls ¢

unerfiillbar ist).
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Bemerkung 2.43
Der Beweis von Satz 2.42 zeigt Folgendes:
Um fiir eine gegebene Formel 1 eine dquivalente Formel ¢ in
o DNF zu erzeugen, konnen wir die Wahrheitstafel fiir 1) aufstellen und dann
wie in Beispiel 2.33 vorgehen (bzw. ¢ := A; A —A; setzen, falls ¢
unerfiillbar ist).
o KNF zu erzeugen, kénnen wir wie folgt vorgehen:
(1) Stelle die Wahrheitstafel fiir ¢ auf.
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Bemerkung 2.43
Der Beweis von Satz 2.42 zeigt Folgendes:
Um fiir eine gegebene Formel 1 eine dquivalente Formel ¢ in
o DNF zu erzeugen, konnen wir die Wahrheitstafel fiir 1) aufstellen und dann
wie in Beispiel 2.33 vorgehen (bzw. ¢ := A; A —A; setzen, falls ¢
unerfiillbar ist).
o KNF zu erzeugen, kénnen wir wie folgt vorgehen:

(1) Stelle die Wahrheitstafel fiir ¢ auf.
(2) Falls in der letzten Spalte nur ,, 1"en stehen,
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Bemerkung 2.43
Der Beweis von Satz 2.42 zeigt Folgendes:
Um fiir eine gegebene Formel 1 eine dquivalente Formel ¢ in
o DNF zu erzeugen, konnen wir die Wahrheitstafel fiir 1) aufstellen und dann
wie in Beispiel 2.33 vorgehen (bzw. ¢ := A; A —A; setzen, falls ¢
unerfiillbar ist).
o KNF zu erzeugen, kénnen wir wie folgt vorgehen:

(1) Stelle die Wahrheitstafel fiir ¢ auf.
(2) Falls in der letzten Spalte nur ,,1"en stehen, setze ¢ := A; V —A;.
(3) Ansonsten gehe wie folgt vor:
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Bemerkung 2.43
Der Beweis von Satz 2.42 zeigt Folgendes:
Um fiir eine gegebene Formel 1 eine dquivalente Formel ¢ in
o DNF zu erzeugen, konnen wir die Wahrheitstafel fiir 1) aufstellen und dann
wie in Beispiel 2.33 vorgehen (bzw. ¢ := A; A —A; setzen, falls ¢
unerfiillbar ist).
o KNF zu erzeugen, kénnen wir wie folgt vorgehen:

(1) Stelle die Wahrheitstafel fiir ¢ auf.
(2) Falls in der letzten Spalte nur ,,1"en stehen, setze ¢ := A; V —A;.
(3) Ansonsten gehe wie folgt vor:
o Betrachte alle Zeilen der Wahrheitstafel, bei denen in der letzten Spalte eine

,0" steht.
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Bemerkung 2.43
Der Beweis von Satz 2.42 zeigt Folgendes:
Um fiir eine gegebene Formel 1 eine dquivalente Formel ¢ in
o DNF zu erzeugen, konnen wir die Wahrheitstafel fiir 1) aufstellen und dann
wie in Beispiel 2.33 vorgehen (bzw. ¢ := A; A —A; setzen, falls ¢
unerfiillbar ist).
o KNF zu erzeugen, kénnen wir wie folgt vorgehen:

(1) Stelle die Wahrheitstafel fiir ¢ auf.
(2) Falls in der letzten Spalte nur ,,1"en stehen, setze ¢ := A; V —A;.

(3) Ansonsten gehe wie folgt vor:
o Betrachte alle Zeilen der Wahrheitstafel, bei denen in der letzten Spalte eine

, 0% steht.
o Fiir jede solche Zeile konstruiere die disjunktive Klausel, die von allen

Interpretationen auBer der zur Zeile gehdrenden erfiillt wird.
Beispiel: Wenn die Zeile der Wahrheitstafel die Form

011]0
hat, so gehort dazu die disjunktive Klausel

A1V —Ay V —A3.
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Bemerkung 2.43

Der Beweis von Satz 2.42 zeigt Folgendes:
Um fiir eine gegebene Formel 1 eine dquivalente Formel ¢ in
o DNF zu erzeugen, konnen wir die Wahrheitstafel fiir 1) aufstellen und dann
wie in Beispiel 2.33 vorgehen (bzw. ¢ := A; A —A; setzen, falls ¢
unerfiillbar ist).
o KNF zu erzeugen, kénnen wir wie folgt vorgehen:
(1) Stelle die Wahrheitstafel fiir ¢ auf.
(2) Falls in der letzten Spalte nur ,,1"en stehen, setze ¢ := A; V —A;.
(3) Ansonsten gehe wie folgt vor:

o Betrachte alle Zeilen der Wahrheitstafel, bei denen in der letzten Spalte eine

, 0" steht.
e Fiir jede solche Zeile konstruiere die disjunktive Klausel, die von allen
Interpretationen auBer der zur Zeile gehdrenden erfiillt wird.

Beispiel: Wenn die Zeile der Wahrheitstafel die Form
011]0
hat, so gehort dazu die disjunktive Klausel
A1V —Ap V —As.

e Bilde die Konjunktion all dieser disjunktiven Klauseln.
Dies liefert die gesuchte KNF-Formel ¢.
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Wenn eine Formel sehr viele verschiedene Aussagensymbole enthilt, die zur
Formel gehorige Wahrheitstafel also sehr groB ist, ist das gerade beschriebene
Verfahren zur Umformung in DNF oder KNF sehr zeitaufwandig.
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Wenn eine Formel sehr viele verschiedene Aussagensymbole enthilt, die zur
Formel gehorige Wahrheitstafel also sehr groB ist, ist das gerade beschriebene
Verfahren zur Umformung in DNF oder KNF sehr zeitaufwandig.

In solchen Fallen ist es ratsam, stattdessen zu versuchen, die gewiinschte
Normalform durch Aquivalenzumformungen zu erzeugen.
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Beispiel 2.44
Sei ¢ = ((ﬂAO A (Ao = A1) V (Ao — A3)).

Transformation von ¢ in NNF: siehe Tafel
Transformation in DNF: siehe Tafel

Transformation in KNF: siehe Tafel
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Beispiel 2.44
Sei = ((ﬂAO A (Ao = A1) V (Ao — A3)).

Transformation von ¢ in NNF: siehe Tafel
Transformation in DNF: siehe Tafel

Transformation in KNF: siehe Tafel

Je nach Formel muss man ggf. die Distributivitatsregel mehrmals anwenden, bis
man eine Formel der gewiinschten Normalform erhilt.
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Ein DNF-Algorithmus

Eingabe: Formel ¢ € AL({—, A, V}) in NNF.
Ausgabe: Formel " in DNF
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Ein DNF-Algorithmus

Eingabe: Formel ¢ € AL({—, A, V}) in NNF.
Ausgabe: Formel ¢ in DNF
Verfahren: 1. Wiederhole folgende Schritte:
2. Wenn ¢ in DNF ist, dann halte mit
Ausgabe .
3. Ersetze eine Subformel von ¢ der Gestalt

(1 A (12 V 1b3)) durch ((¢1 A 92) V (¥1 A 93))

oder eine Subformel der Gestalt

(1 Vab2) Ap3) durch (1 A 93) V (2 A 93)).

Sei ¢’ die resultierende Formel.
4, p=¢.
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Ein DNF-Algorithmus

Eingabe: Formel ¢ € AL({—, A, V}) in NNF.
Ausgabe: Formel ¢ in DNF
Verfahren: 1. Wiederhole folgende Schritte:
2. Wenn ¢ in DNF ist, dann halte mit
Ausgabe .
3. Ersetze eine Subformel von ¢ der Gestalt

(1 A (12 V 1b3)) durch ((¢1 A 92) V (¥1 A 93))

oder eine Subformel der Gestalt

(1 Vab2) Ap3) durch (1 A 93) V (2 A 93)).

Sei ¢’ die resultierende Formel.
4, p=¢.
Satz 2.45

Fiir jede Eingabeformel ¢ in NNF gibt der DNF-Algorithmus nach endlich vielen
Schritten eine zu ¢ Aquivalente Formel ©'' in DNF aus.

(hier ohne Beweis)
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Ein DNF-Algorithmus

Eingabe: Formel ¢ € AL({—, A, V}) in NNF.
Ausgabe: Formel ¢ in DNF
Verfahren: 1. Wiederhole folgende Schritte:
2. Wenn ¢ in DNF ist, dann halte mit
Ausgabe .
3. Ersetze eine Subformel von ¢ der Gestalt

(1 A (12 V 1b3)) durch ((¢1 A 92) V (¥1 A 93))

oder eine Subformel der Gestalt

(1 Vab2) Ap3) durch (1 A 93) V (2 A 93)).

Sei ¢’ die resultierende Formel.
4, p=¢.
Satz 2.45

Fiir jede Eingabeformel ¢ in NNF gibt der DNF-Algorithmus nach endlich vielen
Schritten eine zu ¢ Aquivalente Formel ©'' in DNF aus.

(hier ohne Beweis)

Analog kann man auch einen , KNF-Algorithmus™ angeben, der bei Eingabe
einer NNF-Formel eine dquivalente Formel in KNF erzeugt (Details: Ubung).
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Eine kleine Formel mit groBer DNF

Satz 2.46

Seine€ N mitn>1, seien Xq,...,X, und Yi,...,Y, genau 2n verschiedene

Aussagensymbole und sei
n
On = /\ (Xiv=Y;).
i=1

Jede zu p,, dquivalente Formel in DNF hat mindestens 2" konjunktive Klauseln.
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Eine kleine Formel mit groBer DNF

Satz 2.46

Seine€ N mitn>1, seien Xq,...,X, und Yi,...,Y, genau 2n verschiedene
Aussagensymbole und sei

n
On = /\ (Xiv=Y;).
i=1

Jede zu p,, dquivalente Formel in DNF hat mindestens 2" konjunktive Klauseln.

Beweis: Ubung
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Kapitel 2: Aussagenlogik - Abschnitt 2.4: Normalformen

Eine kleine Formel mit groBer DNF

Satz 2.46
Seine€ N mitn>1, seien Xq,...,X, und Yi,...,Y, genau 2n verschiedene
Aussagensymbole und sei

n
On = /\ (Xiv=Y;).
i=1

Jede zu p,, dquivalente Formel in DNF hat mindestens 2" konjunktive Klauseln.

Beweis: Ubung

Korollar 2.47

Jeder Algorithmus, der bei Eingabe von beliebigen aussagenlogischen Formeln
dazu dquivalente Formeln in DNF erzeugt, hat eine Laufzeit, die im worst-case
exponentiell ist, d.h., 2" bei Eingabe von Formeln der Lange n.
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Kapitel 2: Aussagenlogik - Abschnitt 2.5: Der Endlichkeitssatz

Der Endlichkeitssatz
(auch bekannt als Kompaktheitssatz)

Um nachzuweisen, dass eine gegebene unendliche Formelmenge erfiillbar ist, ist
der folgende Satz sehr niitzlich.

Satz 2.48 (Der Endlichkeitssatz der Aussagenlogik)
Fiir jede Formelmenge ® C AL gilt:

& st erfiillbar <= Jede endliche Teilmenge von ® ist erfiillbar.
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Kapitel 2: Aussagenlogik - Abschnitt 2.5: Der Endlichkeitssatz

Der Endlichkeitssatz
(auch bekannt als Kompaktheitssatz)

Um nachzuweisen, dass eine gegebene unendliche Formelmenge erfiillbar ist, ist
der folgende Satz sehr niitzlich.

