

Vorlesung Einführung in die formale Logik für IMP

Sommersemester

Dozent: Dr. André Frochaux

Lehrstuhl Logik in der Informatik Institut für Informatik Humboldt-Universität zu Berlin

Kapitel 1:

Einleitung

Abschnitt 1.1:

ADSCIIIILL 1.1.

Von der Bibel bis zu den Simpsons

Logik

- altgriechisch "logos": Vernunft
- die Lehre des vernünftigen Schlussfolgerns
- Teilgebiet u.a. der Disziplinen Philosophie, Mathematik, Informatik und Linguistik
- zentrale Frage:

Wie kann man Aussagen miteinander verknüpfen, und auf welche Weise kann man formal Schlüsse ziehen und Beweise durchführen?

Brief des Paulus an Titus 1:12-13:

Es hat einer von ihnen gesagt, ihr eigener Prophet:

Die Kreter sind immer Lügner, böse Tiere und faule Bäuche.

Brief des Paulus an Titus 1:12-13:

Es hat einer von ihnen gesagt, ihr eigener Prophet: Die Kreter sind immer Lügner, böse Tiere und faule Bäuche.

Angenommen, die Aussage des Propheten ist wahr.

Brief des Paulus an Titus 1:12-13:

Es hat einer von ihnen gesagt, ihr eigener Prophet:

Die Kreter sind immer Lügner, böse Tiere und faule Bäuche.

Angenommen, die Aussage des Propheten ist wahr.

Da der Prophet selbst Kreter ist, lügt er also immer (und ist ein böses Tier und ein fauler Bauch).

Brief des Paulus an Titus 1:12-13:

Es hat einer von ihnen gesagt, ihr eigener Prophet:

Die Kreter sind immer Lügner, böse Tiere und faule Bäuche.

Angenommen, die Aussage des Propheten ist wahr.

Da der Prophet selbst Kreter ist, lügt er also immer (und ist ein böses Tier und ein fauler Bauch). Dann hat er aber insbesondere in dem Satz "Die Kreter sind immer Lügner, böse Tiere und faule Bäuche" gelogen.

Brief des Paulus an Titus 1:12-13:

Es hat einer von ihnen gesagt, ihr eigener Prophet:

Die Kreter sind immer Lügner, böse Tiere und faule Bäuche.

Angenommen, die Aussage des Propheten ist wahr.

Da der Prophet selbst Kreter ist, lügt er also immer (und ist ein böses Tier und ein fauler Bauch). Dann hat er aber insbesondere in dem Satz "Die Kreter sind immer Lügner, böse Tiere und faule Bäuche" gelogen. D.h. die Aussage des Propheten ist nicht wahr.

Brief des Paulus an Titus 1:12-13:

Es hat einer von ihnen gesagt, ihr eigener Prophet:

Die Kreter sind immer Lügner, böse Tiere und faule Bäuche.

Angenommen, die Aussage des Propheten ist wahr.

Da der Prophet selbst Kreter ist, lügt er also immer (und ist ein böses Tier und ein fauler Bauch). Dann hat er aber insbesondere in dem Satz "Die Kreter sind immer Lügner, böse Tiere und faule Bäuche" gelogen. D.h. die Aussage des Propheten ist nicht wahr. Dies ist ein Widerspruch!

Brief des Paulus an Titus 1:12-13:

Es hat einer von ihnen gesagt, ihr eigener Prophet:

Die Kreter sind immer Lügner, böse Tiere und faule Bäuche.

Angenommen, die Aussage des Propheten ist wahr.

Da der Prophet selbst Kreter ist, lügt er also immer (und ist ein böses Tier und ein fauler Bauch). Dann hat er aber insbesondere in dem Satz "Die Kreter sind immer Lügner, böse Tiere und faule Bäuche" gelogen. D.h. die Aussage des Propheten ist nicht wahr. Dies ist ein Widerspruch!

Angenommen, die Aussage des Propheten ist falsch.

Brief des Paulus an Titus 1:12-13:

Es hat einer von ihnen gesagt, ihr eigener Prophet:

Die Kreter sind immer Lügner, böse Tiere und faule Bäuche.

Angenommen, die Aussage des Propheten ist wahr.

Da der Prophet selbst Kreter ist, lügt er also immer (und ist ein böses Tier und ein fauler Bauch). Dann hat er aber insbesondere in dem Satz "Die Kreter sind immer Lügner, böse Tiere und faule Bäuche" gelogen. D.h. die Aussage des Propheten ist nicht wahr. Dies ist ein Widerspruch!

Angenommen, die Aussage des Propheten ist falsch.

Dann gibt es Kreter, die nicht immer Lügner, böse Tiere und faule Bäuche sind.

Brief des Paulus an Titus 1:12-13:

Es hat einer von ihnen gesagt, ihr eigener Prophet:

Die Kreter sind immer Lügner, böse Tiere und faule Bäuche.

Angenommen, die Aussage des Propheten ist wahr.

Da der Prophet selbst Kreter ist, lügt er also immer (und ist ein böses Tier und ein fauler Bauch). Dann hat er aber insbesondere in dem Satz "Die Kreter sind immer Lügner, böse Tiere und faule Bäuche" gelogen. D.h. die Aussage des Propheten ist nicht wahr. Dies ist ein Widerspruch!

Angenommen, die Aussage des Propheten ist falsch.

Dann gibt es Kreter, die nicht immer Lügner, böse Tiere und faule Bäuche sind. Dies stellt keinen Widerspruch dar.

Brief des Paulus an Titus 1:12-13:

Es hat einer von ihnen gesagt, ihr eigener Prophet:

Die Kreter sind immer Lügner, böse Tiere und faule Bäuche.

Angenommen, die Aussage des Propheten ist wahr.

Da der Prophet selbst Kreter ist, lügt er also immer (und ist ein böses Tier und ein fauler Bauch). Dann hat er aber insbesondere in dem Satz "Die Kreter sind immer Lügner, böse Tiere und faule Bäuche" gelogen. D.h. die Aussage des Propheten ist nicht wahr. Dies ist ein Widerspruch!

Angenommen, die Aussage des Propheten ist falsch.

Dann gibt es Kreter, die nicht immer Lügner, böse Tiere und faule Bäuche sind. Dies stellt keinen Widerspruch dar.

Insgesamt wissen wir also, dass

Brief des Paulus an Titus 1:12-13:

Es hat einer von ihnen gesagt, ihr eigener Prophet:

Die Kreter sind immer Lügner, böse Tiere und faule Bäuche.

Angenommen, die Aussage des Propheten ist wahr.

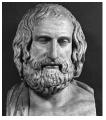
Da der Prophet selbst Kreter ist, lügt er also immer (und ist ein böses Tier und ein fauler Bauch). Dann hat er aber insbesondere in dem Satz "Die Kreter sind immer Lügner, böse Tiere und faule Bäuche" gelogen. D.h. die Aussage des Propheten ist nicht wahr. Dies ist ein Widerspruch!

Angenommen, die Aussage des Propheten ist falsch.

Dann gibt es Kreter, die nicht immer Lügner, böse Tiere und faule Bäuche sind. Dies stellt keinen Widerspruch dar.

Insgesamt wissen wir also, dass der Prophet in seiner obigen Aussage nicht die Wahrheit gesagt hat.

Protagoras und sein Student Euthalus vor Gericht



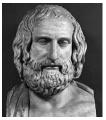
Protagoras (490 – 420 v.Chr.)

Quelle: http://www.greatthoughtstreasury.com/author/protagoras

Euthalus studierte die Kunst der Argumentation beim Meister Protagoras, um Anwalt zu werden.

Er vereinbart mit Protagoras, die Gebühren für den Unterricht zu bezahlen, sobald er seinen ersten Prozess gewonnen hat.

Protagoras und sein Student Euthalus vor Gericht



Protagoras (490 – 420 v.Chr.)

Quelle: http://www.greatthoughtstreasury.com/author/protagoras

Euthalus studierte die Kunst der Argumentation beim Meister Protagoras, um Anwalt zu werden.

Er vereinbart mit Protagoras, die Gebühren für den Unterricht zu bezahlen, sobald er seinen ersten Prozess gewonnen hat.

Aber dann zögert Euthalus seine Anwaltstätigkeit immer weiter hinaus, und schließlich beschließt Protagoras, seine Gebühren einzuklagen. Euthalus verteidigt sich selbst . . .

Protagoras denkt:

Wenn ich den Prozess gewinne, muss Euthalus gemäß Gerichtsbeschluss zahlen

Wenn ich den Prozess verliere, muss Euthalus gemäß unserer Vereinbarung zahlen, da er dann seinen ersten Prozess gewonnen hat.

Protagoras denkt:

Wenn ich den Prozess gewinne, muss Euthalus gemäß Gerichtsbeschluss zahlen.

Wenn ich den Prozess verliere, muss Euthalus gemäß unserer Vereinbarung zahlen, da er dann seinen ersten Prozess gewonnen hat.

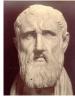
Euthalus denkt:

Wenn ich den Prozess gewinne, muss ich gemäß Gerichtsbeschluss nicht zahlen.

Wenn ich den Prozess verliere, muss ich gemäß unserer Vereinbarung nicht zahlen.

Achilles und die Schildkröte

Achilles und die Schildkröte laufen ein Wettrennen. Achilles gewährt der Schildkröte einen Vorsprung. Zenon behauptet, dass Achilles die Schildkröte niemals einholen kann.



Zenon von Elea (490 – 425 v.Chr.) Quelle:

http://aefucr.blogspot.de/2008/04/resolucin-de-la-paradoja-de-zenn-de.html

Achilles und die Schildkröte

Achilles und die Schildkröte laufen ein Wettrennen. Achilles gewährt der Schildkröte einen Vorsprung. Zenon behauptet, dass Achilles die Schildkröte niemals einholen kann.

Zenon von Elea (490 – 425 v.Chr.) Quelle:

http://aefucr.blogspot.de/2008/04/resolucin-de-la-paradoja-de-zenn-de.html

Zenons Begründung: Zu dem Zeitpunkt, an dem Achilles den Startpunkt der Schildkröte erreicht, ist die Schildkröte schon ein Stück weiter. Etwas später erreicht Achilles diesen Punkt, aber die Schildkröte ist schon etwas weiter. Wenn Achilles diesen Punkt erreicht, ist die Schildkröte wieder etwas weiter. So kann Achilles zwar immer näher an die Schildkröte herankommen, sie aber niemals einholen.

Auflösung durch die Infinitesimalrechnung:

Gottfried Wilhelm von Leibniz (1646 – 1716) und Isaac Newton (1643 – 1727)

Quelle: http://www-history.mcs.st-and.ac.uk/PictDisplay/Leibniz.html und Quelle: http://de.wikipedia.org/wiki/Isaac_Newton

Im Städtchen Sonnenthal (in dem bekanntlich viele seltsame Dinge passieren) wohnt ein Barbier, der genau diejenigen männlichen Einwohner von Sonnenthal rasiert, die sich nicht selbst rasieren.

Frage: Rasiert der Barbier sich selbst?

Im Städtchen Sonnenthal (in dem bekanntlich viele seltsame Dinge passieren) wohnt ein Barbier, der genau diejenigen männlichen Einwohner von Sonnenthal rasiert, die sich nicht selbst rasieren.

Frage: Rasiert der Barbier sich selbst?

Angenommen, der Barbier rasiert sich selbst.

Im Städtchen Sonnenthal (in dem bekanntlich viele seltsame Dinge passieren) wohnt ein Barbier, der genau diejenigen männlichen Einwohner von Sonnenthal rasiert, die sich nicht selbst rasieren.

Frage: Rasiert der Barbier sich selbst?

Angenommen, der Barbier rasiert sich selbst.

Da er ein männlicher Einwohner von Sonnenthal ist, der sich selbst rasiert, wird er *nicht* vom Barbier rasiert.

Im Städtchen Sonnenthal (in dem bekanntlich viele seltsame Dinge passieren) wohnt ein Barbier, der genau diejenigen männlichen Einwohner von Sonnenthal rasiert, die sich nicht selbst rasieren.

Frage: Rasiert der Barbier sich selbst?

Angenommen, der Barbier rasiert sich selbst.

Da er ein männlicher Einwohner von Sonnenthal ist, der sich selbst rasiert, wird er *nicht* vom Barbier rasiert. Aber er selbst ist der Barbier.

Im Städtchen Sonnenthal (in dem bekanntlich viele seltsame Dinge passieren) wohnt ein Barbier, der genau diejenigen männlichen Einwohner von Sonnenthal rasiert, die sich nicht selbst rasieren.

Frage: Rasiert der Barbier sich selbst?

Angenommen, der Barbier rasiert sich selbst.

Da er ein männlicher Einwohner von Sonnenthal ist, der sich selbst rasiert, wird er *nicht* vom Barbier rasiert. Aber er selbst ist der Barbier. Dies ist ein Widerspruch!

Im Städtchen Sonnenthal (in dem bekanntlich viele seltsame Dinge passieren) wohnt ein Barbier, der genau diejenigen männlichen Einwohner von Sonnenthal rasiert, die sich nicht selbst rasieren.

Frage: Rasiert der Barbier sich selbst?

Angenommen, der Barbier rasiert sich selbst.

Da er ein männlicher Einwohner von Sonnenthal ist, der sich selbst rasiert, wird er *nicht* vom Barbier rasiert. Aber er selbst ist der Barbier. Dies ist ein Widerspruch!

Angenommen, der Barbier rasiert sich nicht selbst.

Im Städtchen Sonnenthal (in dem bekanntlich viele seltsame Dinge passieren) wohnt ein Barbier, der genau diejenigen männlichen Einwohner von Sonnenthal rasiert, die sich nicht selbst rasieren.

Frage: Rasiert der Barbier sich selbst?

Angenommen, der Barbier rasiert sich selbst.

Da er ein männlicher Einwohner von Sonnenthal ist, der sich selbst rasiert, wird er *nicht* vom Barbier rasiert. Aber er selbst ist der Barbier. Dies ist ein Widerspruch!

Angenommen, der Barbier rasiert sich nicht selbst.

Da er in Sonnenthal wohnt und dort alle Einwohner rasiert, die sich nicht selbst rasieren, muss er sich rasieren.

Im Städtchen Sonnenthal (in dem bekanntlich viele seltsame Dinge passieren) wohnt ein Barbier, der genau diejenigen männlichen Einwohner von Sonnenthal rasiert, die sich nicht selbst rasieren.

Frage: Rasiert der Barbier sich selbst?

Angenommen, der Barbier rasiert sich selbst.

Da er ein männlicher Einwohner von Sonnenthal ist, der sich selbst rasiert, wird er *nicht* vom Barbier rasiert. Aber er selbst ist der Barbier. Dies ist ein Widerspruch!

Angenommen, der Barbier rasiert sich nicht selbst.

Da er in Sonnenthal wohnt und dort alle Einwohner rasiert, die sich nicht selbst rasieren, muss er sich rasieren. Dies ist ein Widerspruch!

Kap 1: Einleitung · Abschnitt 1.1: Von der Bibel bis zu den Simpsons

Die Anfänge der formalen Logik

Aristoteles' Syllogismen

Die folgende Schlussweise ist aus rein formalen Gründen korrekt.

Annahme 1: Alle Menschen sind sterblich.

Annahme 2: Sokrates ist ein Mensch.

Folgerung: Also ist Sokrates sterblich.

Aristoteles' Syllogismen

Die folgende Schlussweise ist aus rein formalen Gründen korrekt.

Annahme 1: Alle Menschen sind sterblich.

Annahme 2: Sokrates ist ein Mensch.

Folgerung: Also ist Sokrates sterblich.

Diese Art von Schluss und eine Reihe verwandter Schlussweisen nennt man Syllogismen.

Annahme 1: Alle A sind B.
Annahme 2: C ist ein A.
Folgerung: Also ist C B.

Beispiele

Annahme 1: <u>Alle Borg sind</u> assimiliert worden.

Annahme 2: Seven of Nine <u>ist eine</u> Borg.

Folgerung: Also ist Seven of Nine assimiliert worden.

Beispiele

Annahme 1: <u>Alle Borg sind</u> assimiliert worden.

Annahme 2: Seven of Nine ist eine Borg.

Folgerung: Also ist Seven of Nine assimiliert worden.

Annahme 1: Alle Substitutionschiffren sind

anfällig gegen Brute-Force-Angriffe.

Annahme 2: Die Julius-Cäsar-Chiffre ist eine Substitutionschiffre.

Folgerung: Also ist die Julius-Cäsar-Chiffre anfällig

gegen Brute-Force-Angriffe.



Aristoteles (384 - 322 v.Chr.) Quelle: http://de.wikipedia.org/wiki/Aristoteles

Ein komplizierterer formaler Schluss

Annahme 1: <u>Es gibt keine</u> Schweine, <u>die</u> fliegen können.

Annahme 2: <u>Alle Schweine sind</u> gefräßige Tiere.

Annahme 3: Es gibt Schweine.

Folgerung: Also gibt es gefräßige Tiere, die nicht fliegen können.

Ein komplizierterer formaler Schluss

Annahme 1: Es gibt keine Schweine, die fliegen können.

Annahme 2: <u>Alle Schweine sind gefräßige Tiere.</u>

Annahme 3: Es gibt Schweine.

Folgerung: Also gibt es gefräßige Tiere, die nicht fliegen können.

Die Form des Schlusses ist:

Annahme 1: Es gibt keine A, die B (sind).

Annahme 2: $\overline{\text{Alle A sind C}}$.

Annahme 3: Es gibt A.

Folgerung: Also gibt es C, die nicht B (sind).

Charles Lutwidge Dodgson a.k.a. Lewis Carroll (1838 – 1898)

Quelle: http://en.wikiquote.org/wiki/Lewis_Carroll

"Contrariwise," continued Tweedledee, "if it was so, it might be; and if it were so, it would be; but as it isn't, it ain't. That's logic."

aus: Alice in Wonderland

Nicht jeder formale Schluss ist korrekt

Annahme 1: Es gibt Vögel, die fliegen können.

Annahme 2: Es gibt keine fliegenden (Tiere),

die Klavier spielen können.

Folgerung: Also gibt es keine Vögel, die Klavier spielen können.

Nicht jeder formale Schluss ist korrekt

Annahme 1: Es gibt Vögel, die fliegen können.

Annahme 2: Es gibt keine fliegenden (Tiere),

die Klavier spielen können.

Folgerung: Also gibt es keine Vögel, die Klavier spielen können.

Kein korrekter Schluss, auch wenn in diesem Fall die Folgerung wahr ist.

Der folgende, offensichtlich falsche, Schluss hat dieselbe Form:

Annahme 1: <u>Es gibt</u> Menschen, <u>die</u> stumm sind.

Annahme 2: Es gibt keine stummen (Lebewesen),

die sprechen können.

Folgerung: Also gibt es keine Menschen, die sprechen können.

Aber wie merkt man es?

Man kann einen falschen Schluss entlarven, indem man einen formal gleichen Schluss findet, der klar falsch ist.

Annahme 1: Erbeeren schmecken gut.

Annahme 2: Schlagsahne schmeckt gut.

Folgerung: Also schmecken Erdbeeren mit Schlagsahne gut.

Aber wie merkt man es?

Man kann einen falschen Schluss entlarven, indem man einen formal gleichen Schluss findet, der klar falsch ist.

Annahme 1: Erbeeren schmecken gut.

Annahme 2: Schlagsahne schmeckt gut.

Folgerung: Also schmecken Erdbeeren mit Schlagsahne gut.

Aber:

Annahme 1: Pizza schmeckt gut.

Annahme 2: Schlagsahne schmeckt gut.

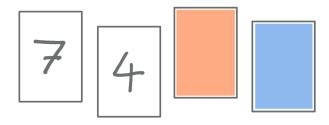
Folgerung: Also schmeckt Pizza mit Schlagsahne gut.

Wasons Auswahlaufgabe (Wason's selection task)

Uns stehen vier Karten der folgenden Art zur Verfügung: Auf jeder Karte steht auf der Vorderseite eine Ziffer zwischen 0 und 9. Die Rückseite jeder Karte ist komplett rot oder komplett blau.

Wasons Auswahlaufgabe (Wason's selection task)

Uns stehen vier Karten der folgenden Art zur Verfügung: Auf jeder Karte steht auf der Vorderseite eine Ziffer zwischen 0 und 9. Die Rückseite jeder Karte ist komplett rot oder komplett blau. Wir sehen Folgendes:

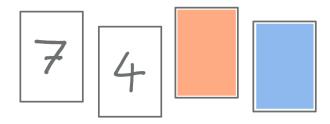


Jemand hat folgende **Hypothese** aufgestellt:

Wenn auf der Vorderseite eine gerade Zahl steht, dann ist die Rückseite rot.

Wasons Auswahlaufgabe (Wason's selection task)

Uns stehen vier Karten der folgenden Art zur Verfügung: Auf jeder Karte steht auf der Vorderseite eine Ziffer zwischen 0 und 9. Die Rückseite jeder Karte ist komplett rot oder komplett blau. Wir sehen Folgendes:



Jemand hat folgende **Hypothese** aufgestellt:

Wenn auf der Vorderseite eine gerade Zahl steht, dann ist die Rückseite rot.

Welche Karte(n) müssen Sie umdrehen, um zu überprüfen, ob die Hypothese stimmt?

Und was sagen die Simpsons?

Quelle: http://en. wikipedia.org/wiki/ Simpson_family Homer: Not a bear in sight. The Bear Patrol

must be working like a charm.

Lisa: That's specious reasoning, Dad.

Homer: Thank you, dear.

Lisa: By your logic I could claim that

this rock keeps tigers away.

Homer: Oh. how does it work?

l isa: It doesn't work.

Homer: Uh-huh.

Lisa: It's just a stupid rock.

Homer: Uh-huh.

Lisa: But I don't see any tigers around,

do you? (Pause)

Homer: Lisa, I want to buy your rock.

[Lisa refuses at first, then takes the exchange]

Abschnitt 1.2:

Logik in der Informatik

Die Rolle der Logik in der Informatik

Halpern, Harper, Immerman, Kolaitis, Vardi, Vianu (2001):

Concepts and methods of logic occupy a central place in computer science, insomuch that logic has been called "the calculus of computer science".

aus: On the unusual effectiveness of logic in computer science, Bulletin of Symbolic Logic 7(2): 213-236 (2001)

Repräsentation von Wissen (z.B. im Bereich der künstlichen Intelligenz)
 [siehe Kapitel 2 und 3]

- Repräsentation von Wissen (z.B. im Bereich der künstlichen Intelligenz)
 [siehe Kapitel 2 und 3]
- Grundlage für Datenbank-Anfragesprachen

[siehe Kapitel 3]

- Repräsentation von Wissen (z.B. im Bereich der künstlichen Intelligenz)
 [siehe Kapitel 2 und 3]
- Grundlage für Datenbank-Anfragesprachen [siehe Kapitel 3]
- Bestandteil von Programmiersprachen
 (z.B. um Bedingungen in IF-Anweisungen zu formulieren) [siehe Kapitel 2]

- Repräsentation von Wissen (z.B. im Bereich der künstlichen Intelligenz)
 [siehe Kapitel 2 und 3]
- Grundlage für Datenbank-Anfragesprachen [siehe Kapitel 3]
- Bestandteil von Programmiersprachen
 (z.B. um Bedingungen in IF-Anweisungen zu formulieren) [siehe Kapitel 2]
- automatische Generierung von Beweisen (so genannte *Theorembeweiser*) [siehe Kapitel 4]

- Repräsentation von Wissen (z.B. im Bereich der künstlichen Intelligenz)
 [siehe Kapitel 2 und 3]
- Grundlage für Datenbank-Anfragesprachen [siehe Kapitel 3]
- Bestandteil von Programmiersprachen
 (z.B. um Bedingungen in IF-Anweisungen zu formulieren) [siehe Kapitel 2]
- automatische Generierung von Beweisen (so genannte *Theorembeweiser*) [siehe Kapitel 4]
- Verifikation von
 - Schaltkreisen (Ziel: beweise, dass ein Schaltkreis bzw. Chip "richtig" funktioniert)

- Repräsentation von Wissen (z.B. im Bereich der künstlichen Intelligenz)
 [siehe Kapitel 2 und 3]
- Grundlage für Datenbank-Anfragesprachen [siehe Kapitel 3]
- Bestandteil von Programmiersprachen
 (z.B. um Bedingungen in IF-Anweisungen zu formulieren) [siehe Kapitel 2]
- automatische Generierung von Beweisen (so genannte *Theorembeweiser*) [siehe Kapitel 4]
- Verifikation von
 - Schaltkreisen (Ziel: beweise, dass ein Schaltkreis bzw. Chip "richtig" funktioniert)
 - Programmen (Ziel: beweise, dass ein Programm gewisse wünschenswerte Eigenschaften hat)

- Repräsentation von Wissen (z.B. im Bereich der künstlichen Intelligenz)
 [siehe Kapitel 2 und 3]
- Grundlage für Datenbank-Anfragesprachen [siehe Kapitel 3]
- Bestandteil von Programmiersprachen
 (z.B. um Bedingungen in IF-Anweisungen zu formulieren) [siehe Kapitel 2]
- automatische Generierung von Beweisen (so genannte *Theorembeweiser*) [siehe Kapitel 4]
- Verifikation von
 - Schaltkreisen (Ziel: beweise, dass ein Schaltkreis bzw. Chip "richtig" funktioniert)
 - Programmen (Ziel: beweise, dass ein Programm gewisse wünschenswerte Eigenschaften hat)
 - Protokollen (Ziel: beweise, dass die Kommunikation zwischen zwei "Agenten", die nach einem gewissen Protokoll abläuft, "sicher" ist — etwa gegen Abhören oder Manipulation durch dritte; Anwendungsbeispiel: Internet-Banking)

- Repräsentation von Wissen (z.B. im Bereich der künstlichen Intelligenz)
 [siehe Kapitel 2 und 3]
- Grundlage f
 ür Datenbank-Anfragesprachen

[siehe Kapitel 3]

- Bestandteil von Programmiersprachen
 (z.B. um Bedingungen in IF-Anweisungen zu formulieren) [siehe Kapitel 2]
- automatische Generierung von Beweisen (so genannte *Theorembeweiser*)

[siehe Kapitel 4]

- Verifikation von
 - Schaltkreisen (Ziel: beweise, dass ein Schaltkreis bzw. Chip "richtig" funktioniert)
 - Programmen (Ziel: beweise, dass ein Programm gewisse wünschenswerte Eigenschaften hat)
 - Protokollen (Ziel: beweise, dass die Kommunikation zwischen zwei "Agenten", die nach einem gewissen Protokoll abläuft, "sicher" ist — etwa gegen Abhören oder Manipulation durch dritte; Anwendungsbeispiel: Internet-Banking)
- Logik-Programmierung

[siehe folgende Folien]

Kap 1: Einleitung · Abschnitt 1.2: Logik in der Informatik

Kurze Einführung in die Logik-Programmierung

"Was" statt "Wie" am Beispiel von Tiramisu

Tiramisu — Deklarativ

Aus Eigelb, Mascarpone und in Likör und Kaffee getränkten Biskuits hergestellte cremige Süßspeise

(aus: DUDEN,

Fremdwörterbuch, 6. Auflage)

Tiramisu — Imperativ

1/4 | Milch mit 2 EL Kakao und 2 EL Zucker aufkochen. 1/4 | starken Kaffee und 4 EL Amaretto dazugeben.

5 Eigelb mit 75 g Zucker weißschaumig rühren, dann 500 g Mascarpone dazumischen.

ca 200 g Löffelbiskuit.

Eine Lage Löffelbiskuit in eine Auflaufform legen, mit der Flüssigkeit tränken und mit der Creme überziehen. Dann wieder Löffelbiskuit darauflegen, mit der restlichen Flüssigkeit tränken und mit der restlichen Creme überziehen.

Über Nacht im Kühlschrank durchziehen lassen und vor dem Servieren mit Kakao bestäuben.

(aus: Gisela Schweikardt, handschriftliche Kochrezepte)

Imperative Vorgehensweise:

Deklarative Vorgehensweise:

Traum der Informatik:

Möglichst wenig "wie", möglichst viel "was"

D.h.: Automatische Generierung eines Ergebnisses aus seiner Spezifikation

Imperative Vorgehensweise:

Deklarative Vorgehensweise:

Traum der Informatik:

Möglichst wenig "wie", möglichst viel "was"

D.h.: Automatische Generierung eines Ergebnisses aus seiner Spezifikation

Realität:

Datenbanken: Deklarative Anfragesprache ist Industriestandard (SQL)

Imperative Vorgehensweise:

Deklarative Vorgehensweise:

Traum der Informatik:

Möglichst wenig "wie", möglichst viel "was"

D.h.: Automatische Generierung eines Ergebnisses aus seiner Spezifikation

Realität:

Datenbanken: Deklarative Anfragesprache ist Industriestandard (SQL)

Software-Entwicklung: Generierungs-Tools

Imperative Vorgehensweise:

Deklarative Vorgehensweise:

Traum der Informatik:

Möglichst wenig "wie", möglichst viel "was"

D.h.: Automatische Generierung eines Ergebnisses aus seiner Spezifikation

Realität:

Datenbanken: Deklarative Anfragesprache ist Industriestandard (SQL)

Software-Entwicklung: Generierungs-Tools

Programmiersprachen: Logik-Programmierung, insbes. Prolog

Imperative Vorgehensweise:

Deklarative Vorgehensweise:

Traum der Informatik:

Möglichst wenig "wie", möglichst viel "was"

D.h.: Automatische Generierung eines Ergebnisses aus seiner Spezifikation

Realität:

Datenbanken: Deklarative Anfragesprache ist Industriestandard (SQL)

Software-Entwicklung: Generierungs-Tools

Programmiersprachen: Logik-Programmierung, insbes. Prolog

ABER: Imperativer Ansatz überwiegt in der Praxis

Logik-Programmierung

• Logik-Programmierung bezeichnet die Idee, Logik direkt als Programmiersprache zu verwenden.

Logik-Programmierung

- Logik-Programmierung bezeichnet die Idee, Logik direkt als Programmiersprache zu verwenden.
- Logik-Programmierung (in Sprachen wie Prolog) und die verwandte funktionale Programmierung (in Sprachen wie LISP, ML, Haskell) sind deklarativ, im Gegensatz zur imperativen Programmierung (in Sprachen wie Java, C,
 - Perl).

Logik-Programmierung

- Logik-Programmierung bezeichnet die Idee, Logik direkt als Programmiersprache zu verwenden.
- Logik-Programmierung (in Sprachen wie Prolog) und die verwandte funktionale Programmierung (in Sprachen wie LISP, ML, Haskell) sind deklarativ, im Gegensatz zur imperativen Programmierung (in Sprachen wie Java, C, Perl).
- Die Idee der deklarativen Programmierung besteht darin, dem Computer lediglich sein Wissen über das Anwendungsszenario und sein Ziel mitzuteilen und dann die Lösung des Problems dem Computer zu überlassen.
 - Bei der imperativen Programmierung hingegen gibt man dem Computer die einzelnen Schritte zur Lösung des Problems vor.

Prolog

- Prolog
 - ist die wichtigste logische Programmiersprache,
 - geht zurück auf Kowalski und Colmerauer (Anfang der 1970er Jahre, Marseilles),
 - steht für (franz.) Programmation en logique.
 - Mitte/Ende der 1970er Jahre: effiziente Prolog-Implementierung durch den von Warren (in Edinburgh) entwickelten Prolog-10 Compiler.

Prolog

- Prolog
 - ist die wichtigste logische Programmiersprache,
 - geht zurück auf Kowalski und Colmerauer (Anfang der 1970er Jahre, Marseilles),
 - steht für (franz.) Programmation en logique.
 - Mitte/Ende der 1970er Jahre: effiziente Prolog-Implementierung durch den von Warren (in Edinburgh) entwickelten Prolog-10 Compiler.
- Aus Effizienzgründen werden in Prolog die abstrakten Ideen der logischen Programmierung nicht in Reinform umgesetzt, Prolog hat auch "nichtlogische" Elemente.

Prolog

- Prolog
 - ist die wichtigste logische Programmiersprache,
 - geht zurück auf Kowalski und Colmerauer (Anfang der 1970er Jahre, Marseilles),
 - steht für (franz.) Programmation en logique.
 - Mitte/Ende der 1970er Jahre: effiziente Prolog-Implementierung durch den von Warren (in Edinburgh) entwickelten Prolog-10 Compiler.
- Aus Effizienzgründen werden in Prolog die abstrakten Ideen der logischen Programmierung nicht in Reinform umgesetzt, Prolog hat auch "nichtlogische" Elemente.
- Prolog ist eine voll entwickelte und m\u00e4chtige Programmiersprache, die vor allem f\u00fcr symbolische Berechnungsprobleme geeignet ist.

Anwendungen

Die wichtigsten Anwendungsgebiete sind die künstliche Intelligenz und die Computerlinguistik.

Anwendungen

Die wichtigsten Anwendungsgebiete sind die künstliche Intelligenz und die Computerlinguistik.

Beispiele

Das Interface für natürliche Sprache

- in der International Space Station wurde von der NASA
- beim IBM Watson System, das in 2011 die Jeopardy! Man vs. Machine Challenge gewonnen hat, wurde

in Prolog implementiert.

Anwendungen

Die wichtigsten Anwendungsgebiete sind die künstliche Intelligenz und die Computerlinguistik.

Beispiele

Das Interface für natürliche Sprache

- in der International Space Station wurde von der NASA
- beim IBM Watson System, das in 2011 die Jeopardy! Man vs. Machine Challenge gewonnen hat, wurde

in Prolog implementiert.

Mehr Informationen dazu finden sich z.B. unter
https://sicstus.sics.se/customers.html und
http://www.cs.nmsu.edu/ALP/2011/03/
natural-language-processing-with-prolog-in-the-ibm-watson-system/

In der Veranstaltung Einführung in die formale Logik für IMP

... werden keine Details zur Programmiersprache Prolog oder dem allgemeinen Konzept der Logik-Programmierung behandelt.

Für alle, die sich diese Themen interessehalber im Selbststudium erarbeiten wollen, wird die folgende Literatur empfohlen:

- Kapitel 5 des Vorlesungsskripts [Sch18] und die im Übungsbetrieb der Veranstaltung Logik in der Informatik behandelten Übungsaufgaben zu den Themen Prolog und Logik-Programmierung,
- das Buch Learn Prolog Now! [BBS06], das einen guten Einstieg in die Programmiersprache Prolog bietet und
- das Buch The Art of PROLOG [SS94], das neben Details zur Programmiersprache Prolog auch eine Einführung in allgemeine Konzepte der Logik-Programmierung gibt.

Abschnitt 1.3:

Lernziele, Semesterausblick und Literatur

Lern- und Qualifikationsziele

Aus der Modulbeschreibung:

Studierende erlangen die Fähigkeit, Sachverhalte in geeigneten formalen Systemen zu formalisieren und die grundlegenden Begriffe und Ergebnisse der mathematischen Logik zu verstehen und anzuwenden.

Lern- und Qualifikationsziele

Aus der Modulbeschreibung:

Studierende erlangen die Fähigkeit, Sachverhalte in geeigneten formalen Systemen zu formalisieren und die grundlegenden Begriffe und Ergebnisse der mathematischen Logik zu verstehen und anzuwenden.

Und was sagt Goethe dazu?

Mein teurer Freund, ich rat Euch drum Zuerst Collegium Logicum.

Da wird der Geist Euch wohl dressiert, In spanische Stiefeln eingeschnürt, Daß er bedächtiger so fortan Hinschleiche die Gedankenbahn, Und nicht etwa, die Kreuz und Quer, Irrlichteliere hin und her

Mephistopheles in Faust

1. Einleitung (dieses Kapitel)

1. Einleitung (dieses Kapitel)

2. Aussagenlogik

Syntax und Semantik, Normalformen, Modellierung, Resolution, Erfüllbarkeitsalgorithmen

1. Einleitung (dieses Kapitel)

2. Aussagenlogik

Syntax und Semantik, Normalformen, Modellierung, Resolution, Erfüllbarkeitsalgorithmen

3. Logik erster Stufe
Syntax und Semantik, Normalformen, Modellierung,
Nichtausdrückbarkeit

1. Einleitung (dieses Kapitel)

2. Aussagenlogik

Syntax und Semantik, Normalformen, Modellierung, Resolution, Erfüllbarkeitsalgorithmen

3. Logik erster Stufe

Syntax und Semantik, Normalformen, Modellierung, Nichtausdrückbarkeit

4. Grundlagen des automatischen Schließens

Sequenzenkalkül, Vollständigkeits- und Endlichkeitssatz, Grenzen der Berechenbarkeit, automatische Theorembeweiser

Literaturempfehlungen

Folgende Schriften werden zur Vertiefung des Vorlesungsstoffes empfohlen:

- 1. dieses Vorlesungsskript zur Veranstaltung Einführung in die formale Logik für IMP
- 2. das Lehrbuch [EFT07]
- 3. die Lehrbücher [Sch00, Bur98, KK06]

Literaturempfehlungen

Folgende Schriften werden zur Vertiefung des Vorlesungsstoffes empfohlen:

- 1. dieses Vorlesungsskript zur Veranstaltung Einführung in die formale Logik für IMP
- 2. das Lehrbuch [EFT07]
- 3. die Lehrbücher [Sch00, Bur98, KK06]

Als Ergänzung seien auch folgende Lehrbücher genannt:

- [Ebb03] (Einführung in die Mengenlehre)
- [Lib04, FG98] (Bücher zum Thema Logik und Komplexität)
- [Cam98, vD04, HR04] (weiterführende Literatur im Bereich Logik und automatisches Schließen)

Kapitel 2:

Aussagenlogik

Syntax und Semantik

Abschnitt 2.1:

Die Frage "Was ist eigentlich ein Wort?" ist analog der "Was ist eine Schachfigur?" Ludwig Wittgenstein, Philosophische Untersuchungen

Die Frage "Was ist eigentlich ein Wort?" ist analog der "Was ist eine Schachfigur?" Ludwig Wittgenstein, Philosophische Untersuchungen

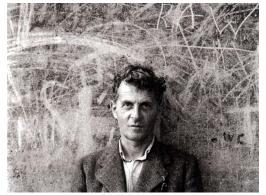
 Aussagen (im Sinne der Aussagenlogik) sind sprachliche Gebilde, die entweder wahr oder falsch sind.

Die Frage "Was ist eigentlich ein Wort?" ist analog der "Was ist eine Schachfigur?" Ludwig Wittgenstein, Philosophische Untersuchungen

- Aussagen (im Sinne der Aussagenlogik) sind sprachliche Gebilde, die entweder wahr oder falsch sind.
- Aussagen können mit Junktoren wie nicht, und, oder oder wenn ... dann zu komplexeren Aussagen verknüpft werden.

Die Frage "Was ist eigentlich ein Wort?" ist analog der "Was ist eine Schachfigur?" Ludwig Wittgenstein, Philosophische Untersuchungen

- Aussagen (im Sinne der Aussagenlogik) sind sprachliche Gebilde, die entweder wahr oder falsch sind.
- Aussagen können mit Junktoren wie nicht, und, oder oder wenn ... dann zu komplexeren Aussagen verknüpft werden.
- Aussagenlogik beschäftigt sich mit allgemeinen Prinzipien des korrekten Argumentierens und Schließens mit Aussagen und Kombinationen von Aussagen.



Ludwig Wittgenstein (1889 - 1951)

Quelle: http://en.wikipedia.org/wiki/Ludwig_Wittgenstein

Beispiel 2.1 (Geburtstagsfeier)

Fred möchte mit möglichst vielen seiner Freunde Anne, Bernd, Christine, Dirk und Eva seinen Geburtstag feiern. Er weiß Folgendes:

Wenn Bernd und Anne beide zur Party kommen, dann wird Eva auf keinen Fall kommen. Und Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier kommen. Aber Eva kommt allenfalls dann, wenn Christine und Dirk kommen. Andererseits kommt Christine nur dann, wenn auch Anne kommt. Anne wiederum wird nur dann kommen, wenn auch Bernd oder Christine dabei sind.

Frage: Wie viele Freunde (und welche) werden im besten Fall zur Party kommen?

Das Wissen, das in dem Text wiedergegeben ist, lässt sich in "atomare Aussagen" zerlegen, die mit Junktoren verknüpft werden können. Die atomaren Aussagen, um die sich der Text dreht, kürzen wir folgendermaßen ab:

A : Anne kommt zur Feier

B: Bernd kommt zur Feier

C: Christine kommt zur Feier

D : Dirk kommt zur Feier

E : Eva kommt zur Feier

Das im Text zusammengefasste Wissen lässt sich wie folgt repräsentieren.

(2) Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier kommen.

(3) Eva kommt allenfalls dann, wenn Christine und Dirk kommen.

(4) Christine kommt nur dann, wenn auch Anne kommt.

(5) Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind.

HU Berlin . Einfül

kurz: Wenn (B und A), dann nicht E

(2) Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier kommen.

(3) Eva kommt allenfalls dann, wenn Christine und Dirk kommen.

Christine kommt nur dann, wenn auch Anne kommt.

(5) Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind.

HU Berlin Einführung in die formale Logik für IMP Folie 32

kurz: Wenn (B und A), dann nicht E kürzer: $(B \land A) \rightarrow \neg E$

(2) Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier kommen.

(3) Eva kommt allenfalls dann, wenn Christine und Dirk kommen.

(4) Christine kommt nur dann, wenn auch Anne kommt.

(5) Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind.

HU Berlin

kurz: Wenn (B und A), dann nicht E kürzer: $(B \land A) \rightarrow \neg E$

(2) Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier kommen.

kurz: Wenn (B und E), dann nicht D

(3) Eva kommt allenfalls dann, wenn Christine und Dirk kommen.

(4) Christine kommt nur dann, wenn auch Anne kommt.

(5) Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind.

HU Berlin

kurz: Wenn (B und A), dann nicht E kürzer: $(B \land A) \rightarrow \neg E$

(2) Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier kommen.

kurz: Wenn (B und E), dann nicht D kürzer: $(B \land E) \rightarrow \neg D$

(3) Eva kommt allenfalls dann, wenn Christine und Dirk kommen.

(4) Christine kommt nur dann, wenn auch Anne kommt.

(5) Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind.

HU Berlin

kurz: Wenn (B und A), dann nicht E kürzer: $(B \land A) \rightarrow \neg E$

(2) Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier kommen.

kurz: Wenn (B und E), dann nicht D kürzer: $(B \land E) \rightarrow \neg D$

- (3) Eva kommt allenfalls dann, wenn Christine und Dirk kommen. kurz: Wenn E, dann (C und D)
- (4) Christine kommt nur dann, wenn auch Anne kommt.

kurz: Wenn (B und A), dann nicht E kürzer: $(B \land A) \rightarrow \neg E$

(2) Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier kommen.

kurz: Wenn (B und E), dann nicht D kürzer: $(B \land E) \rightarrow \neg D$

- (3) Eva kommt allenfalls dann, wenn Christine und Dirk kommen. $kurz: Wenn E, dann (C und D) kürzer: E \rightarrow (C \land D)$
- (4) Christine kommt nur dann, wenn auch Anne kommt.

kurz: Wenn (B und A), dann nicht E kürzer: $(B \land A) \rightarrow \neg E$

(2) Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier kommen.

kurz: Wenn (B und E), dann nicht D kürzer: $(B \land E) \rightarrow \neg D$

(3) Eva kommt allenfalls dann, wenn Christine und Dirk kommen. kurz: Wenn E, dann (C und D) $k\ddot{u}rzer$: $E \rightarrow (C \land D)$

kurz: Wenn E, dann (C und D) kurzer: $E \to (C \land D)$

(4) Christine kommt nur dann, wenn auch Anne kommt.

kurz: Wenn C, dann A

kurz: Wenn (B und A), dann nicht E kürzer: $(B \land A) \rightarrow \neg E$

(2) Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier kommen.

kurz: Wenn (B und E), dann nicht D kürzer: $(B \land E) \rightarrow \neg D$

(3) Eva kommt allenfalls dann, wenn Christine und Dirk kommen. kurz: Wenn E, dann (C und D) $k\ddot{u}rzer$: $E \rightarrow (C \land D)$

kurz: Wenn E, dann (C und D) kurzer: $E \to (C \land D)$

(4) Christine kommt nur dann, wenn auch Anne kommt.

kurz: Wenn C, dann A kürzer: $C \rightarrow A$

kurz: Wenn (B und A), dann nicht E kürzer: $(B \land A) \rightarrow \neg E$

(2) Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier kommen.

kurz: Wenn (B und E), dann nicht D kürzer: $(B \land E) \rightarrow \neg D$

(3) Eva kommt allenfalls dann, wenn Christine und Dirk kommen. kurz: Wenn E, dann (C und D) $k\ddot{u}rzer$: $E \rightarrow (C \land D)$

kurz: Wenn E, dann (C und D) kurzer: $E \to (C \land D)$

(4) Christine kommt nur dann, wenn auch Anne kommt.

kurz: Wenn C, dann A kürzer: $C \rightarrow A$

(5) Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind. kurz: Wenn A, dann (B oder C)

kurz: Wenn (B und A), dann nicht E kürzer: $(B \land A) \rightarrow \neg E$

(2) Dirk wird auf keinen Fall kommen, wenn Bernd und Eva beide zur Feier kommen.

kurz: Wenn (B und E), dann nicht D kürzer: $(B \land E) \rightarrow \neg D$

- (3) Eva kommt allenfalls dann, wenn Christine und Dirk kommen. kurz: Wenn E, dann (C und D) $k\ddot{u}rzer$: $E \rightarrow (C \land D)$
- (4) Christine kommt nur dann, wenn auch Anne kommt.
- kurz: Wenn C, dann A kürzer: $C \rightarrow A$
- (5) Anne kommt nur dann, wenn auch Bernd oder Christine dabei sind. kurz: Wenn A, dann (B oder C) $k\ddot{u}rzer$: $A \rightarrow (B \lor C)$

Die Verwendung der Wörter und, wenn ... dann, oder, nicht in der Alltagssprache entspricht nicht immer exakt unseren logischen Junktoren.

Die Verwendung der Wörter und, wenn ... dann, oder, nicht in der Alltagssprache entspricht nicht immer exakt unseren logischen Junktoren.

(1) Anne hat mit dem Kaffeetrinken aufgehört.

(2) Anne hat nicht mit dem Kaffeetrinken aufgehört.

Ist (2) die Negation von (1)?

Die Verwendung der Wörter und, wenn ... dann, oder, nicht in der Alltagssprache entspricht nicht immer exakt unseren logischen Junktoren.

(1) Anne hat mit dem Kaffeetrinken aufgehört.

(2) Anne hat nicht mit dem Kaffeetrinken aufgehört.

Ist (2) die Negation von (1)? In dem Fall, dass Anne noch nie Kaffee getrunken hat, ist keine der beiden Aussagen wahr.

V : Anne war in der Vergangenheit Kaffeetrinkerin.

G: Anne ist zur Zeit Kaffeetrinkerin.

Die Verwendung der Wörter und, wenn ... dann, oder, nicht in der Alltagssprache entspricht nicht immer exakt unseren logischen Junktoren.

(1) Anne hat mit dem Kaffeetrinken aufgehört.

kurz: V und nicht G kürzer: $V \land \neg G$

(2) Anne hat nicht mit dem Kaffeetrinken aufgehört.

kurz: V und G kürzer: $V \wedge G$

Ist (2) die Negation von (1)? In dem Fall, dass Anne noch nie Kaffee getrunken hat, ist keine der beiden Aussagen wahr.

V : Anne war in der Vergangenheit Kaffeetrinkerin.

G: Anne ist zur Zeit Kaffeetrinkerin.

Die Verwendung der Wörter und, wenn ... dann, oder, nicht in der Alltagssprache entspricht nicht immer exakt unseren logischen Junktoren.

(1) Anne hat mit dem Kaffeetrinken aufgehört.

kurz: V und nicht G kürzer: $V \land \neg G$

(2) Anne hat nicht mit dem Kaffeetrinken aufgehört.

kurz: V und G $k\ddot{u}rzer: V \wedge G$

Ist (2) die Negation von (1)? In dem Fall, dass Anne noch nie Kaffee getrunken hat, ist keine der beiden Aussagen wahr.

V : Anne war in der Vergangenheit Kaffeetrinkerin.

G: Anne ist zur Zeit Kaffeetrinkerin.

Zwei weitere Beispiele:

• Ich werde mir ein rotes oder ein blaues Fahrrad kaufen.

Fallstricke natürlichsprachlicher Aussagen

Die Verwendung der Wörter und, wenn ... dann, oder, nicht in der Alltagssprache entspricht nicht immer exakt unseren logischen Junktoren.

(1) Anne hat mit dem Kaffeetrinken aufgehört.

kurz: V und nicht G kürzer: $V \land \neg G$

(2) Anne hat nicht mit dem Kaffeetrinken aufgehört.

kurz: V und G kürzer: $V \wedge G$

Ist (2) die Negation von (1)? In dem Fall, dass Anne noch nie Kaffee getrunken hat, ist keine der beiden Aussagen wahr.

V : Anne war in der Vergangenheit Kaffeetrinkerin.

G: Anne ist zur Zeit Kaffeetrinkerin.

Zwei weitere Beispiele:

- Ich werde mir ein rotes oder ein blaues Fahrrad kaufen.
- Wenn Regen vorhergesagt ist, dann nehme ich einen Schirm mit.

Syntax und Semantik

Syntax: legt fest, welche Zeichenketten Formeln der Aussagenlogik sind Semantik: legt fest, welche "Bedeutung" einzelne Formeln haben

Dies ist analog zur Syntax und Semantik von Java-Programmen:

Die Syntax legt fest, welche Zeichenketten Java-Programme sind, während die Semantik bestimmt, was das Programm tut.

Syntax und Semantik

Syntax: legt fest, welche Zeichenketten Formeln der Aussagenlogik sind Semantik: legt fest, welche "Bedeutung" einzelne Formeln haben

Dies ist analog zur Syntax und Semantik von Java-Programmen:

Die Syntax legt fest, welche Zeichenketten Java-Programme sind, während die Semantik bestimmt, was das Programm tut.

Zur Verdeutlichung werden wir im Folgenden syntaktische Objekte oft in orange darstellen, während wir semantische Aussagen in blau angeben.

Kap 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Syntax der Aussagenlogik

Notationen

 Die Menge
 N der natürlichen Zahlen besteht aus allen nicht-negativen ganzen Zahlen, d.h.

$$\mathbb{N} := \{ 0, 1, 2, 3, \dots \}.$$

• Für ein $n \in \mathbb{N}$ ist

$$[n] := \{1, \ldots, n\} = \{i \in \mathbb{N} : 1 \leqslant i \leqslant n\}.$$

HU Berlin

Ein Aussagensymbol (oder eine Aussagenvariable, kurz: Variable) hat die Form A_i für ein $i \in \mathbb{N}$.

Die Menge aller Aussagensymbole bezeichnen wir mit AS, d.h.

$$AS = \{A_i : i \in \mathbb{N}\} = \{A_0, A_1, A_2, A_3, \dots\}$$

Ein Aussagensymbol (oder eine Aussagenvariable, kurz: Variable) hat die Form A_i für ein $i \in \mathbb{N}$.

Die Menge aller Aussagensymbole bezeichnen wir mit AS, d.h.

$$AS = \{A_i : i \in \mathbb{N}\} = \{A_0, A_1, A_2, A_3, \dots\}$$

Aussagenlogische Formeln sind Wörter, die über dem folgenden Alphabet gebildet sind.

HU Berlin

Ein Aussagensymbol (oder eine Aussagenvariable, kurz: Variable) hat die Form A_i für ein $i \in \mathbb{N}$.

Die Menge aller Aussagensymbole bezeichnen wir mit AS, d.h.

$$AS = \{A_i : i \in \mathbb{N}\} = \{A_0, A_1, A_2, A_3, \dots\}$$

Aussagenlogische Formeln sind Wörter, die über dem folgenden Alphabet gebildet sind.

Definition 2.3

Ein Aussagensymbol (oder eine Aussagenvariable, kurz: Variable) hat die Form A_i für ein $i \in \mathbb{N}$.

Die Menge aller Aussagensymbole bezeichnen wir mit AS, d.h.

$$AS = \{A_i : i \in \mathbb{N}\} = \{A_0, A_1, A_2, A_3, \dots\}$$

Aussagenlogische Formeln sind Wörter, die über dem folgenden Alphabet gebildet sind.

Definition 2.3

Das Alphabet der Aussagenlogik besteht aus

den Aussagesymbolen in AS,

Ein Aussagensymbol (oder eine Aussagenvariable, kurz: Variable) hat die Form A_i für ein $i \in \mathbb{N}$.

Die Menge aller Aussagensymbole bezeichnen wir mit AS, d.h.

$$AS = \{A_i : i \in \mathbb{N}\} = \{A_0, A_1, A_2, A_3, \dots\}$$

Aussagenlogische Formeln sind Wörter, die über dem folgenden Alphabet gebildet sind.

Definition 2.3

- den Aussagesymbolen in AS,
- den Junktoren ¬, ∧, ∨, →,

Ein Aussagensymbol (oder eine Aussagenvariable, kurz: Variable) hat die Form A_i für ein $i \in \mathbb{N}$.

Die Menge aller Aussagensymbole bezeichnen wir mit AS, d.h.

$$AS = \{A_i : i \in \mathbb{N}\} = \{A_0, A_1, A_2, A_3, \dots\}$$

Aussagenlogische Formeln sind Wörter, die über dem folgenden Alphabet gebildet sind.

Definition 2.3

- den Aussagesymbolen in AS,
- den Junktoren ¬, ∧, ∨, →,
- den booleschen Konstanten 0, 1,

Ein Aussagensymbol (oder eine Aussagenvariable, kurz: Variable) hat die Form A_i für ein $i \in \mathbb{N}$.

Die Menge aller Aussagensymbole bezeichnen wir mit AS, d.h.

$$AS = \{A_i : i \in \mathbb{N}\} = \{A_0, A_1, A_2, A_3, \dots\}$$

Aussagenlogische Formeln sind Wörter, die über dem folgenden Alphabet gebildet sind.

Definition 2.3

- den Aussagesymbolen in AS,
- den Junktoren ¬, ∧, ∨, →,
- den booleschen Konstanten 0, 1,
- den Klammersymbolen (,).

Ein Aussagensymbol (oder eine Aussagenvariable, kurz: Variable) hat die Form A_i für ein $i \in \mathbb{N}$.

Die Menge aller Aussagensymbole bezeichnen wir mit AS, d.h.

$$AS = \{A_i : i \in \mathbb{N}\} = \{A_0, A_1, A_2, A_3, \dots\}$$

Aussagenlogische Formeln sind Wörter, die über dem folgenden Alphabet gebildet sind.

Definition 2.3

Das Alphabet der Aussagenlogik besteht aus

- den Aussagesymbolen in AS,
- den Junktoren ¬, ∧, ∨, →,
- den booleschen Konstanten 0, 1,
- den Klammersymbolen (,).

Wir schreiben A_{AL}, um das Alphabet der Aussagenlogik zu bezeichnen, d.h.

$$A_{AI} := AS \cup \{ \neg, \land, \lor, \rightarrow, 0, 1, (,) \}$$

Die Menge AL der aussagenlogischen Formeln (kurz: Formeln) ist die folgendermaßen rekursiv definierte Teilmenge von A_{AL}^* :

Die Menge AL der aussagenlogischen Formeln (kurz: Formeln) ist die folgendermaßen rekursiv definierte Teilmenge von A_{AL}^* :

Basisregeln: (zum Bilden der so genannten atomaren Formeln)

(B0) 0 ∈ AL

(B1) **1** ∈ AL

Die Menge AL der aussagenlogischen Formeln (kurz: Formeln) ist die folgendermaßen rekursiv definierte Teilmenge von A_{AL}^* :

Basisregeln: (zum Bilden der so genannten atomaren Formeln)

- (B0) $0 \in AL$
- (B1) $\mathbf{1} \in \mathsf{AL}$
- (BS) Für jedes Aussagensymbol $A_i \in AS$ gilt: $A_i \in AL$

Die Menge AL der aussagenlogischen Formeln (kurz: Formeln) ist die folgendermaßen rekursiv definierte Teilmenge von A_{AL}^* :

Basisregeln: (zum Bilden der so genannten atomaren Formeln)

- (B0) $0 \in AL$
- (B1) $1 \in AL$
- (BS) Für jedes Aussagensymbol $A_i \in AS$ gilt: $A_i \in AL$

Rekursive Regeln:

(R1) Ist $\varphi \in AL$, so ist auch $\neg \varphi \in AL$ (Negation)

Die Menge AL der aussagenlogischen Formeln (kurz: Formeln) ist die folgendermaßen rekursiv definierte Teilmenge von A_{AL}^* :

Basisregeln: (zum Bilden der so genannten atomaren Formeln)

- (B0) 0 ∈ AL
- (B1) 1 ∈ AL
- (BS) Für jedes Aussagensymbol $A_i \in AS$ gilt: $A_i \in AL$

Rekursive Regeln:

- (R1) Ist $\varphi \in AL$, so ist auch $\neg \varphi \in AL$ (Negation)
- (R2) Ist $\varphi \in AL$ und $\psi \in AL$, so ist auch
 - $(\varphi \wedge \psi) \in AL$ (Konjunktion)

Die Menge AL der aussagenlogischen Formeln (kurz: Formeln) ist die folgendermaßen rekursiv definierte Teilmenge von A_{AL}^* :

Basisregeln: (zum Bilden der so genannten atomaren Formeln)

- (B0) $0 \in AL$
- (B1) $1 \in AL$
- (BS) Für jedes Aussagensymbol $A_i \in AS$ gilt: $A_i \in AL$

Rekursive Regeln:

- (R1) Ist $\varphi \in AL$, so ist auch $\neg \varphi \in AL$ (Negation)
- (R2) Ist $\varphi \in AL$ und $\psi \in AL$, so ist auch
 - $(\varphi \wedge \psi) \in AL$ (Konjunktion)
 - $(\varphi \lor \psi) \in AL$ (Disjunktion)

Die Menge AL der aussagenlogischen Formeln (kurz: Formeln) ist die folgendermaßen rekursiv definierte Teilmenge von A_{AL}^* :

Basisregeln: (zum Bilden der so genannten atomaren Formeln)

- (B0) $0 \in AL$
- (B1) $1 \in AL$
- (BS) Für jedes Aussagensymbol $A_i \in AS$ gilt: $A_i \in AL$

Rekursive Regeln:

- (R1) Ist $\varphi \in AL$, so ist auch $\neg \varphi \in AL$ (Negation)
- (R2) Ist $\varphi \in AL$ und $\psi \in AL$, so ist auch
 - $(\varphi \wedge \psi) \in AL$ (Konjunktion)
 - $(\varphi \lor \psi) \in AL$ (Disjunktion)
 - $(\varphi \to \psi) \in AL$ (Implikation)

- $(\neg A_0 \lor (A_0 \rightarrow A_1))$
- $\neg ((A_0 \land \mathbf{0}) \rightarrow \neg A_3)$
- $A_1 \lor A_2 \land A_3$
- (¬*A*₁)

- $(\neg A_0 \lor (A_0 \to A_1)) \in \mathsf{AL}$
- $\neg ((A_0 \land \mathbf{0}) \rightarrow \neg A_3)$
- $A_1 \lor A_2 \land A_3$
- $(\neg A_1)$

- $(\neg A_0 \lor (A_0 \to A_1)) \in \mathsf{AL}$
- $\neg ((A_0 \land \mathbf{0}) \rightarrow \neg A_3) \in \mathsf{AL}$
- $A_1 \lor A_2 \land A_3$
- $(\neg A_1)$

HU Berlin

- $(\neg A_0 \lor (A_0 \to A_1)) \in \mathsf{AL}$
- $\neg((A_0 \land \mathbf{0}) \rightarrow \neg A_3) \in \mathsf{AL}$
- $A_1 \vee A_2 \wedge A_3 \notin AL$
- (¬*A*₁)

- $(\neg A_0 \lor (A_0 \to A_1)) \in \mathsf{AL}$
- $\neg((A_0 \land \mathbf{0}) \rightarrow \neg A_3) \in \mathsf{AL}$
- $A_1 \vee A_2 \wedge A_3 \notin AL$
- $(\neg A_1) \notin AL$

HU Berlin

Griechische Buchstaben

In der Literatur werden Formeln einer Logik traditionell meistens mit griechischen Buchstaben bezeichnet.

Hier eine Liste der gebräuchlichsten Buchstaben:

Buchstabe	φ	ψ	λ	(θ bzw.	ϑ	$ \lambda$		μ	$ \nu$	7	r	κ	
Aussprache	phi ps		cł	ni	theta	neta laml		oda	mü	nü	ta	u	kappa	
Buchstabe	σ		ρ	ξ	ζ		α	β	γ			δ	ω	
Aussprache	sigm	a	rho	xi	zeta	a	lpha	bet	a ga	gamma		delta	omeg	ga
Buchstabe	. ε		ι ι		$\pi \mid \Delta$		Г		Σ	Σ Π		ф	Ψ	
Aussprache	epsilon		iota	р	i Del	Delta		Gamma		na	Pi	Ph	i Psi	-

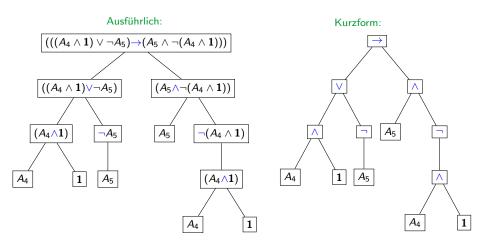
Syntaxbäume

Die Struktur einer Formel lässt sich bequem in einem Syntaxbaum (englisch: parse tree) darstellen.

Syntaxbäume

Die Struktur einer Formel lässt sich bequem in einem Syntaxbaum (englisch: parse tree) darstellen.

Beispiel: Syntaxbaum der Formel $(((A_4 \land 1) \lor \neg A_5) \to (A_5 \land \neg (A_4 \land 1)))$



Subformeln und eindeutige Lesbarkeit

 Jede Formel hat genau einen Syntaxbaum. Diese Aussage ist als das Lemma über die eindeutige Lesbarkeit aussagenlogischer Formeln bekannt.

Subformeln und eindeutige Lesbarkeit

- Jede Formel hat genau einen Syntaxbaum. Diese Aussage ist als das Lemma über die eindeutige Lesbarkeit aussagenlogischer Formeln bekannt.
- Die Formeln ψ , die im ausführlichen Syntaxbaum einer Formel φ als Knotenbeschriftung vorkommen, nennen wir Subformeln (bzw. Teilformeln) von φ .

Subformeln und eindeutige Lesbarkeit

- Jede Formel hat genau einen Syntaxbaum. Diese Aussage ist als das Lemma über die eindeutige Lesbarkeit aussagenlogischer Formeln bekannt.
- Die Formeln ψ , die im ausführlichen Syntaxbaum einer Formel φ als Knotenbeschriftung vorkommen, nennen wir Subformeln (bzw. Teilformeln) von φ .
- Eine Subformel ψ von φ kann an mehreren Knoten des Syntaxbaums vorkommen. Wir sprechen dann von verschiedenen Vorkommen von ψ in φ .

Kap 2: Aussagenlogik · Abschnitt 2.1: Syntax und Semantik

Semantik der Aussagenlogik

• Eine aussagenlogische Formel wird erst zur Aussage, wenn wir alle in ihr vorkommenden Aussagensymbole durch Aussagen ersetzen.

- Eine aussagenlogische Formel wird erst zur Aussage, wenn wir alle in ihr vorkommenden Aussagensymbole durch Aussagen ersetzen.
- Wir interessieren uns hier nicht so sehr für die tatsächlichen Aussagen, sondern nur für ihren Wahrheitswert, also dafür, ob sie wahr oder falsch sind.

- Eine aussagenlogische Formel wird erst zur Aussage, wenn wir alle in ihr vorkommenden Aussagensymbole durch Aussagen ersetzen.
- Wir interessieren uns hier nicht so sehr für die tatsächlichen Aussagen, sondern nur für ihren Wahrheitswert, also dafür, ob sie wahr oder falsch sind.
- Um das festzustellen, reicht es, den Aussagensymbolen die Wahrheitswerte der durch sie repräsentierten Aussagen zuzuordnen.

- Eine aussagenlogische Formel wird erst zur Aussage, wenn wir alle in ihr vorkommenden Aussagensymbole durch Aussagen ersetzen.
- Wir interessieren uns hier nicht so sehr für die tatsächlichen Aussagen, sondern nur für ihren Wahrheitswert, also dafür, ob sie wahr oder falsch sind.
- Um das festzustellen, reicht es, den Aussagensymbolen die Wahrheitswerte der durch sie repräsentierten Aussagen zuzuordnen.
- Die Bedeutung einer Formel besteht also aus ihren Wahrheitswerten unter allen möglichen Wahrheitswerten für die in der Formel vorkommenden Aussagensymbole.

Interpretationen (d.h. Variablenbelegungen)

Wir repräsentieren die Wahrheitswerte wahr und falsch durch 1 und 0.

Interpretationen (d.h. Variablenbelegungen)

Wir repräsentieren die Wahrheitswerte wahr und falsch durch 1 und 0.

Definition 2.5

Eine aussagenlogische Interpretation (kurz: Interpretation oder Belegung) ist eine Abbildung

$$\mathcal{I}:\mathsf{AS}\to\{0,1\}.$$

Interpretationen (d.h. Variablenbelegungen)

Wir repräsentieren die Wahrheitswerte wahr und falsch durch 1 und 0.

Definition 2.5

Eine aussagenlogische Interpretation (kurz: Interpretation oder Belegung) ist eine Abbildung

$$\mathcal{I}:\mathsf{AS}\to\{0,1\}.$$

D.h.: \mathcal{I} "belegt" jedes Aussagensymbol $X \in \mathsf{AS}$ mit einem der beiden Wahrheitswerte 1 (für "wahr") oder 0 (für "falsch"); und $\mathcal{I}(X)$ ist der Wahrheitswert, mit dem das Aussagensymbol X belegt wird.

Definition 2.6

Zu jeder Formel $\varphi \in \mathsf{AL}$ und jeder Interpretation $\mathcal I$ definieren wir einen Wahrheitswert $\llbracket \varphi \rrbracket^{\mathcal I}$ rekursiv wie folgt:

Definition 2.6

Zu jeder Formel $\varphi \in AL$ und jeder Interpretation \mathcal{I} definieren wir einen Wahrheitswert $[\![\varphi]\!]^{\mathcal{I}}$ rekursiv wie folgt:

Rekursionsanfang:

 $\bullet \ \llbracket \mathbf{0} \rrbracket^{\mathcal{I}} := 0.$

Definition 2.6

Zu jeder Formel $\varphi \in AL$ und jeder Interpretation $\mathcal I$ definieren wir einen Wahrheitswert $\llbracket \varphi \rrbracket^{\mathcal I}$ rekursiv wie folgt:

- $\bullet \ \llbracket \mathbf{0} \rrbracket^{\mathcal{I}} := 0.$
- $[\![\mathbf{1}]\!]^{\mathcal{I}} := 1.$

Definition 2.6

Zu jeder Formel $\varphi \in AL$ und jeder Interpretation \mathcal{I} definieren wir einen Wahrheitswert $[\![\varphi]\!]^{\mathcal{I}}$ rekursiv wie folgt:

- $\bullet \ \llbracket \mathbf{0} \rrbracket^{\mathcal{I}} := 0.$
- $[1]^{\mathcal{I}} := 1.$
- Für alle $X \in AS$ gilt: $[X]^{\mathcal{I}} :=$

Definition 2.6

Zu jeder Formel $\varphi \in AL$ und jeder Interpretation \mathcal{I} definieren wir einen Wahrheitswert $[\![\varphi]\!]^{\mathcal{I}}$ rekursiv wie folgt:

- $\bullet \ \llbracket \mathbf{0} \rrbracket^{\mathcal{I}} := 0.$
- $[1]^{\mathcal{I}} := 1.$
- Für alle $X \in AS$ gilt: $[X]^{\mathcal{I}} := \mathcal{I}(X)$.

Definition 2.6

Zu jeder Formel $\varphi \in AL$ und jeder Interpretation \mathcal{I} definieren wir einen Wahrheitswert $[\![\varphi]\!]^{\mathcal{I}}$ rekursiv wie folgt:

Rekursionsanfang:

- $\bullet \ \llbracket \mathbf{0} \rrbracket^{\mathcal{I}} := 0.$
- $[1]^{\mathcal{I}} := 1.$
- Für alle $X \in AS$ gilt: $[X]^{\mathcal{I}} := \mathcal{I}(X)$.

Rekursionsschritt:

• Ist $\varphi \in AL$, so ist $\llbracket \neg \varphi \rrbracket^{\mathcal{I}} :=$

Definition 2.6

Zu jeder Formel $\varphi \in AL$ und jeder Interpretation $\mathcal I$ definieren wir einen Wahrheitswert $\llbracket \varphi \rrbracket^{\mathcal I}$ rekursiv wie folgt:

Rekursionsanfang:

- $\bullet \ \llbracket \mathbf{0} \rrbracket^{\mathcal{I}} := 0.$
- $[1]^{\mathcal{I}} := 1.$
- Für alle $X \in AS$ gilt: $[X]^{\mathcal{I}} := \mathcal{I}(X)$.

Rekursionsschritt:

• Ist $\varphi \in \mathsf{AL}$, so ist $\llbracket \neg \varphi \rrbracket^\mathcal{I} := \begin{cases} 1 & \mathsf{falls} \ \llbracket \varphi \rrbracket^\mathcal{I} = 0, \\ 0 & \mathsf{sonst.} \end{cases}$

• Ist $\varphi \in AL$ und $\psi \in AL$, so ist

•
$$\llbracket (\varphi \wedge \psi) \rrbracket^{\mathcal{I}} :=$$

• Ist $\varphi \in AL$ und $\psi \in AL$, so ist

• Ist $\varphi \in AL$ und $\psi \in AL$, so ist

•
$$\llbracket (\varphi \wedge \psi) \rrbracket^{\mathcal{I}} := \begin{cases} 1 & \text{falls } \llbracket \varphi \rrbracket^{\mathcal{I}} = \llbracket \psi \rrbracket^{\mathcal{I}} = 1, \\ 0 & \text{sonst.} \end{cases}$$

• $\llbracket (\varphi \lor \psi) \rrbracket^{\mathcal{I}} :=$

• Ist $\varphi \in AL$ und $\psi \in AL$, so ist

•
$$\llbracket (\varphi \wedge \psi) \rrbracket^{\mathcal{I}} := \begin{cases} 1 & \text{falls } \llbracket \varphi \rrbracket^{\mathcal{I}} = \llbracket \psi \rrbracket^{\mathcal{I}} = 1, \\ 0 & \text{sonst.} \end{cases}$$

•
$$\llbracket (\varphi \lor \psi) \rrbracket^{\mathcal{I}} := \begin{cases} 0 & \text{falls } \llbracket \varphi \rrbracket^{\mathcal{I}} = \llbracket \psi \rrbracket^{\mathcal{I}} = 0, \\ 1 & \text{sonst.} \end{cases}$$

• Ist $\varphi \in \mathsf{AL}$ und $\psi \in \mathsf{AL}$, so ist

$$\bullet \ \llbracket (\varphi \wedge \psi) \rrbracket^{\mathcal{I}} := \begin{cases} 1 & \text{falls } \llbracket \varphi \rrbracket^{\mathcal{I}} = \llbracket \psi \rrbracket^{\mathcal{I}} = 1, \\ 0 & \text{sonst.} \end{cases}$$

$$\bullet \ \llbracket (\varphi \lor \psi) \rrbracket^{\mathcal{I}} := \begin{cases} 0 & \text{falls } \llbracket \varphi \rrbracket^{\mathcal{I}} = \llbracket \psi \rrbracket^{\mathcal{I}} = 0, \\ 1 & \text{sonst.} \end{cases}$$

• $\llbracket (\varphi \to \psi) \rrbracket^{\mathcal{I}} :=$

• Ist $\varphi \in \mathsf{AL}$ und $\psi \in \mathsf{AL}$, so ist

$$\bullet \ \llbracket (\varphi \wedge \psi) \rrbracket^{\mathcal{I}} := \begin{cases} 1 & \mathsf{falls} \ \llbracket \varphi \rrbracket^{\mathcal{I}} = \llbracket \psi \rrbracket^{\mathcal{I}} = 1, \\ 0 & \mathsf{sonst.} \end{cases}$$

•
$$\llbracket (\varphi \lor \psi) \rrbracket^{\mathcal{I}} := \begin{cases} 0 & \text{falls } \llbracket \varphi \rrbracket^{\mathcal{I}} = \llbracket \psi \rrbracket^{\mathcal{I}} = 0, \\ 1 & \text{sonst.} \end{cases}$$

$$\bullet \ \ \llbracket (\varphi \to \psi) \rrbracket^{\mathcal{I}} := \begin{cases} 0 & \text{falls } \llbracket \varphi \rrbracket^{\mathcal{I}} = 1 \text{ und } \llbracket \psi \rrbracket^{\mathcal{I}} = 0, \\ 1 & \text{sonst.} \end{cases}$$

Boolesche Konstanten: 1 und 0 bedeuten einfach "wahr" und "falsch".

Boolesche Konstanten: 1 und 0 bedeuten einfach "wahr" und "falsch".

Aussagensymbole: Die Aussagensymbole stehen für irgendwelche Aussagen, von denen uns aber nur der Wahrheitswert interessiert. Dieser wird durch die Interpretation festgelegt.

Boolesche Konstanten: 1 und 0 bedeuten einfach "wahr" und "falsch".

Aussagensymbole: Die Aussagensymbole stehen für irgendwelche Aussagen, von denen uns aber nur der Wahrheitswert interessiert. Dieser wird durch die Interpretation festgelegt.

Negation: $\neg \varphi$ bedeutet "nicht φ ".

Boolesche Konstanten: 1 und 0 bedeuten einfach "wahr" und "falsch".

Aussagensymbole: Die Aussagensymbole stehen für irgendwelche Aussagen, von denen uns aber nur der Wahrheitswert interessiert. Dieser wird durch die Interpretation festgelegt.

Negation: $\neg \varphi$ bedeutet "nicht φ ".

Konjunktion: $(\varphi \wedge \psi)$ bedeutet " φ und ψ ".

Boolesche Konstanten: ${\bf 1}$ und ${\bf 0}$ bedeuten einfach "wahr" und "falsch".

Aussagensymbole: Die Aussagensymbole stehen für irgendwelche Aussagen, von denen uns aber nur der Wahrheitswert interessiert. Dieser wird durch die Interpretation festgelegt.

Negation: $\neg \varphi$ bedeutet "nicht φ ".

Konjunktion: $(\varphi \wedge \psi)$ bedeutet " φ und ψ ".

Disjunktion: $(\varphi \lor \psi)$ bedeutet " φ oder ψ ".

Boolesche Konstanten: 1 und 0 bedeuten einfach "wahr" und "falsch".

Aussagensymbole: Die Aussagensymbole stehen für irgendwelche Aussagen, von denen uns aber nur der Wahrheitswert interessiert. Dieser wird durch die Interpretation festgelegt.

Negation: $\neg \varphi$ bedeutet "nicht φ ".

Konjunktion: $(\varphi \wedge \psi)$ bedeutet " φ und ψ ".

Disjunktion: $(\varphi \lor \psi)$ bedeutet " φ oder ψ ".

Implikation: $(\varphi \to \psi)$ bedeutet " φ impliziert ψ " (oder "wenn φ dann ψ ").

 Ähnlich wie Funktionen auf den natürlichen Zahlen, wie zum Beispiel die Fakultätsfunktion oder die Fibonacci Folge, können wir Funktionen auf den aussagenlogischen Formeln rekursiv definieren.

- Ähnlich wie Funktionen auf den natürlichen Zahlen, wie zum Beispiel die Fakultätsfunktion oder die Fibonacci Folge, können wir Funktionen auf den aussagenlogischen Formeln rekursiv definieren.
- Dabei gehen wir von den atomaren Formeln aus und definieren dann den Funktionswert einer zusammengesetzten Formel aus den Funktionswerten ihrer Bestandteile.

- Ähnlich wie Funktionen auf den natürlichen Zahlen, wie zum Beispiel die Fakultätsfunktion oder die Fibonacci Folge, können wir Funktionen auf den aussagenlogischen Formeln rekursiv definieren.
- Dabei gehen wir von den atomaren Formeln aus und definieren dann den Funktionswert einer zusammengesetzten Formel aus den Funktionswerten ihrer Bestandteile.
- Zur Rechtfertigung solcher Definitionen benötigt man die eindeutige Lesbarkeit aussagenlogischer Formeln, die besagt, dass sich jede Formel eindeutig in ihre Bestandteile zerlegen lässt.

- Ähnlich wie Funktionen auf den natürlichen Zahlen, wie zum Beispiel die Fakultätsfunktion oder die Fibonacci Folge, können wir Funktionen auf den aussagenlogischen Formeln rekursiv definieren.
- Dabei gehen wir von den atomaren Formeln aus und definieren dann den Funktionswert einer zusammengesetzten Formel aus den Funktionswerten ihrer Bestandteile.
- Zur Rechtfertigung solcher Definitionen benötigt man die eindeutige Lesbarkeit aussagenlogischer Formeln, die besagt, dass sich jede Formel eindeutig in ihre Bestandteile zerlegen lässt.
- Wir haben auf diese Weise die Semantik definiert. Wir haben nämlich für jede Interpretation \mathcal{I} rekursiv eine Funktion $[\![\cdot]\!]^{\mathcal{I}}: \mathsf{AL} \to \{0,1\}$ definiert.

Rekursive Definitionen (Forts.)

Schematisch sieht die rekursive Definition einer Funktion $f: AL \to M$ (für eine beliebige Menge M) folgendermaßen aus:

- Definiere f(0) und f(1).
- Definiere f(X) für alle $X \in AS$.

Rekursive Definitionen (Forts.)

Schematisch sieht die rekursive Definition einer Funktion $f: AL \to M$ (für eine beliebige Menge M) folgendermaßen aus:

Rekursionsanfang:

- Definiere f(0) und f(1).
- Definiere f(X) für alle $X \in AS$.

Rekursionsschritt:

- Definiere $f(\neg \varphi)$ aus $f(\varphi)$.
- Definiere $f((\varphi \wedge \psi))$ aus $f(\varphi)$ und $f(\psi)$.
- Definiere $f((\varphi \lor \psi))$ aus $f(\varphi)$ und $f(\psi)$.
- Definiere $f((\varphi \to \psi))$ aus $f(\varphi)$ und $f(\psi)$.

Betrachte die Formel
$$\varphi := (\neg A_0 \lor (A_5 \to A_1))$$

und die Interpretation $\mathcal{I}:\mathsf{AS}\to\{0,1\}$ mit

$$\mathcal{I}(A_0)=1,\quad \mathcal{I}(A_1)=1,\quad \mathcal{I}(A_5)=0$$

und
$$\mathcal{I}(Y) = 0$$
 für alle $Y \in AS \setminus \{A_0, A_1, A_5\}$.

Der Wahrheitswert $\llbracket \varphi \rrbracket^{\mathcal{I}}$ ist der Wert

$$\llbracket \varphi \rrbracket^{\mathcal{I}} \overset{\mathsf{Def. 2.6}}{=}$$

Betrachte die Formel $\varphi := (\neg A_0 \lor (A_5 \to A_1))$

und die Interpretation $\mathcal{I}:\mathsf{AS}\to\{0,1\}$ mit

$$\mathcal{I}(A_0)=1,\quad \mathcal{I}(A_1)=1,\quad \mathcal{I}(A_5)=0$$

und $\mathcal{I}(Y) = 0$ für alle $Y \in AS \setminus \{A_0, A_1, A_5\}$.

Der Wahrheitswert $\llbracket \varphi \rrbracket^{\mathcal{I}}$ ist der Wert

Betrachte die Formel $\varphi := (\neg A_0 \lor (A_5 \to A_1))$

und die Interpretation $\mathcal{I}:\mathsf{AS}\to\{0,1\}$ mit

$$\mathcal{I}(A_0)=1,\quad \mathcal{I}(A_1)=1,\quad \mathcal{I}(A_5)=0$$

und $\mathcal{I}(Y) = 0$ für alle $Y \in AS \setminus \{A_0, A_1, A_5\}$.

Der Wahrheitswert $\llbracket \varphi \rrbracket^{\mathcal{I}}$ ist der Wert

Betrachte die Formel $\varphi:=\left(\neg A_0 \lor (A_5 \to A_1)\right)$ und die Interpretation $\mathcal{I}:\mathsf{AS} \to \{0,1\}$ mit

$$\mathcal{I}(A_0)=1,\quad \mathcal{I}(A_1)=1,\quad \mathcal{I}(A_5)=0$$

und $\mathcal{I}(Y) = 0$ für alle $Y \in AS \setminus \{A_0, A_1, A_5\}$.

Der Wahrheitswert $\llbracket \varphi \rrbracket^{\mathcal{I}}$ ist der Wert

Betrachte die Formel $\varphi := (\neg A_0 \lor (A_5 \to A_1))$ und die Interpretation $\mathcal{I} : \mathsf{AS} \to \{0,1\}$ mit

$$\mathcal{I}(A_0) = 1$$
, $\mathcal{I}(A_1) = 1$, $\mathcal{I}(A_5) = 0$

und $\mathcal{I}(Y) = 0$ für alle $Y \in AS \setminus \{A_0, A_1, A_5\}$.

Der Wahrheitswert $\llbracket \varphi \rrbracket^{\mathcal{I}}$ ist der Wert

Alternative Art, den Wert $\llbracket \varphi \rrbracket^{\mathcal{I}}$ zu bestimmen

• Ersetze in φ jedes Aussagensymbol X durch seinen gemäß \mathcal{I} festgelegten Wahrheitswert, d.h. durch den Wert $\mathcal{I}(X)$, und rechne dann den Wert des resultierenden booleschen Ausdrucks aus.

- Ersetze in φ jedes Aussagensymbol X durch seinen gemäß \mathcal{I} festgelegten Wahrheitswert, d.h. durch den Wert $\mathcal{I}(X)$, und rechne dann den Wert des resultierenden booleschen Ausdrucks aus.
- Speziell für die Formel φ und die Interpretation $\mathcal I$ aus Beispiel 2.7 ergibt die Ersetzung der Aussagensymbole durch die gemäß $\mathcal I$ festgelegten Wahrheitswerte den booleschen Ausdruck

Alternative Art, den Wert $\llbracket \varphi \rrbracket^2$ zu bestimmen

- Ersetze in φ jedes Aussagensymbol X durch seinen gemäß \mathcal{I} festgelegten Wahrheitswert, d.h. durch den Wert $\mathcal{I}(X)$, und rechne dann den Wert des resultierenden booleschen Ausdrucks aus.
- Speziell für die Formel φ und die Interpretation $\mathcal I$ aus Beispiel 2.7 ergibt die Ersetzung der Aussagensymbole durch die gemäß $\mathcal I$ festgelegten Wahrheitswerte den booleschen Ausdruck

$$(\neg 1 \lor (0 \rightarrow 1)).$$

- Ersetze in φ jedes Aussagensymbol X durch seinen gemäß \mathcal{I} festgelegten Wahrheitswert, d.h. durch den Wert $\mathcal{I}(X)$, und rechne dann den Wert des resultierenden booleschen Ausdrucks aus.
- Speziell für die Formel φ und die Interpretation $\mathcal I$ aus Beispiel 2.7 ergibt die Ersetzung der Aussagensymbole durch die gemäß $\mathcal I$ festgelegten Wahrheitswerte den booleschen Ausdruck

$$(\neg 1 \lor (0 \rightarrow 1)).$$

Ausrechnen von ¬1 ergibt den Wert

- Ersetze in φ jedes Aussagensymbol X durch seinen gemäß \mathcal{I} festgelegten Wahrheitswert, d.h. durch den Wert $\mathcal{I}(X)$, und rechne dann den Wert des resultierenden booleschen Ausdrucks aus.
- Speziell für die Formel φ und die Interpretation $\mathcal I$ aus Beispiel 2.7 ergibt die Ersetzung der Aussagensymbole durch die gemäß $\mathcal I$ festgelegten Wahrheitswerte den booleschen Ausdruck

$$(\neg 1 \lor (0 \rightarrow 1)).$$

• Ausrechnen von ¬1 ergibt den Wert 0.

- Ersetze in φ jedes Aussagensymbol X durch seinen gemäß \mathcal{I} festgelegten Wahrheitswert, d.h. durch den Wert $\mathcal{I}(X)$, und rechne dann den Wert des resultierenden booleschen Ausdrucks aus.
- Speziell für die Formel φ und die Interpretation $\mathcal I$ aus Beispiel 2.7 ergibt die Ersetzung der Aussagensymbole durch die gemäß $\mathcal I$ festgelegten Wahrheitswerte den booleschen Ausdruck

$$(\neg 1 \lor (0 \rightarrow 1)).$$

• Ausrechnen von $\neg 1$ ergibt den Wert 0. Ausrechnen von $(0 \rightarrow 1)$ ergibt den Wert

- Ersetze in φ jedes Aussagensymbol X durch seinen gemäß $\mathcal I$ festgelegten Wahrheitswert, d.h. durch den Wert $\mathcal I(X)$, und rechne dann den Wert des resultierenden booleschen Ausdrucks aus.
- Speziell für die Formel φ und die Interpretation $\mathcal I$ aus Beispiel 2.7 ergibt die Ersetzung der Aussagensymbole durch die gemäß $\mathcal I$ festgelegten Wahrheitswerte den booleschen Ausdruck

$$(\neg 1 \lor (0 \rightarrow 1)).$$

• Ausrechnen von $\neg 1$ ergibt den Wert 0. Ausrechnen von $(0 \rightarrow 1)$ ergibt den Wert 1.

- Ersetze in φ jedes Aussagensymbol X durch seinen gemäß $\mathcal I$ festgelegten Wahrheitswert, d.h. durch den Wert $\mathcal I(X)$, und rechne dann den Wert des resultierenden booleschen Ausdrucks aus.
- Speziell für die Formel φ und die Interpretation $\mathcal I$ aus Beispiel 2.7 ergibt die Ersetzung der Aussagensymbole durch die gemäß $\mathcal I$ festgelegten Wahrheitswerte den booleschen Ausdruck

$$(\neg 1 \lor (0 \rightarrow 1)).$$

- Ausrechnen von $\neg 1$ ergibt den Wert 0. Ausrechnen von $(0 \rightarrow 1)$ ergibt den Wert 1.
- Insgesamt erhalten wir also

- Ersetze in φ jedes Aussagensymbol X durch seinen gemäß \mathcal{I} festgelegten Wahrheitswert, d.h. durch den Wert $\mathcal{I}(X)$, und rechne dann den Wert des resultierenden booleschen Ausdrucks aus.
- Speziell für die Formel φ und die Interpretation $\mathcal I$ aus Beispiel 2.7 ergibt die Ersetzung der Aussagensymbole durch die gemäß $\mathcal I$ festgelegten Wahrheitswerte den booleschen Ausdruck

$$(\neg 1 \lor (0 \rightarrow 1)).$$

- Ausrechnen von ¬1 ergibt den Wert 0.
 Ausrechnen von (0 → 1) ergibt den Wert 1.
- Insgesamt erhalten wir also $(0 \lor 1)$, was sich zum Wert

- Ersetze in φ jedes Aussagensymbol X durch seinen gemäß $\mathcal I$ festgelegten Wahrheitswert, d.h. durch den Wert $\mathcal I(X)$, und rechne dann den Wert des resultierenden booleschen Ausdrucks aus.
- Speziell für die Formel φ und die Interpretation $\mathcal I$ aus Beispiel 2.7 ergibt die Ersetzung der Aussagensymbole durch die gemäß $\mathcal I$ festgelegten Wahrheitswerte den booleschen Ausdruck

$$(\neg 1 \lor (0 \rightarrow 1)).$$

- Ausrechnen von ¬1 ergibt den Wert 0.
 Ausrechnen von (0 → 1) ergibt den Wert 1.
- Insgesamt erhalten wir also $(0 \lor 1)$, was sich zum Wert 1 errechnet. Somit erhalten wir, dass $\llbracket \varphi \rrbracket^{\mathcal{I}} = 1$ ist.

Definition 2.8

(a) Eine Interpretation \mathcal{I} erfüllt eine Formel $\varphi \in \mathsf{AL}$ (wir schreiben: $\mathcal{I} \models \varphi$), wenn $\llbracket \varphi \rrbracket^{\mathcal{I}} = 1$.

Definition 2.8

- (a) Eine Interpretation \mathcal{I} erfüllt eine Formel $\varphi \in \mathsf{AL}$ (wir schreiben: $\mathcal{I} \models \varphi$), wenn $\llbracket \varphi \rrbracket^{\mathcal{I}} = 1$.
 - Wir schreiben kurz $\mathcal{I} \not\models \varphi$ um auszudrücken, dass \mathcal{I} die Formel φ nicht erfüllt (d.h., es gilt $\llbracket \varphi \rrbracket^{\mathcal{I}} = 0$).
- (b) Eine Interpretation \mathcal{I} erfüllt eine Formelmenge $\Phi \subseteq AL$ (wir schreiben: $\mathcal{I} \models \Phi$), wenn $\mathcal{I} \models \varphi$ für alle $\varphi \in \Phi$.

Definition 2.8

- (a) Eine Interpretation \mathcal{I} erfüllt eine Formel $\varphi \in \mathsf{AL}$ (wir schreiben: $\mathcal{I} \models \varphi$), wenn $\llbracket \varphi \rrbracket^{\mathcal{I}} = 1$.
 - Wir schreiben kurz $\mathcal{I} \not\models \varphi$ um auszudrücken, dass \mathcal{I} die Formel φ nicht erfüllt (d.h., es gilt $\llbracket \varphi \rrbracket^{\mathcal{I}} = 0$).
- (b) Eine Interpretation \mathcal{I} erfüllt eine Formelmenge $\Phi \subseteq AL$ (wir schreiben: $\mathcal{I} \models \Phi$), wenn $\mathcal{I} \models \varphi$ für alle $\varphi \in \Phi$.
- (c) Ein Modell einer Formel φ Interpretation \mathcal{I} mit $\mathcal{I} \models \varphi$

ist eine

Definition 2.8

- (a) Eine Interpretation \mathcal{I} erfüllt eine Formel $\varphi \in \mathsf{AL}$ (wir schreiben: $\mathcal{I} \models \varphi$), wenn $\llbracket \varphi \rrbracket^{\mathcal{I}} = 1$.
 - Wir schreiben kurz $\mathcal{I} \not\models \varphi$ um auszudrücken, dass \mathcal{I} die Formel φ nicht erfüllt (d.h., es gilt $\llbracket \varphi \rrbracket^{\mathcal{I}} = 0$).
- (b) Eine Interpretation \mathcal{I} erfüllt eine Formelmenge $\Phi \subseteq AL$ (wir schreiben: $\mathcal{I} \models \Phi$), wenn $\mathcal{I} \models \varphi$ für alle $\varphi \in \Phi$.
- (c) Ein Modell einer Formel φ (bzw. einer Formelmenge Φ) ist eine Interpretation \mathcal{I} mit $\mathcal{I} \models \varphi$ (bzw. $\mathcal{I} \models \Phi$).

Das Koinzidenzlemma

• Offensichtlich hängt der Wert $[\![\varphi]\!]^{\mathcal{I}}$ nur von den Werten $\mathcal{I}(X)$ der Aussagensymbole $X \in \mathsf{AS}$ ab, die auch in φ vorkommen.

Das Koinzidenzlemma

• Offensichtlich hängt der Wert $\llbracket \varphi \rrbracket^{\mathcal{I}}$ nur von den Werten $\mathcal{I}(X)$ der Aussagensymbole $X \in \mathsf{AS}$ ab, die auch in φ vorkommen.

Diese Aussage ist als das Koinzidenzlemma der Aussagenlogik bekannt.

Das Koinzidenzlemma

- Offensichtlich hängt der Wert $[\![\varphi]\!]^{\mathcal{I}}$ nur von den Werten $\mathcal{I}(X)$ der Aussagensymbole $X \in \mathsf{AS}$ ab, die auch in φ vorkommen.
 - Diese Aussage ist als das Koinzidenzlemma der Aussagenlogik bekannt.
- Um $\llbracket \varphi \rrbracket^{\mathcal{I}}$ festzulegen, reicht es also, die Werte $\mathcal{I}(X)$ nur für diejenigen Aussagensymbole $X \in \mathsf{AS}$ anzugeben, die in φ vorkommen.

• Statt der vollen Interpretation $\mathcal{I}: \mathsf{AS} \to \{0,1\}$ geben wir in der Regel nur endlich viele Werte $\mathcal{I}(X_1), \dots, \mathcal{I}(X_n)$ an und legen fest, dass $\mathcal{I}(Y) := 0$ für alle $Y \in \mathsf{AS} \setminus \{X_1, \dots, X_n\}$.

- Statt der vollen Interpretation $\mathcal{I}: \mathsf{AS} \to \{0,1\}$ geben wir in der Regel nur endlich viele Werte $\mathcal{I}(X_1), \ldots, \mathcal{I}(X_n)$ an und legen fest, dass $\mathcal{I}(Y) := 0$ für alle $Y \in \mathsf{AS} \setminus \{X_1, \ldots, X_n\}$.
- In den Beispielen legen wir eine Interpretation oft durch eine Wertetabelle fest.

- Statt der vollen Interpretation $\mathcal{I}: \mathsf{AS} \to \{0,1\}$ geben wir in der Regel nur endlich viele Werte $\mathcal{I}(X_1), \dots, \mathcal{I}(X_n)$ an und legen fest, dass $\mathcal{I}(Y) := 0$ für alle $Y \in \mathsf{AS} \setminus \{X_1, \dots, X_n\}$.
- In den Beispielen legen wir eine Interpretation oft durch eine Wertetabelle fest. Beispielsweise beschreibt die Tabelle

$$\begin{array}{c|cccc} X & A_0 & A_1 & A_5 \\ \hline \mathcal{I}(X) & 1 & 1 & 0 \end{array}$$

die Interpretation \mathcal{I} mit $\mathcal{I}(A_0) = \mathcal{I}(A_1) = 1$ und $\mathcal{I}(A_5) = 0$ und $\mathcal{I}(Y) = 0$ für alle $Y \in \mathsf{AS} \setminus \{A_0, A_1, A_5\}$.

- Statt der vollen Interpretation $\mathcal{I}: \mathsf{AS} \to \{0,1\}$ geben wir in der Regel nur endlich viele Werte $\mathcal{I}(X_1), \dots, \mathcal{I}(X_n)$ an und legen fest, dass $\mathcal{I}(Y) := 0$ für alle $Y \in \mathsf{AS} \setminus \{X_1, \dots, X_n\}$.
- In den Beispielen legen wir eine Interpretation oft durch eine Wertetabelle fest. Beispielsweise beschreibt die Tabelle

$$\begin{array}{c|cccc} X & A_0 & A_1 & A_5 \\ \hline \mathcal{I}(X) & 1 & 1 & 0 \end{array}$$

die Interpretation \mathcal{I} mit $\mathcal{I}(A_0) = \mathcal{I}(A_1) = 1$ und $\mathcal{I}(A_5) = 0$ und $\mathcal{I}(Y) = 0$ für alle $Y \in \mathsf{AS} \setminus \{A_0, A_1, A_5\}$.

• Wir schreiben $\varphi(X_1, \ldots, X_n)$, um anzudeuten, dass in φ nur Aussagensymbole aus der Menge $\{X_1, \ldots, X_n\}$ vorkommen.

- Statt der vollen Interpretation $\mathcal{I}: \mathsf{AS} \to \{0,1\}$ geben wir in der Regel nur endlich viele Werte $\mathcal{I}(X_1), \ldots, \mathcal{I}(X_n)$ an und legen fest, dass $\mathcal{I}(Y) := 0$ für alle $Y \in \mathsf{AS} \setminus \{X_1, \ldots, X_n\}$.
- In den Beispielen legen wir eine Interpretation oft durch eine Wertetabelle fest. Beispielsweise beschreibt die Tabelle

$$\begin{array}{c|cccc} X & A_0 & A_1 & A_5 \\ \hline \mathcal{I}(X) & 1 & 1 & 0 \end{array}$$

die Interpretation \mathcal{I} mit $\mathcal{I}(A_0) = \mathcal{I}(A_1) = 1$ und $\mathcal{I}(A_5) = 0$ und $\mathcal{I}(Y) = 0$ für alle $Y \in \mathsf{AS} \setminus \{A_0, A_1, A_5\}$.

• Wir schreiben $\varphi(X_1, \ldots, X_n)$, um anzudeuten, dass in φ nur Aussagensymbole aus der Menge $\{X_1, \ldots, X_n\}$ vorkommen.

Für Wahrheitswerte $b_1, \ldots, b_n \in \{0, 1\}$ schreiben wir dann $\varphi[b_1, \ldots, b_n]$ anstatt $\llbracket \varphi \rrbracket^{\mathcal{I}}$ für eine (bzw. alle) Interpretationen \mathcal{I} mit $\mathcal{I}(X_i) = b_i$ für alle $i \in [n] := \{1, \ldots, n\}$.

• Wir schreiben $(\varphi \leftrightarrow \psi)$ als Abkürzung für $((\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi))$.

- Wir schreiben $(\varphi \leftrightarrow \psi)$ als Abkürzung für $((\varphi \to \psi) \land (\psi \to \varphi))$.
- Statt mit $A_0, A_1, A_2, ...$ bezeichnen wir Aussagensymbole auch oft mit A, B, C, ..., X, Y, Z, ... oder mit Varianten wie $X', Y_1, ...$

- Wir schreiben $(\varphi \leftrightarrow \psi)$ als Abkürzung für $((\varphi \to \psi) \land (\psi \to \varphi))$.
- Statt mit $A_0, A_1, A_2, ...$ bezeichnen wir Aussagensymbole auch oft mit A, B, C, ..., X, Y, Z, ... oder mit Varianten wie $X', Y_1, ...$
- Die äußeren Klammern einer Formel lassen wir manchmal weg und schreiben z.B. $(X \land Y) \to Z$ an Stelle des (formal korrekten) $((X \land Y) \to Z)$.

- Wir schreiben $(\varphi \leftrightarrow \psi)$ als Abkürzung für $((\varphi \to \psi) \land (\psi \to \varphi))$.
- Statt mit $A_0, A_1, A_2, ...$ bezeichnen wir Aussagensymbole auch oft mit A, B, C, ..., X, Y, Z, ... oder mit Varianten wie $X', Y_1, ...$
- Die äußeren Klammern einer Formel lassen wir manchmal weg und schreiben z.B. $(X \land Y) \to Z$ an Stelle des (formal korrekten) $((X \land Y) \to Z)$.
- Bezüglich Klammerung vereinbaren wir, dass ¬ am stärksten bindet, und dass ∧ und ∨ stärker binden als →.

- Wir schreiben $(\varphi \leftrightarrow \psi)$ als Abkürzung für $((\varphi \to \psi) \land (\psi \to \varphi))$.
- Statt mit $A_0, A_1, A_2, ...$ bezeichnen wir Aussagensymbole auch oft mit A, B, C, ..., X, Y, Z, ... oder mit Varianten wie $X', Y_1, ...$
- Die äußeren Klammern einer Formel lassen wir manchmal weg und schreiben z.B. $(X \land Y) \to Z$ an Stelle des (formal korrekten) $((X \land Y) \to Z)$.
- Bezüglich Klammerung vereinbaren wir, dass ¬ am stärksten bindet, und dass ∧ und ∨ stärker binden als →.

Wir können also z.B. $X \wedge \neg Y \rightarrow Z \vee X$ schreiben und meinen damit

- Wir schreiben $(\varphi \leftrightarrow \psi)$ als Abkürzung für $((\varphi \to \psi) \land (\psi \to \varphi))$.
- Statt mit $A_0, A_1, A_2, ...$ bezeichnen wir Aussagensymbole auch oft mit A, B, C, ..., X, Y, Z, ... oder mit Varianten wie $X', Y_1, ...$
- Die äußeren Klammern einer Formel lassen wir manchmal weg und schreiben z.B. $(X \land Y) \to Z$ an Stelle des (formal korrekten) $((X \land Y) \to Z)$.
- Bezüglich Klammerung vereinbaren wir, dass ¬ am stärksten bindet, und dass ∧ und ∨ stärker binden als →.

Wir können also z.B. $X \land \neg Y \to Z \lor X$ schreiben und meinen damit $((X \land \neg Y) \to (Z \lor X))$.

- Wir schreiben $(\varphi \leftrightarrow \psi)$ als Abkürzung für $((\varphi \to \psi) \land (\psi \to \varphi))$.
- Statt mit $A_0, A_1, A_2, ...$ bezeichnen wir Aussagensymbole auch oft mit A, B, C, ..., X, Y, Z, ... oder mit Varianten wie $X', Y_1, ...$
- Die äußeren Klammern einer Formel lassen wir manchmal weg und schreiben z.B. $(X \land Y) \to Z$ an Stelle des (formal korrekten) $((X \land Y) \to Z)$.
- Bezüglich Klammerung vereinbaren wir, dass ¬ am stärksten bindet, und dass ∧ und ∨ stärker binden als →.

Wir können also z.B. $X \wedge \neg Y \rightarrow Z \vee X$ schreiben und meinen damit $((X \wedge \neg Y) \rightarrow (Z \vee X))$.

<u>Nicht</u> schreiben können wir z.B. $X \wedge Y \vee Z$ (da wir nichts darüber vereinbart haben, wie fehlende Klammern hier zu setzen sind).

• Wir schreiben $\bigwedge_{i=1}^{n} \varphi_i$ bzw. $(\varphi_1 \wedge \ldots \wedge \varphi_n)$ an Stelle von

$$(\cdots((\varphi_1\wedge\varphi_2)\wedge\varphi_3)\wedge\ldots\wedge\varphi_n)$$

• Wir schreiben $\bigwedge_{i=1}^{n} \varphi_i$ bzw. $(\varphi_1 \wedge \ldots \wedge \varphi_n)$ an Stelle von

$$(\cdots((\varphi_1\wedge\varphi_2)\wedge\varphi_3)\wedge\ldots\wedge\varphi_n)$$

und nutzen analoge Schreibweisen auch für "∨" an Stelle von "∧".

• Wir schreiben $\bigwedge_{i=1}^n \varphi_i$ bzw. $(\varphi_1 \wedge \ldots \wedge \varphi_n)$ an Stelle von

$$(\cdots((\varphi_1\wedge\varphi_2)\wedge\varphi_3)\wedge\ldots\wedge\varphi_n)$$

und nutzen analoge Schreibweisen auch für "∨" an Stelle von "∧".

 Ist M eine endliche, nicht-leere Menge aussagenlogischer Formeln, so schreiben wir

• Wir schreiben $\bigwedge_{i=1}^n \varphi_i$ bzw. $(\varphi_1 \wedge \ldots \wedge \varphi_n)$ an Stelle von

$$(\cdots((\varphi_1\wedge\varphi_2)\wedge\varphi_3)\wedge\ldots\wedge\varphi_n)$$

und nutzen analoge Schreibweisen auch für "∨" an Stelle von "∧".

 Ist M eine endliche, nicht-leere Menge aussagenlogischer Formeln, so schreiben wir

$$\bigwedge_{\varphi \in M} \varphi$$

um die Formel $(\varphi_1 \wedge \cdots \wedge \varphi_n)$ zu bezeichnen, wobei n = |M| die Anzahl der Formeln in M ist und $\varphi_1, \ldots, \varphi_n$ die Auflistung aller Formeln in M in lexikographischer Reihenfolge ist.

• Wir schreiben $\bigwedge_{i=1}^{n} \varphi_i$ bzw. $(\varphi_1 \wedge \ldots \wedge \varphi_n)$ an Stelle von

$$(\cdots((\varphi_1\wedge\varphi_2)\wedge\varphi_3)\wedge\ldots\wedge\varphi_n)$$

und nutzen analoge Schreibweisen auch für "∨" an Stelle von "∧".

 Ist M eine endliche, nicht-leere Menge aussagenlogischer Formeln, so schreiben wir

$$\bigwedge_{\varphi \in M} \varphi$$

um die Formel $(\varphi_1 \wedge \cdots \wedge \varphi_n)$ zu bezeichnen, wobei n = |M| die Anzahl der Formeln in M ist und $\varphi_1, \ldots, \varphi_n$ die Auflistung aller Formeln in M in lexikographischer Reihenfolge ist. Formeln sind hierbei Worte über dem Alphabet der Aussagenlogik, wobei die einzelnen Symbole dieses Alphabets folgendermaßen aufsteigend sortiert sind:

0, **1**,
$$\neg$$
, \wedge , \vee , \rightarrow , (,), A_0 , A_1 , A_2 , A_3 ,

• Wir schreiben $\bigwedge_{i=1}^{n} \varphi_i$ bzw. $(\varphi_1 \wedge \ldots \wedge \varphi_n)$ an Stelle von

$$(\cdots((\varphi_1\wedge\varphi_2)\wedge\varphi_3)\wedge\ldots\wedge\varphi_n)$$

und nutzen analoge Schreibweisen auch für "∨" an Stelle von "∧".

 Ist M eine endliche, nicht-leere Menge aussagenlogischer Formeln, so schreiben wir

$$\bigwedge_{\varphi \in M} \varphi$$

um die Formel $(\varphi_1 \wedge \cdots \wedge \varphi_n)$ zu bezeichnen, wobei n = |M| die Anzahl der Formeln in M ist und $\varphi_1, \ldots, \varphi_n$ die Auflistung aller Formeln in M in lexikographischer Reihenfolge ist. Formeln sind hierbei Worte über dem Alphabet der Aussagenlogik, wobei die einzelnen Symbole dieses Alphabets folgendermaßen aufsteigend sortiert sind:

0, **1**,
$$\neg$$
, \wedge , \vee , \rightarrow , (,), A_0 , A_1 , A_2 , A_3 ,

Die analoge Schreibweise nutzen wir auch für "∨" an Stelle von "∧".

• Diese Schreibweisen werden wir manchmal auch kombinieren. Sind zum Beispiel $I = \{i_1, \ldots, i_m\}$ und $J = \{j_1, \ldots, j_n\}$ endliche Mengen und ist für jedes $i \in I$ und $j \in J$ eine Formel $\varphi_{i,j}$ gegeben, so schreiben wir

$$\bigwedge_{i\in I}\bigvee_{j\in J}\varphi_{i,j}$$

um die Formel $(\psi_{i_1} \wedge \cdots \wedge \psi_{i_m})$ zu bezeichnen, wobei für jedes $i \in I$ die Formel ψ_i durch $\psi_i := (\varphi_{i,j_1} \vee \cdots \vee \varphi_{i,j_n})$ definiert ist.

Wahrheitstafeln

Für jede Formel $\varphi(X_1, \ldots, X_n)$ kann man die Wahrheitswerte unter allen möglichen Interpretationen in einer Wahrheitstafel darstellen. Für alle $(b_1, \ldots, b_n) \in \{0, 1\}^n$ enthält die Tafel eine Zeile mit den Werten $b_1 \cdots b_n \mid \varphi[b_1, \ldots, b_n]$.

Wahrheitstafeln

Für jede Formel $\varphi(X_1, \ldots, X_n)$ kann man die Wahrheitswerte unter allen möglichen Interpretationen in einer Wahrheitstafel darstellen. Für alle $(b_1, \ldots, b_n) \in \{0, 1\}^n$ enthält die Tafel eine Zeile mit den Werten $b_1 \cdots b_n \mid \varphi[b_1, \ldots, b_n]$.

Um die Wahrheitstafel für φ auszufüllen, ist es bequem, auch Spalten für (alle oder einige) Subformeln von φ einzufügen.

Wahrheitstafeln

Für jede Formel $\varphi(X_1,\ldots,X_n)$ kann man die Wahrheitswerte unter allen möglichen Interpretationen in einer Wahrheitstafel darstellen. Für alle $(b_1,\ldots,b_n)\in\{0,1\}^n$ enthält die Tafel eine Zeile mit den Werten $b_1\cdots b_n\mid \varphi[b_1,\ldots,b_n].$

Um die Wahrheitstafel für φ auszufüllen, ist es bequem, auch Spalten für (alle oder einige) Subformeln von φ einzufügen.

Beispiel: Wahrheitstafel für $\varphi(X, Y, Z) := ((X \vee Y) \to (X \wedge Z))$:

Wahrheitstafeln

Für jede Formel $\varphi(X_1,\ldots,X_n)$ kann man die Wahrheitswerte unter allen möglichen Interpretationen in einer Wahrheitstafel darstellen. Für alle $(b_1,\ldots,b_n)\in\{0,1\}^n$ enthält die Tafel eine Zeile mit den Werten $b_1\cdots b_n\mid \varphi[b_1,\ldots,b_n].$

Um die Wahrheitstafel für φ auszufüllen, ist es bequem, auch Spalten für (alle oder einige) Subformeln von φ einzufügen.

Beispiel: Wahrheitstafel für $\varphi(X, Y, Z) := ((X \vee Y) \to (X \wedge Z))$:

X	Y	Z	$(X \vee Y)$	$(X \wedge Z)$	φ
0	0	0	0	0	1
0	0	1	0	0	1
0	1	0	1	0	0
0	1	1	1	0	0
1	0	0	1	0	0
1	0	1	1	1	1
1	1	0	1	0	0
1	1	1	1	1	1

Wahrheitstafeln

Für jede Formel $\varphi(X_1,\ldots,X_n)$ kann man die Wahrheitswerte unter allen möglichen Interpretationen in einer Wahrheitstafel darstellen. Für alle $(b_1,\ldots,b_n)\in\{0,1\}^n$ enthält die Tafel eine Zeile mit den Werten $b_1\cdots b_n \mid \varphi[b_1,\ldots,b_n]$.

Um die Wahrheitstafel für φ auszufüllen, ist es bequem, auch Spalten für (alle oder einige) Subformeln von φ einzufügen.

Beispiel: Wahrheitstafel für $\varphi(X, Y, Z) := ((X \vee Y) \to (X \wedge Z))$:

X	Y	Z	$(X \vee Y)$	$(X \wedge Z)$	φ
0	0	0	0	0	1
0	0	1	0	0	1
0	1	0	1	0	0
0	1	1	1	0	0
1	0	0	1	0	0
1	0	1	1	1	1
1	1	0	1	0	0
1	1	1	1	1	1

Die Reihenfolge der Zeilen ist dabei unerheblich. Wir vereinbaren allerdings, die Zeilen stets so anzuordnen, dass die Werte $b_1 \cdots b_n \in \{0,1\}^n$, aufgefasst als Binärzahlen, in aufsteigender Reihenfolge aufgelistet werden.

Wahrheitstafeln für die Junktoren

Die Bedeutung der Junktoren kann man mittels ihrer Wahrheitstafeln beschreiben:

Wahrheitstafeln für die Junktoren

Die Bedeutung der Junktoren kann man mittels ihrer Wahrheitstafeln beschreiben:

X	$\neg X$
0	1
1	0

X	Y	$(X \wedge Y)$
0	0	0
0	1	0
1	0	0
1	1	1

$$\begin{array}{c|cccc} X & Y & (X \lor Y) \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$$

X	Y	$(X \rightarrow Y)$
0	0	1
0	1	1
1	0	0
1	1	1

Wahrheitstafeln für die Junktoren

Die Bedeutung der Junktoren kann man mittels ihrer Wahrheitstafeln beschreiben:

$$\begin{array}{c|cccc} X & Y & (X \lor Y) \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$$

$$\begin{array}{c|cccc} X & Y & (X \rightarrow Y) \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$$

Genauso kann man eine Wahrheitstafel für die Formel $X \leftrightarrow Y$, die ja eine Abkürzung für $(X \to Y) \land (Y \to X)$ ist, bestimmen:

$$\begin{array}{c|cccc} X & Y & (X \leftrightarrow Y) \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$$

 $X \leftrightarrow Y$ bedeutet also "X genau dann wenn Y".

Ein Logikrätsel

Beispiel 2.9

Auf der Insel Wafa gibt es zwei Dörfer: Das Dorf Wa, dessen Einwohner:innen immer die Wahrheit sagen, und das Dorf Fa, dessen Einwohner:innen immer lügen.

Ein Logikrätsel

Beispiel 2.9

Auf der Insel Wafa gibt es zwei Dörfer: Das Dorf Wa, dessen Einwohner:innen immer die Wahrheit sagen, und das Dorf Fa, dessen Einwohner:innen immer lügen. Ein Reisender besucht die Insel und trifft auf drei Einwohner A, B, C, die ihm Folgendes erzählen:

- A sagt: "B und C sagen genau dann die Wahrheit, wenn C die Wahrheit sagt."
- B sagt:
 "Wenn A und C die Wahrheit sagen, dann ist es nicht der Fall, dass A die Wahrheit sagt, wenn B und C die Wahrheit sagen."
- C sagt: "B lügt genau dann, wenn A oder B die Wahrheit sagen."

Frage: In welchen der beiden Dörfern leben jeweils A, B bzw. C?

Aussagensymbole:

- W_A steht für "A sagt die Wahrheit."
- W_B steht für "B sagt die Wahrheit."
- W_C steht für "C sagt die Wahrheit."

Aussagensymbole:

- W_A steht für "A sagt die Wahrheit."
- W_B steht für "B sagt die Wahrheit."
- W_C steht für "C sagt die Wahrheit."

Aussagen der drei Inselbewohner:

• $\varphi_A :=$

Aussagensymbole:

- W_A steht für "A sagt die Wahrheit."
- W_B steht f
 ür "B sagt die Wahrheit."
- W_C steht für "C sagt die Wahrheit."

Aussagen der drei Inselbewohner:

- $\varphi_A := (W_B \wedge W_C) \leftrightarrow W_C$
- $\varphi_B := (W_A \wedge W_C) \rightarrow \neg ((W_B \wedge W_C) \rightarrow W_A)$
- $\varphi_C := \neg W_B \leftrightarrow (W_A \vee W_B)$

Wir suchen nach einer Interpretation, die die Formel

$$\psi :=$$

Aussagensymbole:

- W_A steht für "A sagt die Wahrheit."
- W_B steht für "B sagt die Wahrheit."
- W_C steht für "C sagt die Wahrheit."

Aussagen der drei Inselbewohner:

- $\varphi_A := (W_B \wedge W_C) \leftrightarrow W_C$
- $\varphi_B := (W_A \wedge W_C) \rightarrow \neg ((W_B \wedge W_C) \rightarrow W_A)$
- $\varphi_C := \neg W_R \leftrightarrow (W_A \vee W_R)$

Wir suchen nach einer Interpretation, die die Formel

$$\psi := (W_A \leftrightarrow \varphi_A) \land (W_B \leftrightarrow \varphi_B) \land (W_C \leftrightarrow \varphi_C)$$

erfüllt.

W_A	W_B	W_C	φ_A	φ_B	$\varphi_{\mathcal{C}}$	$W_A \leftrightarrow \varphi_A$	$W_B \leftrightarrow \varphi_B$	$W_C \leftrightarrow \varphi_C$	ψ
0	0	0	1	1	0	0	0	1	0
0	0	1	0	1	0	1	0	0	0
0	1	0	1	1	0	0	1	1	0
0	1	1	1	1	0	0	1	0	0
1	0	0	1	1	1	1	0	0	0
1	0	1	0	0	1	0	1	1	0
1	1	0	1	1	0	1	1	1	1
1	1	1	1	0	0	1	0	0	0

W_A	W_B	W_C	φ_A	φ_B	$\varphi_{\mathcal{C}}$	$W_A \leftrightarrow \varphi_A$	$W_B \leftrightarrow \varphi_B$	$W_C \leftrightarrow \varphi_C$	ψ
0	0	0	1	1	0	0	0	1	0
0	0	1	0	1	0	1	0	0	0
0	1	0	1	1	0	0	1	1	0
0	1	1	1	1	0	0	1	0	0
1	0	0	1	1	1	1	0	0	0
1	0	1	0	0	1	0	1	1	0
1	1	0	1	1	0	1	1	1	1
1	1	1	1	0	0	1	0	0	0

Die Interpretation \mathcal{I} mit $\mathcal{I}(W_A)=1$, $\mathcal{I}(W_B)=1$, $\mathcal{I}(W_C)=0$ in Zeile 7 ist die einzige, die die Formel ψ erfüllt.

W_A	W_B	W_C	φ_A	φ_B	φс	$W_A \leftrightarrow \varphi_A$	$W_B \leftrightarrow \varphi_B$	$W_C \leftrightarrow \varphi_C$	ψ
0	0	0	1	1	0	0	0	1	0
0	0	1	0	1	0	1	0	0	0
0	1	0	1	1	0	0	1	1	0
0	1	1	1	1	0	0	1	0	0
1	0	0	1	1	1	1	0	0	0
1	0	1	0	0	1	0	1	1	0
1	1	0	1	1	0	1	1	1	1
1	1	1	1	0	0	1	0	0	0

Die Interpretation \mathcal{I} mit $\mathcal{I}(W_A)=1$, $\mathcal{I}(W_B)=1$, $\mathcal{I}(W_C)=0$ in Zeile 7 ist die einzige, die die Formel ψ erfüllt.

Gemäß dieser Interpretation sind die Aussagen, die durch die Symbole W_A und W_B repräsentiert werden, wahr, während die Aussage, die durch W_C repräsentiert wird, falsch ist.

W_A	W_B	W_C	φ_A	φ_B	φс	$W_A \leftrightarrow \varphi_A$	$W_B \leftrightarrow \varphi_B$	$W_C \leftrightarrow \varphi_C$	ψ
0	0	0	1	1	0	0	0	1	0
0	0	1	0	1	0	1	0	0	0
0	1	0	1	1	0	0	1	1	0
0	1	1	1	1	0	0	1	0	0
1	0	0	1	1	1	1	0	0	0
1	0	1	0	0	1	0	1	1	0
1	1	0	1	1	0	1	1	1	1
1	1	1	1	0	0	1	0	0	0

Die Interpretation \mathcal{I} mit $\mathcal{I}(W_A)=1$, $\mathcal{I}(W_B)=1$, $\mathcal{I}(W_C)=0$ in Zeile 7 ist die einzige, die die Formel ψ erfüllt.

Gemäß dieser Interpretation sind die Aussagen, die durch die Symbole W_A und W_B repräsentiert werden, wahr, während die Aussage, die durch W_C repräsentiert wird, falsch ist.

Das heißt, die Personen A und B sagen die Wahrheit und leben somit im Dorf Wa, und Person C lügt und lebt daher im Dorf Fa.

Wir betrachten das Alphabet ASCII aller ASCII-Symbole.

Die Menge AS_{ASCII} aller ASCII-Repräsentationen von Aussagensymbolen besteht aus allen nicht-leeren Worten über dem Alphabet ASCII, deren erstes Symbol ein Buchstabe ist, und bei dem alle weiteren Symbole Buchstaben oder Ziffern sind.

Wir betrachten das Alphabet ASCII aller ASCII-Symbole.

Die Menge ASASCII aller ASCII-Repräsentationen von Aussagensymbolen besteht aus allen nicht-leeren Worten über dem Alphabet ASCII, deren erstes Symbol ein Buchstabe ist, und bei dem alle weiteren Symbole Buchstaben oder Ziffern sind.

Die Menge AL_{ASCII} aller ASCII-Repräsentationen von aussagenlogischen Formeln ist die rekursiv wie folgt definierte Teilmenge von ASCII*:

Wir betrachten das Alphabet ASCII aller ASCII-Symbole.

Die Menge ASASCII aller ASCII-Repräsentationen von Aussagensymbolen besteht aus allen nicht-leeren Worten über dem Alphabet ASCII, deren erstes Symbol ein Buchstabe ist, und bei dem alle weiteren Symbole Buchstaben oder Ziffern sind.

Die Menge AL_{ASCII} aller ASCII-Repräsentationen von aussagenlogischen Formeln ist die rekursiv wie folgt definierte Teilmenge von ASCII*:

Basisregeln:

• $0 \in AL_{ASCII}$, $1 \in AL_{ASCII}$

Wir betrachten das Alphabet ASCII aller ASCII-Symbole.

