Einführung in die Datenbanktheorie

Wintersemester 2015/2016

Übungsblatt 8

Bearbeitung: in den Übungen am 6./7. Januar 2016

Aufgabe 1: (12+13 Punkte)

Finden Sie zwei Datalog-Programme P_1 und P_2 mit $edb(P_1) = edb(P_2)$ und $idb(P_1) = idb(P_2)$, so dass für $\mathbf{S} := edb(P_1) = edb(P_2)$ gilt:

- (a) Es gibt eine Datenbank $\mathbf{J} \in inst(\mathbf{S})$ so dass $[\![P_1]\!](\mathbf{J}) \not\subseteq [\![P_2]\!](\mathbf{J})$.
- (b) Es gibt ein $R \in idb(P_1)$, so dass für die Anfragen $Q_1 := (P_1, R)$ und $Q_2 := (P_2, R)$, sowie alle $\mathbf{I} \in inst(\mathbf{S})$ gilt: $[\![Q_1]\!](\mathbf{I}) \subseteq [\![Q_2]\!](\mathbf{I})$.

Aufgabe 2: (25 Punkte)

Zeigen Sie, dass für jede Dataloganfrage Q := (P, R) gilt:

Die durch Q definierte Anfragefunktion $[\![Q]\!]$ ist abgeschlossen unter $\mathrm{adom}(Q)$ -Homomorphismen.

Zur Erinnerung:

Ein C-Homomorphismus (für $C \subseteq \mathbf{dom}$) ist eine Abbildung $h: \mathbf{dom} \to \mathbf{dom}$ mit $h_{|_C} = \mathrm{id}$.

Eine Anfragefunktion q ist abgeschlossen unter C-Homomorphismen, falls für alle C-Homomorphismen h und alle Datenbanken \mathbf{I} und \mathbf{J} gilt:

Falls $h(\mathbf{I}) \subseteq \mathbf{J}$, so ist $h(q(\mathbf{I})) \subseteq q(\mathbf{J})$.

Aufgabe 3: (25 Punkte)

Zeigen Sie das Lemma (Δ) aus der Vorlesung, d.h. zeigen Sie:

Sei $\Sigma \subseteq \mathbf{dom}$. Sei $G = (\Sigma, V, S, P)$ eine kontextfreie Grammatik, für die gilt:

- (i) Es gibt keine Produktion der Form $X \to \epsilon$, für $X \in V$,
- (ii) Es gibt keine Produktion auf deren rechter Seite das Startsymbol S steht.

Sei P_G das Datalog-Programm, welches für jede Produktion $A \to B_1 \cdots B_n$ aus G die Regel

$$R_A(x_1, x_{n+1}) \leftarrow \tilde{B}_1, \dots, \tilde{B}_n$$
 mit $\tilde{B}_i := \begin{cases} E(x_i, a, x_{i+1}) & \text{falls } B_i = a \in \Sigma \\ R_X(x_i, x_{i+1}) & \text{falls } B_i = X \in V \end{cases}$

enthält. Sei $m \ge 1$ und seien $a_1, \ldots, a_m, b_1, \ldots, b_{m-1} \in \mathbf{dom}$. Dann gilt:

Es gibt einen Beweisbaum für das Faktum
$$R_S(a_1, a_m)$$
 bzgl P_G , $b_1 \cdots b_{m-1} \in L(G)$ \Leftrightarrow dessen Blätter mit den Fakten $E(a_1, b_1, a_2), E(a_2, b_2, a_3), \ldots, E(a_{m-1}, b_{m-1}, a_m)$ markiert sind.

Aufgabe 4: (25 Punkte)

Zeigen Sie, dass das folgende Auswertungsproblem für Boolsche Datalog-Anfragen (kombinierte Komplexität) EXPTIME-vollständig ist.

Auswertungsproblem für Boolsche Datalog-Anfragen

Eingabe: Datalog-Anfrage Q = (P, R), Datenbank I.

Frage: Ist $[Q](I) \neq \emptyset$?

Hierbei ist:

EXPTIME :=
$$\bigcup_{k \in \mathbb{N}} \text{DTIME}(2^{(n^k)}),$$

wobei DTIME $(2^{(n^k)})$ die Klasse aller Entscheidungsprobleme ist, die von einer deterministischen Turing-Maschine in Zeit $2^{(n^k)}$ gelöst werden können.

Hinweise zur Lösung der Aufgabe finden Sie auf Seite 387 in:

E. Dantsin, T. Eiter, G. Gottlob and A. Voronkov.

Complexity and expressive power of logic programming.

ACM Computing Surveys, Vol. 33, No. 3, pages 374-425. 2001.