Satz 2.48 (Der Endlichkeitssatz der Aussagenlogik)
Fiir jede Formelmenge ® C AL gilt:

& st erfiillbar <= Jede endliche Teilmenge von ® ist erfiillbar.

Korollar 2.49 (Variante des Endlichkeitssatzes)
Sei ® C AL und sei ) € AL. Dann gilt:

& =Y <= Es gibt eine endliche Teilmenge I von ®, so dass I |= 1.
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Kapitel 2: Aussagenlogik - Abschnitt 2.5: Der Endlichkeitssatz

Anwendung: Farbbarkeit

Zur Erinnerung:
e Ein Graph G = (V, E) besteht aus einer nicht-leeren Menge V von Knoten
und einer Menge E C {{x,y} : x,y € V, x # y} von (ungerichteten)
Kanten.
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Anwendung: Farbbarkeit

Zur Erinnerung:

e Ein Graph G = (V, E) besteht aus einer nicht-leeren Menge V von Knoten
und einer Menge E C {{x,y} : x,y € V, x # y} von (ungerichteten)
Kanten.

e Ein Subgraph eines Graphen G = (V, E) ist ein Graph H = (V’, E') mit
V'CVund E' CE.
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Kapitel 2: Aussagenlogik - Abschnitt 2.5: Der Endlichkeitssatz

Anwendung: Farbbarkeit

Zur Erinnerung:

e Ein Graph G = (V, E) besteht aus einer nicht-leeren Menge V von Knoten
und einer Menge E C {{x,y} : x,y € V, x # y} von (ungerichteten)
Kanten.

e Ein Subgraph eines Graphen G = (V, E) ist ein Graph H = (V’, E') mit
V'CVund E' CE.

e Ein Graph ist endlich (bzw. unendlich), wenn seine Knotenmenge endlich
(bzw. unendlich) ist.
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Kapitel 2: Aussagenlogik - Abschnitt 2.5: Der Endlichkeitssatz

Anwendung: Farbbarkeit

Zur Erinnerung:

e Ein Graph G = (V, E) besteht aus einer nicht-leeren Menge V von Knoten
und einer Menge E C {{x,y} : x,y € V, x # y} von (ungerichteten)
Kanten.

e Ein Subgraph eines Graphen G = (V, E) ist ein Graph H = (V’, E') mit
V'CVund E' CE.

e Ein Graph ist endlich (bzw. unendlich), wenn seine Knotenmenge endlich
(bzw. unendlich) ist.

Definition 2.50

Sei k € N mit k > 1.

Eine k-Farbung eines Graphen G = (V/, E) ist eine Abbildung f : V — [K], so
dass fiir alle Kanten {v, w} € E gilt: f(v) # f(w).
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Kapitel 2: Aussagenlogik - Abschnitt 2.5: Der Endlichkeitssatz

Anwendung: Farbbarkeit

Zur Erinnerung:

e Ein Graph G = (V, E) besteht aus einer nicht-leeren Menge V von Knoten
und einer Menge E C {{x,y} : x,y € V, x # y} von (ungerichteten)
Kanten.

e Ein Subgraph eines Graphen G = (V, E) ist ein Graph H = (V’, E') mit
V'CVund E' CE.

e Ein Graph ist endlich (bzw. unendlich), wenn seine Knotenmenge endlich
(bzw. unendlich) ist.

Definition 2.50

Sei k e N mit k > 1.

Eine k-Farbung eines Graphen G = (V/, E) ist eine Abbildung f : V — [K], so
dass fiir alle Kanten {v, w} € E gilt: f(v) # f(w).

G heiBt k-farbbar, falls es eine k-Farbung von G gibt.
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Kapitel 2: Aussagenlogik - Abschnitt 2.5: Der Endlichkeitssatz

Anwendung: Farbbarkeit

Zur Erinnerung:

e Ein Graph G = (V, E) besteht aus einer nicht-leeren Menge V von Knoten
und einer Menge E C {{x,y} : x,y € V, x # y} von (ungerichteten)
Kanten.

e Ein Subgraph eines Graphen G = (V, E) ist ein Graph H = (V’, E') mit
V'CVund E' CE.

e Ein Graph ist endlich (bzw. unendlich), wenn seine Knotenmenge endlich
(bzw. unendlich) ist.

Definition 2.50

Sei k e N mit k > 1.

Eine k-Farbung eines Graphen G = (V/, E) ist eine Abbildung f : V — [K], so
dass fiir alle Kanten {v, w} € E gilt: f(v) # f(w).

G heiBt k-farbbar, falls es eine k-Farbung von G gibt.

Satz 2.51

Seik e Nmit k > 1.

Ein unendlicher Graph G mit Knotenmenge N ist genau dann k-farbbar, wenn
Jeder endliche Subgraph von G k-firbbar ist.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Um nachzuweisen, dass eine gegebene KNF-Formel unerfiillbar ist, ist das im
Folgenden vorgestellte Resolutionsverfahren niitzlich.

Beispiel 2.52
Wir wollen nachweisen, dass die KNF-Formel
p =

unerfiillbar ist.
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Um nachzuweisen, dass eine gegebene KNF-Formel unerfiillbar ist, ist das im

Folgenden vorgestellte Resolutionsverfahren niitzlich.

Beispiel 2.52
Wir wollen nachweisen, dass die KNF-Formel
p =

unerfiillbar ist. Dazu konnen wir wie folgt argumentieren:

Angenommen, eine Interpretation Z erfiillt .
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Um nachzuweisen, dass eine gegebene KNF-Formel unerfiillbar ist, ist das im

Folgenden vorgestellte Resolutionsverfahren niitzlich.

Beispiel 2.52

Wir wollen nachweisen, dass die KNF-Formel
p =
unerfiillbar ist. Dazu konnen wir wie folgt argumentieren:

Angenommen, eine Interpretation Z erfiillt .
e Danngilt ZE—T.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Um nachzuweisen, dass eine gegebene KNF-Formel unerfiillbar ist, ist das im

Folgenden vorgestellte Resolutionsverfahren niitzlich.

Beispiel 2.52

Wir wollen nachweisen, dass die KNF-Formel
p =
unerfiillbar ist. Dazu konnen wir wie folgt argumentieren:

Angenommen, eine Interpretation Z erfiillt .
e Danngilt ZE—T.

e Aus ZTEQVRVT und ZE-T folgtdann T QVR.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Um nachzuweisen, dass eine gegebene KNF-Formel unerfiillbar ist, ist das im

Folgenden vorgestellte Resolutionsverfahren niitzlich.

Beispiel 2.52

Wir wollen nachweisen, dass die KNF-Formel
p =
unerfiillbar ist. Dazu konnen wir wie folgt argumentieren:

Angenommen, eine Interpretation Z erfiillt .
e Danngilt ZE—T.

e Aus ZTEQVRVT und ZE-T folgtdann T QVR.

e Aus TEQVR und TE-QVS folgt ZTE=RVS.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Um nachzuweisen, dass eine gegebene KNF-Formel unerfiillbar ist, ist das im

Folgenden vorgestellte Resolutionsverfahren niitzlich.

Beispiel 2.52

Wir wollen nachweisen, dass die KNF-Formel
p =
unerfiillbar ist. Dazu konnen wir wie folgt argumentieren:

Angenommen, eine Interpretation Z erfiillt .
e Danngilt ZE—T.

e Aus ZTEQVRVT und ZE-T folgtdann T QVR.

e Aus TEQVR und TE-QVS folgt ZTE=RVS.
e Aus ZT=RVS und ZE=-SVR folgt T ER.

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik Version vom 13. November 2018

Folie 127



Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Um nachzuweisen, dass eine gegebene KNF-Formel unerfiillbar ist, ist das im

Folgenden vorgestellte Resolutionsverfahren niitzlich.

Beispiel 2.52

Wir wollen nachweisen, dass die KNF-Formel

P =

unerfiillbar ist. Dazu konnen wir wie folgt argumentieren:
Angenommen, eine Interpretation Z erfiillt .
e Danngilt ZE—T.

e Aus ZTEQVRVT und ZE-T folgtdann T QVR.

e Aus TEQVR und TE-QVS folgt ZTE=RVS.
e Aus ZT=RVS und ZE=-SVR folgt T ER.
e Aus Z=-PV =R und T} PV-R folgt = -R.

Das ist ein Widerspruch. Somit ist ¢ nicht erfiillbar.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Umwandlung in kleine KNF-Formeln

Das Resolutionsverfahren, das wir im Folgenden vorstellen, funktioniert nur fiir
KNF-Formeln.

Wir wissen bereits:
e Zu jeder Formel ¢ gibt es eine dquivalente Formel in KNF.
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Umwandlung in kleine KNF-Formeln

Das Resolutionsverfahren, das wir im Folgenden vorstellen, funktioniert nur fiir
KNF-Formeln.

Wir wissen bereits:
e Zu jeder Formel ¢ gibt es eine dquivalente Formel in KNF.
o Aber moglicherweise ist die kleinste zu ¢ dquivalente KNF-Formel
exponentiell groB in der GroBe von .
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Umwandlung in kleine KNF-Formeln

Das Resolutionsverfahren, das wir im Folgenden vorstellen, funktioniert nur fiir
KNF-Formeln.

Wir wissen bereits:
e Zu jeder Formel ¢ gibt es eine dquivalente Formel in KNF.

o Aber moglicherweise ist die kleinste zu ¢ dquivalente KNF-Formel
exponentiell groB in der GroBe von .

Wenn es uns nur um die Frage geht, ob eine Formel ¢ (un)erfiillbar ist, ist es
aber auch gar nicht notig, eine zu ¢ dquivalente KNF-Formel zu finden.
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Umwandlung in kleine KNF-Formeln

Das Resolutionsverfahren, das wir im Folgenden vorstellen, funktioniert nur fiir
KNF-Formeln.

Wir wissen bereits:
e Zu jeder Formel ¢ gibt es eine dquivalente Formel in KNF.

o Aber moglicherweise ist die kleinste zu ¢ dquivalente KNF-Formel
exponentiell groB in der GroBe von .

Wenn es uns nur um die Frage geht, ob eine Formel ¢ (un)erfiillbar ist, ist es
aber auch gar nicht nétig, eine zu ¢ dquivalente KNF-Formel zu finden. Es
reicht, eine zu ¢ erfiillbarkeitsdquivalente KNF-Formel zu konstruieren.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Umwandlung in kleine KNF-Formeln

Das Resolutionsverfahren, das wir im Folgenden vorstellen, funktioniert nur fiir
KNF-Formeln.

Wir wissen bereits:
e Zu jeder Formel ¢ gibt es eine dquivalente Formel in KNF.

o Aber moglicherweise ist die kleinste zu ¢ dquivalente KNF-Formel
exponentiell groB in der GroBe von .

Wenn es uns nur um die Frage geht, ob eine Formel ¢ (un)erfiillbar ist, ist es
aber auch gar nicht nétig, eine zu ¢ dquivalente KNF-Formel zu finden. Es
reicht, eine zu ¢ erfiillbarkeitsdquivalente KNF-Formel zu konstruieren.

Definition 2.53

Zwei Formeln ¢ und 9 heiBen erfiillbarkeitsdquivalent, falls gilt:

@ ist erflillbar <= 4 ist erfiillbar.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Eine beliebige Formel in eine erfiillbarkeitsdquivalente KNF-Formel
umzuwandeln, ist in Linearzeit moglich.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Eine beliebige Formel in eine erfiillbarkeitsdquivalente KNF-Formel
umzuwandeln, ist in Linearzeit moglich.