Die Menge ASASCII aller ASCII-Repräsentationen von Aussagensymbolen besteht aus allen nicht-leeren Worten über dem Alphabet ASCII, deren erstes Symbol ein Buchstabe ist, und bei dem alle weiteren Symbole Buchstaben oder Ziffern sind.

Die Menge AL_{ASCII} aller ASCII-Repräsentationen von aussagenlogischen Formeln ist die rekursiv wie folgt definierte Teilmenge von ASCII*:

Basisregeln:

• $0 \in AL_{ASCII}$, $1 \in AL_{ASCII}$ und $w \in AL_{ASCII}$ für alle $w \in AS_{ASCII}$.

Wir betrachten das Alphabet ASCII aller ASCII-Symbole.

Die Menge ASASCII aller ASCII-Repräsentationen von Aussagensymbolen besteht aus allen nicht-leeren Worten über dem Alphabet ASCII, deren erstes Symbol ein Buchstabe ist, und bei dem alle weiteren Symbole Buchstaben oder Ziffern sind.

Die Menge AL_{ASCII} aller ASCII-Repräsentationen von aussagenlogischen Formeln ist die rekursiv wie folgt definierte Teilmenge von ASCII*:

Basisregeln:

• $0 \in AL_{ASCII}$, $1 \in AL_{ASCII}$ und $w \in AL_{ASCII}$ für alle $w \in AS_{ASCII}$.

Rekursive Regeln:

• Ist $\varphi \in AL_{ASCII}$, so ist auch $\neg \varphi \in AL_{ASCII}$. (Negation)

Wir betrachten das Alphabet ASCII aller ASCII-Symbole.

Die Menge ASASCII aller ASCII-Repräsentationen von Aussagensymbolen besteht aus allen nicht-leeren Worten über dem Alphabet ASCII, deren erstes Symbol ein Buchstabe ist, und bei dem alle weiteren Symbole Buchstaben oder Ziffern sind.

Die Menge AL_{ASCII} aller ASCII-Repräsentationen von aussagenlogischen Formeln ist die rekursiv wie folgt definierte Teilmenge von ASCII*:

Basisregeln:

• $0 \in AL_{ASCII}$, $1 \in AL_{ASCII}$ und $w \in AL_{ASCII}$ für alle $w \in AS_{ASCII}$.

- Ist $\varphi \in AL_{ASCII}$, so ist auch $\neg \varphi \in AL_{ASCII}$. (Negation)
- Ist $\varphi \in \mathsf{AL}_{\mathtt{ASCII}}$ und $\psi \in \mathsf{AL}_{\mathtt{ASCII}}$, so ist auch
 - $(\varphi \land \psi) \in \mathsf{AL}_{\mathsf{ASCII}}$ (Konjunktion)

Wir betrachten das Alphabet ASCII aller ASCII-Symbole.

Die Menge ASASCII aller ASCII-Repräsentationen von Aussagensymbolen besteht aus allen nicht-leeren Worten über dem Alphabet ASCII, deren erstes Symbol ein Buchstabe ist, und bei dem alle weiteren Symbole Buchstaben oder Ziffern sind.

Die Menge AL_{ASCII} aller ASCII-Repräsentationen von aussagenlogischen Formeln ist die rekursiv wie folgt definierte Teilmenge von ASCII*:

Basisregeln:

• $0 \in AL_{ASCII}$, $1 \in AL_{ASCII}$ und $w \in AL_{ASCII}$ für alle $w \in AS_{ASCII}$.

- Ist $\varphi \in AL_{ASCII}$, so ist auch $\neg \varphi \in AL_{ASCII}$. (Negation)
- Ist $\varphi \in \mathsf{AL}_{\mathtt{ASCII}}$ und $\psi \in \mathsf{AL}_{\mathtt{ASCII}}$, so ist auch
 - $(\varphi \land \psi) \in \mathsf{AL}_{\mathsf{ASCII}}$ (Konjunktion)
 - $(\varphi \setminus / \psi) \in AL_{ASCII}$ (Disjunktion)

Wir betrachten das Alphabet ASCII aller ASCII-Symbole.

Die Menge ASASCII aller ASCII-Repräsentationen von Aussagensymbolen besteht aus allen nicht-leeren Worten über dem Alphabet ASCII, deren erstes Symbol ein Buchstabe ist, und bei dem alle weiteren Symbole Buchstaben oder Ziffern sind.

Die Menge AL_{ASCII} aller ASCII-Repräsentationen von aussagenlogischen Formeln ist die rekursiv wie folgt definierte Teilmenge von ASCII*:

Basisregeln:

• $0 \in AL_{ASCII}$, $1 \in AL_{ASCII}$ und $w \in AL_{ASCII}$ für alle $w \in AS_{ASCII}$.

- Ist $\varphi \in AL_{ASCII}$, so ist auch $\neg \varphi \in AL_{ASCII}$. (Negation)
- Ist $\varphi \in \mathsf{AL}_{\mathtt{ASCII}}$ und $\psi \in \mathsf{AL}_{\mathtt{ASCII}}$, so ist auch
 - $(\varphi \land \psi) \in \mathsf{AL}_{\mathsf{ASCII}}$ (Konjunktion)
 - $(\varphi \setminus / \psi) \in AL_{ASCII}$ (Disjunktion)
 - $(\varphi \rightarrow \psi) \in AL_{ASCII}$ (Implikation)

Wir betrachten das Alphabet ASCII aller ASCII-Symbole.

Die Menge ASASCII aller ASCII-Repräsentationen von Aussagensymbolen besteht aus allen nicht-leeren Worten über dem Alphabet ASCII, deren erstes Symbol ein Buchstabe ist, und bei dem alle weiteren Symbole Buchstaben oder Ziffern sind.

Die Menge AL_{ASCII} aller ASCII-Repräsentationen von aussagenlogischen Formeln ist die rekursiv wie folgt definierte Teilmenge von ASCII*:

Basisregeln:

• $0 \in AL_{ASCII}$, $1 \in AL_{ASCII}$ und $w \in AL_{ASCII}$ für alle $w \in AS_{ASCII}$.

- Ist $\varphi \in AL_{ASCII}$, so ist auch $\neg \varphi \in AL_{ASCII}$. (Negation)
- Ist $\varphi \in \mathsf{AL}_{\mathtt{ASCII}}$ und $\psi \in \mathsf{AL}_{\mathtt{ASCII}}$, so ist auch
 - $(\varphi \land \psi) \in \mathsf{AL}_{\mathsf{ASCII}}$ (Konjunktion)
 - $(\varphi \setminus / \psi) \in AL_{ASCII}$ (Disjunktion)
 - $(\varphi \rightarrow \psi) \in AL_{ASCII}$ (Implikation)
 - $(\varphi \leftarrow \Rightarrow \psi) \in \mathsf{AL}_{\mathsf{ASCII}}$ (Biimplikation).

Es ist offensichtlich, wie man Formeln aus AL in ihre entsprechende ASCII-Repräsentation übersetzt und umgekehrt.

Es ist offensichtlich, wie man Formeln aus AL in ihre entsprechende ASCII-Repräsentation übersetzt und umgekehrt. Zum Beispiel ist

$$\big((A_0 \wedge \mathbf{0}) \to \neg A_{13}\big)$$

eine Formel in AL, deren ASCII-Repräsentation die folgende Zeichenkette aus AL_{ASCII} ist:

Es ist offensichtlich, wie man Formeln aus AL in ihre entsprechende ASCII-Repräsentation übersetzt und umgekehrt. Zum Beispiel ist

$$\big((A_0 \wedge \mathbf{0}) \to \neg A_{13}\big)$$

eine Formel in AL, deren ASCII-Repräsentation die folgende Zeichenkette aus AL_{ASCII} ist:

$$((A0/\0) -> ~A13).$$

Es ist offensichtlich, wie man Formeln aus AL in ihre entsprechende ASCII-Repräsentation übersetzt und umgekehrt. Zum Beispiel ist

$$\big((A_0 \wedge \mathbf{0}) \to \neg A_{13}\big)$$

eine Formel in AL, deren ASCII-Repräsentation die folgende Zeichenkette aus AL_{ASCII} ist:

$$((A0/\0) -> ~A13).$$

Wir werden meistens mit der "abstrakten Syntax", d.h. mit der in Definition 2.4 festgelegten Menge AL, arbeiten. Um aber Formeln in Computer-Programme einzugeben, können wir die ASCII-Repräsentation verwenden.

Demo: snippets of logic

- ein Formelchecker für die Aussagenlogik
- entwickelt von André Frochaux
- Funktionalitäten u.a.:
 - Syntaxcheck für eingegebene Formeln
 - Ausgabe eines Syntaxbaums
 - Ausgabe einer Wahrheitstafel
- Zugänglich via

http://www.snippets-of-logic.net/index_AL.php?lang=de

Zurück zu Beispiel 2.1 ("Geburtstagsfeier")

Das in Beispiel 2.1 aufgelistete Wissen kann durch folgende aussagenlogische Formel repräsentiert werden:

$$\varphi := ((B \land A) \to \neg E) \land ((B \land E) \to \neg D) \land$$
$$(E \to (C \land D)) \land (C \to A) \land (A \to (B \lor C))$$

Zurück zu Beispiel 2.1 ("Geburtstagsfeier")

Das in Beispiel 2.1 aufgelistete Wissen kann durch folgende aussagenlogische Formel repräsentiert werden:

$$\varphi := ((B \land A) \to \neg E) \land ((B \land E) \to \neg D) \land$$
$$(E \to (C \land D)) \land (C \to A) \land (A \to (B \lor C))$$

Die Frage

"Wie viele (und welche) Freunde werden im besten Fall zur Party kommen?"

kann nun durch Lösen der folgenden Aufgabe beantwortet werden:

Zurück zu Beispiel 2.1 ("Geburtstagsfeier")

Das in Beispiel 2.1 aufgelistete Wissen kann durch folgende aussagenlogische Formel repräsentiert werden:

$$\varphi := ((B \land A) \to \neg E) \land ((B \land E) \to \neg D) \land$$
$$(E \to (C \land D)) \land (C \to A) \land (A \to (B \lor C))$$

Die Frage

"Wie viele (und welche) Freunde werden im besten Fall zur Party kommen?"

kann nun durch Lösen der folgenden Aufgabe beantwortet werden:

Finde eine Interpretation \mathcal{I} für φ , so dass gilt:

- $\mathcal{I} \models \varphi$ (d.h., \mathcal{I} ist ein Modell von φ) und
- $|\{X \in \{A, B, C, D, E\} : \mathcal{I}(X) = 1\}|$ ist so groß wie möglich.

Diese Frage können wir lösen, indem wir

(1) die Wahrheitstafel für φ ermitteln,

Diese Frage können wir lösen, indem wir

- (1) die Wahrheitstafel für φ ermitteln,
- (2) alle Zeilen raussuchen, in denen in der mit " φ " beschrifteten Spalte der Wert 1 steht (das liefert uns genau die Modelle von φ) und

Diese Frage können wir lösen, indem wir

- (1) die Wahrheitstafel für arphi ermitteln,
- (2) alle Zeilen raussuchen, in denen in der mit " φ " beschrifteten Spalte der Wert 1 steht (das liefert uns genau die Modelle von φ) und
- (3) aus diesen Zeilen all jene raussuchen, bei denen in den mit A, B, C, D, E beschrifteten Spalten möglichst viele Einsen stehen. Jede dieser Zeilen repräsentiert dann eine größtmögliche Konstellation von gleichzeitigen Partybesuchern.

Diese Frage können wir lösen, indem wir

- (1) die Wahrheitstafel für arphi ermitteln,
- (2) alle Zeilen raussuchen, in denen in der mit " φ " beschrifteten Spalte der Wert 1 steht (das liefert uns genau die Modelle von φ) und
- (3) aus diesen Zeilen all jene raussuchen, bei denen in den mit A, B, C, D, E beschrifteten Spalten möglichst viele Einsen stehen. Jede dieser Zeilen repräsentiert dann eine größtmögliche Konstellation von gleichzeitigen Partybesuchern.

Prinzipiell führt diese Vorgehensweise zum Ziel.

Leider ist das Verfahren aber recht aufwändig, da die Wahrheitstafel, die man dabei aufstellen muss, sehr groß wird:

Diese Frage können wir lösen, indem wir

- (1) die Wahrheitstafel für arphi ermitteln,
- (2) alle Zeilen raussuchen, in denen in der mit " φ " beschrifteten Spalte der Wert 1 steht (das liefert uns genau die Modelle von φ) und
- (3) aus diesen Zeilen all jene raussuchen, bei denen in den mit A, B, C, D, E beschrifteten Spalten möglichst viele Einsen stehen. Jede dieser Zeilen repräsentiert dann eine größtmögliche Konstellation von gleichzeitigen Partybesuchern.

Prinzipiell führt diese Vorgehensweise zum Ziel.

Leider ist das Verfahren aber recht aufwändig, da die Wahrheitstafel, die man dabei aufstellen muss, sehr groß wird: Sie hat $2^5 = 32$ Zeilen.

Α	В	С	D	Ε	$E \rightarrow (C \land D)$	$C \rightarrow A$	$(B \wedge E) \rightarrow \neg D$	$A \rightarrow (B \lor C)$	$(B \wedge A) \rightarrow \neg E$	φ
0	0	0	0	0	1	1	1	1	1	1
0	0	0	0	1	0	1	1	1	1	0
0	0	0	1	0	1	1	1	1	1	1
0	0	0	1	1	0	1	1	1	1	0
0	0	1	0	0	1	0	1	1	1	0
0	0	1	0	1	0	0	1	1	1	0
0	0	1	1	0	1	0	1	1	1	0
0	0	1	1	1	1	0	1	1	1	0
0	1	0	0	0	1	1	1	1	1	1
0	1	0	0	1	0	1	1	1	1	0
0	1	0	1	0	1	1	1	1	1	1
0	1	0	1	1	0	1	0	1	1	0
0	1	1	0	0	1	0	1	1	1	0
0	1	1	0	1	0	0	1	1	1	0
0	1	1	1	0	1	0	1	1	1	0
0	1	1	1	1	1	0	0	1	1	0
1	0	0	0	0	1	1	1	0	1	0
1	0	0	0	1	0	1	1	0	1	0
1	0	0	1	0	1	1	1	0	1	0
1	0	0	1	1	0	1	1	0	1	0
1	0	1	0	0	1	1	1	1	1	1
1	0	1	0	1	0	1	1	1	1	0
1	0	1	1	0	1	1	1	1	1	1
1	0	1	1	1	1	1	1	1	1	1
1	1	0	0	0	1	1	1	1	1	1
1	1	0	0	1	0	1	1	1	0	0
1	1	0	1	0	1	1	1	1	1	1
1	1	0	1	1	0	1	0	1	0	0
1	1	1	0	0	1	1	1	1	1	1
1	1	1	0	1	0	1	1	1	0	0
1	1	1	1	0	1	1	1	1	1	1
1	1	1	1	1	1	1	0	1	0	0

Modelle für φ werden hier durch grau unterlegte Zeilen repräsentiert.

HU Berlin Einführung in die formale Logik für IMP

• Es gibt kein Modell für φ , bei dem in den mit A bis E beschrifteten Spalten insgesamt 5 Einsen stehen.

- Es gibt kein Modell für φ , bei dem in den mit A bis E beschrifteten Spalten insgesamt 5 Einsen stehen.
- Es gibt genau zwei Modelle für φ , bei denen in den mit A bis E beschrifteten Spalten insgesamt 4 Einsen stehen, nämlich die beiden Interpretationen \mathcal{I}_1 und \mathcal{I}_2 mit

$$\mathcal{I}_1(A)=\mathcal{I}_1(C)=\mathcal{I}_1(D)=\mathcal{I}_1(E)=1$$
 und $\mathcal{I}_1(B)=0$ und $\mathcal{I}_2(A)=\mathcal{I}_2(B)=\mathcal{I}_2(C)=\mathcal{I}_2(D)=1$ und $\mathcal{I}_2(E)=0$.

- Es gibt kein Modell für φ , bei dem in den mit A bis E beschrifteten Spalten insgesamt 5 Einsen stehen.
- Es gibt genau zwei Modelle für φ , bei denen in den mit A bis E beschrifteten Spalten insgesamt 4 Einsen stehen, nämlich die beiden Interpretationen \mathcal{I}_1 und \mathcal{I}_2 mit

$$\mathcal{I}_1(A)=\mathcal{I}_1(C)=\mathcal{I}_1(D)=\mathcal{I}_1(E)=1$$
 und $\mathcal{I}_1(B)=0$ und

$$\mathcal{I}_2(A) = \mathcal{I}_2(B) = \mathcal{I}_2(C) = \mathcal{I}_2(D) = 1$$
 und $\mathcal{I}_2(E) = 0$.

Die Antwort auf die Frage "Wie viele (und welche) Freunde werden bestenfalls zur Party kommen?" lautet also:

- Es gibt kein Modell für φ , bei dem in den mit A bis E beschrifteten Spalten insgesamt 5 Einsen stehen.
- Es gibt genau zwei Modelle für φ , bei denen in den mit A bis E beschrifteten Spalten insgesamt 4 Einsen stehen, nämlich die beiden Interpretationen \mathcal{I}_1 und \mathcal{I}_2 mit

$$\mathcal{I}_1(A)=\mathcal{I}_1(C)=\mathcal{I}_1(D)=\mathcal{I}_1(E)=1$$
 und $\mathcal{I}_1(B)=0$ und

$$\mathcal{I}_2(A) = \mathcal{I}_2(B) = \mathcal{I}_2(C) = \mathcal{I}_2(D) = 1$$
 und $\mathcal{I}_2(E) = 0$.

Die Antwort auf die Frage "Wie viele (und welche) Freunde werden bestenfalls zur Party kommen?" lautet also:

Bestenfalls werden 4 der 5 Freunde kommen, und dafür gibt es zwei Möglichkeiten, nämlich

- (1) dass alle außer Bernd kommen, und
- (2) dass alle außer Eva kommen.

Kap 2: Aussagenlogik - Abschnitt 2.1: Syntax und Semantik

Erfüllbarkeit, Allgemeingültigkeit und die Folgerungsbeziehung

Definition 2.10

Eine Formel $\varphi\in \mathsf{AL}$ heißt erfüllbar, wenn es eine Interpretation gibt, die φ erfüllt.

Definition 2.10

Eine Formel $\varphi \in \mathsf{AL}$ heißt erfüllbar, wenn es eine Interpretation gibt, die φ erfüllt.

Eine Formelmenge Φ heißt erfüllbar, wenn es eine Interpretation \mathcal{I} gibt, die Φ erfüllt (d.h. es gilt $\mathcal{I} \models \varphi$ für jedes $\varphi \in \Phi$).

Definition 2.10

Eine Formel $\varphi \in \mathsf{AL}$ heißt erfüllbar, wenn es eine Interpretation gibt, die φ erfüllt.

Eine Formelmenge Φ heißt erfüllbar, wenn es eine Interpretation \mathcal{I} gibt, die Φ erfüllt (d.h. es gilt $\mathcal{I} \models \varphi$ für jedes $\varphi \in \Phi$).

Eine Formel oder Formelmenge, die nicht erfüllbar ist, nennen wir unerfüllbar.

Definition 2.10

Eine Formel $\varphi \in \mathsf{AL}$ heißt erfüllbar, wenn es eine Interpretation gibt, die φ erfüllt.

Eine Formelmenge Φ heißt erfüllbar, wenn es eine Interpretation \mathcal{I} gibt, die Φ erfüllt (d.h. es gilt $\mathcal{I} \models \varphi$ für jedes $\varphi \in \Phi$).

Eine Formel oder Formelmenge, die nicht erfüllbar ist, nennen wir unerfüllbar.

Beobachtung 2.11

(a) Eine aussagenlogische Formel ist genau dann erfüllbar, wenn in der letzten Spalte ihrer Wahrheitstafel mindestens eine 1 steht.

Definition 2.10

Eine Formel $\varphi \in \mathsf{AL}$ heißt erfüllbar, wenn es eine Interpretation gibt, die φ erfüllt.

Eine Formelmenge Φ heißt erfüllbar, wenn es eine Interpretation \mathcal{I} gibt, die Φ erfüllt (d.h. es gilt $\mathcal{I} \models \varphi$ für jedes $\varphi \in \Phi$).

Eine Formel oder Formelmenge, die nicht erfüllbar ist, nennen wir unerfüllbar.

Beobachtung 2.11

- (a) Eine aussagenlogische Formel ist genau dann erfüllbar, wenn in der letzten Spalte ihrer Wahrheitstafel mindestens eine 1 steht.
- (b) Eine endliche Formelmenge $\Phi = \{\varphi_1, \dots, \varphi_n\}$ ist genau dann erfüllbar, wenn die Formel $\bigwedge_{i=1}^n \varphi_i$ erfüllbar ist.

Definition 2.10

Eine Formel $\varphi \in \mathsf{AL}$ heißt erfüllbar, wenn es eine Interpretation gibt, die φ erfüllt.

Eine Formelmenge Φ heißt erfüllbar, wenn es eine Interpretation \mathcal{I} gibt, die Φ erfüllt (d.h. es gilt $\mathcal{I} \models \varphi$ für jedes $\varphi \in \Phi$).

Eine Formel oder Formelmenge, die nicht erfüllbar ist, nennen wir unerfüllbar.

Beobachtung 2.11

- (a) Eine aussagenlogische Formel ist genau dann erfüllbar, wenn in der letzten Spalte ihrer Wahrheitstafel mindestens eine 1 steht.
- (b) Eine endliche Formelmenge $\Phi = \{\varphi_1, \dots, \varphi_n\}$ ist genau dann erfüllbar, wenn die Formel $\bigwedge_{i=1}^n \varphi_i$ erfüllbar ist.

Beispiele:

Die Formel X ist

Definition 2.10

Eine Formel $\varphi \in \mathsf{AL}$ heißt erfüllbar, wenn es eine Interpretation gibt, die φ erfüllt.

Eine Formelmenge Φ heißt erfüllbar, wenn es eine Interpretation \mathcal{I} gibt, die Φ erfüllt (d.h. es gilt $\mathcal{I} \models \varphi$ für jedes $\varphi \in \Phi$).

Eine Formel oder Formelmenge, die nicht erfüllbar ist, nennen wir unerfüllbar.

Beobachtung 2.11

- (a) Eine aussagenlogische Formel ist genau dann erfüllbar, wenn in der letzten Spalte ihrer Wahrheitstafel mindestens eine 1 steht.
- (b) Eine endliche Formelmenge $\Phi = \{\varphi_1, \dots, \varphi_n\}$ ist genau dann erfüllbar, wenn die Formel $\bigwedge_{i=1}^n \varphi_i$ erfüllbar ist.

Beispiele:

• Die Formel X ist erfüllbar.

Definition 2.10

Eine Formel $\varphi \in \mathsf{AL}$ heißt erfüllbar, wenn es eine Interpretation gibt, die φ erfüllt.

Eine Formelmenge Φ heißt erfüllbar, wenn es eine Interpretation \mathcal{I} gibt, die Φ erfüllt (d.h. es gilt $\mathcal{I} \models \varphi$ für jedes $\varphi \in \Phi$).

Eine Formel oder Formelmenge, die nicht erfüllbar ist, nennen wir unerfüllbar.

Beobachtung 2.11

- (a) Eine aussagenlogische Formel ist genau dann erfüllbar, wenn in der letzten Spalte ihrer Wahrheitstafel mindestens eine 1 steht.
- (b) Eine endliche Formelmenge $\Phi = \{\varphi_1, \dots, \varphi_n\}$ ist genau dann erfüllbar, wenn die Formel $\bigwedge_{i=1}^n \varphi_i$ erfüllbar ist.

Beispiele:

- Die Formel X ist erfüllbar.
- Die Formel $(X \wedge \neg X)$ ist

Definition 2.10

Eine Formel $\varphi \in \mathsf{AL}$ heißt erfüllbar, wenn es eine Interpretation gibt, die φ erfüllt.

Eine Formelmenge Φ heißt erfüllbar, wenn es eine Interpretation \mathcal{I} gibt, die Φ erfüllt (d.h. es gilt $\mathcal{I} \models \varphi$ für jedes $\varphi \in \Phi$).

Eine Formel oder Formelmenge, die nicht erfüllbar ist, nennen wir unerfüllbar.

Beobachtung 2.11

- (a) Eine aussagenlogische Formel ist genau dann erfüllbar, wenn in der letzten Spalte ihrer Wahrheitstafel mindestens eine 1 steht.
- (b) Eine endliche Formelmenge $\Phi = \{\varphi_1, \dots, \varphi_n\}$ ist genau dann erfüllbar, wenn die Formel $\bigwedge_{i=1}^n \varphi_i$ erfüllbar ist.

Beispiele:

- Die Formel X ist erfüllbar.
- Die Formel $(X \wedge \neg X)$ ist unerfüllbar.

Definition 2.12

Eine Formel $\varphi \in \mathsf{AL}$ ist allgemeingültig, wenn jede Interpretation $\mathcal I$ die Formel φ erfüllt.

Definition 2.12

Eine Formel $\varphi \in \mathsf{AL}$ ist allgemeingültig, wenn jede Interpretation $\mathcal I$ die Formel φ erfüllt.

Bemerkung

Allgemeingültige Formeln nennt man auch Tautologien.

Definition 2.12

Eine Formel $\varphi \in \mathsf{AL}$ ist allgemeingültig, wenn jede Interpretation $\mathcal I$ die Formel φ erfüllt.

Bemerkung

Allgemeingültige Formeln nennt man auch Tautologien.

Man schreibt auch $\models \varphi$ um auszudrücken, dass φ allgemeingültig ist.

Definition 2.12

Eine Formel $\varphi \in \mathsf{AL}$ ist allgemeingültig, wenn jede Interpretation $\mathcal I$ die Formel φ erfüllt.

Bemerkung

Allgemeingültige Formeln nennt man auch Tautologien.

Man schreibt auch $\models \varphi$ um auszudrücken, dass φ allgemeingültig ist.

Beobachtung 2.13

Eine aussagenlogische Formel ist genau dann allgemeingültig, wenn in der letzten Spalte ihrer Wahrheitstafel nur 1en stehen.

Definition 2.12

Eine Formel $\varphi \in \mathsf{AL}$ ist allgemeingültig, wenn jede Interpretation $\mathcal I$ die Formel φ erfüllt.

Bemerkung

Allgemeingültige Formeln nennt man auch Tautologien.

Man schreibt auch $\models \varphi$ um auszudrücken, dass φ allgemeingültig ist.

Beobachtung 2.13

Eine aussagenlogische Formel ist genau dann allgemeingültig, wenn in der letzten Spalte ihrer Wahrheitstafel nur 1en stehen.

Beispiel: Die Formel $(X \vee \neg X)$ ist allgemeingültig.

Die Formel $(X \lor Y) \land (\neg X \lor Y)$ ist

HU Berlin

Die Formel $(X \vee Y) \wedge (\neg X \vee Y)$ ist

• erfüllbar, da z.B. die Interpretation \mathcal{I} mit $\mathcal{I}(X) = 0$ und $\mathcal{I}(Y) = 1$ die Formel erfüllt.

Die Formel $(X \lor Y) \land (\neg X \lor Y)$ ist

- erfüllbar, da z.B. die Interpretation \mathcal{I} mit $\mathcal{I}(X)=0$ und $\mathcal{I}(Y)=1$ die Formel erfüllt.
- nicht allgemeingültig, da z.B. die Interpretation \mathcal{I}' mit $\mathcal{I}'(X) = 0$ und $\mathcal{I}'(Y) = 0$ die Formel nicht erfüllt.

Die Folgerungsbeziehung

Definition 2.15

Eine Formel $\psi \in AL$ folgt aus einer Formelmenge $\Phi \subseteq AL$ (wir schreiben:

 $\Phi \models \psi$), wenn für jede Interpretation $\mathcal I$ gilt: Wenn $\mathcal I$ die Formelmenge Φ erfüllt, dann erfüllt $\mathcal I$ auch die Formel ψ .

Die Folgerungsbeziehung

Definition 2.15

Eine Formel $\psi \in AL$ folgt aus einer Formelmenge $\Phi \subseteq AL$ (wir schreiben:

 $\Phi \models \psi$), wenn für jede Interpretation \mathcal{I} gilt: Wenn \mathcal{I} die Formelmenge Φ erfüllt, dann erfüllt \mathcal{I} auch die Formel ψ .

Notation

Für zwei Formeln $\varphi, \psi \in \mathsf{AL}$ schreiben wir kurz $\varphi \models \psi$ an Stelle von $\{\varphi\} \models \psi$ und sagen, dass die Formel ψ aus der Formel φ folgt.

$$\mathsf{Sei} \ \varphi := \big((X \vee Y) \wedge (\neg X \vee Y) \big) \ \mathsf{und} \ \psi := \big(Y \vee (\neg X \wedge \neg Y) \big).$$

HU Berlin Einführung in die formale Logik für IMP

$$\mathsf{Sei} \ \varphi := \big((X \vee Y) \wedge (\neg X \vee Y) \big) \ \mathsf{und} \ \psi := \big(Y \vee (\neg X \wedge \neg Y) \big).$$

X	Y	$(X \vee Y)$	$(\neg X \lor Y)$	φ	ψ
0	0	0	1	0	1
0	1	1	1	1	1
1	0	1	0	0	0
1	1	1	1	1	1

$$\mathsf{Sei} \ \varphi := \big((X \vee Y) \wedge (\neg X \vee Y) \big) \ \mathsf{und} \ \psi := \big(Y \vee (\neg X \wedge \neg Y) \big).$$

X	Y	$(X \vee Y)$	$(\neg X \lor Y)$	φ	ψ
0	0	0	1	0	1
0	1	1	1	1	1
1	0	1	0	0	0
1	1	1	1	1	1

In jeder Zeile der Wahrheitstafel, in der in der mit " φ " beschrifteten Spalte eine 1 steht, steht auch in der mit " ψ " beschrifteten Spalte eine 1. Somit gilt $\varphi \models \psi$.

$$\mathsf{Sei} \ \varphi := \big((X \vee Y) \wedge (\neg X \vee Y) \big) \ \mathsf{und} \ \psi := \big(Y \vee (\neg X \wedge \neg Y) \big).$$

X	Y	$(X \vee Y)$	$(\neg X \lor Y)$	φ	ψ
0	0	0	1	0	1
0	1	1	1	1	1
1	0	1	0	0	0
1	1	1	1	1	1

In jeder Zeile der Wahrheitstafel, in der in der mit " φ " beschrifteten Spalte eine 1 steht, steht auch in der mit " ψ " beschrifteten Spalte eine 1. Somit gilt $\varphi \models \psi$.

Andererseits steht in Zeile 1 in der mit " ψ " beschrifteten Spalte eine 1 und in der mit " φ " beschrifteten Spalte eine 0. Für die entsprechende Interpretation $\mathcal I$ (mit $\mathcal I(X)=0$ und $\mathcal I(Y)=0$) gilt also $\llbracket\psi\rrbracket^{\mathcal I}=1$ und $\llbracket\varphi\rrbracket^{\mathcal I}=0$. Daher gilt $\psi\not\models\varphi$.

Sei $\varphi := ((X \vee Y) \wedge (\neg X \vee Y))$ und $\psi := (Y \vee (\neg X \wedge \neg Y))$. Dann gilt $\varphi \models \psi$, aber es gilt *nicht* $\psi \models \varphi$ (kurz: $\psi \not\models \varphi$), denn:

X	Y	$(X \vee Y)$	$(\neg X \lor Y)$	φ	ψ
0	0	0	1	0	1
0	1	1	1	1	1
1	0	1	0	0	0
1	1	1	1	1	1

In jeder Zeile der Wahrheitstafel, in der in der mit " φ " beschrifteten Spalte eine 1 steht, steht auch in der mit " ψ " beschrifteten Spalte eine 1. Somit gilt $\varphi \models \psi$.

Andererseits steht in Zeile 1 in der mit " ψ " beschrifteten Spalte eine 1 und in der mit " φ " beschrifteten Spalte eine 0. Für die entsprechende Interpretation $\mathcal I$ (mit $\mathcal I(X)=0$ und $\mathcal I(Y)=0$) gilt also $\llbracket\psi\rrbracket^{\mathcal I}=1$ und $\llbracket\varphi\rrbracket^{\mathcal I}=0$. Daher gilt $\psi\not\models\varphi$.

Für alle Formeln $\varphi, \psi \in \mathsf{AL}$ gilt:

$$\{\varphi, (\varphi \to \psi)\} \models \psi.$$

Für alle Formeln $\varphi, \psi \in \mathsf{AL}$ gilt:

$$\{\varphi, (\varphi \to \psi)\} \models \psi.$$

Dies folgt unmittelbar aus der Definition der Semantik: Sei \mathcal{I} eine Interpretation mit $\mathcal{I} \models \{\varphi, (\varphi \rightarrow \psi)\}$. Dann gilt:

Für alle Formeln $\varphi, \psi \in \mathsf{AL}$ gilt:

$$\{\varphi, (\varphi \to \psi)\} \models \psi.$$

Dies folgt unmittelbar aus der Definition der Semantik: Sei \mathcal{I} eine Interpretation mit $\mathcal{I} \models \{\varphi, \ (\varphi \rightarrow \psi)\}$. Dann gilt:

- (1) $\llbracket \varphi
 rbracket^{\mathcal{I}} = 1$ und
- $(2) \ \left[\!\!\left[(\varphi \to \psi) \right]\!\!\right]^{\mathcal{I}} = 1, \ \text{ d.h. es gilt } \left[\!\!\left[\varphi \right]\!\!\right]^{\mathcal{I}} = 0 \text{ oder } \left[\!\!\left[\psi \right]\!\!\right]^{\mathcal{I}} = 1.$

 $\mathsf{Da}\ \llbracket\varphi\rrbracket^{\mathcal{I}}=1\ \mathsf{gem\"{a}B}\ (1)\ \mathsf{gilt,}\ \mathsf{folgt}\ \mathsf{gem\"{a}B}\ (2),\ \mathsf{dass}\ \llbracket\psi\rrbracket^{\mathcal{I}}=1.$

Für alle Formeln $\varphi, \psi \in \mathsf{AL}$ gilt:

$$\{\varphi, (\varphi \to \psi)\} \models \psi.$$

Dies folgt unmittelbar aus der Definition der Semantik: Sei \mathcal{I} eine Interpretation mit $\mathcal{I} \models \{\varphi, \ (\varphi \rightarrow \psi)\}$. Dann gilt:

- (1) $\llbracket \varphi
 rbracket^{\mathcal{I}} = 1$ und
- $(2) \ \left[\!\!\left[(\varphi \to \psi) \right]\!\!\right]^{\mathcal{I}} = 1, \ \text{ d.h. es gilt } \left[\!\!\left[\varphi \right]\!\!\right]^{\mathcal{I}} = 0 \text{ oder } \left[\!\!\left[\psi \right]\!\!\right]^{\mathcal{I}} = 1.$

 $\mathsf{Da}\ \llbracket\varphi\rrbracket^{\mathcal{I}}=1\ \mathsf{gem\"{a}B}\ (1)\ \mathsf{gilt,}\ \mathsf{folgt}\ \mathsf{gem\"{a}B}\ (2),\ \mathsf{dass}\ \llbracket\psi\rrbracket^{\mathcal{I}}=1.$

Bemerkung

Man kann die Folgerungsbeziehung $\{\varphi, (\varphi \to \psi)\} \models \psi$ als eine formale Schlussregel auffassen (ähnlich den Syllogismen in Kapitel 1):

Wenn φ und $(\varphi \to \psi)$ gelten, so muss auch ψ gelten.

Diese Regel, die unter dem Namen Modus Ponens bekannt ist, ist von grundlegender Bedeutung in der Logik.

Zusammenhänge

Lemma 2.18 (Allgemeingültigkeit, Unerfüllbarkeit und Folgerung)

Für jede Formel $\varphi \in AL$ gilt:

(a) φ ist allgemeingültig $\iff \neg \varphi$ ist unerfüllbar $\iff \mathbf{1} \models \varphi$.

HU Berlin

Zusammenhänge

Lemma 2.18 (Allgemeingültigkeit, Unerfüllbarkeit und Folgerung)

Für jede Formel $\varphi \in AL$ gilt:

- (a) φ ist allgemeingültig $\iff \neg \varphi$ ist unerfüllbar $\iff \mathbf{1} \models \varphi$.
- (b) φ ist unerfüllbar $\iff \varphi \models \mathbf{0}$.

Lemma 2.19 (Erfüllbarkeit und die Folgerungsbeziehung)

Für alle Formelmengen $\Phi \subseteq AL$ und für alle Formeln $\psi \in AL$ gilt:

$$\Phi \models \psi \iff \Phi \cup \{\neg \psi\}$$
 ist unerfüllbar.

Lemma 2.20 (Allgemeingültigkeit und die Folgerungsbeziehung)

(a) Für jede Formel $\varphi \in AL$ gilt:

 φ ist allgemeingültig $\iff \varphi$ folgt aus der leeren Menge,

kurz:

$$\models \varphi \iff \emptyset \models \varphi.$$

Lemma 2.20 (Allgemeingültigkeit und die Folgerungsbeziehung)

(a) Für jede Formel $\varphi \in AL$ gilt:

 φ ist allgemeingültig $\iff \varphi$ folgt aus der leeren Menge,

kurz:

$$\models \varphi \iff \emptyset \models \varphi.$$

(b) Für jede Formel $\psi \in AL$ und jede endliche Formelmenge $\Phi = \{\varphi_1, \dots, \varphi_n\} \subseteq AL$ gilt:

$$\Phi \models \psi \iff (\varphi_1 \land \cdots \land \varphi_n) \rightarrow \psi \text{ ist allgemeingültig.}$$

Aus den beiden vorigen Lemmas erhält man leicht, dass für alle Formeln $\varphi, \psi \in \mathsf{AL}$ gilt:

$$\varphi \models \psi \iff (\varphi \to \psi) \text{ ist allgemeing\"{u}ltig} \iff (\varphi \land \neg \psi) \text{ ist unerf\"{u}llbar}.$$

Aus den beiden vorigen Lemmas erhält man leicht, dass für alle Formeln $\varphi, \psi \in \mathsf{AL}$ gilt:

$$\varphi \models \psi \iff (\varphi \to \psi) \text{ ist allgemeing\"{u}ltig} \iff (\varphi \land \neg \psi) \text{ ist unerf\"{u}llbar}.$$

Beweis.

Es sei $\Phi := \{\varphi\}$. Gemäß Lemma 2.20 gilt:

$$\Phi \models \psi \iff (\varphi \rightarrow \psi)$$
 ist allgemeingültig.

Aus den beiden vorigen Lemmas erhält man leicht, dass für alle Formeln $\varphi, \psi \in \mathsf{AL}$ gilt:

$$\varphi \models \psi \iff (\varphi \to \psi) \text{ ist allgemeing\"{u}ltig} \iff (\varphi \land \neg \psi) \text{ ist unerf\"{u}llbar}.$$

Beweis.

Es sei $\Phi := \{\varphi\}$. Gemäß Lemma 2.20 gilt:

$$\Phi \models \psi \iff (\varphi \rightarrow \psi)$$
 ist allgemeingültig.

Somit gilt: $\varphi \models \psi \iff (\varphi \rightarrow \psi)$ ist allgemeingültig.

Aus den beiden vorigen Lemmas erhält man leicht, dass für alle Formeln $\varphi, \psi \in \mathsf{AL}$ gilt:

$$\varphi \models \psi \iff (\varphi \rightarrow \psi)$$
 ist allgemeingültig $\iff (\varphi \land \neg \psi)$ ist unerfüllbar.

Beweis.

Es sei $\Phi := \{\varphi\}$. Gemäß Lemma 2.20 gilt:

$$\Phi \models \psi \iff (\varphi \rightarrow \psi)$$
 ist allgemeingültig.

Somit gilt: $\varphi \models \psi \iff (\varphi \rightarrow \psi)$ ist allgemeingültig.

Außerdem gilt gemäß Lemma 2.19:

$$\Phi \models \psi \iff \Phi \cup \{\neg \psi\}$$
 ist unerfüllbar.

Aus den beiden vorigen Lemmas erhält man leicht, dass für alle Formeln $\varphi, \psi \in \mathsf{AL}$ gilt:

$$\varphi \models \psi \iff (\varphi \to \psi) \text{ ist allgemeing\"{u}ltig} \iff (\varphi \land \neg \psi) \text{ ist unerf\"{u}llbar}.$$

Beweis.

Es sei $\Phi := \{\varphi\}$. Gemäß Lemma 2.20 gilt:

$$\Phi \models \psi \iff (\varphi \rightarrow \psi)$$
 ist allgemeingültig.

Somit gilt: $\varphi \models \psi \iff (\varphi \rightarrow \psi)$ ist allgemeingültig.

Außerdem gilt gemäß Lemma 2.19:

$$\Phi \models \psi \iff \Phi \cup \{\neg \psi\}$$
 ist unerfüllbar.

Somit gilt: $\varphi \models \psi \iff (\varphi \land \neg \psi)$ ist unerfüllbar.

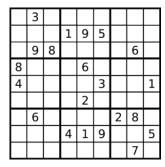
Abschnitt 2.2:

Aussagenlogische Modellierung

Kap 2: Aussagenlogik · Abschnitt 2.2: Aussagenlogische Modellierung

Beispiel 1: Sudoku

Sudoku



Sudoku

	3							
			1	9	5			
	9	8					6	
8				6				
4					3			1
				2				
	6					2	8	
			4	1	9			5
							7	

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	o	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

Koordinaten der Felder:

Feld (i,j) ist das Feld in Zeile i und Spalte j.

Koordinaten der Felder:

Feld (i,j) ist das Feld in Zeile i und Spalte j.

Aussagensymbole:

Aussagensymbol $P_{i,j,k}$, für $i,j,k \in [9]$, steht für die Aussage

"Das Feld mit den Koordinaten (i,j) enthält die Zahl k."

Koordinaten der Felder:

Feld (i,j) ist das Feld in Zeile i und Spalte j.

Aussagensymbole:

Aussagensymbol $P_{i,j,k}$, für $i,j,k \in [9]$, steht für die Aussage

"Das Feld mit den Koordinaten (i,j) enthält die Zahl k."

Interpretationen beschreiben also Beschriftungen des 9×9 -Gitters.

Koordinaten der Felder:

Feld (i,j) ist das Feld in Zeile i und Spalte j.

Aussagensymbole:

Aussagensymbol $P_{i,j,k}$, für $i,j,k \in [9]$, steht für die Aussage

"Das Feld mit den Koordinaten (i,j) enthält die Zahl k."

Interpretationen beschreiben also Beschriftungen des 9×9 -Gitters.

Ziel:

Für jede Anfangsbeschriftung A eine Formelmenge Φ_A , so dass für alle Interpretationen \mathcal{I} gilt:

 $\mathcal{I} \models \Phi_A \iff \mathcal{I} \text{ beschreibt eine korrekte Lösung.}$

HU Berlin

Beschriftungen:

"Auf jedem Feld steht mindestens eine Zahl":

HU Berlin

Beschriftungen:

"Auf jedem Feld steht mindestens eine Zahl":

$$\varphi_1 := \bigwedge_{i,j=1}^9 \bigvee_{k=1}^9 P_{i,j,k}.$$

Beschriftungen:

"Auf jedem Feld steht mindestens eine Zahl":

$$\varphi_1 := \bigwedge_{i,j=1}^9 \bigvee_{k=1}^9 P_{i,j,k}.$$

"Auf jedem Feld steht höchstens eine Zahl":

Beschriftungen:

"Auf jedem Feld steht mindestens eine Zahl":

$$\varphi_1 := \bigwedge_{i,j=1}^9 \bigvee_{k=1}^9 P_{i,j,k}.$$

"Auf jedem Feld steht höchstens eine Zahl":

$$\varphi_2 := \bigwedge_{i,j=1}^9 \bigwedge_{\substack{k,\ell=1\\k\neq\ell}}^9 \neg (P_{i,j,k} \wedge P_{i,j,\ell}).$$

HU Berlin

"Jede Zahl kommt in jeder Zeile vor":

"Jede Zahl kommt in jeder Zeile vor":

$$\varphi_3 \; := \; \bigwedge_{i=1}^9 \; \bigwedge_{k=1}^9 \; \bigvee_{j=1}^9 P_{i,j,k}.$$

"Jede Zahl kommt in jeder Zeile vor":

$$\varphi_3 \; := \; \bigwedge_{i=1}^9 \; \bigwedge_{k=1}^9 \; \bigvee_{j=1}^9 P_{i,j,k}.$$

Spalten:

"Jede Zahl kommt in jeder Zeile vor":

$$\varphi_3 := \bigwedge_{i=1}^{9} \bigwedge_{k=1}^{9} \bigvee_{j=1}^{9} P_{i,j,k}.$$

Spalten:

"Jede Zahl kommt in jeder Spalte vor":

$$\varphi_4 := \bigwedge_{j=1}^9 \bigwedge_{k=1}^9 \bigvee_{i=1}^9 P_{i,j,k}.$$

"Jede Zahl kommt in jeder Zeile vor":

$$\varphi_3 := \bigwedge_{i=1}^{9} \bigwedge_{k=1}^{9} \bigvee_{j=1}^{9} P_{i,j,k}.$$

Spalten:

"Jede Zahl kommt in jeder Spalte vor":

$$\varphi_4 := \bigwedge_{j=1}^{9} \bigwedge_{k=1}^{9} \bigvee_{i=1}^{9} P_{i,j,k}.$$

Blöcke:

"Jede Zahl kommt in jedem Block vor":

"Jede Zahl kommt in jeder Zeile vor":

$$\varphi_3 := \bigwedge_{i=1}^9 \bigwedge_{k=1}^9 \bigvee_{j=1}^9 P_{i,j,k}.$$

Spalten:

"Jede Zahl kommt in jeder Spalte vor":

$$\varphi_4 := \bigwedge_{j=1}^9 \bigwedge_{k=1}^9 \bigvee_{i=1}^9 P_{i,j,k}.$$

Blöcke:

"Jede Zahl kommt in jedem Block vor":

$$\varphi_5 := \bigwedge_{i,j=0}^2 \bigwedge_{k=1}^9 \bigvee_{i',j'=1}^3 P_{3i+i',3j+j',k}.$$

Sei \boldsymbol{A} die Anfangsbeschriftung. Wir setzen

 $\Phi_A :=$

Sei A die Anfangsbeschriftung. Wir setzen

 $\Phi_A := \Phi \cup \{ P_{i,j,k} : A \text{ beschriftet Feld } (i,j) \text{ mit der Zahl } k \}.$

Sei A die Anfangsbeschriftung. Wir setzen

$$\Phi_A := \Phi \cup \{ P_{i,j,k} : A \text{ beschriftet Feld } (i,j) \text{ mit der Zahl } k \}.$$

Automatische Lösung von Sudokus:

Um ein Sudoku mit Anfangsbeschriftung A zu lösen, können wir nun einfach

HU Berlin

Sei A die Anfangsbeschriftung. Wir setzen

$$\Phi_A := \Phi \cup \{ P_{i,j,k} : A \text{ beschriftet Feld } (i,j) \text{ mit der Zahl } k \}.$$

Automatische Lösung von Sudokus:

Um ein Sudoku mit Anfangsbeschriftung A zu lösen, können wir nun einfach die Formel $\psi_A:= \bigwedge_{\varphi\in\Phi_A} \varphi$ bilden und die Wahrheitstafel zu dieser Formel aufstellen.

HU Berlin

Sei A die Anfangsbeschriftung. Wir setzen

$$\Phi_A := \Phi \cup \{ P_{i,j,k} : A \text{ beschriftet Feld } (i,j) \text{ mit der Zahl } k \}.$$

Automatische Lösung von Sudokus:

Um ein Sudoku mit Anfangsbeschriftung A zu lösen, können wir nun einfach die Formel $\psi_A := \bigwedge_{\varphi \in \Phi_A} \varphi$ bilden und die Wahrheitstafel zu dieser Formel aufstellen. Falls die Wahrheitstafel zeigt, dass ψ_A kein Modell besitzt, so ist das Sudoku nicht lösbar.

Sei A die Anfangsbeschriftung. Wir setzen

$$\Phi_A := \Phi \cup \{ P_{i,j,k} : A \text{ beschriftet Feld } (i,j) \text{ mit der Zahl } k \}.$$

Automatische Lösung von Sudokus:

Um ein Sudoku mit Anfangsbeschriftung A zu lösen, können wir nun einfach die Formel $\psi_A:= \bigwedge_{\varphi \in \Phi_A} \varphi$ bilden und die Wahrheitstafel zu dieser Formel aufstellen. Falls die Wahrheitstafel zeigt, dass ψ_A kein Modell besitzt, so ist das Sudoku nicht lösbar. Andernfalls können wir ein beliebiges Modell $\mathcal I$ von ψ_A hernehmen und daran die Lösung des Sudokus ablesen:

Sei A die Anfangsbeschriftung. Wir setzen

$$\Phi_A := \Phi \cup \{ P_{i,j,k} : A \text{ beschriftet Feld } (i,j) \text{ mit der Zahl } k \}.$$

Automatische Lösung von Sudokus:

Um ein Sudoku mit Anfangsbeschriftung A zu lösen, können wir nun einfach die Formel $\psi_A:=\bigwedge_{\varphi\in\Phi_A}\varphi$ bilden und die Wahrheitstafel zu dieser Formel aufstellen. Falls die Wahrheitstafel zeigt, dass ψ_A kein Modell besitzt, so ist das Sudoku nicht lösbar. Andernfalls können wir ein beliebiges Modell $\mathcal I$ von ψ_A hernehmen und daran die Lösung des Sudokus ablesen: Für jedes Feld (i,j) gibt es gemäß unserer Konstruktion der Formel ψ_A genau eine Zahl $k\in[9]$, so dass $\mathcal I(P_{i,j,k})=1$ ist. Diese Zahl k können wir in Feld (i,j) eintragen und erhalten damit eine Lösung des Sudokus.

Kap 2: Aussagenlogik · Abschnitt 2.2: Aussagenlogische Modellierung

Beispiel 2: Automatische Hardwareverifikation

Aquivalenz una Adaquatneit

Abschnitt 2.3:

Äquivalenz und Adäquatheit

Definition 2.22

Zwei Formeln $\varphi, \psi \in AL$ sind äquivalent (wir schreiben $\varphi \equiv \psi$), wenn sie von den selben Interpretationen erfüllt werden

Definition 2.22

Zwei Formeln $\varphi, \psi \in AL$ sind äquivalent (wir schreiben $\varphi \equiv \psi$), wenn sie von den selben Interpretationen erfüllt werden, d.h., wenn für alle Interpretationen \mathcal{I} gilt: $\mathcal{I} \models \varphi \iff \mathcal{I} \models \psi$.

Definition 2.22

Zwei Formeln $\varphi, \psi \in AL$ sind äquivalent (wir schreiben $\varphi \equiv \psi$), wenn sie von den selben Interpretationen erfüllt werden, d.h., wenn für alle Interpretationen \mathcal{I} gilt:

 $\mathcal{I} \models \varphi \iff \mathcal{I} \models \psi.$

Zwei Formelmengen $\Phi, \Psi \subseteq AL$ sind äquivalent (wir schreiben $\Phi \equiv \Psi$), wenn sie von den selben Interpretationen erfüllt werden, d.h., wenn für alle Interpretationen \mathcal{I} gilt: $\mathcal{I} \models \Phi \iff \mathcal{I} \models \Psi$.

Definition 2.22

Zwei Formeln $\varphi, \psi \in AL$ sind äquivalent (wir schreiben $\varphi \equiv \psi$), wenn sie von den selben Interpretationen erfüllt werden, d.h., wenn für alle Interpretationen \mathcal{I} gilt: $\mathcal{I} \models \varphi \iff \mathcal{I} \models \psi$.

Zwei Formelmengen $\Phi, \Psi \subseteq AL$ sind äquivalent (wir schreiben $\Phi \equiv \Psi$), wenn sie von den selben Interpretationen erfüllt werden, d.h., wenn für alle Interpretationen \mathcal{I} gilt: $\mathcal{I} \models \Phi \iff \mathcal{I} \models \Psi$.

Beobachtung 2.23

(a) Zwei Formeln $\varphi, \psi \in \mathsf{AL}$ sind genau dann äquivalent, wenn in den letzten Spalten ihrer Wahrheitstafeln jeweils die gleichen Einträge stehen.

Definition 2.22

Zwei Formeln $\varphi, \psi \in AL$ sind äquivalent (wir schreiben $\varphi \equiv \psi$), wenn sie von den selben Interpretationen erfüllt werden, d.h., wenn für alle Interpretationen \mathcal{I} gilt: $\mathcal{I} \models \varphi \iff \mathcal{I} \models \psi$.

Zwei Formelmengen $\Phi, \Psi \subseteq AL$ sind äquivalent (wir schreiben $\Phi \equiv \Psi$), wenn sie von den selben Interpretationen erfüllt werden, d.h., wenn für alle Interpretationen \mathcal{I} gilt: $\mathcal{I} \models \Phi \iff \mathcal{I} \models \Psi$.

Beobachtung 2.23

(a) Zwei Formeln $\varphi, \psi \in \mathsf{AL}$ sind genau dann äquivalent, wenn in den letzten Spalten ihrer Wahrheitstafeln jeweils die gleichen Einträge stehen.

Beispiel: Für alle $X, Y \in AS$ gilt: $\neg(X \lor Y) \equiv (\neg X \land \neg Y)$ und $X \equiv \neg \neg X$.

Definition 2.22

Zwei Formeln $\varphi, \psi \in AL$ sind äquivalent (wir schreiben $\varphi \equiv \psi$), wenn sie von den selben Interpretationen erfüllt werden, d.h., wenn für alle Interpretationen \mathcal{I} gilt: $\mathcal{I} \models \varphi \iff \mathcal{I} \models \psi$.

Zwei Formelmengen $\Phi, \Psi \subseteq AL$ sind äquivalent (wir schreiben $\Phi \equiv \Psi$), wenn sie von den selben Interpretationen erfüllt werden, d.h., wenn für alle Interpretationen \mathcal{I} gilt: $\mathcal{I} \models \Phi \iff \mathcal{I} \models \Psi$.

Beobachtung 2.23

- (a) Zwei Formeln $\varphi, \psi \in \mathsf{AL}$ sind genau dann äquivalent, wenn in den letzten Spalten ihrer Wahrheitstafeln jeweils die gleichen Einträge stehen.
- (b) Für endliche Formelmengen $\Phi = \{\varphi_1, \dots, \varphi_m\}, \ \Psi = \{\psi_1, \dots, \psi_n\} \subseteq AL$ gilt

$$\Phi \equiv \Psi \iff$$

Beispiel: Für alle $X, Y \in AS$ gilt: $\neg(X \lor Y) \equiv (\neg X \land \neg Y)$ und $X \equiv \neg \neg X$.

Definition 2.22

Zwei Formeln $\varphi, \psi \in AL$ sind äquivalent (wir schreiben $\varphi \equiv \psi$), wenn sie von den selben Interpretationen erfüllt werden, d.h., wenn für alle Interpretationen \mathcal{I} gilt: $\mathcal{I} \models \varphi \iff \mathcal{I} \models \psi$.

Zwei Formelmengen $\Phi, \Psi \subseteq AL$ sind äquivalent (wir schreiben $\Phi \equiv \Psi$), wenn sie von den selben Interpretationen erfüllt werden, d.h., wenn für alle Interpretationen \mathcal{I} gilt: $\mathcal{I} \models \Phi \iff \mathcal{I} \models \Psi$.

Beobachtung 2.23

- (a) Zwei Formeln $\varphi, \psi \in \mathsf{AL}$ sind genau dann äquivalent, wenn in den letzten Spalten ihrer Wahrheitstafeln jeweils die gleichen Einträge stehen.
- (b) Für endliche Formelmengen $\Phi = \{\varphi_1, \dots, \varphi_m\}, \ \Psi = \{\psi_1, \dots, \psi_n\} \subseteq AL$ gilt

$$\Phi \equiv \Psi \quad \iff \quad \bigwedge_{i=1}^m \varphi_i \; \equiv \; \bigwedge_{j=1}^n \psi_j.$$

Beispiel: Für alle $X, Y \in AS$ gilt: $\neg(X \lor Y) \equiv (\neg X \land \neg Y)$ und $X \equiv \neg \neg X$.

Äquivalenz und Allgemeingültigkeit

Lemma 2.24

(a) Für alle Formeln $\varphi, \psi \in AL$ gilt:

$$\varphi \equiv \psi$$
 \iff $(\varphi \leftrightarrow \psi)$ ist allgemeingültig.

Äquivalenz und Allgemeingültigkeit

Lemma 2.24

(a) Für alle Formeln $\varphi, \psi \in AL$ gilt:

$$\varphi \equiv \psi \iff (\varphi \leftrightarrow \psi)$$
 ist allgemeingültig.

(b) Für alle $\varphi \in AL$ gilt:

$$\varphi$$
 ist allgemeingültig $\iff \varphi \equiv 1$.

Satz 2.25

Für alle Formeln $\varphi, \psi, \chi \in \mathsf{AL}$ gelten die folgenden Äquivalenzen:

(a) Idempotenz:

$$(\varphi \wedge \varphi) \equiv \varphi$$

Satz 2.25

Für alle Formeln $\varphi, \psi, \chi \in \mathsf{AL}$ gelten die folgenden Äquivalenzen:

(a) Idempotenz:

$$(\varphi \wedge \varphi) \equiv \varphi$$
, $(\varphi \vee \varphi) \equiv \varphi$.

Satz 2.25

Für alle Formeln $\varphi, \psi, \chi \in \mathsf{AL}$ gelten die folgenden Äquivalenzen:

(a) Idempotenz:

$$(\varphi \wedge \varphi) \equiv \varphi$$
, $(\varphi \vee \varphi) \equiv \varphi$.

(b) Kommutativität:

$$(\varphi \wedge \psi) \equiv (\psi \wedge \varphi)$$

Satz 2.25

Für alle Formeln $\varphi, \psi, \chi \in \mathsf{AL}$ gelten die folgenden Äquivalenzen:

(a) Idempotenz:

$$(\varphi \wedge \varphi) \equiv \varphi$$
, $(\varphi \vee \varphi) \equiv \varphi$.

(b) Kommutativität:

$$(\varphi \wedge \psi) \equiv (\psi \wedge \varphi), \qquad (\varphi \vee \psi) \equiv (\psi \vee \varphi).$$

Satz 2.25

Für alle Formeln $\varphi, \psi, \chi \in \mathsf{AL}$ gelten die folgenden Äquivalenzen:

(a) Idempotenz:

$$(\varphi \wedge \varphi) \equiv \varphi$$
, $(\varphi \vee \varphi) \equiv \varphi$.

(b) Kommutativität:

$$(\varphi \wedge \psi) \equiv (\psi \wedge \varphi), \qquad (\varphi \vee \psi) \equiv (\psi \vee \varphi).$$

(c) Assoziativität:

$$((\varphi \wedge \psi) \wedge \chi) \equiv (\varphi \wedge (\psi \wedge \chi))$$

Satz 2.25

Für alle Formeln $\varphi, \psi, \chi \in \mathsf{AL}$ gelten die folgenden Äquivalenzen:

(a) Idempotenz:

$$(\varphi \wedge \varphi) \equiv \varphi$$
, $(\varphi \vee \varphi) \equiv \varphi$.

(b) Kommutativität:

$$(\varphi \wedge \psi) \equiv (\psi \wedge \varphi), \qquad (\varphi \vee \psi) \equiv (\psi \vee \varphi).$$

(c) Assoziativität:

$$((\varphi \wedge \psi) \wedge \chi) \equiv (\varphi \wedge (\psi \wedge \chi)), \qquad ((\varphi \vee \psi) \vee \chi) \equiv (\varphi \vee (\psi \vee \chi)).$$

Satz 2.25

Für alle Formeln $\varphi, \psi, \chi \in \mathsf{AL}$ gelten die folgenden Äquivalenzen:

(a) Idempotenz:

$$(\varphi \wedge \varphi) \equiv \varphi$$
, $(\varphi \vee \varphi) \equiv \varphi$.

(b) Kommutativität:

$$(\varphi \wedge \psi) \equiv (\psi \wedge \varphi), \qquad (\varphi \vee \psi) \equiv (\psi \vee \varphi).$$

(c) Assoziativität:

$$((\varphi \wedge \psi) \wedge \chi) \equiv (\varphi \wedge (\psi \wedge \chi)), \qquad ((\varphi \vee \psi) \vee \chi) \equiv (\varphi \vee (\psi \vee \chi)).$$

(d) Absorption:

$$(\varphi \wedge (\varphi \vee \psi)) \equiv \varphi$$

Satz 2.25

Für alle Formeln $\varphi, \psi, \chi \in \mathsf{AL}$ gelten die folgenden Äquivalenzen:

(a) Idempotenz:

$$(\varphi \wedge \varphi) \equiv \varphi$$
, $(\varphi \vee \varphi) \equiv \varphi$.

(b) Kommutativität:

$$(\varphi \wedge \psi) \equiv (\psi \wedge \varphi), \qquad (\varphi \vee \psi) \equiv (\psi \vee \varphi).$$

(c) Assoziativität:

$$((\varphi \wedge \psi) \wedge \chi) \equiv (\varphi \wedge (\psi \wedge \chi)), \qquad ((\varphi \vee \psi) \vee \chi) \equiv (\varphi \vee (\psi \vee \chi)).$$

(d) Absorption:

$$(\varphi \wedge (\varphi \vee \psi)) \equiv \varphi$$
, $(\varphi \vee (\varphi \wedge \psi)) \equiv \varphi$.

(Fortsetzung: nächste Folie)

$$(\varphi \wedge (\psi \vee \chi)) \equiv ((\varphi \wedge \psi) \vee (\varphi \wedge \chi))$$

$$(\varphi \wedge (\psi \vee \chi)) \equiv ((\varphi \wedge \psi) \vee (\varphi \wedge \chi)), \qquad (\varphi \vee (\psi \wedge \chi)) \equiv ((\varphi \vee \psi) \wedge (\varphi \vee \chi)).$$

$$(\varphi \wedge (\psi \vee \chi)) \equiv ((\varphi \wedge \psi) \vee (\varphi \wedge \chi)), \qquad (\varphi \vee (\psi \wedge \chi)) \equiv ((\varphi \vee \psi) \wedge (\varphi \vee \chi)).$$

(f) Doppelte Negation:

$$\neg\neg\varphi \equiv \varphi.$$

$$(\varphi \wedge (\psi \vee \chi)) \equiv ((\varphi \wedge \psi) \vee (\varphi \wedge \chi)), \qquad (\varphi \vee (\psi \wedge \chi)) \equiv ((\varphi \vee \psi) \wedge (\varphi \vee \chi)).$$

(f) Doppelte Negation:

$$\neg\neg\varphi\ \equiv\ \varphi.$$

(g) De Morgansche Regeln:

$$\neg(\varphi \wedge \psi) \equiv (\neg \varphi \vee \neg \psi)$$

$$(\varphi \wedge (\psi \vee \chi)) \equiv ((\varphi \wedge \psi) \vee (\varphi \wedge \chi)), \qquad (\varphi \vee (\psi \wedge \chi)) \equiv ((\varphi \vee \psi) \wedge (\varphi \vee \chi)).$$

(f) Doppelte Negation:

$$\neg\neg\varphi\ \equiv\ \varphi.$$

(g) De Morgansche Regeln:

$$\neg(\varphi \wedge \psi) \equiv (\neg \varphi \vee \neg \psi), \qquad \neg(\varphi \vee \psi) \equiv (\neg \varphi \wedge \neg \psi).$$

$$(\varphi \wedge (\psi \vee \chi)) \equiv ((\varphi \wedge \psi) \vee (\varphi \wedge \chi)), \qquad (\varphi \vee (\psi \wedge \chi)) \equiv ((\varphi \vee \psi) \wedge (\varphi \vee \chi)).$$

(f) Doppelte Negation:

$$\neg\neg\varphi\ \equiv\ \varphi.$$

(g) De Morgansche Regeln:

$$\neg(\varphi \wedge \psi) \equiv (\neg \varphi \vee \neg \psi), \qquad \neg(\varphi \vee \psi) \equiv (\neg \varphi \wedge \neg \psi).$$

(h) Tertium Non Datur:

$$(\varphi \land \neg \varphi) \equiv \mathbf{0}$$

$$(\varphi \wedge (\psi \vee \chi)) \equiv ((\varphi \wedge \psi) \vee (\varphi \wedge \chi)), \qquad (\varphi \vee (\psi \wedge \chi)) \equiv ((\varphi \vee \psi) \wedge (\varphi \vee \chi)).$$

(f) Doppelte Negation:

$$\neg\neg\varphi\ \equiv\ \varphi.$$

(g) De Morgansche Regeln:

$$\neg(\varphi \wedge \psi) \equiv (\neg \varphi \vee \neg \psi), \qquad \neg(\varphi \vee \psi) \equiv (\neg \varphi \wedge \neg \psi).$$

(h) Tertium Non Datur:

$$(\varphi \wedge \neg \varphi) \equiv \mathbf{0}$$
, $(\varphi \vee \neg \varphi) \equiv \mathbf{1}$.

(Fortsetzung: nächste Folie)

$$\begin{array}{lll} (\varphi \wedge \mathbf{1}) & \equiv & \varphi \;, & & (\varphi \vee \mathbf{0}) \; \equiv \; \varphi \;, \\ (\varphi \wedge \mathbf{0}) \; \equiv \; \mathbf{0} \;, & & (\varphi \vee \mathbf{1}) \; \equiv \; \mathbf{1}. \end{array}$$

$$\begin{array}{lll} (\varphi \wedge \mathbf{1}) & \equiv & \varphi \;, & & (\varphi \vee \mathbf{0}) \; \equiv \; \varphi \;, \\ (\varphi \wedge \mathbf{0}) \; \equiv \; \mathbf{0} \;, & & (\varphi \vee \mathbf{1}) \; \equiv \; \mathbf{1}. \end{array}$$

$$1 \equiv \neg 0$$

$$\begin{array}{lll} (\varphi \wedge \mathbf{1}) \; \equiv \; \varphi \; , & \quad (\varphi \vee \mathbf{0}) \; \equiv \; \varphi \; , \\ (\varphi \wedge \mathbf{0}) \; \equiv \; \mathbf{0} \; , & \quad (\varphi \vee \mathbf{1}) \; \equiv \; \mathbf{1}. \end{array}$$

$$\mathbf{1} \ \equiv \ \neg \mathbf{0} \ , \qquad \mathbf{0} \ \equiv \ \neg \mathbf{1}.$$

(i)

$$\begin{array}{lll} (\varphi \wedge \mathbf{1}) \; \equiv \; \varphi \; , & \quad (\varphi \vee \mathbf{0}) \; \equiv \; \varphi \; , \\ (\varphi \wedge \mathbf{0}) \; \equiv \; \mathbf{0} \; , & \quad (\varphi \vee \mathbf{1}) \; \equiv \; \mathbf{1}. \end{array}$$

$$\mathbf{1} \equiv \neg \mathbf{0} , \qquad \mathbf{0} \equiv \neg \mathbf{1}.$$

(k) Elimination der Implikation:

$$(\varphi \to \psi) \equiv (\neg \varphi \lor \psi).$$

Alle hier genannten Äquivalenzen können leicht mit Hilfe der Wahrheisttafelmethode überprüft werden.

Alle hier genannten Äquivalenzen können leicht mit Hilfe der Wahrheisttafelmethode überprüft werden.

Zum Beispiel die erste de Morgansche Regel:

$$\neg(\varphi \wedge \psi) \equiv (\neg \varphi \vee \neg \psi).$$

Wir berechnen dazu folgende Wahrheitstafeln:

φ	ψ	$\varphi \wedge \psi$	$\neg(\varphi \wedge \psi)$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

φ	ψ	$\neg \varphi$	$\neg \psi$	$(\neg \varphi \lor \neg \psi)$
0	0	1	1	1
0	1	1	0	1
1	0	0	1	1
1	1	0	0	0

Alle hier genannten Äquivalenzen können leicht mit Hilfe der Wahrheisttafelmethode überprüft werden.

Zum Beispiel die erste de Morgansche Regel:

$$\neg(\varphi \wedge \psi) \equiv (\neg \varphi \vee \neg \psi).$$

Wir berechnen dazu folgende Wahrheitstafeln:

φ	ψ	$\varphi \wedge \psi$	$\neg(\varphi \wedge \psi)$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

φ	ψ	$\neg \varphi$	$\neg \psi$	$(\neg \varphi \lor \neg \psi)$
0	0	1	1	1
0	1	1	0	1
1	0	0	1	1
1	1	0	0	0

Die letzten Spalten der beiden Wahrheitstafeln sind gleich, also sind die Formeln äquivalent.

Alle hier genannten Äquivalenzen können leicht mit Hilfe der Wahrheisttafelmethode überprüft werden.

Zum Beispiel die erste de Morgansche Regel:

$$\neg(\varphi \wedge \psi) \equiv (\neg \varphi \vee \neg \psi).$$

Wir berechnen dazu folgende Wahrheitstafeln:

φ	ψ	$\varphi \wedge \psi$	$\neg(\varphi \wedge \psi)$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

φ	ψ	$\neg \varphi$	$\neg \psi$	$(\neg \varphi \lor \neg \psi)$
0	0	1	1	1
0	1	1	0	1
1	0	0	1	1
1	1	0	0	0

Die letzten Spalten der beiden Wahrheitstafeln sind gleich, also sind die Formeln äquivalent.

Rest: Übung.

Bemerkung

Durch schrittweises Anwenden der in Satz 2.25 aufgelisteten Äquivalenzen kann man eine gegebene Formel in eine zu ihr äquivalente Formel umformen.

Das Dualitätsprinzip

Definition 2.26

Sei $\varphi \in AL$ eine Formel, in der keine Implikationen vorkommt.

Die zu φ duale Formel ist die Formel $\widetilde{\varphi} \in \mathsf{AL}$, die aus φ entsteht, indem man überall $\mathbf{0}$ durch $\mathbf{1}$, $\mathbf{1}$ durch $\mathbf{0}$, \wedge durch \vee und \vee durch \wedge ersetzt.

Das Dualitätsprinzip

Definition 2.26

Sei $\varphi \in AL$ eine Formel, in der keine Implikationen vorkommt.

Die zu φ duale Formel ist die Formel $\widetilde{\varphi} \in \mathsf{AL}$, die aus φ entsteht, indem man überall $\mathbf{0}$ durch $\mathbf{1}$, $\mathbf{1}$ durch $\mathbf{0}$, \wedge durch \vee und \vee durch \wedge ersetzt.

Beispiel

$$\mathsf{F\"{u}r}\ \varphi := ((A_1 \wedge \mathbf{0}) \vee \neg (A_2 \vee \mathbf{1})) \ \ \mathsf{ist}\ \widetilde{\varphi} = ((A_1 \vee \mathbf{1}) \wedge \neg (A_2 \wedge \mathbf{0})).$$

HU Berlin

Das Dualitätsprinzip

Definition 2.26

Sei $\varphi \in AL$ eine Formel, in der keine Implikationen vorkommt.

Die zu φ duale Formel ist die Formel $\widetilde{\varphi} \in \mathsf{AL}$, die aus φ entsteht, indem man überall $\mathbf{0}$ durch $\mathbf{1}$, $\mathbf{1}$ durch $\mathbf{0}$, \wedge durch \vee und \vee durch \wedge ersetzt.

Beispiel

Für
$$\varphi := ((A_1 \wedge \mathbf{0}) \vee \neg (A_2 \vee \mathbf{1}))$$
 ist $\widetilde{\varphi} = ((A_1 \vee \mathbf{1}) \wedge \neg (A_2 \wedge \mathbf{0}))$.

Satz 2.27 (Dualitätssatz der Aussagenlogik)

Für alle Formeln $\varphi, \psi \in AL$, in denen keine Implikation vorkommt, gilt:

$$\varphi \equiv \psi \iff \widetilde{\varphi} \equiv \widetilde{\psi}.$$

 Ähnlich wie wir Aussagen über die natürlichen Zahlen durch vollständige Induktion beweisen können, können wir Aussagen über Formeln per Induktion über den Aufbau der Formeln beweisen.

- Ahnlich wie wir Aussagen über die natürlichen Zahlen durch vollständige Induktion beweisen können, können wir Aussagen über Formeln per Induktion über den Aufbau der Formeln beweisen.
- Im Induktionsanfang beweisen wir die Aussagen für die atomaren Formeln,

- Ahnlich wie wir Aussagen über die natürlichen Zahlen durch vollständige Induktion beweisen können, können wir Aussagen über Formeln per Induktion über den Aufbau der Formeln beweisen.
- Im Induktionsanfang beweisen wir die Aussagen für die atomaren Formeln, und im Induktionschritt schließen wir von den Bestandteilen einer Formel auf die Formel selbst.

- Ahnlich wie wir Aussagen über die natürlichen Zahlen durch vollständige Induktion beweisen können, können wir Aussagen über Formeln per Induktion über den Aufbau der Formeln beweisen.
- Im Induktionsanfang beweisen wir die Aussagen für die atomaren Formeln, und im Induktionschritt schließen wir von den Bestandteilen einer Formel auf die Formel selbst.
- Dieses Vorgehen ist z.B. dadurch gerechtfertigt, dass es sich auch als vollständige Induktion über die Höhe des Syntaxbaumes auffassen lässt.

Induktionsanfang:

• Beweise $\mathbb{A}(\mathbf{0})$ und $\mathbb{A}(\mathbf{1})$.

Induktionsanfang:

- Beweise $\mathbb{A}(0)$ und $\mathbb{A}(1)$.
- Beweise $\mathbb{A}(X)$ für alle $X \in \mathsf{AS}$.

Induktionsanfang:

- Beweise $\mathbb{A}(0)$ und $\mathbb{A}(1)$.
- Beweise $\mathbb{A}(X)$ für alle $X \in \mathsf{AS}$.

Induktionsschritt:

• Beweise $\mathbb{A}(\neg \varphi)$ unter der Annahme, dass $\mathbb{A}(\varphi)$ gilt.

Induktionsanfang:

- Beweise $\mathbb{A}(\mathbf{0})$ und $\mathbb{A}(\mathbf{1})$.
- Beweise $\mathbb{A}(X)$ für alle $X \in \mathsf{AS}$.

Induktionsschritt:

- Beweise $\mathbb{A}(\neg \varphi)$ unter der Annahme, dass $\mathbb{A}(\varphi)$ gilt.
- Beweise $\mathbb{A}((\varphi \wedge \psi))$ unter der Annahme, dass $\mathbb{A}(\varphi)$ und $\mathbb{A}(\psi)$ gelten.

Induktionsanfang:

- Beweise $\mathbb{A}(\mathbf{0})$ und $\mathbb{A}(\mathbf{1})$.
- Beweise $\mathbb{A}(X)$ für alle $X \in \mathsf{AS}$.

Induktionsschritt:

- Beweise $\mathbb{A}(\neg \varphi)$ unter der Annahme, dass $\mathbb{A}(\varphi)$ gilt.
- Beweise $\mathbb{A}((\varphi \wedge \psi))$ unter der Annahme, dass $\mathbb{A}(\varphi)$ und $\mathbb{A}(\psi)$ gelten.
- Beweise $\mathbb{A}((\varphi \lor \psi))$ unter der Annahme, dass $\mathbb{A}(\varphi)$ und $\mathbb{A}(\psi)$ gelten.

Induktionsanfang:

- Beweise A(0) und A(1).
- Beweise $\mathbb{A}(X)$ für alle $X \in \mathsf{AS}$.

Induktionsschritt:

- Beweise $\mathbb{A}(\neg \varphi)$ unter der Annahme, dass $\mathbb{A}(\varphi)$ gilt.
- Beweise $\mathbb{A}((\varphi \wedge \psi))$ unter der Annahme, dass $\mathbb{A}(\varphi)$ und $\mathbb{A}(\psi)$ gelten.
- Beweise $\mathbb{A}((\varphi \lor \psi))$ unter der Annahme, dass $\mathbb{A}(\varphi)$ und $\mathbb{A}(\psi)$ gelten.
- Beweise $\mathbb{A}((\varphi \to \psi))$ unter der Annahme, dass $\mathbb{A}(\varphi)$ und $\mathbb{A}(\psi)$ gelten.

Um den Dualitätssatz zu beweisen benötigen wir zunächst noch eine Definition. Der Kern des Beweises steckt im darauf folgenden Lemma.

Um den Dualitätssatz zu beweisen benötigen wir zunächst noch eine Definition. Der Kern des Beweises steckt im darauf folgenden Lemma.

Definition 2.28

Sei $\mathcal I$ eine Interpretation. Die zu $\mathcal I$ duale Interpretation $\widetilde{\mathcal I}$ ist definiert durch $\widetilde{\mathcal I}(X):=1-\mathcal I(X)$ für alle $X\in\mathsf{AS}.$

D.h. für alle Aussagensymbole X gilt:

$$\widetilde{\mathcal{I}}(X) = \begin{cases} 0, & \text{falls } \mathcal{I}(X) = 1 \\ 1, & \text{falls } \mathcal{I}(X) = 0 \end{cases}$$

Um den Dualitätssatz zu beweisen benötigen wir zunächst noch eine Definition. Der Kern des Beweises steckt im darauf folgenden Lemma.

Definition 2.28

Sei $\mathcal I$ eine Interpretation. Die zu $\mathcal I$ duale Interpretation $\widetilde{\mathcal I}$ ist definiert durch $\widetilde{\mathcal I}(X):=1-\mathcal I(X)$ für alle $X\in\mathsf{AS}.$

D.h. für alle Aussagensymbole X gilt:

$$\widetilde{\mathcal{I}}(X) = \begin{cases} 0, & \text{falls } \mathcal{I}(X) = 1 \\ 1, & \text{falls } \mathcal{I}(X) = 0 \end{cases}$$

Lemma 2.29

Für alle Formeln $\varphi \in AL$, in denen keine Implikation vorkommt, und alle Interpretationen \mathcal{I} gilt:

$$\mathcal{I} \models \widetilde{\varphi} \iff \widetilde{\mathcal{I}} \not\models \varphi.$$

HU Berlin

Seien $\varphi, \psi \in AL$ Formeln, in denen keine Implikation vorkommt.

¹Wir schreiben kurz "f.a." als Abkürzung für die Worte "für alle"

Seien $\varphi, \psi \in AL$ Formeln, in denen keine Implikation vorkommt.

Wir wollen zeigen, dass gilt: $\varphi \equiv \psi \iff \widetilde{\varphi} \equiv \widetilde{\psi}$.

HU Berlin Einführung in die formale Logik für IMP Folie 95

¹Wir schreiben kurz "f.a." als Abkürzung für die Worte "für alle"

Seien $\varphi, \psi \in AL$ Formeln, in denen keine Implikation vorkommt.

Wir wollen zeigen, dass gilt: $\varphi \equiv \psi \iff \widetilde{\varphi} \equiv \widetilde{\psi}$.

$$\begin{array}{ll} \text{``}\Longrightarrow\text{``}: & \mathsf{Es}\;\mathsf{gilt}:^1 \\ \\ \varphi \equiv \psi \\ \\ \Longrightarrow & \mathsf{F.a.}\;\mathsf{Interpretationen}\;\mathcal{I}\;\mathsf{gilt}:\;\left(\widetilde{\mathcal{I}}\models\varphi\iff\widetilde{\mathcal{I}}\models\psi\right) \end{array}$$

¹Wir schreiben kurz "f.a." als Abkürzung für die Worte "für alle"

Seien $\varphi, \psi \in AL$ Formeln, in denen keine Implikation vorkommt.

Wir wollen zeigen, dass gilt: $\varphi \equiv \psi \iff \widetilde{\varphi} \equiv \widetilde{\psi}$.

$$\varphi \equiv \psi$$

$$\Rightarrow \qquad \text{F.a. Interpretationen } \mathcal{I} \text{ gilt: } (\widetilde{\mathcal{I}} \models \varphi \iff \widetilde{\mathcal{I}} \models \psi)$$

$$\overset{\text{Lemma 2.29}}{\Longrightarrow} \qquad \text{F.a. Interpretationen } \mathcal{I} \text{ gilt: } (\mathcal{I} \not\models \widetilde{\varphi} \iff \mathcal{I} \not\models \widetilde{\psi})$$

¹Wir schreiben kurz "f.a." als Abkürzung für die Worte "für alle"

Seien $\varphi, \psi \in AL$ Formeln, in denen keine Implikation vorkommt.

Wir wollen zeigen, dass gilt: $\varphi \equiv \psi \iff \widetilde{\varphi} \equiv \psi$.

": Es gilt:
$$\varphi \equiv \psi$$

$$\Rightarrow \qquad \text{F.a. Interpretationen } \mathcal{I} \text{ gilt: } (\widetilde{\mathcal{I}} \models \varphi \iff \widetilde{\mathcal{I}} \models \psi)$$

$$\stackrel{\mathsf{Lemma}}{\Longrightarrow} \quad \text{F.a. Interpretationen } \mathcal{I} \text{ gilt: } (\mathcal{I} \not\models \widetilde{\varphi} \iff \mathcal{I} \not\models \widetilde{\psi})$$

$$\Rightarrow \qquad \text{F.a. Interpretationen } \mathcal{I} \text{ gilt: } (\mathcal{I} \models \widetilde{\varphi} \iff \mathcal{I} \models \widetilde{\psi})$$

¹Wir schreiben kurz "f.a." als Abkürzung für die Worte "für alle"

Seien $\varphi, \psi \in AL$ Formeln, in denen keine Implikation vorkommt.

Wir wollen zeigen, dass gilt: $\varphi \equiv \psi \iff \widetilde{\varphi} \equiv \widetilde{\psi}$.

$$\varphi \equiv \psi$$

$$\Rightarrow \qquad \text{F.a. Interpretationen } \mathcal{I} \text{ gilt: } (\widetilde{\mathcal{I}} \models \varphi \iff \widetilde{\mathcal{I}} \models \psi)$$

$$\stackrel{\mathsf{Lemma}}{\Rightarrow}^{2.29} \qquad \text{F.a. Interpretationen } \mathcal{I} \text{ gilt: } (\mathcal{I} \not\models \widetilde{\varphi} \iff \mathcal{I} \not\models \widetilde{\psi})$$

$$\Rightarrow \qquad \text{F.a. Interpretationen } \mathcal{I} \text{ gilt: } (\mathcal{I} \models \widetilde{\varphi} \iff \mathcal{I} \models \widetilde{\psi})$$

$$\Rightarrow \qquad \widetilde{\varphi} \equiv \widetilde{\psi}.$$

¹Wir schreiben kurz "f.a." als Abkürzung für die Worte "für alle"

Seien $\varphi, \psi \in AL$ Formeln, in denen keine Implikation vorkommt.

Wir wollen zeigen, dass gilt: $\varphi \equiv \psi \iff \widetilde{\varphi} \equiv \widetilde{\psi}$.

HU Berlin

$$\widetilde{\varphi} \equiv \widetilde{\psi} \implies \widetilde{\widetilde{\varphi}} \equiv \widetilde{\widetilde{\psi}}$$
 (andere Beweisrichtung)
 $\Longrightarrow \varphi \equiv \psi$ (weil $\widetilde{\widetilde{\varphi}} = \varphi$ und $\widetilde{\widetilde{\psi}} = \psi$).

¹Wir schreiben kurz "f.a." als Abkürzung für die Worte "für alle"

Im Folgenden bezeichnen wir als Wahrheitstafel eine Tabelle mit n+1 Spalten und 2^n Zeilen, die für jedes Tupel $(b_1, \ldots, b_n) \in \{0, 1\}^n$ genau eine Zeile enthält, deren erste n Einträge b_1, \ldots, b_n sind.

HU Berlin

Im Folgenden bezeichnen wir als Wahrheitstafel eine Tabelle mit n+1 Spalten und 2^n Zeilen, die für jedes Tupel $(b_1, \ldots, b_n) \in \{0,1\}^n$ genau eine Zeile enthält, deren erste n Einträge b_1, \ldots, b_n sind.

Satz 2.30 (Funktionale Vollständigkeit der Aussagenlogik)

Zu jeder Wahrheitstafel gibt es eine Formel $\varphi \in AL$ mit dieser Wahrheitstafel.

Im Folgenden bezeichnen wir als Wahrheitstafel eine Tabelle mit n+1 Spalten und 2^n Zeilen, die für jedes Tupel $(b_1, \ldots, b_n) \in \{0, 1\}^n$ genau eine Zeile enthält, deren erste n Einträge b_1, \ldots, b_n sind.

Satz 2.30 (Funktionale Vollständigkeit der Aussagenlogik)

Zu jeder Wahrheitstafel gibt es eine Formel $\varphi \in AL$ mit dieser Wahrheitstafel.

Mathematisch präzise lässt sich dieser Satzes wie folgt formulieren:

Für alle $n \in \mathbb{N}$ gibt es zu jeder Funktion $F : \{0,1\}^n \to \{0,1\}$ eine Formel $\varphi(A_1,\ldots,A_n) \in \mathsf{AL}$, so dass für alle $(b_1,\ldots,b_n) \in \{0,1\}^n$ gilt:

$$F(b_1,\ldots,b_n)=1 \iff \varphi[b_1,\ldots,b_n]=1.$$

Im Folgenden bezeichnen wir als Wahrheitstafel eine Tabelle mit n+1 Spalten und 2^n Zeilen, die für jedes Tupel $(b_1, \ldots, b_n) \in \{0, 1\}^n$ genau eine Zeile enthält, deren erste n Einträge b_1, \ldots, b_n sind.

Satz 2.30 (Funktionale Vollständigkeit der Aussagenlogik)

Zu jeder Wahrheitstafel gibt es eine Formel $\varphi \in AL$ mit dieser Wahrheitstafel.

Mathematisch präzise lässt sich dieser Satzes wie folgt formulieren:

Für alle $n \in \mathbb{N}$ gibt es zu jeder Funktion $F : \{0,1\}^n \to \{0,1\}$ eine Formel $\varphi(A_1,\ldots,A_n)\in AL$, so dass für alle $(b_1,\ldots,b_n)\in \{0,1\}^n$ gilt:

$$F(b_1,\ldots,b_n)=1 \iff \varphi[b_1,\ldots,b_n]=1.$$

Definition 2.31

Funktionen $F: \{0,1\}^n \to \{0,1\}$ (mit $n \in \mathbb{N}$) nennt man Boolesche Funktionen (der Stelligkeit n).

HU Berlin Einführung in die formale Logik für IMP

Im Folgenden bezeichnen wir als Wahrheitstafel eine Tabelle mit n+1 Spalten und 2^n Zeilen, die für jedes Tupel $(b_1, \ldots, b_n) \in \{0, 1\}^n$ genau eine Zeile enthält, deren erste n Einträge b_1, \ldots, b_n sind.

Satz 2.30 (Funktionale Vollständigkeit der Aussagenlogik)

Zu jeder Wahrheitstafel gibt es eine Formel $\varphi \in AL$ mit dieser Wahrheitstafel.

Mathematisch präzise lässt sich dieser Satzes wie folgt formulieren:

Für alle $n \in \mathbb{N}$ gibt es zu jeder Funktion $F : \{0,1\}^n \to \{0,1\}$ eine Formel $\varphi(A_1,\ldots,A_n) \in \mathsf{AL}$, so dass für alle $(b_1,\ldots,b_n) \in \{0,1\}^n$ gilt:

$$F(b_1,\ldots,b_n)=1 \iff \varphi[b_1,\ldots,b_n]=1.$$

Definition 2.31

Funktionen $F: \{0,1\}^n \to \{0,1\}$ (mit $n \in \mathbb{N}$) nennt man Boolesche Funktionen (der Stelligkeit n).

Bevor wir Satz 2.30 beweisen, betrachten wir zunächst ein Beispiel.

Betrachte die Wahrheitstafel T:

b_1	b_2	b_3	$F(b_1,b_2,b_3)$
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Eine Formel $\varphi(A_1,A_2,A_3)$, so dass T die Wahrheitstafel für φ ist, kann man folgendermaßen erzeugen:

Betrachte die Wahrheitstafel T:

b_1	b_2	b_3	$F(b_1,b_2,b_3)$
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Eine Formel $\varphi(A_1, A_2, A_3)$, so dass T die Wahrheitstafel für φ ist, kann man folgendermaßen erzeugen:

• Betrachte alle Zeilen von T, bei denen in der letzten Spalte eine "1" steht.

Betrachte die Wahrheitstafel T:

b_1	b_2	b_3	$F(b_1,b_2,b_3)$
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Eine Formel $\varphi(A_1, A_2, A_3)$, so dass T die Wahrheitstafel für φ ist, kann man folgendermaßen erzeugen:

- Betrachte alle Zeilen von T, bei denen in der letzten Spalte eine "1" steht.
- Für jede solche Zeile konstruiere eine Formel, die genau von der zu der Zeile gehörenden Belegung von b_1, b_2, b_3 erfüllt wird.

Betrachte die Wahrheitstafel T:

b_1	b_2	b_3	$F(b_1,b_2,b_3)$
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Eine Formel $\varphi(A_1, A_2, A_3)$, so dass T die Wahrheitstafel für φ ist, kann man folgendermaßen erzeugen:

- Betrachte alle Zeilen von T, bei denen in der letzten Spalte eine "1" steht.
- Für jede solche Zeile konstruiere eine Formel, die genau von der zu der Zeile gehörenden Belegung von b₁, b₂, b₃ erfüllt wird.
- Bilde die Disjunktion (d.h. die "Veroderung") über all diese Formeln. Dies liefert die gesuchte Formel φ .

In unserer Beispiel-Wahrheitstafel \mathcal{T} gibt es genau 3 Zeilen, bei denen in der letzten Spalte eine "1" steht, nämlich die Zeilen

b_1	b_2	b_3	$\mid F(b_1,b_2,b_3)$
0	0	0	1
0	0	1	1
:	:	:	:
1	0	1	1
:	÷	:	:

zur jeweiligen Zeile gehörende Formel:

In unserer Beispiel-Wahrheitstafel $\mathcal T$ gibt es genau 3 Zeilen, bei denen in der letzten Spalte eine "1" steht, nämlich die Zeilen

b_1	b_2	b_3	$ F(b_1,b_2,b_3)$
0	0	0	1
0	0	1	1
:	:	:	:
1	0	1	1
:	:	:	:

zur jeweiligen Zeile gehörende Formel:

(
$$\neg A_1 \wedge \neg A_2 \wedge \neg A_3$$
)

In unserer Beispiel-Wahrheitstafel $\mathcal T$ gibt es genau 3 Zeilen, bei denen in der letzten Spalte eine "1" steht, nämlich die Zeilen

b_1	b_2	b_3	$ F(b_1,b_2,b_3)$
0	0	0	1
0	0	1	1
:	:	:	:
1	0	1	1
:	÷	:	:

zur jeweiligen Zeile gehörende Formel:

$$\left(\begin{array}{c} \neg A_1 \wedge \neg A_2 \wedge \neg A_3 \end{array} \right)$$

$$\left(\begin{array}{c} \neg A_1 \wedge \neg A_2 \wedge A_3 \end{array} \right)$$

In unserer Beispiel-Wahrheitstafel T gibt es genau 3 Zeilen, bei denen in der letzten Spalte eine "1" steht, nämlich die Zeilen

b_1	b_2	b_3	$\mid F(b_1,b_2,b_3)$	zur jeweiligen Zeile gehörende Formel:
0	0	0	1	$(\ eg A_1 \wedge eg A_2 \wedge eg A_3 \)$
0	0	1	1	$(\neg A_1 \wedge \neg A_2 \wedge A_3)$
:	:	:	:	
1	0	1	1	($A_1 \wedge eg A_2 \wedge A_3$)
:	:	:	:	
•	•	•		

In unserer Beispiel-Wahrheitstafel $\mathcal T$ gibt es genau 3 Zeilen, bei denen in der letzten Spalte eine "1" steht, nämlich die Zeilen

b_1	b_2	b_3	$\mid F(b_1,b_2,b_3)$	zur jeweiligen Zeile gehörende Formel:
0	0	0	1	$(\ eg A_1 \wedge eg A_2 \wedge eg A_3 \)$
0	0	1	1	$(\ \neg A_1 \wedge \neg A_2 \wedge A_3\)$
:	:	:	:	
1	0	1	1	($A_1 \wedge eg A_2 \wedge A_3$)
:	:	:	:	

Insgesamt erhalten wir dadurch die zur Wahrheitstafel $\,\mathcal{T}\,$ passende Formel

In unserer Beispiel-Wahrheitstafel $\mathcal T$ gibt es genau 3 Zeilen, bei denen in der letzten Spalte eine "1" steht, nämlich die Zeilen

Insgesamt erhalten wir dadurch die zur Wahrheitstafel ${\mathcal T}$ passende Formel

$$\varphi = (\neg A_1 \wedge \neg A_2 \wedge \neg A_3) \vee (\neg A_1 \wedge \neg A_2 \wedge A_3) \vee (A_1 \wedge \neg A_2 \wedge A_3).$$

Satz 2.30 besagt, dass die Aussagenlogik AL die größtmögliche Ausdrucksstärke hat. Dafür reichen allerdings schon "kleinere" Logiken, wie wir im Folgenden sehen werden.

Satz 2.30 besagt, dass die Aussagenlogik AL die größtmögliche Ausdrucksstärke hat. Dafür reichen allerdings schon "kleinere" Logiken, wie wir im Folgenden sehen werden.

Definition 2.33

Sei
$$\tau \subseteq \{\mathbf{0}, \mathbf{1}, \neg, \wedge, \vee, \rightarrow\}$$
.

Satz 2.30 besagt, dass die Aussagenlogik AL die größtmögliche Ausdrucksstärke hat. Dafür reichen allerdings schon "kleinere" Logiken, wie wir im Folgenden sehen werden.

Definition 2.33

Sei $\tau \subseteq \{\mathbf{0}, \mathbf{1}, \neg, \wedge, \vee, \rightarrow\}$.

(a) $AL(\tau)$ sei das Fragment der Logik AL, das aus den Formeln besteht, in denen nur Junktoren und Konstanten aus τ vorkommen.

Satz 2.30 besagt, dass die Aussagenlogik AL die größtmögliche Ausdrucksstärke hat. Dafür reichen allerdings schon "kleinere" Logiken, wie wir im Folgenden sehen werden.

Definition 2.33

Sei $\tau \subseteq \{\mathbf{0}, \mathbf{1}, \neg, \wedge, \vee, \rightarrow\}$.

- (a) $AL(\tau)$ sei das Fragment der Logik AL, das aus den Formeln besteht, in denen nur Junktoren und Konstanten aus τ vorkommen.
- (b) au heißt adäquat, wenn jede Formel $\varphi\in AL$ äquivalent zu einer Formel in $AL(\tau)$ ist.

Satz 2.30 besagt, dass die Aussagenlogik AL die größtmögliche Ausdrucksstärke hat. Dafür reichen allerdings schon "kleinere" Logiken, wie wir im Folgenden sehen werden.

Definition 2.33

Sei $\tau \subseteq \{\mathbf{0}, \mathbf{1}, \neg, \wedge, \vee, \rightarrow\}$.

- (a) $AL(\tau)$ sei das Fragment der Logik AL, das aus den Formeln besteht, in denen nur Junktoren und Konstanten aus τ vorkommen.
- (b) au heißt adäquat, wenn jede Formel $\varphi\in AL$ äquivalent zu einer Formel in $AL(\tau)$ ist.

Beispiele 2.34

(a) $\{\neg, \land\}$, $\{\neg, \lor\}$, $\{\mathbf{0}, \rightarrow\}$ sind adäquat.

Satz 2.30 besagt, dass die Aussagenlogik AL die größtmögliche Ausdrucksstärke hat. Dafür reichen allerdings schon "kleinere" Logiken, wie wir im Folgenden sehen werden.

Definition 2.33

Sei $\tau \subseteq \{\mathbf{0}, \mathbf{1}, \neg, \wedge, \vee, \rightarrow\}$.

- (a) $AL(\tau)$ sei das Fragment der Logik AL, das aus den Formeln besteht, in denen nur Junktoren und Konstanten aus τ vorkommen.
- (b) au heißt adäquat, wenn jede Formel $\varphi\in AL$ äquivalent zu einer Formel in $AL(\tau)$ ist.

Beispiele 2.34

- (a) $\{\neg, \land\}$, $\{\neg, \lor\}$, $\{\mathbf{0}, \rightarrow\}$ sind adäquat.
- (b) $\{\land, \lor, \rightarrow\}$ ist nicht adäquat.

HU Berlin

 Die Auswahl der Junktoren ¬, ∧, ∨, → (und ↔ als Abkürzung) für "unsere" aussagenlogische Sprache richtet sich nach dem umgangssprachlichen Gebrauch und den Erfordernissen des formalen Schließens, ist aber in gewisser Weise willkürlich.

- Die Auswahl der Junktoren ¬, ∧, ∨, → (und ↔ als Abkürzung) für "unsere" aussagenlogische Sprache richtet sich nach dem umgangssprachlichen Gebrauch und den Erfordernissen des formalen Schließens, ist aber in gewisser Weise willkürlich.
- Durch Festlegung ihrer Wahrheitstafeln können wir auch andere Junktoren definieren und erhalten daraus andere aussagenlogische Sprachen.

- Die Auswahl der Junktoren ¬, ∧, ∨, → (und ↔ als Abkürzung) für "unsere" aussagenlogische Sprache richtet sich nach dem umgangssprachlichen Gebrauch und den Erfordernissen des formalen Schließens, ist aber in gewisser Weise willkürlich.
- Durch Festlegung ihrer Wahrheitstafeln können wir auch andere Junktoren definieren und erhalten daraus andere aussagenlogische Sprachen.
- Für jede Menge τ von so definierten Junktoren und den boolschen Konstanten (die wir als "nullstellige" Junktoren auffassen können) sei $AL(\tau)$ die daraus gebildete aussagenlogische Sprache.

- Die Auswahl der Junktoren ¬, ∧, ∨, → (und ↔ als Abkürzung) für "unsere" aussagenlogische Sprache richtet sich nach dem umgangssprachlichen Gebrauch und den Erfordernissen des formalen Schließens, ist aber in gewisser Weise willkürlich.
- Durch Festlegung ihrer Wahrheitstafeln können wir auch andere Junktoren definieren und erhalten daraus andere aussagenlogische Sprachen.
- Für jede Menge τ von so definierten Junktoren und den boolschen Konstanten (die wir als "nullstellige" Junktoren auffassen können) sei $AL(\tau)$ die daraus gebildete aussagenlogische Sprache.
- Satz 2.30 besagt dann, dass jede Formel in $AL(\tau)$ zu einer Formel in AL äquivalent ist. Gilt die Umkehrung ebenfalls, so bezeichnen wir τ als adäquat.

Beispiele 1: Exklusives Oder

Der 2-stellige Junktor ⊕ sei definiert durch

φ	ψ	$(\varphi \oplus \psi)$
0	0	0
0	1	1
1	0	1
1	1	0

Intuitiv bedeutet $(\varphi \oplus \psi)$ "entweder φ oder ψ ". Man nennt \oplus auch exklusives Oder.

Der dreistellige Mehrheitsjunktor

Der 3-stellige Junktor *M* sei definiert durch

φ	ψ	χ	$M(\varphi,\psi,\chi)$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Intuitiv ist $M(\varphi, \psi, \chi)$ also genau dann wahr, wenn mindestens zwei (also die Mehrheit) der Formeln φ, ψ, χ wahr sind.

NAND

Der folgende zweistellige Junktor ist bekannt als NAND-Gatter (\underline{n} ot- \underline{a} nd) oder Sheffer-Strich:

φ	ψ	$ (\varphi \psi)$
0	0	1
0	1	1
1	0	1
1	1	0

Satz 2.35

 $\{ \mid \}$ ist adäquat.

Abschnitt 2.4:

Normalformen

Vereinfachende Annahme

In diesem Abschnitt betrachten wir nur Formeln in $AL(\{\neg, \lor, \land\})$.

Rechtfertigung

Die Annahme bedeutet keine wesentliche Einschränkung, weil die Menge $\{\neg,\vee,\wedge\}$ adäquat ist.

NNF

Definition 2.36

Eine Formel ist in Negationsnormalform (NNF), wenn sie zu $AL(\{\neg, \land, \lor\})$ gehört und Negationszeichen nur unmittelbar vor Aussagensymbolen auftreten.

NNF

Definition 2.36

Eine Formel ist in Negationsnormalform (NNF), wenn sie zu $AL(\{\neg, \land, \lor\})$ gehört und Negationszeichen nur unmittelbar vor Aussagensymbolen auftreten.

Satz 2.37

Jede aussagenlogische Formel ist äquivalent zu einer Formel in NNF.

Ein NNF-Algorithmus

Eingabe: Formel $\varphi \in AL(\{\neg, \land, \lor\})$.

Ausgabe: Formel φ' in NNF

Ein NNF-Algorithmus

Eingabe: Formel $\varphi \in AL(\{\neg, \land, \lor\})$.

Ausgabe: Formel φ' in NNF

Verfahren:

- 1. Wiederhole folgende Schritte:
- 2. Wenn φ in NNF ist, dann halte mit Ausgabe φ .
- 3. Ersetze eine Subformel von φ der Gestalt $\neg(\psi_1 \wedge \psi_2) \text{ durch } (\neg \psi_1 \vee \neg \psi_2)$ oder eine Subformel der Gestalt $\neg(\psi_1 \vee \psi_2) \text{ durch } (\neg \psi_1 \wedge \neg \psi_2)$ oder eine Subformel der Gestalt $\neg\neg\psi \text{ durch } \psi.$ Sei φ' die resultierende Formel.
- 4. $\varphi := \varphi'$.

Korrektheit des NNF-Algorithmus

Satz 2.38

Für jede Eingabeformel $\varphi \in AL(\{\neg, \land, \lor\})$ gibt der NNF-Algorithmus nach endlich vielen Schritten eine zu φ äquivalente Formel φ' in NNF aus. (hier ohne Beweis)

Korrektheit des NNF-Algorithmus

Satz 2.38

Für jede Eingabeformel $\varphi \in AL(\{\neg, \land, \lor\})$ gibt der NNF-Algorithmus nach endlich vielen Schritten eine zu φ äquivalente Formel φ' in NNF aus. (hier ohne Beweis)

Bemerkung

Unter Verwendung geeigneter Datenstrukturen lässt sich der NNF-Algorithmus mit linearer Laufzeit implementieren, d.h., Laufzeit O(n) bei Eingabe einer Formel der Länge n.

Das Ziel ist, die Formel $\left(\left(\neg A_0 \land \neg \left((A_0 \lor A_1) \to A_0\right)\right) \to \mathbf{0}\right)$

in NNF zu bringen, d.h. eine zu ihr äquivalente Formel in NNF zu finden.

Das Ziel ist, die Formel $\left(\left(\neg A_0 \land \neg \left((A_0 \lor A_1) \to A_0\right)\right) \to \mathbf{0}\right)$

in NNF zu bringen, d.h. eine zu ihr äquivalente Formel in NNF zu finden.

$$\left(\left(\neg A_0 \land \neg \big((A_0 \lor A_1) \to A_0\big)\right) \to \underline{\mathbf{0}}\right)$$

Das Ziel ist, die Formel $\left(\left(\neg A_0 \land \neg \left((A_0 \lor A_1) \to A_0\right)\right) \to \mathbf{0}\right)$

in NNF zu bringen, d.h. eine zu ihr äquivalente Formel in NNF zu finden.

$$\begin{split} &\left(\left(\neg A_0 \wedge \neg \left((A_0 \vee A_1) \to A_0\right)\right) \to \underline{\mathbf{0}}\right) \\ &\equiv &\left(\left(\neg A_0 \wedge \neg \left((A_0 \vee A_1) \to A_0\right)\right) \xrightarrow{} \left(A_0 \wedge \neg A_0\right)\right) \end{split}$$

Das Ziel ist, die Formel $\left(\left(\neg A_0 \land \neg \left((A_0 \lor A_1) \to A_0\right)\right) \to \mathbf{0}\right)$

in NNF zu bringen, d.h. eine zu ihr äquivalente Formel in NNF zu finden.

$$\begin{split} &\left(\left(\neg A_0 \wedge \neg \left((A_0 \vee A_1) \to A_0\right)\right) \to \underline{\mathbf{0}}\right) \\ \equiv &\left(\left(\neg A_0 \wedge \neg \left((A_0 \vee A_1) \to A_0\right)\right) \xrightarrow{} \left(A_0 \wedge \neg A_0\right)\right) \\ \equiv &\left(\neg \left(\neg A_0 \wedge \neg \left((A_0 \vee A_1) \xrightarrow{} A_0\right)\right) \vee \left(A_0 \wedge \neg A_0\right)\right) \end{split}$$

Das Ziel ist, die Formel $\left(\left(\neg A_0 \land \neg \left((A_0 \lor A_1) \to A_0\right)\right) \to \mathbf{0}\right)$

in NNF zu bringen, d.h. eine zu ihr äquivalente Formel in NNF zu finden.

$$\begin{split} &\left(\left(\neg A_0 \wedge \neg \left((A_0 \vee A_1) \to A_0\right)\right) \to \underline{\mathbf{0}}\right) \\ \equiv &\left(\left(\neg A_0 \wedge \neg \left((A_0 \vee A_1) \to A_0\right)\right) \xrightarrow{} \left(A_0 \wedge \neg A_0\right)\right) \\ \equiv &\left(\neg \left(\neg A_0 \wedge \neg \left((A_0 \vee A_1) \xrightarrow{} A_0\right)\right) \vee \left(A_0 \wedge \neg A_0\right)\right) \\ \equiv &\left(\neg \left(\neg A_0 \wedge \neg \left(\neg \left(A_0 \vee A_1\right) \vee A_0\right)\right) \vee \left(A_0 \wedge \neg A_0\right)\right) \end{split}$$

Das Ziel ist, die Formel $\left(\left(\neg A_0 \land \neg \left((A_0 \lor A_1) \to A_0\right)\right) \to \mathbf{0}\right)$

in NNF zu bringen, d.h. eine zu ihr äquivalente Formel in NNF zu finden.

Das Ziel ist, die Formel $\left(\left(\neg A_0 \land \neg \left((A_0 \lor A_1) \to A_0\right)\right) \to \mathbf{0}\right)$

in NNF zu bringen, d.h. eine zu ihr äquivalente Formel in NNF zu finden.

Das Ziel ist, die Formel $\left(\left(\neg A_0 \land \neg \left((A_0 \lor A_1) \to A_0\right)\right) \to \mathbf{0}\right)$

in NNF zu bringen, d.h. eine zu ihr äquivalente Formel in NNF zu finden.

Lösung: Wir ersetzen zunächst die Konstanten $\mathbf{0}$ und $\mathbf{1}$ sowie alle Implikationspfeile durch geeignete Formeln aus $AL(\{\neg, \land, \lor\})$ und wenden dann den NNF-Algorithmus an. Der Teil einer Formel, der als Nächstes ersetzt wird, ist im Folgenden jeweils unterstrichen.

Diese Formel ist offensichtlicherweise in NNF.

Klammern bei Konjunktionen und Disjunktionen

Weil \land assoziativ ist, können wir Formeln der Gestalt $\bigwedge_{i=1}^n \varphi_i$ etwas großzügiger interpretieren. Von nun an stehe $\bigwedge_{i=1}^n \varphi_i$ für $\varphi_1 \land \cdots \land \varphi_n$ mit irgendeiner Klammerung.

Entsprechend verfahren wir mit Disjunktionen.

HU Berlin

Klammern bei Konjunktionen und Disjunktionen

Weil \land assoziativ ist, können wir Formeln der Gestalt $\bigwedge_{i=1}^n \varphi_i$ etwas großzügiger interpretieren. Von nun an stehe $\bigwedge_{i=1}^n \varphi_i$ für $\varphi_1 \land \cdots \land \varphi_n$ mit irgendeiner Klammerung.

Entsprechend verfahren wir mit Disjunktionen.

Beispiel

Die Formel $\bigwedge_{i=1}^4 \varphi_i$ kann für jede der folgenden Formeln stehen:

$$(((\varphi_1 \wedge \varphi_2) \wedge \varphi_3) \wedge \varphi_4),$$

$$((\varphi_1 \wedge (\varphi_2 \wedge \varphi_3)) \wedge \varphi_4),$$

$$((\varphi_1 \wedge \varphi_2) \wedge (\varphi_3 \wedge \varphi_4)),$$

$$(\varphi_1 \wedge ((\varphi_2 \wedge \varphi_3) \wedge \varphi_4)),$$

$$(\varphi_1 \wedge (\varphi_2 \wedge (\varphi_3 \wedge \varphi_4))).$$

HU Berlin

Definition 2.40

(a) Ein Literal ist eine Formel der Gestalt X oder $\neg X$, wobei $X \in AS$.

Definition 2.40

(a) Ein Literal ist eine Formel der Gestalt X oder $\neg X$, wobei $X \in \mathsf{AS}$. Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem negativen Literal.

Definition 2.40

- (a) Ein Literal ist eine Formel der Gestalt X oder ¬X, wobei X ∈ AS. Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem negativen Literal.
- (b) Eine Formel ist in disjunktiver Normalform (DNF), wenn sie eine Disjunktion von Konjunktionen von Literalen ist, d.h., wenn sie die Form

$$\bigvee_{i=1}^{n} \Big(\bigwedge_{j=1}^{m_i} \lambda_{i,j}\Big)$$

hat, wobei $n, m_1, \ldots, m_n \geqslant 1$ sind und die $\lambda_{i,j}$ für alle $i \in [n]$ und $j \in [m_i]$ Literale sind.

HU Berlin

Definition 2.40

- (a) Ein Literal ist eine Formel der Gestalt X oder ¬X, wobei X ∈ AS. Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem negativen Literal.
- (b) Eine Formel ist in disjunktiver Normalform (DNF), wenn sie eine Disjunktion von Konjunktionen von Literalen ist, d.h., wenn sie die Form

$$\bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{m_i} \lambda_{i,j} \right)$$

hat, wobei $n, m_1, \ldots, m_n \geqslant 1$ sind und die $\lambda_{i,j}$ für alle $i \in [n]$ und $j \in [m_i]$ Literale sind. Die Subformeln $\kappa_i := \bigwedge_{j=1}^{m_i} \lambda_{i,j}$, für $i \in [n]$, nennen wir die (konjunktiven) Klauseln der Formel.

Definition 2.40

- (a) Ein Literal ist eine Formel der Gestalt X oder ¬X, wobei X ∈ AS. Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem negativen Literal.
- (b) Eine Formel ist in disjunktiver Normalform (DNF), wenn sie eine Disjunktion von Konjunktionen von Literalen ist, d.h., wenn sie die Form

$$\bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{m_i} \lambda_{i,j} \right)$$

hat, wobei $n, m_1, \ldots, m_n \geqslant 1$ sind und die $\lambda_{i,j}$ für alle $i \in [n]$ und $j \in [m_i]$ Literale sind. Die Subformeln $\kappa_i := \bigwedge_{j=1}^{m_i} \lambda_{i,j}$, für $i \in [n]$, nennen wir die (konjunktiven) Klauseln der Formel.

Beispiele:

• $(A_1 \wedge \neg A_2 \wedge A_3) \vee (\neg A_2 \wedge \neg A_3) \vee (A_2 \wedge A_1)$

Definition 2.40

- (a) Ein Literal ist eine Formel der Gestalt X oder ¬X, wobei X ∈ AS. Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem negativen Literal.
- (b) Eine Formel ist in disjunktiver Normalform (DNF), wenn sie eine Disjunktion von Konjunktionen von Literalen ist, d.h., wenn sie die Form

$$\bigvee_{i=1}^{n} \Big(\bigwedge_{j=1}^{m_i} \lambda_{i,j}\Big)$$

hat, wobei $n, m_1, \ldots, m_n \geqslant 1$ sind und die $\lambda_{i,j}$ für alle $i \in [n]$ und $j \in [m_i]$ Literale sind. Die Subformeln $\kappa_i := \bigwedge_{j=1}^{m_i} \lambda_{i,j}$, für $i \in [n]$, nennen wir die (konjunktiven) Klauseln der Formel.

Beispiele:

• $(A_1 \wedge \neg A_2 \wedge A_3) \vee (\neg A_2 \wedge \neg A_3) \vee (A_2 \wedge A_1)$ ist in DNF

Definition 2.40

- (a) Ein Literal ist eine Formel der Gestalt X oder ¬X, wobei X ∈ AS. Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem negativen Literal.
- (b) Eine Formel ist in disjunktiver Normalform (DNF), wenn sie eine Disjunktion von Konjunktionen von Literalen ist, d.h., wenn sie die Form

$$\bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{m_i} \lambda_{i,j} \right)$$

hat, wobei $n, m_1, \ldots, m_n \geqslant 1$ sind und die $\lambda_{i,j}$ für alle $i \in [n]$ und $j \in [m_i]$ Literale sind. Die Subformeln $\kappa_i := \bigwedge_{j=1}^{m_i} \lambda_{i,j}$, für $i \in [n]$, nennen wir die (konjunktiven) Klauseln der Formel.

Beispiele:

- $(A_1 \wedge \neg A_2 \wedge A_3) \vee (\neg A_2 \wedge \neg A_3) \vee (A_2 \wedge A_1)$ ist in DNF
- $A_1 \vee \neg A_2 \vee A_3$

Definition 2.40

- (a) Ein Literal ist eine Formel der Gestalt X oder ¬X, wobei X ∈ AS. Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem negativen Literal.
- (b) Eine Formel ist in disjunktiver Normalform (DNF), wenn sie eine Disjunktion von Konjunktionen von Literalen ist, d.h., wenn sie die Form

$$\bigvee_{i=1}^{n} \Big(\bigwedge_{j=1}^{m_i} \lambda_{i,j}\Big)$$

hat, wobei $n, m_1, \ldots, m_n \geqslant 1$ sind und die $\lambda_{i,j}$ für alle $i \in [n]$ und $j \in [m_i]$ Literale sind. Die Subformeln $\kappa_i := \bigwedge_{j=1}^{m_i} \lambda_{i,j}$, für $i \in [n]$, nennen wir die (konjunktiven) Klauseln der Formel.

Beispiele:

- $(A_1 \wedge \neg A_2 \wedge A_3) \vee (\neg A_2 \wedge \neg A_3) \vee (A_2 \wedge A_1)$ ist in DNF
- $A_1 \vee \neg A_2 \vee A_3$ ist in DNF (mit n = 3 und $m_1 = m_2 = m_3 = 1$)

HU Berlin

Definition 2.40

- (a) Ein Literal ist eine Formel der Gestalt X oder ¬X, wobei X ∈ AS. Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem negativen Literal.
- (b) Eine Formel ist in disjunktiver Normalform (DNF), wenn sie eine Disjunktion von Konjunktionen von Literalen ist, d.h., wenn sie die Form

$$\bigvee_{i=1}^{n} \Big(\bigwedge_{j=1}^{m_i} \lambda_{i,j}\Big)$$

hat, wobei $n, m_1, \ldots, m_n \geqslant 1$ sind und die $\lambda_{i,j}$ für alle $i \in [n]$ und $j \in [m_i]$ Literale sind. Die Subformeln $\kappa_i := \bigwedge_{j=1}^{m_i} \lambda_{i,j}$, für $i \in [n]$, nennen wir die (konjunktiven) Klauseln der Formel.

Beispiele:

- $(A_1 \wedge \neg A_2 \wedge A_3) \vee (\neg A_2 \wedge \neg A_3) \vee (A_2 \wedge A_1)$ ist in DNF
- $A_1 \vee \neg A_2 \vee A_3$ ist in DNF (mit n = 3 und $m_1 = m_2 = m_3 = 1$)
- $A_1 \wedge \neg A_2 \wedge A_3$

Definition 2.40

- (a) Ein Literal ist eine Formel der Gestalt X oder ¬X, wobei X ∈ AS. Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem negativen Literal.
- (b) Eine Formel ist in disjunktiver Normalform (DNF), wenn sie eine Disjunktion von Konjunktionen von Literalen ist, d.h., wenn sie die Form

$$\bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{m_i} \lambda_{i,j} \right)$$

hat, wobei $n, m_1, \ldots, m_n \geqslant 1$ sind und die $\lambda_{i,j}$ für alle $i \in [n]$ und $j \in [m_i]$ Literale sind. Die Subformeln $\kappa_i := \bigwedge_{j=1}^{m_i} \lambda_{i,j}$, für $i \in [n]$, nennen wir die (konjunktiven) Klauseln der Formel.

Beispiele:

- $(A_1 \wedge \neg A_2 \wedge A_3) \vee (\neg A_2 \wedge \neg A_3) \vee (A_2 \wedge A_1)$ ist in DNF
- $A_1 \vee \neg A_2 \vee A_3$ ist in DNF (mit n = 3 und $m_1 = m_2 = m_3 = 1$)
- $A_1 \wedge \neg A_2 \wedge A_3$ ist in DNF (mit n = 1 und $m_1 = 3$)

HU Berlin

Definition 2.40

- (a) Ein Literal ist eine Formel der Gestalt X oder ¬X, wobei X ∈ AS. Im ersten Fall sprechen wir von einem positiven, im zweiten Fall von einem negativen Literal.
- (b) Eine Formel ist in disjunktiver Normalform (DNF), wenn sie eine Disjunktion von Konjunktionen von Literalen ist, d.h., wenn sie die Form

$$\bigvee_{i=1}^{n} \Big(\bigwedge_{j=1}^{m_i} \lambda_{i,j}\Big)$$

hat, wobei $n, m_1, \ldots, m_n \geqslant 1$ sind und die $\lambda_{i,j}$ für alle $i \in [n]$ und $j \in [m_i]$ Literale sind. Die Subformeln $\kappa_i := \bigwedge_{j=1}^{m_i} \lambda_{i,j}$, für $i \in [n]$, nennen wir die (konjunktiven) Klauseln der Formel.

Beispiele:

- $(A_1 \wedge \neg A_2 \wedge A_3) \vee (\neg A_2 \wedge \neg A_3) \vee (A_2 \wedge A_1)$ ist in DNF
- $A_1 \vee \neg A_2 \vee A_3$ ist in DNF (mit n = 3 und $m_1 = m_2 = m_3 = 1$)
- $A_1 \wedge \neg A_2 \wedge A_3$ ist in DNF (mit n = 1 und $m_1 = 3$) und gleichzeitig ist diese Formel eine konjunktive Klausel

$$\bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{m_i} \lambda_{i,j} \right)$$

hat, wobei $n, m_1, \ldots, m_n \geqslant 1$ sind und die $\lambda_{i,j}$ für alle $i \in [n]$ und $j \in [m_i]$ Literale sind.

$$\bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{m_i} \lambda_{i,j} \right)$$

hat, wobei $n, m_1, \ldots, m_n \geqslant 1$ sind und die $\lambda_{i,j}$ für alle $i \in [n]$ und $j \in [m_i]$ Literale sind. Die Subformeln $\kappa_i := \bigvee_{j=1}^{m_i} \lambda_{i,j}$, für $i \in [n]$, nennen wir die (disjunktiven) Klauseln der Formel.

$$\bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{m_i} \lambda_{i,j} \right)$$

hat, wobei $n, m_1, \ldots, m_n \geqslant 1$ sind und die $\lambda_{i,j}$ für alle $i \in [n]$ und $j \in [m_i]$ Literale sind. Die Subformeln $\kappa_i := \bigvee_{j=1}^{m_i} \lambda_{i,j}$, für $i \in [n]$, nennen wir die (disjunktiven) Klauseln der Formel.

Beispiele:

• $(A_1 \vee \neg A_2 \vee A_3) \wedge (\neg A_2 \vee \neg A_3) \wedge (A_2 \vee A_1)$

$$\bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{m_i} \lambda_{i,j} \right)$$

hat, wobei $n, m_1, \ldots, m_n \geqslant 1$ sind und die $\lambda_{i,j}$ für alle $i \in [n]$ und $j \in [m_i]$ Literale sind. Die Subformeln $\kappa_i := \bigvee_{j=1}^{m_i} \lambda_{i,j}$, für $i \in [n]$, nennen wir die (disjunktiven) Klauseln der Formel.

Beispiele:

• $(A_1 \vee \neg A_2 \vee A_3) \wedge (\neg A_2 \vee \neg A_3) \wedge (A_2 \vee A_1)$ ist in KNF

$$\bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{m_i} \lambda_{i,j} \right)$$

hat, wobei $n, m_1, \ldots, m_n \geqslant 1$ sind und die $\lambda_{i,j}$ für alle $i \in [n]$ und $j \in [m_i]$ Literale sind. Die Subformeln $\kappa_i := \bigvee_{j=1}^{m_i} \lambda_{i,j}$, für $i \in [n]$, nennen wir die (disjunktiven) Klauseln der Formel.

Beispiele:

- $(A_1 \vee \neg A_2 \vee A_3) \wedge (\neg A_2 \vee \neg A_3) \wedge (A_2 \vee A_1)$ ist in KNF
- $A_1 \vee \neg A_2 \vee A_3$

$$\bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{m_i} \lambda_{i,j} \right)$$

hat, wobei $n, m_1, \ldots, m_n \geqslant 1$ sind und die $\lambda_{i,j}$ für alle $i \in [n]$ und $j \in [m_i]$ Literale sind. Die Subformeln $\kappa_i := \bigvee_{j=1}^{m_i} \lambda_{i,j}$, für $i \in [n]$, nennen wir die (disjunktiven) Klauseln der Formel.

Beispiele:

- $(A_1 \vee \neg A_2 \vee A_3) \wedge (\neg A_2 \vee \neg A_3) \wedge (A_2 \vee A_1)$ ist in KNF
- $A_1 \vee \neg A_2 \vee A_3$ ist in KNF (mit n = 1 und $m_1 = 3$)

$$\bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{m_i} \lambda_{i,j} \right)$$

hat, wobei $n, m_1, \ldots, m_n \geqslant 1$ sind und die $\lambda_{i,j}$ für alle $i \in [n]$ und $j \in [m_i]$ Literale sind. Die Subformeln $\kappa_i := \bigvee_{j=1}^{m_i} \lambda_{i,j}$, für $i \in [n]$, nennen wir die (disjunktiven) Klauseln der Formel.

Beispiele:

- $(A_1 \vee \neg A_2 \vee A_3) \wedge (\neg A_2 \vee \neg A_3) \wedge (A_2 \vee A_1)$ ist in KNF
- $A_1 \lor \neg A_2 \lor A_3$ ist in KNF (mit n=1 und $m_1=3$) und gleichzeitig ist diese Formel eine disjunktive Klausel

HU Berlin

$$\bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{m_i} \lambda_{i,j} \right)$$

hat, wobei $n, m_1, \ldots, m_n \geqslant 1$ sind und die $\lambda_{i,j}$ für alle $i \in [n]$ und $j \in [m_i]$ Literale sind. Die Subformeln $\kappa_i := \bigvee_{j=1}^{m_i} \lambda_{i,j}$, für $i \in [n]$, nennen wir die (disjunktiven) Klauseln der Formel.

Beispiele:

- $(A_1 \vee \neg A_2 \vee A_3) \wedge (\neg A_2 \vee \neg A_3) \wedge (A_2 \vee A_1)$ ist in KNF
- $A_1 \lor \neg A_2 \lor A_3$ ist in KNF (mit n=1 und $m_1=3$) und gleichzeitig ist diese Formel eine disjunktive Klausel
- $A_1 \wedge \neg A_2 \wedge A_3$

$$\bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{m_i} \lambda_{i,j} \right)$$

hat, wobei $n, m_1, \ldots, m_n \geqslant 1$ sind und die $\lambda_{i,j}$ für alle $i \in [n]$ und $j \in [m_i]$ Literale sind. Die Subformeln $\kappa_i := \bigvee_{j=1}^{m_i} \lambda_{i,j}$, für $i \in [n]$, nennen wir die (disjunktiven) Klauseln der Formel.

Beispiele:

- $(A_1 \vee \neg A_2 \vee A_3) \wedge (\neg A_2 \vee \neg A_3) \wedge (A_2 \vee A_1)$ ist in KNF
- $A_1 \lor \neg A_2 \lor A_3$ ist in KNF (mit n = 1 und $m_1 = 3$) und gleichzeitig ist diese Formel eine disjunktive Klausel
- $A_1 \wedge \neg A_2 \wedge A_3$ ist in KNF (mit n=3 und $m_1=m_2=m_3=1$)

HU Berlin

Normalformen spielen in vielen Anwendungsgebieten eine wichtige Rolle. Beispielsweise geht man in der Schaltungstechnik (Hardware-Entwurf) oft von DNF-Formeln aus, während bei der aussagenlogischen Modellbildung oftmals KNF-Formeln auftreten, da sich eine Sammlung von einfach strukturierten Aussagen sehr gut durch eine Konjunktion von Klauseln ausdrücken lässt.

Satz 2.41

Jede aussagenlogische Formel ist äquivalent zu einer Formel in DNF und zu einer Formel in KNF.

Der Beweis von Satz 2.41 zeigt Folgendes: Um für eine gegebene Formel ψ eine äquivalente Formel φ in

DNF zu erzeugen, können wir

Der Beweis von Satz 2.41 zeigt Folgendes:

Um für eine gegebene Formel ψ eine äquivalente Formel φ in

 \bullet DNF zu erzeugen, können wir die Wahrheitstafel für ψ aufstellen und dann wie in Beispiel 2.32 vorgehen

Der Beweis von Satz 2.41 zeigt Folgendes:

Um für eine gegebene Formel ψ eine äquivalente Formel φ in

• DNF zu erzeugen, können wir die Wahrheitstafel für ψ aufstellen und dann wie in Beispiel 2.32 vorgehen (bzw. $\varphi:=A_1 \land \neg A_1$ setzen, falls ψ unerfüllbar ist).

Der Beweis von Satz 2.41 zeigt Folgendes:

- DNF zu erzeugen, können wir die Wahrheitstafel für ψ aufstellen und dann wie in Beispiel 2.32 vorgehen (bzw. $\varphi := A_1 \land \neg A_1$ setzen, falls ψ unerfüllbar ist).
- KNF zu erzeugen, können wir wie folgt vorgehen:
 - (1) Stelle die Wahrheitstafel für ψ auf.

Der Beweis von Satz 2.41 zeigt Folgendes:

- DNF zu erzeugen, können wir die Wahrheitstafel für ψ aufstellen und dann wie in Beispiel 2.32 vorgehen (bzw. $\varphi := A_1 \land \neg A_1$ setzen, falls ψ unerfüllbar ist).
- KNF zu erzeugen, können wir wie folgt vorgehen:
 - (1) Stelle die Wahrheitstafel für ψ auf.
 - (2) Falls in der letzten Spalte nur "1"en stehen,

Der Beweis von Satz 2.41 zeigt Folgendes:

- DNF zu erzeugen, können wir die Wahrheitstafel für ψ aufstellen und dann wie in Beispiel 2.32 vorgehen (bzw. $\varphi := A_1 \land \neg A_1$ setzen, falls ψ unerfüllbar ist).
- KNF zu erzeugen, können wir wie folgt vorgehen:
 - (1) Stelle die Wahrheitstafel für ψ auf.
 - (2) Falls in der letzten Spalte nur "1"en stehen, setze $\varphi := A_1 \vee \neg A_1$.
 - (3) Ansonsten gehe wie folgt vor:

Der Beweis von Satz 2.41 zeigt Folgendes:

- DNF zu erzeugen, können wir die Wahrheitstafel für ψ aufstellen und dann wie in Beispiel 2.32 vorgehen (bzw. $\varphi := A_1 \land \neg A_1$ setzen, falls ψ unerfüllbar ist).
- KNF zu erzeugen, können wir wie folgt vorgehen:
 - (1) Stelle die Wahrheitstafel für ψ auf.
 - (2) Falls in der letzten Spalte nur "1"en stehen, setze $\varphi := A_1 \vee \neg A_1$.
 - (3) Ansonsten gehe wie folgt vor:
 - Betrachte alle Zeilen der Wahrheitstafel, bei denen in der letzten Spalte eine "0" steht.

Der Beweis von Satz 2.41 zeigt Folgendes:

Um für eine gegebene Formel ψ eine äquivalente Formel φ in

- DNF zu erzeugen, können wir die Wahrheitstafel für ψ aufstellen und dann wie in Beispiel 2.32 vorgehen (bzw. $\varphi := A_1 \land \neg A_1$ setzen, falls ψ unerfüllbar ist).
- KNF zu erzeugen, können wir wie folgt vorgehen:
 - (1) Stelle die Wahrheitstafel für ψ auf.
 - (2) Falls in der letzten Spalte nur "1"en stehen, setze $\varphi := A_1 \vee \neg A_1$.
 - (3) Ansonsten gehe wie folgt vor:
 - Betrachte alle Zeilen der Wahrheitstafel, bei denen in der letzten Spalte eine "0" steht.
 - Für jede solche Zeile konstruiere die disjunktive Klausel, die von allen Interpretationen außer der zur Zeile gehörenden erfüllt wird.

Beispiel: Wenn die Zeile der Wahrheitstafel die Form

hat, so gehört dazu die disjunktive Klausel

$$A_1 \vee \neg A_2 \vee \neg A_3$$
.

HU Berlin

Der Beweis von Satz 2.41 zeigt Folgendes:

Um für eine gegebene Formel ψ eine äquivalente Formel φ in

- DNF zu erzeugen, können wir die Wahrheitstafel für ψ aufstellen und dann wie in Beispiel 2.32 vorgehen (bzw. $\varphi := A_1 \land \neg A_1$ setzen, falls ψ unerfüllbar ist).
- KNF zu erzeugen, können wir wie folgt vorgehen:
 - (1) Stelle die Wahrheitstafel für ψ auf.
 - (2) Falls in der letzten Spalte nur "1"en stehen, setze $\varphi := A_1 \vee \neg A_1$.
 - (3) Ansonsten gehe wie folgt vor:
 - Betrachte alle Zeilen der Wahrheitstafel, bei denen in der letzten Spalte eine "0" steht.
 - Für jede solche Zeile konstruiere die disjunktive Klausel, die von allen Interpretationen außer der zur Zeile gehörenden erfüllt wird.

Beispiel: Wenn die Zeile der Wahrheitstafel die Form

hat, so gehört dazu die disjunktive Klausel

$$A_1 \vee \neg A_2 \vee \neg A_3$$
.

Bilde die Konjunktion all dieser disjunktiven Klauseln.
 Dies liefert die gesuchte KNF-Formel φ.

HU Berlin

Wenn eine Formel sehr viele verschiedene Aussagensymbole enthält, die zur Formel gehörige Wahrheitstafel also sehr groß ist, ist das gerade beschriebene Verfahren zur Umformung in DNF oder KNF sehr zeitaufwändig.

Wenn eine Formel sehr viele verschiedene Aussagensymbole enthält, die zur Formel gehörige Wahrheitstafel also sehr groß ist, ist das gerade beschriebene Verfahren zur Umformung in DNF oder KNF sehr zeitaufwändig.

In solchen Fällen ist es ratsam, stattdessen zu versuchen, die gewünschte Normalform durch Äquivalenzumformungen zu erzeugen.

Beispiel 2.43

Sei
$$\varphi := \Big(\big(\neg A_0 \wedge (A_0 \to A_1) \big) \vee (A_2 \to A_3) \Big).$$

Transformation von φ in NNF: siehe Tafel

Transformation in DNF: siehe Tafel

Transformation in KNF: siehe Tafel

Beispiel 2.43

Sei
$$\varphi := \Big(\big(\neg A_0 \wedge (A_0 \to A_1) \big) \vee (A_2 \to A_3) \Big).$$

Transformation von φ in NNF: siehe Tafel

Transformation in DNF: siehe Tafel

Transformation in KNF: siehe Tafel

Je nach Formel muss man ggf. die Distributivitätsregel mehrmals anwenden, bis man eine Formel der gewünschten Normalform erhält.

Eingabe: Formel $\varphi \in AL(\{\neg, \land, \lor\})$ in NNF.

Ausgabe: Formel φ'' in DNF

Eingabe: Formel $\varphi \in AL(\{\neg, \land, \lor\})$ in NNF.

Ausgabe: Formel φ'' in DNF

- Verfahren: 1. Wiederhole folgende Schritte:
 - 2. Wenn φ in DNF ist, dann halte mit Ausgabe φ .
 - 3. Ersetze eine Subformel von φ der Gestalt $(\psi_1 \wedge (\psi_2 \vee \psi_3))$ durch $((\psi_1 \wedge \psi_2) \vee (\psi_1 \wedge \psi_3))$ oder eine Subformel der Gestalt $((\psi_1 \vee \psi_2) \wedge \psi_3)$ durch $((\psi_1 \wedge \psi_3) \vee (\psi_2 \wedge \psi_3))$. Sei φ' die resultierende Formel.
 - 4. $\varphi := \varphi'$.

Eingabe: Formel $\varphi \in AL(\{\neg, \land, \lor\})$ in NNF.

Ausgabe: Formel φ'' in DNF

Verfahren: 1. Wiederhole folgende Schritte:

- 2. Wenn φ in DNF ist, dann halte mit Ausgabe φ .
- 3. Ersetze eine Subformel von φ der Gestalt $(\psi_1 \wedge (\psi_2 \vee \psi_3))$ durch $((\psi_1 \wedge \psi_2) \vee (\psi_1 \wedge \psi_3))$ oder eine Subformel der Gestalt $((\psi_1 \vee \psi_2) \wedge \psi_3)$ durch $((\psi_1 \wedge \psi_3) \vee (\psi_2 \wedge \psi_3))$. Sei φ' die resultierende Formel.
- 4. $\varphi := \varphi'$.

Satz 2.44

Für jede Eingabeformel φ in NNF gibt der DNF-Algorithmus nach endlich vielen Schritten eine zu φ äquivalente Formel φ'' in DNF aus.

(hier ohne Beweis)

Eingabe: Formel $\varphi \in AL(\{\neg, \land, \lor\})$ in NNF.

Ausgabe: Formel φ'' in DNF

Verfahren: 1. Wiederhole folgende Schritte:

- 2. Wenn φ in DNF ist, dann halte mit Ausgabe φ .
- 3. Ersetze eine Subformel von φ der Gestalt $(\psi_1 \wedge (\psi_2 \vee \psi_3))$ durch $((\psi_1 \wedge \psi_2) \vee (\psi_1 \wedge \psi_3))$ oder eine Subformel der Gestalt $((\psi_1 \vee \psi_2) \wedge \psi_3)$ durch $((\psi_1 \wedge \psi_3) \vee (\psi_2 \wedge \psi_3))$. Sei φ' die resultierende Formel.
- 4. $\varphi := \varphi'$.

Satz 2.44

Für jede Eingabeformel φ in NNF gibt der DNF-Algorithmus nach endlich vielen Schritten eine zu φ äquivalente Formel φ'' in DNF aus.

(hier ohne Beweis)

Analog kann man auch einen "KNF-Algorithmus" angeben, der bei Eingabe einer NNF-Formel eine äquivalente Formel in KNF erzeugt (Details: Übung).

Eine kleine Formel mit großer DNF

Satz 2.45

Sei $n \in \mathbb{N}$ mit $n \geqslant 1$, seien X_1, \ldots, X_n und Y_1, \ldots, Y_n genau 2n verschiedene Aussagensymbole und sei

$$\varphi_n := \bigwedge_{i=1}^n (X_i \vee \neg Y_i).$$

Jede zu φ_n äquivalente Formel in DNF hat mindestens 2^n konjunktive Klauseln.

HU Berlin

Eine kleine Formel mit großer DNF

Satz 2.45

Sei $n \in \mathbb{N}$ mit $n \geqslant 1$, seien X_1, \ldots, X_n und Y_1, \ldots, Y_n genau 2n verschiedene Aussagensymbole und sei

$$\varphi_n := \bigwedge_{i=1}^n (X_i \vee \neg Y_i).$$

Jede zu φ_n äquivalente Formel in DNF hat mindestens 2^n konjunktive Klauseln.

Beweis: Übung

Eine kleine Formel mit großer DNF

Satz 2.45

Sei $n \in \mathbb{N}$ mit $n \geqslant 1$, seien X_1, \ldots, X_n und Y_1, \ldots, Y_n genau 2n verschiedene Aussagensymbole und sei

$$\varphi_n := \bigwedge_{i=1}^n (X_i \vee \neg Y_i).$$

Jede zu φ_n äquivalente Formel in DNF hat mindestens 2^n konjunktive Klauseln. Beweis: Übung

Korollar 2.46

<u>Jeder</u> Algorithmus, der bei Eingabe von beliebigen aussagenlogischen Formeln dazu äquivalente Formeln in DNF erzeugt, hat eine Laufzeit, die im worst-case exponentiell ist. Das heißt, es gibt eine Konstante c>0, sodass der Algorithmus bei Eingabe von bestimmten Formeln mit hinreichender Länge n mindestens 2^{cn} Rechenschritte benötigt.

Abschnitt 2.5:

Der Endlichkeitssatz

Der Endlichkeitssatz (auch bekannt als Kompaktheitssatz)

Um nachzuweisen, dass eine gegebene *unendliche* Formelmenge erfüllbar ist, ist der folgende Satz sehr nützlich.

Satz 2.47 (Der Endlichkeitssatz der Aussagenlogik)

- (a) Für jede Formelmenge $\Phi \subseteq AL$ gilt:
 - Φ ist erfüllbar \iff Jede <u>endliche</u> Teilmenge von Φ ist erfüllbar.

Der Endlichkeitssatz (auch bekannt als Kompaktheitssatz)

Um nachzuweisen, dass eine gegebene *unendliche* Formelmenge erfüllbar ist, ist der folgende Satz sehr nützlich.

Satz 2.47 (Der Endlichkeitssatz der Aussagenlogik)

- (a) Für jede Formelmenge Φ ⊆ AL gilt:
 Φ ist erfüllbar ⇔ Jede endliche Teilmenge von Φ ist erfüllbar.
- (b) Für alle $\Phi \subseteq AL$ und $\psi \in AL$ gilt: $\Phi \models \psi \iff Es$ gibt eine endliche Teilmenge Γ von Φ , so dass $\Gamma \models \psi$.

HU Berlin

Definition:

• Ein (ungerichteter) Graph G = (V, E) besteht aus einer nicht-leeren Menge V und einer Menge $E \subseteq \{\{x,y\}: x,y \in V, \ x \neq y\}$. Die Elemente in V werden Knoten und die Elemente in E werden (ungerichtete) Kanten genannt.

Definition:

• Ein (ungerichteter) Graph G = (V, E) besteht aus einer nicht-leeren Menge V und einer Menge $E \subseteq \big\{\{x,y\}: x,y \in V,\ x \neq y\big\}$. Die Elemente in V werden Knoten und die Elemente in E werden (ungerichtete) Kanten genannt. Zwei Knoten $x,y \in V$ heißen benachbart, wenn $\{x,y\} \in E$.

Definition:

- Ein (ungerichteter) Graph G = (V, E) besteht aus einer nicht-leeren Menge V und einer Menge $E \subseteq \{\{x,y\}: x,y \in V, \ x \neq y\}$. Die Elemente in V werden Knoten und die Elemente in E werden (ungerichtete) Kanten genannt. Zwei Knoten $x,y \in V$ heißen benachbart, wenn $\{x,y\} \in E$.
- Ein Subgraph eines Graphen G = (V, E) ist ein Graph H = (V', E') mit $V' \subseteq V$ und $E' \subseteq E$.

Definition:

- Ein (ungerichteter) Graph G = (V, E) besteht aus einer nicht-leeren Menge V und einer Menge $E \subseteq \big\{\{x,y\}: x,y \in V,\ x \neq y\big\}$. Die Elemente in V werden Knoten und die Elemente in E werden (ungerichtete) Kanten genannt. Zwei Knoten $x,y \in V$ heißen benachbart, wenn $\{x,y\} \in E$.
- Ein Subgraph eines Graphen G = (V, E) ist ein Graph H = (V', E') mit $V' \subseteq V$ und $E' \subseteq E$.
- Ein Graph G = (V, E) heißt endlich (bzw. unendlich), wenn seine Knotenmenge V endlich (bzw. unendlich) ist.

Definition:

- Ein (ungerichteter) Graph G = (V, E) besteht aus einer nicht-leeren Menge V und einer Menge $E \subseteq \big\{\{x,y\}: x,y \in V,\ x \neq y\big\}$. Die Elemente in V werden Knoten und die Elemente in E werden (ungerichtete) Kanten genannt. Zwei Knoten $x,y \in V$ heißen benachbart, wenn $\{x,y\} \in E$.
- Ein Subgraph eines Graphen G = (V, E) ist ein Graph H = (V', E') mit $V' \subseteq V$ und $E' \subseteq E$.
- Ein Graph G = (V, E) heißt endlich (bzw. unendlich), wenn seine Knotenmenge V endlich (bzw. unendlich) ist.

Definition 2.48

Sei $k \in \mathbb{N}$ mit $k \geqslant 1$.

Eine k-Färbung eines Graphen G = (V, E) ist eine Abbildung $f : V \to [k]$, so dass für alle Kanten $\{v, w\} \in E$ gilt: $f(v) \neq f(w)$.

Definition:

- Ein (ungerichteter) Graph G = (V, E) besteht aus einer nicht-leeren Menge V und einer Menge $E \subseteq \big\{\{x,y\}: x,y \in V,\ x \neq y\big\}$. Die Elemente in V werden Knoten und die Elemente in E werden (ungerichtete) Kanten genannt. Zwei Knoten $x,y \in V$ heißen benachbart, wenn $\{x,y\} \in E$.
- Ein Subgraph eines Graphen G = (V, E) ist ein Graph H = (V', E') mit $V' \subseteq V$ und $E' \subseteq E$.
- Ein Graph G = (V, E) heißt endlich (bzw. unendlich), wenn seine Knotenmenge V endlich (bzw. unendlich) ist.

Definition 2.48

Sei $k \in \mathbb{N}$ mit $k \geqslant 1$.

Eine k-Färbung eines Graphen G = (V, E) ist eine Abbildung $f : V \to [k]$, so dass für alle Kanten $\{v, w\} \in E$ gilt: $f(v) \neq f(w)$.

G heißt k-färbbar, falls es eine k-Färbung von G gibt.

Definition:

- Ein (ungerichteter) Graph G = (V, E) besteht aus einer nicht-leeren Menge V und einer Menge $E \subseteq \big\{\{x,y\}: x,y \in V,\ x \neq y\big\}$. Die Elemente in V werden Knoten und die Elemente in E werden (ungerichtete) Kanten genannt. Zwei Knoten $x,y \in V$ heißen benachbart, wenn $\{x,y\} \in E$.
- Ein Subgraph eines Graphen G = (V, E) ist ein Graph H = (V', E') mit $V' \subseteq V$ und $E' \subseteq E$.
- Ein Graph G = (V, E) heißt endlich (bzw. unendlich), wenn seine Knotenmenge V endlich (bzw. unendlich) ist.

Definition 2.48

Sei $k \in \mathbb{N}$ mit $k \geqslant 1$.

Eine k-Färbung eines Graphen G = (V, E) ist eine Abbildung $f : V \to [k]$, so dass für alle Kanten $\{v, w\} \in E$ gilt: $f(v) \neq f(w)$.

G heißt k-färbbar, falls es eine k-Färbung von G gibt.

Satz 2.49

Sei $k \in \mathbb{N}$ mit $k \geqslant 1$.

Ein unendlicher Graph G mit Knotenmenge $\mathbb N$ ist genau dann k-färbbar, wenn jeder endliche Subgraph von G k-färbbar ist.

Abschnitt 2.6:

Resolution

Beispiel 2.50

Wir wollen nachweisen, dass die KNF-Formel

$$\varphi := (\neg P \vee \neg R) \wedge (P \vee \neg R) \wedge (\neg Q \vee S) \wedge (Q \vee R \vee T) \wedge \neg T \wedge (\neg S \vee R)$$

unerfüllbar ist.

Beispiel 2.50

Wir wollen nachweisen, dass die KNF-Formel

$$\varphi := (\neg P \vee \neg R) \wedge (P \vee \neg R) \wedge (\neg Q \vee S) \wedge (Q \vee R \vee T) \wedge \neg T \wedge (\neg S \vee R)$$

unerfüllbar ist. Dazu können wir wie folgt argumentieren:

Angenommen, eine Interpretation \mathcal{I} erfüllt φ .

Beispiel 2.50

Wir wollen nachweisen, dass die KNF-Formel

$$\varphi := (\neg P \vee \neg R) \wedge (P \vee \neg R) \wedge (\neg Q \vee S) \wedge (Q \vee R \vee T) \wedge \neg T \wedge (\neg S \vee R)$$

unerfüllbar ist. Dazu können wir wie folgt argumentieren:

Angenommen, eine Interpretation $\mathcal I$ erfüllt φ .

• Dann gilt $\mathcal{I} \models \neg T$.

Beispiel 2.50

Wir wollen nachweisen, dass die KNF-Formel

$$\varphi := (\neg P \vee \neg R) \wedge (P \vee \neg R) \wedge (\neg Q \vee S) \wedge (Q \vee R \vee T) \wedge \neg T \wedge (\neg S \vee R)$$

unerfüllbar ist. Dazu können wir wie folgt argumentieren:

Angenommen, eine Interpretation $\mathcal I$ erfüllt φ .

- Dann gilt $\mathcal{I} \models \neg T$.
- Aus $\mathcal{I} \models Q \lor R \lor T$ und $\mathcal{I} \models \neg T$ folgt dann $\mathcal{I} \models Q \lor R$.

Beispiel 2.50

Wir wollen nachweisen, dass die KNF-Formel

$$\varphi := (\neg P \vee \neg R) \wedge (P \vee \neg R) \wedge (\neg Q \vee S) \wedge (Q \vee R \vee T) \wedge \neg T \wedge (\neg S \vee R)$$

unerfüllbar ist. Dazu können wir wie folgt argumentieren:

Angenommen, eine Interpretation $\mathcal I$ erfüllt φ .

- Dann gilt $\mathcal{I} \models \neg T$.
- Aus $\mathcal{I} \models Q \lor R \lor T$ und $\mathcal{I} \models \neg T$ folgt dann $\mathcal{I} \models Q \lor R$.
- Aus $\mathcal{I} \models Q \lor R$ und $\mathcal{I} \models \neg Q \lor S$ folgt $\mathcal{I} \models R \lor S$.

Beispiel 2.50

Wir wollen nachweisen, dass die KNF-Formel

$$\varphi := (\neg P \vee \neg R) \wedge (P \vee \neg R) \wedge (\neg Q \vee S) \wedge (Q \vee R \vee T) \wedge \neg T \wedge (\neg S \vee R)$$

unerfüllbar ist. Dazu können wir wie folgt argumentieren:

Angenommen, eine Interpretation \mathcal{I} erfüllt φ .

- Dann gilt $\mathcal{I} \models \neg T$.
- Aus $\mathcal{I} \models Q \lor R \lor T$ und $\mathcal{I} \models \neg T$ folgt dann $\mathcal{I} \models Q \lor R$.
- Aus $\mathcal{I} \models Q \lor R$ und $\mathcal{I} \models \neg Q \lor S$ folgt $\mathcal{I} \models R \lor S$.
- Aus $\mathcal{I} \models R \lor S$ und $\mathcal{I} \models \neg S \lor R$ folgt $\mathcal{I} \models R$.

Beispiel 2.50

Wir wollen nachweisen, dass die KNF-Formel

$$\varphi := (\neg P \vee \neg R) \wedge (P \vee \neg R) \wedge (\neg Q \vee S) \wedge (Q \vee R \vee T) \wedge \neg T \wedge (\neg S \vee R)$$

unerfüllbar ist. Dazu können wir wie folgt argumentieren:

Angenommen, eine Interpretation \mathcal{I} erfüllt φ .

- Dann gilt $\mathcal{I} \models \neg T$.
- Aus $\mathcal{I} \models Q \lor R \lor T$ und $\mathcal{I} \models \neg T$ folgt dann $\mathcal{I} \models Q \lor R$.
- Aus $\mathcal{I} \models Q \lor R$ und $\mathcal{I} \models \neg Q \lor S$ folgt $\mathcal{I} \models R \lor S$.
- Aus $\mathcal{I} \models R \lor S$ und $\mathcal{I} \models \neg S \lor R$ folgt $\mathcal{I} \models R$.
- Aus $\mathcal{I} \models \neg P \lor \neg R$ und $\mathcal{I} \models P \lor \neg R$ folgt $\mathcal{I} \models \neg R$.

Das ist ein *Widerspruch*. Somit ist φ *nicht* erfüllbar.

Das Resolutionsverfahren, das wir im Folgenden vorstellen, funktioniert nur für KNF-Formeln.

Wir wissen bereits:

• Zu jeder Formel φ gibt es eine äquivalente Formel in KNF.

Das Resolutionsverfahren, das wir im Folgenden vorstellen, funktioniert nur für KNF-Formeln.

Wir wissen bereits:

- Zu jeder Formel φ gibt es eine äquivalente Formel in KNF.
- Aber möglicherweise ist die kleinste zu φ äquivalente KNF-Formel exponentiell groß in der Größe von φ .

Das Resolutionsverfahren, das wir im Folgenden vorstellen, funktioniert nur für KNF-Formeln.

Wir wissen bereits:

- Zu jeder Formel φ gibt es eine äquivalente Formel in KNF.
- Aber möglicherweise ist die kleinste zu φ äquivalente KNF-Formel exponentiell groß in der Größe von φ .

Wenn es uns nur um die Frage geht, ob eine Formel φ (un)erfüllbar ist, ist es aber auch gar nicht nötig, eine zu φ äquivalente KNF-Formel zu finden.

Das Resolutionsverfahren, das wir im Folgenden vorstellen, funktioniert nur für KNF-Formeln.

Wir wissen bereits:

- Zu jeder Formel φ gibt es eine äquivalente Formel in KNF.
- Aber möglicherweise ist die kleinste zu φ äquivalente KNF-Formel exponentiell groß in der Größe von φ .

Wenn es uns nur um die Frage geht, ob eine Formel φ (un)erfüllbar ist, ist es aber auch gar nicht nötig, eine zu φ äquivalente KNF-Formel zu finden. Es reicht, eine zu φ erfüllbarkeitsäquivalente KNF-Formel zu konstruieren.

Das Resolutionsverfahren, das wir im Folgenden vorstellen, funktioniert nur für KNF-Formeln.

Wir wissen bereits:

- Zu jeder Formel φ gibt es eine äquivalente Formel in KNF.
- Aber möglicherweise ist die kleinste zu φ äquivalente KNF-Formel exponentiell groß in der Größe von φ .

Wenn es uns nur um die Frage geht, ob eine Formel φ (un)erfüllbar ist, ist es aber auch gar nicht nötig, eine zu φ äquivalente KNF-Formel zu finden. Es reicht, eine zu φ erfüllbarkeitsäquivalente KNF-Formel zu konstruieren.

Definition 2.51

Zwei Formeln φ und ψ heißen erfüllbarkeitsäquivalent, falls gilt:

 φ ist erfüllbar $\iff \psi$ ist erfüllbar.

Kap 2: Aussagenlogik · Abschnitt 2.6: Resolution

Eine beliebige Formel in eine *erfüllbarkeitsäquivalente* KNF-Formel umzuwandeln, ist in Linearzeit möglich.

Eine beliebige Formel in eine *erfüllbarkeitsäquivalente* KNF-Formel umzuwandeln, ist in Linearzeit möglich.

Beispiel 2.52

Um die Formel

$$\varphi := (P \to \neg Q) \lor (\neg (P \land Q) \land R)$$

in eine erfüllbarkeitsäquivalente KNF-Formel umzuformen, können wir wie folgt vorgehen.

Auf die gleiche Weise wie in Beispiel 2.52 können wir jede beliebige aussagenlogische Formel in eine erfüllbarkeitsäquivalente KNF-Formel umwandeln.

Auf die gleiche Weise wie in Beispiel 2.52 können wir jede beliebige aussagenlogische Formel in eine erfüllbarkeitsäquivalente KNF-Formel umwandeln. Dieses Verfahren wird Tseitin-Verfahren genannt.

Auf die gleiche Weise wie in Beispiel 2.52 können wir jede beliebige aussagenlogische Formel in eine erfüllbarkeitsäquivalente KNF-Formel umwandeln. Dieses Verfahren wird Tseitin-Verfahren genannt. Eine Laufzeitanalyse zeigt, dass das Tseitin-Verfahren in Linearzeit durchgeführt werden kann.

Auf die gleiche Weise wie in Beispiel 2.52 können wir jede beliebige aussagenlogische Formel in eine erfüllbarkeitsäquivalente KNF-Formel umwandeln. Dieses Verfahren wird Tseitin-Verfahren genannt. Eine Laufzeitanalyse zeigt, dass das Tseitin-Verfahren in Linearzeit durchgeführt werden kann. Insgesamt erhalten wir so den folgenden Satz.

Satz 2.53

Es gibt eine Zahl $c \in \mathbb{N}_{\geqslant 1}$, so dass gilt:

Zu jeder aussagenlogischen Formel φ gibt es eine aussagenlogische Formel φ_K mit folgenden Eigenschaften:

(a) φ_K ist erfüllbarkeitsäquivalent zu φ .

Auf die gleiche Weise wie in Beispiel 2.52 können wir jede beliebige aussagenlogische Formel in eine erfüllbarkeitsäquivalente KNF-Formel umwandeln. Dieses Verfahren wird Tseitin-Verfahren genannt. Eine Laufzeitanalyse zeigt, dass das Tseitin-Verfahren in Linearzeit durchgeführt werden kann. Insgesamt erhalten wir so den folgenden Satz.

Satz 2.53

Es gibt eine Zahl $c \in \mathbb{N}_{\geqslant 1}$, so dass gilt:

Zu jeder aussagenlogischen Formel φ gibt es eine aussagenlogische Formel φ_K mit folgenden Eigenschaften:

- (a) φ_K ist erfüllbarkeitsäquivalent zu φ .
- (b) φ_K ist in 3-KNF, d.h., in KNF, wobei jede disjunktive Klausel aus höchstens 3 Literalen besteht (wir sagen: die Klauseln haben Länge \leq 3).

Auf die gleiche Weise wie in Beispiel 2.52 können wir jede beliebige aussagenlogische Formel in eine erfüllbarkeitsäquivalente KNF-Formel umwandeln. Dieses Verfahren wird Tseitin-Verfahren genannt. Eine Laufzeitanalyse zeigt, dass das Tseitin-Verfahren in Linearzeit durchgeführt werden kann. Insgesamt erhalten wir so den folgenden Satz.

Satz 2.53

Es gibt eine Zahl $c \in \mathbb{N}_{\geqslant 1}$, so dass gilt:

Zu jeder aussagenlogischen Formel φ gibt es eine aussagenlogische Formel φ_K mit folgenden Eigenschaften:

- (a) φ_K ist erfüllbarkeitsäquivalent zu φ .
- (b) φ_K ist in 3-KNF, d.h., in KNF, wobei jede disjunktive Klausel aus höchstens 3 Literalen besteht (wir sagen: die Klauseln haben Länge \leq 3).
- (c) $|\varphi_{\kappa}| \leqslant c \cdot |\varphi|$.

Außerdem gibt es einen Algorithmus, der φ_K bei Eingabe von φ in Linearzeit berechnet.

Auf die gleiche Weise wie in Beispiel 2.52 können wir jede beliebige aussagenlogische Formel in eine erfüllbarkeitsäquivalente KNF-Formel umwandeln. Dieses Verfahren wird Tseitin-Verfahren genannt. Eine Laufzeitanalyse zeigt, dass das Tseitin-Verfahren in Linearzeit durchgeführt werden kann. Insgesamt erhalten wir so den folgenden Satz.

Satz 2.53

Es gibt eine Zahl $c \in \mathbb{N}_{\geqslant 1}$, so dass gilt:

Zu jeder aussagenlogischen Formel φ gibt es eine aussagenlogische Formel φ_K mit folgenden Eigenschaften:

- (a) φ_K ist erfüllbarkeitsäquivalent zu φ .
- (b) φ_K ist in 3-KNF, d.h., in KNF, wobei jede disjunktive Klausel aus höchstens 3 Literalen besteht (wir sagen: die Klauseln haben Länge \leq 3).
- (c) $|\varphi_{\kappa}| \leqslant c \cdot |\varphi|$.

Außerdem gibt es einen Algorithmus, der φ_K bei Eingabe von φ in Linearzeit berechnet.

Notation

 $|\varphi|$ bezeichnet die Länge (bzw. Größe) einer aussagenlogischen Formel φ , d.h. die Länge von φ aufgefasst als Wort über dem Alphabet $A_{\rm AL}$.

Repräsentation von KNF-Formeln

Für den Rest diese Abschnitts werden wir nur noch KNF-Formeln betrachten, und wenn wir von Klauseln sprechen, meinen wir stets disjunktive Klauseln, also Disjunktionen von Literalen.

Repräsentation von KNF-Formeln

Für den Rest diese Abschnitts werden wir nur noch KNF-Formeln betrachten, und wenn wir von Klauseln sprechen, meinen wir stets disjunktive Klauseln, also Disjunktionen von Literalen.

Für das Resolutionsverfahren ist die folgende Repräsentation von Klauseln und KNF-Formeln sehr hilfreich:

Repräsentation von KNF-Formeln

Für den Rest diese Abschnitts werden wir nur noch KNF-Formeln betrachten, und wenn wir von Klauseln sprechen, meinen wir stets disjunktive Klauseln, also Disjunktionen von Literalen.

Für das Resolutionsverfahren ist die folgende Repräsentation von Klauseln und KNF-Formeln sehr hilfreich:

• Eine Klausel $(\lambda_1 \vee \cdots \vee \lambda_\ell)$, die aus Literalen $\lambda_1, \ldots, \lambda_\ell$ besteht, identifizieren wir mit der Menge $\{\lambda_1, \ldots, \lambda_\ell\}$ ihrer Literale.

Beispiel: Wir schreiben z.B. $\{A_1, \neg A_2, A_3\}$ um die Klausel $(A_1 \lor \neg A_2 \lor A_3)$ zu bezeichnen.

Repräsentation von KNF-Formeln

Für den Rest diese Abschnitts werden wir nur noch KNF-Formeln betrachten, und wenn wir von Klauseln sprechen, meinen wir stets disjunktive Klauseln, also Disjunktionen von Literalen.

Für das Resolutionsverfahren ist die folgende Repräsentation von Klauseln und KNF-Formeln sehr hilfreich:

• Eine Klausel $(\lambda_1 \vee \cdots \vee \lambda_\ell)$, die aus Literalen $\lambda_1, \ldots, \lambda_\ell$ besteht, identifizieren wir mit der Menge $\{\lambda_1, \ldots, \lambda_\ell\}$ ihrer Literale.

Beispiel: Wir schreiben z.B. $\{A_1, \neg A_2, A_3\}$ um die Klausel $(A_1 \vee \neg A_2 \vee A_3)$ zu bezeichnen.

D.h.: Ab jetzt sind disjunktive Klauseln für uns dasselbe wie endliche Mengen von Literalen. Wenn wir von einer Klausel sprechen, meinen wir eine endliche Menge von Literalen und identifizieren diese mit der Formel, die aus der Disjunktion all dieser Literale besteht.

Repräsentation von KNF-Formeln

Für den Rest diese Abschnitts werden wir nur noch KNF-Formeln betrachten, und wenn wir von Klauseln sprechen, meinen wir stets disjunktive Klauseln, also Disjunktionen von Literalen.

Für das Resolutionsverfahren ist die folgende Repräsentation von Klauseln und KNF-Formeln sehr hilfreich:

• Eine Klausel $(\lambda_1 \vee \cdots \vee \lambda_\ell)$, die aus Literalen $\lambda_1, \ldots, \lambda_\ell$ besteht, identifizieren wir mit der Menge $\{\lambda_1, \ldots, \lambda_\ell\}$ ihrer Literale.

Beispiel: Wir schreiben z.B. $\{A_1, \neg A_2, A_3\}$ um die Klausel $(A_1 \lor \neg A_2 \lor A_3)$ zu bezeichnen.

D.h.: Ab jetzt sind disjunktive Klauseln für uns dasselbe wie endliche Mengen von Literalen. Wenn wir von einer Klausel sprechen, meinen wir eine endliche Menge von Literalen und identifizieren diese mit der Formel, die aus der Disjunktion all dieser Literale besteht.

Spezialfall: Die leere Menge ∅ entspricht der unerfüllbaren Formel 0 (die wiederum der "Formel" entspricht, die aus der Disjunktion aller Literale aus ∅ besteht).

• Eine KNF-Formel $\varphi = \bigwedge_{i=1}^m \gamma_i$, die aus (disjunktiven) Klauseln $\gamma_1, \ldots, \gamma_m$ besteht, identifizieren wir mit der Menge $\Gamma := \{\gamma_1, \ldots, \gamma_m\}$ ihrer Klauseln.

• Eine KNF-Formel $\varphi = \bigwedge_{i=1}^m \gamma_i$, die aus (disjunktiven) Klauseln $\gamma_1, \ldots, \gamma_m$ besteht, identifizieren wir mit der Menge $\Gamma := \{\gamma_1, \ldots, \gamma_m\}$ ihrer Klauseln. Offensichtlicherweise gilt für alle Interpretationen \mathcal{I} :

$$\mathcal{I} \models \varphi \iff \mathcal{I} \models \Gamma.$$

• Eine KNF-Formel $\varphi = \bigwedge_{i=1}^m \gamma_i$, die aus (disjunktiven) Klauseln $\gamma_1, \ldots, \gamma_m$ besteht, identifizieren wir mit der Menge $\Gamma := \{\gamma_1, \ldots, \gamma_m\}$ ihrer Klauseln. Offensichtlicherweise gilt für alle Interpretationen \mathcal{I} :

$$\mathcal{I} \models \varphi \iff \mathcal{I} \models \Gamma.$$

Beispiel: Die KNF-Formel $\varphi = A_1 \wedge (\neg A_2 \vee A_1) \wedge (A_3 \vee \neg A_2 \vee \neg A_1)$ repräsentieren wir durch die endliche Klauselmenge

$$\{A_1, (\neg A_2 \lor A_1), (A_3 \lor \neg A_2 \lor \neg A_1)\}$$

• Eine KNF-Formel $\varphi = \bigwedge_{i=1}^m \gamma_i$, die aus (disjunktiven) Klauseln $\gamma_1, \ldots, \gamma_m$ besteht, identifizieren wir mit der Menge $\Gamma := \{\gamma_1, \ldots, \gamma_m\}$ ihrer Klauseln. Offensichtlicherweise gilt für alle Interpretationen \mathcal{I} :

$$\mathcal{I} \models \varphi \iff \mathcal{I} \models \Gamma.$$

Beispiel: Die KNF-Formel $\varphi = A_1 \wedge (\neg A_2 \vee A_1) \wedge (A_3 \vee \neg A_2 \vee \neg A_1)$ repräsentieren wir durch die endliche Klauselmenge

$$\{A_1, (\neg A_2 \lor A_1), (A_3 \lor \neg A_2 \lor \neg A_1)\}$$

bzw. durch

$$\{ \{A_1\}, \{\neg A_2, A_1\}, \{A_3, \neg A_2, \neg A_1\} \}$$

• Eine KNF-Formel $\varphi = \bigwedge_{i=1}^{n} \gamma_i$, die aus (disjunktiven) Klauseln $\gamma_1, \ldots, \gamma_m$ besteht, identifizieren wir mit der Menge $\Gamma := \{\gamma_1, \ldots, \gamma_m\}$ ihrer Klauseln. Offensichtlicherweise gilt für alle Interpretationen \mathcal{I} :

$$\mathcal{I} \models \varphi \iff \mathcal{I} \models \Gamma.$$

Beispiel: Die KNF-Formel $\varphi = A_1 \wedge (\neg A_2 \vee A_1) \wedge (A_3 \vee \neg A_2 \vee \neg A_1)$ repräsentieren wir durch die endliche Klauselmenge

$$\{A_1, (\neg A_2 \lor A_1), (A_3 \lor \neg A_2 \lor \neg A_1)\}$$

bzw. durch

$$\{ \{A_1\}, \{\neg A_2, A_1\}, \{A_3, \neg A_2, \neg A_1\} \}$$

"Erfüllbarkeit von KNF-Formeln" ist damit im Wesentlichen dasselbe Problem wie "Erfüllbarkeit von endlichen Mengen von Klauseln".

HU Berlin

Resolution

Notation

Für ein Literal λ sei

$$\bar{\lambda} \ := \ \left\{ \begin{array}{l} \neg X \, , \quad \text{falls } \lambda \text{ von der Form } X \text{ für ein } X \in \mathsf{AS} \text{ ist} \\ X \, , \quad \text{falls } \lambda \text{ von der Form } \neg X \text{ für ein } X \in \mathsf{AS} \text{ ist.} \end{array} \right.$$

Wir nennen $\overline{\lambda}$ auch das Negat von λ .

Resolution

Notation

Für ein Literal λ sei

$$\bar{\lambda} \ := \ \left\{ \begin{array}{l} \neg X \, , \quad \text{falls } \lambda \text{ von der Form } X \text{ für ein } X \in \mathsf{AS} \text{ ist} \\ X \, , \quad \text{falls } \lambda \text{ von der Form } \neg X \text{ für ein } X \in \mathsf{AS} \text{ ist.} \end{array} \right.$$

Wir nennen $\overline{\lambda}$ auch das Negat von λ .

Definition 2.54 (Resolutionsregel)

Seien γ_1 , γ_2 und δ endliche Mengen von Literalen (d.h. disjunktive Klauseln). Dann ist δ eine Resolvente von γ_1 und γ_2 , wenn es ein Literal λ gibt, so dass gilt:

$$\lambda \in \gamma_1, \qquad \overline{\lambda} \in \gamma_2 \qquad \text{ und } \qquad \delta = (\gamma_1 \setminus \{\lambda\}) \cup (\gamma_2 \setminus \{\overline{\lambda}\}).$$

Resolution

Notation

Für ein Literal λ sei

$$\bar{\lambda} \ := \ \left\{ \begin{array}{l} \neg X \, , \quad \text{falls } \lambda \text{ von der Form } X \text{ für ein } X \in \mathsf{AS} \text{ ist} \\ X \, , \quad \text{falls } \lambda \text{ von der Form } \neg X \text{ für ein } X \in \mathsf{AS} \text{ ist.} \end{array} \right.$$

Wir nennen $\overline{\lambda}$ auch das Negat von λ .

Definition 2.54 (Resolutionsregel)

Seien γ_1 , γ_2 und δ endliche Mengen von Literalen (d.h. disjunktive Klauseln). Dann ist δ eine Resolvente von γ_1 und γ_2 , wenn es ein Literal λ gibt, so dass gilt:

$$\lambda \in \gamma_1, \qquad \ \, \overline{\lambda} \in \gamma_2 \qquad \text{ und } \qquad \delta = \ \, \left(\, \gamma_1 \setminus \{\lambda\} \, \right) \ \, \cup \ \, \left(\, \gamma_2 \setminus \{\overline{\lambda} \, \} \right).$$

Graphische Darstellung:

", δ ist eine Resolvente von γ_1 und γ_2 ."

Das Resolutionslemma

Notation

Ein Klausel ist eine endliche Menge von Literalen (eine solche Klausel repräsentiert die Disjunktion der in ihr enthaltenen Literale).

Das Resolutionslemma

Notation

Ein Klausel ist eine endliche Menge von Literalen (eine solche Klausel repräsentiert die Disjunktion der in ihr enthaltenen Literale). Eine Klauselmenge ist eine (endliche oder unendliche) Menge von Klauseln.

Das Resolutionslemma

Notation

Ein Klausel ist eine endliche Menge von Literalen (eine solche Klausel repräsentiert die Disjunktion der in ihr enthaltenen Literale). Eine Klauselmenge ist eine (endliche oder unendliche) Menge von Klauseln.

Lemma 2.55 (Resolutionslemma)

Sei Γ eine Klauselmenge, seien $\gamma_1, \gamma_2 \in \Gamma$ und sei δ eine Resolvente von γ_1 und γ_2 . Dann sind die Klauselmengen Γ und $\Gamma \cup \{\delta\}$ äquivalent.

Definition 2.56 Sei Γ eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel δ aus Γ ist

Definition 2.56

Sei Γ eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel δ aus Γ ist ein Tupel $(\delta_1, \ldots, \delta_\ell)$ von Klauseln, so dass gilt: $\ell \geqslant 1$,

Definition 2.56

Sei Γ eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel δ aus Γ ist ein Tupel $(\delta_1, \ldots, \delta_\ell)$ von Klauseln, so dass gilt: $\ell \geqslant 1$, $\delta_\ell = \delta$,

Definition 2.56

Sei Γ eine Klauselmenge.

- (a) Eine Resolutionsableitung einer Klausel δ aus Γ ist ein Tupel $(\delta_1, \ldots, \delta_\ell)$ von Klauseln, so dass gilt: $\ell \geqslant 1$, $\delta_\ell = \delta$, und für alle $i \in [\ell]$ ist
 - $\delta_i \in \Gamma$, oder

Definition 2.56

Sei Γ eine Klauselmenge.

- (a) Eine Resolutionsableitung einer Klausel δ aus Γ ist ein Tupel $(\delta_1, \ldots, \delta_\ell)$ von Klauseln, so dass gilt: $\ell \geqslant 1$, $\delta_\ell = \delta$, und für alle $i \in [\ell]$ ist
 - $\delta_i \in \Gamma$, oder
 - es gibt $j, k \in [i-1]$, so dass δ_i eine Resolvente von δ_j und δ_k ist.

Definition 2.56

Sei Γ eine Klauselmenge.

- (a) Eine Resolutionsableitung einer Klausel δ aus Γ ist ein Tupel $(\delta_1, \ldots, \delta_\ell)$ von Klauseln, so dass gilt: $\ell \geqslant 1$, $\delta_\ell = \delta$, und für alle $i \in [\ell]$ ist
 - $\delta_i \in \Gamma$, oder
 - es gibt $j, k \in [i-1]$, so dass δ_i eine Resolvente von δ_j und δ_k ist.
- (b) Eine Resolutionswiderlegung von Γ ist eine Resolutionsableitung der leeren Klausel aus Γ .

Definition 2.56

Sei Γ eine Klauselmenge.

- (a) Eine Resolutionsableitung einer Klausel δ aus Γ ist ein Tupel $(\delta_1, \ldots, \delta_\ell)$ von Klauseln, so dass gilt: $\ell \geqslant 1$, $\delta_\ell = \delta$, und für alle $i \in [\ell]$ ist
 - $\delta_i \in \Gamma$, oder
 - es gibt $j, k \in [i-1]$, so dass δ_i eine Resolvente von δ_j und δ_k ist.
- (b) Eine Resolutionswiderlegung von Γ ist eine Resolutionsableitung der leeren Klausel aus Γ .

Zur Erinnerung:

Eine Klausel δ ist genau dann eine Resolvente zweier Klauseln γ_1 und γ_2 , wenn

Definition 2.56

Sei Γ eine Klauselmenge.

- (a) Eine Resolutionsableitung einer Klausel δ aus Γ ist ein Tupel $(\delta_1, \ldots, \delta_\ell)$ von Klauseln, so dass gilt: $\ell \geqslant 1$, $\delta_\ell = \delta$, und für alle $i \in [\ell]$ ist
 - $\delta_i \in \Gamma$, oder
 - es gibt $j, k \in [i-1]$, so dass δ_i eine Resolvente von δ_j und δ_k ist.
- (b) Eine Resolutionswiderlegung von Γ ist eine Resolutionsableitung der leeren Klausel aus Γ .

Zur Erinnerung:

Eine Klausel δ ist genau dann eine Resolvente zweier Klauseln γ_1 und γ_2 , wenn es ein Literal λ gibt, so dass gilt:

$$\lambda \in \gamma_1$$
, $\overline{\lambda} \in \gamma_2$ und $\delta =$

Definition 2.56

Sei Γ eine Klauselmenge.

- (a) Eine Resolutionsableitung einer Klausel δ aus Γ ist ein Tupel $(\delta_1, \ldots, \delta_\ell)$ von Klauseln, so dass gilt: $\ell \geqslant 1$, $\delta_\ell = \delta$, und für alle $i \in [\ell]$ ist
 - $\delta_i \in \Gamma$, oder
 - es gibt $j, k \in [i-1]$, so dass δ_i eine Resolvente von δ_j und δ_k ist.
- (b) Eine Resolutionswiderlegung von Γ ist eine Resolutionsableitung der leeren Klausel aus Γ .

Zur Erinnerung:

Eine Klausel δ ist genau dann eine Resolvente zweier Klauseln γ_1 und γ_2 , wenn es ein Literal λ gibt, so dass gilt:

$$\lambda \in \gamma_1, \qquad \overline{\lambda} \in \gamma_2 \qquad \text{ und } \qquad \delta = \ \left(\, \gamma_1 \setminus \{\lambda\} \, \right) \ \cup \ \left(\, \gamma_2 \setminus \{\overline{\lambda} \, \} \right).$$

HU Berlin

Notation 2.56

(a) Wir schreiben kurz $\Gamma \vdash_R \delta$ um auszudrücken, dass es eine Resolutionsableitung von δ aus Γ gibt.

Notation 2.56

(a) Wir schreiben kurz $\Gamma \vdash_R \delta$ um auszudrücken, dass es eine Resolutionsableitung von δ aus Γ gibt.

Insbesondere bedeutet $\Gamma \vdash_R \emptyset$, dass es eine Resolutionswiderlegung von Γ gibt.

Notation 2.56

(a) Wir schreiben kurz $\Gamma \vdash_R \delta$ um auszudrücken, dass es eine Resolutionsableitung von δ aus Γ gibt.

Insbesondere bedeutet $\Gamma \vdash_R \emptyset$, dass es eine Resolutionswiderlegung von Γ gibt.

- (b) An Stelle von $(\delta_1, \dots, \delta_\ell)$ schreiben wir Resolutionsableitungen der besseren Lesbarkeit halber oft zeilenweise, also
 - (1) δ_1
 - (2) δ_2

:

 (ℓ) δ_{ℓ}

und geben am Ende jeder Zeile eine kurze Begründung an.

Sei

$$\Gamma \; := \; \left\{ \; \left\{ \, \neg P, \neg R \right\}, \; \left\{ P, \neg R \right\}, \; \left\{ \, \neg Q, S \right\}, \; \left\{ \, Q, R, \, T \right\}, \; \left\{ \, \neg T \right\}, \; \left\{ \, \neg S, R \right\}, \; \left\{ \, T, R \right\} \; \right\} \;$$

Sei

$$\Gamma \; := \; \left\{ \; \left\{ \; \neg P, \neg R \right\}, \; \left\{ P, \neg R \right\}, \; \left\{ \; \neg Q, S \right\}, \; \left\{ \; Q, R, T \right\}, \; \left\{ \; \neg T \right\}, \; \left\{ \; \neg S, R \right\}, \; \left\{ \; T, R \right\} \; \right\} \;$$

$$(1) \quad \{\neg T\} \qquad (in \ \Gamma)$$

Sei

$$\Gamma := \left\{ \left\{ \neg P, \neg R \right\}, \, \left\{ P, \neg R \right\}, \, \left\{ \neg Q, S \right\}, \, \left\{ Q, R, T \right\}, \, \left\{ \neg T \right\}, \, \left\{ \neg S, R \right\}, \, \left\{ T, R \right\} \right\} \right\}$$

(1)
$$\{\neg T\}$$
 (in Γ)

(2)
$$\{Q, R, T\}$$
 (in Γ)

Sei

$$\Gamma := \left\{ \left\{ \neg P, \neg R \right\}, \, \left\{ P, \neg R \right\}, \, \left\{ \neg Q, S \right\}, \, \left\{ Q, R, T \right\}, \, \left\{ \neg T \right\}, \, \left\{ \neg S, R \right\}, \, \left\{ T, R \right\} \right\} \right\}$$

- (1) $\{\neg T\}$ (in Γ)
- (2) $\{Q, R, T\}$ (in Γ)
- (3) $\{Q, R\}$ (Resolvente von (1), (2))

Sei

$$\Gamma \ := \ \left\{ \ \left\{ \neg P, \neg R \right\}, \ \left\{ P, \neg R \right\}, \ \left\{ \neg Q, S \right\}, \ \left\{ Q, R, T \right\}, \ \left\{ \neg T \right\}, \ \left\{ \neg S, R \right\}, \ \left\{ T, R \right\} \ \right\}$$

- (1) $\{\neg T\}$ (in Γ)
- (2) $\{Q, R, T\}$ (in Γ)
- (3) $\{Q, R\}$ (Resolvente von (1), (2))
- (4) $\{\neg Q, S\}$ (in Γ)

Sei

$$\Gamma \ := \ \left\{ \ \left\{ \neg P, \neg R \right\}, \ \left\{ P, \neg R \right\}, \ \left\{ \neg Q, S \right\}, \ \left\{ Q, R, T \right\}, \ \left\{ \neg T \right\}, \ \left\{ \neg S, R \right\}, \ \left\{ T, R \right\} \right\} \right.$$

- (1) $\{\neg T\}$ (in Γ)
- (2) $\{Q, R, T\}$ (in Γ)
- (3) $\{Q,R\}$ (Resolvente von (1), (2))
- (4) $\{\neg Q, S\}$ (in Γ)
- (5) $\{S,R\}$ (Resolvente von (3), (4))

Sei

$$\Gamma := \left\{ \left\{ \neg P, \neg R \right\}, \, \left\{ P, \neg R \right\}, \, \left\{ \neg Q, S \right\}, \, \left\{ Q, R, T \right\}, \, \left\{ \neg T \right\}, \, \left\{ \neg S, R \right\}, \, \left\{ T, R \right\} \right\} \right\}$$

(1)
$$\{\neg T\}$$
 (in Γ)

(2)
$$\{Q, R, T\}$$
 (in Γ)

(3)
$$\{Q,R\}$$
 (Resolvente von (1), (2))

(4)
$$\{\neg Q, S\}$$
 (in Γ)

(5)
$$\{S, R\}$$
 (Resolvente von (3), (4))

(6)
$$\{\neg S, R\}$$
 (in Γ)

Sei

$$\Gamma := \left\{ \left\{ \neg P, \neg R \right\}, \, \left\{ P, \neg R \right\}, \, \left\{ \neg Q, S \right\}, \, \left\{ Q, R, T \right\}, \, \left\{ \neg T \right\}, \, \left\{ \neg S, R \right\}, \, \left\{ T, R \right\} \right\} \right\}$$

(1)
$$\{\neg T\}$$
 (in Γ)

(2)
$$\{Q, R, T\}$$
 (in Γ)

(3)
$$\{Q,R\}$$
 (Resolvente von (1), (2))

(4)
$$\{\neg Q, S\}$$
 (in Γ)

(5)
$$\{S, R\}$$
 (Resolvente von (3), (4))

(6)
$$\{\neg S, R\}$$
 (in Γ)

(7)
$$\{R\}$$
 (Resolvente von (5), (6))

Sei

$$\Gamma := \left\{ \left\{ \neg P, \neg R \right\}, \, \left\{ P, \neg R \right\}, \, \left\{ \neg Q, S \right\}, \, \left\{ Q, R, T \right\}, \, \left\{ \neg T \right\}, \, \left\{ \neg S, R \right\}, \, \left\{ T, R \right\} \right\} \right\}$$

(1)
$$\{\neg T\}$$
 (in Γ)

(2)
$$\{Q, R, T\}$$
 (in Γ)

(3)
$$\{Q,R\}$$
 (Resolvente von (1), (2))

(4)
$$\{\neg Q, S\}$$
 (in Γ)

(5)
$$\{S,R\}$$
 (Resolvente von (3), (4))

(6)
$$\{\neg S, R\}$$
 (in Γ)

(7)
$$\{R\}$$
 (Resolvente von (5), (6))

(8)
$$\{\neg P, \neg R\}$$
 (in Γ)

Sei

$$\Gamma := \left\{ \left\{ \neg P, \neg R \right\}, \, \left\{ P, \neg R \right\}, \, \left\{ \neg Q, S \right\}, \, \left\{ Q, R, T \right\}, \, \left\{ \neg T \right\}, \, \left\{ \neg S, R \right\}, \, \left\{ T, R \right\} \right\} \right\}$$

Eine Resolutionswiderlegung von Γ ist:

(1)
$$\{\neg T\}$$
 (in Γ)

(2)
$$\{Q, R, T\}$$
 (in Γ)

(3)
$$\{Q,R\}$$
 (Resolvente von (1), (2))

(4)
$$\{\neg Q, S\}$$
 (in Γ)

(5)
$$\{S, R\}$$
 (Resolvente von (3), (4))

(6)
$$\{\neg S, R\}$$
 (in Γ)

(7)
$$\{R\}$$
 (Resolvente von (5), (6))

(8)
$$\{\neg P, \neg R\}$$
 (in Γ)

(9)
$$\{P, \neg R\}$$
 (in Γ)

HU Berlin

Beispiel 2.57

Sei

$$\Gamma := \left\{ \left\{ \neg P, \neg R \right\}, \, \left\{ P, \neg R \right\}, \, \left\{ \neg Q, S \right\}, \, \left\{ Q, R, T \right\}, \, \left\{ \neg T \right\}, \, \left\{ \neg S, R \right\}, \, \left\{ T, R \right\} \right\} \right\}$$

Eine Resolutionswiderlegung von Γ ist:

(1)
$$\{\neg T\}$$
 (in Γ)

(2)
$$\{Q, R, T\}$$
 (in Γ)

(3)
$$\{Q,R\}$$
 (Resolvente von (1), (2))

(4)
$$\{\neg Q, S\}$$
 (in Γ)

(5)
$$\{S, R\}$$
 (Resolvente von (3), (4))

(6)
$$\{\neg S, R\}$$
 (in Γ)

(7)
$$\{R\}$$
 (Resolvente von (5), (6))

(8)
$$\{\neg P, \neg R\}$$
 (in Γ)

(9)
$$\{P, \neg R\}$$
 (in Γ)

(10)
$$\{\neg R\}$$
 (Resolvente von (8), (9))

HU Berlin

Beispiel 2.57

Sei

$$\Gamma := \left\{ \left\{ \neg P, \neg R \right\}, \, \left\{ P, \neg R \right\}, \, \left\{ \neg Q, S \right\}, \, \left\{ Q, R, T \right\}, \, \left\{ \neg T \right\}, \, \left\{ \neg S, R \right\}, \, \left\{ T, R \right\} \right\} \right\}$$

(1)
$$\{\neg T\}$$
 (in Γ)

(2)
$$\{Q, R, T\}$$
 (in Γ)

(3)
$$\{Q, R\}$$
 (Resolvente von (1), (2))

(4)
$$\{\neg Q, S\}$$
 (in Γ)

(5)
$$\{S, R\}$$
 (Resolvente von (3), (4))

(6)
$$\{\neg S, R\}$$
 (in Γ)

(7)
$$\{R\}$$
 (Resolvente von (5), (6))

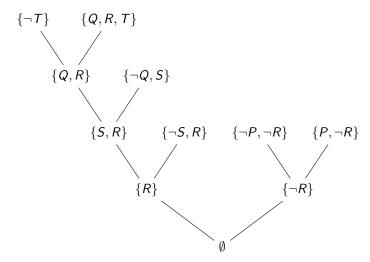
(8)
$$\{\neg P, \neg R\}$$
 (in Γ)

(9)
$$\{P, \neg R\}$$
 (in Γ)

(10)
$$\{\neg R\}$$
 (Resolvente von (8), (9))

(11)
$$\emptyset$$
 (Resolvente von (7), (10))

Graphische Darstellung der Resolutionswiderlegung



Kap 2: Aussagenlogik · Abschnitt 2.6: Resolution

Eine weitere Resolutionswiderlegung von $\boldsymbol{\Gamma}$ ist:

(1)
$$\{\neg T\}$$
 (in Γ)

(1)
$$\{\neg T\}$$
 (in Γ)

(2)
$$\{T,R\}$$
 (in Γ)

(1)
$$\{\neg T\}$$
 (in Γ)

(2)
$$\{T,R\}$$
 (in Γ)

$$(3) \quad \{R\} \qquad \qquad (\mathsf{Resolvente\ von\ (1),\ (2)})$$

(1)
$$\{\neg T\}$$
 (in Γ)
(2) $\{T, R\}$ (in Γ)
(3) $\{R\}$ (Resolvente von (1), (2))
(4) $\{P, \neg R\}$ (in Γ)

$$(1) \quad \{\neg T\} \qquad (in \ \Gamma)$$

(2)
$$\{T,R\}$$
 (in Γ)

(3)
$$\{R\}$$
 (Resolvente von (1), (2))

(4)
$$\{P, \neg R\}$$
 (in Γ)

(5)
$$\{P\}$$
 (Resolvente von (3), (4))

(1)
$$\{\neg T\}$$
 (in Γ)

(2)
$$\{T,R\}$$
 (in Γ)

(3)
$$\{R\}$$
 (Resolvente von (1), (2))

(4)
$$\{P, \neg R\}$$
 (in Γ)

(5)
$$\{P\}$$
 (Resolvente von (3), (4))

(6)
$$\{\neg P, \neg R\}$$
 (in Γ)

(1)
$$\{\neg T\}$$
 (in Γ)

(2)
$$\{T,R\}$$
 (in Γ)

(3)
$$\{R\}$$
 (Resolvente von (1), (2))

(4)
$$\{P, \neg R\}$$
 (in Γ)

(5)
$$\{P\}$$
 (Resolvente von (3), (4))

(6)
$$\{\neg P, \neg R\}$$
 (in Γ)

(7)
$$\{\neg R\}$$
 (Resolvente von (5), (6))

(1)
$$\{\neg T\}$$
 (in Γ)

(2)
$$\{T,R\}$$
 (in Γ)

(3)
$$\{R\}$$
 (Resolvente von (1), (2))

(4)
$$\{P, \neg R\}$$
 (in Γ)

(5)
$$\{P\}$$
 (Resolvente von (3), (4))

(6)
$$\{\neg P, \neg R\}$$
 (in Γ)

(7)
$$\{\neg R\}$$
 (Resolvente von (5), (6))

(8)
$$\emptyset$$
 (Resolvente von (7), (3))

Korrektheit und Vollständigkeit der Resolution

Satz 2.58

Für jede Klauselmenge Γ gilt:

$$\Gamma \vdash_R \emptyset \iff \Gamma \text{ ist unerfüllbar.}$$

D.h.: Eine Klauselmenge hat genau dann eine Resolutionswiderlegung, wenn sie unerfüllbar ist.

Vorsicht

Beim Anwenden der Resolutionsregel (Definition 2.54) darf immer nur $\underline{\text{ein}}$ Literal λ betrachtet werden.

Beispiel:

Betrachte die Klauselmenge $\Gamma := \{\gamma_1, \gamma_2\}$ mit $\gamma_1 := \{X, Y\}$ und $\gamma_2 := \{\neg X, \neg Y\}$ (wobei X und Y zwei verschiedene Ausagensymbole sind).

HU Berlin

Der Satz von Haken

Für eine endliche Klauselmenge Γ sei die *Größe* von Γ die Zahl

$$\|\Gamma\| \ := \ \sum_{\gamma \in \Gamma} |\gamma|,$$

wobei $|\gamma|$ die Anzahl der Literale in γ bezeichnet.

Der Satz von Haken

Für eine endliche Klauselmenge Γ sei die *Größe* von Γ die Zahl

$$\|\Gamma\| \ := \ \sum_{\gamma \in \Gamma} |\gamma|,$$

wobei $|\gamma|$ die Anzahl der Literale in γ bezeichnet.

Der folgende (schwer zu beweisende) Satz zeigt, dass es im Worst-Case exponentiell lange dauern kann, eine Resolutionswiderlegung zu finden.

HU Berlin

Der Satz von Haken

Für eine endliche Klauselmenge Γ sei die *Größe* von Γ die Zahl

$$\|\Gamma\| \ := \ \sum_{\gamma \in \Gamma} |\gamma|,$$

wobei $|\gamma|$ die Anzahl der Literale in γ bezeichnet.

Der folgende (schwer zu beweisende) Satz zeigt, dass es im Worst-Case exponentiell lange dauern kann, eine Resolutionswiderlegung zu finden.

Satz 2.59 (Satz von Haken, 1985)

Es gibt Konstanten c, d > 0 und endliche Klauselmengen Γ_n für $n \geqslant 1$, so dass für alle $n \in \mathbb{N}$ mit $n \geqslant 1$ gilt:

- 1. $\|\Gamma_n\| \leqslant n^c$,
- 2. Γ_n ist unerfüllbar, und
- 3. jede Resolutionswiderlegung von Γ_n hat Länge $\geqslant 2^{dn}$.

(Hier ohne Beweis)

Abschnitt 2.7:

Erfüllbarkeitsalgorithmen

Das aussagenlogische Erfüllbarkeitsproblem

Wir betrachten im Folgenden Algorithmen für das

Aussagenlogische Erfüllbarkeitsproblem:

Eingabe: eine Formel $\varphi \in AL$

Ausgabe: "erfüllbar", falls φ erfüllbar ist;

"unerfüllbar", sonst.

Das aussagenlogische Erfüllbarkeitsproblem

Wir betrachten im Folgenden Algorithmen für das

Aussagenlogische Erfüllbarkeitsproblem:

```
Eingabe: eine Formel \varphi \in \mathsf{AL}
```

Ausgabe: "erfüllbar", falls φ erfüllbar ist;

"unerfüllbar", sonst.

Notation

Im Folgenden bezeichnet \emph{n} immer die Anzahl der in φ vorkommenden verschiedenen Aussagensymbole, und $\emph{m}:=|\varphi|$ bezeichnet die Länge von φ (aufgefasst als Wort über dem Alphabet der Aussagenlogik).

Varianten des Erfüllbarkeitsproblems

Berechnen einer erfüllenden Interpretation:

Zusätzlich soll bei erfüllbaren Formeln noch ein Modell berechnet werden, d.h., ein Tupel $(b_1, \ldots, b_n) \in \{0, 1\}^n$, so dass $\varphi[b_1, \ldots, b_n] = 1$.

HU Berlin

Varianten des Erfüllbarkeitsproblems

Berechnen einer erfüllenden Interpretation:

Zusätzlich soll bei erfüllbaren Formeln noch ein Modell berechnet werden, d.h., ein Tupel $(b_1, \ldots, b_n) \in \{0, 1\}^n$, so dass $\varphi[b_1, \ldots, b_n] = 1$.

Einschränkung auf KNF-Formeln:

Oft beschränkt man sich auf Eingabeformeln in KNF oder sogar 3-KNF. Das ist keine wesentliche Einschränkung, weil sich mit Hilfe des Tseitin-Verfahrens jede Formel in Linearzeit in eine erfüllbarkeitsäquivalente Formel in 3-KNF transformieren lässt (Satz 2.53).

Varianten des Erfüllbarkeitsproblems

Berechnen einer erfüllenden Interpretation:

Zusätzlich soll bei erfüllbaren Formeln noch ein Modell berechnet werden, d.h., ein Tupel $(b_1, \ldots, b_n) \in \{0, 1\}^n$, so dass $\varphi[b_1, \ldots, b_n] = 1$.

Einschränkung auf KNF-Formeln:

Oft beschränkt man sich auf Eingabeformeln in KNF oder sogar 3-KNF. Das ist keine wesentliche Einschränkung, weil sich mit Hilfe des Tseitin-Verfahrens jede Formel in Linearzeit in eine erfüllbarkeitsäquivalente Formel in 3-KNF transformieren lässt (Satz 2.53).

Das Erfüllbarkeitsproblem für Formeln in KNF bzw. 3-KNF bezeichnet man mit SAT bzw. 3-SAT.

Satz 2.60 (Satz von Cook und Levin, \approx 1971)

Das aussagenlogische Erfüllbarkeitsproblem (und sogar die Einschränkung 3-SAT) ist NP-vollständig.

Die Komplexitätsklassen P und NP, der Begriff der NP-Vollständigkeit, sowie ein Beweis des Satzes von Cook und Levin werden in der Vorlesung *Einführung in die Theoretische Informatik* behandelt.

Satz 2.60 (Satz von Cook und Levin, \approx 1971)

Das aussagenlogische Erfüllbarkeitsproblem (und sogar die Einschränkung 3-SAT) ist NP-vollständig.

Die Komplexitätsklassen P und NP, der Begriff der NP-Vollständigkeit, sowie ein Beweis des Satzes von Cook und Levin werden in der Vorlesung *Einführung in die Theoretische Informatik* behandelt.

Bemerkung

 Wenn also P ≠ NP ist (was allgemein vermutet wird), gibt es für das aussagenlogische Erfüllbarkeitsproblem keinen Polynomialzeitalgorithmus.

Satz 2.60 (Satz von Cook und Levin, \approx 1971)

Das aussagenlogische Erfüllbarkeitsproblem (und sogar die Einschränkung 3-SAT) ist NP-vollständig.

Die Komplexitätsklassen P und NP, der Begriff der NP-Vollständigkeit, sowie ein Beweis des Satzes von Cook und Levin werden in der Vorlesung *Einführung in die Theoretische Informatik* behandelt.

Bemerkung

- Wenn also P ≠ NP ist (was allgemein vermutet wird), gibt es für das aussagenlogische Erfüllbarkeitsproblem keinen Polynomialzeitalgorithmus.
- Man vermutet sogar, dass es eine Konstante c>1 gibt, so dass jeder Algorithmus für 3-SAT eine worst-case Laufzeit von $\Omega(c^n)$ hat.

Satz 2.60 (Satz von Cook und Levin, \approx 1971)

Das aussagenlogische Erfüllbarkeitsproblem (und sogar die Einschränkung 3-SAT) ist NP-vollständig.

Die Komplexitätsklassen P und NP, der Begriff der NP-Vollständigkeit, sowie ein Beweis des Satzes von Cook und Levin werden in der Vorlesung *Einführung in die Theoretische Informatik* behandelt.

Bemerkung

- Wenn also $P \neq NP$ ist (was allgemein vermutet wird), gibt es für das aussagenlogische Erfüllbarkeitsproblem keinen Polynomialzeitalgorithmus.
- Man vermutet sogar, dass es eine Konstante c>1 gibt, so dass jeder Algorithmus für 3-SAT eine worst-case Laufzeit von $\Omega(c^n)$ hat. Diese Vermutung ist unter dem Namen "Exponential Time Hypothesis" (ETH) bekannt.

Satz 2.60 (Satz von Cook und Levin, \approx 1971)

Das aussagenlogische Erfüllbarkeitsproblem (und sogar die Einschränkung 3-SAT) ist NP-vollständig.

Die Komplexitätsklassen P und NP, der Begriff der NP-Vollständigkeit, sowie ein Beweis des Satzes von Cook und Levin werden in der Vorlesung *Einführung in die Theoretische Informatik* behandelt.

Bemerkung

- Wenn also $P \neq NP$ ist (was allgemein vermutet wird), gibt es für das aussagenlogische Erfüllbarkeitsproblem keinen Polynomialzeitalgorithmus.
- Man vermutet sogar, dass es eine Konstante c>1 gibt, so dass jeder Algorithmus für 3-SAT eine worst-case Laufzeit von $\Omega(c^n)$ hat. Diese Vermutung ist unter dem Namen "Exponential Time Hypothesis" (ETH) bekannt.
- Der im Worst-Case beste derzeit bekannte Algorithmus für 3-SAT hat eine Laufzeit von etwa $O(1.4^n)$.

Lemma 2.61

Es gibt einen Linearzeitalgorithmus, der bei Eingabe einer Formel $\varphi(A_1,\ldots,A_n)\in \mathsf{AL}$ und eines Tupels $(b_1,\ldots,b_n)\in \{0,1\}^n$ den Wert $\varphi[b_1,\ldots,b_n]$ berechnet.

Beweis: Übung.

Lemma 2.61

Es gibt einen Linearzeitalgorithmus, der bei Eingabe einer Formel $\varphi(A_1,\ldots,A_n)\in \mathsf{AL}$ und eines Tupels $(b_1,\ldots,b_n)\in \{0,1\}^n$ den Wert $\varphi[b_1,\ldots,b_n]$ berechnet.

Beweis: Übung.

Der folgende Algorithmus löst das aussagenlogische Erfüllbarkeitsproblem.

Wahrheitstafelalgorithmus

Eingabe: eine Formel $\varphi \in \mathsf{AL}$

- 1. Berechne die Wahrheitstafel für φ .
- 2. Falls in der letzten Spalte mindestens eine 1 auftaucht, gib "erfüllbar" aus, sonst gib "unerfüllbar" aus.

Lemma 2.61

Es gibt einen Linearzeitalgorithmus, der bei Eingabe einer Formel $\varphi(A_1,\ldots,A_n)\in \mathsf{AL}$ und eines Tupels $(b_1,\ldots,b_n)\in \{0,1\}^n$ den Wert $\varphi[b_1,\ldots,b_n]$ berechnet.

Beweis: Übung.

Der folgende Algorithmus löst das aussagenlogische Erfüllbarkeitsproblem.

Wahrheitstafelalgorithmus

Eingabe: eine Formel $\varphi \in \mathsf{AL}$

- 1. Berechne die Wahrheitstafel für φ .
- 2. Falls in der letzten Spalte mindestens eine 1 auftaucht, gib "erfüllbar" aus, sonst gib "unerfüllbar" aus.

Laufzeit:

Lemma 2.61

Es gibt einen Linearzeitalgorithmus, der bei Eingabe einer Formel $\varphi(A_1,\ldots,A_n)\in \mathsf{AL}$ und eines Tupels $(b_1,\ldots,b_n)\in \{0,1\}^n$ den Wert $\varphi[b_1,\ldots,b_n]$ berechnet.

Beweis: Übung.

Der folgende Algorithmus löst das aussagenlogische Erfüllbarkeitsproblem.

Wahrheitstafelalgorithmus

Eingabe: eine Formel $\varphi \in AL$

- 1. Berechne die Wahrheitstafel für φ .
- 2. Falls in der letzten Spalte mindestens eine 1 auftaucht, gib "erfüllbar" aus, sonst gib "unerfüllbar" aus.

Laufzeit: $O(m \cdot 2^n)$ (sogar im "Best-Case")

Der Resolutionsalgorithmus probiert einfach alle möglichen Resolutionsableitungen durch und testet so, ob es eine Resolutionswiderlegung gibt (d.h. die Klauselmenge unerfüllbar ist).

Der Resolutionsalgorithmus probiert einfach alle möglichen Resolutionsableitungen durch und testet so, ob es eine Resolutionswiderlegung gibt (d.h. die Klauselmenge unerfüllbar ist).

Resolutionsalgorithmus

Eingabe: eine endliche Klauselmenge Γ (entspricht einer KNF-Formel)

- 1. Wiederhole, bis keine neuen Klauseln mehr generiert werden: Füge alle Resolventen aller Klauseln aus Γ zu Γ hinzu.
- 2. Falls $\emptyset \in \Gamma$,

Der Resolutionsalgorithmus probiert einfach alle möglichen Resolutionsableitungen durch und testet so, ob es eine Resolutionswiderlegung gibt (d.h. die Klauselmenge unerfüllbar ist).

Resolutionsalgorithmus

Eingabe: eine endliche Klauselmenge Γ (entspricht einer KNF-Formel)

- 1. Wiederhole, bis keine neuen Klauseln mehr generiert werden: Füge alle Resolventen aller Klauseln aus Γ zu Γ hinzu.
- 2. Falls $\emptyset \in \Gamma$, gib "unerfüllbar" aus, sonst

Der Resolutionsalgorithmus probiert einfach alle möglichen Resolutionsableitungen durch und testet so, ob es eine Resolutionswiderlegung gibt (d.h. die Klauselmenge unerfüllbar ist).

Resolutionsalgorithmus

Eingabe: eine endliche Klauselmenge Γ (entspricht einer KNF-Formel)

- 1. Wiederhole, bis keine neuen Klauseln mehr generiert werden: Füge alle Resolventen aller Klauseln aus Γ zu Γ hinzu.
- 2. Falls $\emptyset \in \Gamma$, gib "unerfüllbar" aus, sonst gib "erfüllbar" aus.

Der Resolutionsalgorithmus

Der Resolutionsalgorithmus probiert einfach alle möglichen Resolutionsableitungen durch und testet so, ob es eine Resolutionswiderlegung gibt (d.h. die Klauselmenge unerfüllbar ist).

Resolutionsalgorithmus

Eingabe: eine endliche Klauselmenge Γ (entspricht einer KNF-Formel)

- Wiederhole, bis keine neuen Klauseln mehr generiert werden: Füge alle Resolventen aller Klauseln aus Γ zu Γ hinzu.
- 2. Falls $\emptyset \in \Gamma$, gib "unerfüllbar" aus, sonst gib "erfüllbar" aus.

Laufzeit:

Der Resolutionsalgorithmus

Der Resolutionsalgorithmus probiert einfach alle möglichen Resolutionsableitungen durch und testet so, ob es eine Resolutionswiderlegung gibt (d.h. die Klauselmenge unerfüllbar ist).

Resolutionsalgorithmus

Eingabe: eine endliche Klauselmenge Γ (entspricht einer KNF-Formel)

- 1. Wiederhole, bis keine neuen Klauseln mehr generiert werden: Füge alle Resolventen aller Klauseln aus Γ zu Γ hinzu.
- 2. Falls $\emptyset \in \Gamma$, gib "unerfüllbar" aus, sonst gib "erfüllbar" aus.

Laufzeit: $2^{O(n)}$ (weil es bei n Aussagensymbolen 4^n verschiedene Klauseln gibt).

Der Davis-Putnam-Logemann-Loveland Algorithmus

Der DPLL-Algorithmus ist ein in der Praxis sehr erfolgreicher Algorithmus, der die Wahrheitstafelmethode mit Resolution kombiniert.

Ähnlich wie bei dem Wahrheitstafelalgorithmus durchsucht der DPLL-Algorithmus systematisch den Raum aller möglichen Interpretationen und testet, ob diese die gegebene Klauselmenge erfüllen. Resolution wird dabei dazu verwendet, die Suche geschickt zu steuern und Dinge, die während der Suche bereits über die Klauselmenge "gelernt" wurden, weiterzuverwenden.

Der Davis-Putnam-Logemann-Loveland Algorithmus

Der DPLL-Algorithmus ist ein in der Praxis sehr erfolgreicher Algorithmus, der die Wahrheitstafelmethode mit Resolution kombiniert.

Ähnlich wie bei dem Wahrheitstafelalgorithmus durchsucht der DPLL-Algorithmus systematisch den Raum aller möglichen Interpretationen und testet, ob diese die gegebene Klauselmenge erfüllen. Resolution wird dabei dazu verwendet, die Suche geschickt zu steuern und Dinge, die während der Suche bereits über die Klauselmenge "gelernt" wurden, weiterzuverwenden.

Der DPLL-Algorithmus ist die Basis moderner SAT-Solver, die Klauselmengen, die aus Millionen von Klauseln und Hunderttausenden von Aussagensymbolen bestehen, auf Erfüllbarkeit testen können.

Eingabe: eine endliche Klauselmenge Γ (entspricht einer KNF-Formel)

1. Vereinfache Γ. % Details dazu: siehe nächste Folie

- 1. Vereinfache Γ. % Details dazu: siehe nächste Folie
- 2. Falls $\Gamma = \emptyset$,

- 1. Vereinfache Γ. % Details dazu: siehe nächste Folie
- 2. Falls $\Gamma = \emptyset$, gib "erfüllbar" aus.

- 1. Vereinfache Γ. % Details dazu: siehe nächste Folie
- 2. Falls $\Gamma = \emptyset$, gib "erfüllbar" aus.
- 3. Falls $\emptyset \in \Gamma$,

- 1. Vereinfache Γ. % Details dazu: siehe nächste Folie
- 2. Falls $\Gamma = \emptyset$, gib "erfüllbar" aus.
- 3. Falls $\emptyset \in \Gamma$, gib "unerfüllbar" aus.

- 1. Vereinfache Γ. % Details dazu: siehe nächste Folie
- 2. Falls $\Gamma = \emptyset$, gib "erfüllbar" aus.
- 3. Falls $\emptyset \in \Gamma$, gib "unerfüllbar" aus.
- 4. Wähle ein Literal λ .
- 5. % probiere aus, ob Γ ein Modell hat, bei dem das Literal λ erfüllt wird:

- 1. Vereinfache Γ. % Details dazu: siehe nächste Folie
- 2. Falls $\Gamma = \emptyset$, gib "erfüllbar" aus.
- 3. Falls $\emptyset \in \Gamma$, gib "unerfüllbar" aus.
- 4. Wähle ein Literal λ .
- 5. % probiere aus, ob Γ ein Modell hat, bei dem das Literal λ erfüllt wird: Löse rekursiv $\Gamma \cup \{\{\lambda\}\}$. Falls dies erfüllbar ist, gib "erfüllbar" aus.

- 1. Vereinfache Γ. % Details dazu: siehe nächste Folie
- 2. Falls $\Gamma = \emptyset$, gib "erfüllbar" aus.
- 3. Falls $\emptyset \in \Gamma$, gib "unerfüllbar" aus.
- 4. Wähle ein Literal λ .
- 5. % probiere aus, ob Γ ein Modell hat, bei dem das Literal λ erfüllt wird: Löse rekursiv $\Gamma \cup \{\{\lambda\}\}$. Falls dies erfüllbar ist, gib "erfüllbar" aus.
- 6. % probiere aus, ob Γ ein Modell hat, bei dem das Literal $\overline{\lambda}$ erfüllt wird:

- 1. Vereinfache Γ. % Details dazu: siehe nächste Folie
- 2. Falls $\Gamma = \emptyset$, gib "erfüllbar" aus.
- 3. Falls $\emptyset \in \Gamma$, gib "unerfüllbar" aus.
- 4. Wähle ein Literal λ .
- 5. % probiere aus, ob Γ ein Modell hat, bei dem das Literal λ erfüllt wird: Löse rekursiv $\Gamma \cup \{\{\lambda\}\}$. Falls dies erfüllbar ist, gib "erfüllbar" aus.
- % probiere aus, ob Γ ein Modell hat, bei dem das Literal λ̄ erfüllt wird: Löse rekursiv Γ ∪ {{λ̄}}. Falls dies erfüllbar ist, gib "erfüllbar" aus. Sonst gib "unerfüllbar" aus.

• Unit Propagation: Für alle "Einerklauseln" $\{\lambda\} \in \Gamma$ (wobei λ ein Literal ist), bilde alle Resolventen von $\{\lambda\}$ mit anderen Klauseln und streiche anschließend alle Klauseln, die λ enthalten. Wiederhole dies, so lange es Einerklauseln gibt.

• Unit Propagation: Für alle "Einerklauseln" $\{\lambda\} \in \Gamma$ (wobei λ ein Literal ist), bilde alle Resolventen von $\{\lambda\}$ mit anderen Klauseln und streiche anschließend alle Klauseln, die λ enthalten. Wiederhole dies, so lange es Einerklauseln gibt.

Präzise: Für jede "Einerklausel" $\{\lambda\} \in \Gamma$ tue Folgendes:

- 1. Ersetze jede Klausel $\gamma \in \Gamma$ durch die Klausel $\gamma \setminus \{\overline{\lambda}\}$.
- 2. Entferne aus Γ jede Klausel, die das Literal λ enthält.

Wiederhole dies, so lange es in Γ Einerklauseln gibt.

• Unit Propagation: Für alle "Einerklauseln" $\{\lambda\} \in \Gamma$ (wobei λ ein Literal ist), bilde alle Resolventen von $\{\lambda\}$ mit anderen Klauseln und streiche anschließend alle Klauseln, die λ enthalten. Wiederhole dies, so lange es Einerklauseln gibt.

Präzise: Für jede "Einerklausel" $\{\lambda\} \in \Gamma$ tue Folgendes:

- 1. Ersetze jede Klausel $\gamma \in \Gamma$ durch die Klausel $\gamma \setminus \{\overline{\lambda}\}$.
- 2. Entferne aus Γ jede Klausel, die das Literal λ enthält.

Wiederhole dies, so lange es in Γ Einerklauseln gibt.

• Pure Literal Rule: Literale λ , deren Negat $\overline{\lambda}$ nirgendwo in der Klauselmenge auftaucht, können auf 1 gesetzt werden. Alle Klauseln, die ein solches Literal enthalten, sind dann wahr und können gestrichen werden.

• Unit Propagation: Für alle "Einerklauseln" $\{\lambda\} \in \Gamma$ (wobei λ ein Literal ist), bilde alle Resolventen von $\{\lambda\}$ mit anderen Klauseln und streiche anschließend alle Klauseln, die λ enthalten. Wiederhole dies, so lange es Einerklauseln gibt.

Präzise: Für jede "Einerklausel" $\{\lambda\} \in \Gamma$ tue Folgendes:

- 1. Ersetze jede Klausel $\gamma \in \Gamma$ durch die Klausel $\gamma \setminus \{\overline{\lambda}\}$.
- 2. Entferne aus Γ jede Klausel, die das Literal λ enthält.

Wiederhole dies, so lange es in Γ Einerklauseln gibt.

• Pure Literal Rule: Literale λ , deren Negat $\overline{\lambda}$ nirgendwo in der Klauselmenge auftaucht, können auf 1 gesetzt werden. Alle Klauseln, die ein solches Literal enthalten, sind dann wahr und können gestrichen werden. Wiederhole dies, so lange es Literale gibt, deren Negat nirgendwo in der Klauselmenge auftaucht.

• Unit Propagation: Für alle "Einerklauseln" $\{\lambda\} \in \Gamma$ (wobei λ ein Literal ist), bilde alle Resolventen von $\{\lambda\}$ mit anderen Klauseln und streiche anschließend alle Klauseln, die λ enthalten. Wiederhole dies, so lange es Einerklauseln gibt.

Präzise: Für jede "Einerklausel" $\{\lambda\} \in \Gamma$ tue Folgendes:

- 1. Ersetze jede Klausel $\gamma \in \Gamma$ durch die Klausel $\gamma \setminus \{\overline{\lambda}\}.$
- 2. Entferne aus Γ jede Klausel, die das Literal λ enthält.

Wiederhole dies, so lange es in Γ Einerklauseln gibt.

- Pure Literal Rule: Literale λ , deren Negat $\overline{\lambda}$ nirgendwo in der Klauselmenge auftaucht, können auf 1 gesetzt werden. Alle Klauseln, die ein solches Literal enthalten, sind dann wahr und können gestrichen werden. Wiederhole dies, so lange es Literale gibt, deren Negat nirgendwo in der Klauselmenge auftaucht.
- Streiche Klauseln, die Obermengen von anderen Klauseln sind (dies ist allerdings ineffizient und wird in der Praxis zumeist weggelassen).

• Unit Propagation: Für alle "Einerklauseln" $\{\lambda\} \in \Gamma$ (wobei λ ein Literal ist), bilde alle Resolventen von $\{\lambda\}$ mit anderen Klauseln und streiche anschließend alle Klauseln, die λ enthalten. Wiederhole dies, so lange es Einerklauseln gibt.

Präzise: Für jede "Einerklausel" $\{\lambda\} \in \Gamma$ tue Folgendes:

- 1. Ersetze jede Klausel $\gamma \in \Gamma$ durch die Klausel $\gamma \setminus \{\overline{\lambda}\}.$
- 2. Entferne aus Γ jede Klausel, die das Literal λ enthält.

Wiederhole dies, so lange es in Γ Einerklauseln gibt.

- Pure Literal Rule: Literale λ , deren Negat $\overline{\lambda}$ nirgendwo in der Klauselmenge auftaucht, können auf 1 gesetzt werden. Alle Klauseln, die ein solches Literal enthalten, sind dann wahr und können gestrichen werden. Wiederhole dies, so lange es Literale gibt, deren Negat nirgendwo in der Klauselmenge auftaucht.
- Streiche Klauseln, die Obermengen von anderen Klauseln sind (dies ist allerdings ineffizient und wird in der Praxis zumeist weggelassen).

Man sieht leicht, dass das Anwenden dieser Vereinfachungsheuristiken die Klauselmenge Γ in eine erfüllbarkeitsäquivalente Klauselmenge transformiert.

• Unit Propagation: Für alle "Einerklauseln" $\{\lambda\} \in \Gamma$ (wobei λ ein Literal ist), bilde alle Resolventen von $\{\lambda\}$ mit anderen Klauseln und streiche anschließend alle Klauseln, die λ enthalten. Wiederhole dies, so lange es Einerklauseln gibt.

Präzise: Für jede "Einerklausel" $\{\lambda\} \in \Gamma$ tue Folgendes:

- 1. Ersetze jede Klausel $\gamma \in \Gamma$ durch die Klausel $\gamma \setminus \{\overline{\lambda}\}$.
- 2. Entferne aus Γ jede Klausel, die das Literal λ enthält.

Wiederhole dies, so lange es in Γ Einerklauseln gibt.

- Pure Literal Rule: Literale λ , deren Negat $\overline{\lambda}$ nirgendwo in der Klauselmenge auftaucht, können auf 1 gesetzt werden. Alle Klauseln, die ein solches Literal enthalten, sind dann wahr und können gestrichen werden. Wiederhole dies, so lange es Literale gibt, deren Negat nirgendwo in der Klauselmenge auftaucht.
- Streiche Klauseln, die Obermengen von anderen Klauseln sind (dies ist allerdings ineffizient und wird in der Praxis zumeist weggelassen).

Man sieht leicht, dass das Anwenden dieser Vereinfachungsheuristiken die Klauselmenge Γ in eine erfüllbarkeitsäquivalente Klauselmenge transformiert. Hieraus folgt leicht, dass der DPLL-Algorithmus stets die korrekte Antwort gibt (d.h., er terminiert immer, und er gibt genau dann "erfüllbar" aus, wenn die eingegebene Klauselmenge Γ erfüllbar ist).

• Unit Propagation: Für alle "Einerklauseln" $\{\lambda\} \in \Gamma$ (wobei λ ein Literal ist), bilde alle Resolventen von $\{\lambda\}$ mit anderen Klauseln und streiche anschließend alle Klauseln, die λ enthalten. Wiederhole dies, so lange es Einerklauseln gibt.

Präzise: Für jede "Einerklausel" $\{\lambda\} \in \Gamma$ tue Folgendes:

- 1. Ersetze jede Klausel $\gamma \in \Gamma$ durch die Klausel $\gamma \setminus \{\overline{\lambda}\}$.
- 2. Entferne aus Γ jede Klausel, die das Literal λ enthält.

Wiederhole dies, so lange es in Γ Einerklauseln gibt.

- Pure Literal Rule: Literale λ , deren Negat $\overline{\lambda}$ nirgendwo in der Klauselmenge auftaucht, können auf 1 gesetzt werden. Alle Klauseln, die ein solches Literal enthalten, sind dann wahr und können gestrichen werden. Wiederhole dies, so lange es Literale gibt, deren Negat nirgendwo in der Klauselmenge auftaucht.
- Streiche Klauseln, die Obermengen von anderen Klauseln sind (dies ist allerdings ineffizient und wird in der Praxis zumeist weggelassen).

Man sieht leicht, dass das Anwenden dieser Vereinfachungsheuristiken die Klauselmenge Γ in eine erfüllbarkeitsäquivalente Klauselmenge transformiert. Hieraus folgt leicht, dass der DPLL-Algorithmus stets die korrekte Antwort gibt (d.h., er terminiert immer, und er gibt genau dann "erfüllbar" aus, wenn die eingegebene Klauselmenge Γ erfüllbar ist).

Laufzeit des DPLL-Algorithmus:

 $O(m \cdot 2^n)$ im Worst-Case

• Unit Propagation: Für alle "Einerklauseln" $\{\lambda\} \in \Gamma$ (wobei λ ein Literal ist), bilde alle Resolventen von $\{\lambda\}$ mit anderen Klauseln und streiche anschließend alle Klauseln, die λ enthalten. Wiederhole dies, so lange es Einerklauseln gibt.

Präzise: Für jede "Einerklausel" $\{\lambda\} \in \Gamma$ tue Folgendes:

- 1. Ersetze jede Klausel $\gamma \in \Gamma$ durch die Klausel $\gamma \setminus \{\overline{\lambda}\}$.
- 2. Entferne aus Γ jede Klausel, die das Literal λ enthält.

Wiederhole dies, so lange es in Γ Einerklauseln gibt.

- Pure Literal Rule: Literale λ , deren Negat $\overline{\lambda}$ nirgendwo in der Klauselmenge auftaucht, können auf 1 gesetzt werden. Alle Klauseln, die ein solches Literal enthalten, sind dann wahr und können gestrichen werden. Wiederhole dies, so lange es Literale gibt, deren Negat nirgendwo in der Klauselmenge auftaucht.
- Streiche Klauseln, die Obermengen von anderen Klauseln sind (dies ist allerdings ineffizient und wird in der Praxis zumeist weggelassen).

Man sieht leicht, dass das Anwenden dieser Vereinfachungsheuristiken die Klauselmenge Γ in eine erfüllbarkeitsäquivalente Klauselmenge transformiert. Hieraus folgt leicht, dass der DPLL-Algorithmus stets die korrekte Antwort gibt (d.h., er terminiert immer, und er gibt genau dann "erfüllbar" aus, wenn die eingegebene Klauselmenge Γ erfüllbar ist).

Laufzeit des DPLL-Algorithmus:

 $O(m \cdot 2^n)$ im Worst-Case; in der Praxis aber häufig sehr effizient.

Beispiel 2.62

Sei $\Gamma :=$

$$\left\{ \begin{array}{l} \{X_1, \neg X_5, \neg X_6, X_7\}, \ \{\neg X_1, X_2, \neg X_5\}, \ \{\neg X_1, \neg X_2, \neg X_3, \neg X_5, \neg X_6\}, \\ \{X_1, X_2, \neg X_4, X_7\}, \ \{\neg X_4, \neg X_6, \neg X_7\}, \ \{X_3, \neg X_5, X_7\}, \\ \{X_3, \neg X_4, \neg X_5\}, \ \{X_5, \neg X_6\}, \ \{X_5, X_4, \neg X_8\}, \\ \{X_1, X_3, X_5, X_6, X_7\}, \ \{\neg X_7, X_8\}, \ \{\neg X_6, \neg X_7, \neg X_8\} \end{array} \right\}$$

Abschnitt 2.8:

Hornformeln

Hornformeln sind spezielle aussagenlogische Formeln, die die Basis der logischen Programmierung bilden, und für die das Erfüllbarkeitsproblem effizient gelöst werden kann.

Hornformeln sind spezielle aussagenlogische Formeln, die die Basis der logischen Programmierung bilden, und für die das Erfüllbarkeitsproblem effizient gelöst werden kann.

Definition 2.63

Eine Hornklausel ist eine disjunktive Klausel, in der höchstens ein positives Literal vorkommt.

Hornformeln sind spezielle aussagenlogische Formeln, die die Basis der logischen Programmierung bilden, und für die das Erfüllbarkeitsproblem effizient gelöst werden kann.

Definition 2.63

Eine Hornklausel ist eine disjunktive Klausel, in der höchstens ein positives Literal vorkommt.

Eine Hornformel ist eine Konjunktion endlich vieler Hornklauseln.

Hornformeln sind spezielle aussagenlogische Formeln, die die Basis der logischen Programmierung bilden, und für die das Erfüllbarkeitsproblem effizient gelöst werden kann.

Definition 2.63

Eine Hornklausel ist eine disjunktive Klausel, in der höchstens ein positives Literal vorkommt.

Eine Hornformel ist eine Konjunktion endlich vieler Hornklauseln.

Beispiele

• $\{\neg X, \neg Y, \neg Z\}$ (bzw. $\neg X \lor \neg Y \lor \neg Z$)

Hornformeln sind spezielle aussagenlogische Formeln, die die Basis der logischen Programmierung bilden, und für die das Erfüllbarkeitsproblem effizient gelöst werden kann.

Definition 2.63

Eine Hornklausel ist eine disjunktive Klausel, in der höchstens ein positives Literal vorkommt.

Eine Hornformel ist eine Konjunktion endlich vieler Hornklauseln.

- $\{\neg X, \neg Y, \neg Z\}$ (bzw. $\neg X \lor \neg Y \lor \neg Z$) ist eine Hornklausel.
- $\{\neg X, \neg Y, Z\}$ (bzw. $\neg X \lor \neg Y \lor Z$)

Hornformeln sind spezielle aussagenlogische Formeln, die die Basis der logischen Programmierung bilden, und für die das Erfüllbarkeitsproblem effizient gelöst werden kann.

Definition 2.63

Eine Hornklausel ist eine disjunktive Klausel, in der höchstens ein positives Literal vorkommt.

Eine Hornformel ist eine Konjunktion endlich vieler Hornklauseln.

- $\{\neg X, \neg Y, \neg Z\}$ (bzw. $\neg X \lor \neg Y \lor \neg Z$) ist eine Hornklausel.
- $\{\neg X, \neg Y, Z\}$ (bzw. $\neg X \lor \neg Y \lor Z$) ist eine Hornklausel.
- $\{\neg X, Y, Z\}$ (bzw. $\neg X \lor Y \lor Z$)

Hornformeln sind spezielle aussagenlogische Formeln, die die Basis der logischen Programmierung bilden, und für die das Erfüllbarkeitsproblem effizient gelöst werden kann.

Definition 2.63

Eine Hornklausel ist eine disjunktive Klausel, in der höchstens ein positives Literal vorkommt.

Eine Hornformel ist eine Konjunktion endlich vieler Hornklauseln.

- $\{\neg X, \neg Y, \neg Z\}$ (bzw. $\neg X \lor \neg Y \lor \neg Z$) ist eine Hornklausel.
- $\{\neg X, \neg Y, Z\}$ (bzw. $\neg X \lor \neg Y \lor Z$) ist eine Hornklausel.
- $\{\neg X, Y, Z\}$ (bzw. $\neg X \lor Y \lor Z$) ist <u>keine</u> Hornklausel.
- {X} (bzw. X)

Hornformeln sind spezielle aussagenlogische Formeln, die die Basis der logischen Programmierung bilden, und für die das Erfüllbarkeitsproblem effizient gelöst werden kann.

Definition 2.63

Eine Hornklausel ist eine disjunktive Klausel, in der höchstens ein positives Literal vorkommt.

Eine Hornformel ist eine Konjunktion endlich vieler Hornklauseln.

Beispiele

- $\{\neg X, \neg Y, \neg Z\}$ (bzw. $\neg X \lor \neg Y \lor \neg Z$) ist eine Hornklausel.
- $\{\neg X, \neg Y, Z\}$ (bzw. $\neg X \lor \neg Y \lor Z$) ist eine Hornklausel.
- $\{\neg X, Y, Z\}$ (bzw. $\neg X \lor Y \lor Z$) ist <u>keine</u> Hornklausel.
- $\{X\}$ (bzw. X) ist eine Hornklausel.
- Ø

HU Berlin

Hornformeln sind spezielle aussagenlogische Formeln, die die Basis der logischen Programmierung bilden, und für die das Erfüllbarkeitsproblem effizient gelöst werden kann.

Definition 2.63

Eine Hornklausel ist eine disjunktive Klausel, in der höchstens ein positives Literal vorkommt.

Eine Hornformel ist eine Konjunktion endlich vieler Hornklauseln.

- $\{\neg X, \neg Y, \neg Z\}$ (bzw. $\neg X \lor \neg Y \lor \neg Z$) ist eine Hornklausel.
- $\{\neg X, \neg Y, Z\}$ (bzw. $\neg X \lor \neg Y \lor Z$) ist eine Hornklausel.
- $\{\neg X, Y, Z\}$ (bzw. $\neg X \lor Y \lor Z$) ist <u>keine</u> Hornklausel.
- $\{X\}$ (bzw. X) ist eine Hornklausel.
- Ø ist eine Hornklausel.
- $(X \vee \neg Y) \wedge (\neg Z \vee \neg X \vee \neg Y) \wedge Y$

Hornformeln sind spezielle aussagenlogische Formeln, die die Basis der logischen Programmierung bilden, und für die das Erfüllbarkeitsproblem effizient gelöst werden kann.

Definition 2.63

Eine Hornklausel ist eine disjunktive Klausel, in der höchstens ein positives Literal vorkommt.

Eine Hornformel ist eine Konjunktion endlich vieler Hornklauseln.

- $\{\neg X, \neg Y, \neg Z\}$ (bzw. $\neg X \lor \neg Y \lor \neg Z$) ist eine Hornklausel.
- $\{\neg X, \neg Y, Z\}$ (bzw. $\neg X \lor \neg Y \lor Z$) ist eine Hornklausel.
- $\{\neg X, Y, Z\}$ (bzw. $\neg X \lor Y \lor Z$) ist <u>keine</u> Hornklausel.
- $\{X\}$ (bzw. X) ist eine Hornklausel.
- Ø ist eine Hornklausel.
- $(X \vee \neg Y) \wedge (\neg Z \vee \neg X \vee \neg Y) \wedge Y$ ist eine Hornformel.

Hornklauseln als Implikationen

• Eine Hornklausel der Form $\{\neg X_1, \dots, \neg X_{n-1}, X_n\}$ (bzw. $\neg X_1 \lor \dots \lor \neg X_{n-1} \lor X_n$) ist äquivalent zur Formel

$$(X_1 \wedge \cdots \wedge X_{n-1}) \rightarrow X_n$$
.

Hornklauseln als Implikationen

• Eine Hornklausel der Form $\{\neg X_1, \dots, \neg X_{n-1}, X_n\}$ (bzw. $\neg X_1 \lor \dots \lor \neg X_{n-1} \lor X_n$) ist äquivalent zur Formel

$$(X_1 \wedge \cdots \wedge X_{n-1}) \rightarrow X_n.$$

Solche Klauseln werden auch "Regeln" (oder "Prozedurklauseln") genannt.

HU Berlin

• Eine Hornklausel der Form $\{\neg X_1, \dots, \neg X_{n-1}, X_n\}$ (bzw. $\neg X_1 \lor \dots \lor \neg X_{n-1} \lor X_n$) ist äquivalent zur Formel

$$(X_1 \wedge \cdots \wedge X_{n-1}) \rightarrow X_n.$$

Solche Klauseln werden auch "Regeln" (oder "Prozedurklauseln") genannt.

• Eine Hornklausel der Form $\{\neg X_1, \dots, \neg X_{n-1}\}$ ist äquivalent zur Formel

$$(X_1 \wedge \ldots \wedge X_{n-1}) \rightarrow \mathbf{0}.$$

• Eine Hornklausel der Form $\{\neg X_1, \dots, \neg X_{n-1}, X_n\}$ (bzw. $\neg X_1 \lor \dots \lor \neg X_{n-1} \lor X_n$) ist äquivalent zur Formel

$$(X_1 \wedge \cdots \wedge X_{n-1}) \rightarrow X_n.$$

Solche Klauseln werden auch "Regeln" (oder "Prozedurklauseln") genannt.

• Eine Hornklausel der Form $\{\neg X_1, \dots, \neg X_{n-1}\}$ ist äquivalent zur Formel

$$(X_1 \wedge \ldots \wedge X_{n-1}) \rightarrow \mathbf{0}.$$

Solche Klauseln werden auch "Zielklauseln" (oder "Frageklauseln") genannt.

• Eine Hornklausel der Form $\{\neg X_1, \dots, \neg X_{n-1}, X_n\}$ (bzw. $\neg X_1 \lor \dots \lor \neg X_{n-1} \lor X_n$) ist äquivalent zur Formel

$$(X_1 \wedge \cdots \wedge X_{n-1}) \rightarrow X_n.$$

Solche Klauseln werden auch "Regeln" (oder "Prozedurklauseln") genannt.

• Eine Hornklausel der Form $\{\neg X_1, \dots, \neg X_{n-1}\}$ ist äquivalent zur Formel

$$(X_1 \wedge \ldots \wedge X_{n-1}) \rightarrow \mathbf{0}.$$

Solche Klauseln werden auch "Zielklauseln" (oder "Frageklauseln") genannt.

• Eine Hornklausel der Form $\{X_1\}$ ist äquivalent zur Formel

$$\mathbf{1} \rightarrow X_1$$
.

• Eine Hornklausel der Form $\{\neg X_1, \dots, \neg X_{n-1}, X_n\}$ (bzw. $\neg X_1 \lor \dots \lor \neg X_{n-1} \lor X_n$) ist äquivalent zur Formel

$$(X_1 \wedge \cdots \wedge X_{n-1}) \rightarrow X_n.$$

Solche Klauseln werden auch "Regeln" (oder "Prozedurklauseln") genannt.

• Eine Hornklausel der Form $\{\neg X_1, \dots, \neg X_{n-1}\}$ ist äquivalent zur Formel

$$(X_1 \wedge \ldots \wedge X_{n-1}) \rightarrow \mathbf{0}.$$

Solche Klauseln werden auch "Zielklauseln" (oder "Frageklauseln") genannt.

• Eine Hornklausel der Form $\{X_1\}$ ist äquivalent zur Formel

$$1 \rightarrow X_1$$
.

Solche Klauseln werden auch "Tatsachenklausel" genannt.

• Eine Hornklausel der Form $\{\neg X_1, \dots, \neg X_{n-1}, X_n\}$ (bzw. $\neg X_1 \lor \dots \lor \neg X_{n-1} \lor X_n$) ist äquivalent zur Formel

$$(X_1 \wedge \cdots \wedge X_{n-1}) \rightarrow X_n.$$

Solche Klauseln werden auch "Regeln" (oder "Prozedurklauseln") genannt.

• Eine Hornklausel der Form $\{\neg X_1, \dots, \neg X_{n-1}\}$ ist äquivalent zur Formel

$$(X_1 \wedge \ldots \wedge X_{n-1}) \rightarrow \mathbf{0}.$$

Solche Klauseln werden auch "Zielklauseln" (oder "Frageklauseln") genannt.

• Eine Hornklausel der Form $\{X_1\}$ ist äquivalent zur Formel

$$\mathbf{1} \rightarrow X_1$$
.

Solche Klauseln werden auch "Tatsachenklausel" genannt.

Die leere (Horn-)Klausel ∅ ist unerfüllbar und daher äquivalent zur Formel

$$1 \rightarrow 0$$
.

Der folgende Algorithmus löst das Erfüllbarkeitsproblem für Hornformeln in Polynomialzeit.

Wir geben zunächst den Algorithmus an, betrachten dann Beispielläufe davon, analysieren die Laufzeit und zeigen danach, dass der Algorithmus korrekt ist, d.h. stets die richtige Antwort gibt.

- 1. Wiederhole:
- 2. Falls $\emptyset \in \Gamma$

- 1. Wiederhole:
- 2. Falls $\emptyset \in \Gamma$, so halte mit Ausgabe "unerfüllbar".

- 1. Wiederhole:
- 2. Falls $\emptyset \in \Gamma$, so halte mit Ausgabe "unerfüllbar".
- 3. Falls Γ keine Tatsachenklausel (d.h. Klausel $\{X\}$ mit $X \in AS$) enthält

- 1. Wiederhole:
- 2. Falls $\emptyset \in \Gamma$, so halte mit Ausgabe "unerfüllbar".
- 3. Falls Γ keine Tatsachenklausel (d.h. Klausel $\{X\}$ mit $X \in AS$) enthält, so halte mit Ausgabe "erfüllbar".
 - % Γ wird erfüllt, indem jedes Aussagensymbol mit 0 belegt wird

- 1. Wiederhole:
- 2. Falls $\emptyset \in \Gamma$, so halte mit Ausgabe "unerfüllbar".
- Falls Γ keine Tatsachenklausel (d.h. Klausel {X} mit X ∈ AS) enthält, so halte mit Ausgabe "erfüllbar".
 % Γ wird erfüllt, indem jedes Aussagensymbol mit 0 belegt wird
- Wähle eine Tatsachenklausel {X} ∈ Γ.
 % Idee: Um Γ zu erfüllen, muss X mit dem Wert 1 belegt werden

- 1. Wiederhole:
- 2. Falls $\emptyset \in \Gamma$, so halte mit Ausgabe "unerfüllbar".
- Falls Γ keine Tatsachenklausel (d.h. Klausel {X} mit X ∈ AS) enthält, so halte mit Ausgabe "erfüllbar".
 % Γ wird erfüllt, indem jedes Aussagensymbol mit 0 belegt wird
- Wähle eine Tatsachenklausel {X} ∈ Γ.
 ½ Idee: Um Γ zu erfüllen, muss X mit dem Wert 1 belegt werden
- 5. Streiche $\neg X$ aus allen Klauseln $\delta \in \Gamma$, die das Literal $\neg X$ enthalten.
 - % Wenn X den Wert 1 hat, trägt $\neg X$ nichts zum Erfüllen einer Klausel bei

- 1. Wiederhole:
- 2. Falls $\emptyset \in \Gamma$, so halte mit Ausgabe "unerfüllbar".
- Falls Γ keine Tatsachenklausel (d.h. Klausel {X} mit X ∈ AS) enthält, so halte mit Ausgabe "erfüllbar".
 % Γ wird erfüllt, indem jedes Aussagensymbol mit 0 belegt wird
- Wähle eine Tatsachenklausel {X} ∈ Γ.
 % Idee: Um Γ zu erfüllen, muss X mit dem Wert 1 belegt werden
- 5. Streiche $\neg X$ aus allen Klauseln $\delta \in \Gamma$, die das Literal $\neg X$ enthalten.
 - % Wenn X den Wert 1 hat, trägt $\neg X$ nichts zum Erfüllen einer Klausel bei
- Streiche aus Γ alle Klauseln δ ∈ Γ, die das Literal X enthalten (d.h. entferne aus Γ alle δ ∈ Γ, für die gilt: X ∈ δ).
 Wenn X den Wert 1 hat, sind solche Klauseln erfüllt

Beispiele 2.64

Wir wenden den Streichungsalgorithmus auf die beiden folgenden Mengen von Hornklauseln an.

(a)
$$\Gamma_a := \{ S \to \mathbf{0}, (P \land Q) \to R, (S \land R) \to \mathbf{0}, (U \land T \land Q) \to P, (U \land T) \to Q, \mathbf{1} \to U, \mathbf{1} \to T \}$$

Beispiele 2.64

Wir wenden den Streichungsalgorithmus auf die beiden folgenden Mengen von Hornklauseln an.

(a)
$$\Gamma_a := \{ S \to \mathbf{0}, (P \land Q) \to R, (S \land R) \to \mathbf{0}, (U \land T \land Q) \to P, (U \land T) \to Q, \mathbf{1} \to U, \mathbf{1} \to T \}$$

(b)
$$\Gamma_b := \{ (Q \wedge P) \to T, (U \wedge T \wedge Q) \to R, (U \wedge T) \to Q, \mathbf{1} \to U, R \to \mathbf{0}, \mathbf{1} \to T \}$$

Man sieht leicht, dass in jedem Schleifendurchlauf die Anzahl der Klauseln in Γ kleiner wird.

Man sieht leicht, dass in jedem Schleifendurchlauf die Anzahl der Klauseln in Γ kleiner wird. Daher terminiert der Algorithmus nach maximal m Schleifendurchläufen, wobei m die Anzahl der Klauseln in der Eingabemenge Γ ist.

Man sieht leicht, dass in jedem Schleifendurchlauf die Anzahl der Klauseln in Γ kleiner wird. Daher terminiert der Algorithmus nach maximal m Schleifendurchläufen, wobei m die Anzahl der Klauseln in der Eingabemenge Γ ist.

In jedem einzelnen Schleifendurchlauf betrachtet der Algorithmus alle Klauseln der aktuellen Klauselmenge und führt dabei O(n) Schritte durch, wobei $n = \|\Gamma\|$ die Größe der Klauselmenge ist.

Man sieht leicht, dass in jedem Schleifendurchlauf die Anzahl der Klauseln in Γ kleiner wird. Daher terminiert der Algorithmus nach maximal m Schleifendurchläufen, wobei m die Anzahl der Klauseln in der Eingabemenge Γ ist.

In jedem einzelnen Schleifendurchlauf betrachtet der Algorithmus alle Klauseln der aktuellen Klauselmenge und führt dabei O(n) Schritte durch, wobei $n = \|\Gamma\|$ die Größe der Klauselmenge ist.

Insgesamt terminiert der Streichungsalgorithmus also nach $O(m \cdot n)$ Schritten, d.h. in Zeit polynomiell in der Größe von Γ .

Man sieht leicht, dass in jedem Schleifendurchlauf die Anzahl der Klauseln in Γ kleiner wird. Daher terminiert der Algorithmus nach maximal m Schleifendurchläufen, wobei m die Anzahl der Klauseln in der Eingabemenge Γ ist.

In jedem einzelnen Schleifendurchlauf betrachtet der Algorithmus alle Klauseln der aktuellen Klauselmenge und führt dabei O(n) Schritte durch, wobei $n = \|\Gamma\|$ die Größe der Klauselmenge ist.

Insgesamt terminiert der Streichungsalgorithmus also nach $O(m \cdot n)$ Schritten, d.h. in Zeit polynomiell in der Größe von Γ .

Satz 2.65

Die Laufzeit des Streichungsalgorithmus ist $O(m \cdot n)$, wobei $m = |\Gamma|$ die Anzahl der Hornklauseln in der eingegebenen Menge Γ und $n = |\Gamma|$ die Größe von Γ ist.

Man sieht leicht, dass in jedem Schleifendurchlauf die Anzahl der Klauseln in Γ kleiner wird. Daher terminiert der Algorithmus nach maximal m Schleifendurchläufen, wobei m die Anzahl der Klauseln in der Eingabemenge Γ ist.

In jedem einzelnen Schleifendurchlauf betrachtet der Algorithmus alle Klauseln der aktuellen Klauselmenge und führt dabei O(n) Schritte durch, wobei $n = \|\Gamma\|$ die Größe der Klauselmenge ist.

Insgesamt terminiert der Streichungsalgorithmus also nach $O(m \cdot n)$ Schritten, d.h. in Zeit polynomiell in der Größe von Γ .

Satz 2.65

Die Laufzeit des Streichungsalgorithmus ist $O(m \cdot n)$, wobei $m = |\Gamma|$ die Anzahl der Hornklauseln in der eingegebenen Menge Γ und $n = |\Gamma|$ die Größe von Γ ist.

Bemerkung

Eine Variante des Streichungsalgorithmus läuft sogar in Linearzeit, d.h. in Zeit O(n).

Der Streichungsalgorithmus und Resolution

Lemma 2.66

Sei Γ_0 eine endliche Menge von Hornklauseln und δ eine Klausel, die zu irgendeinem Zeitpunkt während des Laufs des Streichungsalgorithmus bei Eingabe Γ_0 in der vom Algorithmus gespeicherten Menge Γ liegt. Dann gilt: $\Gamma_0 \vdash_R \delta$.

Korrektheit des Streichungsalgorithmus

Satz 2.67

Der Streichungsalgorithmus ist korrekt.

Das heißt, bei Eingabe einer endlichen Menge Γ_0 von Hornklauseln hält der Algorithmus mit Ausgabe "erfüllbar", falls Γ_0 erfüllbar ist, und mit Ausgabe "nicht erfüllbar", falls Γ_0 unerfüllbar ist.

Kapitel 3:

Logik erster Stufe

Abschnitt 3.1:

Strukturen

Strukturen

Wir führen einen allgemeinen Strukturbegriff ein, der es uns erlaubt:

- mathematische Strukturen wie Gruppen, Körper, Vektorräume, Graphen, etc.
- und die gängigen Modelle der Informatik wie Transitionssysteme, endliche Automaten, relationale Datenbanken, Schaltkreise, etc.

zu beschreiben.

Signaturen

Definition 3.1

Eine Signatur (auch Vokabular oder Symbolmenge) ist eine Menge σ von Relations-, Funktions- und/oder Konstantensymbolen.