Beispiel 2.54

Um die Formel
p = (P=>-Q)V (-(PAQ) AN R)

in eine erfiillbarkeitsdquivalente KNF-Formel umzuformen, kénnen wir wie folgt
vorgehen.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Das Tseitin-Verfahren

Auf die gleiche Weise wie in Beispiel 2.54 kdnnen wir jede beliebige
aussagenlogische Formel in eine erfiillbarkeitsdquivalente KNF-Formel

umwandeln.
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Das Tseitin-Verfahren

Auf die gleiche Weise wie in Beispiel 2.54 kdnnen wir jede beliebige
aussagenlogische Formel in eine erfiillbarkeitsdquivalente KNF-Formel
umwandeln. Dieses Verfahren wird Tseitin-Verfahren genannt.
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Das Tseitin-Verfahren

Auf die gleiche Weise wie in Beispiel 2.54 kdnnen wir jede beliebige
aussagenlogische Formel in eine erfiillbarkeitsdquivalente KNF-Formel
umwandeln. Dieses Verfahren wird Tseitin-Verfahren genannt. Eine
Laufzeitanalyse zeigt, dass das Tseitin-Verfahren in Linearzeit durchgefiihrt

werden kann.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Das Tseitin-Verfahren

Auf die gleiche Weise wie in Beispiel 2.54 kdnnen wir jede beliebige
aussagenlogische Formel in eine erfiillbarkeitsdquivalente KNF-Formel
umwandeln. Dieses Verfahren wird Tseitin-Verfahren genannt. Eine
Laufzeitanalyse zeigt, dass das Tseitin-Verfahren in Linearzeit durchgefiihrt
werden kann. Insgesamt erhalten wir so den folgenden Satz.

Satz 2.55

Zu jeder aussagenlogischen Formel ¢ gibt es eine aussagenlogische Formel ¢k
mit folgenden Eigenschaften:

(a) @k ist erfiillbarkeitsaquivalent zu .
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Das Tseitin-Verfahren

Auf die gleiche Weise wie in Beispiel 2.54 kdnnen wir jede beliebige
aussagenlogische Formel in eine erfiillbarkeitsdquivalente KNF-Formel
umwandeln. Dieses Verfahren wird Tseitin-Verfahren genannt. Eine
Laufzeitanalyse zeigt, dass das Tseitin-Verfahren in Linearzeit durchgefiihrt
werden kann. Insgesamt erhalten wir so den folgenden Satz.

Satz 2.55
Zu jeder aussagenlogischen Formel ¢ gibt es eine aussagenlogische Formel ¢k
mit folgenden Eigenschaften:

(a) @k ist erfiillbarkeitsaquivalent zu .

(b) ¢k ist in 3-KNF, d.h., in KNF, wobei jede disjunktive Klausel aus héchstens
3 Literalen besteht (wir sagen: die Klauseln haben Linge < 3).
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Das Tseitin-Verfahren

Auf die gleiche Weise wie in Beispiel 2.54 kdnnen wir jede beliebige
aussagenlogische Formel in eine erfiillbarkeitsdquivalente KNF-Formel
umwandeln. Dieses Verfahren wird Tseitin-Verfahren genannt. Eine
Laufzeitanalyse zeigt, dass das Tseitin-Verfahren in Linearzeit durchgefiihrt
werden kann. Insgesamt erhalten wir so den folgenden Satz.

Satz 2.55

Zu jeder aussagenlogischen Formel ¢ gibt es eine aussagenlogische Formel ¢k

mit folgenden Eigenschaften:

(a) @k ist erfiillbarkeitsaquivalent zu .

(b) ¢k ist in 3-KNF, d.h., in KNF, wobei jede disjunktive Klausel aus héchstens
3 Literalen besteht (wir sagen: die Klauseln haben Linge < 3).

(©) lex| = O(lel)-

AuBerdem gibt es einen Algorithmus, der ok bei Eingabe von ¢ in Linearzeit
berechnet.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Das Tseitin-Verfahren

Auf die gleiche Weise wie in Beispiel 2.54 kdnnen wir jede beliebige
aussagenlogische Formel in eine erfiillbarkeitsdquivalente KNF-Formel
umwandeln. Dieses Verfahren wird Tseitin-Verfahren genannt. Eine
Laufzeitanalyse zeigt, dass das Tseitin-Verfahren in Linearzeit durchgefiihrt
werden kann. Insgesamt erhalten wir so den folgenden Satz.

Satz 2.55

Zu jeder aussagenlogischen Formel ¢ gibt es eine aussagenlogische Formel ¢k
mit folgenden Eigenschaften:
(a) @k ist erfiillbarkeitsaquivalent zu .

(b) ¢k ist in 3-KNF, d.h., in KNF, wobei jede disjunktive Klausel aus héchstens
3 Literalen besteht (wir sagen: die Klauseln haben Linge < 3).

(©) lex| = O(lel)-
AuBerdem gibt es einen Algorithmus, der ok bei Eingabe von ¢ in Linearzeit
berechnet.

Notation
|| bezeichnet die Lange (bzw. GroBe) einer aussagenlogischen Formel ¢, d.h.
die Lange von ¢ aufgefasst als Wort iiber dem Alphabet Aa, .
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Reprasentation von KNF-Formeln

Fiir den Rest diese Abschnitts werden wir nur noch KNF-Formeln betrachten,
und wenn wir von Klauseln sprechen, meinen wir stets disjunktive Klauseln, also

Disjunktionen von Literalen.

Version vom 13. November 2018 Folie 131
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Reprasentation von KNF-Formeln

Fiir den Rest diese Abschnitts werden wir nur noch KNF-Formeln betrachten,
und wenn wir von Klauseln sprechen, meinen wir stets disjunktive Klauseln, also

Disjunktionen von Literalen.

Fiir das Resolutionsverfahren ist die folgende Reprasentation von Klauseln und
KNF-Formeln sehr hilfreich:
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Reprasentation von KNF-Formeln

Fiir den Rest diese Abschnitts werden wir nur noch KNF-Formeln betrachten,
und wenn wir von Klauseln sprechen, meinen wir stets disjunktive Klauseln, also
Disjunktionen von Literalen.

Fiir das Resolutionsverfahren ist die folgende Reprasentation von Klauseln und
KNF-Formeln sehr hilfreich:
e Eine Klausel (A1 V ---V \;), die aus Literalen Aq,..., Ay besteht,
identifizieren wir mit der Menge {\1,..., A} ihrer Literale.
Beispiel: Wir schreiben z.B. {A;1, Az, A3} um die Klausel (A; V —A; V A3)
zu bezeichnen.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Reprasentation von KNF-Formeln

Fiir den Rest diese Abschnitts werden wir nur noch KNF-Formeln betrachten,
und wenn wir von Klauseln sprechen, meinen wir stets disjunktive Klauseln, also
Disjunktionen von Literalen.

Fiir das Resolutionsverfahren ist die folgende Reprasentation von Klauseln und
KNF-Formeln sehr hilfreich:
e Eine Klausel (A1 V ---V \;), die aus Literalen Aq,..., Ay besteht,
identifizieren wir mit der Menge {\1,..., A} ihrer Literale.

Beispiel: Wir schreiben z.B. {A;1, Az, A3} um die Klausel (A; V —A; V A3)
zu bezeichnen.

D.h.: Ab jetzt sind disjunktive Klauseln fiir uns dasselbe wie endliche
Mengen von Literalen. Wenn wir von einer Klausel sprechen, meinen wir
eine endliche Menge von Literalen und identifizieren diese mit der Formel,
die aus der Disjunktion all dieser Literale besteht.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Reprasentation von KNF-Formeln

Fiir den Rest diese Abschnitts werden wir nur noch KNF-Formeln betrachten,
und wenn wir von Klauseln sprechen, meinen wir stets disjunktive Klauseln, also
Disjunktionen von Literalen.

Fiir das Resolutionsverfahren ist die folgende Reprasentation von Klauseln und
KNF-Formeln sehr hilfreich:
e Eine Klausel (A1 V ---V \;), die aus Literalen Aq,..., Ay besteht,
identifizieren wir mit der Menge {1, ..., A/} ihrer Literale.

Beispiel: Wir schreiben z.B. {A1, Az, A3} um die Klausel (A1 V —A; V A3)
zu bezeichnen.

D.h.: Ab jetzt sind disjunktive Klauseln fiir uns dasselbe wie endliche
Mengen von Literalen. Wenn wir von einer Klausel sprechen, meinen wir
eine endliche Menge von Literalen und identifizieren diese mit der Formel,
die aus der Disjunktion all dieser Literale besteht.

Spezialfall: Die leere Menge () entspricht der unerfiillbaren Formel 0 (die
wiederum der ,, Formel* entspricht, die aus der Disjunktion aller Literale aus
() besteht).
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

e Eine KNF-Formel ¢ = /\7,-, die aus (disjunktiven) Klauseln 71, ..., vm
i=1
besteht, identifizieren wir mit der Menge I := {71, ...,vm} ihrer Klauseln.
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e Eine KNF-Formel ¢ = /\7,-, die aus (disjunktiven) Klauseln 71, ..., vm
i=1
besteht, identifizieren wir mit der Menge I := {71, ...,vm} ihrer Klauseln.

Offensichtlicherweise gilt fiir alle Interpretationen Z:

Ik «— IET.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

e Eine KNF-Formel ¢ = /\7,-, die aus (disjunktiven) Klauseln 71, ..., vm
i=1
besteht, identifizieren wir mit der Menge I := {71, ...,vm} ihrer Klauseln.

Offensichtlicherweise gilt fiir alle Interpretationen Z:

IEp < IET.
Beispiel: Die KNF-Formel ¢ = A; A (mA2 V A1) A (A3 V Ay V —A7)
reprasentieren wir durch die endliche Klauselmenge

{ A1, (A2 VA, (A3V-AV—A) }
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

e Eine KNF-Formel ¢ = /\7,-, die aus (disjunktiven) Klauseln 71, ..., vm
i=1
besteht, identifizieren wir mit der Menge I := {71, ...,vm} ihrer Klauseln.

Offensichtlicherweise gilt fiir alle Interpretationen Z:

Ik «— IET.

Beispiel: Die KNF-Formel ¢ = A; A (mA2 V A1) A (A3 V Ay V —A7)
reprasentieren wir durch die endliche Klauselmenge

{ A1, (A2 VA, (A3V-AV—A) }

bzw. durch
{{A}), (A At} {As,—Ar ~A} )
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

e Eine KNF-Formel ¢ = /\7,-, die aus (disjunktiven) Klauseln 71, ..., vm
i=1
besteht, identifizieren wir mit der Menge I := {~1,..., Ym} ihrer Klauseln.

Offensichtlicherweise gilt fiir alle Interpretationen Z:

Ik «— IET.

Beispiel: Die KNF-Formel ¢ = A; A (mA2 V A1) A (A3 V Ay V —A7)
reprasentieren wir durch die endliche Klauselmenge

{ A1, (A2 VA, (A3V-AV—A) }

bzw. durch
{{A}), (A At} {As,—Ar ~A} )

., Erfiillbarkeit von KNF-Formeln* ist damit im Wesentlichen dasselbe Problem
wie ,, Erfiillbarkeit von endlichen Mengen von Klauseln".
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Resolution

Notation

Fiir ein Literal X sei

3 —X, falls A von der Form X fiir ein X € AS ist
" | X, falls A von der Form =X fiir ein X € AS ist.