Signaturen

Definition 3.1

Eine Signatur (auch Vokabular oder Symbolmenge) ist eine Menge σ von Relations-, Funktions- und/oder Konstantensymbolen.

Jedes Relationsymbol $R \in \sigma$ und jedes Funktionssymbol $f \in \sigma$ hat eine Stelligkeit (bzw. Arität, engl. arity)

$$ar(R) \in \mathbb{N} \setminus \{0\}$$
 bzw. $ar(f) \in \mathbb{N} \setminus \{0\}$.

• In diesem Kapitel bezeichnet der griechische Buchstabe σ (in Worten: sigma) immer eine Signatur.

- In diesem Kapitel bezeichnet der griechische Buchstabe σ (in Worten: sigma) immer eine Signatur.
- Für Relationssymbole verwenden wir normalerweise Großbuchstaben wie R, P, Q, E, für Funktionsymbole verwenden wir meistens Kleinbuchstaben wie f, g, h und für Konstantensymbole Kleinbuchstaben wie c, d.

- In diesem Kapitel bezeichnet der griechische Buchstabe σ (in Worten: sigma) immer eine Signatur.
- Für Relationssymbole verwenden wir normalerweise Großbuchstaben wie R, P, Q, E, für Funktionsymbole verwenden wir meistens Kleinbuchstaben wie f, g, h und für Konstantensymbole Kleinbuchstaben wie c, d.
- Gelegentlich verwenden wir als Relations- und Funktionssymbole auch Zeichen wie \leq (2-stelliges Relationssymbol) und $+,\cdot$ (2-stellige Funktionssymbole), und wir verwenden $\underline{0},\underline{1}$ als Konstantensymbole.

- In diesem Kapitel bezeichnet der griechische Buchstabe σ (in Worten: sigma) immer eine Signatur.
- Für Relationssymbole verwenden wir normalerweise Großbuchstaben wie R, P, Q, E, für Funktionsymbole verwenden wir meistens Kleinbuchstaben wie f, g, h und für Konstantensymbole Kleinbuchstaben wie c, d.
- Gelegentlich verwenden wir als Relations- und Funktionssymbole auch Zeichen wie \leq (2-stelliges Relationssymbol) und $+,\cdot$ (2-stellige Funktionssymbole), und wir verwenden $\underline{0},\underline{1}$ als Konstantensymbole.
- Die Stelligkeit eines Relations- oder Funktionssymbols deuten wir häufig an, indem wir sie mit Schrägstrich hinter das Symbol schreiben.

- In diesem Kapitel bezeichnet der griechische Buchstabe σ (in Worten: sigma) immer eine Signatur.
- Für Relationssymbole verwenden wir normalerweise Großbuchstaben wie R, P, Q, E, für Funktionsymbole verwenden wir meistens Kleinbuchstaben wie f, g, h und für Konstantensymbole Kleinbuchstaben wie c, d.
- Gelegentlich verwenden wir als Relations- und Funktionssymbole auch Zeichen wie \leq (2-stelliges Relationssymbol) und $+,\cdot$ (2-stellige Funktionssymbole), und wir verwenden $\underline{0},\underline{1}$ als Konstantensymbole.
- Die Stelligkeit eines Relations- oder Funktionssymbols deuten wir häufig an, indem wir sie mit Schrägstrich hinter das Symbol schreiben.

Beispiel

Die Notation R/2 deutet an, dass R ein 2-stelliges Relationssymbol ist.

Strukturen

Definition 3.2

Eine σ -Struktur \mathcal{A} besteht aus folgenden Komponenten:

• einer nicht-leeren Menge A, dem Universum von A (auch: Träger, engl. universe, domain),

Strukturen

Definition 3.2

Eine σ -Struktur \mathcal{A} besteht aus folgenden Komponenten:

- einer nicht-leeren Menge A, dem Universum von A (auch: Träger, engl. universe, domain),
- für jedes Relationssymbol $R \in \sigma$ und für $k := \operatorname{ar}(R)$ gibt es eine k-stellige Relation $R^{\mathcal{A}} \subseteq A^k$,

Strukturen

Definition 3.2

Eine σ -Struktur \mathcal{A} besteht aus folgenden Komponenten:

- einer nicht-leeren Menge A, dem Universum von A (auch: Träger, engl. universe, domain),
- für jedes Relationssymbol $R \in \sigma$ und für $k := \operatorname{ar}(R)$ gibt es eine k-stellige Relation $R^{\mathcal{A}} \subseteq \mathcal{A}^k$,
- für jedes Funktionssymbol $f \in \sigma$ und für k := ar(f) gibt es eine k-stellige Funktion $f^{A} : A^{k} \to A$, und

Strukturen

Definition 3.2

Eine σ -Struktur \mathcal{A} besteht aus folgenden Komponenten:

- einer nicht-leeren Menge A, dem Universum von A (auch: Träger, engl. universe, domain),
- für jedes Relationssymbol $R \in \sigma$ und für $k := \operatorname{ar}(R)$ gibt es eine k-stellige Relation $R^{\mathcal{A}} \subseteq A^k$,
- für jedes Funktionssymbol $f \in \sigma$ und für k := ar(f) gibt es eine k-stellige Funktion $f^{A} : A^{k} \to A$, und
- für jedes Konstantensymbol $c \in \sigma$ gibt es ein Element $c^{\mathcal{A}} \in A$.

• Wir beschreiben σ -Strukturen oft in Tupelschreibweise:

$$\mathcal{A} = (A, (S^{\mathcal{A}})_{S \in \sigma}).$$

• Wir beschreiben σ -Strukturen oft in Tupelschreibweise:

$$A = (A, (S^A)_{S \in \sigma}).$$

Falls $\sigma = \{S_1, \dots, S_k\}$ endlich ist, schreiben wir auch

$$A = (A, S_1^{A}, \ldots, S_k^{A}).$$

• Wir beschreiben σ -Strukturen oft in Tupelschreibweise:

$$A = (A, (S^A)_{S \in \sigma}).$$

Falls
$$\sigma = \{S_1, \dots, S_k\}$$
 endlich ist, schreiben wir auch $\mathcal{A} = (A, S_1^{\mathcal{A}}, \dots, S_k^{\mathcal{A}}).$

• Wir bezeichnen σ -Strukturen meistens mit "kalligraphischen" Buchstaben wie $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{W}, \dots$

• Wir beschreiben σ -Strukturen oft in Tupelschreibweise: $\mathcal{A} = (A, (S^{\mathcal{A}})_{S \in \sigma}).$

Falls
$$\sigma = \{S_1, \dots, S_k\}$$
 endlich ist, schreiben wir auch $\mathcal{A} = (A, S_1^{\mathcal{A}}, \dots, S_k^{\mathcal{A}}).$

• Wir bezeichnen σ -Strukturen meistens mit "kalligraphischen" Buchstaben wie $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{W}, \ldots$ Das Universum der Strukturen bezeichnen wir dann durch die entsprechenden lateinischen Großbuchstaben, also A, B, C, W, \ldots

Mengen

Für die leere Signatur $\sigma:=\emptyset$ bestehen $\sigma\text{-}\mathsf{Strukturen}$

Mengen

Für die leere Signatur $\sigma:=\emptyset$ bestehen σ -Strukturen nur aus ihrem Universum, sind also einfach (nicht-leere) Mengen.

In diesem Kapitel bezeichnet E immer ein zweistelliges Relationssymbol.

• Ein gerichteter Graph (kurz: Digraph) $\mathcal{G} = (V^{\mathcal{G}}, E^{\mathcal{G}})$ mit Knotenmenge $V^{\mathcal{G}}$ und Kantenmenge $E^{\mathcal{G}}$ ist eine $\{E\}$ -Struktur. Das Universum ist die Knotenmenge $V^{\mathcal{G}}$.

In diesem Kapitel bezeichnet E immer ein zweistelliges Relationssymbol.

- Ein gerichteter Graph (kurz: Digraph) $\mathcal{G} = (V^{\mathcal{G}}, E^{\mathcal{G}})$ mit Knotenmenge $V^{\mathcal{G}}$ und Kantenmenge $E^{\mathcal{G}}$ ist eine $\{E\}$ -Struktur. Das Universum ist die Knotenmenge $V^{\mathcal{G}}$.
- Einen ungerichteten Graphen $\mathcal{G}=(V^{\mathcal{G}},E^{\mathcal{G}})$ mit Knotenmenge $V^{\mathcal{G}}$ und Kantenmenge $E^{\mathcal{G}}\subseteq\{e\subseteq V^{\mathcal{G}}:|e|=2\}$ repräsentieren wir durch eine $\{E\}$ -Struktur $\mathcal{A}=(A,E^{\mathcal{A}})$

In diesem Kapitel bezeichnet E immer ein zweistelliges Relationssymbol.

- Ein gerichteter Graph (kurz: Digraph) $\mathcal{G} = (V^{\mathcal{G}}, E^{\mathcal{G}})$ mit Knotenmenge $V^{\mathcal{G}}$ und Kantenmenge $E^{\mathcal{G}}$ ist eine $\{E\}$ -Struktur. Das Universum ist die Knotenmenge $V^{\mathcal{G}}$.
- Einen ungerichteten Graphen $\mathcal{G}=(V^{\mathcal{G}},E^{\mathcal{G}})$ mit Knotenmenge $V^{\mathcal{G}}$ und Kantenmenge $E^{\mathcal{G}}\subseteq\{e\subseteq V^{\mathcal{G}}:|e|=2\}$ repräsentieren wir durch eine $\{E\}$ -Struktur $\mathcal{A}=(A,E^{\mathcal{A}})$ mit Universum $A=V^{\mathcal{G}}$ und Relation $E^{\mathcal{A}}=\{(u,v):\{u,v\}\in E^{\mathcal{G}}\}.$

In diesem Kapitel bezeichnet *E* immer ein zweistelliges Relationssymbol.

- Ein gerichteter Graph (kurz: Digraph) $\mathcal{G} = (V^{\mathcal{G}}, E^{\mathcal{G}})$ mit Knotenmenge $V^{\mathcal{G}}$ und Kantenmenge $E^{\mathcal{G}}$ ist eine $\{E\}$ -Struktur. Das Universum ist die Knotenmenge $V^{\mathcal{G}}$.
- Einen ungerichteten Graphen $\mathcal{G}=(V^{\mathcal{G}},E^{\mathcal{G}})$ mit Knotenmenge $V^{\mathcal{G}}$ und Kantenmenge $E^{\mathcal{G}}\subseteq\{e\subseteq V^{\mathcal{G}}:|e|=2\}$ repräsentieren wir durch eine $\{E\}$ -Struktur $\mathcal{A}=(A,E^{\mathcal{A}})$ mit Universum $A=V^{\mathcal{G}}$ und Relation $E^{\mathcal{A}}=\{(u,v):\{u,v\}\in E^{\mathcal{G}}\}$. Insbesondere ist $E^{\mathcal{A}}$ symmetrisch und irreflexiv im Sinne der folgenden Definition.

Definition 3.3

Definition 3.3

Sei $A = (A, R^A)$, wobei R^A eine zweistellige Relation über der Menge A ist (d.h. (A, R^A) ist ein gerichteter Graph).

(a) $R^{\mathcal{A}}$ heißt reflexiv, wenn

Definition 3.3

Sei $A = (A, R^A)$, wobei R^A eine zweistellige Relation über der Menge A ist (d.h. (A, R^A) ist ein gerichteter Graph).

(a) R^A heißt reflexiv, wenn für alle $a \in A$ gilt: $(a, a) \in R^A$.

Definition 3.3

Sei $A = (A, R^A)$, wobei R^A eine zweistellige Relation über der Menge A ist (d.h. (A, R^A) ist ein gerichteter Graph).

(a) $R^{\mathcal{A}}$ heißt reflexiv, wenn für alle $a \in A$ gilt: $(a, a) \in R^{\mathcal{A}}$. $R^{\mathcal{A}}$ heißt irreflexiv, wenn

Definition 3.3

Sei $A = (A, R^A)$, wobei R^A eine zweistellige Relation über der Menge A ist (d.h. (A, R^A) ist ein gerichteter Graph).

(a) $R^{\mathcal{A}}$ heißt reflexiv, wenn für alle $a \in A$ gilt: $(a, a) \in R^{\mathcal{A}}$. $R^{\mathcal{A}}$ heißt irreflexiv, wenn für alle $a \in A$ gilt: $(a, a) \notin R^{\mathcal{A}}$.

Definition 3.3

- (a) $R^{\mathcal{A}}$ heißt reflexiv, wenn für alle $a \in A$ gilt: $(a, a) \in R^{\mathcal{A}}$. $R^{\mathcal{A}}$ heißt irreflexiv, wenn für alle $a \in A$ gilt: $(a, a) \notin R^{\mathcal{A}}$.
- (b) $R^{\mathcal{A}}$ heißt symmetrisch, wenn

Definition 3.3

- (a) $R^{\mathcal{A}}$ heißt reflexiv, wenn für alle $a \in A$ gilt: $(a, a) \in R^{\mathcal{A}}$. $R^{\mathcal{A}}$ heißt irreflexiv, wenn für alle $a \in A$ gilt: $(a, a) \notin R^{\mathcal{A}}$.
- (b) $R^{\mathcal{A}}$ heißt symmetrisch, wenn für alle $a,b\in A$ gilt: Wenn $(a,b)\in R^{\mathcal{A}}$, dann ist auch $(b,a)\in R^{\mathcal{A}}$.

Definition 3.3

Sei $A = (A, R^A)$, wobei R^A eine zweistellige Relation über der Menge A ist (d.h. (A, R^A) ist ein gerichteter Graph).

- (a) $R^{\mathcal{A}}$ heißt reflexiv, wenn für alle $a \in A$ gilt: $(a, a) \in R^{\mathcal{A}}$. $R^{\mathcal{A}}$ heißt irreflexiv, wenn für alle $a \in A$ gilt: $(a, a) \notin R^{\mathcal{A}}$.
- (b) $R^{\mathcal{A}}$ heißt symmetrisch, wenn für alle $a,b\in A$ gilt: Wenn $(a,b)\in R^{\mathcal{A}}$, dann ist auch $(b,a)\in R^{\mathcal{A}}$.

 $R^{\mathcal{A}}$ heißt antisymmetrisch, wenn

Definition 3.3

Sei $A = (A, R^A)$, wobei R^A eine zweistellige Relation über der Menge A ist (d.h. (A, R^A) ist ein gerichteter Graph).

- (a) $R^{\mathcal{A}}$ heißt reflexiv, wenn für alle $a \in A$ gilt: $(a, a) \in R^{\mathcal{A}}$. $R^{\mathcal{A}}$ heißt irreflexiv, wenn für alle $a \in A$ gilt: $(a, a) \notin R^{\mathcal{A}}$.
- (b) $R^{\mathcal{A}}$ heißt symmetrisch, wenn für alle $a, b \in A$ gilt:

Wenn
$$(a, b) \in R^{\mathcal{A}}$$
, dann ist auch $(b, a) \in R^{\mathcal{A}}$.

 $R^{\mathcal{A}}$ heißt antisymmetrisch, wenn für alle $a,b\in A$ mit $a\neq b$ gilt:

Wenn
$$(a, b) \in R^{\mathcal{A}}$$
, dann $(b, a) \notin R^{\mathcal{A}}$.

Definition 3.3

- (a) $R^{\mathcal{A}}$ heißt reflexiv, wenn für alle $a \in A$ gilt: $(a, a) \in R^{\mathcal{A}}$. $R^{\mathcal{A}}$ heißt irreflexiv, wenn für alle $a \in A$ gilt: $(a, a) \notin R^{\mathcal{A}}$.
- (b) $R^{\mathcal{A}}$ heißt symmetrisch, wenn für alle $a,b\in A$ gilt: Wenn $(a,b)\in R^{\mathcal{A}}$, dann ist auch $(b,a)\in R^{\mathcal{A}}$.
 - $R^{\mathcal{A}}$ heißt antisymmetrisch, wenn für alle $a,b\in A$ mit $a\neq b$ gilt: Wenn $(a,b)\in R^{\mathcal{A}}$, dann $(b,a)\notin R^{\mathcal{A}}$.
- (c) $R^{\mathcal{A}}$ heißt transitiv,

Definition 3.3

- (a) $R^{\mathcal{A}}$ heißt reflexiv, wenn für alle $a \in A$ gilt: $(a, a) \in R^{\mathcal{A}}$. $R^{\mathcal{A}}$ heißt irreflexiv, wenn für alle $a \in A$ gilt: $(a, a) \notin R^{\mathcal{A}}$.
- (b) $R^{\mathcal{A}}$ heißt symmetrisch, wenn für alle $a,b\in A$ gilt: Wenn $(a,b)\in R^{\mathcal{A}}$, dann ist auch $(b,a)\in R^{\mathcal{A}}$.
 - $R^{\mathcal{A}}$ heißt antisymmetrisch, wenn für alle $a, b \in A$ mit $a \neq b$ gilt: Wenn $(a, b) \in R^{\mathcal{A}}$, dann $(b, a) \notin R^{\mathcal{A}}$.
- (c) $R^{\mathcal{A}}$ heißt transitiv, wenn für alle $a,b,c\in A$ gilt: Wenn $(a,b)\in R^{\mathcal{A}}$ und $(b,c)\in R^{\mathcal{A}}$, dann auch $(a,c)\in R^{\mathcal{A}}$.

Definition 3.3

- (a) $R^{\mathcal{A}}$ heißt reflexiv, wenn für alle $a \in A$ gilt: $(a, a) \in R^{\mathcal{A}}$. $R^{\mathcal{A}}$ heißt irreflexiv, wenn für alle $a \in A$ gilt: $(a, a) \notin R^{\mathcal{A}}$.
- (b) $R^{\mathcal{A}}$ heißt symmetrisch, wenn für alle $a,b\in A$ gilt: Wenn $(a,b)\in R^{\mathcal{A}}$, dann ist auch $(b,a)\in R^{\mathcal{A}}$.
 - $R^{\mathcal{A}}$ heißt antisymmetrisch, wenn für alle $a,b\in A$ mit $a\neq b$ gilt: Wenn $(a,b)\in R^{\mathcal{A}}$, dann $(b,a)\notin R^{\mathcal{A}}$.
- (c) $R^{\mathcal{A}}$ heißt transitiv, wenn für alle $a,b,c\in A$ gilt: Wenn $(a,b)\in R^{\mathcal{A}}$ und $(b,c)\in R^{\mathcal{A}}$, dann auch $(a,c)\in R^{\mathcal{A}}$.
- (d) $R^{\mathcal{A}}$ heißt konnex,

Definition 3.3

Sei $A = (A, R^A)$, wobei R^A eine zweistellige Relation über der Menge A ist (d.h. (A, R^A) ist ein gerichteter Graph).

- (a) $R^{\mathcal{A}}$ heißt reflexiv, wenn für alle $a \in A$ gilt: $(a, a) \in R^{\mathcal{A}}$. $R^{\mathcal{A}}$ heißt irreflexiv, wenn für alle $a \in A$ gilt: $(a, a) \notin R^{\mathcal{A}}$.
- (b) $R^{\mathcal{A}}$ heißt symmetrisch, wenn für alle $a,b\in A$ gilt:

Wenn
$$(a, b) \in R^{\mathcal{A}}$$
, dann ist auch $(b, a) \in R^{\mathcal{A}}$.

 $R^{\mathcal{A}}$ heißt antisymmetrisch, wenn für alle $a, b \in A$ mit $a \neq b$ gilt: Wenn $(a, b) \in R^{\mathcal{A}}$, dann $(b, a) \notin R^{\mathcal{A}}$.

- (c) $R^{\mathcal{A}}$ heißt transitiv, wenn für alle $a,b,c\in A$ gilt: Wenn $(a,b)\in R^{\mathcal{A}}$ und $(b,c)\in R^{\mathcal{A}}$, dann auch $(a,c)\in R^{\mathcal{A}}$.
- (d) R^A heißt konnex, wenn für alle $a, b \in A$ gilt:

$$(a,b) \in R^{\mathcal{A}}$$
 oder $(b,a) \in R^{\mathcal{A}}$ oder $a = b$.

HU Berlin

Eine Äquivalenzrelation auf einer Menge A ist

Eine Äquivalenzrelation auf einer Menge A ist eine 2-stellige Relation über A, die reflexiv, transitiv und symmetrisch ist.

Eine Äquivalenzrelation auf einer Menge A ist eine 2-stellige Relation über A, die reflexiv, transitiv und symmetrisch ist.

Beispiele

(a) Gleichheit: Für jede Menge M ist $\{(m, m) : m \in M\}$ eine Äquivalenzrelation auf M.

Eine Äquivalenzrelation auf einer Menge A ist eine 2-stellige Relation über A, die reflexiv, transitiv und symmetrisch ist.

Beispiele

- (a) Gleichheit: Für jede Menge M ist $\{(m, m) : m \in M\}$ eine Äquivalenzrelation auf M.
- (b) Gleichmächtigkeit: Für jede endliche Menge M und deren Potenzmenge $\mathcal{P}(M) = \{N : N \subseteq M\}$ gilt: $\{(A,B) : A,B \subseteq M, |A| = |B|\}$ ist eine Äquivalenzrelation auf $\mathcal{P}(M)$.

HU Berlin

Eine Äquivalenzrelation auf einer Menge A ist eine 2-stellige Relation über A, die reflexiv, transitiv und symmetrisch ist.

Beispiele

- (a) Gleichheit: Für jede Menge M ist $\{(m, m) : m \in M\}$ eine Äquivalenzrelation auf M.
- (b) Gleichmächtigkeit: Für jede endliche Menge M und deren Potenzmenge $\mathcal{P}(M) = \{N : N \subseteq M\}$ gilt: $\{(A,B) : A,B \subseteq M, |A| = |B|\}$ ist eine Äquivalenzrelation auf $\mathcal{P}(M)$.
- (c) Logische Äquivalenz: Die Relation $\{(\varphi,\psi): \varphi,\psi\in \mathsf{AL},\ \varphi\equiv\psi\}$ ist eine Äquivalenzrelation auf der Menge AL aller aussagenlogischen Formeln.

In diesem Kapitel bezeichnet \leq immer ein zweistelliges Relationssymbol. Für \leq verwenden wir Infixschreibweise, d.h., wir schreiben $x \leq^{\mathcal{A}} y$ statt $(x, y) \in \leq^{\mathcal{A}}$.

HU Berlin

In diesem Kapitel bezeichnet \leq immer ein zweistelliges Relationssymbol. Für \leq verwenden wir Infixschreibweise, d.h., wir schreiben $x \leq^{\mathcal{A}} y$ statt $(x, y) \in \leq^{\mathcal{A}}$.

(a) Eine Präordnung ist eine $\{\leqslant\}$ -Struktur $\mathcal{A}=(A,\leqslant^{\mathcal{A}})$, bei der $\leqslant^{\mathcal{A}}$ reflexiv und transitiv ist

In diesem Kapitel bezeichnet \leqslant immer ein zweistelliges Relationssymbol. Für \leqslant verwenden wir Infixschreibweise, d.h., wir schreiben $x \leqslant^{\mathcal{A}} y$ statt $(x,y) \in \leqslant^{\mathcal{A}}$.

- (a) Eine Präordnung ist eine $\{\leqslant\}$ -Struktur $\mathcal{A}=(A,\leqslant^{\mathcal{A}})$, bei der $\leqslant^{\mathcal{A}}$ reflexiv und transitiv ist.
- (b) Eine partielle Ordnung (oder Halbordnung) ist eine Präordnung \mathcal{A} , bei der $\leqslant^{\mathcal{A}}$ antisymmetrisch ist.

HU Berlin

In diesem Kapitel bezeichnet \leq immer ein zweistelliges Relationssymbol. Für \leq verwenden wir Infixschreibweise, d.h., wir schreiben $x \leq^{\mathcal{A}} y$ statt $(x, y) \in \leq^{\mathcal{A}}$.

- (a) Eine Präordnung ist eine $\{\leqslant\}$ -Struktur $\mathcal{A}=(A,\leqslant^{\mathcal{A}})$, bei der $\leqslant^{\mathcal{A}}$ reflexiv und transitiv ist.
- (c) Eine lineare (oder totale) Ordnung ist eine partielle Ordnung A, bei der

 konnex ist.

In diesem Kapitel bezeichnet \leqslant immer ein zweistelliges Relationssymbol. Für \leqslant verwenden wir Infixschreibweise, d.h., wir schreiben $x \leqslant^{\mathcal{A}} y$ statt $(x, y) \in \leqslant^{\mathcal{A}}$.

- (a) Eine Präordnung ist eine $\{\leqslant\}$ -Struktur $\mathcal{A}=(A,\leqslant^{\mathcal{A}})$, bei der $\leqslant^{\mathcal{A}}$ reflexiv und transitiv ist.
- (c) Eine lineare (oder totale) Ordnung ist eine partielle Ordnung A, bei der \leq^A konnex ist.

Beispiele

(a) Die "kleiner-gleich" Relation auf $\mathbb N$ (oder $\mathbb Z$ oder $\mathbb R$)

In diesem Kapitel bezeichnet \leqslant immer ein zweistelliges Relationssymbol. Für \leqslant verwenden wir Infixschreibweise, d.h., wir schreiben $x \leqslant^{\mathcal{A}} y$ statt $(x, y) \in \leqslant^{\mathcal{A}}$.

- (a) Eine Präordnung ist eine $\{\leqslant\}$ -Struktur $\mathcal{A}=(\mathcal{A},\leqslant^{\mathcal{A}})$, bei der $\leqslant^{\mathcal{A}}$ reflexiv und transitiv ist.
- (b) Eine partielle Ordnung (oder Halbordnung) ist eine Präordnung A, bei der ≤^A antisymmetrisch ist.
 (c) Fine lineare (oder totale) Ordnung ist eine partielle Ordnung A, bei der ≤^A
- (c) Eine lineare (oder totale) Ordnung ist eine partielle Ordnung A, bei der \leq^A konnex ist.

Beispiele

(a) Die "kleiner-gleich" Relation auf $\mathbb N$ (oder $\mathbb Z$ oder $\mathbb R$) ist eine lineare Ordnung; die "größer-gleich" auch.

In diesem Kapitel bezeichnet \leq immer ein zweistelliges Relationssymbol. Für \leq verwenden wir Infixschreibweise, d.h., wir schreiben $x \leq^{\mathcal{A}} y$ statt $(x, y) \in \leq^{\mathcal{A}}$.

- (a) Eine Präordnung ist eine $\{\leqslant\}$ -Struktur $\mathcal{A}=(\mathcal{A},\leqslant^{\mathcal{A}})$, bei der $\leqslant^{\mathcal{A}}$ reflexiv und transitiv ist.
- (c) Eine lineare (oder totale) Ordnung ist eine partielle Ordnung A, bei der \leq^A konnex ist.

- (a) Die "kleiner-gleich" Relation auf $\mathbb N$ (oder $\mathbb Z$ oder $\mathbb R$) ist eine lineare Ordnung; die "größer-gleich" auch.
- (b) Für jede Menge *M* ist die Teilmengenrelation ⊆

In diesem Kapitel bezeichnet \leqslant immer ein zweistelliges Relationssymbol. Für \leqslant verwenden wir Infixschreibweise, d.h., wir schreiben $x \leqslant^{\mathcal{A}} y$ statt $(x,y) \in \leqslant^{\mathcal{A}}$.

- (a) Eine Präordnung ist eine $\{\leqslant\}$ -Struktur $\mathcal{A}=(\mathcal{A},\leqslant^{\mathcal{A}})$, bei der $\leqslant^{\mathcal{A}}$ reflexiv und transitiv ist.
- (b) Eine partielle Ordnung (oder Halbordnung) ist eine Präordnung A, bei der ≤^A antisymmetrisch ist.
 (c) Fine lineare (oder totale) Ordnung ist eine partielle Ordnung A, bei der ≤^A
- (c) Eine lineare (oder totale) Ordnung ist eine partielle Ordnung A, bei der \leq^A konnex ist.

- (a) Die "kleiner-gleich" Relation auf $\mathbb N$ (oder $\mathbb Z$ oder $\mathbb R$) ist eine lineare Ordnung; die "größer-gleich" auch.
- (b) Für jede Menge M ist die Teilmengenrelation \subseteq eine partielle Ordnung auf der Potenzmenge $\mathcal{P}(M)$;

In diesem Kapitel bezeichnet \leqslant immer ein zweistelliges Relationssymbol. Für \leqslant verwenden wir Infixschreibweise, d.h., wir schreiben $x \leqslant^{\mathcal{A}} y$ statt $(x, y) \in \leqslant^{\mathcal{A}}$.

- (a) Eine Präordnung ist eine $\{\leqslant\}$ -Struktur $\mathcal{A}=(A,\leqslant^{\mathcal{A}})$, bei der $\leqslant^{\mathcal{A}}$ reflexiv und transitiv ist.
- (c) Eine lineare (oder totale) Ordnung ist eine partielle Ordnung A, bei der \leq^A konnex ist.

- (a) Die "kleiner-gleich" Relation auf $\mathbb N$ (oder $\mathbb Z$ oder $\mathbb R$) ist eine lineare Ordnung; die "größer-gleich" auch.
- (b) Für jede Menge M ist die Teilmengenrelation \subseteq eine partielle Ordnung auf der Potenzmenge $\mathcal{P}(M)$; aber keine lineare Ordnung, sofern M mindestens zwei Elemente besitzt.

In diesem Kapitel bezeichnet \leqslant immer ein zweistelliges Relationssymbol. Für \leqslant verwenden wir Infixschreibweise, d.h., wir schreiben $x \leqslant^{\mathcal{A}} y$ statt $(x,y) \in \leqslant^{\mathcal{A}}$.

- (a) Eine Präordnung ist eine $\{\leqslant\}$ -Struktur $\mathcal{A}=(A,\leqslant^{\mathcal{A}})$, bei der $\leqslant^{\mathcal{A}}$ reflexiv und transitiv ist.
- (c) Eine lineare (oder totale) Ordnung ist eine partielle Ordnung A, bei der \leq^A konnex ist.

Beispiele

- (a) Die "kleiner-gleich" Relation auf $\mathbb N$ (oder $\mathbb Z$ oder $\mathbb R$) ist eine lineare Ordnung; die "größer-gleich" auch.
- (b) Für jede Menge M ist die Teilmengenrelation \subseteq eine partielle Ordnung auf der Potenzmenge $\mathcal{P}(M)$; aber keine lineare Ordnung, sofern M mindestens zwei Elemente besitzt. Dasselbe gilt für die Obermengenrelation \supseteq .

HU Berlin

In diesem Kapitel bezeichnet \leqslant immer ein zweistelliges Relationssymbol. Für \leqslant verwenden wir Infixschreibweise, d.h., wir schreiben $x \leqslant^{\mathcal{A}} y$ statt $(x, y) \in \leqslant^{\mathcal{A}}$.

- (a) Eine Präordnung ist eine $\{\leqslant\}$ -Struktur $\mathcal{A}=(A,\leqslant^{\mathcal{A}})$, bei der $\leqslant^{\mathcal{A}}$ reflexiv und transitiv ist.
- (b) Eine partielle Ordnung (oder Halbordnung) ist eine Präordnung A, bei der
 ≤^A antisymmetrisch ist.
- (c) Eine lineare (oder totale) Ordnung ist eine partielle Ordnung A, bei der \leq^A konnex ist.

- (a) Die "kleiner-gleich" Relation auf $\mathbb N$ (oder $\mathbb Z$ oder $\mathbb R$) ist eine lineare Ordnung; die "größer-gleich" auch.
- (b) Für jede Menge M ist die Teilmengenrelation \subseteq eine partielle Ordnung auf der Potenzmenge $\mathcal{P}(M)$; aber keine lineare Ordnung, sofern M mindestens zwei Elemente besitzt. Dasselbe gilt für die Obermengenrelation \supseteq .
- (c) Die Folgerungsrelation für aussagenlogische Formeln: $\{(\varphi, \psi) : \varphi, \psi \in AL, \varphi \models \psi\}$

In diesem Kapitel bezeichnet \leq immer ein zweistelliges Relationssymbol. Für \leq verwenden wir Infixschreibweise, d.h., wir schreiben $x \leq^{\mathcal{A}} y$ statt $(x, y) \in \leq^{\mathcal{A}}$.

- (a) Eine Präordnung ist eine $\{\leqslant\}$ -Struktur $\mathcal{A}=(A,\leqslant^{\mathcal{A}})$, bei der $\leqslant^{\mathcal{A}}$ reflexiv und transitiv ist.
- (c) Eine lineare (oder totale) Ordnung ist eine partielle Ordnung A, bei der \leq^A konnex ist.

- (a) Die "kleiner-gleich" Relation auf $\mathbb N$ (oder $\mathbb Z$ oder $\mathbb R$) ist eine lineare Ordnung; die "größer-gleich" auch.
- (b) Für jede Menge M ist die Teilmengenrelation \subseteq eine partielle Ordnung auf der Potenzmenge $\mathcal{P}(M)$; aber keine lineare Ordnung, sofern M mindestens zwei Elemente besitzt. Dasselbe gilt für die Obermengenrelation \supseteq .
- (c) Die Folgerungsrelation für aussagenlogische Formeln: $\{(\varphi,\psi) \ : \ \varphi,\psi\in \mathsf{AL}, \ \varphi\models\psi\} \text{ ist eine Präordnung auf der Menge AL,}$

In diesem Kapitel bezeichnet \leqslant immer ein zweistelliges Relationssymbol. Für \leqslant verwenden wir Infixschreibweise, d.h., wir schreiben $x \leqslant^{\mathcal{A}} y$ statt $(x,y) \in \leqslant^{\mathcal{A}}$.

- (a) Eine Präordnung ist eine $\{\leqslant\}$ -Struktur $\mathcal{A}=(A,\leqslant^{\mathcal{A}})$, bei der $\leqslant^{\mathcal{A}}$ reflexiv und transitiv ist.
- (c) Eine lineare (oder totale) Ordnung ist eine partielle Ordnung A, bei der \leq^A konnex ist.

- (a) Die "kleiner-gleich" Relation auf $\mathbb N$ (oder $\mathbb Z$ oder $\mathbb R$) ist eine lineare Ordnung; die "größer-gleich" auch.
- (b) Für jede Menge M ist die Teilmengenrelation \subseteq eine partielle Ordnung auf der Potenzmenge $\mathcal{P}(M)$; aber keine lineare Ordnung, sofern M mindestens zwei Elemente besitzt. Dasselbe gilt für die Obermengenrelation \supseteq .
- (c) Die Folgerungsrelation für aussagenlogische Formeln: $\{(\varphi,\psi): \varphi,\psi\in AL,\ \varphi\models\psi\}$ ist eine Präordnung auf der Menge AL, aber keine partielle Ordnung.

+ und \cdot seien immer zweistellige Funktionssymbole, für die wir Infixschreibweise verwenden. $\underline{0}$ und $\underline{1}$ seien Konstantensymbole.

- + und \cdot seien immer zweistellige Funktionssymbole, für die wir Infixschreibweise verwenden. $\underline{0}$ und $\underline{1}$ seien Konstantensymbole.
 - Der Körper der reellen Zahlen ist die $\{+,\cdot,\underline{0},\underline{1}\}$ -Struktur $\mathcal{A}_{\mathbb{R}}$, so dass $\mathcal{A}_{\mathbb{R}}:=\mathbb{R},\ +^{\mathcal{A}_{\mathbb{R}}}$ und $\cdot^{\mathcal{A}_{\mathbb{R}}}$ sind die normale Addition bzw. Multiplikation auf \mathbb{R} , und $\underline{0}^{\mathcal{A}_{\mathbb{R}}}:=0,\ \underline{1}^{\mathcal{A}_{\mathbb{R}}}:=1$.

+ und \cdot seien immer zweistellige Funktionssymbole, für die wir Infixschreibweise verwenden. $\underline{0}$ und $\underline{1}$ seien Konstantensymbole.

- Der Körper der reellen Zahlen ist die $\{+,\cdot,\underline{0},\underline{1}\}$ -Struktur $\mathcal{A}_{\mathbb{R}}$, so dass $\mathcal{A}_{\mathbb{R}}:=\mathbb{R},\ +^{\mathcal{A}_{\mathbb{R}}}$ und $\cdot^{\mathcal{A}_{\mathbb{R}}}$ sind die normale Addition bzw. Multiplikation auf \mathbb{R} , und $\underline{0}^{\mathcal{A}_{\mathbb{R}}}:=0,\ \underline{1}^{\mathcal{A}_{\mathbb{R}}}:=1$.
- Der Ring der ganzen Zahlen ist die $\{+,\cdot,\underline{0},\underline{1}\}$ -Struktur $\mathcal{A}_{\mathbb{Z}}$, so dass $A_{\mathbb{Z}}:=\mathbb{Z}$, $+^{\mathcal{A}_{\mathbb{Z}}}$ und $\cdot^{\mathcal{A}_{\mathbb{Z}}}$ sind die normale Addition bzw. Multiplikation auf \mathbb{Z} , und $\underline{0}^{\mathcal{A}_{\mathbb{Z}}}:=0$, $\underline{1}^{\mathcal{A}_{\mathbb{Z}}}:=1$.

+ und \cdot seien immer zweistellige Funktionssymbole, für die wir Infixschreibweise verwenden. $\underline{0}$ und $\underline{1}$ seien Konstantensymbole.

- Der Körper der reellen Zahlen ist die $\{+,\cdot,\underline{0},\underline{1}\}$ -Struktur $\mathcal{A}_{\mathbb{R}}$, so dass $\mathcal{A}_{\mathbb{R}}:=\mathbb{R},\ +^{\mathcal{A}_{\mathbb{R}}}$ und $\cdot^{\mathcal{A}_{\mathbb{R}}}$ sind die normale Addition bzw. Multiplikation auf \mathbb{R} , und $\underline{0}^{\mathcal{A}_{\mathbb{R}}}:=0,\ \underline{1}^{\mathcal{A}_{\mathbb{R}}}:=1$.
- Der Ring der ganzen Zahlen ist die $\{+,\cdot,\underline{0},\underline{1}\}$ -Struktur $\mathcal{A}_{\mathbb{Z}}$, so dass $\mathcal{A}_{\mathbb{Z}}:=\mathbb{Z},\ +^{\mathcal{A}_{\mathbb{Z}}}$ und $\cdot^{\mathcal{A}_{\mathbb{Z}}}$ sind die normale Addition bzw. Multiplikation auf \mathbb{Z} , und $\underline{0}^{\mathcal{A}_{\mathbb{Z}}}:=0,\ \underline{1}^{\mathcal{A}_{\mathbb{Z}}}:=1$.
- Das Standardmodell der Arithmetik ist die $\{+,\cdot,\leqslant,\underline{0},\underline{1}\}$ -Struktur $\mathcal{A}_{\mathbb{N}}$, so dass $A_{\mathbb{N}}:=\mathbb{N}$ ist; die Funktionen $+^{\mathcal{A}_{\mathbb{N}}}$ und $\cdot^{\mathcal{A}_{\mathbb{N}}}$ und die Relation $\leqslant^{\mathcal{A}_{\mathbb{N}}}$ sind die normale Addition, Multiplikation bzw. Ordnung auf \mathbb{N} , und $\underline{0}^{\mathcal{A}_{\mathbb{N}}}:=0$, $\underline{1}^{\mathcal{A}_{\mathbb{N}}}:=1$.

- + und \cdot seien immer zweistellige Funktionssymbole, für die wir Infixschreibweise verwenden. $\underline{0}$ und $\underline{1}$ seien Konstantensymbole.
 - Der Körper der reellen Zahlen ist die $\{+,\cdot,\underline{0},\underline{1}\}$ -Struktur $\mathcal{A}_{\mathbb{R}}$, so dass $\mathcal{A}_{\mathbb{R}}:=\mathbb{R},\ +^{\mathcal{A}_{\mathbb{R}}}$ und $\cdot^{\mathcal{A}_{\mathbb{R}}}$ sind die normale Addition bzw. Multiplikation auf \mathbb{R} , und $\underline{0}^{\mathcal{A}_{\mathbb{R}}}:=0,\ \underline{1}^{\mathcal{A}_{\mathbb{R}}}:=1$.
 - Der Ring der ganzen Zahlen ist die $\{+,\cdot,\underline{0},\underline{1}\}$ -Struktur $\mathcal{A}_{\mathbb{Z}}$, so dass $\mathcal{A}_{\mathbb{Z}}:=\mathbb{Z},\ +^{\mathcal{A}_{\mathbb{Z}}}$ und $\cdot^{\mathcal{A}_{\mathbb{Z}}}$ sind die normale Addition bzw. Multiplikation auf \mathbb{Z} , und $\underline{0}^{\mathcal{A}_{\mathbb{Z}}}:=0,\ \underline{1}^{\mathcal{A}_{\mathbb{Z}}}:=1$.
 - Das Standardmodell der Arithmetik ist die $\{+,\cdot,\leqslant,\underline{0},\underline{1}\}$ -Struktur $\mathcal{A}_{\mathbb{N}}$, so dass $A_{\mathbb{N}}:=\mathbb{N}$ ist; die Funktionen $+^{\mathcal{A}_{\mathbb{N}}}$ und $\cdot^{\mathcal{A}_{\mathbb{N}}}$ und die Relation $\leqslant^{\mathcal{A}_{\mathbb{N}}}$ sind die normale Addition, Multiplikation bzw. Ordnung auf \mathbb{N} , und $\underline{0}^{\mathcal{A}_{\mathbb{N}}}:=0$, $\underline{1}^{\mathcal{A}_{\mathbb{N}}}:=1$.
 - Der zweielementige Körper ist die $\{+,\cdot,\underline{0},\underline{1}\}$ -Struktur \mathcal{F}_2 mit Universum $F_2:=\{0,1\}$, den Funktionen $+^{\mathcal{F}_2}$ und $\cdot^{\overline{\mathcal{F}}_2}$ der Addition bzw. Multiplikation modulo 2, und $0^{\mathcal{F}_2}:=0$, $1^{\mathcal{F}_2}:=1$.

Sei Σ ein endliches, nicht-leeres Alphabet. Für jedes $a\in\Sigma$ sei P_a ein einstelliges Relationssymbol, und es sei

$$\sigma_{\Sigma} := \{\leqslant\} \cup \{P_a : a \in \Sigma\}.$$

Sei Σ ein endliches, nicht-leeres Alphabet. Für jedes $a\in\Sigma$ sei P_a ein einstelliges Relationssymbol, und es sei

$$\sigma_{\Sigma} := \{\leqslant\} \cup \{P_a : a \in \Sigma\}.$$

Für jedes nicht-leere Wort $w:=w_1\cdots w_n\in \Sigma^*$ mit $w_1,\ldots,w_n\in \Sigma$ sei \mathcal{A}_w die σ_{Σ} -Struktur

• mit Universum $A_w := [n]$, für die gilt:

Sei Σ ein endliches, nicht-leeres Alphabet. Für jedes $a \in \Sigma$ sei P_a ein einstelliges Relationssymbol, und es sei

$$\sigma_{\Sigma} := \{\leqslant\} \cup \{P_a : a \in \Sigma\}.$$

Für jedes nicht-leere Wort $w:=w_1\cdots w_n\in \Sigma^*$ mit $w_1,\ldots,w_n\in \Sigma$ sei \mathcal{A}_w die σ_{Σ} -Struktur

- mit Universum $A_w := [n]$, für die gilt:
- $\leqslant^{\mathcal{A}_w}$ ist die natürliche lineare Ordnung auf [n], d.h., $\leqslant^{\mathcal{A}_w} = \{ (i,j) : i,j \in \mathbb{N}, \ 1 \leqslant i \leqslant j \leqslant n \}$,

Sei Σ ein endliches, nicht-leeres Alphabet. Für jedes $a \in \Sigma$ sei P_a ein einstelliges Relationssymbol, und es sei

$$\sigma_{\Sigma} := \{\leqslant\} \cup \{P_a : a \in \Sigma\}.$$

Für jedes nicht-leere Wort $w:=w_1\cdots w_n\in \Sigma^*$ mit $w_1,\ldots,w_n\in \Sigma$ sei \mathcal{A}_w die σ_{Σ} -Struktur

- mit Universum $A_w := [n]$, für die gilt:
- $\leq^{\mathcal{A}_w}$ ist die natürliche lineare Ordnung auf [n], d.h., $\leq^{\mathcal{A}_w} = \{ (i,j) : i,j \in \mathbb{N}, 1 \leq i \leq j \leq n \}$,
- Für jedes $a \in \Sigma$ ist $P_a^{\mathcal{A}_w} := \{i \in [n] : w_i = a\}.$

Sei Σ ein endliches, nicht-leeres Alphabet. Für jedes $a\in\Sigma$ sei P_a ein einstelliges Relationssymbol, und es sei

$$\sigma_{\Sigma} := \{\leqslant\} \cup \{P_a : a \in \Sigma\}.$$

Für jedes nicht-leere Wort $w:=w_1\cdots w_n\in \Sigma^*$ mit $w_1,\ldots,w_n\in \Sigma$ sei \mathcal{A}_w die σ_{Σ} -Struktur

- mit Universum $A_w := [n]$, für die gilt:
- $\leq^{\mathcal{A}_w}$ ist die natürliche lineare Ordnung auf [n], d.h., $\leq^{\mathcal{A}_w} = \{ (i,j) : i,j \in \mathbb{N}, 1 \leq i \leq j \leq n \}$,
- Für jedes $a \in \Sigma$ ist $P_a^{A_w} := \{i \in [n] : w_i = a\}$.

Beispiel

Sei $\Sigma := \{a, b, c\}$. Für w := abacaba ist A_w die folgende σ_{Σ} -Struktur:

Sei Σ ein endliches, nicht-leeres Alphabet. Für jedes $a \in \Sigma$ sei P_a ein einstelliges Relationssymbol, und es sei

$$\sigma_{\Sigma} := \{\leqslant\} \cup \{P_a : a \in \Sigma\}.$$

Für jedes nicht-leere Wort $w := w_1 \cdots w_n \in \Sigma^*$ mit $w_1, \dots, w_n \in \Sigma$ sei \mathcal{A}_w die σ_{Σ} -Struktur

- mit Universum $A_w := [n]$, für die gilt:
- $\leq A_w$ ist die natürliche lineare Ordnung auf [n], d.h., $\leq^{A_w} = \{ (i, j) : i, j \in \mathbb{N}, 1 \leq i \leq j \leq n \}$,
- Für jedes $a \in \Sigma$ ist $P_{a}^{A_w} := \{i \in [n] : w_i = a\}$.

Beispiel

Sei $\Sigma := \{a, b, c\}$. Für w := abacaba ist A_w die folgende σ_{Σ} -Struktur:

- $A_w = \{1, 2, 3, 4, 5, 6, 7\}$
- $\leq^{\mathcal{A}_w} = \{ (i,j) : i,j \in \mathbb{N}, 1 \leq i \leq j \leq 7 \}$
- $P_{2}^{\mathcal{A}_{w}} = \{1,3,5,7\}, \quad P_{6}^{\mathcal{A}_{w}} = \{2,6\}, \quad P_{6}^{\mathcal{A}_{w}} = \{4\}.$ Berlin a left frimale Logik für IMP

Eine Wortstruktur über Σ ist eine σ_{Σ} -Struktur \mathcal{A} für die gilt:

Eine Wortstruktur über Σ ist eine σ_{Σ} -Struktur \mathcal{A} für die gilt:

• das Universum A von $\mathcal A$ ist endlich,

Eine Wortstruktur über Σ ist eine σ_{Σ} -Struktur \mathcal{A} für die gilt:

- das Universum A von A ist endlich,
- (A, \leqslant^A) ist eine lineare Ordnung,

Eine Wortstruktur über Σ ist eine σ_{Σ} -Struktur \mathcal{A} für die gilt:

- das Universum A von A ist endlich,
- (A, \leq^A) ist eine lineare Ordnung,
- für jedes $i \in A$ gibt es genau ein $a \in \Sigma$, so dass $i \in P_a^A$.

Eine Wortstruktur über Σ ist eine σ_{Σ} -Struktur \mathcal{A} für die gilt:

- das Universum A von A ist endlich,
- (A, \leqslant^A) ist eine lineare Ordnung,
- für jedes $i \in A$ gibt es genau ein $a \in \Sigma$, so dass $i \in P_a^A$.

Beispiel 3.4

Sei $\Sigma := \{a, b, c\}$. Die σ_{Σ} -Struktur \mathcal{B} mit

• Universum $B = \{\diamondsuit, \heartsuit, \spadesuit, \clubsuit\}$,

Eine Wortstruktur über Σ ist eine σ_{Σ} -Struktur \mathcal{A} für die gilt:

- das Universum A von A ist endlich,
- $(A, \leq^{\mathcal{A}})$ ist eine lineare Ordnung,
- für jedes $i \in A$ gibt es genau ein $a \in \Sigma$, so dass $i \in P_a^A$.

Beispiel 3.4

Sei $\Sigma := \{a, b, c\}$. Die σ_{Σ} -Struktur ${\mathcal B}$ mit

- Universum $B = \{\diamondsuit, \heartsuit, \spadesuit, \clubsuit\}$,
- linearer Ordnung $\leq^{\mathcal{B}}$, die besagt, dass $\lozenge < \heartsuit < \spadesuit < \clubsuit$ ist, d.h.

$$\leq^{\mathcal{B}}$$
 =

Eine Wortstruktur über Σ ist eine σ_{Σ} -Struktur \mathcal{A} für die gilt:

- das Universum A von A ist endlich,
- (A, \leq^A) ist eine lineare Ordnung,
- für jedes $i \in A$ gibt es genau ein $a \in \Sigma$, so dass $i \in P_a^A$.

Beispiel 3.4

Sei $\Sigma := \{a, b, c\}$. Die σ_{Σ} -Struktur ${\mathcal B}$ mit

- Universum $B = \{\diamondsuit, \heartsuit, \spadesuit, \clubsuit\}$,
- linearer Ordnung $\leqslant^{\mathcal{B}}$, die besagt, dass $\lozenge < \heartsuit < \spadesuit < \clubsuit$ ist, d.h.

$$\leqslant^{\mathcal{B}} = \{(\diamondsuit,\diamondsuit),\,(\diamondsuit,\heartsuit),\,(\diamondsuit,\spadesuit),\,(\diamondsuit,\clubsuit),\,(\heartsuit,\heartsuit),\,(\heartsuit,\spadesuit),\,(\heartsuit,\clubsuit),\,(\spadesuit,\spadesuit),\,(\spadesuit,\clubsuit),\,(\clubsuit,\clubsuit)\},$$

Eine Wortstruktur über Σ ist eine σ_{Σ} -Struktur \mathcal{A} für die gilt:

- das Universum A von A ist endlich,
- $(A, \leq^{\mathcal{A}})$ ist eine lineare Ordnung,
- für jedes $i \in A$ gibt es genau ein $a \in \Sigma$, so dass $i \in P_a^A$.

Beispiel 3.4

Sei $\Sigma := \{a, b, c\}$. Die σ_{Σ} -Struktur ${\mathcal B}$ mit

- Universum $B = \{\diamondsuit, \heartsuit, \spadesuit, \clubsuit\}$,
- linearer Ordnung $\leq^{\mathcal{B}}$, die besagt, dass $\lozenge < \heartsuit < \spadesuit < \clubsuit$ ist, d.h.

$$\leqslant^{\mathcal{B}} = \{(\diamondsuit,\diamondsuit), \, (\diamondsuit,\heartsuit), \, (\diamondsuit,\spadesuit), \, (\diamondsuit,\clubsuit), \, (\heartsuit,\heartsuit), \, (\heartsuit,\spadesuit), \, (\heartsuit,\clubsuit), \, (\spadesuit,\spadesuit), \, (\spadesuit,\clubsuit), \, (\clubsuit,\clubsuit)\},$$

• $P_a^{\mathcal{B}} = \{ \diamondsuit, \clubsuit \}$

Eine Wortstruktur über Σ ist eine σ_{Σ} -Struktur \mathcal{A} für die gilt:

- das Universum A von A ist endlich,
- (A, \leq^A) ist eine lineare Ordnung,
- für jedes $i \in A$ gibt es genau ein $a \in \Sigma$, so dass $i \in P_a^A$.

Beispiel 3.4

Sei $\Sigma := \{a, b, c\}$. Die σ_{Σ} -Struktur ${\mathcal B}$ mit

- Universum $B = \{\diamondsuit, \heartsuit, \spadesuit, \clubsuit\}$,
- linearer Ordnung $\leq^{\mathcal{B}}$, die besagt, dass $\lozenge < \heartsuit < \spadesuit < \clubsuit$ ist, d.h.

$$\leqslant^{\mathcal{B}} = \{(\diamondsuit,\diamondsuit),\,(\diamondsuit,\heartsuit),\,(\diamondsuit,\spadesuit),\,(\diamondsuit,\clubsuit),\,(\heartsuit,\heartsuit),\,(\heartsuit,\spadesuit),\,(\heartsuit,\clubsuit),\,(\spadesuit,\spadesuit),\,(\spadesuit,\clubsuit),\,(\clubsuit,\clubsuit)\},$$

- $P_a^{\mathcal{B}} = \{\diamondsuit, \clubsuit\}$
- $P_b^{\mathcal{B}} = \{ \heartsuit, \blacktriangle \},$

Eine Wortstruktur über Σ ist eine σ_{Σ} -Struktur \mathcal{A} für die gilt:

- das Universum A von A ist endlich,
- $(A, \leq^{\mathcal{A}})$ ist eine lineare Ordnung,
- für jedes $i \in A$ gibt es genau ein $a \in \Sigma$, so dass $i \in P_a^A$.

Beispiel 3.4

Sei $\Sigma := \{a, b, c\}$. Die σ_{Σ} -Struktur ${\mathcal B}$ mit

- Universum $B = \{ \diamondsuit, \heartsuit, \spadesuit, \clubsuit \}$,
- linearer Ordnung $\leq^{\mathcal{B}}$, die besagt, dass $\lozenge < \heartsuit < \spadesuit < \clubsuit$ ist, d.h.

$$\leqslant^{\mathcal{B}} = \{(\diamondsuit,\diamondsuit),\,(\diamondsuit,\heartsuit),\,(\diamondsuit,\clubsuit),\,(\diamondsuit,\clubsuit),\,(\heartsuit,\heartsuit),\,(\heartsuit,\spadesuit),\,(\heartsuit,\clubsuit),\,(\spadesuit,\spadesuit),\,(\spadesuit,\clubsuit),\,(\clubsuit,\clubsuit)\},$$

- $P_{2}^{B} = \{ \diamondsuit, \}$
- $P_h^{\mathcal{B}} = \{ \heartsuit, \spadesuit \},$
- $P_c^{\mathcal{B}} = \emptyset$,

ist eine Wortstruktur, die das Wort

Eine Wortstruktur über Σ ist eine σ_{Σ} -Struktur \mathcal{A} für die gilt:

- das Universum A von A ist endlich,
- (A, \leq^A) ist eine lineare Ordnung,
- für jedes $i \in A$ gibt es genau ein $a \in \Sigma$, so dass $i \in P_a^A$.

Beispiel 3.4

Sei $\Sigma := \{a, b, c\}$. Die σ_{Σ} -Struktur ${\mathcal B}$ mit

- Universum $B = \{\diamondsuit, \heartsuit, \spadesuit, \clubsuit\}$,
- linearer Ordnung $\leq^{\mathcal{B}}$, die besagt, dass $\lozenge < \heartsuit < \spadesuit < \clubsuit$ ist, d.h.

$$\leqslant^{\mathcal{B}} = \{(\diamondsuit,\diamondsuit), \, (\diamondsuit,\heartsuit), \, (\diamondsuit,\spadesuit), \, (\diamondsuit,\clubsuit), \, (\heartsuit,\heartsuit), \, (\heartsuit,\spadesuit), \, (\heartsuit,\clubsuit), \, (\spadesuit,\spadesuit), \, (\spadesuit,\clubsuit), \, (\clubsuit,\clubsuit)\},$$

- $P_{2}^{B} = \{ \diamondsuit, \}$
- $P_h^{\mathcal{B}} = \{ \heartsuit, \spadesuit \},$
- $P_c^{\mathcal{B}} = \emptyset$,

ist eine Wortstruktur, die das Wort w = abba repräsentiert.

Relationale Datenbanken

• Relationale Datenbanken bestehen aus endlich vielen endlichen Tabellen.

Relationale Datenbanken

- Relationale Datenbanken bestehen aus endlich vielen endlichen Tabellen.
- Jede solche Tabelle lässt sich als Relation auffassen, die Zeilen der Tabelle entsprechen dabei den Tupeln in der Relation.

Relationale Datenbanken

- Relationale Datenbanken bestehen aus endlich vielen endlichen Tabellen.
- Jede solche Tabelle lässt sich als Relation auffassen, die Zeilen der Tabelle entsprechen dabei den Tupeln in der Relation.
- Eine relationale Datenbank entspricht dann einer endlichen Struktur, deren Universum aus allen potentiellen Einträgen in einzelnen Zellen der Tabellen besteht, und die für jede Tabelle in der Datenbank eine Relation enthält.

Beispiel: Eine Kinodatenbank

Kino			
Name	Adresse	Stadtteil	Telefonnummer
Babylon	Dresdner Str. 126	Kreuzberg	030 61 60 96 93
Casablanca	Friedenstr. 12-13	Adlershof	030 67 75 75 2
Filmtheater am Friedrichshain	Bötzowstr. 1-5	Prenzlauer Berg	030 42 84 51 88
Kino International	Karl-Marx-Allee 33	Mitte	030 24 75 60 11
Moviemento	Kotbusser Damm 22	Kreuzberg	030 692 47 85
Urania	An der Urania 17	Schöneberg	030 21 89 09 1

Beispiel: Eine Kinodatenbank

Kino			
Name	Adresse	Stadtteil	Telefonnummer
Babylon	Dresdner Str. 126	Kreuzberg	030 61 60 96 93
Casablanca	Friedenstr. 12-13	Adlershof	030 67 75 75 2
Filmtheater am Friedrichshain	Bötzowstr. 1-5	Prenzlauer Berg	030 42 84 51 88
Kino International	Karl-Marx-Allee 33	Mitte	030 24 75 60 11
Moviemento	Kotbusser Damm 22	Kreuzberg	030 692 47 85
Urania	An der Urania 17	Schöneberg	030 21 89 09 1

Film		
Name	Regisseur	Schauspieler
Alien	Ridley Scott	Sigourney Weaver
Blade Runner	Ridley Scott	Harrison Ford
Blade Runner	Ridley Scott	Sean Young
Brazil	Terry Gilliam	Jonathan Pryce
Brazil	Terry Gilliam	Kim Greist
Casablanca	Michael Curtiz	Humphrey Bogart
Casablanca	Michael Curtiz	Ingrid Bergmann
Gravity	Alfonso Cuaron	Sandra Bullock
Gravity	Alfonso Cuaron	George Clooney
Monuments Men	George Clooney	George Clooney
Monuments Men	George Clooney	Matt Damon
Resident Evil	Paul Anderson	Milla Jovovich
Terminator	James Cameron	Arnold Schwarzenegger
Terminator	James Cameron	Linda Hamilton
Terminator	James Cameron	Michael Biehn
• • •		• • • •

Programm		
Kino	Film	Zeit
Babylon	Casablanca	17:30
Babylon	Gravity	20:15
Casablanca	Blade Runner	15:30
Casablanca	Alien	18:15
Casablanca	Blade Runner	20:30
Casablanca	Resident Evil	20:30
Filmtheater am Friedrichshain	Resident Evil	20:00
Filmtheater am Friedrichshain	Resident Evil	21:30
Filmtheater am Friedrichshain	Resident Evil	23:00
Kino International	Casablanca	18:00
Kino International	Brazil	20:00
Kino International	Brazil	22:00
Moviemento	Gravity	17:00
Moviemento	Gravity	19:30
Moviemento	Alien	22:00
Urania	Monuments Men	17:00
Urania	Monuments Men	20:00

Die Kinodatenbank als Struktur

Signatur: $\sigma_{KINO} := \{ R_{Kino}/4, R_{Film}/3, R_{Prog}/3 \}$

Signatur: $\sigma_{\text{KINO}} := \{ R_{\text{Kino}}/4, R_{\text{Film}}/3, R_{\text{Prog}}/3 \} \cup \{ \text{`c'} : c \in \text{ASCII*} \}$

Signatur:
$$\sigma_{\text{KINO}} := \{ R_{\text{Kino}}/4, R_{\text{Film}}/3, R_{\text{Prog}}/3 \} \cup \{ \text{`c'} : c \in \text{ASCII*} \}$$

Die Kinodatenbank wird dargestellt als $\sigma_{\text{KINO}}\text{-}\mathsf{Struktur}\ \mathcal{D}.$

Signatur: $\sigma_{\text{KINO}} := \{ R_{\text{Kino}}/4, R_{\text{Film}}/3, R_{\text{Prog}}/3 \} \cup \{ \text{`c'} : c \in \text{ASCII*} \}$

Die Kinodatenbank wird dargestellt als σ_{KINO} -Struktur \mathcal{D} .

Universum:

Signatur:
$$\sigma_{\text{KINO}} := \{ R_{\text{Kino}}/4, R_{\text{Film}}/3, R_{\text{Prog}}/3 \} \cup \{ \text{`c'} : c \in \text{ASCII*} \}$$

Die Kinodatenbank wird dargestellt als σ_{KINO} -Struktur \mathcal{D} .

Universum:

```
D := ASCII* ⊇ { Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93, Casablanca, ..., 20:00}.
```

```
Signatur: \sigma_{\text{KINO}} := \{ R_{\text{Kino}}/4, R_{\text{Film}}/3, R_{\text{Prog}}/3 \} \cup \{ \text{`c'} : c \in \text{ASCII*} \}
```

Die Kinodatenbank wird dargestellt als σ_{KINO} -Struktur \mathcal{D} .

Universum:

Relationen:

```
Signatur: \sigma_{\text{KINO}} := \{ R_{\text{Kino}}/4, R_{\text{Film}}/3, R_{\text{Prog}}/3 \} \cup \{ \text{`c'} : c \in \text{ASCII*} \}
```

Die Kinodatenbank wird dargestellt als σ_{KINO} -Struktur \mathcal{D} .

Universum:

```
D := ASCII* 

☐ { Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93, Casablanca, ..., 20:00}.
```

Relationen:

```
 \begin{aligned} & \mathcal{R}^{\mathcal{D}}_{\mathit{Kino}} := \big\{ \text{ (Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93),} \\ & \quad \text{ (Casablanca, Friedenstr. 12-13, Adlershof, 030 67 75 75 2),} \\ & \quad \cdots, \\ & \quad \text{ (Urania, An der Urania 17, Schöneberg, 030 21 89 09 1)} \big\} \\ & \mathcal{R}^{\mathcal{D}}_{\mathit{Film}} := \big\{ \text{ (Alien, Ridley Scott, Sigourney Weaver),} \\ & \quad \text{ (Blade Runner, Ridley Scott, Harrison Ford),} \\ & \mathcal{R}^{\mathcal{D}}_{\mathit{Prog}} := \big\{ \text{ (Babylon, Casablanca, 17:30),} \\ & \quad \text{ (Babylon, Gravity, 20:15),} \\ & \dots \big\}. \end{aligned}
```

```
Signatur: \sigma_{\text{KINO}} := \{ R_{\text{Kino}}/4, R_{\text{Film}}/3, R_{\text{Prog}}/3 \} \cup \{ \text{`c'} : c \in \text{ASCII*} \}
```

Die Kinodatenbank wird dargestellt als σ_{KINO} -Struktur \mathcal{D} .

Universum:

```
D := ASCII* 

☐ { Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93, Casablanca, ..., 20:00}.
```

Relationen:

```
 \begin{aligned} & \mathcal{R}^{\mathcal{D}}_{\mathit{Kino}} := \big\{ \text{ (Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93),} \\ & \quad \text{ (Casablanca, Friedenstr. 12-13, Adlershof, 030 67 75 75 2),} \\ & \quad \cdots, \\ & \quad \text{ (Urania, An der Urania 17, Schöneberg, 030 21 89 09 1)} \big\} \\ & \mathcal{R}^{\mathcal{D}}_{\mathit{Film}} := \big\{ \text{ (Alien, Ridley Scott, Sigourney Weaver),} \\ & \quad \text{ (Blade Runner, Ridley Scott, Harrison Ford),} \\ & \mathcal{R}^{\mathcal{D}}_{\mathit{Prog}} := \big\{ \text{ (Babylon, Casablanca, 17:30),} \\ & \quad \text{ (Babylon, Gravity, 20:15),} \\ & \dots \big\}. \end{aligned}
```

Konstanten:

```
Signatur: \sigma_{\text{KINO}} := \{ R_{\text{Kino}}/4, R_{\text{Film}}/3, R_{\text{Prog}}/3 \} \cup \{ \text{`c'} : c \in \text{ASCII*} \}
```

Die Kinodatenbank wird dargestellt als σ_{KINO} -Struktur \mathcal{D} .

Universum:

Relationen:

```
\begin{split} & \mathcal{R}^{\mathcal{D}}_{\mathit{Kino}} := \big\{ \text{ (Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93),} \\ & \quad \text{ (Casablanca, Friedenstr. 12-13, Adlershof, 030 67 75 75 2),} \\ & \quad \dots, \\ & \quad \text{ (Urania, An der Urania 17, Schöneberg, 030 21 89 09 1)} \big\} \\ & \mathcal{R}^{\mathcal{D}}_{\mathit{Film}} := \big\{ \text{ (Alien, Ridley Scott, Sigourney Weaver),} \\ & \quad \text{ (Blade Runner, Ridley Scott, Harrison Ford),} \\ & \mathcal{R}^{\mathcal{D}}_{\mathit{Prog}} := \big\{ \text{ (Babylon, Casablanca, 17:30),} \\ & \quad \text{ (Babylon, Gravity, 20:15),} \\ & \dots \big\}. \end{split}
```

Konstanten: c' = c, für jedes $c \in ASCII^*$.

D.h.: jedes Konstantensymbol wird durch den zwischen den Hochkommas stehenden Text interpretiert.

Definition 3.5

Seien σ und τ Signaturen mit $\sigma \subseteq \tau$.

(a) Das σ -Redukt einer τ -Struktur \mathcal{B} ist die σ -Struktur $\mathcal{B}|_{\sigma}$ mit $B|_{\sigma} := B$ und $S^{\mathcal{B}|_{\sigma}} := S^{\mathcal{B}}$ für jedes $S \in \sigma$.

D.h.: Ist
$$\mathcal{B} = (B, (S^{\mathcal{B}})_{S \in \tau})$$
, so ist $\mathcal{B}|_{\sigma} = (B, (S^{\mathcal{B}})_{S \in \sigma})$.

HU Berlin

Definition 3.5

Seien σ und τ Signaturen mit $\sigma \subseteq \tau$.

(a) Das σ -Redukt einer τ -Struktur \mathcal{B} ist die σ -Struktur $\mathcal{B}|_{\sigma}$ mit $B|_{\sigma} := B$ und $S^{\mathcal{B}|_{\sigma}} := S^{\mathcal{B}}$ für jedes $S \in \sigma$.

D.h.: Ist
$$\mathcal{B} = (B, (S^{\mathcal{B}})_{S \in \tau})$$
, so ist $\mathcal{B}|_{\sigma} = (B, (S^{\mathcal{B}})_{S \in \sigma})$.

(b) Eine au-Struktur $\mathcal B$ ist eine au-Expansion einer σ -Struktur $\mathcal A$, wenn $\mathcal A=\mathcal B|_\sigma.$

HU Berlin

Definition 3.5

Seien σ und τ Signaturen mit $\sigma \subseteq \tau$.

(a) Das σ -Redukt einer τ -Struktur \mathcal{B} ist die σ -Struktur $\mathcal{B}|_{\sigma}$ mit $B|_{\sigma} := B$ und $S^{\mathcal{B}|_{\sigma}} := S^{\mathcal{B}}$ für jedes $S \in \sigma$.

D.h.: Ist
$$\mathcal{B} = (B, (S^{\mathcal{B}})_{S \in \tau})$$
, so ist $\mathcal{B}|_{\sigma} = (B, (S^{\mathcal{B}})_{S \in \sigma})$.

(b) Eine au-Struktur $\mathcal B$ ist eine au-Expansion einer σ -Struktur $\mathcal A$, wenn $\mathcal A=\mathcal B|_\sigma.$

Beispiel

Das $\{+,\underline{0}\}$ -Redukt des Standardmodells der Arithmetik ist die Struktur

Definition 3.5

Seien σ und τ Signaturen mit $\sigma \subseteq \tau$.

(a) Das σ -Redukt einer τ -Struktur \mathcal{B} ist die σ -Struktur $\mathcal{B}|_{\sigma}$ mit $B|_{\sigma} := B$ und $S^{\mathcal{B}|_{\sigma}} := S^{\mathcal{B}}$ für jedes $S \in \sigma$.

D.h.: Ist
$$\mathcal{B} = (B, (S^{\mathcal{B}})_{S \in \tau})$$
, so ist $\mathcal{B}|_{\sigma} = (B, (S^{\mathcal{B}})_{S \in \sigma})$.

(b) Eine au-Struktur $\mathcal B$ ist eine au-Expansion einer σ -Struktur $\mathcal A$, wenn $\mathcal A=\mathcal B|_\sigma.$

Beispiel

Das $\{+,\underline{0}\}$ -Redukt des Standardmodells der Arithmetik ist die Struktur

$$\mathcal{A}_{\mathbb{N}}|_{\{+,\underline{0}\}} = (\mathbb{N}, +^{\mathcal{A}_{\mathbb{N}}}, \underline{0}^{\mathcal{A}_{\mathbb{N}}}),$$

wobei $+^{\mathcal{A}_{\mathbb{N}}}$ die natürliche Addition auf \mathbb{N} und $\underline{0}^{\mathcal{A}_{\mathbb{N}}}$ die natürliche Zahl 0 ist.

HU Berlin

Definition 3.5

Seien σ und τ Signaturen mit $\sigma \subseteq \tau$.

(a) Das σ -Redukt einer τ -Struktur \mathcal{B} ist die σ -Struktur $\mathcal{B}|_{\sigma}$ mit $B|_{\sigma} := B$ und $S^{\mathcal{B}|_{\sigma}} := S^{\mathcal{B}}$ für jedes $S \in \sigma$.

D.h.: Ist
$$\mathcal{B} = (B, (S^{\mathcal{B}})_{S \in \tau})$$
, so ist $\mathcal{B}|_{\sigma} = (B, (S^{\mathcal{B}})_{S \in \sigma})$.

(b) Eine au-Struktur $\mathcal B$ ist eine au-Expansion einer σ -Struktur $\mathcal A$, wenn $\mathcal A=\mathcal B|_\sigma.$

Beispiel

Das $\{+,\underline{0}\}$ -Redukt des Standardmodells der Arithmetik ist die Struktur

$$\mathcal{A}_{\mathbb{N}}|_{\{+,0\}} = (\mathbb{N}, +^{\mathcal{A}_{\mathbb{N}}}, \underline{0}^{\mathcal{A}_{\mathbb{N}}}),$$

wobei $+^{\mathcal{A}_{\mathbb{N}}}$ die natürliche Addition auf \mathbb{N} und $\underline{0}^{\mathcal{A}_{\mathbb{N}}}$ die natürliche Zahl 0 ist.

Man bezeichnet diese Struktur als das Standardmodell der Presburger Arithmetik.

Prinzipielle Gleichheit von Strukturen

Frage: Wann sind zwei σ -Strukturen $\mathcal A$ und $\mathcal B$ "prinzipiell gleich"?

Prinzipielle Gleichheit von Strukturen

Frage: Wann sind zwei σ -Strukturen \mathcal{A} und \mathcal{B} "prinzipiell gleich"?

Antwort: Wenn $\mathcal B$ aus $\mathcal A$ entsteht, indem man die Elemente des Universums von $\mathcal A$ umbenennt.

HU Berlin

Prinzipielle Gleichheit von Strukturen

Frage: Wann sind zwei σ -Strukturen \mathcal{A} und \mathcal{B} "prinzipiell gleich"?

Antwort: Wenn $\mathcal B$ aus $\mathcal A$ entsteht, indem man die Elemente des Universums von $\mathcal A$ umbenennt.

Dies wird in der folgenden Definition präzisiert.

Definition 3.6

Seien $\mathcal A$ und $\mathcal B$ σ -Strukturen. Ein Isomorphismus von $\mathcal A$ nach $\mathcal B$ ist eine Abbildung $\pi:A\to B$ mit folgenden Eigenschaften:

Definition 3.6

Seien $\mathcal A$ und $\mathcal B$ σ -Strukturen. Ein Isomorphismus von $\mathcal A$ nach $\mathcal B$ ist eine Abbildung $\pi: \mathcal A \to \mathcal B$ mit folgenden Eigenschaften:

1. π ist bijektiv.

Definition 3.6

Seien $\mathcal A$ und $\mathcal B$ σ -Strukturen. Ein Isomorphismus von $\mathcal A$ nach $\mathcal B$ ist eine Abbildung $\pi: \mathcal A \to \mathcal B$ mit folgenden Eigenschaften:

- 1. π ist bijektiv.
- 2. Für alle $k \in \mathbb{N} \setminus \{0\}$, alle k-stelligen Relationssymbole $R \in \sigma$ und alle k-Tupel $(a_1, \ldots, a_k) \in A^k$ gilt:

$$(a_1,\ldots,a_k)\in R^{\mathcal{A}}\iff (\pi(a_1),\ldots,\pi(a_k))\in R^{\mathcal{B}}.$$

Definition 3.6

Seien \mathcal{A} und \mathcal{B} σ -Strukturen. Ein Isomorphismus von \mathcal{A} nach \mathcal{B} ist eine Abbildung $\pi: A \to B$ mit folgenden Eigenschaften:

- 1. π ist bijektiv.
- 2. Für alle $k \in \mathbb{N} \setminus \{0\}$, alle k-stelligen Relationssymbole $R \in \sigma$ und alle k-Tupel $(a_1, \ldots, a_k) \in A^k$ gilt:

$$(a_1,\ldots,a_k)\in R^{\mathcal{A}}\iff (\pi(a_1),\ldots,\pi(a_k))\in R^{\mathcal{B}}.$$

3. Für alle Konstantensymbole $c \in \sigma$ gilt:

$$\pi(c^{\mathcal{A}}) = c^{\mathcal{B}}.$$

HU Berlin

Definition 3.6

Seien \mathcal{A} und \mathcal{B} σ -Strukturen. Ein Isomorphismus von \mathcal{A} nach \mathcal{B} ist eine Abbildung $\pi: A \to B$ mit folgenden Eigenschaften:

- 1. π ist bijektiv.
- 2. Für alle $k \in \mathbb{N} \setminus \{0\}$, alle k-stelligen Relationssymbole $R \in \sigma$ und alle k-Tupel $(a_1, \ldots, a_k) \in A^k$ gilt:

$$(a_1,\ldots,a_k)\in R^{\mathcal{A}}\iff (\pi(a_1),\ldots,\pi(a_k))\in R^{\mathcal{B}}.$$

3. Für alle Konstantensymbole $c \in \sigma$ gilt:

$$\pi(c^{\mathcal{A}}) = c^{\mathcal{B}}.$$

4. Für alle $k \in \mathbb{N} \setminus \{0\}$, alle k-stelligen Funktionssymbole $f \in \sigma$ und alle k-Tupel $(a_1, \ldots, a_k) \in A^k$ gilt:

$$\pi(f^{\mathcal{A}}(a_1,\ldots,a_k)) = f^{\mathcal{B}}(\pi(a_1),\ldots,\pi(a_k)).$$

HU Berlin

Isomorphie

Notation

Seien \mathcal{A} und \mathcal{B} σ -Strukturen. Wir schreiben $\pi: \mathcal{A} \cong \mathcal{B}$, um anzudeuten, dass π ein Isomorphismus von \mathcal{A} nach \mathcal{B} ist.

Isomorphie

Notation

Seien \mathcal{A} und \mathcal{B} σ -Strukturen. Wir schreiben $\pi: \mathcal{A} \cong \mathcal{B}$, um anzudeuten, dass π ein Isomorphismus von \mathcal{A} nach \mathcal{B} ist.

Definition 3.7

Zwei σ -Strukturen \mathcal{A} und \mathcal{B} heißen isomorph (wir schreiben: $\mathcal{A} \cong \mathcal{B}$), wenn es einen Isomorphismus von \mathcal{A} nach \mathcal{B} gibt.

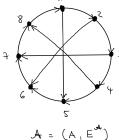
Beispiele 3.8

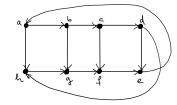
(a) Seien A, B nicht-leere Mengen. Dann sind die \emptyset -Strukturen $\mathcal{A} := (A)$ und $\mathcal{B} := (B)$ genau dann isomorph, wenn

Beispiele 3.8

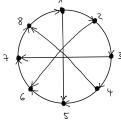
(a) Seien A, B nicht-leere Mengen. Dann sind die \emptyset -Strukturen A := (A) und $\mathcal{B} := (B)$ genau dann isomorph, wenn A und B gleichmächtig sind (d.h. es gibt eine Bijektion von A nach B).

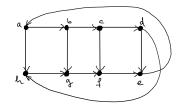
(b) Seien $A = (A, E^A)$ und $B = (B, E^B)$ die beiden folgenden Digraphen:





(b) Seien $A = (A, E^A)$ und $B = (B, E^B)$ die beiden folgenden Digraphen:

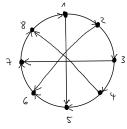


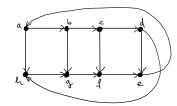


B = (B, E^B)

Dann ist $\pi: A \rightarrow B$ mit

(b) Seien $A = (A, E^A)$ und $B = (B, E^B)$ die beiden folgenden Digraphen:





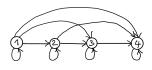
Dann ist $\pi: A \rightarrow B$ mit

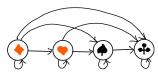
ein Isomorphismus von \mathcal{A} nach \mathcal{B} .

(c) Sei
$$\mathcal{A} = (A, \leqslant^{\mathcal{A}})$$
 mit $A = \{1, 2, 3, 4\}$ und

$$\leq^{\mathcal{A}} = \{(i,j) : i,j \in \mathbb{N}, 1 \leqslant i \leqslant j \leqslant 4\},$$

und sei $\mathcal{B} = (B, \leq^A)$ mit $B = \{\diamondsuit, \heartsuit, \spadesuit, \clubsuit\}$, wobei $\leqslant^{\mathcal{B}}$ wie in Beispiel 3.4 definiert ist. Skizze:

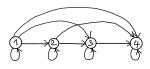


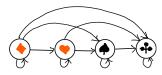


(c) Sei
$$\mathcal{A} = (A, \leqslant^{\mathcal{A}})$$
 mit $A = \{1, 2, 3, 4\}$ und

$$\leq^{\mathcal{A}} = \{(i,j) : i,j \in \mathbb{N}, 1 \leqslant i \leqslant j \leqslant 4\},$$

und sei $\mathcal{B} = (B, \leq^A)$ mit $B = \{\diamondsuit, \heartsuit, \spadesuit, \clubsuit\}$, wobei $\leq^{\mathcal{B}}$ wie in Beispiel 3.4 definiert ist. Skizze:



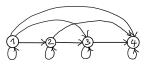


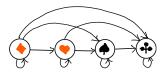
Dann ist $\pi: A \rightarrow B$ mit

(c) Sei
$$\mathcal{A} = (A, \leqslant^{\mathcal{A}})$$
 mit $A = \{1, 2, 3, 4\}$ und

$$\leq^{\mathcal{A}} = \{(i,j) : i,j \in \mathbb{N}, 1 \leqslant i \leqslant j \leqslant 4\},$$

und sei $\mathcal{B} = (B, \leq^{\mathcal{A}})$ mit $B = \{\diamondsuit, \heartsuit, \spadesuit, \clubsuit\}$, wobei $\leq^{\mathcal{B}}$ wie in Beispiel 3.4 definiert ist. Skizze:





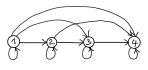
Dann ist $\pi: A \to B$ mit

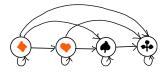
ein Isomorphismus von \mathcal{A} nach \mathcal{B} .

(c) Sei
$$\mathcal{A} = (A, \leqslant^{\mathcal{A}})$$
 mit $A = \{1, 2, 3, 4\}$ und

$$\leq^{\mathcal{A}} = \{(i,j) : i,j \in \mathbb{N}, 1 \leqslant i \leqslant j \leqslant 4\},$$

und sei $\mathcal{B} = (B, \leq^A)$ mit $B = \{\diamondsuit, \heartsuit, \spadesuit, \clubsuit\}$, wobei $\leqslant^{\mathcal{B}}$ wie in Beispiel 3.4 definiert ist. Skizze:





Dann ist $\pi: A \to B$ mit

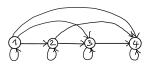
ein Isomorphismus von \mathcal{A} nach \mathcal{B} .

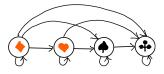
Allgemein gilt: Sind A und B endliche Mengen mit |A| = |B|, und sind \leq^A und \leq^B lineare Ordnungen auf A und B, so ist die Abbildung $\pi: A \to B$, die

(c) Sei
$$\mathcal{A} = (A, \leqslant^{\mathcal{A}})$$
 mit $A = \{1, 2, 3, 4\}$ und

$$\leq^{\mathcal{A}} = \{(i,j) : i,j \in \mathbb{N}, 1 \leqslant i \leqslant j \leqslant 4\},$$

und sei $\mathcal{B} = (B, \leq^A)$ mit $B = \{\diamondsuit, \heartsuit, \spadesuit, \clubsuit\}$, wobei $\leqslant^{\mathcal{B}}$ wie in Beispiel 3.4 definiert ist. Skizze:





Dann ist $\pi: A \to B$ mit

ein Isomorphismus von \mathcal{A} nach \mathcal{B} .

Allgemein gilt: Sind A und B endliche Mengen mit |A| = |B|, und sind $\leqslant^{\mathcal{A}}$ und $\leqslant^{\mathcal{B}}$ lineare Ordnungen auf A und B, so ist die Abbildung $\pi:A\to B$, die das (bzgl. $\leqslant^{\mathcal{A}}$) kleinste Element in A auf das (bzgl. $\leqslant^{\mathcal{B}}$) kleinste Element in B abbildet, und allgemein für jedes $i\in\{1,\ldots,|A|\}$ das (bzgl. $\leqslant^{\mathcal{A}}$) i-kleinste Element in A auf das (bzgl. $\leqslant^{\mathcal{B}}$) i-kleinste Element in A auf das (bzgl. $\leqslant^{\mathcal{B}}$) i-kleinste Element in A abbildet, ein Isomorphismus von $A:=(A,\leqslant^{\mathcal{A}})$ nach $B:=(B,\leqslant^{\mathcal{B}})$.

(d) Sind $\leqslant^{\mathbb{N}}$ und $\leqslant^{\mathbb{Z}}$ die natürlichen linearen Ordnungen auf \mathbb{N} und \mathbb{Z} , so sind die $\{\leqslant\}$ -Strukturen $\mathcal{N}:=(\mathbb{N},\leqslant^{\mathbb{N}})$ und $\mathcal{Z}:=(\mathbb{Z},\leqslant^{\mathbb{Z}})$

(d) Sind $\leqslant^{\mathbb{N}}$ und $\leqslant^{\mathbb{Z}}$ die natürlichen linearen Ordnungen auf \mathbb{N} und \mathbb{Z} , so sind die $\{\leqslant\}$ -Strukturen $\mathcal{N}:=(\mathbb{N},\leqslant^{\mathbb{N}})$ und $\mathcal{Z}:=(\mathbb{Z},\leqslant^{\mathbb{Z}})$ nicht isomorph (kurz: $\mathcal{N}\ncong\mathcal{Z}$).

(d) Sind $\leqslant^{\mathbb{N}}$ und $\leqslant^{\mathbb{Z}}$ die natürlichen linearen Ordnungen auf \mathbb{N} und \mathbb{Z} , so sind die $\{\leqslant\}$ -Strukturen $\mathcal{N}:=(\mathbb{N},\leqslant^{\mathbb{N}})$ und $\mathcal{Z}:=(\mathbb{Z},\leqslant^{\mathbb{Z}})$ nicht isomorph (kurz: $\mathcal{N}\ncong\mathcal{Z}$).

Beweis:

(d) Sind $\leqslant^{\mathbb{N}}$ und $\leqslant^{\mathbb{Z}}$ die natürlichen linearen Ordnungen auf \mathbb{N} und \mathbb{Z} , so sind die $\{\leqslant\}$ -Strukturen $\mathcal{N}:=(\mathbb{N},\leqslant^{\mathbb{N}})$ und $\mathcal{Z}:=(\mathbb{Z},\leqslant^{\mathbb{Z}})$ nicht isomorph (kurz: $\mathcal{N}\ncong\mathcal{Z}$).

Beweis: Angenommen, $\pi: \mathbb{N} \to \mathbb{Z}$ ist ein Isomorphismus von \mathcal{N} nach \mathcal{Z} .

(d) Sind $\leqslant^{\mathbb{N}}$ und $\leqslant^{\mathbb{Z}}$ die natürlichen linearen Ordnungen auf \mathbb{N} und \mathbb{Z} , so sind die $\{\leqslant\}$ -Strukturen $\mathcal{N}:=(\mathbb{N},\leqslant^{\mathbb{N}})$ und $\mathcal{Z}:=(\mathbb{Z},\leqslant^{\mathbb{Z}})$ nicht isomorph (kurz: $\mathcal{N}\ncong\mathcal{Z}$).

Beweis: Angenommen, $\pi: \mathbb{N} \to \mathbb{Z}$ ist ein Isomorphismus von \mathcal{N} nach \mathcal{Z} . Sei $z := \pi(0)$. In \mathbb{Z} gibt es ein Element $z' \in \mathbb{Z}$ mit z' < z (z.B. z' = z - 1).

(d) Sind $\leqslant^{\mathbb{N}}$ und $\leqslant^{\mathbb{Z}}$ die natürlichen linearen Ordnungen auf \mathbb{N} und \mathbb{Z} , so sind die $\{\leqslant\}$ -Strukturen $\mathcal{N}:=(\mathbb{N},\leqslant^{\mathbb{N}})$ und $\mathcal{Z}:=(\mathbb{Z},\leqslant^{\mathbb{Z}})$ nicht isomorph (kurz: $\mathcal{N}\not\cong\mathcal{Z}$).

Beweis: Angenommen, $\pi: \mathbb{N} \to \mathbb{Z}$ ist ein Isomorphismus von \mathcal{N} nach \mathcal{Z} . Sei $z := \pi(0)$. In \mathbb{Z} gibt es ein Element $z' \in \mathbb{Z}$ mit z' < z (z.B. z' = z - 1). Da π surjektiv ist, muss es ein $n' \in \mathbb{N}$ geben, so dass $\pi(n') = z'$.

(d) Sind $\leqslant^{\mathbb{N}}$ und $\leqslant^{\mathbb{Z}}$ die natürlichen linearen Ordnungen auf \mathbb{N} und \mathbb{Z} , so sind die $\{\leqslant\}$ -Strukturen $\mathcal{N}:=(\mathbb{N},\leqslant^{\mathbb{N}})$ und $\mathcal{Z}:=(\mathbb{Z},\leqslant^{\mathbb{Z}})$ nicht isomorph (kurz: $\mathcal{N}\not\cong\mathcal{Z}$).

Beweis: Angenommen, $\pi: \mathbb{N} \to \mathbb{Z}$ ist ein Isomorphismus von \mathcal{N} nach \mathcal{Z} . Sei $z:=\pi(0)$. In \mathbb{Z} gibt es ein Element $z'\in \mathbb{Z}$ mit z'< z (z.B. z'=z-1). Da π surjektiv ist, muss es ein $n'\in \mathbb{N}$ geben, so dass $\pi(n')=z'$. Wegen $z'\neq z$ muss $n'\neq 0$ gelten (da π injektiv ist). Somit gilt:

(d) Sind $\leqslant^{\mathbb{N}}$ und $\leqslant^{\mathbb{Z}}$ die natürlichen linearen Ordnungen auf \mathbb{N} und \mathbb{Z} , so sind die $\{\leqslant\}$ -Strukturen $\mathcal{N}:=(\mathbb{N},\leqslant^{\mathbb{N}})$ und $\mathcal{Z}:=(\mathbb{Z},\leqslant^{\mathbb{Z}})$ nicht isomorph (kurz: $\mathcal{N}\not\cong\mathcal{Z}$).

Beweis: Angenommen, $\pi:\mathbb{N}\to\mathbb{Z}$ ist ein Isomorphismus von \mathcal{N} nach \mathcal{Z} . Sei $z:=\pi(0)$. In \mathbb{Z} gibt es ein Element $z'\in\mathbb{Z}$ mit z'< z (z.B. z'=z-1). Da π surjektiv ist, muss es ein $n'\in\mathbb{N}$ geben, so dass $\pi(n')=z'$. Wegen $z'\neq z$ muss $n'\neq 0$ gelten (da π injektiv ist). Somit gilt:

$$0 \leqslant^{\mathbb{N}} n'$$
 aber $z \nleq^{\mathbb{Z}} z'$.

Also ist π kein Isomorphismus von $\mathcal N$ nach $\mathcal Z$. Widerspruch!

- (e) Sei $\sigma := \{f, c\}$, wobei f ein 2-stelliges Funktionssymbol und c ein Konstantensymbol ist. Sei $\mathcal{A} := (A, f^{\mathcal{A}}, c^{\mathcal{A}})$, wobei gilt:
 - $A := \mathbb{N}$ ist die Menge aller natürlichen Zahlen,
 - $f^{\mathcal{A}} := +^{\mathcal{A}_{\mathbb{N}}}$ ist die natürliche Addition auf \mathbb{N} ,
 - $c^{\mathcal{A}} := 0$ ist die natürliche Zahl 0

- (e) Sei $\sigma := \{f, c\}$, wobei f ein 2-stelliges Funktionssymbol und c ein Konstantensymbol ist. Sei $\mathcal{A} := (A, f^{\mathcal{A}}, c^{\mathcal{A}})$, wobei gilt:
 - $A := \mathbb{N}$ ist die Menge aller natürlichen Zahlen,
 - $f^{\mathcal{A}} := +^{\mathcal{A}_{\mathbb{N}}}$ ist die natürliche Addition auf \mathbb{N} ,
 - $c^{\mathcal{A}} := 0$ ist die natürliche Zahl 0

und sei $\mathcal{B} := (B, f^{\mathcal{B}}, c^{\mathcal{B}})$, wobei

- $B := \{2^n : n \in \mathbb{N}\}$ ist die Menge aller Zweierpotenzen,
- $f^{\mathcal{B}}: B \times B \to B$ ist die Funktion mit

$$f^{\mathcal{B}}(b_1,b_2) \ := \ b_1 \cdot b_2, \qquad \text{für alle} \ b_1,b_2 \in \mathcal{B}$$

• $c^{\mathcal{B}} := 1 = 2^0 \in B$.

Dann gilt:

- (e) Sei $\sigma := \{f, c\}$, wobei f ein 2-stelliges Funktionssymbol und c ein Konstantensymbol ist. Sei $\mathcal{A} := (A, f^{\mathcal{A}}, c^{\mathcal{A}})$, wobei gilt:
 - $A := \mathbb{N}$ ist die Menge aller natürlichen Zahlen,
 - $f^{\mathcal{A}} := +^{\mathcal{A}_{\mathbb{N}}}$ ist die natürliche Addition auf \mathbb{N} ,
 - $c^{\mathcal{A}} := 0$ ist die natürliche Zahl 0

und sei $\mathcal{B} := (B, f^{\mathcal{B}}, c^{\mathcal{B}})$, wobei

- $B := \{2^n : n \in \mathbb{N}\}$ ist die Menge aller Zweierpotenzen,
- $f^{\mathcal{B}}: B \times B \to B$ ist die Funktion mit

$$f^{\mathcal{B}}(b_1,b_2) \ := \ b_1 \cdot b_2, \qquad \text{für alle} \ b_1,b_2 \in \mathcal{B}$$

• $c^{\mathcal{B}} := 1 = 2^0 \in B$.

Dann gilt: $A \cong B$, und die Abbildung $\pi : A \to B$ mit

- (e) Sei $\sigma := \{f, c\}$, wobei f ein 2-stelliges Funktionssymbol und c ein Konstantensymbol ist. Sei $\mathcal{A} := (A, f^{\mathcal{A}}, c^{\mathcal{A}})$, wobei gilt:
 - $A := \mathbb{N}$ ist die Menge aller natürlichen Zahlen,
 - $f^{\mathcal{A}} := +^{\mathcal{A}_{\mathbb{N}}}$ ist die natürliche Addition auf \mathbb{N} ,
 - $c^{\mathcal{A}} := 0$ ist die natürliche Zahl 0

und sei $\mathcal{B} := (B, f^{\mathcal{B}}, c^{\mathcal{B}})$, wobei

- $B := \{2^n : n \in \mathbb{N}\}$ ist die Menge aller Zweierpotenzen,
- $f^{\mathcal{B}}: B \times B \to B$ ist die Funktion mit

$$f^{\mathcal{B}}(b_1,b_2) := b_1 \cdot b_2, \quad \text{für alle } b_1,b_2 \in \mathcal{B}$$

• $c^{\mathcal{B}} := 1 = 2^0 \in B$.

Dann gilt: $\mathcal{A} \cong \mathcal{B}$, und die Abbildung $\pi : A \to B$ mit $\pi(n) := 2^n$ für alle $n \in \mathbb{N}$ ist ein Isomorphismus von \mathcal{A} nach \mathcal{B} , denn:

Isomorphie ist eine Äquivalenzrelation

Lemma 3.9

Isomorphie ist eine Äquivalenzrelation auf der Klasse aller σ -Strukturen.

Isomorphie ist eine Äquivalenzrelation

Lemma 3.9

Isomorphie ist eine Äquivalenzrelation auf der Klasse aller σ -Strukturen. D.h.: Für alle σ -Strukturen $\mathcal{A}, \mathcal{B}, \mathcal{C}$ gilt:

- 1. $A \cong A$ (Reflexivität),
- 2. $A \cong B \implies B \cong A$ (Symmetrie),
- 3. $A \cong B$ und $B \cong C \implies A \cong C$ (Transitivität).

Isomorphie ist eine Äquivalenzrelation

Lemma 3.9

Isomorphie ist eine Äquivalenzrelation auf der Klasse aller σ -Strukturen. D.h.: Für alle σ -Strukturen $\mathcal{A}, \mathcal{B}, \mathcal{C}$ gilt:

- 1. $A \cong A$ (Reflexivität),
- 2. $A \cong B \implies B \cong A$ (Symmetrie),
- 3. $A \cong B$ und $B \cong C \implies A \cong C$ (Transitivität).

Beweis: Übung.

Abschnitt 3.2:

Terme der Logik erster Stufe

Individuenvariablen

Definition 3.10

Eine Individuenvariable (auch: Variable erster Stufe; kurz: Variable) hat die Form v_i für ein $i \in \mathbb{N}$.

Individuenvariablen

Definition 3.10

Eine Individuenvariable (auch: Variable erster Stufe; kurz: Variable) hat die Form v_i für ein $i \in \mathbb{N}$.

Die Menge aller Variablen bezeichnen wir mit VAR, d.h.

$$VAR = \{v_0, v_1, v_2, v_3, \dots\} = \{v_i : i \in \mathbb{N}\}.$$

Definition 3.11

(a) Für eine Signatur σ sei $A_{\sigma\text{-Terme}}$ das Alphabet, das aus allen Elementen in VAR, allen Konstanten- und Funktionssymbolen in σ , den Klammern (,) und dem Komma . besteht.

Definition 3.11

- (a) Für eine Signatur σ sei $A_{\sigma\text{-Terme}}$ das Alphabet, das aus allen Elementen in VAR, allen Konstanten- und Funktionssymbolen in σ , den Klammern (,) und dem Komma , besteht.
- (b) Die Menge T_{σ} aller σ -Terme ist die wie folgt rekursiv definierte Teilmenge von $A_{\sigma\text{-Terme}}^*$:

Definition 3.11

- (a) Für eine Signatur σ sei $A_{\sigma\text{-Terme}}$ das Alphabet, das aus allen Elementen in VAR, allen Konstanten- und Funktionssymbolen in σ , den Klammern (,) und dem Komma , besteht.
- (b) Die Menge T_{σ} aller σ -Terme ist die wie folgt rekursiv definierte Teilmenge von $A_{\sigma\text{-Terme}}^*$:

Basisregeln:

• Für jedes Konstantensymbol $c \in \sigma$ ist $c \in T_{\sigma}$.

Definition 3.11

- (a) Für eine Signatur σ sei $A_{\sigma\text{-Terme}}$ das Alphabet, das aus allen Elementen in VAR, allen Konstanten- und Funktionssymbolen in σ , den Klammern (,) und dem Komma , besteht.
- (b) Die Menge T_{σ} aller σ -Terme ist die wie folgt rekursiv definierte Teilmenge von $A_{\sigma\text{-Terme}}^*$:

Basisregeln:

- Für jedes Konstantensymbol $c \in \sigma$ ist $c \in T_{\sigma}$.
- Für jede Variable $x \in VAR$ ist $x \in T_{\sigma}$.

Definition 3.11

- (a) Für eine Signatur σ sei $A_{\sigma\text{-Terme}}$ das Alphabet, das aus allen Elementen in VAR, allen Konstanten- und Funktionssymbolen in σ , den Klammern (,) und dem Komma , besteht.
- (b) Die Menge T_{σ} aller σ -Terme ist die wie folgt rekursiv definierte Teilmenge von $A_{\sigma\text{-Terme}}^*$:

Basisregeln:

- Für jedes Konstantensymbol $c \in \sigma$ ist $c \in T_{\sigma}$.
- Für jede Variable $x \in VAR$ ist $x \in T_{\sigma}$.

Rekursive Regel:

• Für jedes Funktionssymbol $f \in \sigma$ und für k := ar(f) gilt: Sind $t_1 \in T_{\sigma}, \ldots, t_k \in T_{\sigma}$, so ist auch $f(t_1, \ldots, t_k) \in T_{\sigma}$.

Definition 3.11

- (a) Für eine Signatur σ sei $A_{\sigma\text{-Terme}}$ das Alphabet, das aus allen Elementen in VAR, allen Konstanten- und Funktionssymbolen in σ , den Klammern (,) und dem Komma , besteht.
- (b) Die Menge T_{σ} aller σ -Terme ist die wie folgt rekursiv definierte Teilmenge von $A_{\sigma\text{-Terme}}^*$:

Basisregeln:

- Für jedes Konstantensymbol $c \in \sigma$ ist $c \in T_{\sigma}$.
- Für jede Variable $x \in VAR$ ist $x \in T_{\sigma}$.

Rekursive Regel:

- Für jedes Funktionssymbol $f \in \sigma$ und für k := ar(f) gilt: Sind $t_1 \in T_{\sigma}, \ldots, t_k \in T_{\sigma}$, so ist auch $f(t_1, \ldots, t_k) \in T_{\sigma}$.
- (c) Die Menge aller Terme der Logik der ersten Stufe ist $\mathsf{T} := \bigcup_{\sigma \ \mathsf{Signatur}} \mathsf{T}_{\sigma}.$

Sei
$$\sigma := \{ f/2, c \}.$$

Sei
$$\sigma := \{ f/2, c \}.$$

Folgende Worte sind σ -Terme:

С,

Sei
$$\sigma := \{ f/2, c \}.$$

$$c$$
, v_4 ,

Sei
$$\sigma := \{ f/2, c \}.$$

$$c$$
, v_4 , $f(c,c)$,

Sei
$$\sigma := \{ f/2, c \}.$$

$$c, v_4, f(c,c), f(c,f(c,v_0)).$$

Sei
$$\sigma := \{ f/2, c \}.$$

Folgende Worte sind σ -Terme:

$$c, v_4, f(c,c), f(c,f(c,v_0)).$$

Folgende Worte sind <u>keine</u> σ -Terme:

Sei
$$\sigma := \{ f/2, c \}.$$

Folgende Worte sind σ -Terme:

$$c, v_4, f(c,c), f(c,f(c,v_0)).$$

Folgende Worte sind <u>keine</u> σ -Terme:

0,

Sei
$$\sigma := \{ f/2, c \}.$$

Folgende Worte sind σ -Terme:

$$c, v_4, f(c,c), f(c,f(c,v_0)).$$

Folgende Worte sind <u>keine</u> σ -Terme:

Sei
$$\sigma := \{ f/2, c \}.$$

Folgende Worte sind σ -Terme:

$$c, v_4, f(c,c), f(c,f(c,v_0)).$$

$$0, f(0,c), f(v_0,c,v_1),$$

Sei
$$\sigma := \{ f/2, c \}.$$

Folgende Worte sind σ -Terme:

$$c, v_4, f(c,c), f(c,f(c,v_0)).$$

0,
$$f(0,c)$$
, $f(v_0,c,v_1)$, $f^{\mathcal{A}}(2,3)$.

Belegungen und Interpretationen

Definition 3.12

Sei σ eine Signatur.

(a) Eine Belegung in einer σ -Struktur $\mathcal A$ ist eine Abbildung $\beta: \mathsf{VAR} \to A$.

D.h.: β ordnet jeder Variablen $\mathbf{x} \in \mathsf{VAR}$ ein Element $\beta(\mathbf{x})$ aus dem Universum von \mathcal{A} zu.

Belegungen und Interpretationen

Definition 3.12

Sei σ eine Signatur.

- (a) Eine Belegung in einer σ -Struktur $\mathcal A$ ist eine Abbildung $\beta: \mathsf{VAR} \to A$.
 - D.h.: β ordnet jeder Variablen $\mathbf{x} \in \mathsf{VAR}$ ein Element $\beta(\mathbf{x})$ aus dem Universum von A zu.
- (b) Eine σ -Interpretation ist ein Paar

$$\mathcal{I} = (\mathcal{A}, \beta),$$

bestehend aus einer σ -Struktur \mathcal{A} und einer Belegung β in \mathcal{A} .

Die Auswertung von Termen in Interpretationen

Wir wollen Terme nun in Interpretationen "auswerten".

Die Auswertung von Term t in einer Interpretation $\mathcal{I} = (\mathcal{A}, \beta)$ soll dasjenige Element aus A liefern, das man erhält, wenn man

Die Auswertung von Termen in Interpretationen

Wir wollen Terme nun in Interpretationen "auswerten".

Die Auswertung von Term t in einer Interpretation $\mathcal{I} = (\mathcal{A}, \beta)$ soll dasjenige Element aus A liefern, das man erhält, wenn man

die in t vorkommenden Variablen

Die Auswertung von Termen in Interpretationen

Wir wollen Terme nun in Interpretationen "auswerten".

Die Auswertung von Term t in einer Interpretation $\mathcal{I} = (\mathcal{A}, \beta)$ soll dasjenige Element aus A liefern, das man erhält, wenn man

• die in t vorkommenden Variablen gemäß der Belegung β interpretiert,

Wir wollen Terme nun in Interpretationen "auswerten".

Die Auswertung von Term t in einer Interpretation $\mathcal{I} = (\mathcal{A}, \beta)$ soll dasjenige Element aus A liefern, das man erhält, wenn man

- die in t vorkommenden Variablen gemäß der Belegung β interpretiert,
- die in t vorkommenden Konstantensymbole c

Wir wollen Terme nun in Interpretationen "auswerten".

Die Auswertung von Term t in einer Interpretation $\mathcal{I} = (\mathcal{A}, \beta)$ soll dasjenige Element aus A liefern, das man erhält, wenn man

- die in t vorkommenden Variablen gemäß der Belegung β interpretiert,
- die in t vorkommenden Konstantensymbole c gemäß ihrer Interpretation $c^{\mathcal{A}}$ in \mathcal{A} belegt,

Wir wollen Terme nun in Interpretationen "auswerten".

Die Auswertung von Term t in einer Interpretation $\mathcal{I} = (\mathcal{A}, \beta)$ soll dasjenige Element aus A liefern, das man erhält, wenn man

- die in t vorkommenden Variablen gemäß der Belegung β interpretiert,
- die in t vorkommenden Konstantensymbole c gemäß ihrer Interpretation $c^{\mathcal{A}}$ in \mathcal{A} belegt,
- die in t vorkommenden Funktionssymbole f

Wir wollen Terme nun in Interpretationen "auswerten".

Die Auswertung von Term t in einer Interpretation $\mathcal{I} = (\mathcal{A}, \beta)$ soll dasjenige Element aus A liefern, das man erhält, wenn man

- die in t vorkommenden Variablen gemäß der Belegung β interpretiert,
- die in t vorkommenden Konstantensymbole c gemäß ihrer Interpretation $c^{\mathcal{A}}$ in \mathcal{A} belegt,
- die in t vorkommenden Funktionssymbole f gemäß ihrer Interpretation $f^{\mathcal{A}}$ in \mathcal{A} belegt

Wir wollen Terme nun in Interpretationen "auswerten".

Die Auswertung von Term t in einer Interpretation $\mathcal{I} = (\mathcal{A}, \beta)$ soll dasjenige Element aus A liefern, das man erhält, wenn man

- die in t vorkommenden Variablen gemäß der Belegung β interpretiert,
- die in t vorkommenden Konstantensymbole c gemäß ihrer Interpretation $c^{\mathcal{A}}$ in \mathcal{A} belegt,
- die in t vorkommenden Funktionssymbole f gemäß ihrer Interpretation $f^{\mathcal{A}}$ in \mathcal{A} belegt

und dann nach und nach den resultierenden Term ausrechnet.

Dies wird in der folgenden Definition präzisiert.

Definition 3.13

Sei σ eine Signatur. Rekursiv über den Aufbau von T_{σ} definieren wir eine Funktion $\llbracket \cdot \rrbracket$, die jedem σ -Term t und jeder σ -Interpretation $\mathcal{I} = (\mathcal{A}, \beta)$ einen Wert $\llbracket t \rrbracket^{\mathcal{I}} \in \mathcal{A}$ zuordnet:

• Für alle $x \in VAR$ ist $[x]^{\mathcal{I}} :=$

Definition 3.13

Sei σ eine Signatur. Rekursiv über den Aufbau von T_{σ} definieren wir eine Funktion $\llbracket \cdot \rrbracket$, die jedem σ -Term t und jeder σ -Interpretation $\mathcal{I} = (\mathcal{A}, \beta)$ einen Wert $\llbracket t \rrbracket^{\mathcal{I}} \in \mathcal{A}$ zuordnet:

• Für alle $x \in VAR$ ist $[x]^{\mathcal{I}} := \beta(x)$.

Definition 3.13

Sei σ eine Signatur. Rekursiv über den Aufbau von T_{σ} definieren wir eine Funktion $\llbracket \cdot \rrbracket$, die jedem σ -Term t und jeder σ -Interpretation $\mathcal{I} = (\mathcal{A}, \beta)$ einen Wert $\llbracket t \rrbracket^{\mathcal{I}} \in \mathcal{A}$ zuordnet:

- Für alle $\mathbf{x} \in VAR$ ist $[\![\mathbf{x}]\!]^{\mathcal{I}} := \beta(\mathbf{x})$.
- Für alle Konstantensymbole $\mathbf{c} \in \sigma$ ist $[\![\mathbf{c}]\!]^{\mathcal{I}} :=$

Definition 3.13

Sei σ eine Signatur. Rekursiv über den Aufbau von T_σ definieren wir eine Funktion $\llbracket \cdot \rrbracket$, die jedem σ -Term t und jeder σ -Interpretation $\mathcal{I} = (\mathcal{A}, \beta)$ einen Wert $\llbracket t \rrbracket^{\mathcal{I}} \in \mathcal{A}$ zuordnet:

- Für alle $\mathbf{x} \in VAR$ ist $[\![\mathbf{x}]\!]^{\mathcal{I}} := \beta(\mathbf{x})$.
- Für alle Konstantensymbole $c \in \sigma$ ist $[c]^{\mathcal{I}} := c^{\mathcal{A}}$.

Definition 3.13

Sei σ eine Signatur. Rekursiv über den Aufbau von T_σ definieren wir eine Funktion $\llbracket \cdot \rrbracket$, die jedem σ -Term t und jeder σ -Interpretation $\mathcal{I} = (\mathcal{A}, \beta)$ einen Wert $\llbracket t \rrbracket^{\mathcal{I}} \in \mathcal{A}$ zuordnet:

- Für alle $\mathbf{x} \in VAR$ ist $[\![\mathbf{x}]\!]^{\mathcal{I}} := \beta(\mathbf{x})$.
- Für alle Konstantensymbole $c \in \sigma$ ist $[c]^{\mathcal{I}} := c^{\mathcal{A}}$.
- Für alle Funktionssymbole $f \in \sigma$, für k := ar(f), und für alle σ -Terme $t_1, \ldots, t_k \in T_{\sigma}$ gilt:

$$\llbracket f(t_1,\ldots,t_k) \rrbracket^{\mathcal{I}} :=$$

Definition 3.13

Sei σ eine Signatur. Rekursiv über den Aufbau von T_σ definieren wir eine Funktion $\llbracket \cdot \rrbracket$, die jedem σ -Term t und jeder σ -Interpretation $\mathcal{I} = (\mathcal{A}, \beta)$ einen Wert $\llbracket t \rrbracket^{\mathcal{I}} \in \mathcal{A}$ zuordnet:

- Für alle $x \in VAR$ ist $[x]^T := \beta(x)$.
- Für alle Konstantensymbole $c \in \sigma$ ist $[c]^{\mathcal{I}} := c^{\mathcal{A}}$.
- Für alle Funktionssymbole $f \in \sigma$, für k := ar(f), und für alle σ -Terme $t_1, \ldots, t_k \in T_{\sigma}$ gilt:

$$\llbracket f(t_1,\ldots,t_k) \rrbracket^{\mathcal{I}} := f^{\mathcal{A}} (\llbracket t_1 \rrbracket^{\mathcal{I}},\ldots,\llbracket t_k \rrbracket^{\mathcal{I}}).$$

Sei $\sigma=\{f/2,\ c\}$, und sei $\mathcal{A}=(A,f^{\mathcal{A}},c^{\mathcal{A}})$ die σ -Struktur mit $A=\mathbb{N}$, $f^{\mathcal{A}}=+^{\mathcal{A}_{\mathbb{N}}}$ (die Addition auf den natürlichen Zahlen) und $c^{\mathcal{A}}=0$ (die natürliche Zahl 0).

Sei $\sigma=\{f/2,c\}$, und sei $\mathcal{A}=(A,f^A,c^A)$ die σ -Struktur mit $A=\mathbb{N}$, $f^A=+^{A_\mathbb{N}}$ (die Addition auf den natürlichen Zahlen) und $c^A=0$ (die natürliche Zahl 0).

Sei $\beta: VAR \to A$ eine Belegung mit $\beta(v_1) = 1$ und $\beta(v_2) = 7$

Sei $\sigma=\{f/2,c\}$, und sei $\mathcal{A}=(A,f^{\mathcal{A}},c^{\mathcal{A}})$ die σ -Struktur mit $A=\mathbb{N}$, $f^{\mathcal{A}}=+^{\mathcal{A}_{\mathbb{N}}}$ (die Addition auf den natürlichen Zahlen) und $c^{\mathcal{A}}=0$ (die natürliche Zahl 0).

Sei $\beta: VAR \to A$ eine Belegung mit $\beta(v_1) = 1$ und $\beta(v_2) = 7$, und sei $\mathcal{I} := (\mathcal{A}, \beta)$.

$$\llbracket t \rrbracket^{\mathcal{I}} =$$

Sei $\sigma=\{f/2,c\}$, und sei $\mathcal{A}=(A,f^{\mathcal{A}},c^{\mathcal{A}})$ die σ -Struktur mit $A=\mathbb{N}$, $f^{\mathcal{A}}=+^{\mathcal{A}_{\mathbb{N}}}$ (die Addition auf den natürlichen Zahlen) und $c^{\mathcal{A}}=0$ (die natürliche Zahl 0).

Sei $\beta: VAR \to A$ eine Belegung mit $\beta(v_1) = 1$ und $\beta(v_2) = 7$, und sei $\mathcal{I} := (\mathcal{A}, \beta)$.

$$\begin{bmatrix} t \end{bmatrix}^{\mathcal{I}} = f^{\mathcal{A}} \Big(\beta(\mathbf{v_2}), f^{\mathcal{A}} \Big(\beta(\mathbf{v_1}), c^{\mathcal{A}} \Big) \Big)$$

$$=$$

Sei $\sigma=\{f/2,c\}$, und sei $\mathcal{A}=(A,f^{\mathcal{A}},c^{\mathcal{A}})$ die σ -Struktur mit $A=\mathbb{N}$, $f^{\mathcal{A}}=+^{\mathcal{A}_{\mathbb{N}}}$ (die Addition auf den natürlichen Zahlen) und $c^{\mathcal{A}}=0$ (die natürliche Zahl 0).

Sei $\beta: VAR \to A$ eine Belegung mit $\beta(v_1) = 1$ und $\beta(v_2) = 7$, und sei $\mathcal{I} := (\mathcal{A}, \beta)$.

$$\begin{bmatrix} \mathbf{t} \end{bmatrix}^{\mathcal{I}} = f^{\mathcal{A}} \Big(\beta(\mathbf{v_2}), f^{\mathcal{A}} \Big(\beta(\mathbf{v_1}), c^{\mathcal{A}} \Big) \Big)$$
$$= f^{\mathcal{A}} \Big(7, f^{\mathcal{A}} \Big(1, 0 \Big) \Big)$$

Sei $\sigma = \{ f/2, c \}$, und sei $\mathcal{A} = (A, f^A, c^A)$ die σ -Struktur mit $A = \mathbb{N}$, $f^A = +^{A_{\mathbb{N}}}$ (die Addition auf den natürlichen Zahlen) und $c^A = 0$ (die natürliche Zahl 0).

Sei $\beta: VAR \to A$ eine Belegung mit $\beta(v_1) = 1$ und $\beta(v_2) = 7$, und sei $\mathcal{I} := (\mathcal{A}, \beta)$.

$$\begin{bmatrix} \mathbf{t} \end{bmatrix}^{\mathcal{I}} = f^{\mathcal{A}} \Big(\beta(\mathbf{v_2}), f^{\mathcal{A}} \Big(\beta(\mathbf{v_1}), c^{\mathcal{A}} \Big) \Big)$$

$$= f^{\mathcal{A}} \Big(7, f^{\mathcal{A}} \Big(1, 0 \Big) \Big)$$

$$= \Big(7 + \Big(1 + 0 \Big) \Big)$$

$$=$$

Sei $\sigma = \{f/2, c\}$, und sei $\mathcal{A} = (A, f^A, c^A)$ die σ -Struktur mit $A = \mathbb{N}$, $f^A = +^{A_{\mathbb{N}}}$ (die Addition auf den natürlichen Zahlen) und $c^A = 0$ (die natürliche Zahl 0).

Sei $\beta: VAR \to A$ eine Belegung mit $\beta(v_1) = 1$ und $\beta(v_2) = 7$, und sei $\mathcal{I} := (\mathcal{A}, \beta)$.

$$\begin{bmatrix} \mathbf{t} \end{bmatrix}^{\mathcal{I}} = f^{\mathcal{A}} \Big(\beta(\mathbf{v_2}), \ f^{\mathcal{A}} \Big(\beta(\mathbf{v_1}), \ c^{\mathcal{A}} \Big) \Big)$$
$$= f^{\mathcal{A}} \Big(7, \ f^{\mathcal{A}} \Big(1, 0 \Big) \Big)$$
$$= \Big(7 + \Big(1 + 0 \Big) \Big)$$
$$= 8.$$

Abschnitt 3.3:

Syntax der Logik erster Stufe

- Was gleich bleibt:
 - Die Junktoren ¬, ∧, ∨, → werden übernommen.

- Was gleich bleibt:
 - Die Junktoren ¬, ∧, ∨, → werden übernommen.
- Was sich verändert:
 - Variablen stehen nicht mehr für "wahre" oder "falsche" Ausagen, sondern für Elemente im Universum einer σ-Struktur.

- Was gleich bleibt:
 - Die Junktoren ¬, ∧, ∨, → werden übernommen.
- Was sich verändert:
 - Variablen stehen nicht mehr für "wahre" oder "falsche" Ausagen, sondern für Elemente im Universum einer σ-Struktur.
 - Variablen sind keine atomaren Formeln mehr.

- Was gleich bleibt:
 - Die Junktoren ¬, ∧, ∨, → werden übernommen.
- Was sich verändert:
 - Variablen stehen nicht mehr f
 ür "wahre" oder "falsche" Ausagen, sondern f
 ür Elemente im Universum einer σ-Struktur.
 - Variablen sind keine atomaren Formeln mehr.
- Was neu hinzukommt:
 - Es gibt Quantoren ∃ und ∀ (für "es existiert" und "für alle").

- Was gleich bleibt:
 - Die Junktoren ¬, ∧, ∨, → werden übernommen.
- Was sich verändert:
 - Variablen stehen nicht mehr f
 ür "wahre" oder "falsche" Ausagen, sondern f
 ür Elemente im Universum einer σ-Struktur.
 - Variablen sind keine atomaren Formeln mehr.
- Was neu hinzukommt:
 - Es gibt Quantoren ∃ und ∀ (für "es existiert" und "für alle").
 - Es gibt Symbole für Elemente aus der Signatur σ .

- Was gleich bleibt:
 - Die Junktoren ¬, ∧, ∨, → werden übernommen.
- Was sich verändert:
 - Variablen stehen nicht mehr f
 ür "wahre" oder "falsche" Ausagen, sondern f
 ür Elemente im Universum einer σ-Struktur.
 - Variablen sind keine atomaren Formeln mehr.
- Was neu hinzukommt:
 - Es gibt Quantoren ∃ und ∀ (für "es existiert" und "für alle").
 - Es gibt Symbole für Elemente aus der Signatur σ .
 - Es können σ-Terme benutzt werden, um Elemente im Universum einer σ-Struktur zu bezeichnen.

Definition 3.14

Sei σ eine Signatur.

Das Alphabet $A_{FO[\sigma]}$ der Logik erster Stufe über σ besteht aus

• allen Symbolen in $A_{\sigma\text{-Terme}}$,

Definition 3.14

Sei σ eine Signatur.

Das Alphabet $A_{FO[\sigma]}$ der Logik erster Stufe über σ besteht aus

- allen Symbolen in $A_{\sigma\text{-Terme}}$,
- allen Symbolen in σ ,

Definition 3.14

Sei σ eine Signatur.

Das Alphabet $A_{FO[\sigma]}$ der Logik erster Stufe über σ besteht aus

- allen Symbolen in $A_{\sigma\text{-Terme}}$,
- allen Symbolen in σ ,
- den Quantoren ∃ (Existenzquantor) und ∀ (Allquantor),

Definition 3.14

Sei σ eine Signatur.

Das Alphabet $A_{FO[\sigma]}$ der Logik erster Stufe über σ besteht aus

- allen Symbolen in $A_{\sigma\text{-Terme}}$,
- allen Symbolen in σ ,
- den Quantoren ∃ (Existenzquantor) und ∀ (Allquantor),
- dem Gleichheitssymbol =,

Definition 3.14

Sei σ eine Signatur.

Das Alphabet $A_{\mathsf{FO}[\sigma]}$ der Logik erster Stufe über σ besteht aus

- allen Symbolen in $A_{\sigma\text{-Terme}}$,
- allen Symbolen in σ ,
- den Quantoren ∃ (Existenzquantor) und ∀ (Allquantor),
- dem Gleichheitssymbol =,
- den Junktoren $\neg, \land, \lor, \rightarrow$.

Definition 3.14

Sei σ eine Signatur.

Das Alphabet $A_{FO[\sigma]}$ der Logik erster Stufe über σ besteht aus

- allen Symbolen in $A_{\sigma\text{-Terme}}$,
- allen Symbolen in σ ,
- den Quantoren ∃ (Existenzquantor) und ∀ (Allquantor),
- dem Gleichheitssymbol =,
- den Junktoren $\neg, \land, \lor, \rightarrow$.

D.h.:

$$A_{\mathsf{FO}[\sigma]} \ = \ \mathsf{VAR} \ \cup \ \sigma \ \cup \ \{\exists, \forall\} \ \cup \ \{=\} \ \cup \ \{\neg, \land, \lor, \rightarrow\} \ \cup \ \{(,)\} \ \cup \ \{,\}.$$

Definition 3.15

Sei σ eine Signatur. Die Menge $FO[\sigma]$ aller Formeln der Logik erster Stufe über der Signatur σ (kurz: $FO[\sigma]$ -Formeln; "FO" steht für die englische Bezeichnung der Logik erster Stufe: first-order logic) ist die folgendermaßen rekursiv definierte Teilmenge von $A_{FO[\sigma]}^*$:

Definition 3.15

Sei σ eine Signatur. Die Menge $FO[\sigma]$ aller Formeln der Logik erster Stufe über der Signatur σ (kurz: $FO[\sigma]$ -Formeln; "FO" steht für die englische Bezeichnung der Logik erster Stufe: first-order logic) ist die folgendermaßen rekursiv definierte Teilmenge von $A_{FO[\sigma]}^*$:

Basisregeln:

• Für alle σ -Terme t_1 und t_2 in T_{σ} gilt:

$$t_1 = t_2 \in FO[\sigma].$$

Definition 3.15

Sei σ eine Signatur. Die Menge $FO[\sigma]$ aller Formeln der Logik erster Stufe über der Signatur σ (kurz: $FO[\sigma]$ -Formeln; "FO" steht für die englische Bezeichnung der Logik erster Stufe: first-order logic) ist die folgendermaßen rekursiv definierte Teilmenge von $A_{FO[\sigma]}^*$:

Basisregeln:

• Für alle σ -Terme t_1 und t_2 in T_{σ} gilt:

$$t_1 = t_2 \in \mathsf{FO}[\sigma].$$

• Für jedes Relationssymbol $R \in \sigma$, für $k := \operatorname{ar}(R)$ und für alle σ -Terme t_1, \ldots, t_k in T_{σ} gilt:

$$R(t_1,\ldots,t_k) \in FO[\sigma].$$

Definition 3.15

Sei σ eine Signatur. Die Menge $FO[\sigma]$ aller Formeln der Logik erster Stufe über der Signatur σ (kurz: $FO[\sigma]$ -Formeln; "FO" steht für die englische Bezeichnung der Logik erster Stufe: first-order logic) ist die folgendermaßen rekursiv definierte Teilmenge von $A_{FO[\sigma]}^*$:

Basisregeln:

• Für alle σ -Terme t_1 und t_2 in T_{σ} gilt:

$$t_1 = t_2 \in \mathsf{FO}[\sigma].$$

• Für jedes Relationssymbol $R \in \sigma$, für $k := \operatorname{ar}(R)$ und für alle σ -Terme t_1, \ldots, t_k in T_{σ} gilt:

$$R(t_1,\ldots,t_k) \in FO[\sigma].$$

FO[σ]-Formeln der Form $t_1 = t_2$ oder $R(t_1, \ldots, t_k)$ heißen atomare σ -Formeln.

• Ist $\varphi \in FO[\sigma]$, so ist auch $\neg \varphi \in FO[\sigma]$.

- Ist $\varphi \in FO[\sigma]$, so ist auch $\neg \varphi \in FO[\sigma]$.
- Ist $\varphi \in \mathsf{FO}[\sigma]$ und $\psi \in \mathsf{FO}[\sigma]$, so ist auch
 - $(\varphi \wedge \psi) \in \mathsf{FO}[\sigma]$,

- Ist $\varphi \in FO[\sigma]$, so ist auch $\neg \varphi \in FO[\sigma]$.
- Ist $\varphi \in \mathsf{FO}[\sigma]$ und $\psi \in \mathsf{FO}[\sigma]$, so ist auch
 - $(\varphi \wedge \psi) \in \mathsf{FO}[\sigma]$,
 - $(\varphi \lor \psi) \in FO[\sigma]$,

- Ist $\varphi \in FO[\sigma]$, so ist auch $\neg \varphi \in FO[\sigma]$.
- Ist $\varphi \in \mathsf{FO}[\sigma]$ und $\psi \in \mathsf{FO}[\sigma]$, so ist auch
 - $(\varphi \wedge \psi) \in \mathsf{FO}[\sigma]$,
 - $(\varphi \lor \psi) \in \mathsf{FO}[\sigma]$,
 - $(\varphi \to \psi) \in \mathsf{FO}[\sigma]$.

- Ist $\varphi \in FO[\sigma]$, so ist auch $\neg \varphi \in FO[\sigma]$.
- Ist $\varphi \in \mathsf{FO}[\sigma]$ und $\psi \in \mathsf{FO}[\sigma]$, so ist auch
 - $(\varphi \wedge \psi) \in \mathsf{FO}[\sigma],$
 - $(\varphi \lor \psi) \in \mathsf{FO}[\sigma],$
 - $(\varphi \to \psi) \in \mathsf{FO}[\sigma]$.
- Ist $\varphi \in FO[\sigma]$ und $\mathbf{x} \in VAR$, so ist auch

- Ist $\varphi \in FO[\sigma]$, so ist auch $\neg \varphi \in FO[\sigma]$.
- Ist $\varphi \in FO[\sigma]$ und $\psi \in FO[\sigma]$, so ist auch
 - $(\varphi \wedge \psi) \in \mathsf{FO}[\sigma]$,
 - $(\varphi \lor \psi) \in \mathsf{FO}[\sigma]$,
 - $(\varphi \to \psi) \in \mathsf{FO}[\sigma]$.
- Ist $\varphi \in FO[\sigma]$ und $x \in VAR$, so ist auch
 - $\exists x \varphi \in \mathsf{FO}[\sigma]$,

- Ist $\varphi \in FO[\sigma]$, so ist auch $\neg \varphi \in FO[\sigma]$.
- Ist $\varphi \in FO[\sigma]$ und $\psi \in FO[\sigma]$, so ist auch
 - $(\varphi \wedge \psi) \in \mathsf{FO}[\sigma]$,
 - $(\varphi \lor \psi) \in \mathsf{FO}[\sigma]$,
 - $(\varphi \to \psi) \in \mathsf{FO}[\sigma]$.
- Ist $\varphi \in FO[\sigma]$ und $x \in VAR$, so ist auch
 - $\exists x \varphi \in \mathsf{FO}[\sigma]$,
 - $\forall x \varphi \in \mathsf{FO}[\sigma]$.

Sei
$$\sigma = \{ f/2, c \}.$$

Folgende Worte aus $A^*_{\mathsf{FO}[\sigma]}$ sind $\mathsf{FO}[\sigma]$ -Formeln:

Sei
$$\sigma = \{ f/2, c \}.$$

Folgende Worte aus $A_{\mathsf{FO}[\sigma]}^*$ sind $\mathsf{FO}[\sigma]$ -Formeln:

• $f(v_0, v_1) = c$ (atomare σ -Formel)

Sei
$$\sigma = \{ f/2, c \}.$$

Folgende Worte aus $A_{\mathsf{FO}[\sigma]}^*$ sind $\mathsf{FO}[\sigma]$ -Formeln:

- $f(v_0, v_1) = c$ (atomare σ -Formel)
- $\forall v_2 f(v_2, c) = v_2$

Sei $\sigma = \{ f/2, c \}.$

Folgende Worte aus $A_{FO[\sigma]}^*$ sind $FO[\sigma]$ -Formeln:

- $f(v_0, v_1) = c$ (atomare σ -Formel)
- $\forall v_2 f(v_2, c) = v_2$
- $\neg \exists v_3 (f(v_3, v_3) = v_3 \land \neg v_3 = c)$

Sei
$$\sigma = \{ f/2, c \}.$$

Folgende Worte aus $A_{FO[\sigma]}^*$ sind $FO[\sigma]$ -Formeln:

- $f(v_0, v_1) = c$ (atomare σ -Formel)
- $\forall v_2 f(v_2, c) = v_2$
- $\neg \exists v_3 (f(v_3, v_3) = v_3 \land \neg v_3 = c)$

Sei $\sigma = \{ f/2, c \}.$

Folgende Worte aus $A_{FO[\sigma]}^*$ sind $FO[\sigma]$ -Formeln:

- $f(v_0, v_1) = c$ (atomare σ -Formel)
- $\forall v_2 f(v_2, c) = v_2$
- $\neg \exists v_3 (f(v_3, v_3) = v_3 \land \neg v_3 = c)$

Folgende Worte sind <u>keine</u> $FO[\sigma]$ -Formeln:

 $\bullet \quad (f(v_0,v_1)=c)$

Sei $\sigma = \{ f/2, c \}.$

Folgende Worte aus $A_{FO[\sigma]}^*$ sind $FO[\sigma]$ -Formeln:

- $f(v_0, v_1) = c$ (atomare σ -Formel)
- $\forall v_2 f(v_2, c) = v_2$
- $\neg \exists v_3 (f(v_3, v_3) = v_3 \land \neg v_3 = c)$

- $\bullet \quad \big(f(v_0,v_1)=c\big)$
- $\bullet \quad (\exists v_2 \, f(v_2, c) = v_2)$

Sei $\sigma = \{ f/2, c \}.$

Folgende Worte aus $A_{FO[\sigma]}^*$ sind $FO[\sigma]$ -Formeln:

- $f(v_0, v_1) = c$ (atomare σ -Formel)
- $\forall v_2 f(v_2, c) = v_2$
- $\neg \exists v_3 (f(v_3, v_3) = v_3 \land \neg v_3 = c)$

- $(f(v_0, v_1) = c)$
- $\bullet \quad (\exists v_2 \, f(v_2, c) = v_2)$
- $f(f(c,c), v_1)$ (ist ein σ -Term, aber keine $FO[\sigma]$ -Formel)

Sei $\sigma = \{ f/2, c \}.$

Folgende Worte aus $A_{FO[\sigma]}^*$ sind $FO[\sigma]$ -Formeln:

- $f(v_0, v_1) = c$ (atomare σ -Formel)
- $\forall v_2 f(v_2, c) = v_2$
- $\neg \exists v_3 (f(v_3, v_3) = v_3 \land \neg v_3 = c)$

- $(f(v_0, v_1) = c)$
- $\bullet \quad (\exists v_2 \, f(v_2, c) = v_2)$
- $f(f(c,c), v_1)$ (ist ein σ -Term, aber keine $FO[\sigma]$ -Formel)
- $\exists c f(v_0, c) = v_0$

Sei $\sigma = \{E/2\}.$

Folgendes ist eine $FO[\sigma]$ -Formel:

$$\forall v_0 \, \forall v_1 \Big(\big(E(v_0, v_1) \ \wedge \ E(v_1, v_0) \big) \ \rightarrow \ v_0 = v_1 \Big)$$

Sei $\sigma = \{E/2\}.$

Folgendes ist eine $FO[\sigma]$ -Formel:

$$\forall v_0 \forall v_1 \Big(\big(E(v_0, v_1) \ \land \ E(v_1, v_0) \big) \ \rightarrow \ v_0 = v_1 \Big)$$

Intuition zur Semantik:

In einem gerichteten Graphen $A = (A, E^A)$ sagt diese Formel Folgendes aus:

Sei $\sigma = \{E/2\}$.

Folgendes ist eine $FO[\sigma]$ -Formel:

$$\forall v_0 \, \forall v_1 \Big(\big(E(v_0, v_1) \, \wedge \, E(v_1, v_0) \big) \, \rightarrow \, v_0 = v_1 \Big)$$

Intuition zur Semantik:

In einem gerichteten Graphen $\mathcal{A}=(A,E^{\mathcal{A}})$ sagt diese Formel Folgendes aus:

"Für alle Knoten
$$a_0 \in A$$

Sei $\sigma = \{E/2\}$.

Folgendes ist eine $FO[\sigma]$ -Formel:

$$\forall v_0 \, \forall v_1 \Big(\big(E(v_0, v_1) \, \wedge \, E(v_1, v_0) \big) \, \rightarrow \, v_0 = v_1 \Big)$$

Intuition zur Semantik:

In einem gerichteten Graphen $A = (A, E^A)$ sagt diese Formel Folgendes aus:

"Für alle Knoten $a_0 \in A$ und für alle Knoten $a_1 \in A$ gilt:

Sei $\sigma = \{E/2\}$.

Folgendes ist eine $FO[\sigma]$ -Formel:

$$\forall v_0 \, \forall v_1 \Big(\big(E(v_0, v_1) \, \wedge \, E(v_1, v_0) \big) \, \rightarrow \, v_0 = v_1 \Big)$$

Intuition zur Semantik:

In einem gerichteten Graphen $A = (A, E^A)$ sagt diese Formel Folgendes aus:

"Für alle Knoten $a_0 \in A$ und

für alle Knoten $a_1 \in A$ gilt:

falls
$$(a_0, a_1) \in E^{\mathcal{A}}$$
 und $(a_1, a_0) \in E^{\mathcal{A}}$, so ist $a_0 = a_1$."

Sei $\sigma = \{E/2\}$.

Folgendes ist eine $FO[\sigma]$ -Formel:

$$\forall v_0 \, \forall v_1 \Big(\big(E(v_0, v_1) \, \wedge \, E(v_1, v_0) \big) \, \rightarrow \, v_0 = v_1 \Big)$$

Intuition zur Semantik:

In einem gerichteten Graphen $A = (A, E^A)$ sagt diese Formel Folgendes aus:

"Für alle Knoten $a_0 \in A$ und

für alle Knoten $a_1 \in A$ gilt:

falls
$$(a_0, a_1) \in E^{\mathcal{A}}$$
 und $(a_1, a_0) \in E^{\mathcal{A}}$, so ist $a_0 = a_1$.

Die Formel sagt in einem Digraph $A = (A, E^A)$ also aus, dass

Sei $\sigma = \{E/2\}$.

Folgendes ist eine $FO[\sigma]$ -Formel:

$$\forall v_0 \, \forall v_1 \Big(\big(E(v_0, v_1) \, \wedge \, E(v_1, v_0) \big) \, \rightarrow \, v_0 = v_1 \Big)$$

Intuition zur Semantik:

In einem gerichteten Graphen $A = (A, E^A)$ sagt diese Formel Folgendes aus:

"Für alle Knoten $a_0 \in A$ und

für alle Knoten $a_1 \in A$ gilt:

falls
$$(a_0, a_1) \in E^{\mathcal{A}}$$
 und $(a_1, a_0) \in E^{\mathcal{A}}$, so ist $a_0 = a_1$.

Die Formel sagt in einem Digraph $\mathcal{A}=(A,E^{\mathcal{A}})$ also aus, dass die Kantenrelation $E^{\mathcal{A}}$ antisymmetrisch ist.

Notation

• Statt mit v_0, v_1, v_2, \ldots bezeichnen wir Variablen oft auch mit x, y, z, \ldots oder mit Varianten wie x', y_1, y_2, \ldots

Notation

- Statt mit v_0, v_1, v_2, \ldots bezeichnen wir Variablen oft auch mit x, y, z, \ldots oder mit Varianten wie x', y_1, y_2, \ldots
- Ähnlich wie bei der Aussagenlogik schreiben wir $(\varphi \leftrightarrow \psi)$ als Abkürzung für die Formel $((\varphi \to \psi) \land (\psi \to \varphi))$.

Notation

- Statt mit v_0, v_1, v_2, \ldots bezeichnen wir Variablen oft auch mit x, y, z, \ldots oder mit Varianten wie x', y_1, y_2, \ldots
- Ähnlich wie bei der Aussagenlogik schreiben wir $(\varphi \leftrightarrow \psi)$ als Abkürzung für die Formel $((\varphi \to \psi) \land (\psi \to \varphi))$.
- Die Menge aller Formeln der Logik der ersten Stufe ist

$$\mathsf{FO} := \bigcup_{\sigma \ \mathsf{Signatur}} \mathsf{FO}[\sigma]$$

Abschnitt 3.4:

Semantik der Logik erster Stufe

Bevor wir die Semantik der Logik erster Stufe formal definieren, betrachten wir zunächst einige Beispiele, um ein intuitives Verständnis der Semantik der Logik erster Stufe zu erlangen.

Kap 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Beispiele zur Semantik der Logik erster Stufe

Beispiel 3.18

Sei $\sigma = \{E/2\}.$

(a) Die $FO[\sigma]$ -Formel

$$\varphi := \forall x \forall y (E(x,y) \to E(y,x))$$

besagt:

Beispiel 3.18

Sei $\sigma = \{E/2\}.$

(a) Die FO[σ]-Formel

$$\varphi := \forall x \forall y (E(x,y) \rightarrow E(y,x))$$

besagt:

"Für alle Knoten x und für alle Knoten y gilt: Falls es eine Kante von x nach y gibt, so gibt es auch eine Kante von y nach x."

Beispiel 3.18

Sei $\sigma = \{E/2\}.$

(a) Die $FO[\sigma]$ -Formel

$$\varphi := \forall x \forall y (E(x,y) \rightarrow E(y,x))$$

besagt:

"Für alle Knoten x und für alle Knoten y gilt: Falls es eine Kante von x nach y gibt, so gibt es auch eine Kante von y nach x."

Für jeden Digraphen
$$\mathcal{A} = (A, E^{\mathcal{A}})$$
 gilt daher:
 \mathcal{A} erfüllt $\varphi \iff E^{\mathcal{A}}$ ist

Beispiel 3.18

Sei $\sigma = \{E/2\}.$

(a) Die $FO[\sigma]$ -Formel

$$\varphi := \forall x \forall y (E(x,y) \rightarrow E(y,x))$$

besagt:

"Für alle Knoten x und für alle Knoten y gilt: Falls es eine Kante von x nach y gibt, so gibt es auch eine Kante von y nach x."

Für jeden Digraphen $\mathcal{A}=(\mathcal{A}, \mathcal{E}^{\mathcal{A}})$ gilt daher: $\mathcal{A} \text{ erfüllt } \varphi \iff \mathcal{E}^{\mathcal{A}} \text{ ist symmetrisch.}$

Beispiel 3.18

Sei $\sigma = \{E/2\}.$

(a) Die $FO[\sigma]$ -Formel

$$\varphi := \forall x \forall y (E(x,y) \to E(y,x))$$

besagt:

"Für alle Knoten x und für alle Knoten y gilt: Falls es eine Kante von x nach y gibt, so gibt es auch eine Kante von y nach x."

Für jeden Digraphen $\mathcal{A} = (A, E^{\mathcal{A}})$ gilt daher: \mathcal{A} erfüllt $\varphi \iff E^{\mathcal{A}}$ ist symmetrisch.

Umgangssprachlich sagen wir auch: "Die Formel φ sagt in einem Digraphen \mathcal{A} aus, dass dessen Kantenrelation symmetrisch ist."

(b) Die folgende $FO[\sigma]$ -Formel drückt aus, dass es von Knoten x zu Knoten y einen Weg der Länge 3 gibt:

(b) Die folgende $FO[\sigma]$ -Formel drückt aus, dass es von Knoten x zu Knoten y einen Weg der Länge 3 gibt:

$$\varphi(x,y) := \exists z_1 \exists z_2 \Big(\big(E(x,z_1) \wedge E(z_1,z_2) \big) \wedge E(z_2,y) \Big).$$

(b) Die folgende $FO[\sigma]$ -Formel drückt aus, dass es von Knoten x zu Knoten y einen Weg der Länge 3 gibt:

$$\varphi(x,y) := \exists z_1 \exists z_2 \Big(\big(E(x,z_1) \wedge E(z_1,z_2) \big) \wedge E(z_2,y) \Big).$$

(c) Die $FO[\sigma]$ -Formel

$$\forall x \, \forall y \, \exists z_1 \, \exists z_2 \, \Big(\big(E(x, z_1) \, \wedge \, E(z_1, z_2) \big) \, \wedge \, E(z_2, y) \Big)$$

sagt in einem Digraph ${\cal A}$ aus, dass

(b) Die folgende $FO[\sigma]$ -Formel drückt aus, dass es von Knoten x zu Knoten y einen Weg der Länge 3 gibt:

$$\varphi(x,y) := \exists z_1 \exists z_2 \left(\left(E(x,z_1) \land E(z_1,z_2) \right) \land E(z_2,y) \right).$$

(c) Die $FO[\sigma]$ -Formel

$$\forall x \, \forall y \, \exists z_1 \, \exists z_2 \, \Big(\big(E(x, z_1) \, \wedge \, E(z_1, z_2) \big) \, \wedge \, E(z_2, y) \Big)$$

sagt in einem Digraph ${\mathcal A}$ aus, dass es zwischen je 2 Knoten einen Weg der Länge 3 gibt.

Wir betrachten eine Datensammlung, in der die Stammbäume von Pferden aus dem Sport *Dressurreiten* verwaltet werden.

Um Verwandtschaftsbeziehungen zwischen den Pferden zu modellieren, können wir eine Signatur σ nutzen, die aus den folgenden Symbolen besteht:

Wir betrachten eine Datensammlung, in der die Stammbäume von Pferden aus dem Sport Dressurreiten verwaltet werden.

Um Verwandtschaftsbeziehungen zwischen den Pferden zu modellieren, können wir eine Signatur σ nutzen, die aus den folgenden Symbolen besteht:

• 1-stellige Funktionssymbole *Vater*, *Mutter* (Bedeutung: x=Mutter(y) besagt: "x ist die Mutter von y".)

Wir betrachten eine Datensammlung, in der die Stammbäume von Pferden aus dem Sport Dressurreiten verwaltet werden.

Um Verwandtschaftsbeziehungen zwischen den Pferden zu modellieren, können wir eine Signatur σ nutzen, die aus den folgenden Symbolen besteht:

- 1-stellige Funktionssymbole Vater, Mutter
 (Bedeutung: x=Mutter(y) besagt: "x ist die Mutter von y".)
- 2-stellige Relationssymbole *Geschwister*, *Vorfahr* (Bedeutung: *Geschwister*(x, y) besagt, dass x und y Geschwister sind;

Wir betrachten eine Datensammlung, in der die Stammbäume von Pferden aus dem Sport *Dressurreiten* verwaltet werden.

Um Verwandtschaftsbeziehungen zwischen den Pferden zu modellieren, können wir eine Signatur σ nutzen, die aus den folgenden Symbolen besteht:

- 1-stellige Funktionssymbole Vater, Mutter
 (Bedeutung: x=Mutter(y) besagt: "x ist die Mutter von y".)
- 2-stellige Relationssymbole Geschwister, Vorfahr
 (Bedeutung: Geschwister(x, y) besagt, dass x und y Geschwister sind;
 Vorfahr(x, y) besagt, dass x ein Vorfahr von y ist.)

Wir betrachten eine Datensammlung, in der die Stammbäume von Pferden aus dem Sport *Dressurreiten* verwaltet werden.

Um Verwandtschaftsbeziehungen zwischen den Pferden zu modellieren, können wir eine Signatur σ nutzen, die aus den folgenden Symbolen besteht:

- 1-stellige Funktionssymbole Vater, Mutter
 (Bedeutung: x=Mutter(y) besagt: "x ist die Mutter von y".)
- 2-stellige Relationssymbole Geschwister, Vorfahr
 (Bedeutung: Geschwister(x, y) besagt, dass x und y Geschwister sind;
 Vorfahr(x, y) besagt, dass x ein Vorfahr von y ist.)

Generelles Wissen über Verwandtschaftsbeziehungen lässt sich durch Formeln der Logik erster Stufe repräsentieren, z.B.:

• "Pferde mit gleichem Vater und gleicher Mutter sind Geschwister":

Wir betrachten eine Datensammlung, in der die Stammbäume von Pferden aus dem Sport *Dressurreiten* verwaltet werden.

Um Verwandtschaftsbeziehungen zwischen den Pferden zu modellieren, können wir eine Signatur σ nutzen, die aus den folgenden Symbolen besteht:

- 1-stellige Funktionssymbole Vater, Mutter
 (Bedeutung: x=Mutter(y) besagt: "x ist die Mutter von y".)
- 2-stellige Relationssymbole Geschwister, Vorfahr
 (Bedeutung: Geschwister(x, y) besagt, dass x und y Geschwister sind;
 Vorfahr(x, y) besagt, dass x ein Vorfahr von y ist.)

Generelles Wissen über Verwandtschaftsbeziehungen lässt sich durch Formeln der Logik erster Stufe repräsentieren, z.B.:

• "Pferde mit gleichem Vater und gleicher Mutter sind Geschwister":

```
\forall x \forall y \ \Big( \ \big( \ \big( \ Vater(x) = Vater(y) \ \land \ Mutter(x) = Mutter(y) \big) \ \land \ \neg x = y \ \big) \\ \rightarrow \ Geschwister(x, y) \ \Big)
```

$$\forall x \forall y \ \Big(\big(x = Vater(y) \ \lor \ x = Mutter(y) \Big) \\ \leftrightarrow \ \Big(Vorfahr(x, y) \ \land \ \neg \exists z \ \big(Vorfahr(x, z) \land Vorfahr(z, y) \big) \Big) \Big)$$

$$\forall x \forall y \ \Big(\big(x = Vater(y) \ \lor \ x = Mutter(y) \Big) \\ \leftrightarrow \ \Big(Vorfahr(x, y) \ \land \ \neg \exists z \ \big(Vorfahr(x, z) \land Vorfahr(z, y) \big) \Big) \Big)$$

• "Die Relation Vorfahr ist transitiv":

$$\forall x \forall y \ \Big(\big(x = Vater(y) \ \lor \ x = Mutter(y) \Big) \\ \leftrightarrow \ \Big(Vorfahr(x, y) \ \land \ \neg \exists z \ \big(Vorfahr(x, z) \land Vorfahr(z, y) \big) \Big) \Big)$$

"Die Relation Vorfahr ist transitiv":

$$\forall x \forall y \forall z \ \Big(\big(\textit{Vorfahr}(x,y) \land \textit{Vorfahr}(y,z) \big) \ \rightarrow \ \textit{Vorfahr}(x,z) \Big)$$

$$\forall x \forall y \ \Big(\big(x = Vater(y) \ \lor \ x = Mutter(y) \Big) \\ \leftrightarrow \ \Big(Vorfahr(x, y) \ \land \ \neg \exists z \ \big(Vorfahr(x, z) \land Vorfahr(z, y) \big) \Big) \Big)$$

"Die Relation Vorfahr ist transitiv":

$$\forall x \forall y \forall z \ \Big(\big(\textit{Vorfahr}(x,y) \land \textit{Vorfahr}(y,z) \big) \ \rightarrow \ \textit{Vorfahr}(x,z) \Big)$$

• Die folgende Formel $\varphi(x,y)$ besagt "x ist Tante oder Onkel von y":

$$\forall x \forall y \ \Big(\big(x = Vater(y) \ \lor \ x = Mutter(y) \Big) \\ \leftrightarrow \ \Big(Vorfahr(x, y) \ \land \ \neg \exists z \ \big(Vorfahr(x, z) \land Vorfahr(z, y) \big) \Big) \Big)$$

"Die Relation Vorfahr ist transitiv":

$$\forall x \forall y \forall z \ \Big(\big(\textit{Vorfahr}(x,y) \land \textit{Vorfahr}(y,z) \big) \ \rightarrow \ \textit{Vorfahr}(x,z) \Big)$$

• Die folgende Formel $\varphi(x,y)$ besagt "x ist Tante oder Onkel von y":

$$\varphi(x,y) := \exists z \left(Geschwister(x,z) \land (z=Mutter(y) \lor z=Vater(y)) \right)$$

• Die folgende Formel $\psi(x)$ besagt "x ist Vater von genau 2 Kindern":

• Die folgende Formel $\psi(x)$ besagt "x ist Vater von genau 2 Kindern":

$$\psi(x) := \exists y_1 \exists y_2 \left(\left(\left(x = Vater(y_1) \land x = Vater(y_2) \right) \land \neg y_1 = y_2 \right) \\ \land \forall z \left(x = Vater(z) \rightarrow \left(z = y_1 \lor z = y_2 \right) \right) \right)$$

Kap 3: Logik 6	erster Stufe ·	Abschnitt 3.4:	Semantik der	Logik erster	Stuf
----------------	----------------	----------------	--------------	--------------	------

Formale Definition der Semantik der Logik erster Stufe

Notation

• Ist β eine Belegung in einer σ -Struktur A, ist $x \in VAR$ und ist $a \in A$, so sei

$$\beta \frac{a}{x}$$

die Belegung mit $\beta_{x}^{\underline{a}}(x) = a$ und $\beta_{x}^{\underline{a}}(y) = \beta(y)$ für alle $y \in VAR \setminus \{x\}$.

Notation

• Ist β eine Belegung in einer σ -Struktur A, ist $x \in VAR$ und ist $a \in A$, so sei

$$\beta \frac{a}{x}$$

die Belegung mit $\beta_{x}^{\underline{a}}(x) = a$ und $\beta_{x}^{\underline{a}}(y) = \beta(y)$ für alle $y \in VAR \setminus \{x\}$.

• Ist $\mathcal{I} = (\mathcal{A}, \beta)$ eine σ -Interpretation, ist $\mathbf{x} \in VAR$ und ist $\mathbf{a} \in A$, so sei

$$\mathcal{I}_{\overline{x}}^{\underline{a}} := (\mathcal{A}, \beta_{\overline{x}}^{\underline{a}}).$$

Definition 3.19

Sei σ eine Signatur. Rekursiv über den Aufbau von FO[σ] definieren wir eine Funktion $\llbracket \cdot \rrbracket$, die jeder FO[σ]-Formel φ und jeder σ -Interpretation $\mathcal{I}=(\mathcal{A},\beta)$ einen Wahrheitswert (kurz: Wert) $\llbracket \varphi \rrbracket^{\mathcal{I}} \in \{0,1\}$ zuordnet:

Definition 3.19

Sei σ eine Signatur. Rekursiv über den Aufbau von FO[σ] definieren wir eine Funktion $\llbracket \cdot \rrbracket$, die jeder FO[σ]-Formel φ und jeder σ -Interpretation $\mathcal{I} = (\mathcal{A}, \beta)$ einen Wahrheitswert (kurz: Wert) $\llbracket \varphi \rrbracket^{\mathcal{I}} \in \{0,1\}$ zuordnet:

Rekursionsanfang:

• Für alle σ -Terme t_1 und t_2 in T_{σ} gilt:

$$[t_1 = t_2]^{\mathcal{I}} :=$$

Definition 3.19

Sei σ eine Signatur. Rekursiv über den Aufbau von FO[σ] definieren wir eine Funktion $\llbracket \cdot \rrbracket$, die jeder FO[σ]-Formel φ und jeder σ -Interpretation $\mathcal{I} = (\mathcal{A}, \beta)$ einen Wahrheitswert (kurz: Wert) $\llbracket \varphi \rrbracket^{\mathcal{I}} \in \{0,1\}$ zuordnet:

Rekursionsanfang:

• Für alle σ -Terme t_1 und t_2 in T_{σ} gilt:

$$\llbracket t_1 = t_2 \rrbracket^{\mathcal{I}} := \begin{cases} 1, & \text{falls } \llbracket t_1 \rrbracket^{\mathcal{I}} = \llbracket t_2 \rrbracket^{\mathcal{I}} \\ 0, & \text{sonst.} \end{cases}$$

Definition 3.19

Sei σ eine Signatur. Rekursiv über den Aufbau von FO[σ] definieren wir eine Funktion $\llbracket \cdot \rrbracket$, die jeder FO[σ]-Formel φ und jeder σ -Interpretation $\mathcal{I} = (\mathcal{A}, \beta)$ einen Wahrheitswert (kurz: Wert) $\llbracket \varphi \rrbracket^{\mathcal{I}} \in \{0,1\}$ zuordnet:

Rekursionsanfang:

• Für alle σ -Terme t_1 und t_2 in T_{σ} gilt:

$$\llbracket t_1 = t_2 \rrbracket^{\mathcal{I}} := \begin{cases} 1, & \text{falls } \llbracket t_1 \rrbracket^{\mathcal{I}} = \llbracket t_2 \rrbracket^{\mathcal{I}} \\ 0, & \text{sonst.} \end{cases}$$

• Für jedes Relationssymbol $R \in \sigma$, für $k := \operatorname{ar}(R)$ und für alle σ -Terme $t_1, \ldots, t_k \in T_{\sigma}$ gilt:

$$\llbracket R(t_1,\ldots,t_k) \rrbracket^{\mathcal{I}} :=$$

Definition 3.19

Sei σ eine Signatur. Rekursiv über den Aufbau von FO[σ] definieren wir eine Funktion $\llbracket \cdot \rrbracket$, die jeder FO[σ]-Formel φ und jeder σ -Interpretation $\mathcal{I} = (\mathcal{A}, \beta)$ einen Wahrheitswert (kurz: Wert) $\llbracket \varphi \rrbracket^{\mathcal{I}} \in \{0,1\}$ zuordnet:

Rekursionsanfang:

• Für alle σ -Terme t_1 und t_2 in T_{σ} gilt:

$$\llbracket t_1 = t_2 \rrbracket^{\mathcal{I}} := \begin{cases} 1, & \text{falls } \llbracket t_1 \rrbracket^{\mathcal{I}} = \llbracket t_2 \rrbracket^{\mathcal{I}} \\ 0, & \text{sonst.} \end{cases}$$

• Für jedes Relationssymbol $R \in \sigma$, für $k := \operatorname{ar}(R)$ und für alle σ -Terme $t_1, \ldots, t_k \in T_{\sigma}$ gilt:

$$\llbracket R(t_1,\ldots,t_k)\rrbracket^{\mathcal{I}} := \begin{cases} 1, & \text{falls } (\llbracket t_1 \rrbracket^{\mathcal{I}},\ldots,\llbracket t_k \rrbracket^{\mathcal{I}}) \in R^{\mathcal{A}} \\ 0, & \text{sonst.} \end{cases}$$

• Ist $\varphi \in FO[\sigma]$ und ist $\mathbf{x} \in VAR$, so ist

$$\llbracket \exists x \, \varphi
rbracket^{\mathcal{I}} :=$$

• Ist $\varphi \in FO[\sigma]$ und ist $x \in VAR$, so ist

$$\llbracket \exists \mathsf{x} \, \varphi \rrbracket^{\mathcal{I}} \quad := \quad \left\{ \begin{array}{l} 1, \quad \text{falls es (mind.) ein } a \in A \text{ gibt, so dass } \llbracket \varphi \rrbracket^{\mathcal{I}^{\frac{3}{\varkappa}}} = 1 \\ 0, \quad \text{sonst} \end{array} \right.$$

• Ist $\varphi \in FO[\sigma]$ und ist $x \in VAR$, so ist

$$\llbracket\exists \mathsf{x}\, \varphi\rrbracket^{\mathcal{I}} \ := \ \begin{cases} \ 1, & \mathsf{falls} \ \mathsf{es} \ (\mathsf{mind.}) \ \mathsf{ein} \ \mathit{a} \in \mathit{A} \ \mathsf{gibt}, \ \mathsf{so} \ \mathsf{dass} \ \llbracket\varphi\rrbracket^{\mathcal{I}^{\frac{a}{x}}} = 1 \\ \ 0, & \mathsf{sonst} \end{cases}$$

$$\llbracket \forall x \varphi \rrbracket^{\mathcal{I}} :=$$

• Ist $\varphi \in FO[\sigma]$ und ist $x \in VAR$, so ist

$$\llbracket\exists \mathsf{x}\, \varphi\rrbracket^{\mathcal{I}} \ := \ \begin{cases} \ 1, & \mathsf{falls} \ \mathsf{es} \ (\mathsf{mind.}) \ \mathsf{ein} \ \mathit{a} \in \mathit{A} \ \mathsf{gibt}, \ \mathsf{so} \ \mathsf{dass} \ \llbracket\varphi\rrbracket^{\mathcal{I}^{\underline{a}}_{\overline{\mathsf{x}}}} = 1 \\ \ 0, & \mathsf{sonst} \end{cases}$$

$$\llbracket \forall \mathsf{x} \ \varphi \rrbracket^{\mathcal{I}} \ := \ \begin{cases} \ 1, & \text{falls für } \textit{jedes } a \in A \text{ gilt: } \llbracket \varphi \rrbracket^{\mathcal{I}^{\frac{a}{\mathsf{x}}}} = 1 \\ \ 0, & \text{sonst} \end{cases}$$

• Die Semantik der Junktoren \neg , \land , \lor , \rightarrow ist wie in der Aussagenlogik definiert, d.h. für alle $\varphi \in \mathsf{FO}[\sigma]$ und $\psi \in \mathsf{FO}[\sigma]$ gilt:

• Die Semantik der Junktoren \neg , \land , \lor , \rightarrow ist wie in der Aussagenlogik definiert, d.h. für alle $\varphi \in \mathsf{FO}[\sigma]$ und $\psi \in \mathsf{FO}[\sigma]$ gilt:

$$\begin{bmatrix} \neg \varphi \end{bmatrix}^{\mathcal{I}} := \begin{cases} 1, & \text{falls } \llbracket \varphi \rrbracket^{\mathcal{I}} = 0 \\ 0, & \text{sonst} \end{cases}$$

• Die Semantik der Junktoren \neg , \land , \lor , \rightarrow ist wie in der Aussagenlogik definiert, d.h. für alle $\varphi \in \mathsf{FO}[\sigma]$ und $\psi \in \mathsf{FO}[\sigma]$ gilt:

 Die Semantik der Junktoren ¬, Λ, ∨, → ist wie in der Aussagenlogik definiert, d.h. für alle φ ∈ FO[σ] und ψ ∈ FO[σ] gilt:

 Die Semantik der Junktoren ¬, ∧, ∨, → ist wie in der Aussagenlogik definiert, d.h. für alle φ ∈ FO[σ] und ψ ∈ FO[σ] gilt:

$$\begin{bmatrix} \neg \varphi \end{bmatrix}^{\mathcal{I}} := \begin{cases} 1, & \text{falls } \llbracket \varphi \rrbracket^{\mathcal{I}} = 0 \\ 0, & \text{sonst} \end{cases}$$

$$\begin{bmatrix} (\varphi \wedge \psi) \rrbracket^{\mathcal{I}} := \begin{cases} 1, & \text{falls } \llbracket \varphi \rrbracket^{\mathcal{I}} = 1 \text{ und } \llbracket \psi \rrbracket^{\mathcal{I}} = 1 \\ 0, & \text{sonst} \end{cases}$$

$$\begin{bmatrix} (\varphi \vee \psi) \rrbracket^{\mathcal{I}} := \begin{cases} 0, & \text{falls } \llbracket \varphi \rrbracket^{\mathcal{I}} = 0 \text{ und } \llbracket \psi \rrbracket^{\mathcal{I}} = 0 \\ 1, & \text{sonst} \end{cases}$$

$$\begin{bmatrix} (\varphi \to \psi) \rrbracket^{\mathcal{I}} := \begin{cases} 0, & \text{falls } \llbracket \varphi \rrbracket^{\mathcal{I}} = 1 \text{ und } \llbracket \psi \rrbracket^{\mathcal{I}} = 0 \\ 1, & \text{sonst} \end{cases}$$

Beispiel 3.20

Sei $\sigma = \{E/2\}$. Betrachte die FO[σ]-Formel

$$\varphi := \forall x \forall y (E(x,y) \rightarrow E(y,x))$$

Für jede σ -Interpretation $\mathcal{I} = (\mathcal{A}, \beta)$ gilt:

$$\llbracket \boldsymbol{\varphi} \rrbracket^{\mathcal{I}} = 1 \quad \Longleftrightarrow$$

Beispiel 3.20

Sei $\sigma = \{E/2\}$. Betrachte die FO[σ]-Formel

$$\varphi := \forall x \forall y (E(x,y) \rightarrow E(y,x))$$

Für jede σ -Interpretation $\mathcal{I} = (\mathcal{A}, \beta)$ gilt:

$$\llbracket \varphi \rrbracket^{\mathcal{I}} = 1 \iff \text{ für alle } a \in A \text{ gilt: } \llbracket \forall y (E(x,y) \to E(y,x)) \rrbracket^{\mathcal{I}^{2}_{x}} = 1$$

$$\iff \text{ für alle } a \in A \text{ gilt: } \text{ für alle } b \in A \text{ gilt: }$$

$$\llbracket (E(x,y) \to E(y,x)) \rrbracket^{\mathcal{I}^{2}_{x}} \overset{b}{\to} = 1$$

$$\iff \text{ für alle } a \in A \text{ und alle } b \in A \text{ gilt: }$$

$$\vdash \text{Falls } \llbracket E(x,y) \rrbracket^{\mathcal{I}^{2}_{x}} \overset{b}{\to} = 1, \text{ so } \llbracket E(y,x) \rrbracket^{\mathcal{I}^{2}_{x}} \overset{b}{\to} = 1$$

$$\iff \text{ für alle } a \in A \text{ und alle } b \in B \text{ gilt: }$$

$$\vdash \text{Falls } (a,b) \in E^{A}, \text{ so } (b,a) \in E^{A}$$

$$\iff E^{A} \text{ ist symmetrisch}$$

Die Modellbeziehung

Definition 3.21

Sei σ eine Signatur.

(a) Eine σ -Interpretation \mathcal{I} erfüllt eine Formel $\varphi \in \mathsf{FO}[\sigma]$ (wir schreiben: $\mathcal{I} \models \varphi$), wenn $\llbracket \varphi \rrbracket^{\mathcal{I}} = 1$.

Die Modellbeziehung

Definition 3.21

Sei σ eine Signatur.

- (a) Eine σ -Interpretation \mathcal{I} erfüllt eine Formel $\varphi \in \mathsf{FO}[\sigma]$ (wir schreiben: $\mathcal{I} \models \varphi$), wenn $\llbracket \varphi \rrbracket^{\mathcal{I}} = 1$.
- (b) Eine σ -Interpretation \mathcal{I} erfüllt eine Formelmenge $\Phi \subseteq \mathsf{FO}[\sigma]$ (wir schreiben: $\mathcal{I} \models \Phi$), wenn $\mathcal{I} \models \varphi$ für alle $\varphi \in \Phi$ gilt.

Die Modellbeziehung

Definition 3.21

Sei σ eine Signatur.

- (a) Eine σ -Interpretation \mathcal{I} erfüllt eine Formel $\varphi \in \mathsf{FO}[\sigma]$ (wir schreiben: $\mathcal{I} \models \varphi$), wenn $\llbracket \varphi \rrbracket^{\mathcal{I}} = 1$.
- (b) Eine σ -Interpretation \mathcal{I} *erfüllt* eine Formelmenge $\Phi \subseteq \mathsf{FO}[\sigma]$ (wir schreiben: $\mathcal{I} \models \Phi$), wenn $\mathcal{I} \models \varphi$ für alle $\varphi \in \Phi$ gilt.
- (c) Ein *Modell* einer Formel φ (bzw. einer Formelmenge Φ) ist eine Interpretation \mathcal{I} mit $\mathcal{I} \models \varphi$ (bzw. $\mathcal{I} \models \Phi$).

Konventionen

• Terme bezeichnen wir mit t, s und Varianten s', t_1 , t_2 ,

Konventionen

- Terme bezeichnen wir mit t, s und Varianten s', t_1, t_2, \ldots
- Formeln bezeichnen wir mit φ, ψ, χ und Varianten $\psi', \varphi_1, \varphi_2, \ldots$

Konventionen

- Terme bezeichnen wir mit t, s und Varianten s', t_1, t_2, \ldots
- Formeln bezeichnen wir mit φ, ψ, χ und Varianten $\psi', \varphi_1, \varphi_2, \ldots$
- Formelmengen bezeichnen wir mit Φ, Ψ und Varianten $\Psi', \Phi_1, \Phi_2, \ldots$

• Eine Formel ψ ist Subformel einer Formel φ , wenn ψ als Teilwort in φ vorkommt (insbes. ist jede Formel eine Subformel von sich selbst).

Beispiel: $\psi := E(v_0, v_1)$ ist Subformel der Formel $\exists v_0 \forall v_1 E(v_0, v_1)$

• Eine Formel ψ ist Subformel einer Formel φ , wenn ψ als Teilwort in φ vorkommt (insbes. ist jede Formel eine Subformel von sich selbst).

```
Beispiel: \psi := E(v_0, v_1) ist Subformel der Formel \exists v_0 \forall v_1 E(v_0, v_1)
```

• Ein Term s ist Subterm eines Terms t, wenn s als Teilwort in t vorkommt (insbes. ist jeder Term ein Subterm von sich selbst).

```
Beispiel: f(c,c) ist Subterm des Terms f(v_0, f(c,c)).
```

• Eine Formel ψ ist Subformel einer Formel φ , wenn ψ als Teilwort in φ vorkommt (insbes. ist jede Formel eine Subformel von sich selbst).

```
Beispiel: \psi := E(v_0, v_1) ist Subformel der Formel \exists v_0 \forall v_1 E(v_0, v_1)
```

• Ein Term s ist Subterm eines Terms t, wenn s als Teilwort in t vorkommt (insbes. ist jeder Term ein Subterm von sich selbst).

```
Beispiel: f(c,c) ist Subterm des Terms f(v_0, f(c,c)).
```

- Sei $\xi \in T \cup FO$, d.h. ξ ist ein Term oder eine Formel der Logik erster Stufe.
 - Ähnlich wie bei aussagenlogischen Formeln können wir einen Syntaxbaum für ξ definieren.

• Eine Formel ψ ist Subformel einer Formel φ , wenn ψ als Teilwort in φ vorkommt (insbes. ist jede Formel eine Subformel von sich selbst).

```
Beispiel: \psi := E(v_0, v_1) ist Subformel der Formel \exists v_0 \forall v_1 E(v_0, v_1)
```

• Ein Term s ist Subterm eines Terms t, wenn s als Teilwort in t vorkommt (insbes. ist jeder Term ein Subterm von sich selbst).

```
Beispiel: f(c,c) ist Subterm des Terms f(v_0, f(c,c)).
```

- Sei $\xi \in T \cup FO$, d.h. ξ ist ein Term oder eine Formel der Logik erster Stufe.
 - Ähnlich wie bei aussagenlogischen Formeln können wir einen Syntaxbaum für ξ definieren.
 - Das Lemma über die eindeutige Lesbarkeit von Termen und Formeln besagt, dass jeder Term und jede Formel genau einen Syntaxbaum hat.

• Eine Formel ψ ist Subformel einer Formel φ , wenn ψ als Teilwort in φ vorkommt (insbes. ist jede Formel eine Subformel von sich selbst).

```
Beispiel: \psi := E(v_0, v_1) ist Subformel der Formel \exists v_0 \forall v_1 E(v_0, v_1)
```

• Ein Term s ist Subterm eines Terms t, wenn s als Teilwort in t vorkommt (insbes. ist jeder Term ein Subterm von sich selbst).

```
Beispiel: f(c,c) ist Subterm des Terms f(v_0, f(c,c)).
```

- Sei $\xi \in T \cup FO$, d.h. ξ ist ein Term oder eine Formel der Logik erster Stufe.
 - Ähnlich wie bei aussagenlogischen Formeln können wir einen Syntaxbaum für ξ definieren.
 - Das Lemma über die eindeutige Lesbarkeit von Termen und Formeln besagt, dass jeder Term und jede Formel genau einen Syntaxbaum hat.
 - Die Subterme von ξ (falls $\xi \in T$) bzw. Subformeln von ξ (falls $\xi \in FO$) sind dann alle Terme bzw. Formeln, die im Syntaxbaum vorkommen.

Kap 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Das Isomorphielemma

Das Isomorphielemma besagt, dass isomorphe Objekte (Strukturen bzw. Interpretationen) dieselben Formeln der Logik erster Stufe erfüllen.

Um diese Aussage präzise formulieren zu können, benötigen wir die folgende Notation.

Definition 3.22

Sei σ eine Signatur, seien \mathcal{A}, \mathcal{B} isomorphe σ -Strukturen und sei π ein Isomorphismus von \mathcal{A} nach \mathcal{B} (kurz: $\pi : \mathcal{A} \cong \mathcal{B}$).

Definition 3.22

Sei σ eine Signatur, seien \mathcal{A}, \mathcal{B} isomorphe σ -Strukturen und sei π ein Isomorphismus von \mathcal{A} nach \mathcal{B} (kurz: $\pi : \mathcal{A} \cong \mathcal{B}$).

(a) Für jede Belegung β in \mathcal{A} sei $\pi\beta$ die Belegung in \mathcal{B} , so dass für alle $\mathbf{x} \in \mathsf{VAR}$ gilt:

$$\pi\beta(\mathbf{x}) = \pi(\beta(\mathbf{x})).$$

Definition 3.22

Sei σ eine Signatur, seien \mathcal{A}, \mathcal{B} isomorphe σ -Strukturen und sei π ein Isomorphismus von \mathcal{A} nach \mathcal{B} (kurz: $\pi : \mathcal{A} \cong \mathcal{B}$).

(a) Für jede Belegung β in \mathcal{A} sei $\pi\beta$ die Belegung in \mathcal{B} , so dass für alle $\mathbf{x} \in \mathsf{VAR}$ gilt:

$$\pi\beta(\mathbf{x}) = \pi(\beta(\mathbf{x})).$$

(b) Für eine Interpretation $\mathcal{I} = (\mathcal{A}, \beta)$ schreiben wir $\pi \mathcal{I}$ für die Interpretation

$$\pi \mathcal{I} := (\mathcal{B}, \pi \beta).$$

Definition 3.22

Sei σ eine Signatur, seien \mathcal{A}, \mathcal{B} isomorphe σ -Strukturen und sei π ein Isomorphismus von \mathcal{A} nach \mathcal{B} (kurz: $\pi : \mathcal{A} \cong \mathcal{B}$).

(a) Für jede Belegung β in \mathcal{A} sei $\pi\beta$ die Belegung in \mathcal{B} , so dass für alle $\mathbf{x} \in \mathsf{VAR}$ gilt:

$$\pi\beta(\mathbf{x}) = \pi(\beta(\mathbf{x})).$$

(b) Für eine Interpretation $\mathcal{I} = (\mathcal{A}, \beta)$ schreiben wir $\pi \mathcal{I}$ für die Interpretation

$$\pi \mathcal{I} := (\mathcal{B}, \pi \beta).$$

Aus dieser Definition folgt direkt:

Lemma 3.23

Sei σ eine Signatur, seien \mathcal{A}, \mathcal{B} isomorphe σ -Strukturen, sei $\pi : \mathcal{A} \cong \mathcal{B}$, sei β eine Belegung in \mathcal{A} und sei $\mathcal{I} := (\mathcal{A}, \beta)$.

Definition 3.22

Sei σ eine Signatur, seien \mathcal{A}, \mathcal{B} isomorphe σ -Strukturen und sei π ein Isomorphismus von \mathcal{A} nach \mathcal{B} (kurz: $\pi : \mathcal{A} \cong \mathcal{B}$).

(a) Für jede Belegung β in \mathcal{A} sei $\pi\beta$ die Belegung in \mathcal{B} , so dass für alle $\mathbf{x} \in \mathsf{VAR}$ gilt:

$$\pi\beta(\mathbf{x}) = \pi(\beta(\mathbf{x})).$$

(b) Für eine Interpretation $\mathcal{I} = (\mathcal{A}, \beta)$ schreiben wir $\pi \mathcal{I}$ für die Interpretation

$$\pi \mathcal{I} := (\mathcal{B}, \pi \beta).$$

Aus dieser Definition folgt direkt:

Lemma 3.23

Sei σ eine Signatur, seien \mathcal{A}, \mathcal{B} isomorphe σ -Strukturen, sei $\pi : \mathcal{A} \cong \mathcal{B}$, sei β eine Belegung in \mathcal{A} und sei $\mathcal{I} := (\mathcal{A}, \beta)$.

Für jedes $x \in VAR$, für jedes $a \in A$, für $\mathcal{I}' := \mathcal{I}^{\underline{a}}_{x}$ und für $b := \pi(a)$ gilt:

Definition 3.22

Sei σ eine Signatur, seien \mathcal{A}, \mathcal{B} isomorphe σ -Strukturen und sei π ein Isomorphismus von \mathcal{A} nach \mathcal{B} (kurz: $\pi : \mathcal{A} \cong \mathcal{B}$).

(a) Für jede Belegung β in \mathcal{A} sei $\pi\beta$ die Belegung in \mathcal{B} , so dass für alle $\mathbf{x} \in \mathsf{VAR}$ gilt:

$$\pi\beta(\mathbf{x}) = \pi(\beta(\mathbf{x})).$$

(b) Für eine Interpretation $\mathcal{I} = (\mathcal{A}, \beta)$ schreiben wir $\pi \mathcal{I}$ für die Interpretation

$$\pi \mathcal{I} := (\mathcal{B}, \pi \beta).$$

Aus dieser Definition folgt direkt:

Lemma 3.23

Sei σ eine Signatur, seien \mathcal{A}, \mathcal{B} isomorphe σ -Strukturen, sei $\pi : \mathcal{A} \cong \mathcal{B}$, sei β eine Belegung in \mathcal{A} und sei $\mathcal{I} := (\mathcal{A}, \beta)$.

Für jedes $x \in VAR$, für jedes $a \in A$, für $\mathcal{I}' := \mathcal{I}^a_x$ und für $b := \pi(a)$ gilt:

$$\pi \mathcal{I}' = (\pi \mathcal{I}) \frac{b}{x}.$$

Satz 3.24 (Das Isomorphielemma der Logik erster Stufe) Sei σ eine Signatur, seien \mathcal{A}, \mathcal{B} isomorphe σ -Strukturen und sei $\pi : \mathcal{A} \cong \mathcal{B}$.

Satz 3.24 (Das Isomorphielemma der Logik erster Stufe)

Sei σ eine Signatur, seien \mathcal{A}, \mathcal{B} isomorphe σ -Strukturen und sei $\pi : \mathcal{A} \cong \mathcal{B}$. Für jede Belegung β in \mathcal{A} und die σ -Interpretation $\mathcal{I} := (\mathcal{A}, \beta)$ gilt:

Satz 3.24 (Das Isomorphielemma der Logik erster Stufe)

Sei σ eine Signatur, seien \mathcal{A}, \mathcal{B} isomorphe σ -Strukturen und sei $\pi : \mathcal{A} \cong \mathcal{B}$. Für jede Belegung β in \mathcal{A} und die σ -Interpretation $\mathcal{I} := (\mathcal{A}, \beta)$ gilt:

(a) Für jeden σ -Term $\mathbf{t} \in \mathsf{T}_{\sigma}$ ist $\llbracket \mathbf{t} \rrbracket^{\pi \mathcal{I}} = \pi \big(\llbracket \mathbf{t} \rrbracket^{\mathcal{I}} \big)$.

Satz 3.24 (Das Isomorphielemma der Logik erster Stufe)

Sei σ eine Signatur, seien \mathcal{A}, \mathcal{B} isomorphe σ -Strukturen und sei $\pi : \mathcal{A} \cong \mathcal{B}$. Für jede Belegung β in \mathcal{A} und die σ -Interpretation $\mathcal{I} := (\mathcal{A}, \beta)$ gilt:

- (a) Für jeden σ -Term $\mathbf{t} \in \mathsf{T}_{\sigma}$ ist $\llbracket \mathbf{t} \rrbracket^{\pi \mathcal{I}} = \pi (\llbracket \mathbf{t} \rrbracket^{\mathcal{I}})$.
- (b) Für jede $FO[\sigma]$ -Formel φ gilt: $\pi \mathcal{I} \models \varphi \iff \mathcal{I} \models \varphi$.

Satz 3.24 (Das Isomorphielemma der Logik erster Stufe)

Sei σ eine Signatur, seien \mathcal{A}, \mathcal{B} isomorphe σ -Strukturen und sei $\pi : \mathcal{A} \cong \mathcal{B}$. Für jede Belegung β in \mathcal{A} und die σ -Interpretation $\mathcal{I} := (\mathcal{A}, \beta)$ gilt:

- (a) Für jeden σ -Term $t \in T_{\sigma}$ ist $[\![t]\!]^{\pi \mathcal{I}} = \pi([\![t]\!]^{\mathcal{I}})$.
- (b) Für jede $FO[\sigma]$ -Formel φ gilt: $\pi \mathcal{I} \models \varphi \iff \mathcal{I} \models \varphi$.

Wir werden das Isomorphielemma per Induktion über den Aufbau von Termen und Formeln beweisen. Hierzu zunächst ein kurzer Überblick darüber, wie solche Induktionsbeweise prinzipiell aufgebaut sind.

• Ähnlich wie Aussagen über die aussagenlogischen Formeln können wir Aussagen über Terme und Formeln der Logik der erster Stufe per Induktion über den Aufbau von T_{σ} bzw. $FO[\sigma]$ beweisen.

- Ähnlich wie Aussagen über die aussagenlogischen Formeln können wir Aussagen über Terme und Formeln der Logik der erster Stufe per Induktion über den Aufbau von T_{σ} bzw. $FO[\sigma]$ beweisen.
- Im Induktionsanfang beweisen wir die Aussagen für die gemäß Basisregeln definierten Terme bzw. Formeln.

- Ähnlich wie Aussagen über die aussagenlogischen Formeln können wir Aussagen über Terme und Formeln der Logik der erster Stufe per Induktion über den Aufbau von T_{σ} bzw. $FO[\sigma]$ beweisen.
- Im Induktionsanfang beweisen wir die Aussagen für die gemäß Basisregeln definierten Terme bzw. Formeln. Im Induktionschritt schließen wir von den Subtermen bzw. Subformeln auf den Term bzw. die Formel selbst.

- Ähnlich wie Aussagen über die aussagenlogischen Formeln können wir Aussagen über Terme und Formeln der Logik der erster Stufe per Induktion über den Aufbau von T_{σ} bzw. $FO[\sigma]$ beweisen.
- Im Induktionsanfang beweisen wir die Aussagen für die gemäß Basisregeln definierten Terme bzw. Formeln. Im Induktionschritt schließen wir von den Subtermen bzw. Subformeln auf den Term bzw. die Formel selbst.
- Wie bei der Aussagenlogik ist dieses Vorgehen gerechtfertigt, weil es sich auch als vollständige Induktion über die Höhe des Syntaxbaums auffassen lässt.

Schematisch sieht der Beweis einer Aussage $\mathbb{A}(t)$ für alle Terme $t \in T_{\sigma}$ wie folgt aus:

Schematisch sieht der Beweis einer Aussage $\mathbb{A}(t)$ für alle Terme $t \in \mathsf{T}_{\sigma}$ wie folgt aus:

Induktionsanfang:

Schematisch sieht der Beweis einer Aussage $\mathbb{A}(t)$ für alle Terme $t \in T_{\sigma}$ wie folgt aus:

Induktionsanfang:

• Beweise, dass für alle Konstantensymbole $c \in \sigma$ die Aussage $\mathbb{A}(c)$ gilt.

Schematisch sieht der Beweis einer Aussage $\mathbb{A}(t)$ für alle Terme $t \in \mathsf{T}_{\sigma}$ wie folgt aus:

Induktionsanfang:

- Beweise, dass für alle Konstantensymbole $c \in \sigma$ die Aussage $\mathbb{A}(c)$ gilt.
- Beweise, dass für alle Variablen $x \in VAR$ die Aussage $\mathbb{A}(x)$ gilt.

Schematisch sieht der Beweis einer Aussage $\mathbb{A}(t)$ für alle Terme $t \in \mathsf{T}_{\sigma}$ wie folgt aus:

Induktionsanfang:

- Beweise, dass für alle Konstantensymbole $c \in \sigma$ die Aussage $\mathbb{A}(c)$ gilt.
- Beweise, dass für alle Variablen $x \in VAR$ die Aussage $\mathbb{A}(x)$ gilt.

Induktionsschritt:

• Betrachte jedes Funktionssymbol $f \in \sigma$, sei $k := \operatorname{ar}(f)$, und seien t_1, \ldots, t_k beliebige σ -Terme. Beweise, dass $\mathbb{A}(f(t_1, \ldots, t_k))$ gilt, und verwende dazu die Induktionsannahme, dass $\mathbb{A}(t_i)$ für jedes $i \in [k]$ gilt.

Schematisch sieht der Beweis einer Aussage $\mathbb{A}(t)$ für alle Terme $t \in \mathsf{T}_{\sigma}$ wie folgt aus:

Induktionsanfang:

- Beweise, dass für alle Konstantensymbole $c \in \sigma$ die Aussage $\mathbb{A}(c)$ gilt.
- Beweise, dass für alle Variablen $x \in VAR$ die Aussage $\mathbb{A}(x)$ gilt.

Induktionsschritt:

• Betrachte jedes Funktionssymbol $f \in \sigma$, sei $k := \operatorname{ar}(f)$, und seien t_1, \ldots, t_k beliebige σ -Terme. Beweise, dass $\mathbb{A}\left(f(t_1, \ldots, t_k)\right)$ gilt, und verwende dazu die Induktionsannahme, dass $\mathbb{A}(t_i)$ für jedes $i \in [k]$ gilt.

Mit dieser Vorgehensweise beweisen wir nun Teil (a) des Isomorphielemmas.

Kap 3: Logik erster Stufe ·	Abschnitt 3.4: Semantik der Logik erster Stufe

Teil (b) des Isomorphielemmas beweisen wir per Induktion über den Aufbau von Formeln. Prinzipiell sind solche Induktionsbeweise wie folgt aufgebaut.

Schematisch sieht der Beweis einer Aussage $\mathbb{A}(\varphi)$ für alle $\mathsf{FO}[\sigma]$ -Formeln φ wie folgt aus:

Beweise per Induktion über den Aufbau von Formeln

Schematisch sieht der Beweis einer Aussage $\mathbb{A}(\varphi)$ für alle $\mathsf{FO}[\sigma]$ -Formeln φ wie folgt aus:

Induktionsanfang:

Beweise per Induktion über den Aufbau von Formeln

Schematisch sieht der Beweis einer Aussage $\mathbb{A}(\varphi)$ für alle $\mathsf{FO}[\sigma]$ -Formeln φ wie folgt aus:

Induktionsanfang:

• Beweise, dass für alle σ -Terme $t_1, t_2 \in T_{\sigma}$ die Aussage $\mathbb{A}(t_1=t_2)$ gilt.

HU Berlin

Beweise per Induktion über den Aufbau von Formeln

Schematisch sieht der Beweis einer Aussage $\mathbb{A}(\varphi)$ für alle $\mathsf{FO}[\sigma]$ -Formeln φ wie folgt aus:

Induktionsanfang:

- Beweise, dass für alle σ -Terme $t_1, t_2 \in T_{\sigma}$ die Aussage $\mathbb{A}(t_1=t_2)$ gilt.
- Beweise, dass für alle Relationssymbole $R \in \sigma$, für $k := \operatorname{ar}(R)$ und für alle σ -Terme $t_1, \ldots, t_k \in \mathsf{T}_\sigma$ die Aussage $\mathbb{A}(R(t_1, \ldots, t_k))$ gilt

HU Berlin

Seien φ und ψ beliebige FO[σ]-Formeln. Die Induktionsannahme besagt, dass die Aussagen $\mathbb{A}(\varphi)$ und $\mathbb{A}(\psi)$ gelten.

Seien φ und ψ beliebige FO[σ]-Formeln. Die Induktionsannahme besagt, dass die Aussagen $\mathbb{A}(\varphi)$ und $\mathbb{A}(\psi)$ gelten.

Im Induktionsschritt muss dann gezeigt werden, dass

• für jede Variable $x \in VAR$ die Aussage $\mathbb{A}(\exists x \varphi)$ gilt,

Seien φ und ψ beliebige FO[σ]-Formeln. Die Induktionsannahme besagt, dass die Aussagen $\mathbb{A}(\varphi)$ und $\mathbb{A}(\psi)$ gelten.

Im Induktionsschritt muss dann gezeigt werden, dass

- für jede Variable $x \in VAR$ die Aussage $\mathbb{A}(\exists x \varphi)$ gilt,
- für jede Variable $x \in VAR$ die Aussage $\mathbb{A}(\forall x \varphi)$ gilt,

Seien φ und ψ beliebige FO[σ]-Formeln. Die Induktionsannahme besagt, dass die Aussagen $\mathbb{A}(\varphi)$ und $\mathbb{A}(\psi)$ gelten.

Im Induktionsschritt muss dann gezeigt werden, dass

- für jede Variable $x \in VAR$ die Aussage $\mathbb{A}(\exists x \varphi)$ gilt,
- für jede Variable $x \in VAR$ die Aussage $\mathbb{A}(\forall x \varphi)$ gilt,
- die Aussage $\mathbb{A}(\neg \varphi)$ gilt,

Seien φ und ψ beliebige FO[σ]-Formeln. Die Induktionsannahme besagt, dass die Aussagen $\mathbb{A}(\varphi)$ und $\mathbb{A}(\psi)$ gelten.

Im Induktionsschritt muss dann gezeigt werden, dass

- für jede Variable $x \in VAR$ die Aussage $\mathbb{A}(\exists x \varphi)$ gilt,
- für jede Variable $x \in VAR$ die Aussage $\mathbb{A}(\forall x \varphi)$ gilt,
- die Aussage $\mathbb{A}(\neg \varphi)$ gilt,
- die Aussage $\mathbb{A}((\varphi \wedge \psi))$ gilt,
- die Aussage $\mathbb{A}((\varphi \vee \psi))$ gilt,
- die Aussage $\mathbb{A}((\varphi \to \psi))$ gilt.

Seien φ und ψ beliebige FO[σ]-Formeln. Die Induktionsannahme besagt, dass die Aussagen $\mathbb{A}(\varphi)$ und $\mathbb{A}(\psi)$ gelten.

Im Induktionsschritt muss dann gezeigt werden, dass

- für jede Variable $x \in VAR$ die Aussage $\mathbb{A}(\exists x \varphi)$ gilt,
- für jede Variable $x \in VAR$ die Aussage $\mathbb{A}(\forall x \varphi)$ gilt,
- die Aussage $\mathbb{A}(\neg \varphi)$ gilt,
- die Aussage $\mathbb{A}((\varphi \wedge \psi))$ gilt,
- die Aussage $\mathbb{A}((\varphi \vee \psi))$ gilt,
- die Aussage $\mathbb{A}((\varphi \to \psi))$ gilt.

Mit dieser Vorgehensweise beweisen wir nun Teil (b) des Isomorphielemmas.

HU Berlin

Kap 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Das Koinzidenzlemma

Ähnlich wie für die Aussagenlogik gilt auch für die Logik erster Stufe ein Koinzidenzlemma, das besagt, dass

• denjenigen Bestandteilen von \mathcal{A} , die explizit in t bzw. φ vorkommen,

- ullet denjenigen Bestandteilen von ${\mathcal A}$, die explizit in t bzw. arphi vorkommen, und
- den Belegungen $\beta(x)$ derjenigen Variablen x, die in t vorkommen

- denjenigen Bestandteilen von \mathcal{A} , die explizit in t bzw. φ vorkommen, und
- den Belegungen $\beta(x)$ derjenigen Variablen x, die in t vorkommen bzw. die in φ vorkommen und <u>nicht</u> im Wirkungsbereich eines Quantors stehen.

- ullet denjenigen Bestandteilen von ${\mathcal A}$, die explizit in t bzw. arphi vorkommen, und
- den Belegungen $\beta(x)$ derjenigen Variablen x, die in t vorkommen bzw. die in φ vorkommen und <u>nicht</u> im Wirkungsbereich eines Quantors stehen.

Um diese Aussage präzise zu formulieren, sind folgende Begriffe nützlich.

- (a) Ist ξ ein Term oder eine Formel der Logik erster Stufe, so schreiben wir
 - $\sigma(\xi)$, um die Menge aller Relations-, Funktions- und Konstantensymbole zu bezeichnen, die in ξ vorkommen,

- (a) Ist ξ ein Term oder eine Formel der Logik erster Stufe, so schreiben wir
 - $\sigma(\xi)$, um die Menge aller Relations-, Funktions- und Konstantensymbole zu bezeichnen, die in ξ vorkommen,
 - $var(\xi)$, um die Menge aller in ξ vorkommenden Variablen zu bezeichnen.

- (a) Ist ξ ein Term oder eine Formel der Logik erster Stufe, so schreiben wir
 - $\sigma(\xi)$, um die Menge aller Relations-, Funktions- und Konstantensymbole zu bezeichnen, die in ξ vorkommen,
 - $var(\xi)$, um die Menge aller in ξ vorkommenden Variablen zu bezeichnen.
- (b) Ist φ eine Formel und x eine Variable, so heißt jedes Vorkommen von x in einer Subformel von φ , die von der Form $\exists x \psi$ oder $\forall x \psi$ ist, gebunden.

- (a) Ist ξ ein Term oder eine Formel der Logik erster Stufe, so schreiben wir
 - $\sigma(\xi)$, um die Menge aller Relations-, Funktions- und Konstantensymbole zu bezeichnen, die in ξ vorkommen,
 - $var(\xi)$, um die Menge aller in ξ vorkommenden Variablen zu bezeichnen.
- (b) Ist φ eine Formel und x eine Variable, so heißt jedes Vorkommen von x in einer Subformel von φ , die von der Form $\exists x \psi$ oder $\forall x \psi$ ist, gebunden. Jedes andere Vorkommen von x in φ heißt frei.

Beispiel:

$$\varphi := (f(v_0, c) = v_3 \land \exists v_0 f(v_0, v_1) = c)$$

HU Berlin

- (a) Ist ξ ein Term oder eine Formel der Logik erster Stufe, so schreiben wir
 - $\sigma(\xi)$, um die Menge aller Relations-, Funktions- und Konstantensymbole zu bezeichnen, die in ξ vorkommen,
 - $var(\xi)$, um die Menge aller in ξ vorkommenden Variablen zu bezeichnen.
- (b) Ist φ eine Formel und x eine Variable, so heißt jedes Vorkommen von x in einer Subformel von φ , die von der Form $\exists x \psi$ oder $\forall x \psi$ ist, gebunden. Jedes andere Vorkommen von x in φ heißt frei.

Beispiel:

$$\varphi := (f(v_0, c) = v_3 \land \exists v_0 f(v_0, v_1) = c)$$

Das erste Vorkommen von v_0 in φ ist frei, das zweite und dritte Vorkommen von v_0 in φ ist gebunden. Die Vorkommen von v_1 und v_3 in φ sind frei.

HU Berlin

Definition 3.26

Die Menge frei (φ) aller freien Variablen einer Formel φ besteht aus allen Variablen, die mindestens ein freies Vorkommen in φ haben.

Definition 3.26

Die Menge frei (φ) aller freien Variablen einer Formel φ besteht aus allen Variablen, die mindestens ein freies Vorkommen in φ haben.

$$frei(R(t_1,\ldots,t_k)) :=$$

Definition 3.26

Die Menge frei (φ) aller freien Variablen einer Formel φ besteht aus allen Variablen, die mindestens ein freies Vorkommen in φ haben.

$$frei(R(t_1, \ldots, t_k)) := var(t_1) \cup \cdots \cup var(t_k)$$

Definition 3.26

Die Menge frei (φ) aller freien Variablen einer Formel φ besteht aus allen Variablen, die mindestens ein freies Vorkommen in φ haben.

```
\operatorname{frei}(R(t_1,\ldots,t_k)) := \operatorname{var}(t_1) \cup \cdots \cup \operatorname{var}(t_k)
\operatorname{frei}(t_1=t_2) :=
```

Definition 3.26

Die Menge frei (φ) aller freien Variablen einer Formel φ besteht aus allen Variablen, die mindestens ein freies Vorkommen in φ haben.

```
\begin{array}{lll} \operatorname{frei}(R(t_1,\ldots,t_k)) & := & \operatorname{var}(t_1) \cup \cdots \cup \operatorname{var}(t_k) \\ & \operatorname{frei}(t_1 = t_2) & := & \operatorname{var}(t_1) \cup \operatorname{var}(t_2) \end{array}
```

Definition 3.26

Die Menge frei (φ) aller freien Variablen einer Formel φ besteht aus allen Variablen, die mindestens ein freies Vorkommen in φ haben.

```
\begin{array}{lll} \operatorname{frei}(R(t_1,\ldots,t_k)) & := & \operatorname{var}(t_1) \cup \cdots \cup \operatorname{var}(t_k) \\ & \operatorname{frei}(t_1 = t_2) & := & \operatorname{var}(t_1) \cup \operatorname{var}(t_2) \\ & \operatorname{frei}(\neg \varphi) & := & \end{array}
```

Definition 3.26

Die Menge frei (φ) aller freien Variablen einer Formel φ besteht aus allen Variablen, die mindestens ein freies Vorkommen in φ haben.

```
\begin{array}{lll} \mathsf{frei}(R(t_1,\ldots,t_k)) & := & \mathsf{var}(t_1) \cup \cdots \cup \mathsf{var}(t_k) \\ & \mathsf{frei}(t_1 \! = \! t_2) & := & \mathsf{var}(t_1) \cup \mathsf{var}(t_2) \\ & \mathsf{frei}(\neg \varphi) & := & \mathsf{frei}(\varphi) \end{array}
```

Definition 3.26

Die Menge frei (φ) aller freien Variablen einer Formel φ besteht aus allen Variablen, die mindestens ein freies Vorkommen in φ haben.

```
\begin{array}{lll} \operatorname{frei}(R(t_1,\ldots,t_k)) & := & \operatorname{var}(t_1) \cup \cdots \cup \operatorname{var}(t_k) \\ & \operatorname{frei}(t_1 \! = \! t_2) & := & \operatorname{var}(t_1) \cup \operatorname{var}(t_2) \\ & \operatorname{frei}(\neg \varphi) & := & \operatorname{frei}(\varphi) \\ & \operatorname{frei}((\varphi * \psi)) & := & \end{array}
```

Definition 3.26

Die Menge frei (φ) aller freien Variablen einer Formel φ besteht aus allen Variablen, die mindestens ein freies Vorkommen in φ haben.

```
\begin{array}{lll} \mathrm{frei}(R(t_1,\ldots,t_k)) &:= & \mathrm{var}(t_1)\cup\cdots\cup\mathrm{var}(t_k) \\ & \mathrm{frei}(t_1{=}t_2) &:= & \mathrm{var}(t_1)\cup\mathrm{var}(t_2) \\ & \mathrm{frei}(\neg\varphi) &:= & \mathrm{frei}(\varphi) \\ & \mathrm{frei}((\varphi*\psi)) &:= & \mathrm{frei}(\varphi)\cup\mathrm{frei}(\psi) & \mathrm{für\ alle}\ *\in\{\wedge,\vee,\to\} \end{array}
```

Definition 3.26

Die Menge frei (φ) aller freien Variablen einer Formel φ besteht aus allen Variablen, die mindestens ein freies Vorkommen in φ haben.

```
\begin{array}{lll} \operatorname{frei}(R(t_1,\ldots,t_k)) &:= & \operatorname{var}(t_1) \cup \cdots \cup \operatorname{var}(t_k) \\ & \operatorname{frei}(t_1 \! = \! t_2) &:= & \operatorname{var}(t_1) \cup \operatorname{var}(t_2) \\ & \operatorname{frei}(\neg \varphi) &:= & \operatorname{frei}(\varphi) \\ & \operatorname{frei}((\varphi * \psi)) &:= & \operatorname{frei}(\varphi) \cup \operatorname{frei}(\psi) & \operatorname{für alle} * \in \{\land,\lor,\to\} \\ & \operatorname{frei}(\exists \mathsf{x} \, \varphi) &:= & \operatorname{frei}(\forall \mathsf{x} \, \varphi) &:= \\ \end{array}
```

Definition 3.26

Die Menge frei (φ) aller freien Variablen einer Formel φ besteht aus allen Variablen, die mindestens ein freies Vorkommen in φ haben.

```
\begin{array}{lll} \operatorname{frei}(\mathcal{R}(t_1,\ldots,t_k)) &:= & \operatorname{var}(t_1) \cup \cdots \cup \operatorname{var}(t_k) \\ & \operatorname{frei}(t_1 \! = \! t_2) &:= & \operatorname{var}(t_1) \cup \operatorname{var}(t_2) \\ & \operatorname{frei}(\neg \varphi) &:= & \operatorname{frei}(\varphi) \\ & \operatorname{frei}((\varphi * \psi)) &:= & \operatorname{frei}(\varphi) \cup \operatorname{frei}(\psi) & \operatorname{für alle} * \in \{\land,\lor,\to\} \\ & \operatorname{frei}(\exists x \, \varphi) &:= & \operatorname{frei}(\forall x \, \varphi) &:= & \operatorname{frei}(\varphi) \setminus \{x\}. \end{array}
```

Definition 3.26

Die Menge frei (φ) aller freien Variablen einer Formel φ besteht aus allen Variablen, die mindestens ein freies Vorkommen in φ haben.

Die Menge frei (φ) lässt sich rekursiv über den Aufbau von Formeln wie folgt definieren:

```
\begin{array}{lll} \operatorname{frei}(R(t_1,\ldots,t_k)) &:= & \operatorname{var}(t_1) \cup \cdots \cup \operatorname{var}(t_k) \\ & \operatorname{frei}(t_1 = t_2) &:= & \operatorname{var}(t_1) \cup \operatorname{var}(t_2) \\ & \operatorname{frei}(\neg \varphi) &:= & \operatorname{frei}(\varphi) \\ & \operatorname{frei}((\varphi * \psi)) &:= & \operatorname{frei}(\varphi) \cup \operatorname{frei}(\psi) & \operatorname{für alle} * \in \{\land,\lor,\to\} \\ & \operatorname{frei}(\exists x \, \varphi) &:= & \operatorname{frei}(\forall x \, \varphi) &:= & \operatorname{frei}(\varphi) \setminus \{x\}. \end{array}
```

Beispiele:

• frei $(f(v_0, c)=v_3) =$

Definition 3.26

Die Menge frei (φ) aller freien Variablen einer Formel φ besteht aus allen Variablen, die mindestens ein freies Vorkommen in φ haben.

Die Menge frei (φ) lässt sich rekursiv über den Aufbau von Formeln wie folgt definieren:

```
\begin{array}{lll} \operatorname{frei}(\mathcal{R}(t_1,\ldots,t_k)) &:= & \operatorname{var}(t_1) \cup \cdots \cup \operatorname{var}(t_k) \\ & \operatorname{frei}(t_1 \! = \! t_2) &:= & \operatorname{var}(t_1) \cup \operatorname{var}(t_2) \\ & \operatorname{frei}(\neg \varphi) &:= & \operatorname{frei}(\varphi) \\ & \operatorname{frei}((\varphi * \psi)) &:= & \operatorname{frei}(\varphi) \cup \operatorname{frei}(\psi) & \operatorname{für alle} * \in \{\land,\lor,\to\} \\ & \operatorname{frei}(\exists x \, \varphi) &:= & \operatorname{frei}(\forall x \, \varphi) &:= & \operatorname{frei}(\varphi) \setminus \{x\}. \end{array}
```

Beispiele:

- frei $(f(v_0, c) = v_3) = \{v_0, v_3\}$
- frei $(\exists v_0 f(v_0, v_1) = c) =$

Definition 3.26

Die Menge frei (φ) aller freien Variablen einer Formel φ besteht aus allen Variablen, die mindestens ein freies Vorkommen in φ haben.

Die Menge frei (φ) lässt sich rekursiv über den Aufbau von Formeln wie folgt definieren:

```
\begin{array}{lll} \operatorname{frei}(R(t_1,\ldots,t_k)) &:= & \operatorname{var}(t_1) \cup \cdots \cup \operatorname{var}(t_k) \\ & \operatorname{frei}(t_1 = t_2) &:= & \operatorname{var}(t_1) \cup \operatorname{var}(t_2) \\ & \operatorname{frei}(\neg \varphi) &:= & \operatorname{frei}(\varphi) \\ & \operatorname{frei}((\varphi * \psi)) &:= & \operatorname{frei}(\varphi) \cup \operatorname{frei}(\psi) & \operatorname{für alle} * \in \{\land,\lor,\to\} \\ & \operatorname{frei}(\exists x \, \varphi) &:= & \operatorname{frei}(\forall x \, \varphi) &:= & \operatorname{frei}(\varphi) \setminus \{x\}. \end{array}
```

Beispiele:

- frei $(f(v_0, c)=v_3) = \{v_0, v_3\}$
- frei $(\exists v_0 f(v_0, v_1) = c) = \{v_1\}$
- frei($(f(v_0, c) = v_3 \land \exists v_0 f(v_0, v_1) = c)$) =

Definition 3.26

Die Menge frei (φ) aller freien Variablen einer Formel φ besteht aus allen Variablen, die mindestens ein freies Vorkommen in φ haben.

Die Menge frei (φ) lässt sich rekursiv über den Aufbau von Formeln wie folgt definieren:

```
\begin{array}{lll} \operatorname{frei}(\mathcal{R}(t_1,\ldots,t_k)) &:= & \operatorname{var}(t_1) \cup \cdots \cup \operatorname{var}(t_k) \\ & \operatorname{frei}(t_1 \! = \! t_2) &:= & \operatorname{var}(t_1) \cup \operatorname{var}(t_2) \\ & \operatorname{frei}(\neg \varphi) &:= & \operatorname{frei}(\varphi) \\ & \operatorname{frei}((\varphi * \psi)) &:= & \operatorname{frei}(\varphi) \cup \operatorname{frei}(\psi) & \operatorname{für alle} * \in \{\land,\lor,\to\} \\ & \operatorname{frei}(\exists x \, \varphi) &:= & \operatorname{frei}(\forall x \, \varphi) &:= & \operatorname{frei}(\varphi) \setminus \{x\}. \end{array}
```

Beispiele:

- frei $(f(v_0, c)=v_3) = \{v_0, v_3\}$
- frei $(\exists v_0 f(v_0, v_1) = c) = \{v_1\}$
- frei($(f(v_0, c)=v_3 \land \exists v_0 f(v_0, v_1)=c)$) = $\{v_0, v_3, v_1\}$

Satz 3.27 (Koinzidenzlemma für Terme)

Sei $\mathcal{I}_1 = (\mathcal{A}_1, \beta_1)$ eine σ_1 -Interpretation und sei $\mathcal{I}_2 = (\mathcal{A}_2, \beta_2)$ eine σ_2 -Interpretation, wobei σ_1 und σ_2 Signaturen sind.

Satz 3.27 (Koinzidenzlemma für Terme)

Sei $\mathcal{I}_1 = (\mathcal{A}_1, \beta_1)$ eine σ_1 -Interpretation und sei $\mathcal{I}_2 = (\mathcal{A}_2, \beta_2)$ eine σ_2 -Interpretation, wobei σ_1 und σ_2 Signaturen sind. Sei $\mathbf{t} \in \mathsf{T}$ ein Term mit $\sigma(\mathbf{t}) \subseteq \sigma_1 \cap \sigma_2$, so dass gilt:

Satz 3.27 (Koinzidenzlemma für Terme)

Sei $\mathcal{I}_1=(\mathcal{A}_1,\beta_1)$ eine σ_1 -Interpretation und sei $\mathcal{I}_2=(\mathcal{A}_2,\beta_2)$ eine σ_2 -Interpretation, wobei σ_1 und σ_2 Signaturen sind. Sei $t\in T$ ein Term mit $\sigma(t)\subseteq \sigma_1\cap \sigma_2$, so dass gilt:

1.
$$A_1|_{\sigma(t)} = A_2|_{\sigma(t)}$$

Satz 3.27 (Koinzidenzlemma für Terme)

Sei $\mathcal{I}_1=(\mathcal{A}_1,\beta_1)$ eine σ_1 -Interpretation und sei $\mathcal{I}_2=(\mathcal{A}_2,\beta_2)$ eine σ_2 -Interpretation, wobei σ_1 und σ_2 Signaturen sind. Sei $\mathbf{t}\in \mathsf{T}$ ein Term mit $\sigma(\mathbf{t})\subseteq \sigma_1\cap \sigma_2$, so dass gilt:

1.
$$A_1|_{\sigma(t)} = A_2|_{\sigma(t)}$$

(d.h., die $\sigma(t)$ -Redukte von A_1 und A_2 sind identisch),

Satz 3.27 (Koinzidenzlemma für Terme)

Sei $\mathcal{I}_1=(\mathcal{A}_1,\beta_1)$ eine σ_1 -Interpretation und sei $\mathcal{I}_2=(\mathcal{A}_2,\beta_2)$ eine σ_2 -Interpretation, wobei σ_1 und σ_2 Signaturen sind. Sei $\mathbf{t}\in \mathsf{T}$ ein Term mit $\sigma(\mathbf{t})\subseteq \sigma_1\cap \sigma_2$, so dass gilt:

- 1. $A_1|_{\sigma(t)} = A_2|_{\sigma(t)}$ (d.h., die $\sigma(t)$ -Redukte von A_1 und A_2 sind identisch), und
- 2. $\beta_1(x) = \beta_2(x)$, für alle $x \in \text{var}(t)$.

Satz 3.27 (Koinzidenzlemma für Terme)

Sei $\mathcal{I}_1=(\mathcal{A}_1,\beta_1)$ eine σ_1 -Interpretation und sei $\mathcal{I}_2=(\mathcal{A}_2,\beta_2)$ eine σ_2 -Interpretation, wobei σ_1 und σ_2 Signaturen sind. Sei $t\in T$ ein Term mit $\sigma(t)\subseteq \sigma_1\cap \sigma_2$, so dass gilt:

- 1. $A_1|_{\sigma(t)} = A_2|_{\sigma(t)}$ (d.h., die $\sigma(t)$ -Redukte von A_1 und A_2 sind identisch), und
- 2. $\beta_1(x) = \beta_2(x)$, für alle $x \in \text{var}(t)$.

Dann gilt: $[t]^{\mathcal{I}_1} = [t]^{\mathcal{I}_2}$.

Satz 3.27 (Koinzidenzlemma für Terme)

Sei $\mathcal{I}_1=(\mathcal{A}_1,\beta_1)$ eine σ_1 -Interpretation und sei $\mathcal{I}_2=(\mathcal{A}_2,\beta_2)$ eine σ_2 -Interpretation, wobei σ_1 und σ_2 Signaturen sind. Sei $t\in T$ ein Term mit $\sigma(t)\subseteq \sigma_1\cap \sigma_2$, so dass gilt:

- 1. $\mathcal{A}_1|_{\sigma(t)} = \mathcal{A}_2|_{\sigma(t)}$ (d.h., die $\sigma(t)$ -Redukte von \mathcal{A}_1 und \mathcal{A}_2 sind identisch), und
- 2. $\beta_1(x) = \beta_2(x)$, für alle $x \in \text{var}(t)$.

Dann gilt: $[t]^{\mathcal{I}_1} = [t]^{\mathcal{I}_2}$.

Beweis: Per Induktion über den Aufbau von Termen.

Satz 3.27 (Koinzidenzlemma für Terme)

Sei $\mathcal{I}_1=(\mathcal{A}_1,\beta_1)$ eine σ_1 -Interpretation und sei $\mathcal{I}_2=(\mathcal{A}_2,\beta_2)$ eine σ_2 -Interpretation, wobei σ_1 und σ_2 Signaturen sind. Sei $\mathbf{t}\in \mathsf{T}$ ein Term mit $\sigma(\mathbf{t})\subseteq \sigma_1\cap \sigma_2$, so dass gilt:

- 1. $\mathcal{A}_1|_{\sigma(t)} = \mathcal{A}_2|_{\sigma(t)}$ (d.h., die $\sigma(t)$ -Redukte von \mathcal{A}_1 und \mathcal{A}_2 sind identisch), und
- 2. $\beta_1(x) = \beta_2(x)$, für alle $x \in \text{var}(t)$.

Dann gilt: $[t]^{\mathcal{I}_1} = [t]^{\mathcal{I}_2}$.

Beweis: Per Induktion über den Aufbau von Termen. Details: Übung.

Satz 3.27 (Koinzidenzlemma für Terme)

Sei $\mathcal{I}_1=(\mathcal{A}_1,\beta_1)$ eine σ_1 -Interpretation und sei $\mathcal{I}_2=(\mathcal{A}_2,\beta_2)$ eine σ_2 -Interpretation, wobei σ_1 und σ_2 Signaturen sind. Sei $t\in T$ ein Term mit $\sigma(t)\subseteq \sigma_1\cap \sigma_2$, so dass gilt:

- 1. $\mathcal{A}_1|_{\sigma(t)} = \mathcal{A}_2|_{\sigma(t)}$ (d.h., die $\sigma(t)$ -Redukte von \mathcal{A}_1 und \mathcal{A}_2 sind identisch), und
- 2. $\beta_1(x) = \beta_2(x)$, für alle $x \in \text{var}(t)$.

Dann gilt: $[t]^{\mathcal{I}_1} = [t]^{\mathcal{I}_2}$.

Beweis: Per Induktion über den Aufbau von Termen. Details: Übung.

Satz 3.28 (Koinzidenzlemma für FO-Formeln)

Sei $\mathcal{I}_1 = (\mathcal{A}_1, \beta_1)$ eine σ_1 -Interpretation und sei $\mathcal{I}_2 = (\mathcal{A}_2, \beta_2)$ eine σ_2 -Interpretation, wobei σ_1 und σ_2 Signaturen seien.

Sei $\varphi \in FO$ eine Formel der Logik erster Stufe mit $\sigma(\varphi) \subseteq \sigma_1 \cap \sigma_2$, so dass gilt:

Satz 3.27 (Koinzidenzlemma für Terme)

Sei $\mathcal{I}_1=(\mathcal{A}_1,\beta_1)$ eine σ_1 -Interpretation und sei $\mathcal{I}_2=(\mathcal{A}_2,\beta_2)$ eine σ_2 -Interpretation, wobei σ_1 und σ_2 Signaturen sind. Sei $\mathbf{t}\in\mathsf{T}$ ein Term mit $\sigma(\mathbf{t})\subseteq\sigma_1\cap\sigma_2$, so dass gilt:

- 1. $\mathcal{A}_1|_{\sigma(t)} = \mathcal{A}_2|_{\sigma(t)}$ (d.h., die $\sigma(t)$ -Redukte von \mathcal{A}_1 und \mathcal{A}_2 sind identisch), und
- 2. $\beta_1(x) = \beta_2(x)$, für alle $x \in \text{var}(t)$.

Dann gilt: $[t]^{\mathcal{I}_1} = [t]^{\mathcal{I}_2}$.

Beweis: Per Induktion über den Aufbau von Termen. Details: Übung.

Satz 3.28 (Koinzidenzlemma für FO-Formeln)

Sei $\mathcal{I}_1 = (\mathcal{A}_1, \beta_1)$ eine σ_1 -Interpretation und sei $\mathcal{I}_2 = (\mathcal{A}_2, \beta_2)$ eine σ_2 -Interpretation, wobei σ_1 und σ_2 Signaturen seien.

Sei $\varphi \in FO$ eine Formel der Logik erster Stufe mit $\sigma(\varphi) \subseteq \sigma_1 \cap \sigma_2$, so dass gilt:

1.
$$\mathcal{A}_1|_{\sigma(\varphi)} = \mathcal{A}_2|_{\sigma(\varphi)}$$

Satz 3.27 (Koinzidenzlemma für Terme)

Sei $\mathcal{I}_1=(\mathcal{A}_1,\beta_1)$ eine σ_1 -Interpretation und sei $\mathcal{I}_2=(\mathcal{A}_2,\beta_2)$ eine σ_2 -Interpretation, wobei σ_1 und σ_2 Signaturen sind. Sei $\mathbf{t}\in \mathsf{T}$ ein Term mit $\sigma(\mathbf{t})\subseteq \sigma_1\cap \sigma_2$, so dass gilt:

- 1. $\mathcal{A}_1|_{\sigma(t)} = \mathcal{A}_2|_{\sigma(t)}$ (d.h., die $\sigma(t)$ -Redukte von \mathcal{A}_1 und \mathcal{A}_2 sind identisch), und
- 2. $\beta_1(x) = \beta_2(x)$, für alle $x \in \text{var}(t)$.

Dann gilt: $[t]^{\mathcal{I}_1} = [t]^{\mathcal{I}_2}$.

Beweis: Per Induktion über den Aufbau von Termen. Details: Übung.

Satz 3.28 (Koinzidenzlemma für FO-Formeln)

Sei $\mathcal{I}_1 = (\mathcal{A}_1, \beta_1)$ eine σ_1 -Interpretation und sei $\mathcal{I}_2 = (\mathcal{A}_2, \beta_2)$ eine σ_2 -Interpretation, wobei σ_1 und σ_2 Signaturen seien.

Sei $\varphi \in FO$ eine Formel der Logik erster Stufe mit $\sigma(\varphi) \subseteq \sigma_1 \cap \sigma_2$, so dass gilt:

- 1. $A_1|_{\sigma(\varphi)} = A_2|_{\sigma(\varphi)}$, und
- 2. $\beta_1(x) = \beta_2(x)$, für alle $x \in \text{frei}(\varphi)$.

Satz 3.27 (Koinzidenzlemma für Terme)

Sei $\mathcal{I}_1=(\mathcal{A}_1,\beta_1)$ eine σ_1 -Interpretation und sei $\mathcal{I}_2=(\mathcal{A}_2,\beta_2)$ eine σ_2 -Interpretation, wobei σ_1 und σ_2 Signaturen sind. Sei $t\in T$ ein Term mit $\sigma(t)\subseteq \sigma_1\cap \sigma_2$, so dass gilt:

- 1. $A_1|_{\sigma(t)} = A_2|_{\sigma(t)}$ (d.h., die $\sigma(t)$ -Redukte von A_1 und A_2 sind identisch), und
- 2. $\beta_1(x) = \beta_2(x)$, für alle $x \in \text{var}(t)$.

Dann gilt: $[t]^{\mathcal{I}_1} = [t]^{\mathcal{I}_2}$.

Beweis: Per Induktion über den Aufbau von Termen. Details: Übung.

Satz 3.28 (Koinzidenzlemma für FO-Formeln)

Sei $\mathcal{I}_1 = (\mathcal{A}_1, \beta_1)$ eine σ_1 -Interpretation und sei $\mathcal{I}_2 = (\mathcal{A}_2, \beta_2)$ eine σ_2 -Interpretation, wobei σ_1 und σ_2 Signaturen seien.

Sei $\varphi \in FO$ eine Formel der Logik erster Stufe mit $\sigma(\varphi) \subseteq \sigma_1 \cap \sigma_2$, so dass gilt:

- 1. $A_1|_{\sigma(\varphi)} = A_2|_{\sigma(\varphi)}$, und
- 2. $\beta_1(x) = \beta_2(x)$, für alle $x \in \text{frei}(\varphi)$.

Dann gilt: $\mathcal{I}_1 \models \varphi \iff \mathcal{I}_2 \models \varphi$.

Satz 3.27 (Koinzidenzlemma für Terme)

Sei $\mathcal{I}_1=(\mathcal{A}_1,\beta_1)$ eine σ_1 -Interpretation und sei $\mathcal{I}_2=(\mathcal{A}_2,\beta_2)$ eine σ_2 -Interpretation, wobei σ_1 und σ_2 Signaturen sind. Sei $\mathbf{t}\in \mathsf{T}$ ein Term mit $\sigma(\mathbf{t})\subseteq \sigma_1\cap \sigma_2$, so dass gilt:

- 1. $\mathcal{A}_1|_{\sigma(t)} = \mathcal{A}_2|_{\sigma(t)}$ (d.h., die $\sigma(t)$ -Redukte von \mathcal{A}_1 und \mathcal{A}_2 sind identisch), und
- 2. $\beta_1(x) = \beta_2(x)$, für alle $x \in \text{var}(t)$.

Dann gilt: $[t]^{\mathcal{I}_1} = [t]^{\mathcal{I}_2}$.

Beweis: Per Induktion über den Aufbau von Termen. Details: Übung.

Satz 3.28 (Koinzidenzlemma für FO-Formeln)

Sei $\mathcal{I}_1 = (\mathcal{A}_1, \beta_1)$ eine σ_1 -Interpretation und sei $\mathcal{I}_2 = (\mathcal{A}_2, \beta_2)$ eine σ_2 -Interpretation, wobei σ_1 und σ_2 Signaturen seien.

Sei $\varphi \in \mathsf{FO}$ eine Formel der Logik erster Stufe mit $\sigma(\varphi) \subseteq \sigma_1 \cap \sigma_2$, so dass gilt:

- 1. $A_1|_{\sigma(\varphi)} = A_2|_{\sigma(\varphi)}$, und
- 2. $\beta_1(x) = \beta_2(x)$, für alle $x \in \text{frei}(\varphi)$.

Dann gilt: $\mathcal{I}_1 \models \varphi \iff \mathcal{I}_2 \models \varphi$.

Beweis: Per Induktion über den Aufbau von Formeln. Details: Übung.

• Für einen Term $t \in T_{\sigma}$ schreiben wir $t(x_1, \ldots, x_n)$, um anzudeuten, dass $var(t) \subseteq \{x_1, \ldots, x_n\}$.

- Für einen Term $t \in T_{\sigma}$ schreiben wir $t(x_1, \ldots, x_n)$, um anzudeuten, dass $var(t) \subseteq \{x_1, \ldots, x_n\}$.
- Sei A eine σ -Struktur und seien $a_1, \ldots, a_n \in A$. Auf Grund des Koinzidenzlemmas gilt

$$\llbracket t \rrbracket^{(\mathcal{A},\beta)} = \llbracket t \rrbracket^{(\mathcal{A},\beta')}$$

für alle Belegungen β, β' : VAR $\to A$, so dass $\beta(x_i) = a_i = \beta'(x_i)$ für alle $i \in [n]$ gilt.

- Für einen Term $t \in T_{\sigma}$ schreiben wir $t(x_1, ..., x_n)$, um anzudeuten, dass $var(t) \subseteq \{x_1, ..., x_n\}$.
- Sei A eine σ-Struktur und seien a₁,..., a_n ∈ A.
 Auf Grund des Koinzidenzlemmas gilt

$$\llbracket t \rrbracket^{(\mathcal{A},\beta)} = \llbracket t \rrbracket^{(\mathcal{A},\beta')}$$

für alle Belegungen β, β' : VAR $\to A$, so dass $\beta(x_i) = a_i = \beta'(x_i)$ für alle $i \in [n]$ gilt. Wir schreiben oft

$$t^{\mathcal{A}}[a_1,\ldots,a_n],$$

um das Element $[t]^{(A,\beta)}$ zu bezeichnen.

- Für einen Term $t \in T_{\sigma}$ schreiben wir $t(x_1, ..., x_n)$, um anzudeuten, dass $var(t) \subseteq \{x_1, ..., x_n\}$.
- Sei A eine σ -Struktur und seien $a_1, \ldots, a_n \in A$. Auf Grund des Koinzidenzlemmas gilt

$$\llbracket t \rrbracket^{(\mathcal{A},\beta)} = \llbracket t \rrbracket^{(\mathcal{A},\beta')}$$

für alle Belegungen β, β' : VAR $\to A$, so dass $\beta(x_i) = a_i = \beta'(x_i)$ für alle $i \in [n]$ gilt. Wir schreiben oft

$$t^{\mathcal{A}}[a_1,\ldots,a_n],$$

um das Element $[t]^{(A,\beta)}$ zu bezeichnen.

• Für Terme $t \in T_{\sigma}$, in denen keine Variable vorkommt, d.h. $var(t) = \emptyset$ (so genannte Grundterme), schreiben wir einfach t^{A} .

Notation für Formeln

• Für eine FO[σ]-Formel φ schreiben wir $\varphi(x_1, \ldots, x_n)$, um anzudeuten, dass frei $(\varphi) \subseteq \{x_1, \ldots, x_n\}$.

Notation für Formeln

- Für eine FO[σ]-Formel φ schreiben wir $\varphi(x_1, \ldots, x_n)$, um anzudeuten, dass frei $(\varphi) \subseteq \{x_1, \ldots, x_n\}$.
- Ist A eine σ -Struktur und sind $a_1, \ldots, a_n \in A$, so schreiben wir

$$\mathcal{A} \models \varphi[a_1,\ldots,a_n]$$

wenn $(A, \beta) \models \varphi$ für eine Belegung $\beta : VAR \rightarrow A$ mit $\beta(x_i) = a_i$ für alle $i \in [n]$ gilt.

Notation für Formeln

- Für eine FO[σ]-Formel φ schreiben wir $\varphi(x_1, \ldots, x_n)$, um anzudeuten, dass frei $(\varphi) \subseteq \{x_1, \ldots, x_n\}$.
- Ist A eine σ -Struktur und sind $a_1, \ldots, a_n \in A$, so schreiben wir

$$\mathcal{A} \models \varphi[a_1,\ldots,a_n]$$

wenn $(A, \beta) \models \varphi$ für eine Belegung $\beta : VAR \rightarrow A$ mit $\beta(x_i) = a_i$ für alle $i \in [n]$ gilt.

Auf Grund des Koinzidenzlemmas gilt dann auch für alle Belegungen β' : VAR $\to A$ mit $\beta'(x_i) = a_i$ für alle $i \in [n]$, dass $(A, \beta') \models \varphi$.

Kap 3: Logik erster Stufe · Abschnitt 3.4: Semantik der Logik erster Stufe

Sätze der Logik erster Stufe

Sei σ eine Signatur.

(a) Ein $FO[\sigma]$ -Satz (kurz: Satz) ist eine $FO[\sigma]$ -Formel φ mit $frei(\varphi) = \emptyset$.

Sei σ eine Signatur.

- (a) Ein $FO[\sigma]$ -Satz (kurz: Satz) ist eine $FO[\sigma]$ -Formel φ mit $frei(\varphi) = \emptyset$.
- (b) Wir schreiben S_{σ} , um die Menge aller $FO[\sigma]$ -Sätze zu bezeichnen und setzen

$$S := \bigcup_{\sigma \text{ Signatur}} S_{\sigma}.$$

Sei σ eine Signatur.

- (a) Ein $FO[\sigma]$ -Satz (kurz: Satz) ist eine $FO[\sigma]$ -Formel φ mit frei $(\varphi) = \emptyset$.
- (b) Wir schreiben S_{σ} , um die Menge aller $FO[\sigma]$ -Sätze zu bezeichnen und setzen

$$S := \bigcup_{\sigma \text{ Signatur}} S_{\sigma}.$$

(c) Für einen FO[σ]-Satz φ und eine σ -Struktur \mathcal{A} schreiben wir $\mathcal{A} \models \varphi$, um auszudrücken, dass $(\mathcal{A}, \beta) \models \varphi$ für eine (und gemäß Koinzidenzlemma daher für jede) Belegung β in \mathcal{A} gilt.

Sei σ eine Signatur.

- (a) Ein $FO[\sigma]$ -Satz (kurz: Satz) ist eine $FO[\sigma]$ -Formel φ mit frei $(\varphi) = \emptyset$.
- (b) Wir schreiben S_{σ} , um die Menge aller $FO[\sigma]$ -Sätze zu bezeichnen und setzen

$$S := \bigcup_{\sigma \text{ Signatur}} S_{\sigma}.$$

- (c) Für einen FO[σ]-Satz φ und eine σ -Struktur \mathcal{A} schreiben wir $\mathcal{A} \models \varphi$, um auszudrücken, dass $(\mathcal{A}, \beta) \models \varphi$ für eine (und gemäß Koinzidenzlemma daher für jede) Belegung β in \mathcal{A} gilt.
- (d) Für eine Menge $\Phi \subseteq S_{\sigma}$ von $FO[\sigma]$ -Sätzen schreiben wir $\mathcal{A} \models \Phi$, falls $\mathcal{A} \models \varphi$ für jedes $\varphi \in \Phi$ gilt.

Sei σ eine Signatur.

- (a) Ein $FO[\sigma]$ -Satz (kurz: Satz) ist eine $FO[\sigma]$ -Formel φ mit frei $(\varphi) = \emptyset$.
- (b) Wir schreiben S_{σ} , um die Menge aller $FO[\sigma]$ -Sätze zu bezeichnen und setzen

$$S := \bigcup_{\sigma \text{ Signatur}} S_{\sigma}.$$

- (c) Für einen FO[σ]-Satz φ und eine σ -Struktur \mathcal{A} schreiben wir $\mathcal{A} \models \varphi$, um auszudrücken, dass $(\mathcal{A}, \beta) \models \varphi$ für eine (und gemäß Koinzidenzlemma daher für jede) Belegung β in \mathcal{A} gilt.
- (d) Für eine Menge $\Phi \subseteq S_{\sigma}$ von FO[σ]-Sätzen schreiben wir $\mathcal{A} \models \Phi$, falls $\mathcal{A} \models \varphi$ für jedes $\varphi \in \Phi$ gilt.

Als direkte Folgerung aus dem Isomorphielemma erhalten wir, dass für isomorphe σ -Strukturen $\mathcal A$ und $\mathcal B$ und für alle FO[σ]-Sätze φ gilt:

$$\mathcal{A} \models \varphi \iff \mathcal{B} \models \varphi.$$

Definition 3.30

Sei σ eine Signatur und sei $\Phi \subseteq S_{\sigma}$ (d.h. Φ ist eine Menge von $FO[\sigma]$ -Sätzen).

Definition 3.30

Sei σ eine Signatur und sei $\Phi \subseteq S_{\sigma}$ (d.h. Φ ist eine Menge von $FO[\sigma]$ -Sätzen).

(a) Die Modellklasse von Φ ist die Klasse $\mathsf{MOD}_{\sigma}(\Phi)$ aller σ -Strukturen \mathcal{A} für die gilt: $\mathcal{A} \models \Phi$.

Definition 3.30

Sei σ eine Signatur und sei $\Phi \subseteq S_{\sigma}$ (d.h. Φ ist eine Menge von $FO[\sigma]$ -Sätzen).

- (a) Die Modellklasse von Φ ist die Klasse $\mathsf{MOD}_{\sigma}(\Phi)$ aller σ -Strukturen \mathcal{A} für die gilt: $\mathcal{A} \models \Phi$.
- (b) Für eine Klasse € von σ-Strukturen sagen wir
 - ◆ definiert (oder axiomatisiert) €,

falls $\mathfrak{C} = \mathsf{MOD}_{\sigma}(\Phi)$.

Definition 3.30

Sei σ eine Signatur und sei $\Phi \subseteq S_{\sigma}$ (d.h. Φ ist eine Menge von $FO[\sigma]$ -Sätzen).

- (a) Die Modellklasse von Φ ist die Klasse $\mathsf{MOD}_{\sigma}(\Phi)$ aller σ -Strukturen \mathcal{A} für die gilt: $\mathcal{A} \models \Phi$.
- (b) Für eine Klasse $\mathfrak C$ von σ -Strukturen sagen wir Φ definiert (oder axiomatisiert) $\mathfrak C$, falls $\mathfrak C = \mathsf{MOD}_\sigma(\Phi)$.
- (c) Für einen $FO[\sigma]$ -Satz φ setzen wir $MOD_{\sigma}(\varphi) := MOD_{\sigma}(\{\varphi\})$

Definition 3.30

Sei σ eine Signatur und sei $\Phi \subseteq S_{\sigma}$ (d.h. Φ ist eine Menge von $FO[\sigma]$ -Sätzen).

- (a) Die Modellklasse von Φ ist die Klasse $\mathsf{MOD}_{\sigma}(\Phi)$ aller σ -Strukturen \mathcal{A} für die gilt: $\mathcal{A} \models \Phi$.
- (b) Für eine Klasse $\mathfrak C$ von σ -Strukturen sagen wir Φ definiert (oder axiomatisiert) $\mathfrak C$, falls $\mathfrak C = \mathsf{MOD}_\sigma(\Phi)$.
- (c) Für einen $FO[\sigma]$ -Satz φ setzen wir $MOD_{\sigma}(\varphi) := MOD_{\sigma}(\{\varphi\})$ und sagen, dass φ die Klasse $\mathfrak{C} := MOD_{\sigma}(\varphi)$ definiert (bzw. axiomatisiert).

Definition 3.30

Sei σ eine Signatur und sei $\Phi \subseteq S_{\sigma}$ (d.h. Φ ist eine Menge von $FO[\sigma]$ -Sätzen).

- (a) Die Modellklasse von Φ ist die Klasse $\mathsf{MOD}_{\sigma}(\Phi)$ aller σ -Strukturen \mathcal{A} für die gilt: $\mathcal{A} \models \Phi$.
- (b) Für eine Klasse $\mathfrak C$ von σ -Strukturen sagen wir Φ definiert (oder axiomatisiert) $\mathfrak C$, falls $\mathfrak C = \mathsf{MOD}_\sigma(\Phi)$.
- (c) Für einen $FO[\sigma]$ -Satz φ setzen wir $MOD_{\sigma}(\varphi) := MOD_{\sigma}(\{\varphi\})$ und sagen, dass φ die Klasse $\mathfrak{C} := MOD_{\sigma}(\varphi)$ definiert (bzw. axiomatisiert).

Als direkte Folgerung aus dem Isomorphielemma erhalten wir:

Korollar 3.31

Für jede Signatur σ und jedes $\Phi \subseteq S_{\sigma}$ ist $\mathsf{MOD}_{\sigma}(\Phi)$ unter Isomorphie abgeschlossen. D.h. für isomorphe σ -Strukturen \mathcal{A} und \mathcal{B} gilt:

$$A \in \mathsf{MOD}_{\sigma}(\Phi) \iff B \in \mathsf{MOD}_{\sigma}(\Phi).$$

Abschnitt 3.5:

Beispiele für Formeln der Logik erster Stufe in verschiedenen Anwendungsbereichen

Notation

 Ab jetzt verwenden wir für die Logik erster Stufe ähnliche Klammerkonventionen wie bei der Aussagenlogik.

Notation

- Ab jetzt verwenden wir für die Logik erster Stufe ähnliche Klammerkonventionen wie bei der Aussagenlogik.
- Für gewisse zweistellige Funktionssymbole wie +, · und zweistellige Relationssymbole wie ≤ verwenden wir Infix- statt Präfixnotation. Dabei setzen wir auf natürliche Weise Klammern, um die eindeutige Lesbarkeit zu gewährleisten.

Notation

- Ab jetzt verwenden wir für die Logik erster Stufe ähnliche Klammerkonventionen wie bei der Aussagenlogik.
- Für gewisse zweistellige Funktionssymbole wie +, · und zweistellige Relationssymbole wie ≤ verwenden wir Infix- statt Präfixnotation. Dabei setzen wir auf natürliche Weise Klammern, um die eindeutige Lesbarkeit zu gewährleisten.
- Wir schreiben x < y als Abkürzung für die Formel $(x \le y \land \neg x = y)$.

Beispiel 3.32

Wir betrachten Strukturen und Formeln über der Signatur $\sigma := \{\leqslant\}$.

Zur Erinnerung: Eine σ -Struktur $\mathcal{A} = (A, \leq^{\mathcal{A}})$ ist eine lineare Ordnung, falls gilt:

Beispiel 3.32

Wir betrachten Strukturen und Formeln über der Signatur $\sigma := \{\leqslant\}$.

Zur Erinnerung: Eine σ -Struktur $\mathcal{A} = (A, \leq^{\mathcal{A}})$ ist eine lineare Ordnung, falls gilt:

(1) $\leq^{\mathcal{A}}$ ist reflexiv,

Beispiel 3.32

Wir betrachten Strukturen und Formeln über der Signatur $\sigma := \{\leqslant\}$.

- (1) $\leq^{\mathcal{A}}$ ist reflexiv,
 - d.h. für alle $a \in A$ gilt: $a \leq^{A} a$

Beispiel 3.32

Wir betrachten Strukturen und Formeln über der Signatur $\sigma := \{\leqslant\}.$

- (1) $\leq^{\mathcal{A}}$ ist reflexiv,
 - d.h. für alle $a \in A$ gilt: $a \leq^{A} a$
 - d.h. $\mathcal{A} \models \varphi_{\textit{refl}}$, wobei

$$\varphi_{\mathit{refl}} :=$$

Beispiel 3.32

Wir betrachten Strukturen und Formeln über der Signatur $\sigma := \{\leqslant\}.$

- (1) $\leq^{\mathcal{A}}$ ist reflexiv,
 - d.h. für alle $a \in A$ gilt: $a \leq^{A} a$
 - d.h. $\mathcal{A} \models \varphi_{\textit{refl}}$, wobei

$$\varphi_{refl} := \forall x \ x \leqslant x$$

Beispiel 3.32

Wir betrachten Strukturen und Formeln über der Signatur $\sigma := \{\leqslant\}$.

Zur Erinnerung: Eine σ -Struktur $\mathcal{A} = (A, \leq^{\mathcal{A}})$ ist eine lineare Ordnung, falls gilt:

- (1) $\leq^{\mathcal{A}}$ ist reflexiv,
 - d.h. für alle $a \in A$ gilt: $a \leq^{A} a$
 - d.h. $\mathcal{A} \models \varphi_{\textit{refl}}$, wobei

$$\varphi_{refl} := \forall x \ x \leqslant x$$

(2) $\leq^{\mathcal{A}}$ ist transitiv,

Beispiel 3.32

Wir betrachten Strukturen und Formeln über der Signatur $\sigma := \{\leqslant\}$.

- (1) $\leq^{\mathcal{A}}$ ist reflexiv,
 - d.h. für alle $a \in A$ gilt: $a \leq^{A} a$
 - d.h. $\mathcal{A} \models \varphi_{\textit{refl}}$, wobei

$$\varphi_{refl} := \forall x \ x \leqslant x$$

- (2) $\leq^{\mathcal{A}}$ ist transitiv,
 - d.h. für alle $a,b,c\in A$ gilt: Wenn $a\leqslant^{\mathcal{A}}b$ und $b\leqslant^{\mathcal{A}}c$, dann auch $a\leqslant^{\mathcal{A}}c$

Beispiel 3.32

Wir betrachten Strukturen und Formeln über der Signatur $\sigma := \{\leqslant\}$.

- (1) $\leq^{\mathcal{A}}$ ist reflexiv,
 - d.h. für alle $a \in A$ gilt: $a \leq^{A} a$
 - d.h. $\mathcal{A} \models \varphi_{\mathit{refl}}$, wobei

$$\varphi_{refl} := \forall x \ x \leqslant x$$

- (2) $\leq^{\mathcal{A}}$ ist transitiv,
 - d.h. für alle $a,b,c\in A$ gilt: Wenn $a\leqslant^{\mathcal{A}}b$ und $b\leqslant^{\mathcal{A}}c$, dann auch $a\leqslant^{\mathcal{A}}c$
 - d.h. $\mathcal{A} \models \varphi_{trans}$, wobei

$$\varphi_{trans} :=$$

Beispiel 3.32

Wir betrachten Strukturen und Formeln über der Signatur $\sigma := \{\leqslant\}$.

Zur Erinnerung: Eine σ -Struktur $\mathcal{A} = (A, \leq^{\mathcal{A}})$ ist eine lineare Ordnung, falls gilt:

- (1) $\leq^{\mathcal{A}}$ ist reflexiv,
 - d.h. für alle $a \in A$ gilt: $a \leq^{A} a$
 - d.h. $\mathcal{A} \models \varphi_{\textit{refl}}$, wobei

$$\varphi_{refl} := \forall x \ x \leqslant x$$

- (2) $\leq^{\mathcal{A}}$ ist transitiv,
 - d.h. für alle $a,b,c\in A$ gilt: Wenn $a\leqslant^{\mathcal{A}}b$ und $b\leqslant^{\mathcal{A}}c$, dann auch $a\leqslant^{\mathcal{A}}c$
 - d.h. $\mathcal{A} \models \varphi_{trans}$, wobei

$$\varphi_{trans} := \forall x \forall y \forall z \left(\left(x \leqslant y \land y \leqslant z \right) \rightarrow x \leqslant z \right)$$

(3) $\leq^{\mathcal{A}}$ ist antisymmetrisch,

- (3) $\leq^{\mathcal{A}}$ ist antisymmetrisch,
 - d.h. für alle $a, b \in A$ mit $a \neq b$ gilt: Wenn $a \leq^{A} b$, dann $b \not\leq^{A} a$

- (3) $\leq^{\mathcal{A}}$ ist antisymmetrisch,
 - d.h. für alle $a, b \in A$ mit $a \neq b$ gilt: Wenn $a \leq^A b$, dann $b \nleq^A a$
 - d.h. $\mathcal{A} \models \varphi_{antisym}$, wobei

$$\varphi_{\it antisym} :=$$

- (3) $\leq^{\mathcal{A}}$ ist antisymmetrisch,
 - d.h. für alle $a, b \in A$ mit $a \neq b$ gilt: Wenn $a \leq^{A} b$, dann $b \not\leq^{A} a$
 - d.h. $\mathcal{A} \models \varphi_{\mathit{antisym}}$, wobei $\varphi_{\mathit{antisym}} := \forall x \forall y \ \Big(\neg \ x = y \ \rightarrow \Big(x \leqslant y \ \rightarrow \ \neg \ y \leqslant x \Big) \Big)$
- $(4) \leqslant^{\mathcal{A}} \text{ ist konnex},$

- (3) $\leq^{\mathcal{A}}$ ist antisymmetrisch,
 - d.h. für alle $a, b \in A$ mit $a \neq b$ gilt: Wenn $a \leq^{A} b$, dann $b \not\leq^{A} a$
 - d.h. $\mathcal{A} \models \varphi_{antisym}$, wobei $\varphi_{antisym} := \forall x \forall y \left(\neg x = y \rightarrow \left(x \leqslant y \rightarrow \neg y \leqslant x \right) \right)$
- (4) $\leq^{\mathcal{A}}$ ist konnex,
 - d.h. für alle $a, b \in A$ gilt: $a \leq^{\mathcal{A}} b$ oder $b \leq^{\mathcal{A}} a$ oder a = b

- (3) $\leq^{\mathcal{A}}$ ist antisymmetrisch,
 - d.h. für alle $a, b \in A$ mit $a \neq b$ gilt: Wenn $a \leqslant^{A} b$, dann $b \nleq^{A} a$
 - d.h. $\mathcal{A} \models \varphi_{antisym}$, wobei $\varphi_{antisym} := \forall x \forall y \ \Big(\neg x = y \ \rightarrow \Big(x \leqslant y \ \rightarrow \ \neg y \leqslant x \Big) \Big)$
- (4) $\leq^{\mathcal{A}}$ ist konnex,
 - d.h. für alle $a, b \in A$ gilt: $a \leq^{A} b$ oder $b \leq^{A} a$ oder a = b
 - d.h. $\mathcal{A} \models \varphi_{konnex}$, wobei

$$\varphi_{\mathit{konnex}} :=$$

- (3) $\leq^{\mathcal{A}}$ ist antisymmetrisch,
 - d.h. für alle $a,b\in A$ mit $a\neq b$ gilt: Wenn $a\leqslant^{\mathcal{A}}b$, dann $b\nleq^{\mathcal{A}}a$
 - d.h. $\mathcal{A} \models \varphi_{antisym}$, wobei $\varphi_{antisym} := \forall x \forall y \ \Big(\neg \ x = y \ \rightarrow \Big(x \leqslant y \ \rightarrow \ \neg \ y \leqslant x \Big) \Big)$
- (4) $\leq^{\mathcal{A}}$ ist konnex,
 - d.h. für alle $a, b \in A$ gilt: $a \leq^{A} b$ oder $b \leq^{A} a$ oder a = b
 - d.h. $\mathcal{A} \models \varphi_{konnex}$, wobei

$$\varphi_{konnex} := \forall x \forall y \ (x \leqslant y \ \lor \ y \leqslant x \ \lor \ x = y)$$

- (3) $\leq^{\mathcal{A}}$ ist antisymmetrisch,
 - d.h. für alle $a, b \in A$ mit $a \neq b$ gilt: Wenn $a \leq^{A} b$, dann $b \not\leq^{A} a$
 - d.h. $\mathcal{A} \models \varphi_{antisym}$, wobei $\varphi_{antisym} := \forall x \forall y \ \Big(\neg \ x = y \ \rightarrow \Big(x \leqslant y \ \rightarrow \ \neg \ y \leqslant x \Big) \Big)$
- (4) $\leq^{\mathcal{A}}$ ist konnex,
 - d.h. für alle $a, b \in A$ gilt: $a \leq^{A} b$ oder $b \leq^{A} a$ oder a = b
 - d.h. $\mathcal{A} \models \varphi_{\textit{konnex}}$, wobei

$$\varphi_{konnex} := \forall x \forall y \ (x \leqslant y \ \lor \ y \leqslant x \ \lor \ x = y)$$

Insgesamt gilt für jede $\{\leqslant\}$ -Struktur $\mathcal{A}=(A,\leqslant^{\mathcal{A}})$: $\mathcal{A}=(A,\leqslant^{\mathcal{A}})$ ist eine lineare Ordnung $\iff \mathcal{A}\models \varphi_{\mathit{lin.Ord}}$, wobei

$$\varphi_{lin,Ord} :=$$

- (3) $\leq^{\mathcal{A}}$ ist antisymmetrisch,
 - d.h. für alle $a, b \in A$ mit $a \neq b$ gilt: Wenn $a \leq^{A} b$, dann $b \not\leq^{A} a$
 - d.h. $\mathcal{A} \models \varphi_{antisym}$, wobei $\varphi_{antisym} := \forall x \forall y \ \Big(\neg \ x = y \ \rightarrow \Big(x \leqslant y \ \rightarrow \ \neg \ y \leqslant x \Big) \Big)$
- (4) $\leq^{\mathcal{A}}$ ist konnex,
 - d.h. für alle $a, b \in A$ gilt: $a \leq^{A} b$ oder $b \leq^{A} a$ oder a = b
 - d.h. $\mathcal{A} \models \varphi_{konnex}$, wobei

$$\varphi_{konnex} := \forall x \forall y \ (x \leqslant y \ \lor \ y \leqslant x \ \lor \ x = y)$$

Insgesamt gilt für jede
$$\{\leqslant\}$$
-Struktur $\mathcal{A}=(A,\leqslant^{\mathcal{A}})$: $\mathcal{A}=(A,\leqslant^{\mathcal{A}})$ ist eine lineare Ordnung $\iff \mathcal{A}\models\varphi_{\mathit{lin.Ord}}$, wobei $\varphi_{\mathit{lin.Ord}}:=\varphi_{\mathit{refl}} \wedge \varphi_{\mathit{antisym}} \wedge \varphi_{\mathit{trans}} \wedge \varphi_{\mathit{konnex}}$

- (3) $\leq^{\mathcal{A}}$ ist antisymmetrisch,
 - d.h. für alle $a, b \in A$ mit $a \neq b$ gilt: Wenn $a \leq^{A} b$, dann $b \nleq^{A} a$
 - d.h. $\mathcal{A} \models \varphi_{antisym}$, wobei $\varphi_{antisym} := \forall x \forall y \ \Big(\neg x = y \ \rightarrow \Big(x \leqslant y \ \rightarrow \ \neg y \leqslant x \Big) \Big)$
- (4) $\leq^{\mathcal{A}}$ ist konnex,
 - d.h. für alle $a, b \in A$ gilt: $a \leq^{\mathcal{A}} b$ oder $b \leq^{\mathcal{A}} a$ oder a = b
 - d.h. $A \models \varphi_{konnex}$, wobei

$$\varphi_{konnex} := \forall x \forall y \ (x \leqslant y \ \lor \ y \leqslant x \ \lor \ x = y)$$

Insgesamt gilt für jede $\{\leqslant\}$ -Struktur $\mathcal{A}=(A,\leqslant^{\mathcal{A}})$:

 $\mathcal{A} = (A, \leqslant^{\mathcal{A}})$ ist eine lineare Ordnung $\iff \mathcal{A} \models \varphi_{\mathit{lin.Ord}}$, wobei

 φ lin.Ord := φ refl \wedge φ antisym \wedge φ trans \wedge φ konnex

Der FO[σ]-Satz $\varphi_{lin.Ord}$ definiert (bzw. axiomatisiert) also die Klasse aller linearen Ordnungen.