Wir nennen X auch das Negat von \.
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Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik



Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Resolution

Notation
Fiir ein Literal \ sei

3 —X, falls A von der Form X fiir ein X € AS ist
o X, falls A von der Form —X fiir ein X € AS ist.

Wir nennen X auch das Negat von \.

Definition 2.56 (Resolutionsregel)

Seien 71, 72 und § endliche Mengen von Literalen (d.h. disjunktive Klauseln). Dann ist
0 eine Resolvente von 1 und -2, wenn es ein Literal A gibt, so dass gilt:

A€ m, A€ und §= (m\{A}) U (=\{r)}).
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Resolution

Notation
Fiir ein Literal \ sei

3 —X, falls A von der Form X fiir ein X € AS ist
o X, falls A von der Form —X fiir ein X € AS ist.

Wir nennen X auch das Negat von \.

Definition 2.56 (Resolutionsregel)

Seien 71, 72 und § endliche Mengen von Literalen (d.h. disjunktive Klauseln). Dann ist
0 eine Resolvente von 1 und -2, wenn es ein Literal A gibt, so dass gilt:

A€ m, A€ und §= (m\{A}) U (=\{r)}).

1\/

.0 ist eine Resolvente von ~; und ~."

Graphische Darstellung: gl
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Das Resolutionslemma

Notation
Ein Klausel ist eine endliche Menge von Literalen (eine solche Klausel

reprasentiert die Disjunktion der in ihr enthaltenen Literale).
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Das Resolutionslemma

Notation

Ein Klausel ist eine endliche Menge von Literalen (eine solche Klausel
reprasentiert die Disjunktion der in ihr enthaltenen Literale).

Eine Klauselmenge ist eine (endliche oder unendliche) Menge von Klauseln.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Das Resolutionslemma

Notation

Ein Klausel ist eine endliche Menge von Literalen (eine solche Klausel
reprasentiert die Disjunktion der in ihr enthaltenen Literale).

Eine Klauselmenge ist eine (endliche oder unendliche) Menge von Klauseln.

Lemma 2.57 (Resolutionslemma)

Sei I eine Klauselmenge, seien 71,72 € I und sei § eine Resolvente von v, und
~2. Dann sind die Klauselmengen I und T U {6} dquivalent.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Resolutionsableitungen und -widerlegungen

Definition
Sei I eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel 6 aus I ist
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Resolutionsableitungen und -widerlegungen

Definition
Sei I eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel ¢ aus I ist ein Tupel (01, ...

von Klauseln, so dass gilt: ¢ > 1,
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Resolutionsableitungen und -widerlegungen

Definition
Sei I eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel ¢ aus I ist ein Tupel (01, ..

von Klauseln, so dass gilt: ¢>1, §, =9,

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik Version vom 13. November 2018
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Resolutionsableitungen und -widerlegungen

Definition
Sei I eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel 6 aus I ist ein Tupel (d1,...,d,)
von Klauseln, so dass gilt: ¢ > 1, §, =4, und fiir alle i € [{] ist

e §; €I, oder
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Resolutionsableitungen und -widerlegungen

Definition
Sei I eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel ¢ aus I ist ein Tupel (01, ...

von Klauseln, so dass gilt: ¢ > 1, §, =4, und fiir alle i € [{] ist

e §; €T, oder
e es gibt j, k € [i—1], so dass §; eine Resolvente von d; und dj ist.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Resolutionsableitungen und -widerlegungen
Definition
Sei I eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel 6 aus I ist ein Tupel (d1,...,d,)
von Klauseln, so dass gilt: ¢ > 1, §, =4, und fiir alle i € [{] ist

e §; €I, oder

e es gibt j, k € [i—1], so dass §; eine Resolvente von d; und dj ist.

(b) Eine Resolutionswiderlegung von T ist eine Resolutionsableitung der
leeren Klausel aus T

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 135



Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Resolutionsableitungen und -widerlegungen
Definition
Sei I eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel 6 aus I ist ein Tupel (d1,...,d,)
von Klauseln, so dass gilt: ¢ > 1, §, =4, und fiir alle i € [{] ist

e §; €I, oder

e es gibt j, k € [i—1], so dass §; eine Resolvente von d; und dj ist.

(b) Eine Resolutionswiderlegung von T ist eine Resolutionsableitung der
leeren Klausel aus T

Zur Erinnerung:
Eine Klausel § ist genau dann eine Resolvente zweier Klauseln v; und 7y,, wenn
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Resolutionsableitungen und -widerlegungen
Definition
Sei I eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel 6 aus I ist ein Tupel (d1,...,d,)
von Klauseln, so dass gilt: ¢ > 1, §, =4, und fiir alle i € [{] ist

e §; €I, oder

e es gibt j, k € [i—1], so dass §; eine Resolvente von d; und dj ist.

(b) Eine Resolutionswiderlegung von T ist eine Resolutionsableitung der
leeren Klausel aus T

Zur Erinnerung:
Eine Klausel § ist genau dann eine Resolvente zweier Klauseln v; und 7y,, wenn

es ein Literal \ gibt, so dass gilt:

A€, A€y und 6=
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Resolutionsableitungen und -widerlegungen
Definition
Sei I eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel 6 aus I ist ein Tupel (d1,...,d,)
von Klauseln, so dass gilt: ¢ > 1, §, =4, und fiir alle i € [{] ist

e §; €I, oder

e es gibt j, k € [i—1], so dass §; eine Resolvente von d; und dj ist.

(b) Eine Resolutionswiderlegung von T ist eine Resolutionsableitung der
leeren Klausel aus T

Zur Erinnerung:
Eine Klausel § ist genau dann eine Resolvente zweier Klauseln v; und 7y,, wenn

es ein Literal \ gibt, so dass gilt:
A€, A€y und 6= (71\{)\}) U (72\{X}).
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Notation 2.58

(a) Wir schreiben kurz I Fg 6 um auszudriicken, dass es eine
Resolutionsableitung von § aus I' gibt.

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 136



Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Notation 2.58

(a) Wir schreiben kurz I Fg 6 um auszudriicken, dass es eine
Resolutionsableitung von § aus I' gibt.

Insbesondere bedeutet I =g (), dass es eine Resolutionswiderlegung von I
gibt.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Notation 2.58

(a) Wir schreiben kurz I Fg 6 um auszudriicken, dass es eine
Resolutionsableitung von § aus I' gibt.

Insbesondere bedeutet I =g (), dass es eine Resolutionswiderlegung von I
gibt.

(b) An Stelle von (1,...,d¢) schreiben wir Resolutionsableitungen der besseren
Lesbarkeit halber oft zeilenweise, also
(1) &
(2) o
(€) de

und geben am Ende jeder Zeile eine kurze Begriindung an.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Beispiel 2.59
Sei
M= {{_"Dv_‘R}v {’Dv_‘R}s {_‘st}v {QvRv T}v {_‘T}7 {_‘SvR}}

Eine Resolutionswiderlegung von I ist:
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Beispiel 2.59
Sei
M= {{_"Dv_‘R}v {’Dv_‘R}s {_‘st}v {QvRv T}v {_‘T}7 {_‘SvR}}

Eine Resolutionswiderlegung von I ist:

(1) =T} (inT)
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Beispiel 2.59
Sei
M= {{_"Dv_‘R}v {’D7_‘R}7 {_‘st}v {QvRv T}v {_‘T}7 {_‘SvR}}

Eine Resolutionswiderlegung von I ist:
1) {-T} (inl)
(2) {QR, T} (inT)
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Beispiel 2.59
Sei

M=
Eine Resolutionswiderlegung von I ist:

(1) =T} (inT)

(2 {QR, T} (inT)
3) {Q,R} (Resolvente von (1), (2))

Version vom 13. November 2018
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Beispiel 2.59
Sei

[ = {{-P,-R}, {P.=R}. (~Q.S}. {Q.R. T}, {-T}, {-S.R} }

Eine Resolutionswiderlegung von I ist:
1) (-}  (nD)
(2) {QR, T} (inT)
3) {Q,R} (Resolvente von (1), (2))
(

4) {-Q,S} inT)

Version vom 13. November 2018
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Beispiel 2.59
Sei

[ = {{-P,-R}, {P.=R}. (~Q.S}. {Q.R. T}, {-T}, {-S.R} }

Eine Resolutionswiderlegung von I ist:

(1) {-7} (inl)
(2 {Q,R T} (inT)
3) {Q R} (Resolvente von (1), (2))
(4) {-Q. s} (in)
(5) {S.,R} (Resolvente von (3), (4))
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Beispiel 2.59
Sei

[ = {{-P,-R}, {P.=R}. (~Q.S}. {Q.R. T}, {-T}, {-S.R} }

Eine Resolutionswiderlegung von I ist:

(1) =T}
(2) {Q,R T}
(3) {Q.R}
(4) {-Q,S}
(5) {S:R}
(6) {=S,R}
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(inT)

(inT)

(Resolvente von (1), (2))
(

(

(

inT)
Resolvente von (3), (4))
inT)
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Beispiel 2.59
Sei

[ = {{-P,-R}, {P.=R}. (~Q.S}. {Q.R. T}, {-T}, {-S.R} }

Eine Resolutionswiderlegung von I ist:

(1) =T}
(2) {Q,R T}
(3) {Q.R}
(4) {-Q,5}
(5) {S:R}
(6) {=S,R}
(M) AR}

(inT)

(inT)

(Resolvente von (1), (2))
(inT)
(
(
(

Resolvente von (3), (4))
inT)
Resolvente von (5), (6))
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Beispiel 2.59
Sei

[ = {{-P,-R}, {P.=R}. (~Q.S}. {Q.R. T}, {-T}, {-S.R} }

Eine Resolutionswiderlegung von I ist:

(1) =T}
(2) {Q,R T}
(3) {Q.R}
(4) {-Q,S}
(5) {S:R}
(6) {=S,R}
(M) AR}

(8) {=P,=R}
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inT)
inT)
Resolvente von (1), (2))
inT)
Resolvente von (3), (4))
inT)
Resolvente von (5), (6))
inT)

~ o~ o~ o~ o~ o~ o~ —~
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Beispiel 2.59
Sei

[ = {{-P,-R}, {P.=R}. (~Q.S}. {Q.R. T}, {-T}, {-S.R} }

Eine Resolutionswiderlegung von I ist:

(1) =T}
(2) {Q,R T}
(3) {Q.R}
(4) {-Q,5}
(5) {S:R}
(6) {=S,R}
(M) AR}

(8) {=P,=R}
(9) {P,=R}
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(inT)

(inT)

(Resolvente von (1), (2))
(inT)

(Resolvente von (3), (4))
(

(

(

(

inT)
Resolvente von (5), (6))
inT)
inT)
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Beispiel 2.59
Sei

M= {{_"D’_‘R}7 {’D7_‘R}= {_‘st}v {QvRv T}v {_‘T}v {_‘S*R}}

Eine Resolutionswiderlegung von I ist:

(1) =T}
(2) {Q,R T}
(3) {Q.R}
(4) {-Q,5}
(5) {S:R}
(6) {=S,R}
(M) AR}

(8) {=P,=R}
(9) {P,=R}
(10) {=R}
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inT)
inT)
Resolvente von (1), (2))
inT)
Resolvente von (3), (4))

(
(
(
(
(
(inT)
(
(
(
(

Resolvente von (5), (6))
inT)
inT)
Resolvente von (8), (9))
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Beispiel 2.59
Sei

M= {{_"D’_‘R}7 {’D7_‘R}= {_‘st}v {QvRv T}v {_‘T}v {_‘S*R}}

Eine Resolutionswiderlegung von I ist:

(1) =T}

(2) {Q,R T}
(3) {Q.R}
(4) {-Q,S}
(5) {S,R}
(6) {-S,R}

(M) AR}

(8) {-P.~R}
(9) {P.~R}

(10) {-R}
(11) 0
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inT)
inT)
Resolvente von (1), (2))
inT)
Resolvente von (3), (4))

(
(
(
(
(
(inT)
(
(
(
(
(

Resolvente von (5), (6))
inT)
inT)
Resolvente von (8), (9))
Resolvente von (7), (10))
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Graphische Darstellung der Resolutionswiderlegung

{-T}

Christoph Berkholz -

HU Berlin -

{Q.R T}

{(-Q,5}

N/

{5, R} {=S,R} {-P,-R} {P,-R}

NS N/

{R} (=R}

N,

0

Vorlesung Logik in der Informatik Version vom 13. November 2018
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Korrektheit und Vollstandigkeit der Resolution

Satz 2.60
Fiir jede Klauselmenge I gilt:

MR O <= T ist unerfiillbar.

D.h.: Eine Klauselmenge hat genau dann eine Resolutionswiderlegung, wenn sie
unerfiillbar ist.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Vorsicht

Beim Anwenden der Resolutionsregel (Definition 2.56) darf immer nur
ein Literal \ betrachtet werden.

Beispiel:

Betrachte die Klauselmenge I := {71,72} mit 71 := {X, Y} und
2 :={=X, =Y} (wobei X und Y zwei verschiedene Ausagensymbole sind).
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Der Satz von Haken

Fiir eine endliche Klauselmenge I sei die GréfBe von [ die Zahl

Irl = > _hl,

yer

wobei |y| die Anzahl der Literale in v bezeichnet.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution
Der Satz von Haken
Fiir eine endliche Klauselmenge I sei die GréfBe von [ die Zahl

Irl = > _hl,

yer

wobei |y| die Anzahl der Literale in v bezeichnet.

Der folgende (schwer zu beweisende) Satz zeigt, dass es im Worst-Case
exponentiell lange dauern kann, eine Resolutionswiderlegung zu finden.
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Kapitel 2: Aussagenlogik - Abschnitt 2.6: Resolution

Der Satz von Haken
Fiir eine endliche Klauselmenge I sei die GréfBe von [ die Zahl

Irl = > _hl,

yer

wobei |y| die Anzahl der Literale in v bezeichnet.

Der folgende (schwer zu beweisende) Satz zeigt, dass es im Worst-Case
exponentiell lange dauern kann, eine Resolutionswiderlegung zu finden.

Satz 2.61 (Satz von Haken, 1985)

Es gibt Konstanten c,d > 0 und endliche Klauselmengen I, fiir n > 1, so dass
fiir alle n € N mit n > 1 gilt:

1. Fa <n
2. I, ist unerfiillbar, und
3. jede Resolutionswiderlegung von ', hat Lange > > 2dn,

(Hier ohne Beweis)
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Abschnitt 2.7:
Erfiillbarkeitsalgorithmen



Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Das aussagenlogische Erfiillbarkeitsproblem

Wir betrachten im Folgenden Algorithmen fiir das
Aussagenlogische Erfiillbarkeitsproblem:

Eingabe: eine Formel ¢ € AL
Ausgabe: , erfiillbar", falls ¢ erfiillbar ist;
,unerfiillbar", sonst.

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik Version vom 13. November 2018
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Das aussagenlogische Erfiillbarkeitsproblem

Wir betrachten im Folgenden Algorithmen fiir das
Aussagenlogische Erfiillbarkeitsproblem:

Eingabe: eine Formel ¢ € AL
Ausgabe: , erfiillbar", falls ¢ erfiillbar ist;
,unerfiillbar", sonst.

Notation
Im Folgenden bezeichnet n immer die Anzahl der in ¢ vorkommenden
verschiedenen Aussagensymbole, und m := || bezeichnet die Linge von ¢

(aufgefasst als Wort iiber dem Alphabet der Aussagenlogik).
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Varianten des Erfiillbarkeitsproblems

Berechnen einer erfiillenden Interpretation:
Zusétzlich soll bei erfiillbaren Formeln (A1, ..., A,) noch ein Modell berechnet
werden, d.h., ein Tupel (by,...,b,;) € {0,1}", so dass ¢[b1, ..., by] = 1.
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Varianten des Erfiillbarkeitsproblems

Berechnen einer erfiillenden Interpretation:
Zusétzlich soll bei erfiillbaren Formeln (A1, ..., A,) noch ein Modell berechnet
werden, d.h., ein Tupel (by,...,b,;) € {0,1}", so dass ¢[b1, ..., by] = 1.

Einschrankung auf KNF-Formeln:

Oft beschrankt man sich auf Eingabeformeln in KNF oder sogar 3-KNF. Das ist
keine wesentliche Einschrankung, weil sich mit Hilfe des Tseitin-Verfahrens jede
Formel in Linearzeit in eine erfiillbarkeitsdquivalente Formel in 3-KNF
transformieren ldsst (Satz 2.55).
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Varianten des Erfiillbarkeitsproblems

Berechnen einer erfiillenden Interpretation:

Zusétzlich soll bei erfiillbaren Formeln (A1, ..., A,) noch ein Modell berechnet
werden, d.h., ein Tupel (by,...,b,;) € {0,1}", so dass ¢[b1, ..., by] = 1.

Einschrankung auf KNF-Formeln:

Oft beschrankt man sich auf Eingabeformeln in KNF oder sogar 3-KNF. Das ist
keine wesentliche Einschrankung, weil sich mit Hilfe des Tseitin-Verfahrens jede
Formel in Linearzeit in eine erfiillbarkeitsdquivalente Formel in 3-KNF
transformieren ldsst (Satz 2.55).

Das Erfiillbarkeitsproblem fiir Formeln in KNF bzw. 3-KNF bezeichnet man mit
SAT bzw. 3-SAT.
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Komplexitat des Erfiillbarkeitsproblems

Satz 2.62 (Satz von Cook und Levin, ~1971)
Das aussagenlogische Erfiillbarkeitsproblem (und sogar die Einschrankung
3-SAT) ist NP-vollstindig.

Die Komplexitatsklassen P und NP, der Begriff der NP-Vollstandigkeit, sowie ein
Beweis des Satzes von Cook und Levin werden in der Vorlesung Einfiihrung in
die Theoretische Informatik behandelt.
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Komplexitat des Erfiillbarkeitsproblems
Satz 2.62 (Satz von Cook und Levin, ~1971)

Das aussagenlogische Erfiillbarkeitsproblem (und sogar die Einschrankung
3-SAT) ist NP-vollstindig.

Die Komplexitatsklassen P und NP, der Begriff der NP-Vollstandigkeit, sowie ein
Beweis des Satzes von Cook und Levin werden in der Vorlesung Einfiihrung in
die Theoretische Informatik behandelt.

Bemerkung

e Wenn also P # NP ist (was allgemein vermutet wird), gibt es fiir das
aussagenlogische Erfiillbarkeitsproblem keinen Polynomialzeitalgorithmus.
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Komplexitat des Erfiillbarkeitsproblems
Satz 2.62 (Satz von Cook und Levin, ~1971)

Das aussagenlogische Erfiillbarkeitsproblem (und sogar die Einschrankung
3-SAT) ist NP-vollstindig.

Die Komplexitatsklassen P und NP, der Begriff der NP-Vollstandigkeit, sowie ein
Beweis des Satzes von Cook und Levin werden in der Vorlesung Einfiihrung in
die Theoretische Informatik behandelt.

Bemerkung

e Wenn also P # NP ist (was allgemein vermutet wird), gibt es fiir das
aussagenlogische Erfiillbarkeitsproblem keinen Polynomialzeitalgorithmus.

e Man vermutet sogar, dass es eine Konstante ¢ > 1 gibt, so dass jeder
Algorithmus fiir 3-SAT eine worst-case Laufzeit von Q(c") hat.
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Komplexitat des Erfiillbarkeitsproblems
Satz 2.62 (Satz von Cook und Levin, ~1971)

Das aussagenlogische Erfiillbarkeitsproblem (und sogar die Einschrankung
3-SAT) ist NP-vollstindig.

Die Komplexitatsklassen P und NP, der Begriff der NP-Vollstandigkeit, sowie ein
Beweis des Satzes von Cook und Levin werden in der Vorlesung Einfiihrung in
die Theoretische Informatik behandelt.

Bemerkung

e Wenn also P # NP ist (was allgemein vermutet wird), gibt es fiir das
aussagenlogische Erfiillbarkeitsproblem keinen Polynomialzeitalgorithmus.

e Man vermutet sogar, dass es eine Konstante ¢ > 1 gibt, so dass jeder
Algorithmus fiir 3-SAT eine worst-case Laufzeit von Q(c") hat.
Diese Vermutung ist unter dem Namen ,, Exponential Time Hypothesis"
(ETH) bekannt.
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen
Komplexitat des Erfiillbarkeitsproblems
Satz 2.62 (Satz von Cook und Levin, ~1971)

Das aussagenlogische Erfiillbarkeitsproblem (und sogar die Einschrankung
3-SAT) ist NP-vollstindig.

Die Komplexitatsklassen P und NP, der Begriff der NP-Vollstandigkeit, sowie ein
Beweis des Satzes von Cook und Levin werden in der Vorlesung Einfiihrung in
die Theoretische Informatik behandelt.

Bemerkung

e Wenn also P # NP ist (was allgemein vermutet wird), gibt es fiir das
aussagenlogische Erfiillbarkeitsproblem keinen Polynomialzeitalgorithmus.

e Man vermutet sogar, dass es eine Konstante ¢ > 1 gibt, so dass jeder
Algorithmus fiir 3-SAT eine worst-case Laufzeit von Q(c") hat.
Diese Vermutung ist unter dem Namen ,, Exponential Time Hypothesis"
(ETH) bekannt.

e Der im Worst-Case beste derzeit bekannte Algorithmus fiir 3-SAT hat eine
Laufzeit von etwa O(1.4").

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 144



Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Der Wahrheitstafelalgorithmus
Lemma 2.63

Es gibt einen Linearzeitalgorithmus, der bei Eingabe einer Formel
©(A1,...,A,) € AL und eines Tupels (by, ..., b,) € {0,1}" den Wert
©lb1, ..., by] berechnet.

Beweis: Ubung.
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Der Wahrheitstafelalgorithmus
Lemma 2.63

Es gibt einen Linearzeitalgorithmus, der bei Eingabe einer Formel
©(A1,...,A,) € AL und eines Tupels (by, ..., b,) € {0,1}" den Wert
©lb1, ..., by] berechnet.

Beweis: Ubung.
Der folgende Algorithmus I6st das aussagenlogische Erfiillbarkeitsproblem.

Wabhrheitstafelalgorithmus
Eingabe: eine Formel p € AL
1. Berechne die Wahrheitstafel fiir ¢.
2. Falls in der letzten Spalte mindestens eine 1 auftaucht, gib ,erfiillbar” aus,
sonst gib ,,unerfiillbar" aus.
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Der Wahrheitstafelalgorithmus
Lemma 2.63

Es gibt einen Linearzeitalgorithmus, der bei Eingabe einer Formel
©(A1,...,A,) € AL und eines Tupels (by, ..., b,) € {0,1}" den Wert
©lb1, ..., by] berechnet.

Beweis: Ubung.
Der folgende Algorithmus I6st das aussagenlogische Erfiillbarkeitsproblem.