Beispiel 3.33

Wir betrachten Formeln über der Signatur $\sigma := \{+, \cdot, \leq, \underline{0}, \underline{1}\}$ und ihre Bedeutung im Standardmodell $\mathcal{A}_{\mathbb{N}}$ der Arithmetik.

• Gesucht: Eine FO[σ]-Formel $\varphi_{-}(x, y, z)$, die besagt "x - y = z".

Beispiel 3.33

Wir betrachten Formeln über der Signatur $\sigma := \{+, \cdot, \leq, \underline{0}, \underline{1}\}$ und ihre Bedeutung im Standardmodell $\mathcal{A}_{\mathbb{N}}$ der Arithmetik.

• Gesucht: Eine FO[σ]-Formel $\varphi_{-}(x,y,z)$, die besagt "x-y=z". Präzise: Für alle $a,b,c\in\mathbb{N}$ soll gelten:

$$\mathcal{A}_{\mathbb{N}} \models \varphi_{-}[a,b,c] \iff$$

Beispiel 3.33

Wir betrachten Formeln über der Signatur $\sigma := \{+, \cdot, \leq, \underline{0}, \underline{1}\}$ und ihre Bedeutung im Standardmodell $\mathcal{A}_{\mathbb{N}}$ der Arithmetik.

• Gesucht: Eine FO[σ]-Formel $\varphi_{-}(x,y,z)$, die besagt "x-y=z". Präzise: Für alle $a,b,c\in\mathbb{N}$ soll gelten:

$$A_{\mathbb{N}} \models \varphi_{-}[a,b,c] \iff a-b=c.$$

Beispiel 3.33

Wir betrachten Formeln über der Signatur $\sigma:=\{+,\cdot,\leqslant,\underline{0},\underline{1}\}$ und ihre Bedeutung im Standardmodell $\mathcal{A}_{\mathbb{N}}$ der Arithmetik.

• Gesucht: Eine FO[σ]-Formel $\varphi_{-}(x, y, z)$, die besagt "x - y = z". Präzise: Für alle $a, b, c \in \mathbb{N}$ soll gelten:

$$A_{\mathbb{N}} \models \varphi_{-}[a, b, c] \iff a - b = c.$$

Lösung:

$$\varphi_{-}(x,y,z) :=$$

Beispiel 3.33

Wir betrachten Formeln über der Signatur $\sigma := \{+, \cdot, \leq, \underline{0}, \underline{1}\}$ und ihre Bedeutung im Standardmodell $\mathcal{A}_{\mathbb{N}}$ der Arithmetik.

• Gesucht: Eine FO[σ]-Formel $\varphi_{-}(x,y,z)$, die besagt "x-y=z". Präzise: Für alle $a,b,c\in\mathbb{N}$ soll gelten:

$$A_{\mathbb{N}} \models \varphi_{-}[a, b, c] \iff a - b = c.$$

Lösung:

$$\varphi_{-}(x,y,z) := x = z + y$$

Beispiel 3.33

Wir betrachten Formeln über der Signatur $\sigma := \{+, \cdot, \leq, \underline{0}, \underline{1}\}$ und ihre Bedeutung im Standardmodell $\mathcal{A}_{\mathbb{N}}$ der Arithmetik.

• Gesucht: Eine FO[σ]-Formel $\varphi_{-}(x,y,z)$, die besagt "x-y=z". Präzise: Für alle $a,b,c\in\mathbb{N}$ soll gelten:

$$\mathcal{A}_{\mathbb{N}} \models \varphi_{-}[a, b, c] \iff a - b = c.$$

Lösung:

$$\varphi_{-}(x, y, z) := x = z + y$$

• Gesucht: Eine FO[σ]-Formel $\varphi_{\perp}(x,y)$, die besagt "x teilt y".

Beispiel 3.33

Wir betrachten Formeln über der Signatur $\sigma := \{+, \cdot, \leq, \underline{0}, \underline{1}\}$ und ihre Bedeutung im Standardmodell $\mathcal{A}_{\mathbb{N}}$ der Arithmetik.

• Gesucht: Eine FO[σ]-Formel $\varphi_{-}(x, y, z)$, die besagt "x - y = z". Präzise: Für alle $a, b, c \in \mathbb{N}$ soll gelten:

$$\mathcal{A}_{\mathbb{N}} \models \varphi_{-}[a, b, c] \iff a - b = c.$$

Lösung:

$$\varphi_{-}(x, y, z) := x = z + y$$

• Gesucht: Eine FO[σ]-Formel $\varphi_{\parallel}(x,y)$, die besagt "x teilt y". Präzise: Für alle $a,b\in\mathbb{N}$ soll gelten:

$$\mathcal{A}_{\mathbb{N}} \models \varphi_{\parallel}[a,b] \iff$$

Beispiel 3.33

Wir betrachten Formeln über der Signatur $\sigma := \{+, \cdot, \leq, \underline{0}, \underline{1}\}$ und ihre Bedeutung im Standardmodell $\mathcal{A}_{\mathbb{N}}$ der Arithmetik.

• Gesucht: Eine FO[σ]-Formel $\varphi_{-}(x, y, z)$, die besagt "x - y = z". Präzise: Für alle $a, b, c \in \mathbb{N}$ soll gelten:

$$\mathcal{A}_{\mathbb{N}} \models \varphi_{-}[a,b,c] \iff a-b=c.$$

Lösung:

$$\varphi_{-}(x, y, z) := x = z + y$$

• Gesucht: Eine FO[σ]-Formel $\varphi_{\parallel}(x,y)$, die besagt "x teilt y". Präzise: Für alle $a,b\in\mathbb{N}$ soll gelten:

$$\mathcal{A}_{\mathbb{N}}\models\varphi_{\,|\,}[a,b]\quad\Longleftrightarrow\quad\text{es gibt ein }c\in\mathbb{N}\text{, so dass }a\cdot c=b.$$

Beispiel 3.33

Wir betrachten Formeln über der Signatur $\sigma := \{+, \cdot, \leq, \underline{0}, \underline{1}\}$ und ihre Bedeutung im Standardmodell $\mathcal{A}_{\mathbb{N}}$ der Arithmetik.

• Gesucht: Eine FO[σ]-Formel $\varphi_{-}(x,y,z)$, die besagt "x-y=z". Präzise: Für alle $a,b,c\in\mathbb{N}$ soll gelten:

$$\mathcal{A}_{\mathbb{N}} \models \varphi_{-}[a, b, c] \iff a - b = c.$$

Lösung:

$$\varphi_{-}(x, y, z) := x = z + y$$

• Gesucht: Eine FO[σ]-Formel $\varphi_{\parallel}(x,y)$, die besagt "x teilt y". Präzise: Für alle $a,b\in\mathbb{N}$ soll gelten:

$$\mathcal{A}_{\mathbb{N}} \models \varphi_{\perp}[a, b] \iff \text{es gibt ein } c \in \mathbb{N}, \text{ so dass } a \cdot c = b.$$

Lösung:

$$\varphi_{\perp}(x,y) :=$$

Beispiel 3.33

Wir betrachten Formeln über der Signatur $\sigma := \{+, \cdot, \leq, 0, 1\}$ und ihre Bedeutung im Standardmodell $A_{\mathbb{N}}$ der Arithmetik.

• Gesucht: Eine FO[σ]-Formel $\varphi_{-}(x, y, z)$, die besagt "x - y = z". Präzise: Für alle $a, b, c \in \mathbb{N}$ soll gelten:

$$\mathcal{A}_{\mathbb{N}} \models \varphi_{-}[a,b,c] \iff a-b=c.$$

Lösung:

$$\varphi_{-}(x, y, z) := x = z + y$$

• Gesucht: Eine FO[σ]-Formel $\varphi_{\perp}(x,y)$, die besagt "x teilt y". Präzise: Für alle $a, b \in \mathbb{N}$ soll gelten:

$$\mathcal{A}_{\mathbb{N}} \models \varphi_{\perp}[a, b] \iff \text{es gibt ein } c \in \mathbb{N}, \text{ so dass } a \cdot c = b.$$

Lösung:

$$\varphi_{\perp}(x,y) := \exists z \ x \cdot z = y$$

HU Berlin Einführung in die formale Logik für IMP

Präzise: Für alle $a, b, c \in \mathbb{N}$ soll gelten:

$$\mathcal{A}_{\mathbb{N}} \models \varphi_{\equiv}[\mathsf{a},\mathsf{b},\mathsf{c}] \quad \Longleftrightarrow \quad$$

Präzise: Für alle $a, b, c \in \mathbb{N}$ soll gelten:

$$\mathcal{A}_{\mathbb{N}} \models \varphi_{\equiv}[a, b, c] \iff a \equiv b \pmod{c}$$

Präzise: Für alle $a, b, c \in \mathbb{N}$ soll gelten:

$$\mathcal{A}_{\mathbb{N}} \models \varphi_{\equiv}[a, b, c] \iff a \equiv b \pmod{c} \quad \text{d.h.} \quad c \mid |a - b|$$

Präzise: Für alle $a, b, c \in \mathbb{N}$ soll gelten:

$$\mathcal{A}_{\mathbb{N}} \models \varphi_{\equiv}[a,b,c] \quad \Longleftrightarrow \quad a \equiv b \; (\mathsf{mod} \; c) \quad \mathsf{d.h.} \quad c \; \big| \; |a-b|$$

Lösung:

$$\varphi_{\equiv}(x,y,z) :=$$

Präzise: Für alle $a, b, c \in \mathbb{N}$ soll gelten:

$$\mathcal{A}_{\mathbb{N}} \models \varphi_{\equiv}[a, b, c] \iff a \equiv b \pmod{c} \text{ d.h. } c \mid |a - b|$$

Lösung:

$$\varphi_{\equiv}(x,y,z) := \exists w \left(\underbrace{\left(\varphi_{-}(x,y,w) \vee \varphi_{-}(y,x,w)\right)}_{,w = |x-y|^{"}} \wedge \underbrace{\varphi_{|}(z,w)}_{,z|w"} \right)$$

• Gesucht: Eine FO[σ]-Formel $\varphi_{prim}(x)$, die besagt "x ist eine Primzahl".

$$\mathcal{A}_{\mathbb{N}} \models \varphi_{\mathit{prim}}[\mathit{a}] \quad \Longleftrightarrow \quad \mathit{a} \text{ ist eine Primzahl}$$

$$\mathcal{A}_{\mathbb{N}} \models \varphi_{\textit{prim}}[a] \iff a \text{ ist eine Primzahl}$$

d.h. $a \ge 2$ und a ist nur durch sich selbst und durch 1 teilbar.

$$\mathcal{A}_{\mathbb{N}} \models \varphi_{\textit{prim}}[a] \iff a \text{ ist eine Primzahl}$$

d.h. $a \ge 2$ und a ist nur durch sich selbst und durch 1 teilbar.

$$\mathcal{A}_{\mathbb{N}} \models \varphi_{\mathit{prim}}[a] \iff a \text{ ist eine Primzahl}$$
 d.h. $a \geqslant 2$ und a ist nur durch sich selbst und durch 1 teilbar.

Lösung:

$$\varphi_{prim}(x) :=$$

$$\mathcal{A}_{\mathbb{N}} \models \varphi_{\mathit{prim}}[a] \iff a \text{ ist eine Primzahl}$$
 d.h. $a \geqslant 2$ und a ist nur durch sich selbst und durch 1 teilbar.

Lösung:

$$\varphi_{prim}(x) := \underbrace{\underline{1} + \underline{1} \leqslant x}_{,x \geqslant 2''} \land \forall z \left(\underbrace{\varphi_{\mid}(z,x)}_{,z \mid x''} \rightarrow (z = x \lor z = \underline{1}) \right)$$

HU Berlin

$$\mathcal{A}_{\mathbb{N}} \models \varphi_{\mathit{prim}}[a] \iff \textit{a} \text{ ist eine Primzahl}$$

$$\mathsf{d.h.} \ \textit{a} \geqslant 2 \ \mathsf{und} \ \textit{a} \text{ ist nur durch sich selbst und}$$

$$\mathsf{durch} \ 1 \ \mathsf{teilbar}.$$

Lösung:

$$\varphi_{prim}(x) := \underbrace{\underline{1} + \underline{1} \leqslant x}_{,x \geqslant 2"} \land \forall z \left(\underbrace{\varphi_{\parallel}(z,x)}_{,z \mid x"} \rightarrow (z = x \lor z = \underline{1}) \right)$$

• Gesucht: Ein FO[σ]-Satz φ_{∞} , der in $\mathcal{A}_{\mathbb{N}}$ besagt "Es gibt unendlich viele Primzahlen".

Lösung:

$$\varphi_{\infty} :=$$

$$\mathcal{A}_{\mathbb{N}} \models \varphi_{\textit{prim}}[a] \iff \textit{a} \text{ ist eine Primzahl}$$

$$\text{d.h. } \textit{a} \geqslant 2 \text{ und } \textit{a} \text{ ist nur durch sich selbst und}$$

$$\text{durch 1 teilbar}.$$

Lösung:

$$\varphi_{prim}(x) := \underbrace{\underline{1} + \underline{1} \leqslant x}_{,x \geqslant 2^{"}} \land \forall z \left(\underbrace{\varphi_{|}(z,x)}_{,z|x^{"}} \rightarrow (z = x \lor z = \underline{1}) \right)$$

• Gesucht: Ein FO[σ]-Satz φ_{∞} , der in $\mathcal{A}_{\mathbb{N}}$ besagt "Es gibt unendlich viele Primzahlen".

Lösung:

$$\varphi_{\infty} := \forall y \; \exists x \; \Big(y \leqslant x \; \land \; \varphi_{prim}(x) \Big)$$

In $A_{\mathbb{N}}$ besagt dieser Satz, dass es für jede natürliche Zahl b eine natürliche Zahl $a \ge b$ gibt, die eine Primzahl ist.

Beispiel 3.34

Wir betrachten das Alphabet $\Sigma := \{a,b\}$ und die Signatur $\sigma_{\Sigma} = \{\leqslant, P_a, P_b\}$.

HU Berlin

Beispiel 3.34

Wir betrachten das Alphabet $\Sigma := \{a, b\}$ und die Signatur $\sigma_{\Sigma} = \{\leqslant, P_a, P_b\}$.

Zur Erinnerung: Wir repräsentieren ein nicht-leeres Wort $w\in \Sigma^*$ durch die σ_Σ -Struktur \mathcal{A}_w

Beispiel 3.34

Wir betrachten das Alphabet $\Sigma := \{a, b\}$ und die Signatur $\sigma_{\Sigma} = \{\leqslant, P_a, P_b\}$.

Zur Erinnerung: Wir repräsentieren ein nicht-leeres Wort $w \in \Sigma^*$ durch die σ_{Σ} -Struktur \mathcal{A}_w , deren Universum aus der Menge $\{1,\ldots,|w|\}$ aller Positionen in w besteht, und bei der $P_a^{\mathcal{A}_w}$ (bzw. $P_b^{\mathcal{A}_w}$) aus allen Positionen besteht, an denen der Buchstabe a (bzw. b) steht.

Beispiel 3.34

Wir betrachten das Alphabet $\Sigma := \{a, b\}$ und die Signatur $\sigma_{\Sigma} = \{\leqslant, P_a, P_b\}$.

Zur Erinnerung: Wir repräsentieren ein nicht-leeres Wort $w \in \Sigma^*$ durch die σ_{Σ} -Struktur \mathcal{A}_w , deren Universum aus der Menge $\{1,\ldots,|w|\}$ aller Positionen in w besteht, und bei der $P_a^{\mathcal{A}_w}$ (bzw. $P_b^{\mathcal{A}_w}$) aus allen Positionen besteht, an denen der Buchstabe a (bzw. b) steht.

Gesucht: Ein FO[σ_{Σ}]-Satz φ , so dass für jedes nicht-leere Wort $w \in \Sigma^*$ gilt:

 $A_w \models \varphi \iff w \text{ ist von der Form } a^*b^*.$

Beispiel 3.34

Wir betrachten das Alphabet $\Sigma := \{a, b\}$ und die Signatur $\sigma_{\Sigma} = \{\leqslant, P_a, P_b\}$.

Zur Erinnerung: Wir repräsentieren ein nicht-leeres Wort $w \in \Sigma^*$ durch die σ_{Σ} -Struktur \mathcal{A}_w , deren Universum aus der Menge $\{1,\ldots,|w|\}$ aller Positionen in w besteht, und bei der $P_a^{\mathcal{A}_w}$ (bzw. $P_b^{\mathcal{A}_w}$) aus allen Positionen besteht, an denen der Buchstabe a (bzw. b) steht.

Gesucht: Ein $FO[\sigma_{\Sigma}]$ -Satz φ , so dass für jedes nicht-leere Wort $w \in \Sigma^*$ gilt:

$$A_w \models \varphi \iff w \text{ ist von der Form } a^*b^*.$$

Lösung:

Beispiel 3.34

Wir betrachten das Alphabet $\Sigma := \{a, b\}$ und die Signatur $\sigma_{\Sigma} = \{\leqslant, P_a, P_b\}$.

Zur Erinnerung: Wir repräsentieren ein nicht-leeres Wort $w \in \Sigma^*$ durch die σ_{Σ} -Struktur \mathcal{A}_w , deren Universum aus der Menge $\{1,\ldots,|w|\}$ aller Positionen in w besteht, und bei der $P_a^{\mathcal{A}_w}$ (bzw. $P_b^{\mathcal{A}_w}$) aus allen Positionen besteht, an denen der Buchstabe a (bzw. b) steht.

Gesucht: Ein FO[σ_{Σ}]-Satz φ , so dass für jedes nicht-leere Wort $w \in \Sigma^*$ gilt:

$$\mathcal{A}_w \models \varphi \iff w \text{ ist von der Form } \mathbf{a}^* \mathbf{b}^*.$$

Lösung: Wir konstruieren eine Formel φ , die besagt, dass es eine Position x gibt, so dass alle Positionen links von x den Buchstaben a tragen und alle Positionen rechts von x den Buchstaben b tragen.

$$\varphi :=$$

Beispiel 3.34

Wir betrachten das Alphabet $\Sigma := \{a, b\}$ und die Signatur $\sigma_{\Sigma} = \{\leqslant, P_a, P_b\}$.

Zur Erinnerung: Wir repräsentieren ein nicht-leeres Wort $w \in \Sigma^*$ durch die σ_{Σ} -Struktur \mathcal{A}_w , deren Universum aus der Menge $\{1,\ldots,|w|\}$ aller Positionen in w besteht, und bei der $P_a^{\mathcal{A}_w}$ (bzw. $P_b^{\mathcal{A}_w}$) aus allen Positionen besteht, an denen der Buchstabe a (bzw. b) steht.

Gesucht: Ein FO[σ_{Σ}]-Satz φ , so dass für jedes nicht-leere Wort $w \in \Sigma^*$ gilt:

$$A_w \models \varphi \iff w \text{ ist von der Form } a^*b^*.$$

Lösung: Wir konstruieren eine Formel φ , die besagt, dass es eine Position x gibt, so dass alle Positionen links von x den Buchstaben a tragen und alle Positionen rechts von x den Buchstaben b tragen.

$$\varphi := \exists x \ \forall y \ \Big(\big(y < x \rightarrow P_a(y) \big) \ \land \ \big(x < y \rightarrow P_b(y) \big) \Big)$$

Wie bereits vereinbart, schreiben wir hier "x < y" als Abkürzung für die Formel $(x \le y \land \neg x = y)$.

Abschnitt 3.6:

Logik und Datenbanken

Datenbanken

Zur Erinnerung: Wir repräsentieren eine Kinodatenbank, die Informationen über Kinos, Filme und das aktuelle Programm enthält, durch eine Struktur über der Signatur σ_{KINO} :=

$$\{R_{Kino}/4, R_{Film}/3, R_{Prog}/3\}$$

Datenbanken

Zur Erinnerung: Wir repräsentieren eine Kinodatenbank, die Informationen über Kinos, Filme und das aktuelle Programm enthält, durch eine Struktur über der Signatur σ_{KINO} :=

$$\{R_{Kino}/4, R_{Film}/3, R_{Prog}/3\} \cup \{'c' : c \in ASCII^*\}$$

und können so z.B. die folgende Kinodatenbank als $\sigma_{\text{KINO}}\text{-Struktur }\mathcal{D}$ auffassen, deren Universum D aus der Menge aller Worte über dem ASCII-Alphabet besteht.

HU Berlin

Beispiel: Eine Kinodatenbank

Kino			
Name	Adresse	Stadtteil	Telefonnummer
Babylon	Dresdner Str. 126	Kreuzberg	030 61 60 96 93
Casablanca	Friedenstr. 12-13	Adlershof	030 67 75 75 2
Filmtheater am Friedrichshain	Bötzowstr. 1-5	Prenzlauer Berg	030 42 84 51 88
Kino International	Karl-Marx-Allee 33	Mitte	030 24 75 60 11
Moviemento	Kotbusser Damm 22	Kreuzberg	030 692 47 85
Urania	An der Urania 17	Schöneberg	030 21 89 09 1

Beispiel: Eine Kinodatenbank

Kino			
Name	Adresse	Stadtteil	Telefonnummer
Babylon	Dresdner Str. 126	Kreuzberg	030 61 60 96 93
Casablanca	Friedenstr. 12-13	Adlershof	030 67 75 75 2
Filmtheater am Friedrichshain	Bötzowstr. 1-5	Prenzlauer Berg	030 42 84 51 88
Kino International	Karl-Marx-Allee 33	Mitte	030 24 75 60 11
Moviemento	Kotbusser Damm 22	Kreuzberg	030 692 47 85
Urania	An der Urania 17	Schöneberg	030 21 89 09 1

Film		
Name	Regisseur	Schauspieler
Alien	Ridley Scott	Sigourney Weaver
Blade Runner	Ridley Scott	Harrison Ford
Blade Runner	Ridley Scott	Sean Young
Brazil	Terry Gilliam	Jonathan Pryce
Brazil	Terry Gilliam	Kim Greist
Casablanca	Michael Curtiz	Humphrey Bogart
Casablanca	Michael Curtiz	Ingrid Bergmann
Gravity	Alfonso Cuaron	Sandra Bullock
Gravity	Alfonso Cuaron	George Clooney
Monuments Men	George Clooney	George Clooney
Monuments Men	George Clooney	Matt Damon
Resident Evil	Paul Anderson	Milla Jovovich
Terminator	James Cameron	Arnold Schwarzenegger
Terminator	James Cameron	Linda Hamilton
Terminator	James Cameron	Michael Biehn
• • •		

Programm				
Kino	Film	Zeit		
Babylon	Casablanca	17:30		
Babylon	Gravity	20:15		
Casablanca	Blade Runner	15:30		
Casablanca	Alien	18:15		
Casablanca	Blade Runner	20:30		
Casablanca	Resident Evil	20:30		
Filmtheater am Friedrichshain	Resident Evil	20:00		
Filmtheater am Friedrichshain	Resident Evil	21:30		
Filmtheater am Friedrichshain	Resident Evil	23:00		
Kino International	Casablanca	18:00		
Kino International	Brazil	20:00		
Kino International	Brazil	22:00		
Moviemento	Gravity	17:00		
Moviemento	Gravity	19:30		
Moviemento	Alien	22:00		
Urania	Monuments Men	17:00		
Urania	Monuments Men	20:00		

Signatur: $\sigma_{KINO} := \{ R_{Kino}/4, R_{Film}/3, R_{Prog}/3 \}$

Signatur: $\sigma_{\text{KINO}} := \{ R_{\text{Kino}}/4, R_{\text{Film}}/3, R_{\text{Prog}}/3 \} \cup \{ \text{`c'} : c \in \text{ASCII*} \}$

Signatur:
$$\sigma_{\text{KINO}} := \{ R_{\text{Kino}}/4, R_{\text{Film}}/3, R_{\text{Prog}}/3 \} \cup \{ \text{`c'} : c \in \text{ASCII*} \}$$

Die Kinodatenbank wird dargestellt als $\sigma_{\text{KINO}}\text{-}\mathsf{Struktur}\ \mathcal{D}.$

Signatur: $\sigma_{\text{KINO}} := \{ R_{\text{Kino}}/4, R_{\text{Film}}/3, R_{\text{Prog}}/3 \} \cup \{ \text{`c'} : c \in \text{ASCII*} \}$

Die Kinodatenbank wird dargestellt als σ_{KINO} -Struktur \mathcal{D} .

Universum:

```
Signatur: \sigma_{\text{KINO}} := \{ R_{\text{Kino}}/4, R_{\text{Film}}/3, R_{\text{Prog}}/3 \} \cup \{ \text{`c'} : c \in \text{ASCII*} \}
```

Die Kinodatenbank wird dargestellt als σ_{KINO} -Struktur \mathcal{D} .

Universum:

```
D := ASCII* ⊇ { Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93, Casablanca, ..., 20:00}.
```

```
Signatur: \sigma_{\text{KINO}} := \{ R_{\text{Kino}}/4, R_{\text{Film}}/3, R_{\text{Prog}}/3 \} \cup \{ \text{`c'} : c \in \text{ASCII*} \}
```

Die Kinodatenbank wird dargestellt als σ_{KINO} -Struktur \mathcal{D} .

Universum:

Relationen:

```
Signatur: \sigma_{\text{KINO}} := \{ R_{\text{Kino}}/4, R_{\text{Film}}/3, R_{\text{Prog}}/3 \} \cup \{ \text{`c'} : c \in \text{ASCII*} \}
```

Die Kinodatenbank wird dargestellt als σ_{KINO} -Struktur \mathcal{D} .

Universum:

```
D := ASCII* 

☐ { Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93, Casablanca, ..., 20:00}.
```

Relationen:

```
 \begin{aligned} & \mathcal{R}^{\mathcal{D}}_{\textit{Kino}} := \left\{ \end{aligned}  \  \, \text{(Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93),} \\ & \qquad \qquad \text{(Casablanca, Friedenstr. 12-13, Adlershof, 030 67 75 75 2),} \\ & \qquad \qquad \cdots, \\ & \qquad \qquad \text{(Urania, An der Urania 17, Schöneberg, 030 21 89 09 1)} \right. \right\} \\ & \mathcal{R}^{\mathcal{D}}_{\textit{Film}} := \left\{ \end{aligned}  \  \, \text{(Alien, Ridley Scott, Sigourney Weaver),} \\ & \qquad \qquad \text{(Blade Runner, Ridley Scott, Harrison Ford),} \qquad \dots \right. \right.
```

```
Signatur: \sigma_{\text{KINO}} := \{ R_{\text{Kino}}/4, R_{\text{Film}}/3, R_{\text{Prog}}/3 \} \cup \{ \text{`c'} : c \in \text{ASCII*} \}
```

Die Kinodatenbank wird dargestellt als σ_{KINO} -Struktur \mathcal{D} .

Universum:

```
D := ASCII* 

☐ { Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93, Casablanca, ..., 20:00}.
```

Relationen:

```
 \begin{aligned} & \mathcal{R}^{\mathcal{D}}_{\mathit{Kino}} := \big\{ \text{ (Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93),} \\ & \quad \text{ (Casablanca, Friedenstr. 12-13, Adlershof, 030 67 75 75 2),} \\ & \quad \cdots, \\ & \quad \text{ (Urania, An der Urania 17, Schöneberg, 030 21 89 09 1)} \big\} \\ & \mathcal{R}^{\mathcal{D}}_{\mathit{Film}} := \big\{ \text{ (Alien, Ridley Scott, Sigourney Weaver),} \\ & \quad \text{ (Blade Runner, Ridley Scott, Harrison Ford),} \\ & \mathcal{R}^{\mathcal{D}}_{\mathit{Prog}} := \big\{ \text{ (Babylon, Casablanca, 17:30),} \\ & \quad \text{ (Babylon, Gravity, 20:15),} \\ & \quad \dots \big\}. \end{aligned}
```

Konstanten:

```
Signatur: \sigma_{\text{KINO}} := \{ R_{\text{Kino}}/4, R_{\text{Film}}/3, R_{\text{Prog}}/3 \} \cup \{ \text{`c'} : c \in \text{ASCII*} \}
```

Die Kinodatenbank wird dargestellt als σ_{KINO} -Struktur \mathcal{D} .

Universum:

```
D := ASCII* 

☐ { Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93, Casablanca, ..., 20:00}.
```

Relationen:

```
\begin{split} & \mathcal{R}^{\mathcal{D}}_{\mathit{Kino}} := \big\{ \text{ (Babylon, Dresdner Str. 126, Kreuzberg, 030 61 60 96 93),} \\ & \quad \text{ (Casablanca, Friedenstr. 12-13, Adlershof, 030 67 75 75 2),} \\ & \quad \cdots, \\ & \quad \text{ (Urania, An der Urania 17, Schöneberg, 030 21 89 09 1)} \big\} \\ & \mathcal{R}^{\mathcal{D}}_{\mathit{Film}} := \big\{ \text{ (Alien, Ridley Scott, Sigourney Weaver),} \\ & \quad \text{ (Blade Runner, Ridley Scott, Harrison Ford),} \\ & \mathcal{R}^{\mathcal{D}}_{\mathit{Prog}} := \big\{ \text{ (Babylon, Casablanca, 17:30),} \\ & \quad \text{ (Babylon, Gravity, 20:15),} \\ & \quad \dots \big\}. \end{split}
```

Konstanten: c' = c, für jedes $c \in ASCII^*$.

D.h.: jedes Konstantensymbol wird durch den zwischen den Hochkommas stehenden Text interpretiert.

(a) Die Anfrage

"Gib die Titel aller Filme aus, die um 22:00 Uhr beginnen." lässt sich durch folgende FO[σ_{KINO}]-Formel $\varphi_1(x_T)$ beschreiben:

$$\varphi_1(x_T) :=$$

(a) Die Anfrage

"Gib die Titel aller Filme aus, die um 22:00 Uhr beginnen." lässt sich durch folgende FO[σ_{KINO}]-Formel $\varphi_1(x_T)$ beschreiben:

$$\varphi_1(x_T) := \exists x_K R_{Prog}(x_K, x_T, '22:00')$$

(a) Die Anfrage

"Gib die Titel aller Filme aus, die um 22:00 Uhr beginnen."

lässt sich durch folgende FO[σ_{KINO}]-Formel $\varphi_1(x_T)$ beschreiben:

$$\varphi_1(x_T) := \exists x_K \ R_{Prog}(x_K, x_T, '22:00')$$

(b) Die Anfrage

"Gib die Titel aller Filme aus, in denen George Clooney mitspielt oder Regie führt"

lässt sich durch folgende FO[σ_{KINO}]-Formel beschreiben: $\varphi_2(x_T) :=$

(a) Die Anfrage

"Gib die Titel aller Filme aus, die um 22:00 Uhr beginnen."

lässt sich durch folgende FO[σ_{KINO}]-Formel $\varphi_1(x_T)$ beschreiben:

$$\varphi_1(x_T) := \exists x_K \ R_{Prog}(x_K, x_T, '22:00')$$

(b) Die Anfrage

"Gib die Titel aller Filme aus, in denen George Clooney mitspielt oder Regie führt"

lässt sich durch folgende FO[σ_{KINO}]-Formel beschreiben: $\varphi_2(x_T) :=$

$$\exists x_R \ R_{Film}(x_T, x_R, \text{`George Clooney'}) \lor \exists x_S \ R_{Film}(x_T, \text{`George Clooney'}, x_S)$$

(c) Die Anfrage

"Gib Name und Stadtteil aller Kinos aus, in denen ein Film läuft, in dem George Clooney mitspielt oder Regie führt"

lässt sich durch folgende FO[σ_{KINO}]-Formel beschreiben: $\varphi_3(x_K, x_{St}) :=$

(c) Die Anfrage

"Gib Name und Stadtteil aller Kinos aus, in denen ein Film läuft, in dem George Clooney mitspielt oder Regie führt"

lässt sich durch folgende FO[σ_{KINO}]-Formel beschreiben: $\varphi_3(x_K, x_{St}) :=$

$$\exists x_{A} \exists x_{Tel} \ R_{Kino}(x_{K}, x_{A}, x_{St}, x_{Tel}) \land$$

$$\exists x_{T} \exists x_{Z} \left(R_{Prog}(x_{K}, x_{T}, x_{Z}) \land$$

$$\left(\exists x_{R} \ R_{Film}(x_{T}, x_{R}, \text{'George Clooney'}) \lor \exists x_{S} \ R_{Film}(x_{T}, \text{'George Clooney'}, x_{S}) \right) \right)$$

(c) Die Anfrage

"Gib Name und Stadtteil aller Kinos aus, in denen ein Film läuft, in dem George Clooney mitspielt oder Regie führt"

lässt sich durch folgende FO[σ_{KINO}]-Formel beschreiben: $\varphi_3(x_K, x_{St}) :=$

$$\exists x_{A} \exists x_{Tel} \ R_{Kino}(x_{K}, x_{A}, x_{St}, x_{Tel}) \land \\ \exists x_{T} \exists x_{Z} \left(R_{Prog}(x_{K}, x_{T}, x_{Z}) \land \\ \left(\exists x_{R} \ R_{Film}(x_{T}, x_{R}, \text{'George Clooney'}) \lor \exists x_{S} \ R_{Film}(x_{T}, \text{'George Clooney'}, x_{S}) \right) \right)$$

Die erste Zeile der Formel stellt sicher, dass x_K ein Kino und x_S dessen Stadtteil ist; die Zeilen 2 und 3 stellen sicher, dass im Kino x_K ein Film läuft, in dem George Clooney mitspielt oder Regie führt.

Eine andere Sichtweise auf die Semantik

 Anstatt Wahrheitswerte in Interpretationen definieren Formeln der Logik der ersten Stufe auch Relationen in Strukturen.

Eine andere Sichtweise auf die Semantik

 Anstatt Wahrheitswerte in Interpretationen definieren Formeln der Logik der ersten Stufe auch Relationen in Strukturen.

 Junktoren und Quantoren entsprechen dann algebraischen Operatoren auf Relationen.

Eine andere Sichtweise auf die Semantik

 Anstatt Wahrheitswerte in Interpretationen definieren Formeln der Logik der ersten Stufe auch Relationen in Strukturen.

 Junktoren und Quantoren entsprechen dann algebraischen Operatoren auf Relationen.

 Diese Sichtweise ist insbesondere in der Datenbanktheorie wichtig und bildet die Grundlage effizienter Algorithmen zur Auswertung von Datenbankanfragen.

Sei σ eine Signatur, sei $\varphi(x_1, \ldots, x_n)$ eine FO[σ]-Formel und sei A eine σ -Struktur.

Die von $\varphi(x_1,\ldots,x_n)$ in $\mathcal A$ definierte n-stellige Relation ist

$$\llbracket \varphi(\mathsf{x}_1,\ldots,\mathsf{x}_n) \rrbracket^{\mathcal{A}} := \{ (\mathsf{a}_1,\ldots,\mathsf{a}_n) \in \mathcal{A}^n : \mathcal{A} \models \varphi[\mathsf{a}_1,\ldots,\mathsf{a}_n] \}.$$

Sei σ eine Signatur, sei $\varphi(x_1, \ldots, x_n)$ eine FO[σ]-Formel und sei A eine σ -Struktur.

Die von $\varphi(x_1,\ldots,x_n)$ in $\mathcal A$ definierte n-stellige Relation ist

$$\llbracket \varphi(\mathsf{x}_1,\ldots,\mathsf{x}_n) \rrbracket^{\mathcal{A}} \ := \ \{ \ (\mathsf{a}_1,\ldots,\mathsf{a}_n) \in \mathcal{A}^n \ : \ \mathcal{A} \models \varphi[\mathsf{a}_1,\ldots,\mathsf{a}_n] \ \}.$$

Vorsicht: Die Relation $[\![\varphi(x_1,\ldots,x_n)]\!]^A$ hängt nicht nur von der Formel φ ab, sondern auch von dem Tupel $(x_1,\ldots,x_n)\in VAR^n$.

Sei σ eine Signatur, sei $\varphi(x_1, \ldots, x_n)$ eine FO[σ]-Formel und sei A eine σ -Struktur.

Die von $\varphi(x_1,\ldots,x_n)$ in $\mathcal A$ definierte n-stellige Relation ist

$$\llbracket \varphi(\mathsf{x}_1,\ldots,\mathsf{x}_n) \rrbracket^{\mathcal{A}} := \{ (\mathsf{a}_1,\ldots,\mathsf{a}_n) \in \mathcal{A}^n : \mathcal{A} \models \varphi[\mathsf{a}_1,\ldots,\mathsf{a}_n] \}.$$

Vorsicht: Die Relation $[\![\varphi(x_1,\ldots,x_n)]\!]^A$ hängt nicht nur von der Formel φ ab, sondern auch von dem Tupel $(x_1,\ldots,x_n)\in \mathsf{VAR}^n$.

Beispiel 3.37

Die FO[σ_{KINO}]-Formeln $\varphi_2(x_T)$ und $\varphi_3(x_K, x_{St})$ aus Beispiel 3.35 definieren in unserer Beispiel-Datenbank $\mathcal D$ die Relationen

$$\llbracket \varphi_2(x_T) \rrbracket^{\mathcal{D}} =$$

Sei σ eine Signatur, sei $\varphi(x_1, \ldots, x_n)$ eine FO[σ]-Formel und sei A eine σ -Struktur.

Die von $\varphi(x_1,\ldots,x_n)$ in $\mathcal A$ definierte n-stellige Relation ist

$$\llbracket \varphi(\mathsf{x}_1,\ldots,\mathsf{x}_n) \rrbracket^{\mathcal{A}} := \{ (\mathsf{a}_1,\ldots,\mathsf{a}_n) \in \mathcal{A}^n : \mathcal{A} \models \varphi[\mathsf{a}_1,\ldots,\mathsf{a}_n] \}.$$

Vorsicht: Die Relation $[\![\varphi(x_1,\ldots,x_n)]\!]^A$ hängt nicht nur von der Formel φ ab, sondern auch von dem Tupel $(x_1,\ldots,x_n)\in VAR^n$.

Beispiel 3.37

Die FO[σ_{KINO}]-Formeln $\varphi_2(x_T)$ und $\varphi_3(x_K, x_{St})$ aus Beispiel 3.35 definieren in unserer Beispiel-Datenbank $\mathcal D$ die Relationen

$$\llbracket \varphi_2(x_T) \rrbracket^{\mathcal{D}} \ = \ \left\{ \quad \text{(Gravity) }, \\ \quad \text{(Monuments Men)} \quad \right\}$$

und

Sei σ eine Signatur, sei $\varphi(x_1, \ldots, x_n)$ eine FO[σ]-Formel und sei A eine σ -Struktur.

Die von $\varphi(x_1,\ldots,x_n)$ in $\mathcal A$ definierte n-stellige Relation ist

$$\llbracket \varphi(\mathsf{x}_1,\ldots,\mathsf{x}_n) \rrbracket^{\mathcal{A}} \ := \quad \{ \ (\mathsf{a}_1,\ldots,\mathsf{a}_n) \in \mathcal{A}^n \ : \ \mathcal{A} \models \varphi[\mathsf{a}_1,\ldots,\mathsf{a}_n] \ \}.$$

Vorsicht: Die Relation $[\![\varphi(x_1,\ldots,x_n)]\!]^A$ hängt nicht nur von der Formel φ ab, sondern auch von dem Tupel $(x_1,\ldots,x_n)\in VAR^n$.

Beispiel 3.37

Die FO[σ_{KINO}]-Formeln $\varphi_2(x_T)$ und $\varphi_3(x_K, x_{St})$ aus Beispiel 3.35 definieren in unserer Beispiel-Datenbank $\mathcal D$ die Relationen

$$\llbracket \varphi_2(x_T) \rrbracket^{\mathcal{D}} = \left\{ \begin{array}{c} \left(\text{Gravity} \right), \\ \left(\text{Monuments Men} \right) \end{array} \right\}$$

und

$$\llbracket \varphi_3(x_K, x_{St}) \rrbracket^{\mathcal{D}} =$$

Sei σ eine Signatur, sei $\varphi(x_1, \ldots, x_n)$ eine FO[σ]-Formel und sei A eine σ -Struktur.

Die von $\varphi(x_1,\ldots,x_n)$ in $\mathcal A$ definierte n-stellige Relation ist

$$\llbracket \varphi(\mathsf{x}_1,\ldots,\mathsf{x}_n) \rrbracket^{\mathcal{A}} := \{ (\mathsf{a}_1,\ldots,\mathsf{a}_n) \in \mathcal{A}^n : \mathcal{A} \models \varphi[\mathsf{a}_1,\ldots,\mathsf{a}_n] \}.$$

Vorsicht: Die Relation $[\![\varphi(x_1,\ldots,x_n)]\!]^A$ hängt nicht nur von der Formel φ ab, sondern auch von dem Tupel $(x_1,\ldots,x_n)\in VAR^n$.

Beispiel 3.37

Die FO[σ_{KINO}]-Formeln $\varphi_2(x_T)$ und $\varphi_3(x_K, x_{St})$ aus Beispiel 3.35 definieren in unserer Beispiel-Datenbank $\mathcal D$ die Relationen

$$\llbracket \varphi_2(x_T) \rrbracket^{\mathcal{D}} = \left\{ (Gravity), (Monuments Men) \right\}$$

und

$$\llbracket \varphi_3(x_K, x_{St}) \rrbracket^{\mathcal{D}} = \left\{ \begin{array}{c} \text{(Babylon, Kreuzberg)}, \\ \text{(Moviemento, Kreuzberg)}, \\ \text{(Urania, Schöneberg)} \end{array} \right.$$

Ändern der Variablen

Lemma 3.38

Sei σ eine Signatur, sei $\mathcal A$ eine σ -Struktur und sei $\varphi(x_1,\ldots,x_n)\in\mathsf{FO}[\sigma].$

(a) Für jede Permutation² π von [n] ist

$$\left[\left[\varphi(x_{\pi(1)}, \ldots, x_{\pi(n)}) \right]^{\mathcal{A}} = \left\{ \left(a_{\pi(1)}, \ldots, a_{\pi(n)} \right) : \\ \left(a_{1}, \ldots, a_{n} \right) \in \left[\left[\varphi(x_{1}, \ldots, x_{n}) \right]^{\mathcal{A}} \right\}.$$

Andern der Variablen

Lemma 3.38

Sei σ eine Signatur, sei \mathcal{A} eine σ -Struktur und sei $\varphi(x_1,\ldots,x_n) \in \mathsf{FO}[\sigma]$.

(a) Für jede Permutation² π von [n] ist

$$\llbracket \varphi(x_{\pi(1)},\ldots,x_{\pi(n)}) \rrbracket^{\mathcal{A}} = \{ (a_{\pi(1)},\ldots,a_{\pi(n)}) : (a_{1},\ldots,a_{n}) \in \llbracket \varphi(x_{1},\ldots,x_{n}) \rrbracket^{\mathcal{A}} \}.$$

²Eine Permutation einer Menge M ist eine bijektive Abbildung von M nach M.

Ändern der Variablen

Lemma 3.38

Sei σ eine Signatur, sei \mathcal{A} eine σ -Struktur und sei $\varphi(x_1,\ldots,x_n) \in \mathsf{FO}[\sigma]$.

(a) Für jede Permutation² π von [n] ist

$$\llbracket \varphi(x_{\pi(1)},\ldots,x_{\pi(n)}) \rrbracket^{\mathcal{A}} = \{ (a_{\pi(1)},\ldots,a_{\pi(n)}) : (a_{1},\ldots,a_{n}) \in \llbracket \varphi(x_{1},\ldots,x_{n}) \rrbracket^{\mathcal{A}} \}.$$

(b) Für jede Variable $y \in VAR \setminus \{x_1, \dots, x_n\}$ ist

$$\llbracket \varphi(\mathsf{x}_1,\ldots,\mathsf{x}_n,\mathsf{y}) \rrbracket^{\mathcal{A}} = \llbracket \varphi(\mathsf{x}_1,\ldots,\mathsf{x}_n) \rrbracket^{\mathcal{A}} \times A.$$

²Eine Permutation einer Menge M ist eine bijektive Abbildung von M nach M.

Ändern der Variablen

Lemma 3.38

Sei σ eine Signatur, sei \mathcal{A} eine σ -Struktur und sei $\varphi(x_1,\ldots,x_n)\in\mathsf{FO}[\sigma]$.

(a) Für jede Permutation² π von [n] ist

$$\llbracket \varphi(x_{\pi(1)},\ldots,x_{\pi(n)}) \rrbracket^{\mathcal{A}} = \{ (a_{\pi(1)},\ldots,a_{\pi(n)}) : (a_1,\ldots,a_n) \in \llbracket \varphi(x_1,\ldots,x_n) \rrbracket^{\mathcal{A}} \}.$$

(b) Für jede Variable $y \in VAR \setminus \{x_1, \dots, x_n\}$ ist

$$\llbracket \varphi(x_1,\ldots,x_n,y) \rrbracket^{\mathcal{A}} = \llbracket \varphi(x_1,\ldots,x_n) \rrbracket^{\mathcal{A}} \times A.$$

(c) Falls $x_n \notin \text{frei}(\varphi)$, so ist

$$[\![\varphi(x_1,\ldots,x_{n-1})]\!]^A = \{(a_1,\ldots,a_{n-1}) : \\ \text{es gibt (mind.) ein } a \in A \text{ so dass } (a_1,\ldots,a_{n-1},a) \in [\![\varphi(x_1,\ldots,x_n)]\!]^A \}.$$

²Eine Permutation einer Menge M ist eine bijektive Abbildung von M nach M.

Beobachtung 3.39

Ist σ eine Signatur und \mathcal{A} eine σ -Struktur, so können wir für FO[σ]-Formeln φ und Variablentupel (x_1,\ldots,x_n) mit frei $(\varphi)\subseteq\{x_1,\ldots,x_n\}$ die Relation $[\![\varphi(x_1,\ldots,x_n)]\!]^{\mathcal{A}}\subseteq\mathcal{A}^n$ rekursiv wie folgt beschreiben:

• Falls φ von der Form $t_1 = t_2$ für σ -Terme t_1, t_2 ist, so ist

$$\llbracket \varphi(\mathsf{x}_1,\ldots,\mathsf{x}_n) \rrbracket^{\mathcal{A}} =$$

Beobachtung 3.39

Ist σ eine Signatur und $\mathcal A$ eine σ -Struktur, so können wir für FO[σ]-Formeln φ und Variablentupel (x_1,\ldots,x_n) mit frei $(\varphi)\subseteq\{x_1,\ldots,x_n\}$ die Relation $[\![\varphi(x_1,\ldots,x_n)]\!]^{\mathcal A}\subseteq\mathcal A^n$ rekursiv wie folgt beschreiben:

• Falls φ von der Form $t_1 = t_2$ für σ -Terme t_1, t_2 ist, so ist

$$[\![\varphi(x_1,\ldots,x_n)]\!]^{\mathcal{A}} = \{ (a_1,\ldots,a_n) \in \mathcal{A}^n : \\ t_1^{\mathcal{A}}[a_1,\ldots,a_n] = t_2^{\mathcal{A}}[a_1,\ldots,a_n] \}$$

Zur Erinnerung: Für einen σ -Term $t(x_1,\ldots,x_n)$ schreiben wir $t^{\mathcal{A}}[a_1,\ldots,a_n]$ um das Element $[\![t]\!]^{(\mathcal{A},\beta)}\in A$ zu bezeichnen, wobei β eine Belegung mit $\beta(x_i)=a_i$, für alle $i\in[n]$, ist.

Beobachtung 3.39

Ist σ eine Signatur und $\mathcal A$ eine σ -Struktur, so können wir für FO[σ]-Formeln φ und Variablentupel (x_1,\ldots,x_n) mit frei $(\varphi)\subseteq\{x_1,\ldots,x_n\}$ die Relation $[\![\varphi(x_1,\ldots,x_n)]\!]^{\mathcal A}\subseteq\mathcal A^n$ rekursiv wie folgt beschreiben:

• Falls φ von der Form $t_1 = t_2$ für σ -Terme t_1, t_2 ist, so ist

$$[\![\varphi(x_1,\ldots,x_n)]\!]^A = \{ (a_1,\ldots,a_n) \in A^n : \\ t_1^A[a_1,\ldots,a_n] = t_2^A[a_1,\ldots,a_n] \}$$

Zur Erinnerung: Für einen σ -Term $t(x_1,\ldots,x_n)$ schreiben wir $t^{\mathcal{A}}[a_1,\ldots,a_n]$ um das Element $[\![t]\!]^{(\mathcal{A},\beta)}\in A$ zu bezeichnen, wobei β eine Belegung mit $\beta(x_i)=a_i$, für alle $i\in[n]$, ist.

• Falls φ von der Form $R(t_1, \ldots, t_k)$ für ein $R \in \sigma$, für $k := \operatorname{ar}(R)$ und für σ -Terme t_1, \ldots, t_k ist, so ist

$$\llbracket \varphi(x_1,\ldots,x_n) \rrbracket^{\mathcal{A}} =$$

HU Berlin

Beobachtung 3.39

Ist σ eine Signatur und \mathcal{A} eine σ -Struktur, so können wir für FO[σ]-Formeln φ und Variablentupel (x_1,\ldots,x_n) mit frei $(\varphi)\subseteq\{x_1,\ldots,x_n\}$ die Relation $[\![\varphi(x_1,\ldots,x_n)]\!]^{\mathcal{A}}\subseteq\mathcal{A}^n$ rekursiv wie folgt beschreiben:

• Falls φ von der Form $t_1 = t_2$ für σ -Terme t_1, t_2 ist, so ist

$$[\![\varphi(x_1,\ldots,x_n)]\!]^{\mathcal{A}} = \{ (a_1,\ldots,a_n) \in \mathcal{A}^n : \\ t_1^{\mathcal{A}}[a_1,\ldots,a_n] = t_2^{\mathcal{A}}[a_1,\ldots,a_n] \}$$

Zur Erinnerung: Für einen σ -Term $t(x_1,\ldots,x_n)$ schreiben wir $t^{\mathcal{A}}[a_1,\ldots,a_n]$ um das Element $[\![t]\!]^{(\mathcal{A},\beta)}\in A$ zu bezeichnen, wobei β eine Belegung mit $\beta(x_i)=a_i$, für alle $i\in[n]$, ist.

• Falls φ von der Form $R(t_1, \ldots, t_k)$ für ein $R \in \sigma$, für $k := \operatorname{ar}(R)$ und für σ -Terme t_1, \ldots, t_k ist, so ist

$$\llbracket \varphi(x_1,\ldots,x_n) \rrbracket^{\mathcal{A}} = \left\{ (a_1,\ldots,a_n) \in \mathcal{A}^n : \\ \left(t_1^{\mathcal{A}}[a_1,\ldots,a_n],\ldots,t_k^{\mathcal{A}}[a_1,\ldots,a_n] \right) \in \mathcal{R}^{\mathcal{A}} \right\}$$

$$\llbracket \varphi(x_1,\ldots,x_n) \rrbracket^{\mathcal{A}} =$$

$$\llbracket \varphi(x_1,\ldots,x_n) \rrbracket^{\mathcal{A}} = A^n \setminus \llbracket \psi(x_1,\ldots,x_n) \rrbracket^{\mathcal{A}}$$

$$\llbracket \varphi(x_1,\ldots,x_n) \rrbracket^{\mathcal{A}} = A^n \setminus \llbracket \psi(x_1,\ldots,x_n) \rrbracket^{\mathcal{A}}$$

• Falls φ von der Form $(\psi_1 \wedge \psi_2)$ ist, so ist

$$\llbracket \varphi(x_1,\ldots,x_n) \rrbracket^{\mathcal{A}} =$$

$$\llbracket \varphi(x_1,\ldots,x_n) \rrbracket^{\mathcal{A}} = A^n \setminus \llbracket \psi(x_1,\ldots,x_n) \rrbracket^{\mathcal{A}}$$

• Falls φ von der Form $(\psi_1 \wedge \psi_2)$ ist, so ist

$$\llbracket \varphi(x_1,\ldots,x_n) \rrbracket^{\mathcal{A}} = \llbracket \psi_1(x_1,\ldots,x_n) \rrbracket^{\mathcal{A}} \cap \llbracket \psi_2(x_1,\ldots,x_n) \rrbracket^{\mathcal{A}}$$

$$\llbracket \varphi(x_1,\ldots,x_n) \rrbracket^{\mathcal{A}} = A^n \setminus \llbracket \psi(x_1,\ldots,x_n) \rrbracket^{\mathcal{A}}$$

• Falls φ von der Form $(\psi_1 \wedge \psi_2)$ ist, so ist

$$[\![\varphi(x_1,\ldots,x_n)]\!]^A = [\![\psi_1(x_1,\ldots,x_n)]\!]^A \cap [\![\psi_2(x_1,\ldots,x_n)]\!]^A$$

• Falls φ von der Form $(\psi_1 \lor \psi_2)$ ist, so ist

$$\llbracket \varphi(x_1,\ldots,x_n) \rrbracket^{\mathcal{A}} =$$

$$\llbracket \varphi(x_1,\ldots,x_n) \rrbracket^{\mathcal{A}} = A^n \setminus \llbracket \psi(x_1,\ldots,x_n) \rrbracket^{\mathcal{A}}$$

• Falls φ von der Form $(\psi_1 \wedge \psi_2)$ ist, so ist

$$[\![\varphi(x_1,\ldots,x_n)]\!]^A = [\![\psi_1(x_1,\ldots,x_n)]\!]^A \cap [\![\psi_2(x_1,\ldots,x_n)]\!]^A$$

• Falls φ von der Form $(\psi_1 \lor \psi_2)$ ist, so ist

$$[\![\varphi(x_1,\ldots,x_n)]\!]^A = [\![\psi_1(x_1,\ldots,x_n)]\!]^A \cup [\![\psi_2(x_1,\ldots,x_n)]\!]^A$$

$$\llbracket \varphi(x_1,\ldots,x_n) \rrbracket^{\mathcal{A}} = A^n \setminus \llbracket \psi(x_1,\ldots,x_n) \rrbracket^{\mathcal{A}}$$

• Falls φ von der Form $(\psi_1 \wedge \psi_2)$ ist, so ist

$$\llbracket \varphi(x_1,\ldots,x_n) \rrbracket^A = \llbracket \psi_1(x_1,\ldots,x_n) \rrbracket^A \cap \llbracket \psi_2(x_1,\ldots,x_n) \rrbracket^A$$

• Falls φ von der Form $(\psi_1 \lor \psi_2)$ ist, so ist

$$\llbracket \varphi(x_1,\ldots,x_n) \rrbracket^{\mathcal{A}} = \llbracket \psi_1(x_1,\ldots,x_n) \rrbracket^{\mathcal{A}} \cup \llbracket \psi_2(x_1,\ldots,x_n) \rrbracket^{\mathcal{A}}$$

• Falls φ von der Form $(\psi_1 \to \psi_2)$ ist, so ist

$$\llbracket \varphi(\mathsf{x}_1,\ldots,\mathsf{x}_n) \rrbracket^{\mathcal{A}} =$$

$$\llbracket \varphi(x_1,\ldots,x_n) \rrbracket^{\mathcal{A}} = A^n \setminus \llbracket \psi(x_1,\ldots,x_n) \rrbracket^{\mathcal{A}}$$

• Falls φ von der Form $(\psi_1 \wedge \psi_2)$ ist, so ist

$$\llbracket \varphi(x_1,\ldots,x_n) \rrbracket^{\mathcal{A}} = \llbracket \psi_1(x_1,\ldots,x_n) \rrbracket^{\mathcal{A}} \cap \llbracket \psi_2(x_1,\ldots,x_n) \rrbracket^{\mathcal{A}}$$

• Falls φ von der Form $(\psi_1 \lor \psi_2)$ ist, so ist

$$\llbracket \varphi(\mathbf{x}_1,\ldots,\mathbf{x}_n) \rrbracket^{\mathcal{A}} = \llbracket \psi_1(\mathbf{x}_1,\ldots,\mathbf{x}_n) \rrbracket^{\mathcal{A}} \cup \llbracket \psi_2(\mathbf{x}_1,\ldots,\mathbf{x}_n) \rrbracket^{\mathcal{A}}$$

• Falls φ von der Form $(\psi_1 \to \psi_2)$ ist, so ist

$$\llbracket \varphi(\mathbf{x}_1,\ldots,\mathbf{x}_n) \rrbracket^{\mathcal{A}} = \llbracket \neg \psi_1(\mathbf{x}_1,\ldots,\mathbf{x}_n) \rrbracket^{\mathcal{A}} \cup \llbracket \psi_2(\mathbf{x}_1,\ldots,\mathbf{x}_n) \rrbracket^{\mathcal{A}}$$

HU Berlin

$$\llbracket \varphi(x_1,\ldots,x_n) \rrbracket^{\mathcal{A}} =$$

$$\llbracket \varphi(x_1, \dots, x_n) \rrbracket^{\mathcal{A}} = \left\{ (a_1, \dots, a_n) \in A^n : \text{ es gibt (mind.) ein} \right.$$
$$b \in A \text{ mit } (a_1, \dots, a_n, b) \in \llbracket \psi(x_1, \dots, x_n, y) \rrbracket^{\mathcal{A}} \right\}$$

$$\llbracket \varphi(x_1, \dots, x_n) \rrbracket^{\mathcal{A}} = \left\{ (a_1, \dots, a_n) \in \mathcal{A}^n : \text{ es gibt (mind.) ein} \right.$$
$$b \in \mathcal{A} \text{ mit } (a_1, \dots, a_n, b) \in \llbracket \psi(x_1, \dots, x_n, y) \rrbracket^{\mathcal{A}} \right\}$$

Somit ist $[\![\varphi(x_1,\ldots,x_n)]\!]^A$ die Projektion von $[\![\psi(x_1,\ldots,x_n,y)]\!]^A$ auf die ersten n Stellen.

$$\llbracket \varphi(x_1, \dots, x_n) \rrbracket^{\mathcal{A}} = \left\{ (a_1, \dots, a_n) \in A^n : \text{ es gibt (mind.) ein} \right.$$
$$b \in A \text{ mit } (a_1, \dots, a_n, b) \in \llbracket \psi(x_1, \dots, x_n, y) \rrbracket^{\mathcal{A}} \right\}$$

Somit ist $[\![\varphi(x_1,\ldots,x_n)]\!]^A$ die Projektion von $[\![\psi(x_1,\ldots,x_n,y)]\!]^A$ auf die ersten n Stellen.

• Falls φ von der Form $\forall y \ \psi$ ist, so ist

$$\llbracket \varphi(\mathsf{x}_1,\ldots,\mathsf{x}_n) \rrbracket^{\mathcal{A}} =$$

$$\llbracket \varphi(x_1, \dots, x_n) \rrbracket^{\mathcal{A}} = \left\{ (a_1, \dots, a_n) \in A^n : \text{ es gibt (mind.) ein} \right.$$
$$b \in A \text{ mit } (a_1, \dots, a_n, b) \in \llbracket \psi(x_1, \dots, x_n, y) \rrbracket^{\mathcal{A}} \right\}$$

Somit ist $[\![\varphi(x_1,\ldots,x_n)]\!]^A$ die Projektion von $[\![\psi(x_1,\ldots,x_n,y)]\!]^A$ auf die ersten n Stellen.

• Falls φ von der Form $\forall y \ \psi$ ist, so ist

$$\llbracket \varphi(x_1, \dots, x_n) \rrbracket^{\mathcal{A}} = \left\{ (a_1, \dots, a_n) \in \mathcal{A}^n : \right.$$

$$\text{für jedes } b \in \mathcal{A} \text{ ist } (a_1, \dots, a_n, b) \in \llbracket \psi(x_1, \dots, x_n, y) \rrbracket^{\mathcal{A}} \right\}$$

Eingabe: Eine endliche Signatur σ , eine σ -Struktur \mathcal{A}

Eingabe: Eine endliche Signatur σ , eine σ -Struktur \mathcal{A} , deren Universum A endlich ist,

Eingabe: Eine endliche Signatur σ , eine σ -Struktur \mathcal{A} , deren Universum A endlich ist, eine FO[σ]-Formel φ ,

Eingabe: Eine endliche Signatur σ , eine σ -Struktur \mathcal{A} , deren Universum A endlich ist, eine FO[σ]-Formel φ , eine Zahl $n \in \mathbb{N}$ und ein Variablentupel $(x_1, \ldots, x_n) \in VAR^n$, so dass frei $(\varphi) \subseteq \{x_1, \ldots, x_n\}$ ist.

```
Eingabe: Eine endliche Signatur \sigma, eine \sigma-Struktur \mathcal{A}, deren Universum A endlich ist, eine FO[\sigma]-Formel \varphi, eine Zahl n \in \mathbb{N} und ein Variablentupel (x_1, \ldots, x_n) \in VAR^n, so dass frei(\varphi) \subseteq \{x_1, \ldots, x_n\} ist.
```

Aufgabe: Berechne $[\varphi(x_1,\ldots,x_n)]^A$.

```
Eingabe: Eine endliche Signatur \sigma, eine \sigma-Struktur \mathcal{A}, deren Universum A endlich ist, eine FO[\sigma]-Formel \varphi, eine Zahl n \in \mathbb{N} und ein Variablentupel (x_1, \ldots, x_n) \in VAR^n, so dass frei(\varphi) \subseteq \{x_1, \ldots, x_n\} ist.

Aufgabe: Berechne [\![\varphi(x_1, \ldots, x_n)]\!]^{\mathcal{A}}.
```

Beobachtung 3.39 führt unmittelbar zu einem rekursiven Algorithmus, der das Auswertungsproblem für FO löst.

Das Auswertungsproblem für FO

```
Eingabe: Eine endliche Signatur \sigma, eine \sigma-Struktur \mathcal{A}, deren Universum A endlich ist, eine FO[\sigma]-Formel \varphi, eine Zahl n \in \mathbb{N} und ein Variablentupel (x_1, \ldots, x_n) \in VAR^n, so dass frei(\varphi) \subseteq \{x_1, \ldots, x_n\} ist.

Aufgabe: Berechne \llbracket \varphi(x_1, \ldots, x_n) \rrbracket^A.
```

Beobachtung 3.39 führt unmittelbar zu einem rekursiven Algorithmus, der das Auswertungsproblem für FO löst.

Eine Laufzeitanalyse zeigt, dass Folgendes gilt:

Es gibt einen Algorithmus, der das Auswertungsproblem für FO bei Eingabe einer Signatur σ , eine σ -Struktur \mathcal{A} , einer FO[σ]-Formel φ , einer Zahl n und eines Variablentupels (x_1,\ldots,x_n) mit frei $(\varphi)\subseteq\{x_1,\ldots,x_n\}$ in Zeit

$$c \cdot (\|\varphi\| + \|\mathcal{A}\| + \|\varphi\| \cdot w \cdot \|\mathcal{A}\|^w)$$

löst

Es gibt einen Algorithmus, der das Auswertungsproblem für FO bei Eingabe einer Signatur σ , eine σ -Struktur \mathcal{A} , einer FO $[\sigma]$ -Formel φ , einer Zahl n und eines Variablentupels (x_1,\ldots,x_n) mit frei $(\varphi)\subseteq\{x_1,\ldots,x_n\}$ in Zeit

$$c \cdot (\|\varphi\| + \|\mathcal{A}\| + \|\varphi\| \cdot w \cdot \|\mathcal{A}\|^{w})$$

- ullet $c\in\mathbb{N}_{\geqslant 1}$
- $\bullet \ \|\varphi\|$

Es gibt einen Algorithmus, der das Auswertungsproblem für FO bei Eingabe einer Signatur σ , eine σ -Struktur \mathcal{A} , einer FO $[\sigma]$ -Formel φ , einer Zahl n und eines Variablentupels (x_1,\ldots,x_n) mit frei $(\varphi)\subseteq\{x_1,\ldots,x_n\}$ in Zeit

$$c \cdot (\|\varphi\| + \|\mathcal{A}\| + \|\varphi\| \cdot w \cdot \|\mathcal{A}\|^w)$$

- ullet $c\in\mathbb{N}_{\geqslant 1}$
- $\|\varphi\|$ ist die Länge von φ , aufgefasst als Wort über dem Alphabet $A_{\mathsf{FO}[\sigma]}$

Es gibt einen Algorithmus, der das Auswertungsproblem für FO bei Eingabe einer Signatur σ , eine σ -Struktur \mathcal{A} , einer FO[σ]-Formel φ , einer Zahl n und eines Variablentupels (x_1,\ldots,x_n) mit frei $(\varphi)\subseteq\{x_1,\ldots,x_n\}$ in Zeit

$$c \cdot (\|\varphi\| + \|\mathcal{A}\| + \|\varphi\| \cdot w \cdot \|\mathcal{A}\|^w)$$

- $c \in \mathbb{N}_{\geqslant 1}$
- $\|\varphi\|$ ist die Länge von φ , aufgefasst als Wort über dem Alphabet $A_{\mathsf{FO}[\sigma]}$
- W

Es gibt einen Algorithmus, der das Auswertungsproblem für FO bei Eingabe einer Signatur σ , eine σ -Struktur \mathcal{A} , einer FO $[\sigma]$ -Formel φ , einer Zahl n und eines Variablentupels (x_1,\ldots,x_n) mit frei $(\varphi)\subseteq\{x_1,\ldots,x_n\}$ in Zeit

$$c \cdot (\|\varphi\| + \|\mathcal{A}\| + \|\varphi\| \cdot w \cdot \|\mathcal{A}\|^w)$$

- $c \in \mathbb{N}_{\geqslant 1}$
- $\|\varphi\|$ ist die Länge von φ , aufgefasst als Wort über dem Alphabet $A_{\mathsf{FO}[\sigma]}$
- w ist die maximale Anzahl freier Variablen in Subformeln von φ

Es gibt einen Algorithmus, der das Auswertungsproblem für FO bei Eingabe einer Signatur σ , eine σ -Struktur \mathcal{A} , einer FO[σ]-Formel φ , einer Zahl n und eines Variablentupels (x_1,\ldots,x_n) mit frei $(\varphi)\subseteq\{x_1,\ldots,x_n\}$ in Zeit

$$c \cdot (\|\varphi\| + \|\mathcal{A}\| + \|\varphi\| \cdot w \cdot \|\mathcal{A}\|^w)$$

- $c \in \mathbb{N}_{\geqslant 1}$
- $\|\varphi\|$ ist die Länge von φ , aufgefasst als Wort über dem Alphabet $A_{\mathsf{FO}[\sigma]}$
- w ist die maximale Anzahl freier Variablen in Subformeln von φ die so genannte Breite (engl.: width) von φ

Es gibt einen Algorithmus, der das Auswertungsproblem für FO bei Eingabe einer Signatur σ , eine σ -Struktur \mathcal{A} , einer FO $[\sigma]$ -Formel φ , einer Zahl n und eines Variablentupels (x_1,\ldots,x_n) mit frei $(\varphi)\subseteq\{x_1,\ldots,x_n\}$ in Zeit

$$c \cdot (\|\varphi\| + \|\mathcal{A}\| + \|\varphi\| \cdot w \cdot \|\mathcal{A}\|^w)$$

- $c \in \mathbb{N}_{\geqslant 1}$
- $\|\varphi\|$ ist die Länge von φ , aufgefasst als Wort über dem Alphabet $A_{\mathsf{FO}[\sigma]}$
- w ist die maximale Anzahl freier Variablen in Subformeln von φ die so genannte Breite (engl.: width) von φ
- ||A||

Es gibt einen Algorithmus, der das Auswertungsproblem für FO bei Eingabe einer Signatur σ , eine σ -Struktur \mathcal{A} , einer FO $[\sigma]$ -Formel φ , einer Zahl n und eines Variablentupels (x_1,\ldots,x_n) mit frei $(\varphi)\subseteq\{x_1,\ldots,x_n\}$ in Zeit

$$c \cdot (\|\varphi\| + \|\mathcal{A}\| + \|\varphi\| \cdot w \cdot \|\mathcal{A}\|^w)$$

- $c \in \mathbb{N}_{\geqslant 1}$
- $\|\varphi\|$ ist die Länge von φ , aufgefasst als Wort über dem Alphabet $A_{\mathsf{FO}[\sigma]}$
- w ist die maximale Anzahl freier Variablen in Subformeln von φ die so genannte Breite (engl.: width) von φ
- ||A|| ist ein Maß für die Größe einer geeigneten Repräsentation von A als Eingabe für einen Algorithmus

Es gibt einen Algorithmus, der das Auswertungsproblem für FO bei Eingabe einer Signatur σ , eine σ -Struktur \mathcal{A} , einer FO $[\sigma]$ -Formel φ , einer Zahl n und eines Variablentupels (x_1,\ldots,x_n) mit frei $(\varphi)\subseteq\{x_1,\ldots,x_n\}$ in Zeit

$$c \cdot (\|\varphi\| + \|\mathcal{A}\| + \|\varphi\| \cdot w \cdot \|\mathcal{A}\|^w)$$

- $c \in \mathbb{N}_{\geqslant 1}$
- $\|\varphi\|$ ist die Länge von φ , aufgefasst als Wort über dem Alphabet $A_{\mathsf{FO}[\sigma]}$
- w ist die maximale Anzahl freier Variablen in Subformeln von φ die so genannte Breite (engl.: width) von φ
- ||A|| ist ein Maß für die Größe einer geeigneten Repräsentation von A als Eingabe für einen Algorithmus; präzise:

$$\|\mathcal{A}\| := |\sigma| + |A| + \sum_{R \in \sigma} |R^{\mathcal{A}}| \cdot \operatorname{ar}(R) + \sum_{f \in \sigma} |A|^{\operatorname{ar}(f)} \cdot (\operatorname{ar}(f) + 1)$$

Es gibt einen Algorithmus, der das Auswertungsproblem für FO bei Eingabe einer Signatur σ , eine σ -Struktur \mathcal{A} , einer FO $[\sigma]$ -Formel φ , einer Zahl n und eines Variablentupels (x_1,\ldots,x_n) mit frei $(\varphi)\subseteq\{x_1,\ldots,x_n\}$ in Zeit

$$c \cdot (\|\varphi\| + \|\mathcal{A}\| + \|\varphi\| \cdot w \cdot \|\mathcal{A}\|^w)$$

löst, wobei gilt:

- $c \in \mathbb{N}_{\geq 1}$
- $\|\varphi\|$ ist die Länge von φ , aufgefasst als Wort über dem Alphabet $A_{\mathsf{FO}[\sigma]}$
- w ist die maximale Anzahl freier Variablen in Subformeln von φ die so genannte Breite (engl.: width) von φ
- ||A|| ist ein Maß für die Größe einer geeigneten Repräsentation von A als Eingabe für einen Algorithmus; präzise:

$$\|\mathcal{A}\| := |\sigma| + |A| + \sum_{R \in \sigma} |R^{\mathcal{A}}| \cdot \operatorname{ar}(R) + \sum_{f \in \sigma} |A|^{\operatorname{ar}(f)} \cdot (\operatorname{ar}(f) + 1)$$

(Hier ohne Beweis)

Abschnitt 3.7:

Stufe

Aquivalenz von Formeln der Logik erster

Definition 3.41

Sei σ eine Signatur.

(a) Zwei FO[σ]-Formeln φ und ψ heißen äquivalent (kurz: $\varphi \equiv \psi$), wenn

HU Berlin .

 $[\]overline{{}^3\mathsf{Zur}\;\mathsf{Erinnerung}:\;\mathcal{I}\models\Phi\;\mathsf{bedeutet}}$, dass $\mathcal{I}\models\varphi\;\mathsf{f\"{u}r}\;\mathsf{jede}\;\mathsf{Formel}\;\varphi\in\Phi\;\mathsf{gilt}.$

Definition 3.41

Sei σ eine Signatur.

(a) Zwei FO[σ]-Formeln φ und ψ heißen äquivalent (kurz: $\varphi \equiv \psi$), wenn für jede σ -Interpretation $\mathcal I$ gilt:

$$\mathcal{I} \models \varphi \iff \mathcal{I} \models \psi.$$

 $^{^3}$ Zur Erinnerung: $\mathcal{I} \models \Phi$ bedeutet, dass $\mathcal{I} \models \varphi$ für jede Formel $\varphi \in \Phi$ gilt.

Definition 3.41

Sei σ eine Signatur.

(a) Zwei FO[σ]-Formeln φ und ψ heißen äquivalent (kurz: $\varphi \equiv \psi$), wenn für jede σ -Interpretation $\mathcal I$ gilt:

$$\mathcal{I} \models \varphi \iff \mathcal{I} \models \psi.$$

(b) Zwei Formelmengen $\Phi, \Psi \subseteq \mathsf{FO}[\sigma]$ heißen äquivalent (kurz: $\Phi \equiv \Psi$), wenn

 3 Zur Erinnerung: $\mathcal{I} \models \Phi$ bedeutet, dass $\mathcal{I} \models \varphi$ für jede Formel $\varphi \in \Phi$ gilt.

Definition 3.41

Sei σ eine Signatur.

(a) Zwei FO[σ]-Formeln φ und ψ heißen äquivalent (kurz: $\varphi \equiv \psi$), wenn für jede σ -Interpretation $\mathcal I$ gilt:

$$\mathcal{I} \models \varphi \iff \mathcal{I} \models \psi.$$

(b) Zwei Formelmengen $\Phi, \Psi \subseteq FO[\sigma]$ heißen äquivalent (kurz: $\Phi \equiv \Psi$), wenn für jede σ -Interpretation \mathcal{I} gilt:³

$$\mathcal{I} \models \Phi \iff \mathcal{I} \models \Psi.$$

³Zur Erinnerung: $\mathcal{I} \models \Phi$ bedeutet, dass $\mathcal{I} \models \varphi$ für jede Formel $\varphi \in \Phi$ gilt.

Beispiel 3.42

Welche der folgenden Formeln sind äquivalent, welche nicht?

- $\varphi_1 := \exists y \ E(x,y)$
- $\varphi_2 := \exists z \ E(x,z)$
- $\varphi_3 := \exists z \ E(y,z)$

Aussagenlogische Äquivalenzen

Lemma 3.43

Ersetzt man in äquivalenten aussagenlogischen Formeln alle Aussagenymbole durch $FO[\sigma]$ -Formeln, so erhält man äquivalente $FO[\sigma]$ -Formeln.

Aussagenlogische Äquivalenzen

Lemma 3.43

Ersetzt man in äquivalenten aussagenlogischen Formeln alle Aussagenymbole durch $FO[\sigma]$ -Formeln, so erhält man äquivalente $FO[\sigma]$ -Formeln.

Beispiel

Aus der aussagenlogische Äquivalenz $(X \to Y) \equiv \neg X \lor Y$ folgt, dass

$$(\varphi \to \psi) \equiv \neg \varphi \lor \psi$$

für alle FO[σ]-Formeln φ und ψ gilt.

Man sieht leicht, dass Folgendes gilt:

Lemma 3.44

$$\neg \exists x \varphi \equiv$$

Man sieht leicht, dass Folgendes gilt:

Lemma 3.44

$$\neg \exists x \varphi \equiv \forall x \neg \varphi$$

Man sieht leicht, dass Folgendes gilt:

Lemma 3.44

$$\neg \exists x \varphi \equiv \forall x \neg \varphi \quad und \quad \neg \forall x \varphi \equiv$$

Man sieht leicht, dass Folgendes gilt:

Lemma 3.44

$$\neg \exists x \varphi \equiv \forall x \neg \varphi \quad und \quad \neg \forall x \varphi \equiv \exists x \neg \varphi.$$

Man sieht leicht, dass Folgendes gilt:

Lemma 3.44

Für alle $FO[\sigma]$ -Formeln φ und alle Variablen $x \in VAR$ gilt:

$$\neg \exists x \varphi \equiv \forall x \neg \varphi \quad und \quad \neg \forall x \varphi \equiv \exists x \neg \varphi.$$

Beweis: Folgt direkt aus der Definition der Semantik (Details: Übung).

Lemma 3.45

Sei σ eine beliebige Signatur und sei φ eine FO[σ]-Formel.

Ist φ' eine $FO[\sigma]$ -Formel, die aus φ entsteht, indem man eine Subformel ψ von φ durch eine zu ψ äquivalente $FO[\sigma]$ -Formel ψ' ersetzt, so ist $\varphi \equiv \varphi'$.

Beweis: Übung.

Lemma 3.45

Sei σ eine beliebige Signatur und sei φ eine FO[σ]-Formel. Ist φ' eine FO[σ]-Formel, die aus φ entsteht, indem man eine Subformel ψ von φ durch eine zu ψ äquivalente FO[σ]-Formel ψ' ersetzt, so ist $\varphi \equiv \varphi'$. Beweis: Übung.

Satz 3.46

Jede $\mathsf{FO}[\sigma]$ -Formel ist äquivalent zu einer $\mathsf{FO}[\sigma]$ -Formel, in der

(a) keiner der Junktoren $\{\land, \rightarrow\}$ vorkommt (d.h., es kommen nur die Junktoren \neg, \lor und die Quantoren \exists, \forall vor).

Lemma 3.45

Sei σ eine beliebige Signatur und sei φ eine FO[σ]-Formel. Ist φ' eine FO[σ]-Formel, die aus φ entsteht, indem man eine Subformel ψ von φ durch eine zu ψ äquivalente FO[σ]-Formel ψ' ersetzt, so ist $\varphi \equiv \varphi'$. Beweis: Übung.

Satz 3.46

- (a) keiner der Junktoren $\{\land, \rightarrow\}$ vorkommt (d.h., es kommen nur die Junktoren \neg, \lor und die Quantoren \exists, \forall vor).
- (b) nur Existenzquantoren und die Junktoren \neg , \lor vorkommen.

Lemma 3.45

Sei σ eine beliebige Signatur und sei φ eine FO[σ]-Formel. Ist φ' eine FO[σ]-Formel, die aus φ entsteht, indem man eine Subformel ψ von φ durch eine zu ψ äquivalente FO[σ]-Formel ψ' ersetzt, so ist $\varphi \equiv \varphi'$. Beweis: Übung.

Satz 3.46

- (a) keiner der Junktoren $\{\land, \rightarrow\}$ vorkommt (d.h., es kommen nur die Junktoren \neg, \lor und die Quantoren \exists, \forall vor).
- (b) nur Existenzquantoren und die Junktoren \neg , \lor vorkommen.
- (c) nur Existenzquantoren und die Junktoren ¬, ∧ vorkommen.

Lemma 3.45

Sei σ eine beliebige Signatur und sei φ eine FO[σ]-Formel. Ist φ' eine FO[σ]-Formel, die aus φ entsteht, indem man eine Subformel ψ von φ durch eine zu ψ äquivalente FO[σ]-Formel ψ' ersetzt, so ist $\varphi \equiv \varphi'$. Beweis: Übung.

Satz 3.46

- (a) keiner der Junktoren $\{\land, \rightarrow\}$ vorkommt (d.h., es kommen nur die Junktoren \neg, \lor und die Quantoren \exists, \forall vor).
- (b) nur Existenzquantoren und die Junktoren \neg , \lor vorkommen.
- (c) nur Existenzquantoren und die Junktoren ¬, ∧ vorkommen.
- (d) nur Allquantoren und die Junktoren \neg , \lor vorkommen.

Lemma 3.45

Sei σ eine beliebige Signatur und sei φ eine FO[σ]-Formel. Ist φ' eine FO[σ]-Formel, die aus φ entsteht, indem man eine Subformel ψ von φ durch eine zu ψ äquivalente FO[σ]-Formel ψ' ersetzt, so ist $\varphi \equiv \varphi'$. Beweis: Übung.

Satz 3.46

- (a) keiner der Junktoren $\{\land, \rightarrow\}$ vorkommt (d.h., es kommen nur die Junktoren \neg, \lor und die Quantoren \exists, \forall vor).
- (b) nur Existenzquantoren und die Junktoren \neg , \lor vorkommen.
- (c) nur Existenzquantoren und die Junktoren ¬, ∧ vorkommen.
- (d) nur Allquantoren und die Junktoren ¬, ∨ vorkommen.
- (e) nur Allquantoren und die Junktoren \neg , \land vorkommen.

Lemma 3.45

Sei σ eine beliebige Signatur und sei φ eine FO[σ]-Formel. Ist φ' eine FO[σ]-Formel, die aus φ entsteht, indem man eine Subformel ψ von φ durch eine zu ψ äquivalente FO[σ]-Formel ψ' ersetzt, so ist $\varphi \equiv \varphi'$.

Beweis: Übung.

Satz 3.46

Jede $FO[\sigma]$ -Formel ist äquivalent zu einer $FO[\sigma]$ -Formel, in der

- (a) keiner der Junktoren $\{\land, \rightarrow\}$ vorkommt (d.h., es kommen nur die Junktoren \neg, \lor und die Quantoren \exists, \forall vor).
- (b) nur Existenzquantoren und die Junktoren \neg , \lor vorkommen.
- (c) nur Existenzquantoren und die Junktoren ¬, ∧ vorkommen.
- (d) nur Allquantoren und die Junktoren ¬, ∨ vorkommen.
- (e) nur Allquantoren und die Junktoren ¬, ∧ vorkommen.

Daher genügt es, bei Beweisen per Induktion über den Aufbau von Formeln von nun an im Induktionsschritt i.d.R. nur noch die Fälle für \exists , \neg , \lor zu betrachten.

Abschnitt 3.8:

Ehrenfeucht-Fraïssé-Spiele

In diesem Abschnitt werden Ehrenfeucht-Fraïssé-Spiele (kurz: EF-Spiele) eingeführt. Diese liefern ein Werkzeug, mit dessen Hilfe man zeigen kann, dass bestimmte Anfragen oder Klassen von Strukturen <u>nicht</u> in Logik erster Stufe definiert werden können.

In diesem Abschnitt werden Ehrenfeucht-Fraïssé-Spiele (kurz: EF-Spiele) eingeführt. Diese liefern ein Werkzeug, mit dessen Hilfe man zeigen kann, dass bestimmte Anfragen oder Klassen von Strukturen <u>nicht</u> in Logik erster Stufe definiert werden können.

Der Einfachheit halber betrachten wir hier nur Signaturen, die keine Funktionssymbole und keine Konstantensymbole enthalten. Solche Signaturen werden im Folgenden relationale Signaturen genannt.

In diesem Abschnitt werden Ehrenfeucht-Fraïssé-Spiele (kurz: EF-Spiele) eingeführt. Diese liefern ein Werkzeug, mit dessen Hilfe man zeigen kann, dass bestimmte Anfragen oder Klassen von Strukturen <u>nicht</u> in Logik erster Stufe definiert werden können.

Der Einfachheit halber betrachten wir hier nur Signaturen, die keine Funktionssymbole und keine Konstantensymbole enthalten. Solche Signaturen werden im Folgenden relationale Signaturen genannt.

Außerdem werden wir im Folgenden bei zwei gegebenen Strukturen \mathcal{A} und \mathcal{B} immer o.B.d.A. annehmen, dass ihre Universen disjunkt sind, d.h. $A \cap B = \emptyset$.

Das m-Runden EF-Spiel

Sei σ eine relationale Signatur und seien \mathcal{A},\mathcal{B} zwei σ -Strukturen.

Sei σ eine relationale Signatur und seien \mathcal{A},\mathcal{B} zwei σ -Strukturen.

Für $k \in \mathbb{N}$ seien $\overline{a} := a_1, \dots, a_k \in A$ und $\overline{b} := b_1, \dots, b_k \in B$ Folgen der Länge k von Elementen aus A bzw. B.

Sei σ eine relationale Signatur und seien \mathcal{A}, \mathcal{B} zwei σ -Strukturen.

Für $k \in \mathbb{N}$ seien $\overline{a} := a_1, \dots, a_k \in A$ und $\overline{b} := b_1, \dots, b_k \in B$ Folgen der Länge k von Elementen aus A bzw. B.

Sei $m \in \mathbb{N}$.

Sei σ eine relationale Signatur und seien \mathcal{A}, \mathcal{B} zwei σ -Strukturen.

Für $k \in \mathbb{N}$ seien $\overline{a} := a_1, \dots, a_k \in A$ und $\overline{b} := b_1, \dots, b_k \in B$ Folgen der Länge k von Elementen aus A bzw. B.

Sei $m \in \mathbb{N}$.

Das *m*-Runden EF-Spiel auf (A, \overline{a}) und (B, \overline{b})

Sei σ eine relationale Signatur und seien \mathcal{A}, \mathcal{B} zwei σ -Strukturen.

Für $k \in \mathbb{N}$ seien $\overline{a} := a_1, \dots, a_k \in A$ und $\overline{b} := b_1, \dots, b_k \in B$ Folgen der Länge k von Elementen aus A bzw. B.

Sei $m \in \mathbb{N}$.

Das *m*-Runden EF-Spiel auf (A, \overline{a}) und (B, \overline{b}) (bzw. auf A und B, falls k = 0 ist) wird gemäß folgender Spielregeln gespielt:

• Es gibt 2 Spieler

• Es gibt 2 Spieler, genannt Spoiler (kurz: Sp) und Duplicator (kurz: Dupl).

- Es gibt 2 Spieler, genannt Spoiler (kurz: Sp) und Duplicator (kurz: Dupl).
- Das Spielbrett besteht aus (A, \overline{a}) und (B, \overline{b}) .

- Es gibt 2 Spieler, genannt Spoiler (kurz: Sp) und Duplicator (kurz: Dupl).
- Das Spielbrett besteht aus (A, \overline{a}) und (B, b).
- Eine Partie des Spiels besteht aus m Runden. In jeder Runde $i \in \{1, \dots, m\}$ geschieht Folgendes:
 - 1. Zunächst wählt Spoiler entweder ein Element in A

- Es gibt 2 Spieler, genannt Spoiler (kurz: Sp) und Duplicator (kurz: Dupl).
- Das Spielbrett besteht aus (A, \overline{a}) und (B, \overline{b}) .
- Eine Partie des Spiels besteht aus m Runden. In jeder Runde $i \in \{1, \dots, m\}$ geschieht Folgendes:
 - 1. Zunächst wählt Spoiler entweder ein Element in A, das im Folgenden mit a_{k+i} bezeichnet wird

- Es gibt 2 Spieler, genannt Spoiler (kurz: Sp) und Duplicator (kurz: Dupl).
- Das Spielbrett besteht aus (A, \overline{a}) und (B, \overline{b}) .
- Eine Partie des Spiels besteht aus m Runden. In jeder Runde $i \in \{1, \dots, m\}$ geschieht Folgendes:
 - 1. Zunächst wählt Spoiler entweder ein Element in A, das im Folgenden mit a_{k+i} bezeichnet wird, oder er wählt ein Element in B

- Es gibt 2 Spieler, genannt Spoiler (kurz: Sp) und Duplicator (kurz: Dupl).
- Das Spielbrett besteht aus (A, \overline{a}) und (B, \overline{b}) .
- Eine Partie des Spiels besteht aus m Runden. In jeder Runde $i \in \{1, ..., m\}$ geschieht Folgendes:
 - 1. Zunächst wählt Spoiler entweder ein Element in A, das im Folgenden mit a_{k+i} bezeichnet wird, oder er wählt ein Element in B, das im Folgenden mit b_{k+i} bezeichnet wird.

- Es gibt 2 Spieler, genannt Spoiler (kurz: Sp) und Duplicator (kurz: Dupl).
- Das Spielbrett besteht aus (A, \overline{a}) und (B, \overline{b}) .
- Eine Partie des Spiels besteht aus m Runden. In jeder Runde $i \in \{1, ..., m\}$ geschieht Folgendes:
 - 1. Zunächst wählt Spoiler entweder ein Element in A, das im Folgenden mit a_{k+i} bezeichnet wird, oder er wählt ein Element in B, das im Folgenden mit b_{k+i} bezeichnet wird.

Beachte: Insbes. kann Spoiler in jeder Runde neu entscheiden, in welcher der beiden Strukturen er ein Element wählen möchte.

- Es gibt 2 Spieler, genannt Spoiler (kurz: Sp) und Duplicator (kurz: Dupl).
- Das Spielbrett besteht aus (A, \overline{a}) und (B, \overline{b}) .
- Eine Partie des Spiels besteht aus m Runden. In jeder Runde $i \in \{1, \dots, m\}$ geschieht Folgendes:
 - 1. Zunächst wählt Spoiler entweder ein Element in A, das im Folgenden mit a_{k+i} bezeichnet wird, oder er wählt ein Element in B, das im Folgenden mit b_{k+i} bezeichnet wird.
 - Beachte: Insbes. kann Spoiler in jeder Runde neu entscheiden, in welcher der beiden Strukturen er ein Element wählen möchte.
 - 2. Danach antwortet Duplicator mit einem Element aus dem Universum der anderen Struktur

Spielregeln des m-Runden EF-Spiels auf $(\mathcal{A}, \overline{a})$ und (\mathcal{B}, b)

- Es gibt 2 Spieler, genannt Spoiler (kurz: Sp) und Duplicator (kurz: Dupl).
- Das Spielbrett besteht aus (A, \overline{a}) und (B, \overline{b}) .
- Eine Partie des Spiels besteht aus m Runden. In jeder Runde $i \in \{1, ..., m\}$ geschieht Folgendes:
 - 1. Zunächst wählt Spoiler entweder ein Element in A, das im Folgenden mit a_{k+i} bezeichnet wird, oder er wählt ein Element in B, das im Folgenden mit b_{k+i} bezeichnet wird.
 - Beachte: Insbes. kann Spoiler in jeder Runde neu entscheiden, in welcher der beiden Strukturen er ein Element wählen möchte.
 - 2. Danach antwortet Duplicator mit einem Element aus dem Universum der anderen Struktur, d.h. er wählt ein $b_{k+i} \in B$, falls Spoiler ein $a_{k+i} \in A$ gewählt hat

- Es gibt 2 Spieler, genannt Spoiler (kurz: *Sp*) und Duplicator (kurz: *Dupl*).
- Das Spielbrett besteht aus (A, \overline{a}) und (B, \overline{b}) .
- Eine Partie des Spiels besteht aus m Runden. In jeder Runde $i \in \{1, \dots, m\}$ geschieht Folgendes:
 - Zunächst wählt Spoiler entweder ein Element in A, das im Folgenden mit a_{k+i} bezeichnet wird, oder er wählt ein Element in B, das im Folgenden mit b_{k+i} bezeichnet wird.
 - Beachte: Insbes. kann Spoiler in jeder Runde neu entscheiden, in welcher der beiden Strukturen er ein Element wählen möchte.
 - 2. Danach antwortet Duplicator mit einem Element aus dem Universum der anderen Struktur, d.h. er wählt ein $b_{k+i} \in B$, falls Spoiler ein $a_{k+i} \in A$ gewählt hat, bzw. ein Element $a_{k+i} \in A$, falls Spoiler ein $b_{k+i} \in B$ gewählt hat.

- Es gibt 2 Spieler, genannt Spoiler (kurz: Sp) und Duplicator (kurz: Dupl).
- Das Spielbrett besteht aus (A, \overline{a}) und (B, \overline{b}) .
- Eine Partie des Spiels besteht aus m Runden. In jeder Runde $i \in \{1, ..., m\}$ geschieht Folgendes:
 - 1. Zunächst wählt Spoiler entweder ein Element in A, das im Folgenden mit a_{k+i} bezeichnet wird, oder er wählt ein Element in B, das im Folgenden mit b_{k+i} bezeichnet wird.
 - Beachte: Insbes. kann Spoiler in jeder Runde neu entscheiden, in welcher der beiden Strukturen er ein Element wählen möchte.
 - 2. Danach antwortet Duplicator mit einem Element aus dem Universum der anderen Struktur, d.h. er wählt ein $b_{k+i} \in B$, falls Spoiler ein $a_{k+i} \in A$ gewählt hat, bzw. ein Element $a_{k+i} \in A$, falls Spoiler ein $b_{k+i} \in B$ gewählt hat.

Nach Runde m ist die Partie beendet und der Gewinner wird wie folgt ermittelt:

Duplicator hat gewonnen, falls die beiden folgenden Bedingungen erfüllt sind.

(1) Für alle $j, j' \in \{1, \dots, k+m\}$ gilt: $a_j = a_{j'} \iff b_j = b_{j'}$.

Duplicator hat gewonnen, falls die beiden folgenden Bedingungen erfüllt sind.

- (1) Für alle $j,j'\in\{1,\ldots,k+m\}$ gilt: $a_j=a_{j'}\iff b_j=b_{j'}.$
- (2) Die Abbildung $\pi: \{a_1, \ldots, a_{k+m}\} \rightarrow \{b_1, \ldots, b_{k+m}\}$ mit

$$\pi(a_j) := b_j$$
, für jedes $j \in \{1, \dots, k+m\}$

ist

Duplicator hat gewonnen, falls die beiden folgenden Bedingungen erfüllt sind.

- (1) Für alle $j, j' \in \{1, \dots, k+m\}$ gilt: $a_j = a_{j'} \iff b_j = b_{j'}$.
- (2) Die Abbildung $\pi: \{a_1, \ldots, a_{k+m}\} \to \{b_1, \ldots, b_{k+m}\}$ mit

$$\pi(a_j) := b_j$$
, für jedes $j \in \{1, \dots, k+m\}$

ist ein partieller Isomorphismus von A nach B (siehe Definition 3.47).

Duplicator hat gewonnen, falls die beiden folgenden Bedingungen erfüllt sind.

- (1) Für alle $j, j' \in \{1, \dots, k+m\}$ gilt: $a_j = a_{j'} \iff b_j = b_{j'}$.
- (2) Die Abbildung $\pi: \{a_1, \ldots, a_{k+m}\} \rightarrow \{b_1, \ldots, b_{k+m}\}$ mit

$$\pi(a_j) := b_j$$
, für jedes $j \in \{1, \ldots, k+m\}$

ist ein partieller Isomorphismus von A nach B (siehe Definition 3.47).

Spoiler hat gewonnen, falls mindestens eine der beiden obigen Bedingungen verletzt ist.

Duplicator hat gewonnen, falls die beiden folgenden Bedingungen erfüllt sind.

- (1) Für alle $j, j' \in \{1, \ldots, k+m\}$ gilt: $a_j = a_{j'} \iff b_j = b_{j'}$.
- (2) Die Abbildung $\pi: \{a_1, \ldots, a_{k+m}\} \to \{b_1, \ldots, b_{k+m}\}$ mit

$$\pi(a_j) := b_j$$
, für jedes $j \in \{1, \dots, k+m\}$

ist ein partieller Isomorphismus von A nach B (siehe Definition 3.47).

Spoiler hat gewonnen, falls mindestens eine der beiden obigen Bedingungen verletzt ist.

Definition 3.47 (partieller Isomorphismus)

Sei σ eine relationale Signatur, seien \mathcal{A},\mathcal{B} zwei σ -Strukturen, sei $X\subseteq A$. Eine Abbildung $\pi:X\to B$ heißt partieller Isomorphismus von \mathcal{A} nach \mathcal{B} , falls gilt:

Duplicator hat gewonnen, falls die beiden folgenden Bedingungen erfüllt sind.

- (1) Für alle $j, j' \in \{1, \dots, k+m\}$ gilt: $a_j = a_{j'} \iff b_j = b_{j'}$.
- (2) Die Abbildung $\pi: \{a_1, \ldots, a_{k+m}\} \rightarrow \{b_1, \ldots, b_{k+m}\}$ mit

$$\pi(a_j) := b_j$$
, für jedes $j \in \{1, \dots, k+m\}$

ist ein partieller Isomorphismus von A nach B (siehe Definition 3.47).

Spoiler hat gewonnen, falls mindestens eine der beiden obigen Bedingungen verletzt ist.

Definition 3.47 (partieller Isomorphismus)

Sei σ eine relationale Signatur, seien \mathcal{A}, \mathcal{B} zwei σ -Strukturen, sei $X \subseteq A$. Eine Abbildung $\pi: X \to B$ heißt partieller Isomorphismus von \mathcal{A} nach \mathcal{B} , falls gilt:

(1) π ist injektiv und

Duplicator hat gewonnen, falls die beiden folgenden Bedingungen erfüllt sind.

- (1) Für alle $j, j' \in \{1, \dots, k+m\}$ gilt: $a_j = a_{j'} \iff b_j = b_{j'}$.
- (2) Die Abbildung $\pi: \{a_1, \ldots, a_{k+m}\} \rightarrow \{b_1, \ldots, b_{k+m}\}$ mit

$$\pi(a_j) := b_j$$
, für jedes $j \in \{1, \dots, k+m\}$

ist ein partieller Isomorphismus von A nach B (siehe Definition 3.47).

Spoiler hat gewonnen, falls mindestens eine der beiden obigen Bedingungen verletzt ist.

Definition 3.47 (partieller Isomorphismus)

Sei σ eine relationale Signatur, seien \mathcal{A}, \mathcal{B} zwei σ -Strukturen, sei $X \subseteq A$. Eine Abbildung $\pi: X \to B$ heißt partieller Isomorphismus von \mathcal{A} nach \mathcal{B} , falls gilt:

- (1) π ist injektiv und
- (2) für jedes $R \in \sigma$, für r := ar(R) und für alle $(x_1, \dots, x_r) \in X^r$ gilt:

$$(x_1,\ldots,x_r)\in R^{\mathcal{A}}\iff (\pi(x_1),\ldots,\pi(x_r))\in R^{\mathcal{B}}.$$

Beispiel 3.48

Sei $\sigma := \{ E/2 \}$ und sei k := 0.

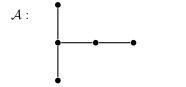
Beispiel 3.48

Sei $\sigma := \{ E/2 \}$ und sei k := 0.

In den folgenden Darstellungen von Graphen repräsentiert jede ungerichtete Kante zwischen Knoten x, y die beiden gerichteten Kanten (x, y) und (y, x).

(a) Betrachte die folgenden beiden Graphen \mathcal{A}, \mathcal{B} .

(b) Betrachte die beiden folgenden Graphen \mathcal{A}, \mathcal{B} .



Die Gewinnbedingung im EF-Spiel ist so gewählt, dass die Ziele von Spoiler und Duplicator anschaulich folgendermaßen beschrieben werden können:

Spoilers Ziel ist es,

Die Gewinnbedingung im EF-Spiel ist so gewählt, dass die Ziele von Spoiler und Duplicator anschaulich folgendermaßen beschrieben werden können:

• Spoilers Ziel ist es, zu zeigen, dass die beiden Strukturen (A, \overline{a}) und (B, \overline{b}) verschieden sind.

Die Gewinnbedingung im EF-Spiel ist so gewählt, dass die Ziele von Spoiler und Duplicator anschaulich folgendermaßen beschrieben werden können:

- Spoilers Ziel ist es, zu zeigen, dass die beiden Strukturen (A, \overline{a}) und (B, \overline{b}) verschieden sind.
- Duplicators Ziel ist es,

Die Gewinnbedingung im EF-Spiel ist so gewählt, dass die Ziele von Spoiler und Duplicator anschaulich folgendermaßen beschrieben werden können:

- Spoilers Ziel ist es, zu zeigen, dass die beiden Strukturen (A, \overline{a}) und (B, \overline{b}) verschieden sind.
- Duplicators Ziel ist es, einen etwaigen Unterschied zwischen den beiden Strukturen zu vertuschen.

Gewinnstrategien

Eine Strategie für einen der beiden Spieler im m-Runden EF-Spiel auf $(\mathcal{A}, \overline{a})$ und $(\mathcal{B}, \overline{b})$ ist eine Vorschrift, die ihm sagt, welchen Zug er als Nächstes machen soll.

Gewinnstrategien

Eine Strategie für einen der beiden Spieler im m-Runden EF-Spiel auf $(\mathcal{A}, \overline{a})$ und $(\mathcal{B}, \overline{b})$ ist eine Vorschrift, die ihm sagt, welchen Zug er als Nächstes machen soll. Formal:

Eine Strategie für Spoiler ist eine Abbildung

$$f_{Sp}: \bigcup_{i=0}^{m-1} (A \times B)^i \longrightarrow A \cup B.$$

Gewinnstrategien

Eine Strategie für einen der beiden Spieler im m-Runden EF-Spiel auf $(\mathcal{A}, \overline{a})$ und $(\mathcal{B}, \overline{b})$ ist eine Vorschrift, die ihm sagt, welchen Zug er als Nächstes machen soll. Formal:

Eine Strategie für Spoiler ist eine Abbildung

$$f_{Sp}: \bigcup_{i=0}^{m-1} (A \times B)^i \longrightarrow A \cup B.$$

Sind $a_{k+1}, \ldots, a_{k+i} \in A$ und $b_{k+1}, \ldots, b_{k+i} \in B$ die in den ersten i Runden gewählten Elemente, so gibt

$$f_{Sp}(a_{k+1}, b_{k+1}, \ldots, a_{k+i}, b_{k+i})$$

an, welches Element Spoiler in der (i+1)-ten Runde wählen soll.

• Eine Strategie für Duplicator ist eine Abbildung

$$f_{Dupl}: \bigcup_{i=0}^{m-1} (A \times B)^i \times (A \cup B) \longrightarrow B \cup A,$$

Eine Strategie für Duplicator ist eine Abbildung

$$f_{Dupl}: \bigcup_{i=0}^{m-1} (A \times B)^i \times (A \cup B) \longrightarrow B \cup A,$$

so dass für alle $i \in \{0, \dots, m-1\}$, alle $a_{k+1}, \dots, a_{k+i} \in A$, alle $b_{k+1}, \dots, b_{k+i} \in B$ und alle $c_{k+i+1} \in A \cup B$ gilt:

$$c_{k+i+1} \in A \quad \iff \quad f_{Dupl}(a_{k+1}, b_{k+1}, \dots, a_{k+i}, b_{k+i}, c_{k+i+1}) \in B.$$

Eine Strategie für Duplicator ist eine Abbildung

$$f_{Dupl}: \bigcup_{i=0}^{m-1} (A \times B)^i \times (A \cup B) \longrightarrow B \cup A,$$

so dass für alle $i \in \{0, \dots, m-1\}$, alle $a_{k+1}, \dots, a_{k+i} \in A$, alle $b_{k+1}, \dots, b_{k+i} \in B$ und alle $c_{k+i+1} \in A \cup B$ gilt:

$$c_{k+i+1} \in A \iff f_{Dupl}(a_{k+1}, b_{k+1}, \dots, a_{k+i}, b_{k+i}, c_{k+i+1}) \in B.$$

Sind $a_{k+1},\ldots,a_{k+i}\in A$ und $b_{k+1},\ldots,b_{k+i}\in B$ die in den ersten i Runden und ist $c_{k+i+1}\in A\cup B$ das von Spoiler in Runde i+1 gewählte Element, so gibt

$$f_{Dupl}(a_{k+1}, b_{k+1}, \dots, a_{k+i}, b_{k+i}, c_{k+i+1})$$

an, welches Element Duplicator in der (i+1)-ten Runde wählen soll.

• Eine Strategie für Duplicator ist eine Abbildung

$$f_{Dupl}: \bigcup_{i=0}^{m-1} (A \times B)^i \times (A \cup B) \longrightarrow B \cup A,$$

so dass für alle $i \in \{0, \dots, m-1\}$, alle $a_{k+1}, \dots, a_{k+i} \in A$, alle $b_{k+1}, \dots, b_{k+i} \in B$ und alle $c_{k+i+1} \in A \cup B$ gilt:

$$c_{k+i+1} \in A \iff f_{Dupl}(a_{k+1}, b_{k+1}, \dots, a_{k+i}, b_{k+i}, c_{k+i+1}) \in B.$$

Sind $a_{k+1}, \ldots, a_{k+i} \in A$ und $b_{k+1}, \ldots, b_{k+i} \in B$ die in den ersten i Runden und ist $c_{k+i+1} \in A \cup B$ das von Spoiler in Runde i+1 gewählte Element, so gibt

$$f_{Dupl}(a_{k+1}, b_{k+1}, \dots, a_{k+i}, b_{k+i}, c_{k+i+1})$$

an, welches Element Duplicator in der (i+1)-ten Runde wählen soll.

• Eine Gewinnstrategie ist eine Strategie für einen der beiden Spieler, mit der er jede Partie des m-Runden EF-Spiels auf $(\mathcal{A}, \overline{a})$ und $(\mathcal{B}, \overline{b})$ gewinnt.

Sei σ eine relationale Signatur, seien \mathcal{A},\mathcal{B} zwei σ -Strukturen, sei $m\in\mathbb{N}$, sei $k\in\mathbb{N}$, sei $\overline{a}=a_1,\ldots,a_k\in\mathcal{A}$ und $\overline{b}=b_1,\ldots,b_k\in\mathcal{B}$.

Sei σ eine relationale Signatur, seien A, B zwei σ -Strukturen, sei $m \in \mathbb{N}$, sei $k \in \mathbb{N}$, sei $\overline{a} = a_1, \ldots, a_k \in A$ und $\overline{b} = b_1, \ldots, b_k \in B$.

Der Satz von Ehrenfeucht besagt, dass die beiden folgenden Aussagen äquivalent sind:

- (1) Duplicator hat eine Gewinnstrategie im m-Runden EF-Spiel auf $(\mathcal{A}, \overline{a})$ und $(\mathcal{B}, \overline{b})$.
- (2) Für jede FO[σ]-Formel $\varphi(x_1, \ldots, x_k)$ der Quantorentiefe $\leqslant m$ gilt:

$$\mathcal{A} \models \varphi[a_1,\ldots,a_k] \iff \mathcal{B} \models \varphi[b_1,\ldots,b_k].$$

Sei σ eine relationale Signatur, seien A, B zwei σ -Strukturen, sei $m \in \mathbb{N}$, sei $k \in \mathbb{N}$, sei $\overline{a} = a_1, \ldots, a_k \in A$ und $\overline{b} = b_1, \ldots, b_k \in B$.

Der Satz von Ehrenfeucht besagt, dass die beiden folgenden Aussagen äquivalent sind:

- (1) Duplicator hat eine Gewinnstrategie im m-Runden EF-Spiel auf $(\mathcal{A}, \overline{a})$ und $(\mathcal{B}, \overline{b})$.
- (2) Für jede FO[σ]-Formel $\varphi(x_1, \ldots, x_k)$ der Quantorentiefe $\leqslant m$ gilt:

$$\mathcal{A} \models \varphi[a_1,\ldots,a_k] \iff \mathcal{B} \models \varphi[b_1,\ldots,b_k].$$

Die Quantorentiefe einer Formel φ ist dabei die maximale Anzahl von ineinander geschachtelten Quantoren, die in φ vorkommen:

Sei σ eine relationale Signatur, seien A, B zwei σ -Strukturen, sei $m \in \mathbb{N}$, sei $k \in \mathbb{N}$, sei $\overline{a} = a_1, \ldots, a_k \in A$ und $\overline{b} = b_1, \ldots, b_k \in B$.

Der Satz von Ehrenfeucht besagt, dass die beiden folgenden Aussagen äquivalent sind:

- (1) Duplicator hat eine Gewinnstrategie im m-Runden EF-Spiel auf $(\mathcal{A}, \overline{a})$ und $(\mathcal{B}, \overline{b})$.
- (2) Für jede FO[σ]-Formel $\varphi(x_1, \ldots, x_k)$ der Quantorentiefe $\leqslant m$ gilt:

$$\mathcal{A} \models \varphi[a_1,\ldots,a_k] \iff \mathcal{B} \models \varphi[b_1,\ldots,b_k].$$

Anschaulich bedeutet dies, dass $(\mathcal{A}, \overline{a})$ und $(\mathcal{B}, \overline{b})$ aus Perspektive von FO $[\sigma]$ -Formeln der Quantorentiefe $\leqslant m$ "gleich" aussehen, d.h. dass $(\mathcal{A}, \overline{a})$ und $(\mathcal{B}, \overline{b})$ von solchen Formeln <u>nicht</u> unterschieden werden können.

Die Quantorentiefe einer Formel φ ist dabei die maximale Anzahl von ineinander geschachtelten Quantoren, die in φ vorkommen:

Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) $qr(\varphi)$ einer $FO[\sigma]$ -Formel φ ist rekursiv wie folgt definiert:

• Ist φ atomar, so ist $qr(\varphi) :=$

Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) $qr(\varphi)$ einer $FO[\sigma]$ -Formel φ ist rekursiv wie folgt definiert:

• Ist φ atomar, so ist $qr(\varphi) := 0$.

- Ist φ atomar, so ist $qr(\varphi) := 0$.
- Ist φ von der Form $\neg \psi$, so ist $\operatorname{qr}(\varphi) :=$

- Ist φ atomar, so ist $qr(\varphi) := 0$.
- Ist φ von der Form $\neg \psi$, so ist $qr(\varphi) := qr(\psi)$.

- Ist φ atomar, so ist $qr(\varphi) := 0$.
- Ist φ von der Form $\neg \psi$, so ist $qr(\varphi) := qr(\psi)$.
- Ist φ von der Form $(\psi_1 * \psi_2)$ mit $* \in \{\land, \lor, \rightarrow\}$, so ist $\operatorname{qr}(\varphi) :=$

- Ist φ atomar, so ist $qr(\varphi) := 0$.
- Ist φ von der Form $\neg \psi$, so ist $qr(\varphi) := qr(\psi)$.
- Ist φ von der Form $(\psi_1 * \psi_2)$ mit $* \in \{\land, \lor, \rightarrow\}$, so ist $\operatorname{qr}(\varphi) := \max\{\operatorname{qr}(\psi_1), \operatorname{qr}(\psi_2)\}.$

- Ist φ atomar, so ist $qr(\varphi) := 0$.
- Ist φ von der Form $\neg \psi$, so ist $qr(\varphi) := qr(\psi)$.
- Ist φ von der Form $(\psi_1 * \psi_2)$ mit $* \in \{\land, \lor, \rightarrow\}$, so ist $\operatorname{qr}(\varphi) := \max\{\operatorname{qr}(\psi_1), \operatorname{qr}(\psi_2)\}.$
- Ist φ von der Form $\exists x \, \psi$ oder $\forall x \, \psi$, so ist $\operatorname{qr}(\varphi) :=$

- Ist φ atomar, so ist $qr(\varphi) := 0$.
- Ist φ von der Form $\neg \psi$, so ist $qr(\varphi) := qr(\psi)$.
- Ist φ von der Form $(\psi_1 * \psi_2)$ mit $* \in \{\land, \lor, \rightarrow\}$, so ist $\operatorname{qr}(\varphi) := \max\{\operatorname{qr}(\psi_1), \operatorname{qr}(\psi_2)\}.$
- Ist φ von der Form $\exists x \, \psi$ oder $\forall x \, \psi$, so ist $\operatorname{qr}(\varphi) := \operatorname{qr}(\psi) + 1$.

Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) $qr(\varphi)$ einer $FO[\sigma]$ -Formel φ ist rekursiv wie folgt definiert:

- Ist φ atomar, so ist $qr(\varphi) := 0$.
- Ist φ von der Form $\neg \psi$, so ist $qr(\varphi) := qr(\psi)$.
- Ist φ von der Form $(\psi_1 * \psi_2)$ mit $* \in \{\land, \lor, \rightarrow\}$, so ist $\operatorname{qr}(\varphi) := \max\{\operatorname{qr}(\psi_1), \operatorname{qr}(\psi_2)\}.$
- Ist φ von der Form $\exists x \, \psi$ oder $\forall x \, \psi$, so ist $\operatorname{qr}(\varphi) := \operatorname{qr}(\psi) + 1$.

Beispiele:

• qr $(\exists x \forall y (x=y \lor E(x,y))) =$

Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) $qr(\varphi)$ einer $FO[\sigma]$ -Formel φ ist rekursiv wie folgt definiert:

- Ist φ atomar, so ist $qr(\varphi) := 0$.
- Ist φ von der Form $\neg \psi$, so ist $qr(\varphi) := qr(\psi)$.
- Ist φ von der Form $(\psi_1 * \psi_2)$ mit $* \in \{\land, \lor, \rightarrow\}$, so ist $\operatorname{qr}(\varphi) := \max\{\operatorname{qr}(\psi_1), \operatorname{qr}(\psi_2)\}.$
- Ist φ von der Form $\exists x \, \psi$ oder $\forall x \, \psi$, so ist $\operatorname{qr}(\varphi) := \operatorname{qr}(\psi) + 1$.

Beispiele:

• qr $(\exists x \forall y (x=y \lor E(x,y))) = 2$.

Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) $qr(\varphi)$ einer $FO[\sigma]$ -Formel φ ist rekursiv wie folgt definiert:

- Ist φ atomar, so ist $qr(\varphi) := 0$.
- Ist φ von der Form $\neg \psi$, so ist $qr(\varphi) := qr(\psi)$.
- Ist φ von der Form $(\psi_1 * \psi_2)$ mit $* \in \{\land, \lor, \rightarrow\}$, so ist $\operatorname{qr}(\varphi) := \max\{\operatorname{qr}(\psi_1), \operatorname{qr}(\psi_2)\}.$
- Ist φ von der Form $\exists x \, \psi$ oder $\forall x \, \psi$, so ist $\operatorname{qr}(\varphi) := \operatorname{qr}(\psi) + 1$.

- qr $(\exists x \forall y (x=y \lor E(x,y))) = 2$.
- qr $(\exists x (E(x,x) \lor \forall y \neg E(x,y))) =$

Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) $qr(\varphi)$ einer $FO[\sigma]$ -Formel φ ist rekursiv wie folgt definiert:

- Ist φ atomar, so ist $qr(\varphi) := 0$.
- Ist φ von der Form $\neg \psi$, so ist $qr(\varphi) := qr(\psi)$.
- Ist φ von der Form $(\psi_1 * \psi_2)$ mit $* \in \{\land, \lor, \rightarrow\}$, so ist $\operatorname{qr}(\varphi) := \max\{\operatorname{qr}(\psi_1), \operatorname{qr}(\psi_2)\}.$
- Ist φ von der Form $\exists x \, \psi$ oder $\forall x \, \psi$, so ist $\operatorname{qr}(\varphi) := \operatorname{qr}(\psi) + 1$.

- qr $(\exists x \forall y (x=y \lor E(x,y))) = 2$.
- qr $(\exists x (E(x,x) \lor \forall y \neg E(x,y))) = 2.$

Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) $qr(\varphi)$ einer $FO[\sigma]$ -Formel φ ist rekursiv wie folgt definiert:

- Ist φ atomar, so ist $qr(\varphi) := 0$.
- Ist φ von der Form $\neg \psi$, so ist $qr(\varphi) := qr(\psi)$.
- Ist φ von der Form $(\psi_1 * \psi_2)$ mit $* \in \{\land, \lor, \rightarrow\}$, so ist $\operatorname{qr}(\varphi) := \max\{\operatorname{qr}(\psi_1), \operatorname{qr}(\psi_2)\}.$
- Ist φ von der Form $\exists x \, \psi$ oder $\forall x \, \psi$, so ist $\operatorname{qr}(\varphi) := \operatorname{qr}(\psi) + 1$.

- qr $(\exists x \forall y (x=y \lor E(x,y))) = 2$.
- qr $(\exists x (E(x,x) \lor \forall y \neg E(x,y))) = 2.$
- qr $((\exists x E(x,x) \lor \forall y \neg E(x,y)))$ =

Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) $qr(\varphi)$ einer $FO[\sigma]$ -Formel φ ist rekursiv wie folgt definiert:

- Ist φ atomar, so ist $qr(\varphi) := 0$.
- Ist φ von der Form $\neg \psi$, so ist $qr(\varphi) := qr(\psi)$.
- Ist φ von der Form $(\psi_1 * \psi_2)$ mit $* \in \{\land, \lor, \rightarrow\}$, so ist $\operatorname{qr}(\varphi) := \max\{\operatorname{qr}(\psi_1), \operatorname{qr}(\psi_2)\}.$
- Ist φ von der Form $\exists x \, \psi$ oder $\forall x \, \psi$, so ist $\operatorname{qr}(\varphi) := \operatorname{qr}(\psi) + 1$.

- qr $(\exists x \forall y (x=y \lor E(x,y))) = 2$.
- qr $(\exists x (E(x,x) \lor \forall y \neg E(x,y))) = 2.$
- qr $(\exists x E(x,x) \lor \forall y \neg E(x,y))$ = 1.

Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) $qr(\varphi)$ einer $FO[\sigma]$ -Formel φ ist rekursiv wie folgt definiert:

- Ist φ atomar, so ist $qr(\varphi) := 0$.
- Ist φ von der Form $\neg \psi$, so ist $qr(\varphi) := qr(\psi)$.
- Ist φ von der Form $(\psi_1 * \psi_2)$ mit $* \in \{\land, \lor, \rightarrow\}$, so ist $\operatorname{qr}(\varphi) := \max\{\operatorname{qr}(\psi_1), \operatorname{qr}(\psi_2)\}.$
- Ist φ von der Form $\exists x \, \psi$ oder $\forall x \, \psi$, so ist $\operatorname{qr}(\varphi) := \operatorname{qr}(\psi) + 1$.

Beispiele:

- qr $(\exists x \forall y (x=y \lor E(x,y))) = 2$.
- qr $(\exists x (E(x,x) \lor \forall y \neg E(x,y))) = 2.$
- qr $(\exists x E(x,x) \lor \forall y \neg E(x,y))$ = 1.

Bemerkung 3.50

Gemäß Satz 3.46 ist jede $FO[\sigma]$ -Formel φ äquivalent zu einer $FO[\sigma]$ -Formel φ' , in der nur Existenzquantoren und die Junktoren \neg, \lor vorkommen (d.h.: in φ' kommt keins der Symbole $\forall, \land, \rightarrow$ vor).

Die Quantorentiefe (bzw. der Quantorenrang, engl.: quantifier rank) $qr(\varphi)$ einer $FO[\sigma]$ -Formel φ ist rekursiv wie folgt definiert:

- Ist φ atomar, so ist $qr(\varphi) := 0$.
- Ist φ von der Form $\neg \psi$, so ist $qr(\varphi) := qr(\psi)$.
- Ist φ von der Form $(\psi_1 * \psi_2)$ mit $* \in \{\land, \lor, \rightarrow\}$, so ist $\operatorname{qr}(\varphi) := \max\{\operatorname{qr}(\psi_1), \operatorname{qr}(\psi_2)\}.$
- Ist φ von der Form $\exists x \, \psi$ oder $\forall x \, \psi$, so ist $\operatorname{qr}(\varphi) := \operatorname{qr}(\psi) + 1$.

Beispiele:

- qr $(\exists x \forall y (x=y \lor E(x,y))) = 2$.
- qr $(\exists x (E(x,x) \lor \forall y \neg E(x,y))) = 2.$
- qr $(\exists x E(x,x) \lor \forall y \neg E(x,y))$ = 1.

Bemerkung 3.50

Gemäß Satz 3.46 ist jede $FO[\sigma]$ -Formel φ äquivalent zu einer $FO[\sigma]$ -Formel φ' , in der nur Existenzquantoren und die Junktoren \neg, \lor vorkommen (d.h.: in φ' kommt keins der Symbole $\forall, \land, \rightarrow$ vor). Man sieht leicht, dass φ' sogar so gewählt werden kann, dass gilt: $\operatorname{qr}(\varphi') = \operatorname{qr}(\varphi)$ und $\operatorname{frei}(\varphi') = \operatorname{frei}(\varphi)$.

Satz 3.51 (Satz von Ehrenfeucht, einfache Version)

Sei σ eine relationale Signatur und seien A, B zwei σ -Strukturen,

Satz 3.51 (Satz von Ehrenfeucht, einfache Version)

Sei σ eine relationale Signatur und seien A, B zwei σ -Strukturen, sei $m \in \mathbb{N}$,

Satz 3.51 (Satz von Ehrenfeucht, einfache Version)

Sei σ eine relationale Signatur und seien A, B zwei σ -Strukturen, sei $m \in \mathbb{N}$, sei $k \in \mathbb{N}$, sei $\overline{a} = a_1, \ldots, a_k \in A$ und sei $\overline{b} = b_1, \ldots, b_k \in B$.

Satz 3.51 (Satz von Ehrenfeucht, einfache Version)

Sei σ eine relationale Signatur und seien A, B zwei σ -Strukturen, sei $m \in \mathbb{N}$, sei $k \in \mathbb{N}$, sei $\overline{a} = a_1, \ldots, a_k \in A$ und sei $\overline{b} = b_1, \ldots, b_k \in B$.

Falls es eine FO[σ]-Formel $\varphi(x_1, \ldots, x_k)$ mit frei $(\varphi) \subseteq \{x_1, \ldots, x_k\}$ und $\operatorname{qr}(\varphi) \leqslant m$ gibt, so dass

$$\mathcal{A} \models \varphi[a_1,\ldots,a_k]$$
 und $\mathcal{B} \not\models \varphi[b_1,\ldots,b_k],$

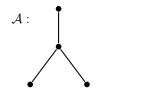
so hat Spoiler eine Gewinnstrategie im m-Runden EF-Spiel auf (A, \overline{a}) und (B, \overline{b}) .

Beweisidee

Zunächst illustrieren wir die Beweisidee an einem Beispiel. Betrachte dazu die Formel

$$\varphi := \exists x_1 \forall x_2 \ (x_1 = x_2 \lor E(x_1, x_2))$$

und die beiden Graphen A, B aus Beispiel 3.48(a).



3:

Es gilt: $\mathcal{A} \models \varphi$ und $\mathcal{B} \not\models \varphi$, d.h. $\mathcal{B} \models \neg \varphi$.

Per Induktion über den Aufbau von Formeln.

Per Induktion über den Aufbau von Formeln. Es seien eine relationale Signatur σ und zwei σ -Strukturen \mathcal{A} und \mathcal{B} gegeben. Die Aussage $\mathbb{A}(\varphi)$, die wir für alle FO[σ]-Formeln φ beweisen wollen, besagt Folgendes:

Per Induktion über den Aufbau von Formeln. Es seien eine relationale Signatur σ und zwei σ -Strukturen $\mathcal A$ und $\mathcal B$ gegeben. Die Aussage $\mathbb A(\varphi)$, die wir für alle FO[σ]-Formeln φ beweisen wollen, besagt Folgendes:

Für alle $m,k\in\mathbb{N}$, alle $\overline{a}=a_1,\ldots,a_k\in A$ und alle $\overline{b}=b_1,\ldots,b_k\in B$ gilt:

Falls
$$qr(\varphi) \leqslant m$$

Per Induktion über den Aufbau von Formeln. Es seien eine relationale Signatur σ und zwei σ -Strukturen $\mathcal A$ und $\mathcal B$ gegeben. Die Aussage $\mathbb A(\varphi)$, die wir für alle FO[σ]-Formeln φ beweisen wollen, besagt Folgendes:

Für alle $m, k \in \mathbb{N}$, alle $\overline{a} = a_1, \dots, a_k \in A$ und alle $\overline{b} = b_1, \dots, b_k \in B$ gilt:

Falls $qr(\varphi) \leqslant m$ und $|frei(\varphi)| \leqslant k$

Per Induktion über den Aufbau von Formeln. Es seien eine relationale Signatur σ und zwei σ -Strukturen $\mathcal A$ und $\mathcal B$ gegeben. Die Aussage $\mathbb A(\varphi)$, die wir für alle FO[σ]-Formeln φ beweisen wollen, besagt Folgendes:

Für alle
$$m,k\in\mathbb{N}$$
, alle $\overline{a}=a_1,\ldots,a_k\in A$ und alle $\overline{b}=b_1,\ldots,b_k\in B$ gilt:

Falls
$$qr(\varphi) \leqslant m$$
 und $|frei(\varphi)| \leqslant k$ und

$$\mathcal{A} \models \varphi[a_1,\ldots,a_k] \iff \mathcal{B} \not\models \varphi[b_1,\ldots,b_k],$$

Per Induktion über den Aufbau von Formeln. Es seien eine relationale Signatur σ und zwei σ -Strukturen $\mathcal A$ und $\mathcal B$ gegeben. Die Aussage $\mathbb A(\varphi)$, die wir für alle FO[σ]-Formeln φ beweisen wollen, besagt Folgendes:

Für alle $m,k\in\mathbb{N}$, alle $\overline{a}=a_1,\ldots,a_k\in A$ und alle $\overline{b}=b_1,\ldots,b_k\in B$ gilt:

Falls $qr(\varphi) \leqslant m$ und $|frei(\varphi)| \leqslant k$ und

$$\mathcal{A} \models \varphi[a_1,\ldots,a_k] \iff \mathcal{B} \not\models \varphi[b_1,\ldots,b_k],$$

so hat Spoiler eine Gewinnstrategie im m-Runden EF-Spiel auf (A, \overline{a}) und (B, \overline{b}) .

Per Induktion über den Aufbau von Formeln. Es seien eine relationale Signatur σ und zwei σ -Strukturen $\mathcal A$ und $\mathcal B$ gegeben. Die Aussage $\mathbb A(\varphi)$, die wir für alle FO[σ]-Formeln φ beweisen wollen, besagt Folgendes:

Für alle $m,k\in\mathbb{N}$, alle $\overline{a}=a_1,\ldots,a_k\in A$ und alle $\overline{b}=b_1,\ldots,b_k\in B$ gilt:

Falls $qr(\varphi) \leqslant m$ und $|frei(\varphi)| \leqslant k$ und

$$\mathcal{A} \models \varphi[a_1,\ldots,a_k] \iff \mathcal{B} \not\models \varphi[b_1,\ldots,b_k],$$

so hat Spoiler eine Gewinnstrategie im m-Runden EF-Spiel auf $(\mathcal{A}, \overline{a})$ und $(\mathcal{B}, \overline{b})$.

Um $\mathbb{A}(\varphi)$ für eine gegebene Formel φ zu beweisen, seien im Folgenden $m, k \in \mathbb{N}$, $\overline{a} = a_1, \ldots, a_k \in A$ und $\overline{b} = b_1, \ldots, b_k \in B$ beliebig gewählt.

Per Induktion über den Aufbau von Formeln. Es seien eine relationale Signatur σ und zwei σ -Strukturen $\mathcal A$ und $\mathcal B$ gegeben. Die Aussage $\mathbb A(\varphi)$, die wir für alle FO[σ]-Formeln φ beweisen wollen, besagt Folgendes:

Für alle $m, k \in \mathbb{N}$, alle $\overline{a} = a_1, \dots, a_k \in A$ und alle $\overline{b} = b_1, \dots, b_k \in B$ gilt:

Falls $qr(\varphi) \leqslant m$ und $|frei(\varphi)| \leqslant k$ und

$$\mathcal{A} \models \varphi[\mathsf{a}_1,\ldots,\mathsf{a}_k] \iff \mathcal{B} \not\models \varphi[\mathsf{b}_1,\ldots,\mathsf{b}_k],$$

so hat Spoiler eine Gewinnstrategie im m-Runden EF-Spiel auf $(\mathcal{A}, \overline{a})$ und $(\mathcal{B}, \overline{b})$.

Um $\mathbb{A}(\varphi)$ für eine gegebene Formel φ zu beweisen, seien im Folgenden $m, k \in \mathbb{N}$, $\overline{a} = a_1, \ldots, a_k \in A$ und $\overline{b} = b_1, \ldots, b_k \in B$ beliebig gewählt. Es genügt, den Fall zu betrachten, in dem gilt:

$$(*): \quad m \geqslant \operatorname{qr}(\varphi), \quad k \geqslant |\operatorname{frei}(\varphi)| \quad \text{und} \quad \mathcal{A} \models \varphi[\overline{a}] \iff \mathcal{B} \not\models \varphi[b] \,,$$

denn andernfalls muss gemäß der Formulierung von $\mathbb{A}(\varphi)$ nichts gezeigt werden.

Folgerung aus dem Satz von Ehrenfeucht

Notation 3.52

Eine Klasse $\mathfrak C$ von σ -Strukturen heißt FO-definierbar, falls es einen FO[σ]-Satz φ gibt, der $\mathfrak C$ definiert.

Notation 3.52

Eine Klasse $\mathfrak C$ von σ -Strukturen heißt FO-definierbar, falls es einen FO[σ]-Satz φ gibt, der $\mathfrak C$ definiert.

Zur Erinnerung:

Für einen FO[σ]-Satz φ und eine Klasse $\mathfrak C$ von σ -Strukturen sagen wir " φ definiert $\mathfrak C$ ", falls für jede σ -Struktur $\mathcal A$ gilt: $\mathcal A \in \mathfrak C \iff \mathcal A \models \varphi$.

Notation 3.52

Eine Klasse $\mathfrak C$ von σ -Strukturen heißt FO-definierbar, falls es einen FO[σ]-Satz φ gibt, der $\mathfrak C$ definiert.

Zur Erinnerung:

Für einen $\mathsf{FO}[\sigma]$ -Satz φ und eine Klasse $\mathfrak C$ von σ -Strukturen sagen wir " φ definiert $\mathfrak C$ ", falls für jede σ -Struktur $\mathcal A$ gilt: $\mathcal A \in \mathfrak C \iff \mathcal A \models \varphi$.

Um für eine gegebene Klasse $\mathfrak C$ von σ -Strukturen zu zeigen, dass sie <u>nicht</u> FO-definierbar ist, können wir das folgende Korollar nutzen, das wir als eine einfache Folgerung aus Satz 3.51 erhalten.

Notation 3.52

Eine Klasse $\mathfrak C$ von σ -Strukturen heißt FO-definierbar, falls es einen FO[σ]-Satz φ gibt, der $\mathfrak C$ definiert.

Zur Erinnerung:

Für einen $\mathsf{FO}[\sigma]$ -Satz φ und eine Klasse $\mathfrak C$ von σ -Strukturen sagen wir " φ definiert $\mathfrak C$ ", falls für jede σ -Struktur $\mathcal A$ gilt: $\mathcal A \in \mathfrak C \iff \mathcal A \models \varphi$.

Um für eine gegebene Klasse $\mathfrak C$ von σ -Strukturen zu zeigen, dass sie <u>nicht</u> FO-definierbar ist, können wir das folgende Korollar nutzen, das wir als eine einfache Folgerung aus Satz 3.51 erhalten.

Korollar 3.53

Sei σ eine relationale Signatur und sei $\mathfrak C$ eine Klasse von σ -Strukturen.

Notation 3.52

Eine Klasse $\mathfrak C$ von σ -Strukturen heißt FO-definierbar, falls es einen FO[σ]-Satz φ gibt, der $\mathfrak C$ definiert.

Zur Erinnerung:

Für einen $\mathsf{FO}[\sigma]$ -Satz φ und eine Klasse $\mathfrak C$ von σ -Strukturen sagen wir " φ definiert $\mathfrak C$ ", falls für jede σ -Struktur $\mathcal A$ gilt: $\mathcal A \in \mathfrak C \iff \mathcal A \models \varphi$.

Um für eine gegebene Klasse $\mathfrak C$ von σ -Strukturen zu zeigen, dass sie <u>nicht</u> FO-definierbar ist, können wir das folgende Korollar nutzen, das wir als eine einfache Folgerung aus Satz 3.51 erhalten.

Korollar 3.53

Sei σ eine relationale Signatur und sei $\mathfrak C$ eine Klasse von σ -Strukturen. Falls es für jedes $m\geqslant 1$ zwei σ -Strukturen $\mathcal A_m$ und $\mathcal B_m$ gibt, so dass gilt:

- 1. $A_m \in \mathfrak{C}$ und
- $2. \quad \mathcal{B}_m \not\in \mathfrak{C}$

Notation 3.52

Eine Klasse $\mathfrak C$ von σ -Strukturen heißt FO-definierbar, falls es einen FO[σ]-Satz φ gibt, der $\mathfrak C$ definiert.

Zur Erinnerung:

Für einen FO[σ]-Satz φ und eine Klasse $\mathfrak C$ von σ -Strukturen sagen wir " φ definiert $\mathfrak C$ ", falls für jede σ -Struktur $\mathcal A$ gilt: $\mathcal A \in \mathfrak C \iff \mathcal A \models \varphi$.

Um für eine gegebene Klasse $\mathfrak C$ von σ -Strukturen zu zeigen, dass sie <u>nicht</u> FO-definierbar ist, können wir das folgende Korollar nutzen, das wir als eine einfache Folgerung aus Satz 3.51 erhalten.

Korollar 3.53

Sei σ eine relationale Signatur und sei $\mathfrak C$ eine Klasse von σ -Strukturen. Falls es für jedes $m\geqslant 1$ zwei σ -Strukturen $\mathcal A_m$ und $\mathcal B_m$ gibt, so dass gilt:

- 1. $A_m \in \mathfrak{C}$ und
- 2. $\mathcal{B}_m \notin \mathfrak{C}$ und
- 3. Duplicator hat eine Gewinnstrategie im m-Runden EF-Spiel auf A_m und \mathcal{B}_m ,

Notation 3.52

Eine Klasse $\mathfrak C$ von σ -Strukturen heißt FO-definierbar, falls es einen FO[σ]-Satz φ gibt, der $\mathfrak C$ definiert.

Zur Erinnerung:

Für einen $\mathsf{FO}[\sigma]$ -Satz φ und eine Klasse $\mathfrak C$ von σ -Strukturen sagen wir " φ definiert $\mathfrak C$ ", falls für jede σ -Struktur $\mathcal A$ gilt: $\mathcal A \in \mathfrak C \iff \mathcal A \models \varphi$.

Um für eine gegebene Klasse $\mathfrak C$ von σ -Strukturen zu zeigen, dass sie <u>nicht</u> FO-definierbar ist, können wir das folgende Korollar nutzen, das wir als eine einfache Folgerung aus Satz 3.51 erhalten.

Korollar 3.53

Sei σ eine relationale Signatur und sei $\mathfrak C$ eine Klasse von σ -Strukturen. Falls es für jedes $m\geqslant 1$ zwei σ -Strukturen $\mathcal A_m$ und $\mathcal B_m$ gibt, so dass gilt:

- 1. $A_m \in \mathfrak{C}$ und
- 2. $\mathcal{B}_m \notin \mathfrak{C}$ und
- 3. Duplicator hat eine Gewinnstrategie im m-Runden EF-Spiel auf A_m und \mathcal{B}_m ,

dann ist & nicht FO-definierbar.

Wir werden nun Korollar 3.53 anwenden, um folgenden Satz zu zeigen.

Wir werden nun Korollar 3.53 anwenden, um folgenden Satz zu zeigen.

Satz 3.54

Die Klasse EVEN $_{\leqslant}$, die aus allen linearen Ordnungen $\mathcal{A}=(A,\leqslant^{\mathcal{A}})$ gerader Kardinalität besteht

Wir werden nun Korollar 3.53 anwenden, um folgenden Satz zu zeigen.

Satz 3.54

Die Klasse EVEN $_{\leq}$, die aus allen linearen Ordnungen $\mathcal{A}=(A,\leq^A)$ gerader Kardinalität besteht (d.h., A ist endlich und |A| ist durch 2 teilbar),

Wir werden nun Korollar 3.53 anwenden, um folgenden Satz zu zeigen.

Satz 3.54

Die Klasse $EVEN_{\leq}$, die aus allen linearen Ordnungen $\mathcal{A}=(A,\leq^A)$ gerader Kardinalität besteht (d.h., A ist endlich und |A| ist durch 2 teilbar), ist nicht FO-definierbar.

Wir werden nun Korollar 3.53 anwenden, um folgenden Satz zu zeigen.

Satz 3.54

Die Klasse $EVEN_{\leq}$, die aus allen linearen Ordnungen $\mathcal{A}=(A,\leq^A)$ gerader Kardinalität besteht (d.h., A ist endlich und |A| ist durch 2 teilbar), ist nicht FO-definierbar.

Um diesen Satz zu beweisen, genügt es gemäß Korollar 3.53,

HU Berlin

Wir werden nun Korollar 3.53 anwenden, um folgenden Satz zu zeigen.

Satz 3.54

Die Klasse $EVEN_{\leq}$, die aus allen linearen Ordnungen $\mathcal{A}=(A,\leq^A)$ gerader Kardinalität besteht (d.h., A ist endlich und |A| ist durch 2 teilbar), ist nicht FO-definierbar.

Um diesen Satz zu beweisen, genügt es gemäß Korollar 3.53, für jede Rundenzahl $m\geqslant 1$

Wir werden nun Korollar 3.53 anwenden, um folgenden Satz zu zeigen.

Satz 3.54

Die Klasse $EVEN_{\leq}$, die aus allen linearen Ordnungen $\mathcal{A}=(A,\leq^A)$ gerader Kardinalität besteht (d.h., A ist endlich und |A| ist durch 2 teilbar), ist nicht FO-definierbar.

Um diesen Satz zu beweisen, genügt es gemäß Korollar 3.53, für jede Rundenzahl $m\geqslant 1$ eine lineare Ordnung \mathcal{A}_m gerader Kardinalität und

Wir werden nun Korollar 3.53 anwenden, um folgenden Satz zu zeigen.

Satz 3.54

Die Klasse $EVEN_{\leq}$, die aus allen linearen Ordnungen $\mathcal{A} = (A, \leq^A)$ gerader Kardinalität besteht (d.h., A ist endlich und |A| ist durch 2 teilbar), ist nicht FO-definierbar.

Um diesen Satz zu beweisen, genügt es gemäß Korollar 3.53, für jede Rundenzahl $m\geqslant 1$ eine lineare Ordnung \mathcal{A}_m gerader Kardinalität und eine lineare Ordnung \mathcal{B}_m ungerader Kardinalität anzugeben,

Wir werden nun Korollar 3.53 anwenden, um folgenden Satz zu zeigen.

Satz 3.54

Die Klasse $EVEN_{\leq}$, die aus allen linearen Ordnungen $\mathcal{A}=(A,\leq^A)$ gerader Kardinalität besteht (d.h., A ist endlich und |A| ist durch 2 teilbar), ist nicht FO-definierbar.

Um diesen Satz zu beweisen, genügt es gemäß Korollar 3.53, für jede Rundenzahl $m\geqslant 1$ eine lineare Ordnung \mathcal{A}_m gerader Kardinalität und eine lineare Ordnung \mathcal{B}_m ungerader Kardinalität anzugeben, für die wir zeigen können, dass

Wir werden nun Korollar 3.53 anwenden, um folgenden Satz zu zeigen.

Satz 3.54

Die Klasse $EVEN_{\leq}$, die aus allen linearen Ordnungen $\mathcal{A} = (A, \leq^A)$ gerader Kardinalität besteht (d.h., A ist endlich und |A| ist durch 2 teilbar), ist nicht FO-definierbar.

Um diesen Satz zu beweisen, genügt es gemäß Korollar 3.53, für jede Rundenzahl $m\geqslant 1$ eine lineare Ordnung \mathcal{A}_m gerader Kardinalität und eine lineare Ordnung \mathcal{B}_m ungerader Kardinalität anzugeben, für die wir zeigen können, dass Duplicator eine Gewinnstrategie im m-Runden EF-Spiel auf \mathcal{A}_m und \mathcal{B}_m hat.

Als Vorbereitung dazu betrachten wir zunächst ein Beispiel.

Beispiel 3.55

Betrachte die linearen Ordnungen $\mathcal{A}=(A,\leqslant^{\mathcal{A}})$ und $\mathcal{B}=(B,\leqslant^{\mathcal{B}})$ mit $A=\{1,\ldots,8\}$ und $B=\{1,\ldots,9\}$, wobei $\leqslant^{\mathcal{A}}$ und $\leqslant^{\mathcal{B}}$ die natürlichen linearen Ordnungen auf A und B sind.

Als Vorbereitung dazu betrachten wir zunächst ein Beispiel.

Beispiel 3.55

Betrachte die linearen Ordnungen $\mathcal{A}=(A,\leqslant^{\mathcal{A}})$ und $\mathcal{B}=(B,\leqslant^{\mathcal{B}})$ mit $A=\{1,\ldots,8\}$ und $B=\{1,\ldots,9\}$, wobei $\leqslant^{\mathcal{A}}$ und $\leqslant^{\mathcal{B}}$ die natürlichen linearen Ordnungen auf A und B sind.

Seien außerdem k:=2 und $\overline{a}:=a_1,a_2$ und $\overline{b}:=b_1,b_2$ mit $a_1=b_1=1$ und $a_2=8$ und $b_2=9$ vorgegeben.

Als Vorbereitung dazu betrachten wir zunächst ein Beispiel.

Beispiel 3.55

Betrachte die linearen Ordnungen $\mathcal{A}=(A,\leqslant^{\mathcal{A}})$ und $\mathcal{B}=(B,\leqslant^{\mathcal{B}})$ mit $A=\{1,\ldots,8\}$ und $B=\{1,\ldots,9\}$, wobei $\leqslant^{\mathcal{A}}$ und $\leqslant^{\mathcal{B}}$ die natürlichen linearen Ordnungen auf A und B sind.

Seien außerdem k:=2 und $\overline{a}:=a_1,a_2$ und $\overline{b}:=b_1,b_2$ mit $a_1=b_1=1$ und $a_2=8$ und $b_2=9$ vorgegeben.

Frage: Was ist die größte Zahl m, so dass Duplicator eine Gewinnstrategie im m-Runden EF-Spiel auf $(\mathcal{A}, \overline{a})$ und $(\mathcal{B}, \overline{b})$ hat?

Lemma 3.56

Seien A und B endliche lineare Ordnungen,

Lemma 3.56

Seien \mathcal{A} und \mathcal{B} endliche lineare Ordnungen, sei k:=2, und sei $\overline{a}:=a_1,a_2$ und $\overline{b}:=b_1,b_2$, wobei a_1,b_1 die kleinsten und a_2,b_2 die größten Elemente in A und B bezüglich $\leqslant^{\mathcal{A}}$ und $\leqslant^{\mathcal{B}}$ sind.

Lemma 3.56

Seien \mathcal{A} und \mathcal{B} endliche lineare Ordnungen, sei k := 2, und sei $\overline{a} := a_1, a_2$ und $\overline{b} := b_1, b_2$, wobei a_1, b_1 die kleinsten und a_2, b_2 die größten Elemente in A und B bezüglich \leq^A und \leq^B sind.

Für jedes $m \ge 1$ gilt: Falls $|A|, |B| > 2^m$ oder |A| = |B|,

Lemma 3.56

Seien \mathcal{A} und \mathcal{B} endliche lineare Ordnungen, sei k := 2, und sei $\overline{a} := a_1, a_2$ und $\overline{b} := b_1, b_2$, wobei a_1, b_1 die kleinsten und a_2, b_2 die größten Elemente in A und B bezüglich $\leqslant^{\mathcal{A}}$ und $\leqslant^{\mathcal{B}}$ sind.

Für jedes $m \geqslant 1$ gilt: Falls $|A|, |B| > 2^m$ oder |A| = |B|, so hat Duplicator eine Gewinnstrategie im m-Runden EF-Spiel auf (A, \overline{a}) und (B, \overline{b}) .

(*)_i: Sind a_{2+1}, \ldots, a_{2+i} und b_{2+1}, \ldots, b_{2+i} die in den Runden $1, \ldots, i$ gewählten Elemente in A und B,

(*)_i: Sind a_{2+1}, \ldots, a_{2+i} und b_{2+1}, \ldots, b_{2+i} die in den Runden $1, \ldots, i$ gewählten Elemente in A und B, so gilt für alle $j, j' \in \{1, \ldots, 2+i\}$:

- (*)_i: Sind a_{2+1}, \ldots, a_{2+i} und b_{2+1}, \ldots, b_{2+i} die in den Runden $1, \ldots, i$ gewählten Elemente in A und B, so gilt für alle $j, j' \in \{1, \ldots, 2+i\}$:
 - 1. $a_j \leqslant^{\mathcal{A}} a_{j'} \iff b_j \leqslant^{\mathcal{B}} b_{j'}$

- (*)_i: Sind a_{2+1}, \ldots, a_{2+i} und b_{2+1}, \ldots, b_{2+i} die in den Runden $1, \ldots, i$ gewählten Elemente in A und B, so gilt für alle $j, j' \in \{1, \ldots, 2+i\}$:
 - 1. $a_j \leqslant^{\mathcal{A}} a_{j'} \iff b_j \leqslant^{\mathcal{B}} b_{j'}$ und
 - 2. $Dist(a_i, a_{i'}) = Dist(b_i, b_{i'})$

- (*)_i: Sind a_{2+1}, \ldots, a_{2+i} und b_{2+1}, \ldots, b_{2+i} die in den Runden $1, \ldots, i$ gewählten Elemente in A und B, so gilt für alle $j, j' \in \{1, \ldots, 2+i\}$:
 - 1. $a_j \leqslant^{\mathcal{A}} a_{j'} \iff b_j \leqslant^{\mathcal{B}} b_{j'}$ und
 - 2. $Dist(a_j, a_{j'}) = Dist(b_j, b_{j'})$ oder $Dist(a_j, a_{j'}), Dist(b_j, b_{j'}) \geqslant 2^{m-i}$.

- (*)_i: Sind a_{2+1}, \ldots, a_{2+i} und b_{2+1}, \ldots, b_{2+i} die in den Runden $1, \ldots, i$ gewählten Elemente in A und B, so gilt für alle $j, j' \in \{1, \ldots, 2+i\}$:
 - 1. $a_j \leqslant^{\mathcal{A}} a_{j'} \iff b_j \leqslant^{\mathcal{B}} b_{j'}$ und
 - 2. $Dist(a_j, a_{j'}) = Dist(b_j, b_{j'})$ oder $Dist(a_j, a_{j'})$, $Dist(b_j, b_{j'}) \geqslant 2^{m-i}$.

Der Beweis folgt per Induktion nach i.

Beweis von Satz 3.54.

Um nachzuweisen, dass die Klasse $EVEN_{\leqslant}$ nicht FO-definierbar ist, genügt es laut Korollar 3.53,

Beweis von Satz 3.54.

Um nachzuweisen, dass die Klasse $EVEN_{\leqslant}$ nicht FO-definierbar ist, genügt es laut Korollar 3.53, für jede Zahl $m\geqslant 1$ eine endliche lineare Ordnung \mathcal{A}_m gerader Kardinalität und eine endliche lineare Ordnung \mathcal{B}_m ungerader Kardinalität zu finden, so dass Duplicator eine Gewinnstrategie im m-Runden EF-Spiel auf \mathcal{A}_m und \mathcal{B}_m besitzt.

Beweis von Satz 3.54.

Um nachzuweisen, dass die Klasse $EVEN_{\leqslant}$ nicht FO-definierbar ist, genügt es laut Korollar 3.53, für jede Zahl $m\geqslant 1$ eine endliche lineare Ordnung \mathcal{A}_m gerader Kardinalität und eine endliche lineare Ordnung \mathcal{B}_m ungerader Kardinalität zu finden, so dass Duplicator eine Gewinnstrategie im m-Runden EF-Spiel auf \mathcal{A}_m und \mathcal{B}_m besitzt.

Wir wählen für A_m

Beweis von Satz 3.54.

Um nachzuweisen, dass die Klasse $EVEN_{\leqslant}$ nicht FO-definierbar ist, genügt es laut Korollar 3.53, für jede Zahl $m\geqslant 1$ eine endliche lineare Ordnung \mathcal{A}_m gerader Kardinalität und eine endliche lineare Ordnung \mathcal{B}_m ungerader Kardinalität zu finden, so dass Duplicator eine Gewinnstrategie im m-Runden EF-Spiel auf \mathcal{A}_m und \mathcal{B}_m besitzt.

Wir wählen für \mathcal{A}_m die natürliche lineare Ordnung mit Universum $A_m:=\{1,\ldots,2^m+2\}$, und für \mathcal{B}_m

Beweis von Satz 3.54.

Um nachzuweisen, dass die Klasse $EVEN_{\leqslant}$ nicht FO-definierbar ist, genügt es laut Korollar 3.53, für jede Zahl $m\geqslant 1$ eine endliche lineare Ordnung \mathcal{A}_m gerader Kardinalität und eine endliche lineare Ordnung \mathcal{B}_m ungerader Kardinalität zu finden, so dass Duplicator eine Gewinnstrategie im m-Runden EF-Spiel auf \mathcal{A}_m und \mathcal{B}_m besitzt.

Wir wählen für \mathcal{A}_m die natürliche lineare Ordnung mit Universum $A_m := \{1, \dots, 2^m + 2\}$, und für \mathcal{B}_m die natürliche lineare Ordnung mit Universum $\mathcal{B}_m := \{1, \dots, 2^m + 1\}$.

Satz 3.54 folgt nun direkt aus Korollar 3.53 und Lemma 3.56.

Beweis von Satz 3.54.

Um nachzuweisen, dass die Klasse $EVEN_{\leqslant}$ nicht FO-definierbar ist, genügt es laut Korollar 3.53, für jede Zahl $m\geqslant 1$ eine endliche lineare Ordnung \mathcal{A}_m gerader Kardinalität und eine endliche lineare Ordnung \mathcal{B}_m ungerader Kardinalität zu finden, so dass Duplicator eine Gewinnstrategie im m-Runden EF-Spiel auf \mathcal{A}_m und \mathcal{B}_m besitzt.

Wir wählen für A_m die natürliche lineare Ordnung mit Universum $A_m := \{1, \dots, 2^m + 2\}$, und für \mathcal{B}_m die natürliche lineare Ordnung mit Universum $\mathcal{B}_m := \{1, \dots, 2^m + 1\}$.

Gemäß Lemma 3.56 hat Duplicator eine Gewinnstrategie im m-Runden EF-Spiel auf $(\mathcal{A}_m, \overline{a})$ und $(\mathcal{B}_m, \overline{b})$,

Satz 3.54 folgt nun direkt aus Korollar 3.53 und Lemma 3.56.

Beweis von Satz 3.54.

Um nachzuweisen, dass die Klasse $EVEN_{\leqslant}$ nicht FO-definierbar ist, genügt es laut Korollar 3.53, für jede Zahl $m\geqslant 1$ eine endliche lineare Ordnung \mathcal{A}_m gerader Kardinalität und eine endliche lineare Ordnung \mathcal{B}_m ungerader Kardinalität zu finden, so dass Duplicator eine Gewinnstrategie im m-Runden EF-Spiel auf \mathcal{A}_m und \mathcal{B}_m besitzt.

Wir wählen für \mathcal{A}_m die natürliche lineare Ordnung mit Universum $A_m := \{1, \dots, 2^m + 2\}$, und für \mathcal{B}_m die natürliche lineare Ordnung mit Universum $\mathcal{B}_m := \{1, \dots, 2^m + 1\}$.

Gemäß Lemma 3.56 hat Duplicator eine Gewinnstrategie im m-Runden EF-Spiel auf $(\mathcal{A}_m, \overline{a})$ und $(\mathcal{B}_m, \overline{b})$, wobei $\overline{a} = a_1, a_2$ und $\overline{b} = b_1, b_2$ jeweils aus dem kleinsten und dem größten Element der beiden linearen Ordnungen bestehen.

Satz 3.54 folgt nun direkt aus Korollar 3.53 und Lemma 3.56.

Beweis von Satz 3.54.

Um nachzuweisen, dass die Klasse $EVEN_{\leqslant}$ nicht FO-definierbar ist, genügt es laut Korollar 3.53, für jede Zahl $m\geqslant 1$ eine endliche lineare Ordnung \mathcal{A}_m gerader Kardinalität und eine endliche lineare Ordnung \mathcal{B}_m ungerader Kardinalität zu finden, so dass Duplicator eine Gewinnstrategie im m-Runden EF-Spiel auf \mathcal{A}_m und \mathcal{B}_m besitzt.

Wir wählen für \mathcal{A}_m die natürliche lineare Ordnung mit Universum $A_m := \{1, \dots, 2^m + 2\}$, und für \mathcal{B}_m die natürliche lineare Ordnung mit Universum $\mathcal{B}_m := \{1, \dots, 2^m + 1\}$.

Gemäß Lemma 3.56 hat Duplicator eine Gewinnstrategie im m-Runden EF-Spiel auf $(\mathcal{A}_m, \overline{a})$ und $(\mathcal{B}_m, \overline{b})$, wobei $\overline{a} = a_1, a_2$ und $\overline{b} = b_1, b_2$ jeweils aus dem kleinsten und dem größten Element der beiden linearen Ordnungen bestehen.

Offensichtlicherweise ist diese Gewinnstrategie auch eine Gewinnstrategie für Duplicator im m-Runden EF-Spiel auf \mathcal{A}_m und \mathcal{B}_m .

Bemerkung 3.57

Der obige Beweis zeigt nicht nur, dass die Klasse $EVEN_{\leqslant}$ nicht FO-definierbar ist, sondern sogar die folgende stärkere Aussage:

Für jedes $n \in \mathbb{N}$ gilt: Es gibt keinen $FO[\{\leqslant\}]$ -Satz ψ , so dass für jede **endliche lineare Ordnung** \mathcal{B} mit $|\mathcal{B}| \geqslant n$ gilt: $\mathcal{B} \models \psi \iff |\mathcal{B}|$ ist gerade.

Graph-Zusammenhang und Erreichbarkeit sind nicht FO-definierbar

Wir können die Aussage von Bemerkung 3.57 nutzen, um Folgendes zu zeigen.

```
Satz 3.58 
Sei \sigma := \{E/2\}.
```

(a) "Graph-Zusammenhang ist nicht FO-definierbar."

D.h.: Es gibt keinen FO[σ]-Satz φ_{Conn} , so dass für jeden endlichen ungerichteten Graphen $\mathcal{G} = (V^{\mathcal{G}}, E^{\mathcal{G}})$ und die zugehörige σ -Struktur $\mathcal{A} = (\mathcal{A}, E^{\mathcal{A}})$ gilt: $\mathcal{A} \models \varphi_{Conn} \iff \mathcal{G}$ ist zusammenhängend.

Graph-Zusammenhang und Erreichbarkeit sind nicht FO-definierbar

Wir können die Aussage von Bemerkung 3.57 nutzen, um Folgendes zu zeigen.

```
Satz 3.58 Sei \sigma := \{E/2\}.
```

- (a) "Graph-Zusammenhang ist nicht FO-definierbar."

 D.h.: Es gibt keinen FO[σ]-Satz φ_{Conn} , so dass für jeden endlichen ungerichteten Graphen $\mathcal{G} = (V^{\mathcal{G}}, E^{\mathcal{G}})$ und die zugehörige σ -Struktur $\mathcal{A} = (A, E^{\mathcal{A}})$ gilt: $\mathcal{A} \models \varphi_{Conn} \iff \mathcal{G}$ ist zusammenhängend.
- (b) "Erreichbarkeit ist nicht FO-definierbar." D.h.: Es gibt keine $FO[\sigma]$ -Formel $\varphi_{Reach}(x,y)$, so dass für alle endlichen gerichteten Graphen $A=(A,E^A)$ und alle Knoten $a,b\in A$ gilt: $A\models \varphi_{Reach}[a,b] \iff \text{es gibt in } A \text{ einen Weg von Knoten a zu Knoten b}.$

Angenommen $\varphi_{Reach}(x,y)$ wäre eine $FO[\sigma]$ -Formel, so dass für alle gerichteten Graphen $\mathcal{A}=(A,E^{\mathcal{A}})$ und alle Knoten $a,b\in\mathcal{A}$ gilt: $\mathcal{A}\models\varphi_{Reach}[a,b]\iff$ es gibt in \mathcal{A} einen Weg von Knoten a zu Knoten b.

Angenommen $\varphi_{Reach}(x,y)$ wäre eine $FO[\sigma]$ -Formel, so dass für alle gerichteten Graphen $\mathcal{A}=(A,E^{\mathcal{A}})$ und alle Knoten $a,b\in A$ gilt: $\mathcal{A}\models \varphi_{Reach}[a,b]\iff$ es gibt in \mathcal{A} einen Weg von Knoten a zu Knoten b.

Dann ist

$$\varphi_{Conn} :=$$

Angenommen $\varphi_{Reach}(x,y)$ wäre eine $FO[\sigma]$ -Formel, so dass für alle gerichteten Graphen $\mathcal{A}=(A,E^{\mathcal{A}})$ und alle Knoten $a,b\in A$ gilt: $\mathcal{A}\models \varphi_{Reach}[a,b]\iff$ es gibt in \mathcal{A} einen Weg von Knoten a zu Knoten b.

Dann ist

$$\varphi_{Conn} := \forall x \forall y \ \varphi_{Reach}(x, y)$$

ein FO[σ]-Satz, der in einem gerichteten Graphen ${\mathcal A}$ genau dann erfüllt ist, wenn

Angenommen $\varphi_{Reach}(x,y)$ wäre eine $FO[\sigma]$ -Formel, so dass für alle gerichteten Graphen $\mathcal{A}=(A,E^{\mathcal{A}})$ und alle Knoten $a,b\in A$ gilt: $\mathcal{A}\models \varphi_{Reach}[a,b]\iff$ es gibt in \mathcal{A} einen Weg von Knoten a zu Knoten b.

Dann ist

$$\varphi_{Conn} := \forall x \forall y \ \varphi_{Reach}(x, y)$$

ein $\mathsf{FO}[\sigma]$ -Satz, der in einem gerichteten Graphen $\mathcal A$ genau dann erfüllt ist, wenn $\mathcal A$ stark zusammenhängend ist.

Angenommen $\varphi_{Reach}(x,y)$ wäre eine $FO[\sigma]$ -Formel, so dass für alle gerichteten Graphen $\mathcal{A}=(A,E^{\mathcal{A}})$ und alle Knoten $a,b\in A$ gilt: $\mathcal{A}\models \varphi_{Reach}[a,b]\iff$ es gibt in \mathcal{A} einen Weg von Knoten a zu Knoten b.

Dann ist

$$\varphi_{Conn} := \forall x \forall y \ \varphi_{Reach}(x, y)$$

ein $\mathsf{FO}[\sigma]$ -Satz, der in einem gerichteten Graphen $\mathcal A$ genau dann erfüllt ist, wenn $\mathcal A$ stark zusammenhängend ist.

Insbesondere gilt dann für jeden ungerichteten Graphen $\mathcal G$ und die zu $\mathcal G$ gehörende σ -Struktur $\mathcal A$: $\mathcal A \models \varphi_{\mathit{Conn}} \iff \mathcal G$ ist zusammenhängend.

Angenommen $\varphi_{Reach}(x,y)$ wäre eine $FO[\sigma]$ -Formel, so dass für alle gerichteten Graphen $\mathcal{A}=(A,E^{\mathcal{A}})$ und alle Knoten $a,b\in A$ gilt: $\mathcal{A}\models \varphi_{Reach}[a,b]\iff$ es gibt in \mathcal{A} einen Weg von Knoten a zu Knoten b.

Dann ist

$$\varphi_{Conn} := \forall x \forall y \ \varphi_{Reach}(x, y)$$

ein $\mathsf{FO}[\sigma]$ -Satz, der in einem gerichteten Graphen $\mathcal A$ genau dann erfüllt ist, wenn $\mathcal A$ stark zusammenhängend ist.

Insbesondere gilt dann für jeden ungerichteten Graphen $\mathcal G$ und die zu $\mathcal G$ gehörende σ -Struktur $\mathcal A\colon \mathcal A\models \varphi_{\mathit{Conn}}\iff \mathcal G$ ist zusammenhängend.

Dies ist ein Widerspruch zu (a).

Bemerkung 3.59

Die im Beweis von Satz 3.58 benutzte Vorgehensweise ist unter dem Begriff logische Reduktion (oder Transduktionen) bekannt.

Bemerkung 3.59

Die im Beweis von Satz 3.58 benutzte Vorgehensweise ist unter dem Begriff logische Reduktion (oder Transduktionen) bekannt.

Im Beweis von Teil (b) wurde gezeigt:

Bemerkung 3.59

Die im Beweis von Satz 3.58 benutzte Vorgehensweise ist unter dem Begriff logische Reduktion (oder Transduktionen) bekannt.

Im Beweis von Teil (b) wurde gezeigt: Falls es eine $FO[\{E\}]$ -Formel gibt, die ausdrückt, dass Knoten y von Knoten x aus erreichbar ist, dann

Bemerkung 3.59

Die im Beweis von Satz 3.58 benutzte Vorgehensweise ist unter dem Begriff logische Reduktion (oder Transduktionen) bekannt.

Im Beweis von Teil (b) wurde gezeigt: Falls es eine $FO[\{E\}]$ -Formel gibt, die ausdrückt, dass Knoten y von Knoten x aus erreichbar ist, dann gibt es auch eine $FO[\{E\}]$ -Formel, die Graph-Zusammenhang definiert.

Bemerkung 3.59

Die im Beweis von Satz 3.58 benutzte Vorgehensweise ist unter dem Begriff logische Reduktion (oder Transduktionen) bekannt.

Im Beweis von Teil (b) wurde gezeigt: Falls es eine $FO[\{E\}]$ -Formel gibt, die ausdrückt, dass Knoten y von Knoten x aus erreichbar ist, dann gibt es auch eine $FO[\{E\}]$ -Formel, die Graph-Zusammenhang definiert.

Somit wurde das Problem, einen FO[$\{E\}$]-Satz zu finden, der Graph-Zusammenhang definiert, auf das Problem reduziert, eine FO[$\{E\}$]-Formel zu finden, die ausdrückt, dass Knoten y von Knoten x aus erreichbar ist.

Im Beweis von Teil (a) wurde das Problem, einen $FO[\{\leqslant\}]$ -Satz zu finden, der ausdrückt, dass eine endliche lineare Ordnung eine gerade Kardinalität besitzt,

D.h. es wurde gezeigt:

D.h. es wurde gezeigt: Falls Graph-Zusammenhang FO-definierbar ist, so ist auch

D.h. es wurde gezeigt: Falls Graph-Zusammenhang FO-definierbar ist, so ist auch die Aussage "eine endliche lineare Ordnung besitzt eine gerade Kardinalität" FO-definierbar.

D.h. es wurde gezeigt: Falls Graph-Zusammenhang FO-definierbar ist, so ist auch die Aussage "eine endliche lineare Ordnung besitzt eine gerade Kardinalität" FO-definierbar.

Dies wurde dadurch erreicht, dass man

D.h. es wurde gezeigt: Falls Graph-Zusammenhang FO-definierbar ist, so ist auch die Aussage "eine endliche lineare Ordnung besitzt eine gerade Kardinalität" FO-definierbar.

Dies wurde dadurch erreicht, dass man innerhalb einer linearen Ordnung einen geeigneten Graphen "simuliert"

D.h. es wurde gezeigt: Falls Graph-Zusammenhang FO-definierbar ist, so ist auch die Aussage "eine endliche lineare Ordnung besitzt eine gerade Kardinalität" FO-definierbar.

Dies wurde dadurch erreicht, dass man innerhalb einer linearen Ordnung einen geeigneten Graphen "simuliert" (bzw. "interpretiert"),

D.h. es wurde gezeigt: Falls Graph-Zusammenhang FO-definierbar ist, so ist auch die Aussage "eine endliche lineare Ordnung besitzt eine gerade Kardinalität" FO-definierbar.

Dies wurde dadurch erreicht, dass man innerhalb einer linearen Ordnung einen geeigneten Graphen "simuliert" (bzw. "interpretiert"), indem man die Kantenrelation des Graphen durch eine $FO[\{\leqslant\}]$ -Formel beschreibt.

D.h. es wurde gezeigt: Falls Graph-Zusammenhang FO-definierbar ist, so ist auch die Aussage "eine endliche lineare Ordnung besitzt eine gerade Kardinalität" FO-definierbar.

Dies wurde dadurch erreicht, dass man innerhalb einer linearen Ordnung einen geeigneten Graphen "simuliert" (bzw. "interpretiert"), indem man die Kantenrelation des Graphen durch eine $FO[\{\leqslant\}]$ -Formel beschreibt.

Generell ist diese Methode der logischen Reduktionen oft nützlich, um

D.h. es wurde gezeigt: Falls Graph-Zusammenhang FO-definierbar ist, so ist auch die Aussage "eine endliche lineare Ordnung besitzt eine gerade Kardinalität" FO-definierbar.

Dies wurde dadurch erreicht, dass man innerhalb einer linearen Ordnung einen geeigneten Graphen "simuliert" (bzw. "interpretiert"), indem man die Kantenrelation des Graphen durch eine $FO[\{\leqslant\}]$ -Formel beschreibt.

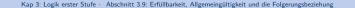
Generell ist diese Methode der logischen Reduktionen oft nützlich, um bereits bekannte Nicht-Definierbarkeits-Resultate auf neue Nicht-Definierbarkeits-Resultate zu übertragen.

Abschnitt 3.9:

Folgerungsbeziehung

Erfüllbarkeit, Allgemeingültigkeit und die

Die im Folgenden eingeführten Begriffe der Erfüllbarkeit, Allgemeingültigkeit und der Folgerungsbeziehung sind für die Logik erster Stufe ähnlich definiert wie für die Aussagenlogik.



Die im Folgenden eingeführten Begriffe der Erfüllbarkeit, Allgemeingültigkeit und der Folgerungsbeziehung sind für die Logik erster Stufe ähnlich definiert wie für die Aussagenlogik.

Im Folgenden sei σ stets eine beliebige Signatur.

Definition 3.60

Eine $\mathsf{FO}[\sigma]$ -Formel φ (bzw. eine Formelmenge $\Phi\subseteq\mathsf{FO}[\sigma]$) heißt erfüllbar, wenn

Definition 3.60

Eine $FO[\sigma]$ -Formel φ (bzw. eine Formelmenge $\Phi \subseteq FO[\sigma]$) heißt erfüllbar, wenn es eine σ -Interpretation gibt, die φ (bzw. Φ) erfüllt.

Definition 3.60

Eine $FO[\sigma]$ -Formel φ (bzw. eine Formelmenge $\Phi \subseteq FO[\sigma]$) heißt erfüllbar, wenn es eine σ -Interpretation gibt, die φ (bzw. Φ) erfüllt.

Eine Formel oder Formelmenge, die nicht erfüllbar ist, nennen wir unerfüllbar.

Definition 3.60

Eine FO[σ]-Formel φ (bzw. eine Formelmenge $\Phi \subseteq FO[\sigma]$) heißt erfüllbar, wenn es eine σ -Interpretation gibt, die φ (bzw. Φ) erfüllt.

Eine Formel oder Formelmenge, die nicht erfüllbar ist, nennen wir unerfüllbar.

Definition 3.61

Eine $FO[\sigma]$ -Formel φ heißt allgemeingültig, wenn

Erfüllbarkeit und Allgemeingültigkeit

Definition 3.60

Eine FO[σ]-Formel φ (bzw. eine Formelmenge $\Phi \subseteq FO[\sigma]$) heißt erfüllbar, wenn es eine σ -Interpretation gibt, die φ (bzw. Φ) erfüllt.

Eine Formel oder Formelmenge, die nicht erfüllbar ist, nennen wir unerfüllbar.

Definition 3.61

Eine FO[σ]-Formel φ heißt allgemeingültig, wenn jede σ -Interpretation die Formel φ erfüllt.

Erfüllbarkeit und Allgemeingültigkeit

Definition 3.60

Eine FO[σ]-Formel φ (bzw. eine Formelmenge $\Phi \subseteq FO[\sigma]$) heißt erfüllbar, wenn es eine σ -Interpretation gibt, die φ (bzw. Φ) erfüllt.

Eine Formel oder Formelmenge, die nicht erfüllbar ist, nennen wir unerfüllbar.

Definition 3.61

Eine FO[σ]-Formel φ heißt allgemeingültig, wenn jede σ -Interpretation die Formel φ erfüllt.

Wir schreiben kurz $\models \varphi$ um auszudrücken, dass φ allgemeingültig ist.

Erfüllbarkeit und Allgemeingültigkeit

Definition 3.60

Eine FO[σ]-Formel φ (bzw. eine Formelmenge $\Phi \subseteq FO[\sigma]$) heißt erfüllbar, wenn es eine σ -Interpretation gibt, die φ (bzw. Φ) erfüllt.

Eine Formel oder Formelmenge, die nicht erfüllbar ist, nennen wir unerfüllbar.

Definition 3.61

Eine FO[σ]-Formel φ heißt allgemeingültig, wenn jede σ -Interpretation die Formel φ erfüllt.

Wir schreiben kurz $\models \varphi$ um auszudrücken, dass φ allgemeingültig ist.

Offensichtlicherweise gilt für alle $FO[\sigma]$ -Formeln φ :

 φ ist allgemeingültig \iff $\neg \varphi$ ist unerfüllbar.

Beispiele:

 $\bullet \ \, {\rm Die} \,\, {\rm FO}[\sigma]{\rm -Formel} \qquad \qquad {\rm ist \,\, allgemeing\"{u}ltig}.$

Beispiele:

• Die FO[σ]-Formel $\forall v_0 \ v_0 = v_0$ ist allgemeingültig.

Beispiele:

- Die FO[σ]-Formel $\forall v_0 \ v_0 = v_0$ ist allgemeingültig.
- Die FO[σ]-Formel ist unerfüllbar.

Beispiele:

- Die FO[σ]-Formel $\forall v_0 \ v_0 = v_0$ ist allgemeingültig.
- Die FO[σ]-Formel $\exists v_0 \neg v_0 = v_0$ ist unerfüllbar.

Beispiele:

- Die FO[σ]-Formel $\forall v_0 \ v_0 = v_0$ ist allgemeingültig.
- Die FO[σ]-Formel $\exists v_0 \neg v_0 = v_0$ ist unerfüllbar.

Notation 3.62

Wir schreiben \top (in Worten: Verum), um die allgemeingültige FO-Formel $\forall v_0 \ v_0 = v_0$ zu bezeichnen.

Beispiele:

- Die FO[σ]-Formel $\forall v_0 \ v_0 = v_0$ ist allgemeingültig.
- Die FO[σ]-Formel $\exists v_0 \neg v_0 = v_0$ ist unerfüllbar.

Notation 3.62

Wir schreiben \top (in Worten: Verum), um die allgemeingültige FO-Formel $\forall v_0 \ v_0 = v_0$ zu bezeichnen.

Wir schreiben \bot (in Worten: Falsum), um die unerfüllbare FO-Formel $\exists v_0 \neg v_0 = v_0$ zu bezeichnen.

Die Folgerungsbeziehung

Definition 3.63

Eine $FO[\sigma]$ -Formel ψ folgt aus einer Formelmenge $\Phi \subseteq FO[\sigma]$ (wir schreiben:

 $\Phi \models \psi$), wenn

Die Folgerungsbeziehung

Definition 3.63

Eine FO[σ]-Formel ψ folgt aus einer Formelmenge $\Phi \subseteq FO[\sigma]$ (wir schreiben:

 $\Phi \models \psi$), wenn für jede σ -Interpretation \mathcal{I} gilt:

Falls $\mathcal{I} \models \Phi$, so gilt auch $\mathcal{I} \models \psi$.

Die Folgerungsbeziehung

Definition 3.63

Eine FO[σ]-Formel ψ folgt aus einer Formelmenge $\Phi \subseteq FO[\sigma]$ (wir schreiben:

 $\Phi \models \psi$), wenn für jede σ -Interpretation \mathcal{I} gilt:

Falls $\mathcal{I} \models \Phi$, so gilt auch $\mathcal{I} \models \psi$.

Notation

Für zwei $\mathsf{FO}[\sigma]$ -Formeln φ, ψ schreiben wir kurz $\varphi \models \psi$ an Stelle von $\{\varphi\} \models \psi$ und sagen, dass die Formel ψ aus der Formel φ folgt.

Es bestehen ähnliche Zusammenhänge wie bei der Aussagenlogik:

Lemma 3.64 (Allgemeingültigkeit, Unerfüllbarkeit und Folgerung)

Für jede FO[σ]-Formel φ gilt:

(a) φ ist allgemeingültig \iff

Es bestehen ähnliche Zusammenhänge wie bei der Aussagenlogik:

Lemma 3.64 (Allgemeingültigkeit, Unerfüllbarkeit und Folgerung)

Für jede FO[σ]-Formel φ gilt:

(a) φ ist allgemeingültig $\iff \varphi \equiv \top$

Es bestehen ähnliche Zusammenhänge wie bei der Aussagenlogik:

Lemma 3.64 (Allgemeingültigkeit, Unerfüllbarkeit und Folgerung)

Für jede $FO[\sigma]$ -Formel φ gilt:

(a) φ ist allgemeingültig $\iff \varphi \equiv \top \iff \top \models \varphi$.

Es bestehen ähnliche Zusammenhänge wie bei der Aussagenlogik:

Lemma 3.64 (Allgemeingültigkeit, Unerfüllbarkeit und Folgerung)

Für jede FO[σ]-Formel φ gilt:

- (a) φ ist allgemeingültig $\iff \varphi \equiv \top \iff \top \models \varphi$.
- (b) φ ist unerfüllbar \iff

Es bestehen ähnliche Zusammenhänge wie bei der Aussagenlogik:

Lemma 3.64 (Allgemeingültigkeit, Unerfüllbarkeit und Folgerung)

Für jede FO[σ]-Formel φ gilt:

- (a) φ ist allgemeingültig $\iff \varphi \equiv \top \iff \top \models \varphi$.
- (b) φ ist unerfüllbar $\iff \varphi \equiv \bot$

Es bestehen ähnliche Zusammenhänge wie bei der Aussagenlogik:

Lemma 3.64 (Allgemeingültigkeit, Unerfüllbarkeit und Folgerung)

Für jede FO[σ]-Formel φ gilt:

- (a) φ ist allgemeingültig $\iff \varphi \equiv \top \iff \top \models \varphi$.
- (b) φ ist unerfüllbar $\iff \varphi \equiv \bot \iff \varphi \models \bot$.

Es bestehen ähnliche Zusammenhänge wie bei der Aussagenlogik:

Lemma 3.64 (Allgemeingültigkeit, Unerfüllbarkeit und Folgerung)

Für jede $FO[\sigma]$ -Formel φ gilt:

- (a) φ ist allgemeingültig $\iff \varphi \equiv \top \iff \top \models \varphi$.
- (b) φ ist unerfüllbar $\iff \varphi \equiv \bot \iff \varphi \models \bot$.
- (c) $\models \varphi \iff \emptyset \models \varphi$.

D.h.: φ ist allgemeingültig $\iff \varphi$ folgt aus der leeren Menge.

Es bestehen ähnliche Zusammenhänge wie bei der Aussagenlogik:

Lemma 3.64 (Allgemeingültigkeit, Unerfüllbarkeit und Folgerung)

Für jede $FO[\sigma]$ -Formel φ gilt:

- (a) φ ist allgemeingültig $\iff \varphi \equiv \top \iff \top \models \varphi$.
- (b) φ ist unerfüllbar $\iff \varphi \equiv \bot \iff \varphi \models \bot$.
- (c) $\models \varphi \iff \emptyset \models \varphi$. D.h.: φ ist allgemeingültig $\iff \varphi$ folgt aus der leeren Menge.

Lemma 3.65 (Erfüllbarkeit und die Folgerungsbeziehung)

(a) Für alle Formelmengen $\Phi \subseteq \mathsf{FO}[\sigma]$ und alle $\mathsf{FO}[\sigma]$ -Formeln ψ gilt:

$$\Phi \models \psi \iff$$

Es bestehen ähnliche Zusammenhänge wie bei der Aussagenlogik:

Lemma 3.64 (Allgemeingültigkeit, Unerfüllbarkeit und Folgerung)

Für jede $FO[\sigma]$ -Formel φ gilt:

- (a) φ ist allgemeingültig $\iff \varphi \equiv \top \iff \top \models \varphi$.
- (b) φ ist unerfüllbar $\iff \varphi \equiv \bot \iff \varphi \models \bot$.
- (c) $\models \varphi \iff \emptyset \models \varphi$. D.h.: φ ist allgemeingültig $\iff \varphi$ folgt aus der leeren Menge.

Lemma 3.65 (Erfüllbarkeit und die Folgerungsbeziehung)

(a) Für alle Formelmengen $\Phi \subseteq \mathsf{FO}[\sigma]$ und alle $\mathsf{FO}[\sigma]$ -Formeln ψ gilt:

$$\Phi \models \psi \iff \Phi \cup \{\neg \psi\}$$
 ist unerfüllbar.

Es bestehen ähnliche Zusammenhänge wie bei der Aussagenlogik:

Lemma 3.64 (Allgemeingültigkeit, Unerfüllbarkeit und Folgerung)

Für jede $FO[\sigma]$ -Formel φ gilt:

- (a) φ ist allgemeingültig $\iff \varphi \equiv \top \iff \top \models \varphi$.
- (b) φ ist unerfüllbar $\iff \varphi \equiv \bot \iff \varphi \models \bot$.
- (c) $\models \varphi \iff \emptyset \models \varphi$. D.h.: φ ist allgemeingültig $\iff \varphi$ folgt aus der leeren Menge.

Lemma 3.65 (Erfüllbarkeit und die Folgerungsbeziehung)

(a) Für alle Formelmengen $\Phi \subseteq \mathsf{FO}[\sigma]$ und alle $\mathsf{FO}[\sigma]$ -Formeln ψ gilt:

$$\Phi \models \psi \iff \Phi \cup \{\neg \psi\}$$
 ist unerfüllbar.

(b) Für alle FO[σ]-Formeln φ, ψ gilt: $\varphi \equiv \psi \iff$

Es bestehen ähnliche Zusammenhänge wie bei der Aussagenlogik:

Lemma 3.64 (Allgemeingültigkeit, Unerfüllbarkeit und Folgerung)

Für jede $FO[\sigma]$ -Formel φ gilt:

- (a) φ ist allgemeingültig $\iff \varphi \equiv \top \iff \top \models \varphi$.
- (b) φ ist unerfüllbar $\iff \varphi \equiv \bot \iff \varphi \models \bot$.
- (c) $\models \varphi \iff \emptyset \models \varphi$. D.h.: φ ist allgemeingültig $\iff \varphi$ folgt aus der leeren Menge.

Lemma 3.65 (Erfüllbarkeit und die Folgerungsbeziehung)

(a) Für alle Formelmengen $\Phi \subseteq \mathsf{FO}[\sigma]$ und alle $\mathsf{FO}[\sigma]$ -Formeln ψ gilt:

$$\Phi \models \psi \iff \Phi \cup \{\neg \psi\}$$
 ist unerfüllbar.

(b) Für alle FO[σ]-Formeln φ, ψ gilt: $\varphi \equiv \psi \iff [\varphi \leftrightarrow \psi]$.

Es bestehen ähnliche Zusammenhänge wie bei der Aussagenlogik:

Lemma 3.64 (Allgemeingültigkeit, Unerfüllbarkeit und Folgerung)

Für jede $FO[\sigma]$ -Formel φ gilt:

- (a) φ ist allgemeingültig $\iff \varphi \equiv \top \iff \top \models \varphi$.
- (b) φ ist unerfüllbar $\iff \varphi \equiv \bot \iff \varphi \models \bot$.
- (c) $\models \varphi \iff \emptyset \models \varphi$. D.h.: φ ist allgemeingültig $\iff \varphi$ folgt aus der leeren Menge.

Lemma 3.65 (Erfüllbarkeit und die Folgerungsbeziehung)

(a) Für alle Formelmengen $\Phi \subseteq \mathsf{FO}[\sigma]$ und alle $\mathsf{FO}[\sigma]$ -Formeln ψ gilt:

$$\Phi \models \psi \iff \Phi \cup \{\neg \psi\}$$
 ist unerfüllbar.

(b) Für alle FO[σ]-Formeln φ, ψ gilt: $\varphi \equiv \psi \iff \models (\varphi \leftrightarrow \psi)$.

Beweis der beiden Lemmas: Analog zu den Beweisen der entsprechenden Resultate in der Aussagenlogik. Details: Übung.

Abschnitt 3.10:

Normalformen

Die Negationsnormalform für Formeln der Logik erster Stufe ist ähnlich definiert wie die Negationsnormalform der Aussagenlogik.

Die Negationsnormalform für Formeln der Logik erster Stufe ist ähnlich definiert wie die Negationsnormalform der Aussagenlogik.

Definition 3.66

Sei σ eine beliebige Signatur. Eine FO[σ]-Formel φ ist in Negationsnormalform (kurz: NNF), wenn

Die Negationsnormalform für Formeln der Logik erster Stufe ist ähnlich definiert wie die Negationsnormalform der Aussagenlogik.

Definition 3.66

Sei σ eine beliebige Signatur. Eine FO[σ]-Formel φ ist in Negationsnormalform (kurz: NNF), wenn Negationszeichen in φ nur unmittelbar vor <u>atomaren</u> Subformeln auftreten

Die Negationsnormalform für Formeln der Logik erster Stufe ist ähnlich definiert wie die Negationsnormalform der Aussagenlogik.

Definition 3.66

Sei σ eine beliebige Signatur. Eine FO[σ]-Formel φ ist in Negationsnormalform (kurz: NNF), wenn Negationszeichen in φ nur unmittelbar vor <u>atomaren</u> Subformeln auftreten und φ den Junktor " \rightarrow " nicht enthält.

Die Negationsnormalform für Formeln der Logik erster Stufe ist ähnlich definiert wie die Negationsnormalform der Aussagenlogik.

Definition 3.66

Sei σ eine beliebige Signatur. Eine FO[σ]-Formel φ ist in Negationsnormalform (kurz: NNF), wenn Negationszeichen in φ nur unmittelbar vor <u>atomaren</u> Subformeln auftreten und φ den Junktor " \rightarrow " nicht enthält.

Satz 3.67

Jede $FO[\sigma]$ -Formel φ ist äquivalent zu einer Formel in NNF.

Die Negationsnormalform für Formeln der Logik erster Stufe ist ähnlich definiert wie die Negationsnormalform der Aussagenlogik.

Definition 3.66

Sei σ eine beliebige Signatur. Eine FO[σ]-Formel φ ist in Negationsnormalform (kurz: NNF), wenn Negationszeichen in φ nur unmittelbar vor <u>atomaren</u> Subformeln auftreten und φ den Junktor " \rightarrow " nicht enthält.

Satz 3.67

Jede $FO[\sigma]$ -Formel φ ist äquivalent zu einer Formel in NNF.

Beweis.

Gemäß Satz 3.46 können wir o.B.d.A. annehmen, dass φ den Junktor " \to " nicht enthält.

Die Negationsnormalform für Formeln der Logik erster Stufe ist ähnlich definiert wie die Negationsnormalform der Aussagenlogik.

Definition 3.66

Sei σ eine beliebige Signatur. Eine FO[σ]-Formel φ ist in Negationsnormalform (kurz: NNF), wenn Negationszeichen in φ nur unmittelbar vor <u>atomaren</u> Subformeln auftreten und φ den Junktor " \rightarrow " nicht enthält.

Satz 3.67

Jede $FO[\sigma]$ -Formel φ ist äquivalent zu einer Formel in NNF.

Beweis.

Gemäß Satz 3.46 können wir o.B.d.A. annehmen, dass φ den Junktor " \to " nicht enthält.

Ähnlich wie für die Aussagenlogik definieren wir per Induktion über den Aufbau zu jeder FO[σ]-Formel φ

Die Negationsnormalform für Formeln der Logik erster Stufe ist ähnlich definiert wie die Negationsnormalform der Aussagenlogik.

Definition 3.66

Sei σ eine beliebige Signatur. Eine FO[σ]-Formel φ ist in Negationsnormalform (kurz: NNF), wenn Negationszeichen in φ nur unmittelbar vor <u>atomaren</u> Subformeln auftreten und φ den Junktor " \rightarrow " nicht enthält.

Satz 3.67

Jede $FO[\sigma]$ -Formel φ ist äquivalent zu einer Formel in NNF.

Beweis.

Gemäß Satz 3.46 können wir o.B.d.A. annehmen, dass φ den Junktor " \to " nicht enthält.

Ähnlich wie für die Aussagenlogik definieren wir per Induktion über den Aufbau zu jeder FO $[\sigma]$ -Formel φ zwei FO $[\sigma]$ -Formeln φ' und φ'' in NNF, so dass gilt: $\varphi \equiv \varphi'$ und $\neg \varphi \equiv \varphi''$.

Die Negationsnormalform für Formeln der Logik erster Stufe ist ähnlich definiert wie die Negationsnormalform der Aussagenlogik.

Definition 3.66

Sei σ eine beliebige Signatur. Eine FO[σ]-Formel φ ist in Negationsnormalform (kurz: NNF), wenn Negationszeichen in φ nur unmittelbar vor <u>atomaren</u> Subformeln auftreten und φ den Junktor " \rightarrow " nicht enthält.

Satz 3.67

Jede $FO[\sigma]$ -Formel φ ist äquivalent zu einer Formel in NNF.

Beweis.

Gemäß Satz 3.46 können wir o.B.d.A. annehmen, dass φ den Junktor " \to " nicht enthält.

Ahnlich wie für die Aussagenlogik definieren wir per Induktion über den Aufbau zu jeder FO $[\sigma]$ -Formel φ zwei FO $[\sigma]$ -Formeln φ' und φ'' in NNF, so dass gilt: $\varphi \equiv \varphi'$ und $\neg \varphi \equiv \varphi''$. Details: Übung.

Pränexe Normalform

Definition 3.68

Sei σ eine beliebige Signatur.

(a) Eine FO[σ]-Formel heißt quantorenfrei, falls in ihr keins der Symbole \exists , \forall vorkommt.

Pränexe Normalform

Definition 3.68

Sei σ eine beliebige Signatur.

- (a) Eine FO[σ]-Formel heißt quantorenfrei, falls in ihr keins der Symbole \exists , \forall vorkommt.
 - Die Menge aller quantorenfreien $FO[\sigma]$ -Formeln bezeichnen wir mit QF_{σ} .

Definition 3.68

Sei σ eine beliebige Signatur.

- (a) Eine FO[σ]-Formel heißt quantorenfrei, falls in ihr keins der Symbole ∃, ∀ vorkommt.
 Die Menge aller quantorenfreien FO[σ]-Formeln bezeichnen wir mit QF_σ.
- (b) Eine $FO[\sigma]$ -Formel φ ist in pränexer Normalform (bzw. Pränex-Normalform, kurz: PNF), wenn sie von der Form

$$Q_1x_1\cdots Q_nx_n \chi$$

ist,

Definition 3.68

Sei σ eine beliebige Signatur.

- (a) Eine FO[σ]-Formel heißt quantorenfrei, falls in ihr keins der Symbole ∃, ∀ vorkommt.
 Die Menge aller quantorenfreien FO[σ]-Formeln bezeichnen wir mit QF_σ.
- (b) Eine $FO[\sigma]$ -Formel φ ist in pränexer Normalform (bzw. Pränex-Normalform, kurz: PNF), wenn sie von der Form

$$Q_1x_1\cdots Q_nx_n \chi$$

ist, wobei $n \ge 0$,

Definition 3.68

Sei σ eine beliebige Signatur.

- (a) Eine FO[σ]-Formel heißt quantorenfrei, falls in ihr keins der Symbole ∃, ∀ vorkommt.
 Die Menge aller quantorenfreien FO[σ]-Formeln bezeichnen wir mit QF_σ.
- (b) Eine $FO[\sigma]$ -Formel φ ist in pränexer Normalform (bzw. Pränex-Normalform, kurz: PNF), wenn sie von der Form

$$Q_1x_1\cdots Q_nx_n \chi$$

ist, wobei $n \geqslant 0$, $Q_1, \ldots, Q_n \in \{\exists, \forall\}$,

Definition 3.68

Sei σ eine beliebige Signatur.

- (a) Eine FO[σ]-Formel heißt quantorenfrei, falls in ihr keins der Symbole ∃, ∀ vorkommt.
 Die Menge aller quantorenfreien FO[σ]-Formeln bezeichnen wir mit QF_σ.
- (b) Eine $FO[\sigma]$ -Formel φ ist in pränexer Normalform (bzw. Pränex-Normalform, kurz: PNF), wenn sie von der Form

$$Q_1x_1\cdots Q_nx_n \chi$$

ist, wobei $n \ge 0$, $Q_1, \ldots, Q_n \in \{\exists, \forall\}$, $x_1, \ldots, x_n \in \mathsf{VAR}$

Definition 3.68

Sei σ eine beliebige Signatur.

- (a) Eine FO[σ]-Formel heißt quantorenfrei, falls in ihr keins der Symbole ∃, ∀ vorkommt.
 Die Menge aller quantorenfreien FO[σ]-Formeln bezeichnen wir mit QF_σ.
- (b) Eine $FO[\sigma]$ -Formel φ ist in pränexer Normalform (bzw. Pränex-Normalform, kurz: PNF), wenn sie von der Form

$$Q_1x_1\cdots Q_nx_n \chi$$

ist, wobei $n \geqslant 0$, $Q_1, \ldots, Q_n \in \{\exists, \forall\}$, $x_1, \ldots, x_n \in \mathsf{VAR}$ und $\chi \in \mathsf{QF}_{\sigma}$.

Definition 3.68

Sei σ eine beliebige Signatur.

- (a) Eine FO[σ]-Formel heißt quantorenfrei, falls in ihr keins der Symbole ∃, ∀ vorkommt.
 Die Menge aller quantorenfreien FO[σ]-Formeln bezeichnen wir mit QF_σ.
- (b) Eine $FO[\sigma]$ -Formel φ ist in pränexer Normalform (bzw. Pränex-Normalform, kurz: PNF), wenn sie von der Form

$$Q_1x_1\cdots Q_nx_n \chi$$

ist, wobei $n \geqslant 0$, $Q_1, \ldots, Q_n \in \{\exists, \forall\}$, $x_1, \ldots, x_n \in \mathsf{VAR}$ und $\chi \in \mathsf{QF}_\sigma$. $Q_1 x_1 \cdots Q_n x_n$ wird Quantoren-Präfix von φ genannt;

Definition 3.68

Sei σ eine beliebige Signatur.

- (a) Eine FO[σ]-Formel heißt quantorenfrei, falls in ihr keins der Symbole ∃, ∀ vorkommt.
 Die Menge aller quantorenfreien FO[σ]-Formeln bezeichnen wir mit QF_σ.
- (b) Eine $FO[\sigma]$ -Formel φ ist in pränexer Normalform (bzw. Pränex-Normalform, kurz: PNF), wenn sie von der Form

$$Q_1x_1\cdots Q_nx_n \chi$$

ist, wobei $n \geqslant 0$, $Q_1, \ldots, Q_n \in \{\exists, \forall\}$, $x_1, \ldots, x_n \in \mathsf{VAR}$ und $\chi \in \mathsf{QF}_\sigma$. $Q_1x_1\cdots Q_nx_n$ wird Quantoren-Präfix von φ genannt; χ heißt Kern (bzw. Matrix) von φ .

Definition 3.68

Sei σ eine beliebige Signatur.

- (a) Eine FO[σ]-Formel heißt quantorenfrei, falls in ihr keins der Symbole ∃, ∀ vorkommt.
 Die Menge aller quantorenfreien FO[σ]-Formeln bezeichnen wir mit QF_σ.
- (b) Eine $FO[\sigma]$ -Formel φ ist in pränexer Normalform (bzw. Pränex-Normalform, kurz: PNF), wenn sie von der Form

$$Q_1x_1\cdots Q_nx_n \chi$$

ist, wobei $n \geqslant 0$, $Q_1, \ldots, Q_n \in \{\exists, \forall\}$, $x_1, \ldots, x_n \in \mathsf{VAR}$ und $\chi \in \mathsf{QF}_\sigma$. $Q_1x_1\cdots Q_nx_n$ wird Quantoren-Präfix von φ genannt; χ heißt Kern (bzw. Matrix) von φ .

Satz 3.69

Jede $FO[\sigma]$ -Formel φ ist äquivalent zu einer $FO[\sigma]$ -Formel φ' in pränexer Normalform

Definition 3.68

Sei σ eine beliebige Signatur.

- (a) Eine FO[σ]-Formel heißt quantorenfrei, falls in ihr keins der Symbole ∃, ∀ vorkommt.
 Die Menge aller quantorenfreien FO[σ]-Formeln bezeichnen wir mit QF_σ.
- (b) Eine $FO[\sigma]$ -Formel φ ist in pränexer Normalform (bzw. Pränex-Normalform, kurz: PNF), wenn sie von der Form

$$Q_1x_1\cdots Q_nx_n \chi$$

ist, wobei $n \geqslant 0$, $Q_1, \ldots, Q_n \in \{\exists, \forall\}$, $x_1, \ldots, x_n \in \mathsf{VAR}$ und $\chi \in \mathsf{QF}_\sigma$. $Q_1x_1\cdots Q_nx_n$ wird Quantoren-Präfix von φ genannt; χ heißt Kern (bzw. Matrix) von φ .

Satz 3.69

Jede FO[σ]-Formel φ ist äquivalent zu einer FO[σ]-Formel φ' in pränexer Normalform mit frei(φ') = frei(φ).

Bevor wir Satz 3.69 beweisen, betrachten wir zunächst ein Beispiel.

Beispiel 3.70

Sei

$$\varphi(y) := \forall x \neg (\exists y E(x,y) \rightarrow \exists x E(x,y)).$$

Umformung in eine äquvivalente Formel in Pränex-Normalform:

Wir zeigen zunächst drei Lemmas und schließen danach den Beweis ab.

Wir zeigen zunächst drei Lemmas und schließen danach den Beweis ab.

Lemma 3.71

Sei
$$\psi := Q_1 x_1 \cdots Q_n x_n \chi$$
, wobei $n \geqslant 0$, $Q_1, \ldots, Q_n \in \{\exists, \forall\}$ und $\chi \in \mathsf{FO}[\sigma]$.

Wir zeigen zunächst drei Lemmas und schließen danach den Beweis ab.

Lemma 3.71

Sei $\psi := Q_1 x_1 \cdots Q_n x_n \chi$, wobei $n \geqslant 0$, $Q_1, \ldots, Q_n \in \{\exists, \forall\}$ und $\chi \in \mathsf{FO}[\sigma]$. Für jedes $Q \in \{\exists, \forall\}$ sei

$$\widetilde{Q} := \left\{ egin{array}{ll} orall & \textit{falls} & Q = \exists \;, \\ \exists & \textit{falls} & Q = \forall \;. \end{array} \right.$$

Wir zeigen zunächst drei Lemmas und schließen danach den Beweis ab.

Lemma 3.71

Sei $\psi := Q_1 x_1 \cdots Q_n x_n \chi$, wobei $n \ge 0$, $Q_1, \ldots, Q_n \in \{\exists, \forall\}$ und $\chi \in \mathsf{FO}[\sigma]$. Für jedes $Q \in \{\exists, \forall\}$ sei

$$\widetilde{Q} := \left\{ egin{array}{ll} orall & \textit{falls } Q = \exists \,, \\ \exists & \textit{falls } Q = \forall \,. \end{array} \right.$$

Dann gilt: $\neg \psi \equiv$

Wir zeigen zunächst drei Lemmas und schließen danach den Beweis ab.

Lemma 3.71

Sei $\psi := Q_1 x_1 \cdots Q_n x_n \chi$, wobei $n \ge 0$, $Q_1, \ldots, Q_n \in \{\exists, \forall\}$ und $\chi \in \mathsf{FO}[\sigma]$. Für jedes $Q \in \{\exists, \forall\}$ sei

$$\widetilde{Q} := \left\{ egin{array}{ll} orall & \textit{falls} & \textit{Q} = \exists \,, \\ \exists & \textit{falls} & \textit{Q} = \forall \,. \end{array} \right.$$

Dann gilt: $\neg \psi \equiv \widetilde{Q}_1 x_1 \cdots \widetilde{Q}_n x_n \neg \chi$.

Wir zeigen zunächst drei Lemmas und schließen danach den Beweis ab.

Lemma 3.71

Sei $\psi := Q_1 x_1 \cdots Q_n x_n \chi$, wobei $n \geqslant 0$, $Q_1, \ldots, Q_n \in \{\exists, \forall\}$ und $\chi \in \mathsf{FO}[\sigma]$. Für jedes $Q \in \{\exists, \forall\}$ sei

$$\widetilde{Q} := \left\{ egin{array}{ll} orall & \textit{falls} & Q = \exists \,, \\ \exists & \textit{falls} & Q = \forall \,. \end{array} \right.$$

Dann gilt: $\neg \psi \equiv \widetilde{Q}_1 x_1 \cdots \widetilde{Q}_n x_n \neg \chi$.

Beweis.

Einfaches Nachrechnen per Induktion nach n unter Verwendung der Tatsache, dass $\neg \exists x \varphi \equiv \forall x \neg \varphi$ und $\neg \forall x \varphi \equiv \exists x \neg \varphi$ (Lemma 3.44). Details: Übung.

$$(\varphi \wedge \exists x \psi) \equiv$$

$$(\varphi \wedge \exists x \psi) \equiv \exists x (\varphi \wedge \psi)$$

$$\left(\varphi \wedge \exists x \psi\right) \equiv \exists x \left(\varphi \wedge \psi\right) \qquad , \qquad \left(\varphi \wedge \forall x \psi\right) \equiv \forall x \left(\varphi \wedge \psi\right)$$

$$\left(\varphi \wedge \exists x \, \psi\right) \equiv \exists x \, \left(\varphi \wedge \psi\right) \qquad , \qquad \left(\varphi \wedge \forall x \, \psi\right) \equiv \forall x \, \left(\varphi \wedge \psi\right) ,$$

$$\left(\, \varphi \ \lor \ \exists x \, \psi \, \right) \quad \equiv \quad \exists x \, \left(\varphi \lor \psi \right)$$

Für alle $FO[\sigma]$ -Formeln φ und ψ und für alle Variablen $x \in VAR \setminus frei(\varphi)$ gilt:

Beweis. Die Beweise aller vier Aquivalenzen sind ähnlich. Wir beweisen hier nur die erste:

$$(\varphi \wedge \exists x \, \psi) \equiv \exists x \, (\varphi \wedge \psi) . \tag{1}$$

$$\psi_1 := \ Q_1 x_1 \cdots Q_\ell x_\ell \ \chi_1 \qquad \text{ und } \qquad \psi_2 := \ Q_1' y_1 \cdots Q_m' y_m \ \chi_2 \ ,$$

Seien

$$\psi_1 := Q_1 x_1 \cdots Q_\ell x_\ell \chi_1$$
 und $\psi_2 := Q'_1 y_1 \cdots Q'_m y_m \chi_2$,

wobei $\ell, m \geqslant 0$,

$$\psi_1:=\ Q_1x_1\cdots Q_\ell x_\ell\ \chi_1\qquad \text{und}\qquad \psi_2:=\ Q_1'y_1\cdots Q_m'y_m\ \chi_2\ ,$$
 wobei $\ell,m\geqslant 0,\ Q_1,\ldots,Q_\ell,\ Q_1',\ldots,Q_m'\in\{\exists,\forall\},$

$$\psi_1:=\ Q_1x_1\cdots Q_\ell x_\ell\ \chi_1\qquad \text{und}\qquad \psi_2:=\ Q_1'y_1\cdots Q_m'y_m\ \chi_2\ ,$$
 wobei $\ell,m\geqslant 0,\ Q_1,\ldots,Q_\ell,\ Q_1',\ldots,Q_m'\in\{\exists,\forall\},$ $\chi_1,\ldots,\chi_\ell,\ y_1,\ldots,y_m\in\mathsf{VAR},$

$$\psi_1 := Q_1 x_1 \cdots Q_\ell x_\ell \ \chi_1 \qquad \text{und} \qquad \psi_2 := Q_1' y_1 \cdots Q_m' y_m \ \chi_2 \ ,$$
 wobei $\ell, m \geqslant 0, \ Q_1, \dots, Q_\ell, \ Q_1', \dots, Q_m' \in \{\exists, \forall\},$ $\chi_1, \dots, \chi_\ell, \ y_1, \dots, y_m \in \mathsf{VAR}, \ \chi_1, \chi_2 \in \mathsf{FO}[\sigma].$ Es gelte: $\{x_1, \dots, x_\ell\} \cap \mathsf{frei}(\psi_2) = \emptyset$

$$\psi_{1} := Q_{1}x_{1} \cdots Q_{\ell}x_{\ell} \ \chi_{1} \quad \text{und} \quad \psi_{2} := Q'_{1}y_{1} \cdots Q'_{m}y_{m} \ \chi_{2} \ ,$$
 wobei $\ell, m \geqslant 0, \ Q_{1}, \dots, Q_{\ell}, \ Q'_{1}, \dots, Q'_{m} \in \{\exists, \forall\}, \ \chi_{1}, \dots, \chi_{\ell}, \ y_{1}, \dots, y_{m} \in \mathsf{VAR}, \ \chi_{1}, \chi_{2} \in \mathsf{FO}[\sigma].$ Es gelte: $\{x_{1}, \dots, x_{\ell}\} \cap \mathsf{frei}(\psi_{2}) = \emptyset \ \text{und} \ \{y_{1}, \dots, y_{m}\} \cap \mathsf{frei}(\chi_{1}) = \emptyset.$

$$\psi_1 := Q_1x_1 \cdots Q_\ell x_\ell \ \chi_1 \qquad \text{und} \qquad \psi_2 := Q_1'y_1 \cdots Q_m'y_m \ \chi_2 \ ,$$
 wobei $\ell, m \geqslant 0, \ Q_1, \ldots, Q_\ell, \ Q_1', \ldots, Q_m' \in \{\exists, \forall\},$ $x_1, \ldots, x_\ell, \ y_1, \ldots, y_m \in \mathsf{VAR}, \ \chi_1, \chi_2 \in \mathsf{FO}[\sigma].$ Es gelte: $\{x_1, \ldots, x_\ell\} \cap \mathsf{frei}(\psi_2) = \emptyset \ \ \mathsf{und} \ \ \{y_1, \ldots, y_m\} \cap \mathsf{frei}(\chi_1) = \emptyset.$ Dann gilt für $* \in \{\land, \lor\}, \ \ \mathsf{dass}$
$$(\psi_1 * \psi_2) \equiv$$

$$\begin{array}{rclcrcl} \psi_{1} := & Q_{1}x_{1} \cdots Q_{\ell}x_{\ell} \ \chi_{1} & \textit{und} & \psi_{2} := & Q_{1}'y_{1} \cdots Q_{m}'y_{m} \ \chi_{2} \ , \\ wobei & \ell, m \geqslant 0, & Q_{1}, \ldots, Q_{\ell}, & Q_{1}', \ldots, Q_{m}' \in \{\exists, \forall\}, \\ x_{1}, \ldots, x_{\ell}, & y_{1}, \ldots, y_{m} \in \mathsf{VAR}, & \chi_{1}, \chi_{2} \in \mathsf{FO}[\sigma]. \\ \\ \textit{Es gelte:} & \{x_{1}, \ldots, x_{\ell}\} \cap \mathsf{frei}(\psi_{2}) = \emptyset & \textit{und} & \{y_{1}, \ldots, y_{m}\} \cap \mathsf{frei}(\chi_{1}) = \emptyset. \\ \\ \textit{Dann gilt für } * \in \{\land, \lor\}, & \textit{dass} \\ & \left(\psi_{1} * \psi_{2}\right) & \equiv & Q_{1}x_{1} \cdots Q_{\ell}x_{\ell} \ Q_{1}'y_{1} \cdots Q_{m}'y_{m} \ \left(\chi_{1} * \chi_{2}\right). \end{array}$$

Seien

$$\psi_1 := Q_1 x_1 \cdots Q_\ell x_\ell \chi_1$$
 und $\psi_2 := Q'_1 y_1 \cdots Q'_m y_m \chi_2$,

wobei
$$\ell, m \ge 0$$
, Q_1, \ldots, Q_ℓ , $Q'_1, \ldots, Q'_m \in \{\exists, \forall\}$, x_1, \ldots, x_ℓ , $y_1, \ldots, y_m \in VAR$, $\chi_1, \chi_2 \in FO[\sigma]$.

Es gelte:
$$\{x_1,\ldots,x_\ell\}\cap \operatorname{frei}(\psi_2)=\emptyset$$
 und $\{y_1,\ldots,y_m\}\cap \operatorname{frei}(\chi_1)=\emptyset$.

Dann gilt für $* \in \{\land, \lor\}$, dass

$$(\psi_1 * \psi_2) \equiv Q_1 x_1 \cdots Q_\ell x_\ell \ Q'_1 y_1 \cdots Q'_m y_m \ (\chi_1 * \chi_2).$$

Beweis.

Zwei Induktionen über ℓ bzw. m unter Verwendung von Lemma 3.72. Details: Übung.

Sei φ eine FO[σ]-Formel.

Gemäß Satz 3.46 können wir o.B.d.A. annehmen, dass φ den Junktor " \to " nicht enthält.

Sei φ eine FO[σ]-Formel.

Gemäß Satz 3.46 können wir o.B.d.A. annehmen, dass φ den Junktor " \to " nicht enthält.

Per Induktion über den Aufbau von φ zeigen wir, dass es eine zu φ äquivalente Formel φ' in PNF gibt mit $\mathrm{frei}(\varphi')=\mathrm{frei}(\varphi)$.

Sei φ eine FO[σ]-Formel.

Gemäß Satz 3.46 können wir o.B.d.A. annehmen, dass φ den Junktor " \rightarrow " nicht enthält.

Per Induktion über den Aufbau von φ zeigen wir, dass es eine zu φ äquivalente Formel φ' in PNF gibt mit $\mathrm{frei}(\varphi')=\mathrm{frei}(\varphi)$.

Induktionsanfang: Atomare Formeln

Sei φ eine FO[σ]-Formel.

Gemäß Satz 3.46 können wir o.B.d.A. annehmen, dass φ den Junktor " \rightarrow " nicht enthält.

Per Induktion über den Aufbau von φ zeigen wir, dass es eine zu φ äquivalente Formel φ' in PNF gibt mit $\mathrm{frei}(\varphi')=\mathrm{frei}(\varphi)$.

Induktionsanfang: Atomare Formeln sind quantorenfrei

Abschluss des Beweises von Satz 3.69:

Sei φ eine FO[σ]-Formel.

Gemäß Satz 3.46 können wir o.B.d.A. annehmen, dass φ den Junktor " \rightarrow " nicht enthält.

Per Induktion über den Aufbau von φ zeigen wir, dass es eine zu φ äquivalente Formel φ' in PNF gibt mit $\text{frei}(\varphi') = \text{frei}(\varphi)$.

Induktionsanfang: Atomare Formeln sind quantorenfrei und daher insbesondere in PNF.

Abschluss des Beweises von Satz 3.69:

Sei φ eine FO[σ]-Formel.

Gemäß Satz 3.46 können wir o.B.d.A. annehmen, dass φ den Junktor " \to " nicht enthält.

Per Induktion über den Aufbau von φ zeigen wir, dass es eine zu φ äquivalente Formel φ' in PNF gibt mit $\mathrm{frei}(\varphi')=\mathrm{frei}(\varphi)$.

Induktionsanfang: Atomare Formeln sind quantorenfrei und daher insbesondere in PNF.

Induktionsschritt:

Kapitel 4:

Grundlagen des automatischen Schließens

• In typischen Anwendungen der Logik beschreibt man mit Hilfe einer Formelmenge das Wissen über ein Anwendungsszenario und will aus diesem Wissen dann, möglichst automatisch, Folgerungen ziehen.

- In typischen Anwendungen der Logik beschreibt man mit Hilfe einer Formelmenge das Wissen über ein Anwendungsszenario und will aus diesem Wissen dann, möglichst automatisch, Folgerungen ziehen.
- In diesem Kapitel werden wir untersuchen, inwieweit sich für die Logik erster Stufe das Folgern automatiseren lässt.

- In typischen Anwendungen der Logik beschreibt man mit Hilfe einer Formelmenge das Wissen über ein Anwendungsszenario und will aus diesem Wissen dann, möglichst automatisch, Folgerungen ziehen.
- In diesem Kapitel werden wir untersuchen, inwieweit sich für die Logik erster Stufe das Folgern automatiseren lässt.
- Wir werden einen syntaktischen Beweisbegriff einführen, der genau dem semantischen Folgerungsbegriff entspricht (Vollständigkeitssatz).

- In typischen Anwendungen der Logik beschreibt man mit Hilfe einer Formelmenge das Wissen über ein Anwendungsszenario und will aus diesem Wissen dann, möglichst automatisch, Folgerungen ziehen.
- In diesem Kapitel werden wir untersuchen, inwieweit sich für die Logik erster Stufe das Folgern automatiseren lässt.
- Wir werden einen syntaktischen Beweisbegriff einführen, der genau dem semantischen Folgerungsbegriff entspricht (Vollständigkeitssatz).
- Dadurch werden wir einen Algorithmus erhalten, der nach und nach alle allgemeingültigen Sätze der Logik erster Stufe aufzählt.

- In typischen Anwendungen der Logik beschreibt man mit Hilfe einer Formelmenge das Wissen über ein Anwendungsszenario und will aus diesem Wissen dann, möglichst automatisch, Folgerungen ziehen.
- In diesem Kapitel werden wir untersuchen, inwieweit sich für die Logik erster Stufe das Folgern automatiseren lässt.
- Wir werden einen syntaktischen Beweisbegriff einführen, der genau dem semantischen Folgerungsbegriff entspricht (Vollständigkeitssatz).
- Dadurch werden wir einen Algorithmus erhalten, der nach und nach alle allgemeingültigen Sätze der Logik erster Stufe aufzählt.
- Andererseits werden wir zeigen, dass es keinen Algorithmus gibt, der bei Eingabe eines beliebigen Satzes der Logik erster Stufe entscheidet, ob der Satz allgemeingültig ist.

- In typischen Anwendungen der Logik beschreibt man mit Hilfe einer Formelmenge das Wissen über ein Anwendungsszenario und will aus diesem Wissen dann, möglichst automatisch, Folgerungen ziehen.
- In diesem Kapitel werden wir untersuchen, inwieweit sich für die Logik erster Stufe das Folgern automatiseren lässt.
- Wir werden einen syntaktischen Beweisbegriff einführen, der genau dem semantischen Folgerungsbegriff entspricht (Vollständigkeitssatz).
- Dadurch werden wir einen Algorithmus erhalten, der nach und nach alle allgemeingültigen Sätze der Logik erster Stufe aufzählt.
- Andererseits werden wir zeigen, dass es keinen Algorithmus gibt, der bei Eingabe eines beliebigen Satzes der Logik erster Stufe entscheidet, ob der Satz allgemeingültig ist.
- Als Folgerung aus dem Vollständigkeitssatz werden wir auch den Endlichkeitssatz für die Logik erster Stufe erhalten.

17 11

Abschnitt 4.1:

Kalküle und Ableitungen

Definition 4.1

Sei *M* eine beliebige Menge.

(a) Eine Ableitungsregel über M (kurz: Regel) hat die Form

$$\frac{a_1 \cdots a_n}{b}$$

wobei $n \ge 0$ und $a_1, \ldots, a_n, b \in M$.

Definition 4.1

Sei *M* eine beliebige Menge.

(a) Eine Ableitungsregel über M (kurz: Regel) hat die Form

$$\frac{a_1 \cdots a_r}{b}$$

wobei $n \geqslant 0$ und $a_1, \ldots, a_n, b \in M$.

Wir bezeichnen a_1, \ldots, a_n als die Voraussetzungen der Regel und b als die Konsequenz.

Definition 4.1

Sei *M* eine beliebige Menge.

(a) Eine Ableitungsregel über M (kurz: Regel) hat die Form

$$\frac{a_1 \cdots a_r}{b}$$

wobei $n \ge 0$ und $a_1, \ldots, a_n, b \in M$.

Wir bezeichnen a_1, \ldots, a_n als die Voraussetzungen der Regel und b als die Konsequenz.

Ableitungsregeln ohne Voraussetzungen (also mit n = 0) bezeichnen wir als Axiome.

Definition 4.1

Sei *M* eine beliebige Menge.

(a) Eine Ableitungsregel über M (kurz: Regel) hat die Form

$$\frac{a_1 \cdots a_r}{b}$$

wobei $n \ge 0$ und $a_1, \ldots, a_n, b \in M$.

Wir bezeichnen a_1, \ldots, a_n als die Voraussetzungen der Regel und b als die Konsequenz.

Ableitungsregeln ohne Voraussetzungen (also mit n = 0) bezeichnen wir als Axiome.

(b) Ein Kalkül über M ist eine Menge von Ableitungsregeln über M.

Definition 4.2

Sei \mathfrak{K} ein Kalkül über einer Menge M, sei $V \subseteq M$ und sei $a \in M$.

(a) Eine Ableitung von a aus V in \Re ist

Definition 4.2

Sei \mathfrak{K} ein Kalkül über einer Menge M, sei $V \subseteq M$ und sei $a \in M$.

(a) Eine Ableitung von a aus V in $\mathfrak R$ ist eine endliche Folge $(a_1,\ldots,a_\ell)\in M^\ell$, so dass

Definition 4.2

Sei \mathfrak{K} ein Kalkül über einer Menge M, sei $V \subseteq M$ und sei $a \in M$.

(a) Eine Ableitung von a aus V in $\mathfrak K$ ist eine endliche Folge $(a_1,\ldots,a_\ell)\in M^\ell$, so dass $\ell\geqslant 1$,

Definition 4.2

Sei \mathfrak{K} ein Kalkül über einer Menge M, sei $V \subseteq M$ und sei $a \in M$.

(a) Eine Ableitung von a aus V in $\mathfrak K$ ist eine endliche Folge $(a_1,\ldots,a_\ell)\in M^\ell$, so dass $\ell\geqslant 1,\ a_\ell=a$

Definition 4.2

Sei \mathfrak{K} ein Kalkül über einer Menge M, sei $V \subseteq M$ und sei $a \in M$.

- (a) Eine Ableitung von a aus V in $\mathfrak K$ ist eine endliche Folge $(a_1,\ldots,a_\ell)\in M^\ell$, so dass $\ell\geqslant 1$, $a_\ell=a$ und für alle $i\in\{1,\ldots,\ell\}$ gilt:
 - a_i ∈ V

Definition 4.2

Sei \mathfrak{K} ein Kalkül über einer Menge M, sei $V \subseteq M$ und sei $a \in M$.

- (a) Eine Ableitung von a aus V in $\mathfrak K$ ist eine endliche Folge $(a_1,\ldots,a_\ell)\in M^\ell$, so dass $\ell\geqslant 1$, $a_\ell=a$ und für alle $i\in\{1,\ldots,\ell\}$ gilt:
 - $a_i \in V$ oder
 - $\frac{1}{a_i}$ ist ein Axiom in \Re

Definition 4.2

Sei \mathfrak{K} ein Kalkül über einer Menge M, sei $V \subseteq M$ und sei $a \in M$.

- (a) Eine Ableitung von a aus V in $\mathfrak K$ ist eine endliche Folge $(a_1,\ldots,a_\ell)\in M^\ell$, so dass $\ell\geqslant 1$, $a_\ell=a$ und für alle $i\in\{1,\ldots,\ell\}$ gilt:
 - $a_i \in V$ oder
 - = ist ein Axiom in ℜ oder
 - es gibt in \Re eine Ableitungsregel $\frac{b_1 \cdots b_n}{a_i}$ so dass $b_1, \ldots, b_n \in \{a_1, \ldots, a_{i-1}\}.$

Definition 4.2

Sei \mathfrak{K} ein Kalkül über einer Menge M, sei $V \subseteq M$ und sei $a \in M$.

- (a) Eine Ableitung von a aus V in $\mathfrak K$ ist eine endliche Folge $(a_1,\ldots,a_\ell)\in M^\ell$, so dass $\ell\geqslant 1$, $a_\ell=a$ und für alle $i\in\{1,\ldots,\ell\}$ gilt:
 - $a_i \in V$ oder
 - _ ist ein Axiom in £ oder
 - es gibt in \Re eine Ableitungsregel $\frac{b_1 \cdots b_n}{a_i}$ so dass $b_1, \ldots, b_n \in \{a_1, \ldots, a_{i-1}\}.$

Der besseren Lesbarkeit halber schreiben wir in konkreten Beispielen Ableitungen der Form (a_1, \ldots, a_ℓ) oft zeilenweise, also

- $(1) a_1$
- (2) a_2
 - :
- (ℓ) a_{ℓ}

und geben am Ende jeder Zeile eine kurze Begründung an.

(b) Ein Element $a \in M$ ist aus V in \mathfrak{K} ableitbar, wenn es eine Ableitung von a aus V in \mathfrak{K} gibt.

- (b) Ein Element $a \in M$ ist aus V in \mathfrak{K} ableitbar, wenn es eine Ableitung von a aus V in \mathfrak{K} gibt.
- (c) Wir schreiben $\operatorname{abl}_{\mathfrak{K}}(V)$, um die Menge aller aus V in \mathfrak{K} ableitbaren Elemente zu bezeichnen.

- (b) Ein Element $a \in M$ ist aus V in \mathfrak{K} ableitbar, wenn es eine Ableitung von a aus V in \mathfrak{K} gibt.
- (c) Wir schreiben $\operatorname{abl}_{\mathfrak{K}}(V)$, um die Menge aller aus V in \mathfrak{K} ableitbaren Elemente zu bezeichnen.
- (d) Für $V = \emptyset$ nutzen wir folgende Notationen:

- (b) Ein Element $a \in M$ ist aus V in \mathfrak{K} ableitbar, wenn es eine Ableitung von a aus V in \mathfrak{K} gibt.
- (c) Wir schreiben $\operatorname{abl}_{\mathfrak{K}}(V)$, um die Menge aller aus V in \mathfrak{K} ableitbaren Elemente zu bezeichnen.
- (d) Für $V = \emptyset$ nutzen wir folgende Notationen:

Eine Ableitung von a in \Re ist eine Ableitung von a aus \emptyset in \Re .

(b) Ein Element $a \in M$ ist aus V in \mathfrak{K} ableitbar, wenn es eine Ableitung von a aus V in \mathfrak{K} gibt.

(c) Wir schreiben $\operatorname{abl}_{\mathfrak{K}}(V)$, um die Menge aller aus V in \mathfrak{K} ableitbaren Elemente zu bezeichnen.

(d) Für $V = \emptyset$ nutzen wir folgende Notationen:

Eine Ableitung von a in \mathfrak{K} ist eine Ableitung von a aus \emptyset in \mathfrak{K} .

Ein Element $a \in M$ heißt ableitbar aus \Re , falls es eine Ableitung von a in \Re gibt.

- (b) Ein Element $a \in M$ ist aus V in \Re ableitbar, wenn es eine Ableitung von a aus V in \Re gibt.
- (c) Wir schreiben $\operatorname{abl}_{\mathfrak{K}}(V)$, um die Menge aller aus V in \mathfrak{K} ableitbaren Elemente zu bezeichnen.
- (d) Für $V = \emptyset$ nutzen wir folgende Notationen:

Eine Ableitung von a in \Re ist eine Ableitung von a aus \emptyset in \Re .

Ein Element $a \in M$ heißt ableitbar aus \Re , falls es eine Ableitung von a in \Re gibt.

Die Menge aller in $\mathfrak K$ ableitbaren Elemente bezeichnen wir mit $\mathsf{abl}_{\mathfrak K}$, d.h.: $\mathsf{abl}_{\mathfrak K} := \mathsf{abl}_{\mathfrak K}(\emptyset)$.

Wir werden Kalküle nutzen, um auf elegante Art rekursive Definitionen bestimmter Mengen anzugeben:

Um eine bestimmte Teilmenge A einer Menge M rekursiv zu definieren, genügt es, einen Kalkül $\mathfrak K$ über M anzugeben, für den gilt: $\mathsf{abl}_{\mathfrak K} = A$.

Beispiel: Mengen natürlicher Zahlen

Beispiel 4.3

Sei $\mathfrak K$ der Kalkül über $M:=\mathbb N$ mit folgenden Ableitungsregeln:

- Axiom: $\frac{1}{1}$
- Weitere Regeln: $\frac{n}{2n}$, für jedes $n \in \mathbb{N}$.

Fragen:

Was ist abl_R ?

Beispiel: Mengen natürlicher Zahlen

Beispiel 4.3

Sei $\mathfrak K$ der Kalkül über $M:=\mathbb N$ mit folgenden Ableitungsregeln:

- Axiom: $\frac{1}{1}$
- Weitere Regeln: $\frac{n}{2n}$, für jedes $n \in \mathbb{N}$.

Fragen:

- Was ist abl_R ?
- Was ist $abl_{\mathfrak{K}}(V)$ für $V := \{3\}$?

Beispiel: Aussagenlogik

Beispiel 4.4

Sei $\Sigma := A_{AL}$ das Alphabet der Aussagenlogik, d.h.

$$\Sigma = \mathsf{AS} \ \cup \ \{\ \neg,\ \wedge,\ \vee,\ \rightarrow,\ \boldsymbol{0},\ \boldsymbol{1},\ (,\)\ \}\ ,$$

wobei $AS = \{A_i : i \in \mathbb{N}\}$ die Menge aller Aussagensymbole ist.

Beispiel: Aussagenlogik

Beispiel 4.4

Sei $\Sigma := A_{AL}$ das Alphabet der Aussagenlogik, d.h.

$$\Sigma \ = \ \mathsf{AS} \ \cup \ \{\, \neg, \, \wedge, \, \vee, \, \rightarrow, \, \boldsymbol{0}, \, \boldsymbol{1}, \, (, \,) \,\} \;,$$

wobei $AS = \{A_i : i \in \mathbb{N}\}$ die Menge aller Aussagensymbole ist.

Gesucht: Ein Kalkül $\mathfrak K$ über $M:=\Sigma^*$, aus dem genau die syntaktisch korrekten aussagenlogischen Formeln ableitbar sind

Beispiel: Aussagenlogik

Beispiel 4.4

Sei $\Sigma := A_{AL}$ das Alphabet der Aussagenlogik, d.h.

$$\Sigma \ = \ \mathsf{AS} \ \cup \ \{\ \neg,\ \wedge,\ \vee,\ \rightarrow,\ \boldsymbol{0},\ \boldsymbol{1},\ (,\)\ \}\ ,$$

wobei $AS = \{A_i : i \in \mathbb{N}\}$ die Menge aller Aussagensymbole ist.

Gesucht: Ein Kalkül $\mathfrak K$ über $M:=\Sigma^*$, aus dem genau die syntaktisch korrekten aussagenlogischen Formeln ableitbar sind, d.h. $\mathsf{abl}_{\mathfrak K}=\mathsf{AL}$.

Beispiel: Resolution

Die Kalkül-Schreibweise lässt sich auch dazu nutzen, eine elegante Darstellung der Resolutionswiderlegungen zu anzugeben.

Beispiel: Resolution

Die Kalkül-Schreibweise lässt sich auch dazu nutzen, eine elegante Darstellung der Resolutionswiderlegungen zu anzugeben.

Zur Erinnerung:

• Eine Klausel ist eine endliche Menge von Literalen.

Die Kalkül-Schreibweise lässt sich auch dazu nutzen, eine elegante Darstellung der Resolutionswiderlegungen zu anzugeben.

Zur Erinnerung:

• Eine Klausel ist eine endliche Menge von Literalen.

Ein Literal ist eine aussagenlogische Formel der Form X oder $\neg X$, wobei $X \in \mathsf{AS}$.

Die Kalkül-Schreibweise lässt sich auch dazu nutzen, eine elegante Darstellung der Resolutionswiderlegungen zu anzugeben.

Zur Erinnerung:

- Eine Klausel ist eine endliche Menge von Literalen.
 Ein Literal ist eine aussagenlogische Formel der Form X oder ¬X, wobei X ∈ AS.
- Wir haben in Satz 2.58 gezeigt, dass für jede Menge Γ von Klauseln gilt:

 Γ ist unerfüllbar \iff $\Gamma \vdash_R \emptyset$.

Die Kalkül-Schreibweise lässt sich auch dazu nutzen, eine elegante Darstellung der Resolutionswiderlegungen zu anzugeben.

Zur Erinnerung:

- Eine Klausel ist eine endliche Menge von Literalen.
 Ein Literal ist eine aussagenlogische Formel der Form X oder ¬X, wobei X ∈ AS.
- Wir haben in Satz 2.58 gezeigt, dass für jede Menge Γ von Klauseln gilt:

$$\Gamma$$
 ist unerfüllbar \iff $\Gamma \vdash_R \emptyset$.

Hierbei ist ∅ die leere Klausel.

Die Kalkül-Schreibweise lässt sich auch dazu nutzen, eine elegante Darstellung der Resolutionswiderlegungen zu anzugeben.

Zur Erinnerung:

- Eine Klausel ist eine endliche Menge von Literalen.
 Ein Literal ist eine aussagenlogische Formel der Form X oder ¬X, wobei X ∈ AS.
- Wir haben in Satz 2.58 gezeigt, dass für jede Menge Γ von Klauseln gilt:

$$\Gamma$$
 ist unerfüllbar \iff $\Gamma \vdash_R \emptyset$.

Hierbei ist ∅ die leere Klausel.

 $_{,,\Gamma} \vdash_{R} \emptyset$ " bedeutet, dass es eine Resolutionswiderlegung von Γ gibt.

Die Kalkül-Schreibweise lässt sich auch dazu nutzen, eine elegante Darstellung der Resolutionswiderlegungen zu anzugeben.

Zur Erinnerung:

- Eine Klausel ist eine endliche Menge von Literalen.
 Ein Literal ist eine aussagenlogische Formel der Form X oder ¬X, wobei X ∈ AS.
- Wir haben in Satz 2.58 gezeigt, dass für jede Menge Γ von Klauseln gilt:

$$\Gamma$$
 ist unerfüllbar \iff $\Gamma \vdash_R \emptyset$.

Hierbei ist ∅ die leere Klausel.

 $\Pi \Gamma \vdash_R \emptyset$ bedeutet, dass es eine Resolutionswiderlegung von Γ gibt.

Zur Erinnerung hier die Definition des Begriffs der Resolutionswiderlegungen:

Definition 2.56 Sei Γ eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel δ aus Γ ist

Definition 2.56

Sei Γ eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel δ aus Γ ist ein Tupel $(\delta_1, \ldots, \delta_\ell)$ von Klauseln, so dass gilt: $\ell \geqslant 1$,

Definition 2.56

Sei Γ eine Klauselmenge.

(a) Eine Resolutionsableitung einer Klausel δ aus Γ ist ein Tupel $(\delta_1, \ldots, \delta_\ell)$ von Klauseln, so dass gilt: $\ell \geqslant 1$, $\delta_\ell = \delta$,

Definition 2.56

Sei Γ eine Klauselmenge.

- (a) Eine Resolutionsableitung einer Klausel δ aus Γ ist ein Tupel $(\delta_1, \ldots, \delta_\ell)$ von Klauseln, so dass gilt: $\ell \geqslant 1$, $\delta_\ell = \delta$, und für alle $i \in [\ell]$ ist
 - $\delta_i \in \Gamma$, oder

Definition 2.56

Sei Γ eine Klauselmenge.

- (a) Eine Resolutionsableitung einer Klausel δ aus Γ ist ein Tupel $(\delta_1, \ldots, \delta_\ell)$ von Klauseln, so dass gilt: $\ell \geqslant 1$, $\delta_\ell = \delta$, und für alle $i \in [\ell]$ ist
 - $\delta_i \in \Gamma$, oder
 - es gibt $j, k \in [i-1]$, so dass δ_i eine Resolvente von δ_j und δ_k ist.

Definition 2.56

Sei Γ eine Klauselmenge.

- (a) Eine Resolutionsableitung einer Klausel δ aus Γ ist ein Tupel $(\delta_1, \ldots, \delta_\ell)$ von Klauseln, so dass gilt: $\ell \geqslant 1$, $\delta_\ell = \delta$, und für alle $i \in [\ell]$ ist
 - $\delta_i \in \Gamma$, oder
 - es gibt $j, k \in [i-1]$, so dass δ_i eine Resolvente von δ_j und δ_k ist.
- (b) Eine Resolutionswiderlegung von Γ ist eine Resolutionsableitung der leeren Klausel aus Γ .

Definition 2.56

Sei Γ eine Klauselmenge.

- (a) Eine Resolutionsableitung einer Klausel δ aus Γ ist ein Tupel $(\delta_1, \ldots, \delta_\ell)$ von Klauseln, so dass gilt: $\ell \geqslant 1$, $\delta_\ell = \delta$, und für alle $i \in [\ell]$ ist
 - $\delta_i \in \Gamma$, oder
 - es gibt $j, k \in [i-1]$, so dass δ_i eine Resolvente von δ_j und δ_k ist.
- (b) Eine Resolutionswiderlegung von Γ ist eine Resolutionsableitung der leeren Klausel aus Γ .

Zur Erinnerung:

Eine Klausel δ ist genau dann eine Resolvente zweier Klauseln γ_1 und γ_2 , wenn

Definition 2.56

Sei Γ eine Klauselmenge.

- (a) Eine Resolutionsableitung einer Klausel δ aus Γ ist ein Tupel $(\delta_1, \ldots, \delta_\ell)$ von Klauseln, so dass gilt: $\ell \geqslant 1$, $\delta_\ell = \delta$, und für alle $i \in [\ell]$ ist
 - $\delta_i \in \Gamma$, oder
 - es gibt $j, k \in [i-1]$, so dass δ_i eine Resolvente von δ_j und δ_k ist.
- (b) Eine Resolutionswiderlegung von Γ ist eine Resolutionsableitung der leeren Klausel aus Γ.

Zur Erinnerung:

Eine Klausel δ ist genau dann eine Resolvente zweier Klauseln γ_1 und γ_2 , wenn es ein Literal λ gibt, so dass gilt:

$$\lambda \in \gamma_1$$
, $\overline{\lambda} \in \gamma_2$ und $\delta =$

Definition 2.56

Sei Γ eine Klauselmenge.

- (a) Eine Resolutionsableitung einer Klausel δ aus Γ ist ein Tupel $(\delta_1, \ldots, \delta_\ell)$ von Klauseln, so dass gilt: $\ell \geqslant 1$, $\delta_\ell = \delta$, und für alle $i \in [\ell]$ ist
 - $\delta_i \in \Gamma$, oder
 - es gibt $j, k \in [i-1]$, so dass δ_i eine Resolvente von δ_j und δ_k ist.
- (b) Eine Resolutionswiderlegung von Γ ist eine Resolutionsableitung der leeren Klausel aus Γ .

Zur Erinnerung:

Eine Klausel δ ist genau dann eine Resolvente zweier Klauseln γ_1 und γ_2 , wenn es ein Literal λ gibt, so dass gilt:

$$\lambda \in \gamma_1, \qquad \overline{\lambda} \in \gamma_2 \qquad \text{ und } \qquad \delta = \ \left(\, \gamma_1 \setminus \{\lambda\} \, \right) \ \cup \ \left(\, \gamma_2 \setminus \{\overline{\lambda} \, \} \right).$$

Der Resolutionskalkül der Aussagenlogik

Gesucht: Ein Kalkül \mathfrak{K}_R über der Menge aller Klauseln, so dass für jede Klauselmenge Γ und jede Klausel δ gilt:

$$\delta \in \mathsf{abl}_{\mathfrak{K}_R}(\Gamma) \iff \Gamma \vdash_R \delta$$

d.h.: δ ist genau dann aus Γ in \mathfrak{K}_R ableitbar, wenn es eine Resolutionsableitung von δ aus Γ gibt.

Der Kalkül \mathfrak{K}_R wird Resolutionskalkül der Aussagenlogik genannt.

Definition 4.5

Sei \Re ein Kalkül über einer Menge M.

Eine Menge $A \subseteq M$ heißt abgeschlossen unter \mathfrak{K} , wenn für jede Ableitungsregel

$$\frac{a_1 \cdots a_n}{b}$$

in \Re gilt: Falls $a_1, \ldots, a_n \in A$, so ist auch $b \in A$.

Definition 4.5

Sei \Re ein Kalkül über einer Menge M.

Eine Menge $A \subseteq M$ heißt abgeschlossen unter \mathfrak{K} , wenn für jede Ableitungsregel

$$\frac{a_1 \cdots a_n}{b}$$

in \Re gilt: Falls $a_1, \ldots, a_n \in A$, so ist auch $b \in A$.

Satz 4.6

Sei \Re ein Kalkül über einer Menge M und sei $V \subseteq M$.

Dann ist $abl_{\Re}(V)$ die bzgl. " \subseteq " kleinste unter \Re abgeschlossene Menge, die V enthält.

Definition 4.5

Sei \Re ein Kalkül über einer Menge M.

Eine Menge $A \subseteq M$ heißt abgeschlossen unter \mathfrak{K} , wenn für jede Ableitungsregel

$$\frac{a_1 \cdots a_n}{b}$$

in \Re gilt: Falls $a_1, \ldots, a_n \in A$, so ist auch $b \in A$.

Satz 4.6

Sei \Re ein Kalkül über einer Menge M und sei $V \subseteq M$.

Dann ist $abl_{\Re}(V)$ die bzgl. "⊆" kleinste unter \Re abgeschlossene Menge, die V enthält. D.h. es gilt:

- (a) $V \subseteq \operatorname{abl}_{\mathfrak{K}}(V)$.
- (b) $abl_{\Re}(V)$ ist abgeschlossen unter \Re .

Definition 4.5

Sei \Re ein Kalkül über einer Menge M.

Eine Menge $A \subseteq M$ heißt abgeschlossen unter \mathfrak{K} , wenn für jede Ableitungsregel

$$\frac{a_1 \cdots a_r}{b}$$

in \Re gilt: Falls $a_1, \ldots, a_n \in A$, so ist auch $b \in A$.

Satz 4.6

Sei \Re ein Kalkül über einer Menge M und sei $V \subseteq M$.

Dann ist $abl_{\Re}(V)$ die bzgl. " \subseteq " kleinste unter \Re abgeschlossene Menge, die V enthält. D.h. es gilt:

- (a) $V \subseteq \operatorname{abl}_{\mathfrak{K}}(V)$.
- (b) $abl_{\Re}(V)$ ist abgeschlossen unter \Re .
- (c) Für jede Menge A mit $V \subseteq A \subseteq M$ gilt: Falls A abgeschlossen ist unter \mathfrak{K} , so ist $\mathsf{abl}_{\mathfrak{K}}(V) \subseteq A$.

Definition 4.5

Sei \Re ein Kalkül über einer Menge M.

Eine Menge $A \subseteq M$ heißt abgeschlossen unter \mathfrak{K} , wenn für jede Ableitungsregel

$$\frac{a_1 \cdots a_r}{b}$$

in \Re gilt: Falls $a_1, \ldots, a_n \in A$, so ist auch $b \in A$.

Satz 4.6

Sei \Re ein Kalkül über einer Menge M und sei $V \subseteq M$.

Dann ist $abl_{\Re}(V)$ die bzgl. " \subseteq " kleinste unter \Re abgeschlossene Menge, die V enthält. D.h. es gilt:

- (a) $V \subseteq abl_{\mathfrak{K}}(V)$.
- (b) $abl_{\mathfrak{K}}(V)$ ist abgeschlossen unter \mathfrak{K} .
- (c) Für jede Menge A mit $V \subseteq A \subseteq M$ gilt: Falls A abgeschlossen ist unter \Re , so ist $abl_{\Re}(V) \subseteq A$.

(d)
$$abl_{\mathfrak{K}}(V) = \bigcap A$$
.

 $V \subseteq A \subseteq M$, A abgeschlossen unter \Re

Sei $\mathfrak R$ ein Kalkül über einer Menge M und sei $V\subseteq M$. Um zu zeigen, dass eine bestimmte Aussage $\mathbb A(a)$ für alle aus V in $\mathfrak R$ ableitbaren Elemente a gilt, können wir das Induktionsprinzip nutzen und einfach Folgendes zeigen:

Sei $\mathfrak R$ ein Kalkül über einer Menge M und sei $V\subseteq M$. Um zu zeigen, dass eine bestimmte Aussage $\mathbb A(a)$ für alle aus V in $\mathfrak R$ ableitbaren Elemente a gilt, können wir das Induktionsprinzip nutzen und einfach Folgendes zeigen:

(1) Die Aussage $\mathbb{A}(a)$ gilt für jedes $a \in V$,

Sei $\mathfrak R$ ein Kalkül über einer Menge M und sei $V\subseteq M$. Um zu zeigen, dass eine bestimmte Aussage $\mathbb A(a)$ für alle aus V in $\mathfrak R$ ableitbaren Elemente a gilt, können wir das Induktionsprinzip nutzen und einfach Folgendes zeigen:

- (1) Die Aussage $\mathbb{A}(a)$ gilt für jedes $a \in V$, und
- (2) für jede Ableitungsregel

$$\frac{a_1 \cdots a_n}{b}$$

in & gilt:

Sei $\mathfrak R$ ein Kalkül über einer Menge M und sei $V\subseteq M$. Um zu zeigen, dass eine bestimmte Aussage $\mathbb A(a)$ für alle aus V in $\mathfrak R$ ableitbaren Elemente a gilt, können wir das Induktionsprinzip nutzen und einfach Folgendes zeigen:

- (1) Die Aussage $\mathbb{A}(a)$ gilt für jedes $a \in V$, und
- (2) für jede Ableitungsregel

$$\frac{a_1 \cdot \cdot \cdot \cdot a_n}{b}$$

in \Re gilt: Falls $\mathbb{A}(a_i)$ für jedes $i \in [n]$ gilt, so gilt auch $\mathbb{A}(b)$.