Wabhrheitstafelalgorithmus
Eingabe: eine Formel p € AL
1. Berechne die Wahrheitstafel fiir ¢.

2. Falls in der letzten Spalte mindestens eine 1 auftaucht, gib ,erfiillbar” aus,
sonst gib ,,unerfiillbar" aus.

Laufzeit:
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Der Wahrheitstafelalgorithmus
Lemma 2.63

Es gibt einen Linearzeitalgorithmus, der bei Eingabe einer Formel
©(A1,...,A,) € AL und eines Tupels (by, ..., b,) € {0,1}" den Wert
©lb1, ..., by] berechnet.

Beweis: Ubung.
Der folgende Algorithmus I6st das aussagenlogische Erfiillbarkeitsproblem.

Wabhrheitstafelalgorithmus
Eingabe: eine Formel p € AL
1. Berechne die Wahrheitstafel fiir ¢.

2. Falls in der letzten Spalte mindestens eine 1 auftaucht, gib ,erfiillbar” aus,
sonst gib ,,unerfiillbar" aus.

Laufzeit: O(m-2") (sogar im , Best-Case")
Speicherplatz:
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Der Wahrheitstafelalgorithmus
Lemma 2.63

Es gibt einen Linearzeitalgorithmus, der bei Eingabe einer Formel
©(A1,...,A,) € AL und eines Tupels (by, ..., b,) € {0,1}" den Wert
©lb1, ..., by] berechnet.

Beweis: Ubung.
Der folgende Algorithmus I6st das aussagenlogische Erfiillbarkeitsproblem.

Wabhrheitstafelalgorithmus
Eingabe: eine Formel p € AL
1. Berechne die Wahrheitstafel fiir ¢.

2. Falls in der letzten Spalte mindestens eine 1 auftaucht, gib ,erfiillbar” aus,
sonst gib ,,unerfiillbar" aus.

Laufzeit: O(m-2") (sogar im , Best-Case")
Speicherplatz: O(m + 2")
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Der Wahrheitstafelalgorithmus
Lemma 2.63

Es gibt einen Linearzeitalgorithmus, der bei Eingabe einer Formel
©(A1,...,A,) € AL und eines Tupels (by, ..., b,) € {0,1}" den Wert
©lb1, ..., by] berechnet.

Beweis: Ubung.
Der folgende Algorithmus I6st das aussagenlogische Erfiillbarkeitsproblem.

Wabhrheitstafelalgorithmus
Eingabe: eine Formel p € AL
1. Berechne die Wahrheitstafel fiir ¢.

2. Falls in der letzten Spalte mindestens eine 1 auftaucht, gib ,erfiillbar” aus,
sonst gib ,,unerfiillbar" aus.

Laufzeit: O(m-2") (sogar im , Best-Case")
Speicherplatz: O(m +2") ...bei zeilenweiser Auswertung: O(m + n)
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Der Resolutionsalgorithmus

Der Resolutionsalgorithmus probiert einfach alle moglichen
Resolutionsableitungen durch und testet so, ob es eine Resolutionswiderlegung

gibt (d.h. die Klauselmenge unerfiillbar ist).
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Der Resolutionsalgorithmus

Der Resolutionsalgorithmus probiert einfach alle moglichen
Resolutionsableitungen durch und testet so, ob es eine Resolutionswiderlegung
gibt (d.h. die Klauselmenge unerfiillbar ist).

Resolutionsalgorithmus
Eingabe: eine endliche Klauselmenge I (entspricht einer KNF-Formel)

1. Wiederhole, bis keine neuen Klauseln mehr generiert werden:
Fiige alle Resolventen aller Klauseln aus ' zu I hinzu.

2. Fallsh e,
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Der Resolutionsalgorithmus

Der Resolutionsalgorithmus probiert einfach alle moglichen
Resolutionsableitungen durch und testet so, ob es eine Resolutionswiderlegung
gibt (d.h. die Klauselmenge unerfiillbar ist).

Resolutionsalgorithmus
Eingabe: eine endliche Klauselmenge I (entspricht einer KNF-Formel)

1. Wiederhole, bis keine neuen Klauseln mehr generiert werden:
Fiige alle Resolventen aller Klauseln aus ' zu I hinzu.

2. Falls @ € T, gib ,,unerfiillbar" aus, sonst
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

Der Resolutionsalgorithmus

Der Resolutionsalgorithmus probiert einfach alle moglichen
Resolutionsableitungen durch und testet so, ob es eine Resolutionswiderlegung
gibt (d.h. die Klauselmenge unerfiillbar ist).

Resolutionsalgorithmus
Eingabe: eine endliche Klauselmenge I (entspricht einer KNF-Formel)

1. Wiederhole, bis keine neuen Klauseln mehr generiert werden:
Fiige alle Resolventen aller Klauseln aus ' zu I hinzu.

2. Falls @ € T, gib ,,unerfiillbar" aus, sonst gib , erfiillbar" aus.
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Der Resolutionsalgorithmus

Der Resolutionsalgorithmus probiert einfach alle moglichen
Resolutionsableitungen durch und testet so, ob es eine Resolutionswiderlegung
gibt (d.h. die Klauselmenge unerfiillbar ist).

Resolutionsalgorithmus
Eingabe: eine endliche Klauselmenge I (entspricht einer KNF-Formel)

1. Wiederhole, bis keine neuen Klauseln mehr generiert werden:
Fiige alle Resolventen aller Klauseln aus ' zu I hinzu.

2. Falls @ € T, gib ,,unerfiillbar" aus, sonst gib , erfiillbar" aus.

Laufzeit:
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Der Resolutionsalgorithmus

Der Resolutionsalgorithmus probiert einfach alle moglichen
Resolutionsableitungen durch und testet so, ob es eine Resolutionswiderlegung
gibt (d.h. die Klauselmenge unerfiillbar ist).

Resolutionsalgorithmus
Eingabe: eine endliche Klauselmenge I (entspricht einer KNF-Formel)

1. Wiederhole, bis keine neuen Klauseln mehr generiert werden:
Fiige alle Resolventen aller Klauseln aus ' zu I hinzu.

2. Falls @ € T, gib ,,unerfiillbar" aus, sonst gib , erfiillbar" aus.

Laufzeit: 29(" (weil es bei n Aussagensymbolen 4" verschiedene Klauseln gibt).
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Der Resolutionsalgorithmus

Der Resolutionsalgorithmus probiert einfach alle moglichen
Resolutionsableitungen durch und testet so, ob es eine Resolutionswiderlegung
gibt (d.h. die Klauselmenge unerfiillbar ist).

Resolutionsalgorithmus
Eingabe: eine endliche Klauselmenge I (entspricht einer KNF-Formel)

1. Wiederhole, bis keine neuen Klauseln mehr generiert werden:
Fiige alle Resolventen aller Klauseln aus ' zu I hinzu.

2. Falls @ € T, gib ,,unerfiillbar" aus, sonst gib , erfiillbar" aus.

Laufzeit: 29(" (weil es bei n Aussagensymbolen 4" verschiedene Klauseln gibt).

Speicherplatz: 20(")
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Der Resolutionsalgorithmus

Der Resolutionsalgorithmus probiert einfach alle moglichen
Resolutionsableitungen durch und testet so, ob es eine Resolutionswiderlegung
gibt (d.h. die Klauselmenge unerfiillbar ist).

Resolutionsalgorithmus
Eingabe: eine endliche Klauselmenge I (entspricht einer KNF-Formel)

1. Wiederhole, bis keine neuen Klauseln mehr generiert werden:
Fiige alle Resolventen aller Klauseln aus ' zu I hinzu.

2. Falls @ € T, gib ,,unerfiillbar" aus, sonst gib , erfiillbar" aus.
Laufzeit: 29(" (weil es bei n Aussagensymbolen 4" verschiedene Klauseln gibt).
Speicherplatz: 20(")

Mit geschicktem , vergessen* nicht mehr bendtigter Klausen ist auch
Speicherplatz O(m + n) mdglich.
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Der Davis-Putnam-Logemann-Loveland Algorithmus

Der DPLL-Algorithmus ist ein in der Praxis sehr erfolgreicher Algorithmus, der
die Wahrheitstafelmethode mit Resolution kombiniert.

Ahnlich wie bei dem Wahrheitstafelalgorithmus durchsucht der
DPLL-Algorithmus systematisch den Raum aller moglichen Interpretationen und
testet, ob diese die gegebene Klauselmenge erfiillen. Resolution wird dabei dazu
verwendet, die Suche geschickt zu steuern und Dinge, die wahrend der Suche
bereits iiber die Klauselmenge ,,gelernt” wurden, weiterzuverwenden.
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Der Davis-Putnam-Logemann-Loveland Algorithmus

Der DPLL-Algorithmus ist ein in der Praxis sehr erfolgreicher Algorithmus, der
die Wahrheitstafelmethode mit Resolution kombiniert.

Ahnlich wie bei dem Wahrheitstafelalgorithmus durchsucht der
DPLL-Algorithmus systematisch den Raum aller moglichen Interpretationen und
testet, ob diese die gegebene Klauselmenge erfiillen. Resolution wird dabei dazu
verwendet, die Suche geschickt zu steuern und Dinge, die wahrend der Suche
bereits iiber die Klauselmenge ,,gelernt” wurden, weiterzuverwenden.

Der DPLL-Algorithmus ist die Basis moderner SAT-Solver, die Klauselmengen,

die aus Millionen von Klauseln und Hunderttausenden von Aussagensymbolen
bestehen, auf Erfiillbarkeit testen konnen.
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DPLL-Algorithmus

Eingabe: eine endliche Klauselmenge I' (entspricht einer KNF-Formel)
1. Vereinfache I'. % Details dazu: siehe ndchste Folie
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DPLL-Algorithmus

Eingabe: eine endliche Klauselmenge I' (entspricht einer KNF-Formel)
1. Vereinfache I'. % Details dazu: siehe ndchste Folie
2. Falls T =0,
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DPLL-Algorithmus

Eingabe: eine endliche Klauselmenge I' (entspricht einer KNF-Formel)
1. Vereinfache I'. % Details dazu: siehe nichste Folie
2. Falls T =0, gib ,erfiillbar" aus.
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DPLL-Algorithmus

Eingabe: eine endliche Klauselmenge I' (entspricht einer KNF-Formel)

1. Vereinfache I'. % Details dazu: siehe nichste Folie
2. Falls T =0, gib ,erfiillbar" aus.
3. Falls@ e,
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DPLL-Algorithmus

Eingabe: eine endliche Klauselmenge I' (entspricht einer KNF-Formel)
1. Vereinfache I'. % Details dazu: siehe nichste Folie
2. Falls T =0, gib ,erfiillbar" aus.
3. Falls ) €T, gib ,,unerfiillbar" aus.
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DPLL-Algorithmus
Eingabe: eine endliche Klauselmenge I' (entspricht einer KNF-Formel)
1. Vereinfache I'. % Details dazu: siehe nichste Folie
Falls I = (), gib , erfiillbar* aus.
Falls ) €T, gib , unerfiillbar” aus.
Wahle ein Literal A.
% probiere aus, ob I ein Modell hat, bei dem das Literal \ erfiillt wird:

AR
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DPLL-Algorithmus

Eingabe: eine endliche Klauselmenge I' (entspricht einer KNF-Formel)

1. Vereinfache I'. % Details dazu: siehe nichste Folie
2. Falls T =0, gib ,erfiillbar" aus.

3. Falls ) €T, gib ,,unerfiillbar" aus.

4. Wahle ein Literal A.

5. % probiere aus, ob I ein Modell hat, bei dem das Literal \ erfiillt wird:

Lose rekursiv ' U {{/\}} Falls dies erfiillbar ist, gib , erfiillbar" aus.
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DPLL-Algorithmus
Eingabe: eine endliche Klauselmenge I' (entspricht einer KNF-Formel)
1. Vereinfache I'. % Details dazu: siehe nichste Folie
Falls I = (), gib , erfiillbar* aus.
Falls ) €T, gib , unerfiillbar” aus.
Wahle ein Literal A.

% probiere aus, ob I ein Modell hat, bei dem das Literal \ erfiillt wird:
Lose rekursiv ' U {{/\}} Falls dies erfiillbar ist, gib , erfiillbar" aus.

6. % probiere aus, ob I ein Modell hat, bei dem das Literal X erfiillt wird:

AR
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DPLL-Algorithmus

Eingabe: eine endliche Klauselmenge I' (entspricht einer KNF-Formel)

1. Vereinfache I'. % Details dazu: siehe nichste Folie
2. Falls T =0, gib ,erfiillbar" aus.

3. Falls ) €T, gib ,,unerfiillbar" aus.

4. Wahle ein Literal A.

5. % probiere aus, ob I ein Modell hat, bei dem das Literal \ erfiillt wird:

Lose rekursiv ' U {{/\}} Falls dies erfiillbar ist, gib , erfiillbar" aus.

6. % probiere aus, ob [ ein Modell hat, bei dem das Literal X erfiillt wird:
Lose rekursiv I'U {{A}}. Falls dies erfiillbar ist, gib ,erfiillbar" aus. Sonst
gib ,,unerfiillbar” aus.
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Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen
Vereinfachungsheuristiken, die in Schritt 1. angewendet werden:
e Unit Propagation: Fiir alle , Einerklauseln" {\} € I' (wobei A ein Literal ist),

bilde alle Resolventen von {A} mit anderen Klauseln und streiche anschlieBend
alle Klauseln, die A\ enthalten. Wiederhole dies, so lange es Einerklauseln gibt.
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Vereinfachungsheuristiken, die in Schritt 1. angewendet werden:

e Unit Propagation: Fiir alle , Einerklauseln" {\} € I' (wobei A ein Literal ist),
bilde alle Resolventen von {A} mit anderen Klauseln und streiche anschlieBend
alle Klauseln, die A\ enthalten. Wiederhole dies, so lange es Einerklauseln gibt.

Prazise:

Fiir jede ,,Einerklausel” {A\} € T tue Folgendes:
1. Ersetze jede Klausel v € I durch die Klausel v\ {)\}.
2. Entferne aus I' jede Klausel, die das Literal A enthilt.

Wiederhole dies, so lange es in ' Einerklauseln gibt.

e Pure Literal Rule: Literale )\, deren Negat X nirgendwo in der Klauselmenge
auftaucht, kdnnen auf 1 gesetzt werden. Alle Klauseln, die ein solches Literal
enthalten, sind dann wahr und kdnnen gestrichen werden.
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Vereinfachungsheuristiken, die in Schritt 1. angewendet werden:

e Unit Propagation: Fiir alle , Einerklauseln" {\} € I' (wobei A ein Literal ist),
bilde alle Resolventen von {A} mit anderen Klauseln und streiche anschlieBend
alle Klauseln, die A\ enthalten. Wiederhole dies, so lange es Einerklauseln gibt.

Prazise:

Fiir jede ,,Einerklausel” {A\} € T tue Folgendes:
1. Ersetze jede Klausel v € I durch die Klausel v\ {)\}.
2. Entferne aus I' jede Klausel, die das Literal A enthilt.

Wiederhole dies, so lange es in ' Einerklauseln gibt.

e Pure Literal Rule: Literale )\, deren Negat X nirgendwo in der Klauselmenge
auftaucht, kdnnen auf 1 gesetzt werden. Alle Klauseln, die ein solches Literal
enthalten, sind dann wahr und kdnnen gestrichen werden.

e Streiche Klauseln, die Obermengen von anderen Klauseln sind (dies ist allerdings
ineffizient und wird in der Praxis zumeist weggelassen).
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Vereinfachungsheuristiken, die in Schritt 1. angewendet werden:

e Unit Propagation: Fiir alle , Einerklauseln" {\} € I' (wobei A ein Literal ist),
bilde alle Resolventen von {A} mit anderen Klauseln und streiche anschlieBend
alle Klauseln, die A\ enthalten. Wiederhole dies, so lange es Einerklauseln gibt.

Prazise:

Fiir jede ,,Einerklausel” {A\} € T tue Folgendes:
1. Ersetze jede Klausel v € I durch die Klausel v\ {)\}.
2. Entferne aus I' jede Klausel, die das Literal A enthilt.

Wiederhole dies, so lange es in ' Einerklauseln gibt.

e Pure Literal Rule: Literale )\, deren Negat X nirgendwo in der Klauselmenge
auftaucht, kdnnen auf 1 gesetzt werden. Alle Klauseln, die ein solches Literal
enthalten, sind dann wahr und kdnnen gestrichen werden.

e Streiche Klauseln, die Obermengen von anderen Klauseln sind (dies ist allerdings

ineffizient und wird in der Praxis zumeist weggelassen).

Man sieht leicht, dass der DPLL-Algorithmus stets die korrekte Antwort gibt (d.h., er
terminiert immer, und er gibt genau dann ,erfiillbar" aus, wenn die eingegebene
Klauselmenge I erfiillbar ist).
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Vereinfachungsheuristiken, die in Schritt 1. angewendet werden:

e Unit Propagation: Fiir alle , Einerklauseln" {\} € I' (wobei A ein Literal ist),
bilde alle Resolventen von {A} mit anderen Klauseln und streiche anschlieBend
alle Klauseln, die A\ enthalten. Wiederhole dies, so lange es Einerklauseln gibt.

Prazise:
Fiir jede ,,Einerklausel” {A\} € T tue Folgendes:
1. Ersetze jede Klausel v € I durch die Klausel v\ {)\}.
2. Entferne aus I' jede Klausel, die das Literal A enthilt.
Wiederhole dies, so lange es in ' Einerklauseln gibt.

e Pure Literal Rule: Literale )\, deren Negat X nirgendwo in der Klauselmenge
auftaucht, kdnnen auf 1 gesetzt werden. Alle Klauseln, die ein solches Literal
enthalten, sind dann wahr und kdnnen gestrichen werden.

e Streiche Klauseln, die Obermengen von anderen Klauseln sind (dies ist allerdings
ineffizient und wird in der Praxis zumeist weggelassen).

Man sieht leicht, dass der DPLL-Algorithmus stets die korrekte Antwort gibt (d.h., er
terminiert immer, und er gibt genau dann ,erfiillbar" aus, wenn die eingegebene
Klauselmenge I erfiillbar ist).

Laufzeit des DPLL-Algorithmus:
O(m-2") im Worst-Case
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Vereinfachungsheuristiken, die in Schritt 1. angewendet werden:

e Unit Propagation: Fiir alle , Einerklauseln" {\} € I' (wobei A ein Literal ist),
bilde alle Resolventen von {A} mit anderen Klauseln und streiche anschlieBend
alle Klauseln, die A\ enthalten. Wiederhole dies, so lange es Einerklauseln gibt.

Prazise:
Fiir jede ,,Einerklausel” {A\} € T tue Folgendes:
1. Ersetze jede Klausel v € I durch die Klausel v\ {)\}.
2. Entferne aus I' jede Klausel, die das Literal A enthilt.
Wiederhole dies, so lange es in ' Einerklauseln gibt.

e Pure Literal Rule: Literale )\, deren Negat X nirgendwo in der Klauselmenge
auftaucht, kdnnen auf 1 gesetzt werden. Alle Klauseln, die ein solches Literal
enthalten, sind dann wahr und kdnnen gestrichen werden.

e Streiche Klauseln, die Obermengen von anderen Klauseln sind (dies ist allerdings
ineffizient und wird in der Praxis zumeist weggelassen).

Man sieht leicht, dass der DPLL-Algorithmus stets die korrekte Antwort gibt (d.h., er
terminiert immer, und er gibt genau dann ,erfiillbar" aus, wenn die eingegebene
Klauselmenge I erfiillbar ist).

Laufzeit des DPLL-Algorithmus:
O(m - 2") im Worst-Case, in der Praxis aber hiufig sehr effizient.
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Beispiel 2.64
Sei :=

{ {X1, X6, ~ X6, X1}, {=X1, Xo, = X5}, {~X1, = Xa, = X3, =X, = X5},
(X1, Xo, —Xa, Xo }, {=Xa, = Xe, = X7}, {X5, X5, X7},
(X5, =X, X5}, {Xs, " Xe}, {Xs, Xz, ~Xs},
{X1, X3, X5, X6, X7}, {~Xz, X}, {~X6,~Xs,~ X5} }
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DPLL auf unerfiillbaren Klauselmengen

DPLL und Resolution

Wenn der DPLL-Algorithmus auf einer unerfiillbaren Formelmenge ' nach N
Vereinfachungs- und Rekursionsschritten unerfiillbar ausgibt,
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DPLL auf unerfiillbaren Klauselmengen

DPLL und Resolution

Wenn der DPLL-Algorithmus auf einer unerfiillbaren Formelmenge ' nach N
Vereinfachungs- und Rekursionsschritten unerfiillbar ausgibt,
dann gibt es eine Resolutionswiderlegung der der Linge O(|I'] + N).

(Hier ohne Beweis)

Christoph Berkholz - HU Berlin - Vorlesung Logik in der Informatik Version vom 13. November 2018 Folie 151



Kapitel 2: Aussagenlogik - Abschnitt 2.7: Erfiillbarkeitsalgorithmen

DPLL auf unerfiillbaren Klauselmengen

DPLL und Resolution

Wenn der DPLL-Algorithmus auf einer unerfiillbaren Formelmenge ' nach N
Vereinfachungs- und Rekursionsschritten unerfiillbar ausgibt,
dann gibt es eine Resolutionswiderlegung der der Linge O(|I'] + N).

(Hier ohne Beweis)
e Der Suchbaum des DPLL-Algorithmus kann in den Ableitungsbaum der

Resolutionswiderlegung iiberfiihrt werden.
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DPLL auf unerfiillbaren Klauselmengen

DPLL und Resolution

Wenn der DPLL-Algorithmus auf einer unerfiillbaren Formelmenge ' nach N
Vereinfachungs- und Rekursionsschritten unerfiillbar ausgibt,
dann gibt es eine Resolutionswiderlegung der der Linge O(|I'] + N).

(Hier ohne Beweis)
e Der Suchbaum des DPLL-Algorithmus kann in den Ableitungsbaum der

Resolutionswiderlegung iiberfiihrt werden.

e Damit sind Klauselmengen, die eine lange Resolutionswiderlegung
bendtigen (wie in Satz 2.61) auch schwer fiir den DPLL-Algorithmus.
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DPLL auf unerfiillbaren Klauselmengen

DPLL und Resolution

Wenn der DPLL-Algorithmus auf einer unerfiillbaren Formelmenge ' nach N
Vereinfachungs- und Rekursionsschritten unerfiillbar ausgibt,
dann gibt es eine Resolutionswiderlegung der der Lange O(|T'| + N).

(Hier ohne Beweis)
e Der Suchbaum des DPLL-Algorithmus kann in den Ableitungsbaum der
Resolutionswiderlegung iiberfiihrt werden.

e Damit sind Klauselmengen, die eine lange Resolutionswiderlegung
bendtigen (wie in Satz 2.61) auch schwer fiir den DPLL-Algorithmus.

SAT-Solver

Moderne SAT-Solver erweitern DPLL auf vielfaltige Weise, insbesondere durch
das geschickte Hinzufiigen zusatzlicher Resolventen der aktuellen Klauselmenge,
geeignete Suchheuristiken und das gelegentliche Neustarten der Suche.
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DPLL auf unerfiillbaren Klauselmengen

DPLL und Resolution

Wenn der DPLL-Algorithmus auf einer unerfiillbaren Formelmenge ' nach N
Vereinfachungs- und Rekursionsschritten unerfiillbar ausgibt,
dann gibt es eine Resolutionswiderlegung der der Lange O(|T'| + N).

(Hier ohne Beweis)
e Der Suchbaum des DPLL-Algorithmus kann in den Ableitungsbaum der
Resolutionswiderlegung iiberfiihrt werden.

e Damit sind Klauselmengen, die eine lange Resolutionswiderlegung
bendtigen (wie in Satz 2.61) auch schwer fiir den DPLL-Algorithmus.

SAT-Solver
Moderne SAT-Solver erweitern DPLL auf vielfaltige Weise, insbesondere durch
das geschickte Hinzufiigen zusatzlicher Resolventen der aktuellen Klauselmenge,
geeignete Suchheuristiken und das gelegentliche Neustarten der Suche.
e Aus dem Lauf gangiger SAT-Solver auf unerfiillbaren Instanzen lassen sich
ebenfalls Resolutionswiderlegungen generieren. Diese sind aber nicht
notwendigerweise baumartig (wie es bei DPLL der Fall ist).
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Kapitel 2: Aussagenlogik - Abschnitt 2.8: Hornformeln

Hornklauseln und Hornformeln
Hornformeln sind spezielle aussagenlogische Formeln, die die Basis der logischen
Programmierung bilden, und fiir die das Erfiillbarkeitsproblem effizient gelost

werden kann.
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Kapitel 2: Aussagenlogik - Abschnitt 2.8: Hornformeln

Hornklauseln und Hornformeln

Hornformeln sind spezielle aussagenlogische Formeln, die die Basis der logischen
Programmierung bilden, und fiir die das Erfiillbarkeitsproblem effizient gelost

werden kann.

Definition 2.65

Eine Hornklausel ist eine disjunktive Klausel, in der héchstens ein positives
Literal vorkommt.
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Hornklauseln und Hornformeln
Hornformeln sind spezielle aussagenlogische Formeln, die die Basis der logischen
Programmierung bilden, und fiir die das Erfiillbarkeitsproblem effizient gelost

werden kann.

Definition 2.65

Eine Hornklausel ist eine disjunktive Klausel, in der héchstens ein positives

Literal vorkommt.
Eine Hornformel ist eine Konjunktion endlich vieler Hornklauseln.
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Kapitel 2: Aussagenlogik - Abschnitt 2.8: Hornformeln

Hornklauseln und Hornformeln

Hornformeln sind spezielle aussagenlogische Formeln, die die Basis der logischen
Programmierung bilden, und fiir die das Erfiillbarkeitsproblem effizient gelost

werden kann.

Definition 2.65

Eine Hornklausel ist eine disjunktive Klausel, in der héchstens ein positives

Literal vorkommt.
Eine Hornformel ist eine Konjunktion endlich vieler Hornklauseln.
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Hornklauseln als Implikationen

e Eine Hornklausel der Form {—Xi,...,=X,_1,X,} (bzw.
X1 V-V =X,_1VX,) ist dquivalent zur Formel

(Xi A A Xno1) = Xn.
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Hornklauseln als Implikationen

Eine Hornklausel der Form {—Xi,...,=X,_1, X} (bzw.
X1 V-V =X,_1VX,) ist dquivalent zur Formel

(Xi A A Xno1) = Xn.

Solche Klauseln werden auch ,Regeln* (oder ,, Prozedurklauseln) genannt.

Eine Hornklausel der Form {—Xj,...,—=X,_1} ist dquivalent zur Formel
(Xi A oA Xpo1) — 0.
Solche Klauseln werden auch , Zielklauseln® (oder , Frageklauseln®)
genannt.
Eine Hornklausel der Form {X;} ist dquivalent zur Formel
1— X.

Solche Klauseln werden auch , Tatsachenklausel” genannt.

Die leere (Horn-)Klausel ) ist unerfiillbar und daher dquivalent zur Formel
1-0.
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Der Streichungsalgorithmus

Der folgende Algorithmus I6st das Erfiillbarkeitsproblem fiir Hornformeln in
Polynomialzeit.

Wir geben zunichst den Algorithmus an, betrachten dann Beispielldufe davon,
analysieren die Laufzeit und zeigen danach, dass der Algorithmus korrekt ist,
d.h. stets die richtige Antwort gibt.
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Streichungsalgorithmus
Eingabe: eine endliche Menge I von Hornklauseln

1. Wiederhole:
2. FallsQ T
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Streichungsalgorithmus
Eingabe: eine endliche Menge I von Hornklauseln

1. Wiederhole:

2. Falls § € ', so halte mit Ausgabe ,,unerfiillbar".

3. Falls ' keine Tatsachenklausel (d.h. Klausel {X} mit X € AS)
enthalt
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1. Wiederhole:
2. Falls ) € T, so halte mit Ausgabe ,, unerfiillbar".
3. Falls ' keine Tatsachenklausel (d.h. Klausel {X} mit X € AS)

enthilt, so halte mit Ausgabe , erfiillbar”.
% T wird erfiillt, indem jedes Aussagensymbol mit O belegt wird
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enthilt, so halte mit Ausgabe , erfiillbar”.
% T wird erfiillt, indem jedes Aussagensymbol mit O belegt wird

4. Wabhle eine Tatsachenklausel {X} € T.

% Idee: Um T zu erfiillen, muss X mit dem Wert 1 belegt werden
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Streichungsalgorithmus
Eingabe: eine endliche Menge I von Hornklauseln

1. Wiederhole:
2. Falls ) € T, so halte mit Ausgabe ,, unerfiillbar".
3. Falls ' keine Tatsachenklausel (d.h. Klausel {X} mit X € AS)
enthilt, so halte mit Ausgabe , erfiillbar”.
% T wird erfiillt, indem jedes Aussagensymbol mit O belegt wird
4. Wabhle eine Tatsachenklausel {X} € T.
% Idee: Um T zu erfiillen, muss X mit dem Wert 1 belegt werden
5. Streiche =X aus allen Klauseln § € T, die das Literal =X
enthalten.
% Wenn X den Wert 1 hat, tragt =X nichts zum Erfiillen einer Klausel bei
6. Streiche aus I alle Klauseln § € T, die das Literal X enthalten

(d.h. entferne aus I alle § € T, fiir die gilt: X € 9).
% Wenn X den Wert 1 hat, sind solche Klauseln erfiillt
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Beispiele 2.66
Wir wenden den Streichungsalgorithmus auf die beiden folgenden Mengen von
Hornklauseln an.

(@) Tai= {5—=0, (PAQ)—=R, (SAR)—=0, (UNTAQ)— P,
(UANT)—=Q, 15U, 15T}
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Wir wenden den Streichungsalgorithmus auf die beiden folgenden Mengen von
Hornklauseln an.

(@) Tai= {5—=0, (PAQ)—=R, (SAR)—=0, (UNTAQ)— P,
(UANT)=Q, 15U, 15T}

(b) Thi= {(QAP)=>T, (UNTAQ)—=R, (UNT)— Q,
1-U, R—0, 15T}
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Laufzeit des Streichungsalgorithmus
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Laufzeit des Streichungsalgorithmus

Man sieht leicht, dass in jedem Schleifendurchlauf die Anzahl der Klauseln in T

kleiner wird.
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der aktuellen Klauselmenge und fiihrt dabei O(n) Schritte durch, wobei n = |T|
die GroBe der Klauselmenge ist.

Insgesamt terminiert der Streichungsalgorithmus also nach O(m-n) Schritten,
d.h. in Zeit polynomiell in der GroBe von T.
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Laufzeit des Streichungsalgorithmus

Man sieht leicht, dass in jedem Schleifendurchlauf die Anzahl der Klauseln in T
kleiner wird. Daher terminiert der Algorithmus nach maximal

m Schleifendurchlaufen, wobei m die Anzahl der Klauseln in der Eingabemenge
I ist.

In jedem einzelnen Schleifendurchlauf betrachtet der Algorithmus alle Klauseln
der aktuellen Klauselmenge und fiihrt dabei O(n) Schritte durch, wobei n = |T|
die GroBe der Klauselmenge ist.

Insgesamt terminiert der Streichungsalgorithmus also nach O(m-n) Schritten,
d.h. in Zeit polynomiell in der GroBe von T.

Satz 2.67
Die Laufzeit des Streichungsalgorithmus ist O(m-n), wobei m = |['| die Anzahl
der Hornklauseln in der eingegebenen Menge I' und n = ||| die GréBe von T ist.
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Laufzeit des Streichungsalgorithmus

Man sieht leicht, dass in jedem Schleifendurchlauf die Anzahl der Klauseln in T
kleiner wird. Daher terminiert der Algorithmus nach maximal

m Schleifendurchlaufen, wobei m die Anzahl der Klauseln in der Eingabemenge
I ist.

In jedem einzelnen Schleifendurchlauf betrachtet der Algorithmus alle Klauseln
der aktuellen Klauselmenge und fiihrt dabei O(n) Schritte durch, wobei n = |T|
die GroBe der Klauselmenge ist.

Insgesamt terminiert der Streichungsalgorithmus also nach O(m-n) Schritten,
d.h. in Zeit polynomiell in der GroBe von T.

Satz 2.67
Die Laufzeit des Streichungsalgorithmus ist O(m-n), wobei m = |['| die Anzahl
der Hornklauseln in der eingegebenen Menge I' und n = ||| die GréBe von T ist.

Bemerkung
Eine Variante des Streichungsalgorithmus lauft sogar in Linearzeit, d.h. in Zeit

O(n).
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Der Streichungsalgorithmus und Resolution

Lemma 2.68

Sei [y eine endliche Menge von Hornklauseln und § eine Klausel, die zu
irgendeinem Zeitpunkt wihrend des Laufs des Streichungsalgorithmus bei
Eingabe g in der vom Algorithmus gespeicherten Menge I liegt. Dann gilt:
Mobrd.
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Korrektheit des Streichungsalgorithmus

Satz 2.69

Der Streichungsalgorithmus ist korrekt.

Das heiBt, bei Eingabe einer endlichen Menge g von Hornklauseln halt der
Algorithmus mit Ausgabe ,erfiillbar”, falls Tq erfiillbar ist, und mit Ausgabe
hicht erfiillbar”, falls Tq unerfiillbar ist.
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Semesteriberblick

1. Einleitung heute
2. Aussagenlogik Woche 1-6
Syntax und Semantik, Normalformen, Modellierung,
Resolution, Erfiillbarkeitsalgorithmen
3. Logik erster Stufe Woche 7-10
Syntax und Semantik, Normalformen, Modellierung,
Nichtausdriickbarkeit
4. Grundlagen des automatischen SchlieBens Woche 11-14
Sequenzenkalkiil, Vollstandigkeits- und Endlichkeitssatz,
Grenzen der Berechenbarkeit, automatische Theorembeweiser
5. Logik-Programmierung Woche 15-16

theoretische Grundlagen der Logik-Programmierung

Learn Prolog Now! Einfiihrung in Prolog findet semesterbegleitend statt.
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