Sei $\mathfrak R$ ein Kalkül über einer Menge M und sei $V\subseteq M$. Um zu zeigen, dass eine bestimmte Aussage $\mathbb A(a)$ für alle aus V in $\mathfrak R$ ableitbaren Elemente a gilt, können wir das Induktionsprinzip nutzen und einfach Folgendes zeigen:

- (1) Die Aussage $\mathbb{A}(a)$ gilt für jedes $a \in V$, und
- (2) für jede Ableitungsregel

$$\frac{a_1 \cdot \cdot \cdot \cdot a_n}{b}$$

in \mathfrak{K} gilt: Falls $\mathbb{A}(a_i)$ für jedes $i \in [n]$ gilt, so gilt auch $\mathbb{A}(b)$.

Daraus folgt laut dem nächsten Lemma dann, dass $\mathbb{A}(a)$ für jedes $a \in \mathsf{abl}_{\mathfrak{K}}(V)$ gilt.

Sei $\mathfrak R$ ein Kalkül über einer Menge M und sei $V\subseteq M$. Um zu zeigen, dass eine bestimmte Aussage $\mathbb A(a)$ für alle aus V in $\mathfrak R$ ableitbaren Elemente a gilt, können wir das Induktionsprinzip nutzen und einfach Folgendes zeigen:

- (1) Die Aussage $\mathbb{A}(a)$ gilt für jedes $a \in V$, und
- (2) für jede Ableitungsregel

$$\frac{a_1 \cdot \cdot \cdot \cdot a_r}{b}$$

in \mathfrak{K} gilt: Falls $\mathbb{A}(a_i)$ für jedes $i \in [n]$ gilt, so gilt auch $\mathbb{A}(b)$.

Daraus folgt laut dem nächsten Lemma dann, dass $\mathbb{A}(a)$ für jedes $a \in \mathsf{abl}_{\mathfrak{K}}(V)$ gilt.

Lemma 4.7

Sei \Re ein Kalkül über einer Menge M und sei $V \subseteq M$. Falls

(1) eine Aussage $\mathbb{A}(a)$ für jedes $a \in V$ gilt

Sei $\mathfrak R$ ein Kalkül über einer Menge M und sei $V\subseteq M$. Um zu zeigen, dass eine bestimmte Aussage $\mathbb A(a)$ für alle aus V in $\mathfrak R$ ableitbaren Elemente a gilt, können wir das Induktionsprinzip nutzen und einfach Folgendes zeigen:

- (1) Die Aussage $\mathbb{A}(a)$ gilt für jedes $a \in V$, und
- (2) für jede Ableitungsregel

$$\frac{a_1 \cdot \cdot \cdot \cdot a_r}{b}$$

in \mathfrak{K} gilt: Falls $\mathbb{A}(a_i)$ für jedes $i \in [n]$ gilt, so gilt auch $\mathbb{A}(b)$.

Daraus folgt laut dem nächsten Lemma dann, dass $\mathbb{A}(a)$ für jedes $a \in \mathsf{abl}_{\mathfrak{K}}(V)$ gilt.

Lemma 4.7

Sei \Re ein Kalkül über einer Menge M und sei $V \subseteq M$. Falls

- (1) eine Aussage $\mathbb{A}(\mathsf{a})$ für jedes $\mathsf{a} \in \mathsf{V}$ gilt und
- (2) für jede Ableitungsregel

$$\frac{a_1 \cdot \cdot \cdot \cdot a_n}{b}$$

in \Re gilt: falls $\mathbb{A}(a_i)$ für jedes $i \in [n]$ gilt, so gilt auch $\mathbb{A}(b)$,

Sei $\mathfrak R$ ein Kalkül über einer Menge M und sei $V\subseteq M$. Um zu zeigen, dass eine bestimmte Aussage $\mathbb A(a)$ für alle aus V in $\mathfrak R$ ableitbaren Elemente a gilt, können wir das Induktionsprinzip nutzen und einfach Folgendes zeigen:

- (1) Die Aussage $\mathbb{A}(a)$ gilt für jedes $a \in V$, und
- (2) für jede Ableitungsregel

$$a_1 \cdots a_n$$
 b

in \Re gilt: Falls $\mathbb{A}(a_i)$ für jedes $i \in [n]$ gilt, so gilt auch $\mathbb{A}(b)$.

Daraus folgt laut dem nächsten Lemma dann, dass $\mathbb{A}(a)$ für jedes $a \in \mathsf{abl}_{\mathfrak{K}}(V)$ gilt.

Lemma 4.7

Sei \Re ein Kalkül über einer Menge M und sei $V \subseteq M$. Falls

- (1) eine Aussage $\mathbb{A}(\mathsf{a})$ für jedes $\mathsf{a} \in \mathsf{V}$ gilt und
- (2) für jede Ableitungsregel

$$\frac{a_1 \cdot \cdot \cdot \cdot a_n}{h}$$

in \Re gilt: falls $\mathbb{A}(a_i)$ für jedes $i \in [n]$ gilt, so gilt auch $\mathbb{A}(b)$, dann gilt die Aussage $\mathbb{A}(a)$ für jedes $a \in \mathsf{abl}_{\Re}(V)$.

Es seien (1) und (2) erfüllt.

Betrachte die Menge

$$A := \{ a \in M : die Aussage A(a) gilt \}$$
.

Es seien (1) und (2) erfüllt.

Betrachte die Menge

$$A := \{ a \in M : die Aussage A(a) gilt \}.$$

Wegen (1) ist $V \subseteq A$.

Es seien (1) und (2) erfüllt.

Betrachte die Menge

$$A := \{ a \in M : \text{ die Aussage } \mathbb{A}(a) \text{ gilt } \}$$
.

Wegen (1) ist $V \subseteq A$.

Wegen (2) ist A abgeschlossen unter \Re .

Es seien (1) und (2) erfüllt.

Betrachte die Menge

$$A := \{ a \in M : die Aussage A(a) gilt \}.$$

Wegen (1) ist $V \subseteq A$.

Wegen (2) ist A abgeschlossen unter \Re .

Aus Satz 4.6 folgt daher: $abl_{\mathfrak{K}}(V) \subseteq A$.

Es seien (1) und (2) erfüllt.

Betrachte die Menge

$$A := \{ a \in M : \text{ die Aussage } \mathbb{A}(a) \text{ gilt } \}.$$

Wegen (1) ist $V \subseteq A$.

Wegen (2) ist A abgeschlossen unter \Re .

Aus Satz 4.6 folgt daher: $abl_{\mathfrak{K}}(V) \subseteq A$.

Somit gilt die Aussage $\mathbb{A}(a)$ für jedes $a \in \mathsf{abl}_{\mathfrak{K}}(V)$.

Abschnitt 4.2:

Ein Beweiskalkül für die Logik erster Stufe — der Vollständigkeitssatz

Notation

• In diesem Kapitel sei σ eine beliebige fest gewählte Signatur.

- In diesem Kapitel sei σ eine beliebige fest gewählte Signatur.
- Der Einfachheit halber werden wir o.B.d.A. in diesem Kapitel nur FO[σ]-Formeln betrachten, in denen das Symbol "→" nicht vorkommt.

- In diesem Kapitel sei σ eine beliebige fest gewählte Signatur.
- Der Einfachheit halber werden wir o.B.d.A. in diesem Kapitel nur FO[σ]-Formeln betrachten, in denen das Symbol " \rightarrow " nicht vorkommt.
- $t, u, t_1, t_2, t', u', u'', \dots$ bezeichnen immer σ -Terme.

- In diesem Kapitel sei σ eine beliebige fest gewählte Signatur.
- Der Einfachheit halber werden wir o.B.d.A. in diesem Kapitel nur FO[σ]-Formeln betrachten, in denen das Symbol " \rightarrow " nicht vorkommt.
- $t, u, t_1, t_2, t', u', u'', \dots$ bezeichnen immer σ -Terme.
- $\varphi, \psi, \chi, \ldots$ bezeichnen immer $\mathsf{FO}[\sigma]$ -Formeln.

- In diesem Kapitel sei σ eine beliebige fest gewählte Signatur.
- Der Einfachheit halber werden wir o.B.d.A. in diesem Kapitel nur FO[σ]-Formeln betrachten, in denen das Symbol " \rightarrow " nicht vorkommt.
- $t, u, t_1, t_2, t', u', u'', \dots$ bezeichnen immer σ -Terme.
- $\varphi, \psi, \chi, \ldots$ bezeichnen immer FO[σ]-Formeln.
- $\Phi, \Psi, \Phi_1, \Phi_2, \Psi', \dots$ bezeichnen immer Mengen von $FO[\sigma]$ -Formeln.

- In diesem Kapitel sei σ eine beliebige fest gewählte Signatur.
- Der Einfachheit halber werden wir o.B.d.A. in diesem Kapitel nur FO[σ]-Formeln betrachten, in denen das Symbol " \rightarrow " nicht vorkommt.
- $t, u, t_1, t_2, t', u', u'', \dots$ bezeichnen immer σ -Terme.
- $\varphi, \psi, \chi, \ldots$ bezeichnen immer FO[σ]-Formeln.
- $\Phi, \Psi, \Phi_1, \Phi_2, \Psi', \dots$ bezeichnen immer Mengen von $\mathsf{FO}[\sigma]$ -Formeln.
- $\Gamma, \Delta, \Gamma', \Delta_1, \Delta_2, \ldots$ bezeichnen immer endliche Mengen von $FO[\sigma]$ -Formeln.

- In diesem Kapitel sei σ eine beliebige fest gewählte Signatur.
- Der Einfachheit halber werden wir o.B.d.A. in diesem Kapitel nur FO[σ]-Formeln betrachten, in denen das Symbol " \rightarrow " nicht vorkommt.
- $t, u, t_1, t_2, t', u', u'', \dots$ bezeichnen immer σ -Terme.
- $\varphi, \psi, \chi, \ldots$ bezeichnen immer FO[σ]-Formeln.
- $\Phi, \Psi, \Phi_1, \Phi_2, \Psi', \dots$ bezeichnen immer Mengen von $\mathsf{FO}[\sigma]\text{-Formeln}.$
- $\Gamma, \Delta, \Gamma', \Delta_1, \Delta_2, \dots$ bezeichnen immer endliche Mengen von $\mathsf{FO}[\sigma]$ -Formeln.
- Für $\Phi \subseteq FO[\sigma]$ ist $frei(\Phi) := \bigcup_{\varphi \in \Phi} frei(\varphi)$.

- In diesem Kapitel sei σ eine beliebige fest gewählte Signatur.
- Der Einfachheit halber werden wir o.B.d.A. in diesem Kapitel nur FO[σ]-Formeln betrachten, in denen das Symbol " \rightarrow " nicht vorkommt.
- $t, u, t_1, t_2, t', u', u'', \dots$ bezeichnen immer σ -Terme.
- $\varphi, \psi, \chi, \ldots$ bezeichnen immer FO[σ]-Formeln.
- $\Phi, \Psi, \Phi_1, \Phi_2, \Psi', \dots$ bezeichnen immer Mengen von $\mathsf{FO}[\sigma]$ -Formeln.
- $\Gamma, \Delta, \Gamma', \Delta_1, \Delta_2, \ldots$ bezeichnen immer endliche Mengen von $\mathsf{FO}[\sigma]$ -Formeln.
- Für $\Phi \subseteq \mathsf{FO}[\sigma]$ ist $\mathsf{frei}(\Phi) := \bigcup_{\varphi \in \Phi} \mathsf{frei}(\varphi)$.

Manchmal schreiben wir auch $frei(\Phi, \varphi)$ an Stelle von $frei(\Phi \cup \{\varphi\})$.

- In diesem Kapitel sei σ eine beliebige fest gewählte Signatur.
- Der Einfachheit halber werden wir o.B.d.A. in diesem Kapitel nur FO[σ]-Formeln betrachten, in denen das Symbol "→" nicht vorkommt.
- $t, u, t_1, t_2, t', u', u'', \dots$ bezeichnen immer σ -Terme.
- $\varphi, \psi, \chi, \ldots$ bezeichnen immer FO[σ]-Formeln.
- $\Phi, \Psi, \Phi_1, \Phi_2, \Psi', \dots$ bezeichnen immer Mengen von $\mathsf{FO}[\sigma]\text{-Formeln}.$
- $\Gamma, \Delta, \Gamma', \Delta_1, \Delta_2, \ldots$ bezeichnen immer endliche Mengen von $FO[\sigma]$ -Formeln.
- Für $\Phi \subseteq FO[\sigma]$ ist $frei(\Phi) := \bigcup_{\varphi \in \Phi} frei(\varphi)$.

Manchmal schreiben wir auch $frei(\Phi, \varphi)$ an Stelle von $frei(\Phi \cup \{\varphi\})$.

 Ist M eine Menge, so schreiben wir L ⊆_e M, um auszudrücken, dass L eine endliche Teilmenge von M ist.

Definition 4.8

(a) Eine Sequenz ist ein Ausdruck der Form

$$\Gamma \vdash \psi$$

wobei $\psi \in \mathsf{FO}[\sigma]$ und $\Gamma \subseteq_{\mathsf{e}} \mathsf{FO}[\sigma]$ (d.h., Γ ist eine endliche Menge von $\mathsf{FO}[\sigma]$ -Formeln).

Definition 4.8

(a) Eine Sequenz ist ein Ausdruck der Form

$$\Gamma \vdash \psi$$

wobei $\psi \in \mathsf{FO}[\sigma]$ und $\Gamma \subseteq_{\mathsf{e}} \mathsf{FO}[\sigma]$ (d.h., Γ ist eine endliche Menge von $\mathsf{FO}[\sigma]$ -Formeln).

Wir bezeichnen Γ als das Antezedens

Definition 4.8

(a) Eine Sequenz ist ein Ausdruck der Form

$$\Gamma \vdash \psi$$

wobei $\psi \in \mathsf{FO}[\sigma]$ und $\Gamma \subseteq_{\mathsf{e}} \mathsf{FO}[\sigma]$ (d.h., Γ ist eine endliche Menge von $\mathsf{FO}[\sigma]$ -Formeln).

Wir bezeichnen Γ als das Antezedens und ψ als das Sukzedens der Sequenz $\Gamma \vdash \psi$.

Definition 4.8

(a) Eine Sequenz ist ein Ausdruck der Form

$$\Gamma \vdash \psi$$

wobei $\psi \in \mathsf{FO}[\sigma]$ und $\Gamma \subseteq_e \mathsf{FO}[\sigma]$ (d.h., Γ ist eine endliche Menge von $\mathsf{FO}[\sigma]$ -Formeln).

Wir bezeichnen Γ als das Antezedens und ψ als das Sukzedens der Sequenz $\Gamma \vdash \psi$.

(b) Wir schreiben M_S um die Menge aller Sequenzen zu bezeichnen, d.h.:

$$M_S := \{ \Gamma \vdash \psi : \Gamma \subseteq_e FO[\sigma], \psi \in FO[\sigma] \}.$$

Definition 4.9

Eine Sequenz $\Gamma \vdash \psi$ heißt korrekt, falls gilt: $\Gamma \models \psi$.

Zur Erinnerung: $\Gamma \models \psi$ bedeutet:

Definition 4.9

Eine Sequenz $\Gamma \vdash \psi$ heißt korrekt, falls gilt: $\Gamma \models \psi$.

Zur Erinnerung: $\Gamma \models \psi$ bedeutet:

Für jede σ -Interpretation \mathcal{I} gilt: Falls $\mathcal{I} \models \Gamma$, so auch $\mathcal{I} \models \psi$.

Definition 4.9

Eine Sequenz $\Gamma \vdash \psi$ heißt korrekt, falls gilt: $\Gamma \models \psi$.

Zur Erinnerung: $\Gamma \models \psi$ bedeutet:

Für jede σ -Interpretation \mathcal{I} gilt: Falls $\mathcal{I} \models \Gamma$, so auch $\mathcal{I} \models \psi$.

Beispiel:

Welche der folgenden Sequenzen sind korrekt für alle $\varphi, \psi \in FO[\sigma]$ und alle $x, y \in VAR$; welche sind nicht korrekt?

(1)
$$\{ (\neg \varphi \lor \psi), \varphi \} \vdash \psi$$

Definition 4.9

Eine Sequenz $\Gamma \vdash \psi$ heißt korrekt, falls gilt: $\Gamma \models \psi$.

Zur Erinnerung: $\Gamma \models \psi$ bedeutet:

Für jede σ -Interpretation \mathcal{I} gilt: Falls $\mathcal{I} \models \Gamma$, so auch $\mathcal{I} \models \psi$.

Beispiel:

Welche der folgenden Sequenzen sind korrekt für alle $\varphi, \psi \in FO[\sigma]$ und alle $x, y \in VAR$; welche sind nicht korrekt?

(1)
$$\{ (\neg \varphi \lor \psi), \varphi \} \vdash \psi$$

(2)
$$\emptyset \vdash (\varphi \lor \neg \varphi)$$

Definition 4.9

Eine Sequenz $\Gamma \vdash \psi$ heißt korrekt, falls gilt: $\Gamma \models \psi$.

Zur Erinnerung: $\Gamma \models \psi$ bedeutet:

Für jede σ -Interpretation \mathcal{I} gilt: Falls $\mathcal{I} \models \Gamma$, so auch $\mathcal{I} \models \psi$.

Beispiel:

Welche der folgenden Sequenzen sind korrekt für alle $\varphi, \psi \in FO[\sigma]$ und alle $x, y \in VAR$; welche sind nicht korrekt?

- (1) $\{ (\neg \varphi \lor \psi), \varphi \} \vdash \psi$
- (2) $\emptyset \vdash (\varphi \lor \neg \varphi)$
- (3) $\{\exists x \forall y \varphi\} \vdash \forall y \exists x \varphi$

Definition 4.9

Eine Sequenz $\Gamma \vdash \psi$ heißt korrekt, falls gilt: $\Gamma \models \psi$.

Zur Erinnerung: $\Gamma \models \psi$ bedeutet:

Für jede σ -Interpretation \mathcal{I} gilt: Falls $\mathcal{I} \models \Gamma$, so auch $\mathcal{I} \models \psi$.

Beispiel:

Welche der folgenden Sequenzen sind korrekt für alle $\varphi, \psi \in FO[\sigma]$ und alle $x, y \in VAR$; welche sind nicht korrekt?

- (1) $\{ (\neg \varphi \lor \psi), \varphi \} \vdash \psi$
- (2) $\emptyset \vdash (\varphi \lor \neg \varphi)$
- (3) $\{\exists x \forall y \varphi\} \vdash \forall y \exists x \varphi$
- (4) $\{ \forall y \exists x \ x=y \} \vdash \exists x \forall y \ x=y$

Wir wollen im Folgenden einen Kalkül $\mathfrak K$ über M_S angeben, so dass gilt:

(1) R ist korrekt,

Wir wollen im Folgenden einen Kalkül $\mathfrak K$ über M_S angeben, so dass gilt:

(1) \Re ist korrekt, d.h. jede in \Re ableitbare Sequenz ist korrekt.

- (1) R ist korrekt, d.h. jede in R ableitbare Sequenz ist korrekt.
- (2) R ist vollständig,

- (1) R ist korrekt, d.h. jede in R ableitbare Sequenz ist korrekt.
- (2) R ist vollständig, d.h. jede korrekte Sequenz ist in R ableitbar.

- (1) R ist korrekt, d.h. jede in R ableitbare Sequenz ist korrekt.
- (2) R ist vollständig, d.h. jede korrekte Sequenz ist in R ableitbar.
- (3) R ist effektiv,

- (1) R ist korrekt, d.h. jede in R ableitbare Sequenz ist korrekt.
- (2) R ist vollständig, d.h. jede korrekte Sequenz ist in R ableitbar.
- (3) $\mathfrak R$ ist effektiv, d.h. es gibt einen Algorithmus, der nach und nach genau die aus $\mathfrak R$ ableitbaren Sequenzen aufzählt.

Wir wollen im Folgenden einen Kalkül $\mathfrak K$ über M_S angeben, so dass gilt:

- (1) R ist korrekt, d.h. jede in R ableitbare Sequenz ist korrekt.
- (2) R ist vollständig, d.h. jede korrekte Sequenz ist in R ableitbar.
- (3) R ist effektiv, d.h. es gibt einen Algorithmus, der nach und nach genau die aus R ableitbaren Sequenzen aufzählt.

Dies liefert dann insbesondere einen Algorithmus, der nach und nach alle allgemeingültigen $FO[\sigma]$ -Formeln aufzählt:

Wir wollen im Folgenden einen Kalkül $\mathfrak K$ über M_S angeben, so dass gilt:

- (1) R ist korrekt, d.h. jede in R ableitbare Sequenz ist korrekt.
- (2) R ist vollständig, d.h. jede korrekte Sequenz ist in R ableitbar.
- (3) \Re ist effektiv, d.h. es gibt einen Algorithmus, der nach und nach genau die aus \Re ableitbaren Sequenzen aufzählt.

Dies liefert dann insbesondere einen Algorithmus, der nach und nach alle allgemeingültigen FO[σ]-Formeln aufzählt: Dazu lasse den gemäß (3) existierenden Algorithmus laufen, und immer wenn dieser eine Sequenz der Form $\Gamma \vdash \psi$ mit $\Gamma = \emptyset$ ausgeben will, gib ψ aus.

Wir wollen im Folgenden einen Kalkül $\mathfrak K$ über M_S angeben, so dass gilt:

- (1) R ist korrekt, d.h. jede in R ableitbare Sequenz ist korrekt.
- (2) R ist vollständig, d.h. jede korrekte Sequenz ist in R ableitbar.
- (3) ℜ ist effektiv, d.h. es gibt einen Algorithmus, der nach und nach genau die aus ℜ ableitbaren Sequenzen aufzählt.

Dies liefert dann insbesondere einen Algorithmus, der nach und nach alle allgemeingültigen FO[σ]-Formeln aufzählt: Dazu lasse den gemäß (3) existierenden Algorithmus laufen, und immer wenn dieser eine Sequenz der Form $\Gamma \vdash \psi$ mit $\Gamma = \emptyset$ ausgeben will, gib ψ aus.

Wegen (1) ist die Sequenz dann korrekt, d.h. es gilt $\emptyset \models \psi$, und daher ist ψ allgemeingültig.

Wir wollen im Folgenden einen Kalkül $\mathfrak K$ über M_S angeben, so dass gilt:

- (1) R ist korrekt, d.h. jede in R ableitbare Sequenz ist korrekt.
- (2) R ist vollständig, d.h. jede korrekte Sequenz ist in R ableitbar.
- (3) R ist effektiv, d.h. es gibt einen Algorithmus, der nach und nach genau die aus R ableitbaren Sequenzen aufzählt.

Dies liefert dann insbesondere einen Algorithmus, der nach und nach alle allgemeingültigen FO[σ]-Formeln aufzählt: Dazu lasse den gemäß (3) existierenden Algorithmus laufen, und immer wenn dieser eine Sequenz der Form $\Gamma \vdash \psi$ mit $\Gamma = \emptyset$ ausgeben will, gib ψ aus.

Wegen (1) ist die Sequenz dann korrekt, d.h. es gilt $\emptyset \models \psi$, und daher ist ψ allgemeingültig.

Wegen (2) werden tatsächlich <u>alle</u> allgemeingültigen $FO[\sigma]$ -Formeln aufgezählt.

Notationen für Sequenzen

Wir schreiben kurz

• $\Gamma, \varphi \vdash \psi$, um die Sequenz $\Gamma \cup \{\varphi\} \vdash \psi$ zu bezeichnen.

Notationen für Sequenzen

Wir schreiben kurz

- $\Gamma, \varphi \vdash \psi$, um die Sequenz $\Gamma \cup \{\varphi\} \vdash \psi$ zu bezeichnen.
- $\varphi_1, \ldots, \varphi_n \vdash \psi$, um die Sequenz $\{\varphi_1, \ldots, \varphi_n\} \vdash \psi$ zu bezeichnen.

Notationen für Sequenzen

Wir schreiben kurz

- $\Gamma, \varphi \vdash \psi$, um die Sequenz $\Gamma \cup \{\varphi\} \vdash \psi$ zu bezeichnen.
- $\varphi_1,\ldots,\varphi_n \vdash \psi$, um die Sequenz $\{\varphi_1,\ldots,\varphi_n\} \vdash \psi$ zu bezeichnen.
- $\vdash \psi$, um die Sequenz $\emptyset \vdash \psi$ zu bezeichnen.

Eine Sequenzenregel ist eine Ableitungsregel über M_S .

Eine Sequenzenregel ist eine Ableitungsregel über M_S .

Sequenzenregeln der Form

$$\frac{a_1 \cdots a_n}{b}$$

schreiben wir meistens zeilenweise, als

$$\frac{a_n}{b}$$

Eine Sequenzenregel ist eine Ableitungsregel über M_S .

Sequenzenregeln der Form

$$\frac{a_1 \cdot \cdot \cdot \cdot a_n}{b}$$

schreiben wir meistens zeilenweise, als

wobei jedes a_i eine Sequenz der Form $\Gamma_i \vdash \psi_i$ ist,

Eine Sequenzenregel ist eine Ableitungsregel über M_S .

Sequenzenregeln der Form

$$\frac{a_1 \cdot \cdot \cdot \cdot a_n}{b}$$

schreiben wir meistens zeilenweise, als

$$a_1$$
 \vdots
 a_n
 b

wobei jedes a_i eine Sequenz der Form $\Gamma_i \vdash \psi_i$ ist, und b eine Sequenz der Form $\Delta \vdash \varphi$ ist.

Definition 4.10

Eine Sequenzenregel

$$\begin{array}{c}
\Gamma_1 \vdash \psi_1 \\
\vdots \\
\Gamma_n \vdash \psi_n \\
\hline
\Delta \vdash \varphi
\end{array}$$

heißt korrekt, wenn Folgendes gilt:

Eine Sequenzenregel

$$\begin{array}{c}
\Gamma_1 \vdash \psi_1 \\
\vdots \\
\Gamma_n \vdash \psi_n \\
\hline
\Delta \vdash \varphi
\end{array}$$

heißt korrekt, wenn Folgendes gilt: Sind die Sequenzen $\Gamma_i \vdash \psi_i$ für alle $i \in \{1, ..., n\}$ korrekt, so

Eine Sequenzenregel

$$\begin{array}{c}
\Gamma_1 \vdash \psi_1 \\
\vdots \\
\Gamma_n \vdash \psi_n \\
\hline
\Delta \vdash \varphi
\end{array}$$

heißt korrekt, wenn Folgendes gilt: Sind die Sequenzen $\Gamma_i \vdash \psi_i$ für alle $i \in \{1, \dots, n\}$ korrekt, so ist auch die Sequenz $\Delta \vdash \varphi$ korrekt.

Eine Sequenzenregel

$$\begin{array}{c}
\Gamma_1 \vdash \psi_1 \\
\vdots \\
\Gamma_n \vdash \psi_n \\
\hline
\Delta \vdash \varphi
\end{array}$$

heißt korrekt, wenn Folgendes gilt: Sind die Sequenzen $\Gamma_i \vdash \psi_i$ für alle $i \in \{1, \ldots, n\}$ korrekt, so ist auch die Sequenz $\Delta \vdash \varphi$ korrekt.

Aus dem Induktionsprinzip für Kalküle (Lemma 4.7) folgt direkt:

Lemma 4.11

Ein Kalkül \Re über M_S ist korrekt, falls jede Sequenzenregel in \Re korrekt ist.

Eine Sequenzenregel

$$\begin{array}{c}
\Gamma_1 \vdash \psi_1 \\
\vdots \\
\Gamma_n \vdash \psi_n \\
\hline
\Delta \vdash \varphi
\end{array}$$

heißt korrekt, wenn Folgendes gilt: Sind die Sequenzen $\Gamma_i \vdash \psi_i$ für alle $i \in \{1, \ldots, n\}$ korrekt, so ist auch die Sequenz $\Delta \vdash \varphi$ korrekt.

Aus dem Induktionsprinzip für Kalküle (Lemma 4.7) folgt direkt:

Lemma 4.11

Ein Kalkül \Re über M_S ist korrekt, falls jede Sequenzenregel in \Re korrekt ist.

Wir werden nun eine Reihe von korrekten Sequenzenregeln zusammentragen, die alle zusammen dann den von uns gesuchten korrekten, vollständigen und effektiven Kalkül über M_S bilden werden.

Für alle $\Gamma, \Gamma' \subseteq_{e} FO[\sigma]$ und alle $\varphi \in FO[\sigma]$ betrachten wir die folgenden Sequenzenregeln:

Für alle $\Gamma, \Gamma' \subseteq_{e} FO[\sigma]$ und alle $\varphi \in FO[\sigma]$ betrachten wir die folgenden Sequenzenregeln:

Für alle $\Gamma, \Gamma' \subseteq_{e} FO[\sigma]$ und alle $\varphi \in FO[\sigma]$ betrachten wir die folgenden Sequenzenregeln:

• Erweiterungsregel (E):

$$\frac{\Gamma \vdash \varphi}{\Gamma' \vdash \varphi} \qquad \text{falls } \Gamma \subseteq \Gamma'$$

Für alle $\Gamma, \Gamma' \subseteq_{e} \mathsf{FO}[\sigma]$ und alle $\varphi \in \mathsf{FO}[\sigma]$ betrachten wir die folgenden Sequenzenregeln:

• Erweiterungsregel (E):

$$\frac{\Gamma \vdash \varphi}{\Gamma' \vdash \varphi} \qquad \text{falls } \Gamma \subseteq \Gamma'$$

Lemma 4.12

Jede der Grundregeln (V) bzw. (E) ist korrekt.

Ausagenlogische Regeln:

Für alle $\Gamma \subseteq_e \mathsf{FO}[\sigma]$ und alle $\varphi, \psi, \chi \in \mathsf{FO}[\sigma]$ betrachten wir die folgenden Sequenzenregeln:

Ausagenlogische Regeln:

Für alle $\Gamma\subseteq_{\rm e} {\sf FO}[\sigma]$ und alle $\varphi,\psi,\chi\in {\sf FO}[\sigma]$ betrachten wir die folgenden Sequenzenregeln:

Fallunterscheidungsregel (FU):

$$\begin{array}{c|c} \Gamma, \psi & \vdash \varphi \\ \hline \Gamma, \neg \psi \vdash \varphi \\ \hline \Gamma & \vdash \varphi \end{array}$$

Ausagenlogische Regeln:

Für alle $\Gamma \subseteq_e \mathsf{FO}[\sigma]$ und alle $\varphi, \psi, \chi \in \mathsf{FO}[\sigma]$ betrachten wir die folgenden Sequenzenregeln:

Fallunterscheidungsregel (FU):

$$\begin{array}{c|c} \Gamma, \psi & \vdash \varphi \\ \hline \Gamma, \neg \psi \vdash \varphi \\ \hline \Gamma & \vdash \varphi \end{array}$$

Widerspruchsregel (W):

$$\begin{array}{ccc}
\Gamma \vdash \psi \\
\underline{\Gamma \vdash \neg \psi} \\
\overline{\Gamma \vdash \varphi}
\end{array} \qquad \text{(für alle } \varphi \in \mathsf{FO}[\sigma]\text{)}$$

$$\frac{\Gamma, \varphi \vdash \chi}{\Gamma, (\varphi \land \psi) \vdash \chi} \qquad \frac{\Gamma, \psi \vdash \chi}{\Gamma, (\varphi \land \psi) \vdash \chi}$$

$$\frac{\Gamma, \varphi \vdash \chi}{\Gamma, (\varphi \land \psi) \vdash \chi} \qquad \frac{\Gamma, \psi \vdash \chi}{\Gamma, (\varphi \land \psi) \vdash \chi}$$

• ∧-Einführung im Sukzedens (∧S):

$$\begin{array}{ccc}
\Gamma \vdash & \varphi \\
\Gamma \vdash & \psi \\
\hline
\Gamma \vdash (\varphi \land \psi)
\end{array}$$

$$\frac{\Gamma, \varphi \vdash \chi}{\Gamma, (\varphi \land \psi) \vdash \chi} \qquad \frac{\Gamma, \psi \vdash \chi}{\Gamma, (\varphi \land \psi) \vdash \chi}$$

• ∧-Einführung im Sukzedens (∧S):

$$\frac{\Gamma \vdash \varphi}{\Gamma \vdash (\varphi \land \psi)}$$

• ∨-Einführung im Antezedens (∨A):

$$\begin{array}{c|c}
\Gamma, \varphi & \vdash \chi \\
\Gamma, \psi & \vdash \chi \\
\hline
\Gamma, (\varphi \lor \psi) \vdash \chi
\end{array}$$

$$\frac{\Gamma, \varphi \vdash \chi}{\Gamma, (\varphi \land \psi) \vdash \chi} \qquad \frac{\Gamma, \psi \vdash \chi}{\Gamma, (\varphi \land \psi) \vdash \chi}$$

$$\frac{\Gamma, \psi \vdash \chi}{\Gamma, (\varphi \land \psi) \vdash \chi}$$

∧-Einführung im Sukzedens (∧S):

$$\frac{\Gamma \vdash \varphi}{\Gamma \vdash (\varphi \land \psi)}$$

V-Einführung im Antezedens (VA):

$$\begin{array}{c|c}
\Gamma, \varphi & \vdash \chi \\
\hline
\Gamma, \psi & \vdash \chi \\
\hline
\Gamma, (\varphi \lor \psi) \vdash \chi
\end{array}$$

• \vee -Einführung im Sukzedens (\vee S₁), (\vee S₂):

$$\frac{\Gamma \vdash \varphi}{\Gamma \vdash (\varphi \lor \psi)} \qquad \frac{\Gamma \vdash \psi}{\Gamma \vdash (\varphi \lor \psi)}$$

Lemma 4.13

Jede der aussagenlogischen Regeln (FU), (W), ($\wedge A_1$), ($\wedge A_2$), ($\wedge S$), ($\vee A$), ($\vee S_1$), ($\vee S_2$) ist korrekt.

Um weitere wichtige Sequenzenregeln einführen zu können, benötigen wir eine Möglichkeit, für eine Variable $x\in \mathsf{VAR}$ und einen $\sigma\text{-Term }t\in \mathsf{T}_\sigma$ eine $\mathsf{FO}[\sigma]\text{-Formel }\varphi$ so zu einer $\mathsf{FO}[\sigma]\text{-Formel }\varphi^{\underline{t}}$ abzuändern, dass gilt:

Um weitere wichtige Sequenzenregeln einführen zu können, benötigen wir eine Möglichkeit, für eine Variable $x \in VAR$ und einen σ -Term $t \in T_{\sigma}$ eine FO[σ]-Formel φ so zu einer FO[σ]-Formel $\varphi^{\underline{t}}_{\underline{x}}$ abzuändern, dass gilt:

Die Formel $\varphi \frac{t}{x}$ sagt über den Term t dasselbe aus, wie die Formel φ über die Variable x.

Um weitere wichtige Sequenzenregeln einführen zu können, benötigen wir eine Möglichkeit, für eine Variable $x \in VAR$ und einen σ -Term $t \in T_{\sigma}$ eine FO[σ]-Formel φ so zu einer FO[σ]-Formel $\varphi^{\underline{t}}_{\underline{x}}$ abzuändern, dass gilt:

Die Formel $\varphi^{\underline{t}}_{\underline{x}}$ sagt über den Term t dasselbe aus, wie

Die Formel $\varphi \frac{t}{x}$ sagt über den Term t dasselbe aus, wie die Formel φ über die Variable x.

Präzise: Es soll für jede σ -Interpretation $\mathcal I$ gelten:

$$\mathcal{I} \models \varphi_{\overline{x}}^{\underline{t}} \quad \iff \quad \mathcal{I}_{\overline{x}}^{\underline{t}} \models \varphi. \tag{2}$$

Dabei ist die σ -Interpretation $\mathcal{I}^{\underline{t}}_{x}$ für $\mathcal{I} = (\mathcal{A}, \beta)$ wie folgt definiert:

$$\mathcal{I}^{\underline{t}}_{\overline{x}} := (\mathcal{A}, \beta^{\underline{a}}_{\overline{x}}), \text{ für } a := \llbracket t \rrbracket^{\mathcal{I}}.$$

Um weitere wichtige Sequenzenregeln einführen zu können, benötigen wir eine Möglichkeit, für eine Variable $x \in VAR$ und einen σ -Term $t \in T_{\sigma}$ eine FO[σ]-Formel φ so zu einer FO[σ]-Formel $\varphi^{t}_{\overline{\chi}}$ abzuändern, dass gilt: Die Formel $\varphi^{t}_{\overline{\chi}}$ sagt über den Term t dasselbe aus, wie

die Formel $\varphi_{\overline{x}}$ sagt über den Term t dasseibe aus die Formel φ über die Variable x.

Präzise: Es soll für jede σ -Interpretation $\mathcal I$ gelten:

$$\mathcal{I} \models \varphi_{\overline{x}}^{\underline{t}} \quad \iff \quad \mathcal{I}_{\overline{x}}^{\underline{t}} \models \varphi. \tag{2}$$

Dabei ist die σ -Interpretation $\mathcal{I}\frac{t}{x}$ für $\mathcal{I}=(\mathcal{A},\beta)$ wie folgt definiert:

$$\mathcal{I}^{\underline{t}}_{\underline{x}} := (\mathcal{A}, \beta^{\underline{a}}_{\underline{x}}), \text{ für } a := [\![t]\!]^{\mathcal{I}}.$$

Außerdem soll gelten:

$$\varphi_{X}^{\underline{x}} = \varphi. \tag{3}$$

Um zu gewährleisten, dass (2) und (3) gilt, wählen wir zu gegebenem φ , t und x die Formel $\varphi \frac{t}{v}$ wie folgt:

Um zu gewährleisten, dass (2) und (3) gilt, wählen wir zu gegebenem φ , t und x die Formel $\varphi \frac{t}{x}$ wie folgt:

• Falls t = x, so

Um zu gewährleisten, dass (2) und (3) gilt, wählen wir zu gegebenem φ , t und x die Formel $\varphi \frac{t}{x}$ wie folgt:

• Falls t = x, so setze $\varphi \frac{t}{x} := \varphi$.

Um zu gewährleisten, dass (2) und (3) gilt, wählen wir zu gegebenem φ , t und x die Formel $\varphi^{\underline{t}}_{\underline{x}}$ wie folgt:

- Falls t=x, so setze $\varphi \frac{t}{x}:=\varphi$. Andernfalls gehe wie folgt vor:
- Sei y_1, \ldots, y_ℓ eine Liste aller Variablen aus $\text{var}(t) \cup \{x\}$, die gebundene Vorkommen in φ besitzen.

Um zu gewährleisten, dass (2) und (3) gilt, wählen wir zu gegebenem φ , t und x die Formel $\varphi \frac{t}{v}$ wie folgt:

- Falls t = x, so setze $\varphi \frac{t}{x} := \varphi$. Andernfalls gehe wie folgt vor:
- Sei y_1, \ldots, y_ℓ eine Liste aller Variablen aus $var(t) \cup \{x\}$, die gebundene Vorkommen in φ besitzen.
- Sei z_1, \ldots, z_ℓ eine Liste von Variablen $\neq x$, die *nicht* in φ oder t vorkommen.

Um zu gewährleisten, dass (2) und (3) gilt, wählen wir zu gegebenem φ , t und x die Formel $\varphi \frac{t}{x}$ wie folgt:

- Falls t = x, so setze $\varphi \frac{t}{x} := \varphi$. Andernfalls gehe wie folgt vor:
- Sei y_1, \ldots, y_ℓ eine Liste aller Variablen aus $var(t) \cup \{x\}$, die gebundene Vorkommen in φ besitzen.
- Sei z_1, \ldots, z_ℓ eine Liste von Variablen $\neq x$, die *nicht* in φ oder t vorkommen.
- Sei φ' die Formel, die aus φ entsteht, indem für jedes $i \in \{1, \dots, \ell\}$ jedes gebundene Vorkommen der Variablen y_i ersetzt wird durch die Variable z_i .

Um zu gewährleisten, dass (2) und (3) gilt, wählen wir zu gegebenem φ , t und x die Formel $\varphi \frac{t}{x}$ wie folgt:

- Falls t = x, so setze $\varphi \frac{t}{x} := \varphi$. Andernfalls gehe wie folgt vor:
- Sei y_1, \ldots, y_ℓ eine Liste aller Variablen aus $var(t) \cup \{x\}$, die gebundene Vorkommen in φ besitzen.
- Sei z_1, \ldots, z_ℓ eine Liste von Variablen $\neq x$, die *nicht* in φ oder t vorkommen.
- Sei φ' die Formel, die aus φ entsteht, indem für jedes $i \in \{1, \dots, \ell\}$ jedes gebundene Vorkommen der Variablen y_i ersetzt wird durch die Variable z_i .
- Sei $\varphi \frac{t}{x}$ die Formel, die aus φ' entsteht, indem jedes Vorkommen der Variablen x durch den Term t ersetzt wird.

Um zu gewährleisten, dass (2) und (3) gilt, wählen wir zu gegebenem φ , t und x die Formel $\varphi \frac{t}{x}$ wie folgt:

- Falls t = x, so setze $\varphi = \varphi$. Andernfalls gehe wie folgt vor:
- Sei y_1, \ldots, y_ℓ eine Liste aller Variablen aus $var(t) \cup \{x\}$, die gebundene Vorkommen in φ besitzen.
- Sei z_1, \ldots, z_ℓ eine Liste von Variablen $\neq x$, die *nicht* in φ oder t vorkommen.
- Sei φ' die Formel, die aus φ entsteht, indem für jedes $i \in \{1, \dots, \ell\}$ jedes gebundene Vorkommen der Variablen y_i ersetzt wird durch die Variable z_i .
- Sei $\varphi^{\underline{t}}$ die Formel, die aus φ' entsteht, indem jedes Vorkommen der Variablen x durch den Term t ersetzt wird.

Lemma 4.14 (Substitutionslemma)

Für jede $FO[\sigma]$ -Formel φ , jeden σ -Term t, jede Variable $x \in VAR$ und jede σ -Interpretation \mathcal{I} gilt:

$$\mathcal{I} \models \varphi^{\underline{t}}_{\underline{v}} \iff \mathcal{I}^{\underline{t}}_{\underline{v}} \models \varphi.$$

Beweis.

Übung.

Um zu gewährleisten, dass (2) und (3) gilt, wählen wir zu gegebenem φ , t und x die Formel $\varphi^{\underline{t}}$ wie folgt:

- Falls t = x, so setze $\varphi = \varphi$. Andernfalls gehe wie folgt vor:
- Sei y_1, \ldots, y_ℓ eine Liste aller Variablen aus $var(t) \cup \{x\}$, die gebundene Vorkommen in φ besitzen.
- Sei z_1, \ldots, z_ℓ eine Liste von Variablen $\neq x$, die *nicht* in φ oder t vorkommen.
- Sei φ' die Formel, die aus φ entsteht, indem für jedes $i \in \{1, \dots, \ell\}$ jedes gebundene Vorkommen der Variablen y_i ersetzt wird durch die Variable z_i .
- Sei $\varphi \frac{t}{x}$ die Formel, die aus φ' entsteht, indem jedes Vorkommen der Variablen x durch den Term t ersetzt wird.

Lemma 4.14 (Substitutionslemma)

Für jede $FO[\sigma]$ -Formel φ , jeden σ -Term t, jede Variable $x \in VAR$ und jede σ -Interpretation $\mathcal I$ gilt:

$$\mathcal{I} \models \varphi_{\overline{x}}^{\underline{t}} \iff \mathcal{I}_{\overline{x}}^{\underline{t}} \models \varphi.$$

Beweis.

Übung.

Ш

Wir können nun weitere wichtige Sequenzenregeln formulieren:

Für alle $\Gamma \subseteq_e \mathsf{FO}[\sigma]$, alle $\varphi, \psi \in \mathsf{FO}[\sigma]$, alle $x, y \in \mathsf{VAR}$ und alle $t \in \mathsf{T}_\sigma$ betrachten wir die folgenden Sequenzenregeln:

• ∀-Einführung im Antezedens (∀A):

$$\frac{\Gamma, \varphi \frac{t}{x} \vdash \psi}{\Gamma, \forall x \varphi \vdash \psi}$$

Für alle $\Gamma \subseteq_e \mathsf{FO}[\sigma]$, alle $\varphi, \psi \in \mathsf{FO}[\sigma]$, alle $x, y \in \mathsf{VAR}$ und alle $t \in \mathsf{T}_\sigma$ betrachten wir die folgenden Sequenzenregeln:

• ∀-Einführung im Antezedens (∀A):

$$\frac{\Gamma, \varphi \frac{t}{x} \vdash \psi}{\Gamma, \forall x \varphi \vdash \psi}$$

• ∀-Einführung im Sukzedens (∀S):

$$\frac{\Gamma \vdash \varphi_{x}^{\underline{Y}}}{\Gamma \vdash \forall x \varphi} \qquad \text{falls } y \notin \text{frei}(\Gamma, \forall x \varphi)$$

Für alle $\Gamma \subseteq_e \mathsf{FO}[\sigma]$, alle $\varphi, \psi \in \mathsf{FO}[\sigma]$, alle $x, y \in \mathsf{VAR}$ und alle $t \in \mathsf{T}_\sigma$ betrachten wir die folgenden Sequenzenregeln:

∀-Einführung im Antezedens (∀A):

$$\frac{\Gamma, \varphi \frac{t}{x} \vdash \psi}{\Gamma, \forall x \varphi \vdash \psi}$$

∀-Einführung im Sukzedens (∀S):

$$\frac{\Gamma \vdash \varphi \frac{y}{x}}{\Gamma \vdash \forall x \varphi} \qquad \text{falls } y \notin \text{frei}(\Gamma, \forall x \varphi)$$

• ∃-Einführung im Antezedens (∃A):

$$\frac{\Gamma, \varphi_x^{\underline{y}} \vdash \psi}{\Gamma, \exists x \varphi \vdash \psi} \qquad \text{falls } y \not\in \text{frei}(\Gamma, \exists x \varphi, \psi)$$

Für alle $\Gamma \subseteq_e \mathsf{FO}[\sigma]$, alle $\varphi, \psi \in \mathsf{FO}[\sigma]$, alle $x, y \in \mathsf{VAR}$ und alle $t \in \mathsf{T}_\sigma$ betrachten wir die folgenden Sequenzenregeln:

∀-Einführung im Antezedens (∀A):

$$\frac{\Gamma, \varphi \frac{t}{x} \vdash \psi}{\Gamma, \forall x \varphi \vdash \psi}$$

∀-Einführung im Sukzedens (∀S):

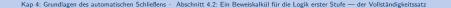
$$\frac{\Gamma \vdash \varphi_x^{\underline{y}}}{\Gamma \vdash \forall x \varphi} \qquad \text{falls } y \notin \text{frei}(\Gamma, \forall x \varphi)$$

∃-Einführung im Antezedens (∃A):

$$\frac{\Gamma, \varphi_{\mathbf{x}}^{\underline{Y}} \vdash \psi}{\Gamma, \exists \mathbf{x} \varphi \vdash \psi} \qquad \text{falls } y \notin \mathsf{frei}(\Gamma, \exists \mathbf{x} \varphi, \psi)$$

• ∃-Einführung im Sukzedens (∃S):

$$\frac{\Gamma \vdash \varphi \frac{t}{x}}{\Gamma \vdash \exists x \varphi}$$



Lemma 4.15

Jede der Quantorenregeln $(\forall A)$, $(\forall S)$, $(\exists A)$, $(\exists S)$ ist korrekt.

Gleichheitsregeln:

Für alle $\Gamma \subseteq_e \mathsf{FO}[\sigma]$, alle $\varphi \in \mathsf{FO}[\sigma]$, alle $x \in \mathsf{VAR}$ und alle $t, u \in \mathsf{T}_\sigma$ betrachten wir die folgenden Sequenzenregeln:

Reflexivität der Gleichheit (G):

$$\Gamma \vdash t = t$$

Gleichheitsregeln:

Für alle $\Gamma \subseteq_e \mathsf{FO}[\sigma]$, alle $\varphi \in \mathsf{FO}[\sigma]$, alle $x \in \mathsf{VAR}$ und alle $t, u \in \mathsf{T}_\sigma$ betrachten wir die folgenden Sequenzenregeln:

Reflexivität der Gleichheit (G):

$$\Gamma \vdash t = t$$

Substitutionsregel (S):

$$\frac{\Gamma \qquad \vdash \varphi_{x}^{t}}{\Gamma, t = u \vdash \varphi_{x}^{\underline{u}}}$$

Gleichheitsregeln:

Für alle $\Gamma \subseteq_e \mathsf{FO}[\sigma]$, alle $\varphi \in \mathsf{FO}[\sigma]$, alle $x \in \mathsf{VAR}$ und alle $t, u \in \mathsf{T}_\sigma$ betrachten wir die folgenden Sequenzenregeln:

• Reflexivität der Gleichheit (G):

$$\Gamma \vdash t=t$$

Substitutionsregel (S):

$$\frac{\Gamma \qquad \vdash \varphi_{x}^{t}}{\Gamma, t = u \vdash \varphi_{x}^{\underline{u}}}$$

Lemma 4.16

Jede der Gleichheitsregeln (G) bzw. (S) ist korrekt.

Definition 4.17

Der Sequenzenkalkül \Re_S ist der Kalkül über der Menge M_S aller Sequenzen, der für alle $\Gamma, \Gamma' \subseteq_e \mathsf{FO}[\sigma]$, alle $\varphi, \psi, \chi \in \mathsf{FO}[\sigma]$, alle $t, u \in \mathsf{T}_\sigma$ und alle $x, y \in \mathsf{VAR}$ aus

den Grundregeln (V), (E),

Definition 4.17

Der Sequenzenkalkül \Re_S ist der Kalkül über der Menge M_S aller Sequenzen, der für alle $\Gamma, \Gamma' \subseteq_e \mathsf{FO}[\sigma]$, alle $\varphi, \psi, \chi \in \mathsf{FO}[\sigma]$, alle $t, u \in \mathsf{T}_\sigma$ und alle $x, y \in \mathsf{VAR}$ aus

- den Grundregeln (V), (E),
- den aussagenlogischen Regeln

(FU), (W),
$$(\land A_1)$$
, $(\land A_2)$, $(\land S)$, $(\lor A)$, $(\lor S_1)$, $(\lor S_2)$,

Definition 4.17

Der Sequenzenkalkül \Re_S ist der Kalkül über der Menge M_S aller Sequenzen, der für alle $\Gamma, \Gamma' \subseteq_e \mathsf{FO}[\sigma]$, alle $\varphi, \psi, \chi \in \mathsf{FO}[\sigma]$, alle $t, u \in \mathsf{T}_\sigma$ und alle $x, y \in \mathsf{VAR}$ aus

- den Grundregeln (V), (E),
- den aussagenlogischen Regeln

(FU), (W),
$$(\land A_1)$$
, $(\land A_2)$, $(\land S)$, $(\lor A)$, $(\lor S_1)$, $(\lor S_2)$,

• den Quantorenregeln $(\forall A)$, $(\forall S)$, $(\exists A)$, $(\exists S)$

Definition 4.17

Der Sequenzenkalkül \Re_S ist der Kalkül über der Menge M_S aller Sequenzen, der für alle $\Gamma, \Gamma' \subseteq_e \mathsf{FO}[\sigma]$, alle $\varphi, \psi, \chi \in \mathsf{FO}[\sigma]$, alle $t, u \in \mathsf{T}_\sigma$ und alle $x, y \in \mathsf{VAR}$ aus

- den Grundregeln (V), (E),
- den aussagenlogischen Regeln (FU), (W), $(\land A_1)$, $(\land A_2)$, $(\land S)$, $(\lor A)$, $(\lor S_1)$, $(\lor S_2)$,
- den Quantorenregeln $(\forall A)$, $(\forall S)$, $(\exists A)$, $(\exists S)$
- und den Gleichheitsregeln (G), (S)

besteht.

Definition 4.17

Der Sequenzenkalkül \Re_S ist der Kalkül über der Menge M_S aller Sequenzen, der für alle $\Gamma, \Gamma' \subseteq_e \mathsf{FO}[\sigma]$, alle $\varphi, \psi, \chi \in \mathsf{FO}[\sigma]$, alle $t, u \in \mathsf{T}_\sigma$ und alle $x, y \in \mathsf{VAR}$ aus

- den Grundregeln (V), (E),
- den aussagenlogischen Regeln (FU), (W), $(\land A_1)$, $(\land A_2)$, $(\land S)$, $(\lor A)$, $(\lor S_1)$, $(\lor S_2)$,

• den Quantorenregeln (
$$\forall A$$
), ($\forall S$), ($\exists A$), ($\exists S$)

• und den Gleichheitsregeln (G), (S)

besteht.

Aus der Korrektheit der Regeln des Sequenzenkalküls (Lemmas 4.12, 4.13, 4.15, 4.16) folgt mit Lemma 4.11:

Satz 4.18

Der Sequenzenkalkül &s ist korrekt

Definition 4.17

Der Sequenzenkalkül \Re_S ist der Kalkül über der Menge M_S aller Sequenzen, der für alle $\Gamma, \Gamma' \subseteq_e \mathsf{FO}[\sigma]$, alle $\varphi, \psi, \chi \in \mathsf{FO}[\sigma]$, alle $t, u \in \mathsf{T}_\sigma$ und alle $x, y \in \mathsf{VAR}$ aus

- den Grundregeln (V), (E),
- den aussagenlogischen Regeln (FU), (W), $(\land A_1)$, $(\land A_2)$, $(\land S)$, $(\lor A)$, $(\lor S_1)$, $(\lor S_2)$,

• den Quantorenregeln (
$$\forall A$$
), ($\forall S$), ($\exists A$), ($\exists S$)

• und den Gleichheitsregeln (G), (S)

besteht.

Aus der Korrektheit der Regeln des Sequenzenkalküls (Lemmas 4.12, 4.13, 4.15, 4.16) folgt mit Lemma 4.11:

Satz 4.18

Der Sequenzenkalkül \Re_S ist korrekt, d.h. jede in \Re_S ableitbare Sequenz ist korrekt.

Für abzählbare Signaturen σ kann man außerdem einen Algorithmus angeben, der nach und nach alle Folgen in $\{(a_1,\ldots,a_\ell)\in M_S^\ell\ :\ \ell\geqslant 1\}$ ausgibt.

Für abzählbare Signaturen σ kann man außerdem einen Algorithmus angeben, der nach und nach alle Folgen in $\{(a_1,\ldots,a_\ell)\in M_S^\ell\ :\ \ell\geqslant 1\}$ ausgibt.

Beides zusammen liefert für abzählbare Signaturen σ , dass der Sequenzenkalkül \mathfrak{K}_S effektiv ist.

Für abzählbare Signaturen σ kann man außerdem einen Algorithmus angeben, der nach und nach alle Folgen in $\{(a_1,\ldots,a_\ell)\in M_S^\ell\ :\ \ell\geqslant 1\}$ ausgibt.

Beides zusammen liefert für abzählbare Signaturen σ , dass der Sequenzenkalkül \mathfrak{K}_S effektiv ist.

Details: Übung.

Für abzählbare Signaturen σ kann man außerdem einen Algorithmus angeben, der nach und nach alle Folgen in $\{(a_1,\ldots,a_\ell)\in M_S^\ell\ :\ \ell\geqslant 1\}$ ausgibt.

Beides zusammen liefert für abzählbare Signaturen σ , dass der Sequenzenkalkül \mathfrak{K}_S effektiv ist.

Details: Übung.

Unser nächstes Ziel ist, zu zeigen, dass der Sequenzenkalkül \mathfrak{K}_S auch vollständig ist, d.h. dass es für jede *korrekte* Sequenz eine Ableitung in \mathfrak{K}_S gibt.

Für abzählbare Signaturen σ kann man außerdem einen Algorithmus angeben, der nach und nach alle Folgen in $\{(a_1,\ldots,a_\ell)\in M_S^\ell\ :\ \ell\geqslant 1\}$ ausgibt.

Beides zusammen liefert für abzählbare Signaturen σ , dass der Sequenzenkalkül \mathfrak{K}_S effektiv ist.

Details: Übung.

Unser nächstes Ziel ist, zu zeigen, dass der Sequenzenkalkül \mathfrak{K}_S auch vollständig ist, d.h. dass es für jede *korrekte* Sequenz eine Ableitung in \mathfrak{K}_S gibt.

Dazu betrachten wir zunächst einige Beispiele für Ableitungen im Sequenzenkalkül \mathfrak{K}_{S} .

Darstellung von Ableitungen

Am Anfang des Kapitels haben wir bereits vereinbart, dass wir ähnlich wie bei Resolutionsableitungen auch allgemein für einen Kalkül $\mathfrak R$ über einer Menge M Ableitungen (a_1,\ldots,a_ℓ) der besseren Lesbarkeit halber oft zeilenweise schreiben, also

- (1) a_1
- (2) a_2
- :
- (ℓ) a

und am Ende jeder Zeile eine kurze Begründung angeben.

Darstellung von Ableitungen

Am Anfang des Kapitels haben wir bereits vereinbart, dass wir ähnlich wie bei Resolutionsableitungen auch allgemein für einen Kalkül $\mathfrak R$ über einer Menge M Ableitungen (a_1,\ldots,a_ℓ) der besseren Lesbarkeit halber oft zeilenweise schreiben, also

```
(1) a_1
```

(2)
$$a_2$$

÷

 (ℓ) a_ℓ

und am Ende jeder Zeile eine kurze Begründung angeben.

Im Folgenden betrachten wir einige Beispiele für Ableitungen im Sequenzenkalkül \mathfrak{K}_S .

Beispiele 4.19

(a) Für jedes $\Gamma \subseteq_e FO[\sigma]$ und jedes $\varphi \in FO[\sigma]$ ist die Sequenz $\Gamma \vdash (\varphi \lor \neg \varphi)$ ableitbar in \mathfrak{K}_S :

Beweisbarkeit: $\Phi \vdash_{\mathfrak{K}_{S}} \varphi$

Definition 4.20

Sei $\Phi \subseteq FO[\sigma]$ und sei $\varphi \in FO[\sigma]$.

Die Formel φ heißt beweisbar aus Φ (kurz: $\Phi \vdash_{\mathfrak{K}_S} \varphi$), wenn es ein $\Gamma \subseteq_e \Phi$ gibt, so dass die Sequenz $\Gamma \vdash \varphi$ in \mathfrak{K}_S ableitbar ist.

Beweisbarkeit: $\Phi \vdash_{\Re_S} \varphi$

Definition 4.20

Sei $\Phi \subseteq FO[\sigma]$ und sei $\varphi \in FO[\sigma]$.

Die Formel φ heißt beweisbar aus Φ (kurz: $\Phi \vdash_{\Re_S} \varphi$), wenn es ein $\Gamma \subseteq_e \Phi$ gibt, so dass die Sequenz $\Gamma \vdash \varphi$ in \Re_S ableitbar ist.

Ein Beweis von φ aus Φ ist eine Ableitung einer Sequenz $\Gamma \vdash \varphi$ in \mathfrak{K}_{S} , wobei $\Gamma \subseteq_{e} \Phi$ ist.

Beweisbarkeit: $\Phi \vdash_{\mathfrak{K}_{S}} \varphi$

Definition 4.20

Sei $\Phi \subseteq FO[\sigma]$ und sei $\varphi \in FO[\sigma]$.

Die Formel φ heißt beweisbar aus Φ (kurz: $\Phi \vdash_{\mathfrak{K}_S} \varphi$), wenn es ein $\Gamma \subseteq_e \Phi$ gibt, so dass die Sequenz $\Gamma \vdash \varphi$ in \mathfrak{K}_S ableitbar ist.

Ein Beweis von φ aus Φ ist eine Ableitung einer Sequenz $\Gamma \vdash \varphi$ in \mathfrak{K}_{S} , wobei $\Gamma \subseteq_{e} \Phi$ ist.

Notation

An Stelle von $\emptyset \vdash_{\mathfrak{K}_{S}} \varphi$ schreiben wir auch kurz: $\vdash_{\mathfrak{K}_{S}} \varphi$.

Beweisbarkeit: $\Phi \vdash_{\mathfrak{K}_S} \varphi$

Definition 4.20

Sei $\Phi \subseteq FO[\sigma]$ und sei $\varphi \in FO[\sigma]$.

Die Formel φ heißt beweisbar aus Φ (kurz: $\Phi \vdash_{\Re_S} \varphi$), wenn es ein $\Gamma \subseteq_e \Phi$ gibt, so dass die Sequenz $\Gamma \vdash \varphi$ in \Re_S ableitbar ist.

Ein Beweis von φ aus Φ ist eine Ableitung einer Sequenz $\Gamma \vdash \varphi$ in \mathfrak{K}_S , wobei $\Gamma \subseteq_e \Phi$ ist.

Notation

An Stelle von $\emptyset \vdash_{\mathfrak{K}_{S}} \varphi$ schreiben wir auch kurz: $\vdash_{\mathfrak{K}_{S}} \varphi$.

Aus der Korrektheit des Sequenzenkalküls \Re_S (Satz 4.18) folgt:

Korollar 4.21

Für jede $FO[\sigma]$ -Formel φ und für jede Formelmenge $\Phi \subseteq FO[\sigma]$ gilt:

$$\Phi \vdash_{\mathfrak{K}_{S}} \varphi \implies \Phi \models \varphi.$$

In der Mathematik nennen wir eine Menge von Aussagen widerspruchsvoll, falls sich daraus ein Widerspruch (d.h. eine bestimmte Aussage und deren Negat) herleiten lässt.

In der Mathematik nennen wir eine Menge von Aussagen widerspruchsvoll, falls sich daraus ein Widerspruch (d.h. eine bestimmte Aussage und deren Negat) herleiten lässt.

Wenn wir unter "herleiten" einen Beweis im Sequenzenkalkül \mathfrak{K}_S verstehen, ergibt sich folgender Begriff:

In der Mathematik nennen wir eine Menge von Aussagen widerspruchsvoll, falls sich daraus ein Widerspruch (d.h. eine bestimmte Aussage und deren Negat) herleiten lässt.

Wenn wir unter "herleiten" einen Beweis im Sequenzenkalkül \mathfrak{K}_S verstehen, ergibt sich folgender Begriff:

Definition 4.22

Sei $\Phi \subseteq \mathsf{FO}[\sigma]$.

(a) Φ heißt widerspruchsvoll, falls es eine $FO[\sigma]$ -Formel φ gibt, so dass $\Phi \vdash_{\mathfrak{K}_{\mathcal{S}}} \varphi$ und $\Phi \vdash_{\mathfrak{K}_{\mathcal{S}}} \neg \varphi$.

In der Mathematik nennen wir eine Menge von Aussagen widerspruchsvoll, falls sich daraus ein Widerspruch (d.h. eine bestimmte Aussage und deren Negat) herleiten lässt.

Wenn wir unter "herleiten" einen Beweis im Sequenzenkalkül \mathfrak{K}_S verstehen, ergibt sich folgender Begriff:

Definition 4.22

Sei $\Phi \subseteq FO[\sigma]$.

- (a) Φ heißt widerspruchsvoll, falls es eine $FO[\sigma]$ -Formel φ gibt, so dass $\Phi \vdash_{\mathfrak{K}_S} \varphi$ und $\Phi \vdash_{\mathfrak{K}_S} \neg \varphi$.
- (b) Φ heißt widerspruchsfrei, falls Φ nicht widerspruchsvoll ist.

In der Mathematik nennen wir eine Menge von Aussagen widerspruchsvoll, falls sich daraus ein Widerspruch (d.h. eine bestimmte Aussage und deren Negat) herleiten lässt.

Wenn wir unter "herleiten" einen Beweis im Sequenzenkalkül \mathfrak{K}_S verstehen, ergibt sich folgender Begriff:

Definition 4.22

Sei $\Phi \subseteq FO[\sigma]$.

- (a) Φ heißt widerspruchsvoll, falls es eine $FO[\sigma]$ -Formel φ gibt, so dass $\Phi \vdash_{\mathfrak{K}_{\mathcal{S}}} \varphi$ und $\Phi \vdash_{\mathfrak{K}_{\mathcal{S}}} \neg \varphi$.
- (b) Φ heißt widerspruchsfrei, falls Φ nicht widerspruchsvoll ist.

Aus der Korrektheit des Sequenzenkalküls folgt, dass erfüllbare Formelmengen widerspruchsfrei sind:

In der Mathematik nennen wir eine Menge von Aussagen widerspruchsvoll, falls sich daraus ein Widerspruch (d.h. eine bestimmte Aussage und deren Negat) herleiten lässt.

Wenn wir unter "herleiten" einen Beweis im Sequenzenkalkül \mathfrak{K}_S verstehen, ergibt sich folgender Begriff:

Definition 4.22

Sei $\Phi \subseteq FO[\sigma]$.

- (a) Φ heißt widerspruchsvoll, falls es eine $FO[\sigma]$ -Formel φ gibt, so dass $\Phi \vdash_{\mathfrak{K}_S} \varphi$ und $\Phi \vdash_{\mathfrak{K}_S} \neg \varphi$.
- (b) Φ heißt widerspruchsfrei, falls Φ nicht widerspruchsvoll ist.

Aus der Korrektheit des Sequenzenkalküls folgt, dass erfüllbare Formelmengen widerspruchsfrei sind:

Korollar 4 23

Für alle $\Phi \subseteq FO[\sigma]$ gilt: Φ erfüllbar $\implies \Phi$ widerspruchsfrei.

Eigenschaften widerspruchsvoller Mengen

Lemma 4.24

Für jede Formelmenge $\Phi \subseteq \mathsf{FO}[\sigma]$ sind folgende Aussagen äquivalent:

- (a) Φ ist widerspruchsvoll.
- (b) Für jede $FO[\sigma]$ -Formel ψ gilt: $\Phi \vdash_{\mathfrak{K}_S} \psi$.

Satz 4.25

Für alle Signaturen σ , alle Formelmengen $\Phi \subseteq FO[\sigma]$ und alle Formeln $\varphi \in FO[\sigma]$ gilt:

(1)
$$\Phi \vdash_{\mathfrak{K}_{\mathcal{S}}} \varphi \iff \Phi \models \varphi$$
.

Satz 4.25

Für alle Signaturen σ , alle Formelmengen $\Phi \subseteq FO[\sigma]$ und alle Formeln $\varphi \in FO[\sigma]$ gilt:

- (1) $\Phi \vdash_{\mathfrak{K}_{S}} \varphi \iff \Phi \models \varphi$.
- (2) Φ ist widerspruchsfrei ←⇒ Φ ist erfüllbar.

Satz 4.25

Für alle Signaturen σ , alle Formelmengen $\Phi \subseteq FO[\sigma]$ und alle Formeln $\varphi \in FO[\sigma]$ gilt:

- $(1) \quad \Phi \vdash_{\mathfrak{K}_{\mathcal{S}}} \varphi \quad \Longleftrightarrow \quad \Phi \models \varphi.$
- (2) Φ ist widerspruchsfrei \iff Φ ist erfüllbar.

Die Richtung " \Longrightarrow " von (1) und die Richung " \Longleftrightarrow " von (2) haben wir bereits in Korollar 4.21 und Korollar 4.23 bewiesen.

Satz 4.25

Für alle Signaturen σ , alle Formelmengen $\Phi \subseteq FO[\sigma]$ und alle Formeln $\varphi \in FO[\sigma]$ gilt:

- $(1) \quad \Phi \vdash_{\mathfrak{K}_{S}} \varphi \quad \Longleftrightarrow \quad \Phi \models \varphi.$
- (2) Φ ist widerspruchsfrei ←⇒ Φ ist erfüllbar.

Die Richtung " \Longrightarrow " von (1) und die Richung " \Longleftarrow " von (2) haben wir bereits in Korollar 4.21 und Korollar 4.23 bewiesen.

Die Richtung "⇒" von (2) wird von dem folgenden, schwer zu beweisenden Erfüllbarkeitslemma bereitgestellt:

Satz 4.25

Für alle Signaturen σ , alle Formelmengen $\Phi \subseteq FO[\sigma]$ und alle Formeln $\varphi \in FO[\sigma]$ gilt:

- (1) $\Phi \vdash_{\mathfrak{K}_{S}} \varphi \iff \Phi \models \varphi$.
- (2) Φ ist widerspruchsfrei ←⇒ Φ ist erfüllbar.

Die Richtung " \Longrightarrow " von (1) und die Richung " \Longleftrightarrow " von (2) haben wir bereits in Korollar 4.21 und Korollar 4.23 bewiesen.

Die Richtung "⇒" von (2) wird von dem folgenden, schwer zu beweisenden Erfüllbarkeitslemma bereitgestellt:

Lemma 4.26 (Erfüllbarkeitslemma)

Jede widerspruchsfreie Menge $\Phi \subseteq FO[\sigma]$ ist erfüllbar.

Unter Verwendung des Erfüllbarkeitslemmas (Lemma 4.26) erhalten wir zusammen mit Korollar 4.23, dass Teil (2) des Vollständigkeitssatzes korrekt ist.

Unter Verwendung des Erfüllbarkeitslemmas (Lemma 4.26) erhalten wir zusammen mit Korollar 4.23, dass Teil (2) des Vollständigkeitssatzes korrekt ist. D.h. für jede Formelmenge $\Phi \subseteq \mathsf{FO}[\sigma]$ gilt:

(2) Φ ist widerspruchsfrei \iff Φ ist erfüllbar.

Unter Verwendung des Erfüllbarkeitslemmas (Lemma 4.26) erhalten wir zusammen mit Korollar 4.23, dass Teil (2) des Vollständigkeitssatzes korrekt ist. D.h. für jede Formelmenge $\Phi \subseteq \mathsf{FO}[\sigma]$ gilt:

(2) Φ ist widerspruchsfrei \iff Φ ist erfüllbar.

Die Richtung " \Longrightarrow " von (1) haben wir bereits in Korollar 4.21 gezeigt.

Unter Verwendung des Erfüllbarkeitslemmas (Lemma 4.26) erhalten wir zusammen mit Korollar 4.23, dass Teil (2) des Vollständigkeitssatzes korrekt ist. D.h. für jede Formelmenge $\Phi \subseteq \mathsf{FO}[\sigma]$ gilt:

(2) Φ ist widerspruchsfrei \iff Φ ist erfüllbar.

Die Richtung " \Longrightarrow " von (1) haben wir bereits in Korollar 4.21 gezeigt.

Die Richtung "—" von Teil (1) des Vollständigkeitssatzes lässt sich wie folgt beweisen:

Zur Erinnerung: Das Erfüllbarkeitslemma besagt:

Jede widerspruchsfreie Formelmenge $\Phi \subseteq FO[\sigma]$ ist erfüllbar.

Zur Erinnerung: Das Erfüllbarkeitslemma besagt:

Jede widerspruchsfreie Formelmenge $\Phi \subseteq FO[\sigma]$ ist erfüllbar.

Beweisidee:

Konstruiere eine σ -Interpretation $\mathcal{I}_{\Phi} = (\mathcal{A}, \beta)$, so dass gilt:

Zur Erinnerung: Das Erfüllbarkeitslemma besagt:

Jede widerspruchsfreie Formelmenge $\Phi \subseteq FO[\sigma]$ ist erfüllbar.

Beweisidee:

Konstruiere eine σ -Interpretation $\mathcal{I}_{\Phi} = (\mathcal{A}, \beta)$, so dass gilt:

• Das Universum A von A ist die Menge T_{σ} aller σ -Terme.

Zur Erinnerung: Das Erfüllbarkeitslemma besagt:

Jede widerspruchsfreie Formelmenge $\Phi \subseteq FO[\sigma]$ ist erfüllbar.

Beweisidee:

Konstruiere eine σ -Interpretation $\mathcal{I}_{\Phi} = (\mathcal{A}, \beta)$, so dass gilt:

- Das Universum A von A ist die Menge T_{σ} aller σ -Terme.
- Für jeden σ -Term t gilt: $[t]^{\mathcal{I}_{\Phi}} = t$.

Zur Erinnerung: Das Erfüllbarkeitslemma besagt:

Jede widerspruchsfreie Formelmenge $\Phi \subseteq FO[\sigma]$ ist erfüllbar.

Beweisidee:

Konstruiere eine σ -Interpretation $\mathcal{I}_{\Phi} = (\mathcal{A}, \beta)$, so dass gilt:

- Das Universum A von A ist die Menge T_{σ} aller σ -Terme.
- Für jeden σ -Term t gilt: $[t]^{\mathcal{I}_{\Phi}} = t$.
- Für jedes Relationssymbol $R \in \sigma$, für $k := \operatorname{ar}(R)$, und für alle σ -Terme t_1, \ldots, t_k gilt:

$$(t_1,\ldots,t_k) \in R^A \iff$$

Zur Erinnerung: Das Erfüllbarkeitslemma besagt:

Jede widerspruchsfreie Formelmenge $\Phi \subseteq FO[\sigma]$ ist erfüllbar.

Beweisidee:

Konstruiere eine σ -Interpretation $\mathcal{I}_{\Phi} = (\mathcal{A}, \beta)$, so dass gilt:

- Das Universum A von A ist die Menge T_{σ} aller σ -Terme.
- Für jeden σ -Term t gilt: $[t]^{\mathcal{I}_{\Phi}} = t$.
- Für jedes Relationssymbol $R \in \sigma$, für k := ar(R), und für alle σ -Terme t_1, \ldots, t_k gilt:

$$(t_1,\ldots,t_k) \in R^A \iff \Phi \vdash_{\mathfrak{K}_S} R(t_1,\ldots,t_k)$$

Zur Erinnerung: Das Erfüllbarkeitslemma besagt:

Jede widerspruchsfreie Formelmenge $\Phi \subseteq FO[\sigma]$ ist erfüllbar.

Beweisidee:

Konstruiere eine σ -Interpretation $\mathcal{I}_{\Phi} = (\mathcal{A}, \beta)$, so dass gilt:

- Das Universum A von A ist die Menge T_{σ} aller σ -Terme.
- Für jeden σ -Term t gilt: $[t]^{\mathcal{I}_{\Phi}} = t$.
- Für jedes Relationssymbol $R \in \sigma$, für $k := \operatorname{ar}(R)$, und für alle σ -Terme t_1, \ldots, t_k gilt:

$$(t_1,\ldots,t_k) \in R^A \iff \Phi \vdash_{\mathfrak{K}_S} R(t_1,\ldots,t_k)$$

Diese Interpretation \mathcal{I}_{Φ} wird Terminterpretation von Φ genannt.

Gemäß Definition erfüllt \mathcal{I}_{Φ} alle atomaren Formeln der Form $R(t_1,\ldots,t_k)$ in Φ . Im Allgemeinen gilt jedoch noch nicht $\mathcal{I}_{\Phi} \models \Phi$ (betrachte dazu beispielsweise die Formelmenge $\Phi := \{v_0 = v_1\}$, die offensichtlicherweise erfüllbar ist, für die aber gilt: $\mathcal{I}_{\Phi} \not\models \Phi$).

Zur Erinnerung: Das Erfüllbarkeitslemma besagt:

Jede widerspruchsfreie Formelmenge $\Phi \subseteq FO[\sigma]$ ist erfüllbar.

Beweisidee:

Konstruiere eine σ -Interpretation $\mathcal{I}_{\Phi} = (\mathcal{A}, \beta)$, so dass gilt:

- Das Universum A von A ist die Menge T_{σ} aller σ -Terme.
- Für jeden σ -Term t gilt: $[t]^{\mathcal{I}_{\Phi}} = t$.
- Für jedes Relationssymbol $R \in \sigma$, für $k := \operatorname{ar}(R)$, und für alle σ -Terme t_1, \ldots, t_k gilt:

$$(t_1,\ldots,t_k) \in R^A \iff \Phi \vdash_{\mathfrak{K}_S} R(t_1,\ldots,t_k)$$

Diese Interpretation \mathcal{I}_{Φ} wird Terminterpretation von Φ genannt.

Gemäß Definition erfüllt \mathcal{I}_{Φ} alle atomaren Formeln der Form $R(t_1,\ldots,t_k)$ in Φ . Im Allgemeinen gilt jedoch noch nicht $\mathcal{I}_{\Phi} \models \Phi$ (betrachte dazu beispielsweise die Formelmenge $\Phi := \{v_0 = v_1\}$, die offensichtlicherweise erfüllbar ist, für die aber gilt: $\mathcal{I}_{\Phi} \not\models \Phi$).

Aber nach einigen anspruchsvollen Modifikationen von \mathcal{I}_{Φ} erhält man eine Interpretation \mathcal{I}'_{Φ} mit $\mathcal{I}'_{\Phi} \models \Phi$.

Der Endlichkeitssatz

Abschnitt 4.3:

Wir haben bereits den Endlichkeitssatz der Aussagenlogik kennen gelernt, der besagt, dass Folgendes für jede Menge $\Phi \subseteq AL$ gilt:

Wir haben bereits den Endlichkeitssatz der Aussagenlogik kennen gelernt, der besagt, dass Folgendes für jede Menge $\Phi \subseteq AL$ gilt:

(1) Φ ist erfüllbar ←⇒

Wir haben bereits den Endlichkeitssatz der Aussagenlogik kennen gelernt, der besagt, dass Folgendes für jede Menge $\Phi \subseteq AL$ gilt:

(1) Φ ist erfüllbar \iff Jede endliche Teilmenge von Φ ist erfüllbar.

Wir haben bereits den Endlichkeitssatz der Aussagenlogik kennen gelernt, der besagt, dass Folgendes für jede Menge $\Phi \subseteq AL$ und jede Formel $\psi \in AL$ gilt:

- (1) Φ ist erfüllbar \iff Jede endliche Teilmenge von Φ ist erfüllbar.
- (2) $\Phi \models \psi \iff$

Wir haben bereits den Endlichkeitssatz der Aussagenlogik kennen gelernt, der besagt, dass Folgendes für jede Menge $\Phi \subseteq AL$ und jede Formel $\psi \in AL$ gilt:

- (1) Φ ist erfüllbar \iff Jede endliche Teilmenge von Φ ist erfüllbar.
- (2) $\Phi \models \psi \iff$ Es gibt eine endliche Teilmenge Γ von Φ , so dass $\Gamma \models \psi$.

Wir haben bereits den Endlichkeitssatz der Aussagenlogik kennen gelernt, der besagt, dass Folgendes für jede Menge $\Phi \subseteq AL$ und jede Formel $\psi \in AL$ gilt:

- (1) Φ ist erfüllbar \iff Jede endliche Teilmenge von Φ ist erfüllbar.
- (2) $\Phi \models \psi \iff$ Es gibt eine endliche Teilmenge Γ von Φ , so dass $\Gamma \models \psi$.

Der Endlichkeitssatz gilt auch für die Logik erster Stufe,

Wir haben bereits den Endlichkeitssatz der Aussagenlogik kennen gelernt, der besagt, dass Folgendes für jede Menge $\Phi \subseteq AL$ und jede Formel $\psi \in AL$ gilt:

- (1) Φ ist erfüllbar \iff Jede endliche Teilmenge von Φ ist erfüllbar.
- (2) $\Phi \models \psi \iff$ Es gibt eine endliche Teilmenge Γ von Φ , so dass $\Gamma \models \psi$.

Der Endlichkeitssatz gilt auch für die Logik erster Stufe, d.h. die Aussagen (1) und (2) gelten auch für alle Mengen $\Phi \subseteq \mathsf{FO}[\sigma]$ und alle $\psi \in \mathsf{FO}[\sigma]$.

Wir haben bereits den Endlichkeitssatz der Aussagenlogik kennen gelernt, der besagt, dass Folgendes für jede Menge $\Phi \subseteq AL$ und jede Formel $\psi \in AL$ gilt:

- (1) Φ ist erfüllbar \iff Jede endliche Teilmenge von Φ ist erfüllbar.
- (2) $\Phi \models \psi \iff$ Es gibt eine endliche Teilmenge Γ von Φ , so dass $\Gamma \models \psi$.

Der Endlichkeitssatz gilt auch für die Logik erster Stufe, d.h. die Aussagen (1) und (2) gelten auch für alle Mengen $\Phi \subseteq \mathsf{FO}[\sigma]$ und alle $\psi \in \mathsf{FO}[\sigma]$.

Zum Beweis der Endlichkeitssatzes der Logik erster Stufe nutzen wir den Vollständigkeitssatz sowie das folgende Lemma.

Das syntaktische Endlichkeitslemma

Lemma 4.27

Für jede Signatur σ und jede Formelmenge $\Phi \subseteq \mathsf{FO}[\sigma]$ gilt:

 Φ ist widerspruchsfrei \iff <u>Jede</u> endliche Teilmenge von Φ ist widerspruchsfrei.

Der Endlichkeitssatz (auch bekannt als Kompaktheitssatz)

Satz 4.28

Für jede Signatur σ , jede Formelmenge $\Phi \subseteq \mathsf{FO}[\sigma]$ und jede Formel $\psi \in \mathsf{FO}[\sigma]$ gilt:

(1) Φ ist erfüllbar ←⇒ Jede endliche Teilmenge von Φ ist erfüllbar.

Der Endlichkeitssatz (auch bekannt als Kompaktheitssatz)

Satz 4.28

Für jede Signatur σ , jede Formelmenge $\Phi \subseteq \mathsf{FO}[\sigma]$ und jede Formel $\psi \in \mathsf{FO}[\sigma]$ gilt:

- (1) Φ ist erfüllbar \iff Jede endliche Teilmenge von Φ ist erfüllbar.
- (2) $\Phi \models \psi \iff \textit{Es gibt eine endliche Teilmenge } \Gamma \textit{ von } \Phi, \textit{ so dass } \Gamma \models \psi.$

Der Endlichkeitssatz (auch bekannt als Kompaktheitssatz)

Satz 4.28

Für jede Signatur σ , jede Formelmenge $\Phi \subseteq \mathsf{FO}[\sigma]$ und jede Formel $\psi \in \mathsf{FO}[\sigma]$ gilt:

- (1) Φ ist erfüllbar \iff Jede endliche Teilmenge von Φ ist erfüllbar.
- (2) $\Phi \models \psi \iff \textit{Es gibt eine endliche Teilmenge } \Gamma \textit{ von } \Phi \textit{, so dass } \Gamma \models \psi .$

Beachte: Die Aussage des Endlichkeitssatzes ist nur für unendliche Formelmengen Φ interessant (für endliche Mengen Φ ist sie trivial).

Definition 4.29

Eine Klasse $\mathfrak C$ von σ -Strukturen heißt erststufig axiomatisierbar, falls es eine Menge Φ von FO[σ]-Sätzen gibt, so dass gilt: $\mathfrak C = \mathsf{MOD}_\sigma(\Phi)$.

Definition 4.29

Eine Klasse $\mathfrak C$ von σ -Strukturen heißt erststufig axiomatisierbar, falls es eine Menge Φ von FO[σ]-Sätzen gibt, so dass gilt: $\mathfrak C = \mathsf{MOD}_\sigma(\Phi)$.

Zur Erinnerung:

 $\mathsf{MOD}_{\sigma}(\Phi)$ ist die Klasse aller σ -Strukturen \mathcal{A} , für die gilt: $\mathcal{A} \models \Phi$.

Definition 4.29

Eine Klasse $\mathfrak C$ von σ -Strukturen heißt erststufig axiomatisierbar, falls es eine Menge Φ von FO[σ]-Sätzen gibt, so dass gilt: $\mathfrak C = \mathsf{MOD}_\sigma(\Phi)$.

Zur Erinnerung:

 $\mathsf{MOD}_\sigma(\Phi)$ ist die Klasse aller $\sigma ext{-Strukturen }\mathcal{A},$ für die gilt: $\mathcal{A}\models\Phi.$

Definition 4.30

Die Mächtigkeit einer σ -Struktur ist die Mächtigkeit ihres Universums.

Definition 4.29

Eine Klasse $\mathfrak C$ von σ -Strukturen heißt erststufig axiomatisierbar, falls es eine Menge Φ von FO[σ]-Sätzen gibt, so dass gilt: $\mathfrak C = \mathsf{MOD}_\sigma(\Phi)$.

Zur Erinnerung:

 $\mathsf{MOD}_{\sigma}(\Phi)$ ist die Klasse aller σ -Strukturen \mathcal{A} , für die gilt: $\mathcal{A} \models \Phi$.

Definition 4.30

Die Mächtigkeit einer σ -Struktur ist die Mächtigkeit ihres Universums.

Eine σ -Struktur heißt endlich, unendlich, abzählbar, bzw. überabzählbar, wenn ihr Universum die entsprechende Mächtigkeit besitzt.

Definition 4.29

Eine Klasse $\mathfrak C$ von σ -Strukturen heißt erststufig axiomatisierbar, falls es eine Menge Φ von FO[σ]-Sätzen gibt, so dass gilt: $\mathfrak C = \mathsf{MOD}_\sigma(\Phi)$.

Zur Erinnerung:

 $\mathsf{MOD}_{\sigma}(\Phi)$ ist die Klasse aller σ -Strukturen \mathcal{A} , für die gilt: $\mathcal{A} \models \Phi$.

Definition 4.30

Die Mächtigkeit einer σ -Struktur ist die Mächtigkeit ihres Universums. Eine σ -Struktur heißt endlich, unendlich, abzählbar, bzw. überabzählbar, wenn ihr Universum die entsprechende Mächtigkeit besitzt.

Beispiel 4.31

Die Klasse aller <u>unendlichen</u> σ -Strukturen ist erststufig axiomatisierbar.

Definition 4.29

Eine Klasse $\mathfrak C$ von σ -Strukturen heißt erststufig axiomatisierbar, falls es eine Menge Φ von FO[σ]-Sätzen gibt, so dass gilt: $\mathfrak C = \mathsf{MOD}_\sigma(\Phi)$.

Zur Erinnerung:

 $\mathsf{MOD}_{\sigma}(\Phi)$ ist die Klasse aller $\sigma ext{-Strukturen }\mathcal{A},$ für die gilt: $\mathcal{A}\models\Phi.$

Definition 4.30

Die Mächtigkeit einer σ -Struktur ist die Mächtigkeit ihres Universums. Eine σ -Struktur heißt endlich, unendlich, abzählbar, bzw. überabzählbar, wenn ihr Universum die entsprechende Mächtigkeit besitzt.

Beispiel 4.31

Die Klasse aller <u>unendlichen</u> σ -Strukturen ist erststufig axiomatisierbar.

Wir können den Endlichkeitssatz anwenden, um zu zeigen, dass bestimmte Klassen von Strukturen nicht erststufig axiomatisierbar sind.

Definition 4.29

Eine Klasse $\mathfrak C$ von σ -Strukturen heißt erststufig axiomatisierbar, falls es eine Menge Φ von FO[σ]-Sätzen gibt, so dass gilt: $\mathfrak C = \mathsf{MOD}_\sigma(\Phi)$.

Zur Erinnerung:

 $\mathsf{MOD}_{\sigma}(\Phi)$ ist die Klasse aller $\sigma ext{-Strukturen }\mathcal{A},$ für die gilt: $\mathcal{A}\models\Phi.$

Definition 4.30

Die Mächtigkeit einer σ -Struktur ist die Mächtigkeit ihres Universums.

Eine σ -Struktur heißt endlich, unendlich, abzählbar, bzw. überabzählbar, wenn ihr Universum die entsprechende Mächtigkeit besitzt.

Beispiel 4.31

Die Klasse aller <u>unendlichen</u> σ -Strukturen ist erststufig axiomatisierbar.

Wir können den Endlichkeitssatz anwenden, um zu zeigen, dass bestimmte Klassen von Strukturen nicht erststufig axiomatisierbar sind.

Im Folgenden betrachten wir dazu zwei Beispiele: die Nicht-Axiomatisierbarkeit der "Endlichkeit" von Strukturen

Definition 4.29

Eine Klasse $\mathfrak C$ von σ -Strukturen heißt erststufig axiomatisierbar, falls es eine Menge Φ von FO[σ]-Sätzen gibt, so dass gilt: $\mathfrak C = \mathsf{MOD}_\sigma(\Phi)$.

Zur Erinnerung:

 $\mathsf{MOD}_{\sigma}(\Phi)$ ist die Klasse aller σ -Strukturen \mathcal{A} , für die gilt: $\mathcal{A} \models \Phi$.

Definition 4.30

Die Mächtigkeit einer σ -Struktur ist die Mächtigkeit ihres Universums.

Eine σ -Struktur heißt endlich, unendlich, abzählbar, bzw. überabzählbar, wenn ihr Universum die entsprechende Mächtigkeit besitzt.

Beispiel 4.31

Die Klasse aller <u>unendlichen</u> σ -Strukturen ist erststufig axiomatisierbar.

Wir können den Endlichkeitssatz anwenden, um zu zeigen, dass bestimmte Klassen von Strukturen nicht erststufig axiomatisierbar sind.

Im Folgenden betrachten wir dazu zwei Beispiele: die Nicht-Axiomatisierbarkeit der "Endlichkeit" von Strukturen und die Nicht-Axiomatisierbarkeit von "Graph-Zusammenhang".

Nicht-Axiomatisierbarkeit der "Endlichkeit" von Strukturen

Lemma 4.32

Sei Φ eine Menge von $FO[\sigma]$ -Sätzen. Falls Φ beliebig große endliche Modelle besitzt (d.h. für jedes $n \in \mathbb{N}$ gibt es eine endliche σ -Struktur \mathcal{A} mit $|\mathcal{A}| \geqslant n$ und $\mathcal{A} \models \Phi$), so besitzt Φ ein unendliches Modell.

Nicht-Axiomatisierbarkeit der "Endlichkeit" von Strukturen

Lemma 4.32

Sei Φ eine Menge von $FO[\sigma]$ -Sätzen. Falls Φ beliebig große endliche Modelle besitzt (d.h. für jedes $n \in \mathbb{N}$ gibt es eine endliche σ -Struktur \mathcal{A} mit $|\mathcal{A}| \geqslant n$ und $\mathcal{A} \models \Phi$), so besitzt Φ ein unendliches Modell.

Satz 4.33

Die Klasse aller <u>endlichen</u> σ -Strukturen ist <u>nicht</u> erststufig axiomatisierbar.

Nicht-Axiomatisierbarkeit der "Endlichkeit" von Strukturen

Lemma 4.32

Sei Φ eine Menge von $FO[\sigma]$ -Sätzen. Falls Φ beliebig große endliche Modelle besitzt (d.h. für jedes $n \in \mathbb{N}$ gibt es eine endliche σ -Struktur \mathcal{A} mit $|\mathcal{A}| \geqslant n$ und $\mathcal{A} \models \Phi$), so besitzt Φ ein unendliches Modell.

Satz 4.33

Die Klasse aller <u>endlichen</u> σ -Strukturen ist <u>nicht</u> erststufig axiomatisierbar.

Korollar 4.34

Es gibt keine <u>endliche</u> Menge von FO $[\sigma]$ -Sätzen, die die Klasse aller <u>unendlichen</u> σ -Strukturen erststufig axiomatisiert.

Nicht-Axiomatisierbarkeit von "Graph-Zusammenhang"

Satz 4.35

Die Klasse aller zusammenhängenden Graphen ist <u>nicht</u> erststufig axiomatisierbar.

Der Satz von Löwenheim und Skolem

Unter Verwendung von Teilergebnissen, die beim (in dieser Vorlesung nicht im Detail behandelten) Beweis des Erfüllbarkeitslemmas anfallen, erhält man das folgende Resultat.

Der Satz von Löwenheim und Skolem

Unter Verwendung von Teilergebnissen, die beim (in dieser Vorlesung nicht im Detail behandelten) Beweis des Erfüllbarkeitslemmas anfallen, erhält man das folgende Resultat.

Satz 4.36 (Der Satz von Löwenheim und Skolem)

Sei σ eine abzählbare Signatur. Dann hat jede erfüllbare Formelmenge $\Phi \subseteq \mathsf{FO}[\sigma]$ ein höchstens abzählbares Modell.

(Hier ohne Beweis)

Der Satz von Löwenheim und Skolem

Unter Verwendung von Teilergebnissen, die beim (in dieser Vorlesung nicht im Detail behandelten) Beweis des Erfüllbarkeitslemmas anfallen, erhält man das folgende Resultat.

Satz 4.36 (Der Satz von Löwenheim und Skolem)

Sei σ eine abzählbare Signatur. Dann hat jede erfüllbare Formelmenge $\Phi \subseteq \mathsf{FO}[\sigma]$ ein höchstens abzählbares Modell.

(Hier ohne Beweis)

Als direkte Folgerung aus dem Satz von Löwenheim und Skolem erhalten wir:

Korollar 4.37

Sei σ eine abzählbare Signatur. Dann ist die Klasse aller <u>überabzählbaren</u> σ -Strukturen <u>nicht</u> erststufig axiomatisierbar.

Abschnitt 4.4:

Die Grenzen der Berechenbarkeit

Einige Begriffe zum Thema (Un)Entscheidbarkeit

Entscheidungsprobleme sind Probleme, die mit "ja" oder "nein" beantwortet werden können. Genauer:

Einige Begriffe zum Thema (Un)Entscheidbarkeit

Entscheidungsprobleme sind Probleme, die mit "ja" oder "nein" beantwortet werden können. Genauer:

• Sei M eine abzählbar unendliche Menge,

Einige Begriffe zum Thema (Un)Entscheidbarkeit

Entscheidungsprobleme sind Probleme, die mit "ja" oder "nein" beantwortet werden können. Genauer:

- Sei *M* eine abzählbar unendliche Menge, zum Beispiel
 - die Menge Σ^* aller Worte über einem endlichen Alphabet Σ ,

Einige Begriffe zum Thema (Un)Entscheidbarkeit

Entscheidungsprobleme sind Probleme, die mit "ja" oder "nein" beantwortet werden können. Genauer:

- Sei *M* eine abzählbar unendliche Menge, zum Beispiel
 - die Menge Σ^* aller Worte über einem endlichen Alphabet Σ , oder
 - die Menge aller Graphen, deren Knotenmenge eine endliche Teilmenge der natürlichen Zahlen ist.

Einige Begriffe zum Thema (Un)Entscheidbarkeit

Entscheidungsprobleme sind Probleme, die mit "ja" oder "nein" beantwortet werden können. Genauer:

- Sei M eine abzählbar unendliche Menge, zum Beispiel
 - die Menge Σ^* aller Worte über einem endlichen Alphabet Σ , oder
 - die Menge aller Graphen, deren Knotenmenge eine endliche Teilmenge der natürlichen Zahlen ist.
- Das Entscheidungsproblem für eine Menge L ⊆ M ist das folgende Berechnungsproblem:

```
Das Entscheidungsproblem für L \subseteq M
```

Eingabe: Ein Element $m \in M$.

Frage: Ist $m \in L$?

• Graphzusammenhang ist das Entscheidungsproblem für $L \subseteq M$, wobei M

 Graphzusammenhang ist das Entscheidungsproblem für L ⊆ M, wobei
 M die Menge aller ungerichteten Graphen ist, deren Knotenmenge eine endliche Teilmenge von N ist

- Graphzusammenhang ist das Entscheidungsproblem für $L \subseteq M$, wobei
 - ${\it M}$ die Menge aller ungerichteten Graphen ist, deren Knotenmenge eine endliche Teilmenge von $\mathbb N$ ist und

L

- Graphzusammenhang ist das Entscheidungsproblem für $L \subseteq M$, wobei
 - ${\it M}$ die Menge aller ungerichteten Graphen ist, deren Knotenmenge eine endliche Teilmenge von $\mathbb N$ ist und
 - L die Menge aller zusammenhängenden Graphen aus M ist.

- Graphzusammenhang ist das Entscheidungsproblem für $L \subseteq M$, wobei
 - ${\it M}$ die Menge aller ungerichteten Graphen ist, deren Knotenmenge eine endliche Teilmenge von $\mathbb N$ ist und
 - L die Menge aller zusammenhängenden Graphen aus M ist.

• Das Halteproblem ist das Entscheidungsproblem für $L \subseteq M$, wobei M

- Graphzusammenhang ist das Entscheidungsproblem für $L \subseteq M$, wobei
 - M die Menge aller ungerichteten Graphen ist, deren Knotenmenge eine endliche Teilmenge von $\mathbb N$ ist und
 - L die Menge aller zusammenhängenden Graphen aus M ist.

• Das Halteproblem ist das Entscheidungsproblem für $L \subseteq M$, wobei M die Menge aller Worte w#x mit $w,x\in\{0,1\}^*$ ist

- Graphzusammenhang ist das Entscheidungsproblem für $L \subseteq M$, wobei
 - M die Menge aller ungerichteten Graphen ist, deren Knotenmenge eine endliche Teilmenge von $\mathbb N$ ist und
 - L die Menge aller zusammenhängenden Graphen aus M ist.

• Das Halteproblem ist das Entscheidungsproblem für $L \subseteq M$, wobei M die Menge aller Worte w#x mit $w,x\in\{0,1\}^*$ ist und L

- Graphzusammenhang ist das Entscheidungsproblem für $L \subseteq M$, wobei
 - M die Menge aller ungerichteten Graphen ist, deren Knotenmenge eine endliche Teilmenge von $\mathbb N$ ist und
 - L die Menge aller zusammenhängenden Graphen aus M ist.

- Das Halteproblem ist das Entscheidungsproblem für $L \subseteq M$, wobei
 - *M* die Menge aller Worte w#x mit $w, x \in \{0, 1\}^*$ ist und
 - L die Menge aller Worte w#x ist, so dass w eine deterministische Turingmaschine beschreibt, die bei Eingabe x nach endlich vielen Schritten anhält.

Allgemeingültigkeitsproblem für $FO[\sigma]$

Eingabe: Eine FO[σ]-Formel φ Frage: Ist φ allgemeingültig?

Allgemeingültigkeitsproblem für $FO[\sigma]$

Eingabe: Eine FO[σ]-Formel φ Frage: Ist φ allgemeingültig?

Formal:

Μ

Allgemeingültigkeitsproblem für $FO[\sigma]$

Eingabe: Eine FO[σ]-Formel φ Frage: Ist φ allgemeingültig?

Formal:

M ist die Menge aller Worte über dem Alphabet $A_{FO[\sigma]}$

Allgemeingültigkeitsproblem für $FO[\sigma]$

Eingabe: Eine FO[σ]-Formel φ Frage: Ist φ allgemeingültig?

Formal:

M ist die Menge aller Worte über dem Alphabet $A_{\mathsf{FO}[\sigma]}$ und

Allgemeingültigkeitsproblem für $FO[\sigma]$

Eingabe: Eine FO[σ]-Formel φ Frage: Ist φ allgemeingültig?

Formal:

M ist die Menge aller Worte über dem Alphabet $A_{\mathsf{FO}[\sigma]}$ und

 ${\it L}$ ist die Menge $\{\varphi \in {\sf FO}[\sigma] : \varphi \text{ ist allgemeing\"{u}ltig}\}$

Allgemeingültigkeitsproblem für $FO[\sigma]$

Eingabe: Eine FO[σ]-Formel φ Frage: Ist φ allgemeingültig?

Formal:

M ist die Menge aller Worte über dem Alphabet $A_{\mathsf{FO}[\sigma]}$ und

L ist die Menge $\{\varphi \in \mathsf{FO}[\sigma] : \varphi \text{ ist allgemeingültig}\}$

Erfüllbarkeitsproblem für $FO[\sigma]$

Eingabe: $FO[\sigma]$ -Formel φ

Frage: Ist φ erfüllbar?

```
Allgemeingültigkeitsproblem für FO[\sigma]
```

Eingabe: Eine FO[σ]-Formel φ Frage: Ist φ allgemeingültig?

Formal:

M ist die Menge aller Worte über dem Alphabet $A_{\mathsf{FO}[\sigma]}$ und

L ist die Menge $\{\varphi \in \mathsf{FO}[\sigma] : \varphi \text{ ist allgemeingültig}\}$

Erfüllbarkeitsproblem für $FO[\sigma]$

Eingabe: $FO[\sigma]$ -Formel φ

Frage: Ist φ erfüllbar?

Unerfüllbarkeitsproblem für $FO[\sigma]$

Eingabe: $FO[\sigma]$ -Formel φ

Frage: Ist φ unerfüllbar?

Allgemeingültigkeitsproblem für $FO[\sigma]$

Eingabe: Eine FO[σ]-Formel φ Frage: Ist φ allgemeingültig?

Formal:

M ist die Menge aller Worte über dem Alphabet $A_{FO[\sigma]}$ und

L ist die Menge $\{\varphi \in \mathsf{FO}[\sigma] : \varphi \text{ ist allgemeingültig}\}$

Erfüllbarkeitsproblem für $FO[\sigma]$

Eingabe: $\mathsf{FO}[\sigma]$ -Formel φ

Frage: Ist φ erfüllbar?

Unerfüllbarkeitsproblem für $FO[\sigma]$

Eingabe: $FO[\sigma]$ -Formel φ

Frage: Ist φ unerfüllbar?

Folgerungsproblem für $FO[\sigma]$

Eingabe: Zwei FO[σ]-Formeln φ , ψ

Frage: Gilt $\varphi \models \psi$?

Definition 4.38

Sei *M* eine abzählbar unendliche Menge.

(a) Eine Menge $L \subseteq M$ heißt entscheidbar, falls

Definition 4.38

Sei *M* eine abzählbar unendliche Menge.

- (a) Eine Menge $L \subseteq M$ heißt entscheidbar, falls es einen Algorithmus gibt, der bei Eingabe eines $m \in M$ nach endlich vielen Schritten anhält und
 - "ja" ausgibt, falls $m \in L$
 - "nein" ausgibt, falls $m \not\in L$.

Definition 4.38

Sei *M* eine abzählbar unendliche Menge.

- (a) Eine Menge $L \subseteq M$ heißt entscheidbar, falls es einen Algorithmus gibt, der bei Eingabe eines $m \in M$ nach endlich vielen Schritten anhält und
 - "ja" ausgibt, falls $m \in L$
 - "nein" ausgibt, falls $m \notin L$.
- (b) $L \subseteq M$ heißt semi-entscheidbar, falls

Definition 4.38

Sei *M* eine abzählbar unendliche Menge.

- (a) Eine Menge $L \subseteq M$ heißt entscheidbar, falls es einen Algorithmus gibt, der bei Eingabe eines $m \in M$ nach endlich vielen Schritten anhält und
 - "ja" ausgibt, falls $m \in L$
 - "nein" ausgibt, falls $m \notin L$.
- (b) $L \subseteq M$ heißt semi-entscheidbar, falls es einen Algorithmus gibt, der bei Eingabe eines $m \in M$
 - nach endlich vielen Schritten anhält und "ja" ausgibt, falls $m \in L$
 - nie anhält, falls $m \notin L$.

Definition 4.38

Sei *M* eine abzählbar unendliche Menge.

- (a) Eine Menge $L \subseteq M$ heißt entscheidbar, falls es einen Algorithmus gibt, der bei Eingabe eines $m \in M$ nach endlich vielen Schritten anhält und
 - "ja" ausgibt, falls $m \in L$
 - "nein" ausgibt, falls $m \notin L$.
- (b) $L \subseteq M$ heißt semi-entscheidbar, falls es einen Algorithmus gibt, der bei Eingabe eines $m \in M$
 - nach endlich vielen Schritten anhält und "ja" ausgibt, falls $m \in L$
 - nie anhält, falls $m \notin L$.

Beispiele:

Graphzusammenhang ist

Definition 4.38

Sei *M* eine abzählbar unendliche Menge.

- (a) Eine Menge $L \subseteq M$ heißt entscheidbar, falls es einen Algorithmus gibt, der bei Eingabe eines $m \in M$ nach endlich vielen Schritten anhält und
 - "ja" ausgibt, falls $m \in L$
 - "nein" ausgibt, falls $m \notin L$.
- (b) $L\subseteq M$ heißt semi-entscheidbar, falls es einen Algorithmus gibt, der bei Eingabe eines $m\in M$
 - nach endlich vielen Schritten anhält und "ja" ausgibt, falls $m \in L$
 - nie anhält, falls $m \notin L$.

Beispiele:

Graphzusammenhang ist entscheidbar (z.B. durch Tiefen- oder Breitensuche).

Definition 4.38

Sei *M* eine abzählbar unendliche Menge.

- (a) Eine Menge $L \subseteq M$ heißt entscheidbar, falls es einen Algorithmus gibt, der bei Eingabe eines $m \in M$ nach endlich vielen Schritten anhält und
 - "ja" ausgibt, falls $m \in L$
 - "nein" ausgibt, falls $m \notin L$.
- (b) $L\subseteq M$ heißt semi-entscheidbar, falls es einen Algorithmus gibt, der bei Eingabe eines $m\in M$
 - nach endlich vielen Schritten anhält und "ja" ausgibt, falls $m \in L$
 - nie anhält, falls $m \notin L$.

Beispiele:

- Graphzusammenhang ist entscheidbar (z.B. durch Tiefen- oder Breitensuche).
- Das Halteproblem ist

Definition 4.38

Sei *M* eine abzählbar unendliche Menge.

- (a) Eine Menge $L \subseteq M$ heißt entscheidbar, falls es einen Algorithmus gibt, der bei Eingabe eines $m \in M$ nach endlich vielen Schritten anhält und
 - "ja" ausgibt, falls $m \in L$
 - "nein" ausgibt, falls $m \notin L$.
- (b) $L \subseteq M$ heißt semi-entscheidbar, falls es einen Algorithmus gibt, der bei Eingabe eines $m \in M$
 - nach endlich vielen Schritten anhält und "ja" ausgibt, falls $m \in L$
 - nie anhält, falls $m \notin L$.

Beispiele:

- Graphzusammenhang ist entscheidbar (z.B. durch Tiefen- oder Breitensuche).
- Das Halteproblem ist semi-entscheidbar

Definition 4.38

Sei *M* eine abzählbar unendliche Menge.

- (a) Eine Menge $L \subseteq M$ heißt entscheidbar, falls es einen Algorithmus gibt, der bei Eingabe eines $m \in M$ nach endlich vielen Schritten anhält und
 - "ja" ausgibt, falls $m \in L$
 - "nein" ausgibt, falls $m \notin L$.
- (b) $L \subseteq M$ heißt semi-entscheidbar, falls es einen Algorithmus gibt, der bei Eingabe eines $m \in M$
 - nach endlich vielen Schritten anhält und "ja" ausgibt, falls $m \in L$
 - nie anhält, falls $m \notin L$.

Beispiele:

- Graphzusammenhang ist entscheidbar (z.B. durch Tiefen- oder Breitensuche).
- Das Halteproblem ist semi-entscheidbar (bei Eingabe von w#x konstruiere die von w repräsentierte deterministische Turingmaschine und lasse diese mit Eingabe x laufen).

Definition 4.38

Sei *M* eine abzählbar unendliche Menge.

- (a) Eine Menge $L \subseteq M$ heißt entscheidbar, falls es einen Algorithmus gibt, der bei Eingabe eines $m \in M$ nach endlich vielen Schritten anhält und
 - "ja" ausgibt, falls $m \in L$
 - "nein" ausgibt, falls $m \notin L$.
- (b) $L \subseteq M$ heißt semi-entscheidbar, falls es einen Algorithmus gibt, der bei Eingabe eines $m \in M$
 - nach endlich vielen Schritten anhält und "ja" ausgibt, falls $m \in L$
 - nie anhält, falls $m \notin L$.

Beispiele:

- Graphzusammenhang ist entscheidbar (z.B. durch Tiefen- oder Breitensuche).
- Das Halteproblem ist semi-entscheidbar (bei Eingabe von w#x konstruiere die von w repräsentierte deterministische Turingmaschine und lasse diese mit Eingabe x laufen).

Ist es auch entscheidbar?

Definition 4.38

Sei *M* eine abzählbar unendliche Menge.

- (a) Eine Menge $L \subseteq M$ heißt entscheidbar, falls es einen Algorithmus gibt, der bei Eingabe eines $m \in M$ nach endlich vielen Schritten anhält und
 - ", ja" ausgibt, falls $m \in L$
 - "nein" ausgibt, falls $m \notin L$.
- (b) $L \subseteq M$ heißt semi-entscheidbar, falls es einen Algorithmus gibt, der bei Eingabe eines $m \in M$
 - nach endlich vielen Schritten anhält und "ja" ausgibt, falls $m \in L$
 - nie anhält, falls $m \notin L$.

Beispiele:

- Graphzusammenhang ist entscheidbar (z.B. durch Tiefen- oder Breitensuche).
- Das Halteproblem ist semi-entscheidbar (bei Eingabe von w#x konstruiere die von w repräsentierte deterministische Turingmaschine und lasse diese mit Eingabe x laufen).
 - Ist es auch entscheidbar? Nein! Das Halteproblem ist das Paradebeispiel eines nicht entscheidbaren Problems.

Einfache Beobachtungen

• Jede entscheidbare Menge $L \subseteq M$ ist auch semi-entscheidbar

Einfache Beobachtungen

• Jede entscheidbare Menge $L\subseteq M$ ist auch semi-entscheidbar (anstatt "nein" auszugeben und anzuhalten, gehen wir einfach in eine Endlosschleife)

Einfache Beobachtungen

- Jede entscheidbare Menge $L \subseteq M$ ist auch semi-entscheidbar (anstatt "nein" auszugeben und anzuhalten, gehen wir einfach in eine Endlosschleife)
- Für jede entscheidbare Menge $L \subseteq M$ ist auch die Menge $\overline{L} := (M \setminus L) \subseteq M$ entscheidbar

Einfache Beobachtungen

- Jede entscheidbare Menge $L\subseteq M$ ist auch semi-entscheidbar (anstatt "nein" auszugeben und anzuhalten, gehen wir einfach in eine Endlosschleife)
- Für jede entscheidbare Menge $L \subseteq M$ ist auch die Menge $\overline{L} := (M \setminus L) \subseteq M$ entscheidbar (vertausche einfach die Antworten "ja" und "nein")

Einfache Beobachtungen

- Jede entscheidbare Menge $L\subseteq M$ ist auch semi-entscheidbar (anstatt "nein" auszugeben und anzuhalten, gehen wir einfach in eine Endlosschleife)
- Für jede entscheidbare Menge $L \subseteq M$ ist auch die Menge $\overline{L} := (M \setminus L) \subseteq M$ entscheidbar (vertausche einfach die Antworten "ja" und "nein")
- Wenn sowohl $L \subseteq M$ als auch $\overline{L} := (M \setminus L) \subseteq M$ semi-entscheidbar sind, dann ist $L \subseteq M$ sogar entscheidbar.

Satz 4.39

Sei σ eine höchstens abzählbare Signatur. Jedes der folgenden Probleme ist semi-enscheidbar:

Satz 4.39

Sei σ eine höchstens abzählbare Signatur. Jedes der folgenden Probleme ist semi-enscheidbar:

(a) das Allgemeingültigkeitsproblem für $FO[\sigma]$,

Satz 4.39

Sei σ eine höchstens abzählbare Signatur. Jedes der folgenden Probleme ist semi-enscheidbar:

- (a) das Allgemeingültigkeitsproblem für $FO[\sigma]$,
- (b) das Unerfüllbarkeitsproblem für $FO[\sigma]$,

Satz 4.39

Sei σ eine höchstens abzählbare Signatur. Jedes der folgenden Probleme ist semi-enscheidbar:

- (a) das Allgemeingültigkeitsproblem für $FO[\sigma]$,
- (b) das Unerfüllbarkeitsproblem für $FO[\sigma]$,
- (c) das Folgerungsproblem für $FO[\sigma]$.

Unser nächstes Ziel ist, zu zeigen, dass für bestimmte Signaturen σ gilt:

- Das Allgemeingültigkeitsproblem für $FO[\sigma]$,
- das Unerfüllbarkeitsproblem für $FO[\sigma]$,
- das Erfüllbarkeitsproblem für $\mathsf{FO}[\sigma]$ und
- das Folgerungsproblem für FO[σ]

ist nicht entscheidbar.

Unser nächstes Ziel ist, zu zeigen, dass für bestimmte Signaturen σ gilt:

- Das Allgemeingültigkeitsproblem für $FO[\sigma]$,
- das Unerfüllbarkeitsproblem für $FO[\sigma]$,
- das Erfüllbarkeitsproblem für $FO[\sigma]$ und
- das Folgerungsproblem für FO[σ]

ist nicht entscheidbar.

Wir werden dazu wie folgt vorgehen:

 Wir nutzen das bekannte Resultat, das besagt, dass das Postsche Korrespondenzproblem unentscheidbar ist.

Unser nächstes Ziel ist, zu zeigen, dass für bestimmte Signaturen σ gilt:

- Das Allgemeingültigkeitsproblem für $FO[\sigma]$,
- das Unerfüllbarkeitsproblem für $FO[\sigma]$,
- das Erfüllbarkeitsproblem für $FO[\sigma]$ und
- das Folgerungsproblem für FO[σ]

ist nicht entscheidbar.

Wir werden dazu wie folgt vorgehen:

- Wir nutzen das bekannte Resultat, das besagt, dass das Postsche Korrespondenzproblem unentscheidbar ist.
- 2. Wir zeigen, wie das Postsche Korrespondenzproblem unter Zuhilfenahme eines Entscheidungs-Algorithmus für das Allgemeingültigkeitsproblem für $FO[\sigma]$ (für eine geeignete Signatur σ) gelöst werden könnte.

Unser nächstes Ziel ist, zu zeigen, dass für bestimmte Signaturen σ gilt:

- Das Allgemeingültigkeitsproblem für $FO[\sigma]$,
- das Unerfüllbarkeitsproblem für $FO[\sigma]$,
- das Erfüllbarkeitsproblem für $FO[\sigma]$ und
- das Folgerungsproblem für FO[σ]

ist nicht entscheidbar.

Wir werden dazu wie folgt vorgehen:

- Wir nutzen das bekannte Resultat, das besagt, dass das Postsche Korrespondenzproblem unentscheidbar ist.
- 2. Wir zeigen, wie das Postsche Korrespondenzproblem unter Zuhilfenahme eines Entscheidungs-Algorithmus für das Allgemeingültigkeitsproblem für $FO[\sigma]$ (für eine geeignete Signatur σ) gelöst werden könnte.
 - Dadurch erhalten wir, dass das Allgemeingültigkeitsproblem für $FO[\sigma]$ unentscheidbar ist.

Unser nächstes Ziel ist, zu zeigen, dass für bestimmte Signaturen σ gilt:

- Das Allgemeingültigkeitsproblem für $FO[\sigma]$,
- das Unerfüllbarkeitsproblem für $FO[\sigma]$,
- das Erfüllbarkeitsproblem für $FO[\sigma]$ und
- das Folgerungsproblem für FO[σ]

ist nicht entscheidbar.

Wir werden dazu wie folgt vorgehen:

- Wir nutzen das bekannte Resultat, das besagt, dass das Postsche Korrespondenzproblem unentscheidbar ist.
- Wir zeigen, wie das Postsche Korrespondenzproblem unter Zuhilfenahme eines Entscheidungs-Algorithmus für das Allgemeingültigkeitsproblem für FO[σ] (für eine geeignete Signatur σ) gelöst werden könnte.
 Dadurch erhalten wir, dass das Allgemeingültigkeitsproblem für FO[σ] unentscheidbar ist.
- Die Unentscheidbarkeit des Unerfüllbarkeitsproblems, des Erfüllbarkeitsproblems und des Folgerungsproblems für FO[σ] folgen dann leicht aus der Unentscheidbarkeit des Allgemeingültigkeitsproblems für FO[σ].

Das Postsche Korrespondenzproblem (PKP)

Eingabe: Eine Zahl $k \ge 1$ und k Paare $(x_1, y_1), (x_2, y_2), \dots, (x_k, y_k)$ mit $x_1, y_1, \dots, x_k, y_k \in \{0, 1\}^*$.

Frage: Gibt es ein $n \geqslant 1$ und Indizes $i_1, \ldots, i_n \in \{1, \ldots, k\}$, so dass

gilt: $x_{i_1}x_{i_2}\cdots x_{i_n} = y_{i_1}y_{i_2}\cdots y_{i_n}$?

Das Postsche Korrespondenzproblem (PKP)

Eingabe: Eine Zahl $k \ge 1$ und k Paare $(x_1, y_1), (x_2, y_2), \dots, (x_k, y_k)$ mit $x_1, y_1, \dots, x_k, y_k \in \{0, 1\}^*$.

Frage: Gibt es ein $n \ge 1$ und Indizes $i_1, \ldots, i_n \in \{1, \ldots, k\}$, so dass

gilt: $x_{i_1}x_{i_2}\cdots x_{i_n} = y_{i_1}y_{i_2}\cdots y_{i_n}$?

Beispiel:

Das PKP mit Eingabe k = 3 und

$$(x_1, y_1) = (1, 111), (x_2, y_2) = (10111, 10), (x_3, y_3) = (10, 0).$$

Das Postsche Korrespondenzproblem (PKP)

Eingabe: Eine Zahl
$$k \ge 1$$
 und k Paare $(x_1, y_1), (x_2, y_2), \dots, (x_k, y_k)$ mit $x_1, y_1, \dots, x_k, y_k \in \{0, 1\}^*$.

Frage: Gibt es ein $n \ge 1$ und Indizes $i_1, \ldots, i_n \in \{1, \ldots, k\}$, so dass gilt: $x_i, x_i, \cdots x_{i_n} = y_i, y_i, \cdots y_{i_n}$?

Beispiel:

Das PKP mit Eingabe k = 3 und

$$(x_1, y_1) = (1, 111), (x_2, y_2) = (10111, 10), (x_3, y_3) = (10, 0).$$

hat eine Lösung mit n=4 und $i_1=2$, $i_2=1$, $i_3=1$, $i_4=3$, denn:

$$x_2 x_1 x_1 x_3 = 10111 \ 1 \ 1 \ 10$$

 $y_2 y_1 y_1 y_3 = 10 \ 111 \ 111 \ 0.$

Das Postsche Korrespondenzproblem (PKP)

Eingabe: Eine Zahl $k \ge 1$ und k Paare $(x_1, y_1), (x_2, y_2), \dots, (x_k, y_k)$ mit $x_1, y_1, \dots, x_k, y_k \in \{0, 1\}^*$.

Frage: Gibt es ein $n \ge 1$ und Indizes $i_1, \ldots, i_n \in \{1, \ldots, k\}$, so dass

gilt: $x_{i_1}x_{i_2}\cdots x_{i_n} = y_{i_1}y_{i_2}\cdots y_{i_n}$?

Beispiel:

Das PKP mit Eingabe k = 3 und

$$(x_1, y_1) = (1, 111), (x_2, y_2) = (10111, 10), (x_3, y_3) = (10, 0).$$

hat eine Lösung mit n=4 und $i_1=2$, $i_2=1$, $i_3=1$, $i_4=3$, denn:

$$x_2 x_1 x_1 x_3 = 10111 \ 1 \ 1 \ 10$$

 $y_2 y_1 y_1 y_3 = 10 \ 111 \ 111 \ 0.$

Bekannt:

Das Postsche Korrespondenzproblem (PKP)

Eingabe: Eine Zahl
$$k \ge 1$$
 und k Paare $(x_1, y_1), (x_2, y_2), \dots, (x_k, y_k)$ mit $x_1, y_1, \dots, x_k, y_k \in \{0, 1\}^*$.

Frage: Gibt es ein $n \ge 1$ und Indizes $i_1, \ldots, i_n \in \{1, \ldots, k\}$, so dass

gilt: $x_{i_1}x_{i_2}\cdots x_{i_n} = y_{i_1}y_{i_2}\cdots y_{i_n}$?

Beispiel:

Das PKP mit Eingabe k = 3 und

$$(x_1, y_1) = (1, 111), (x_2, y_2) = (10111, 10), (x_3, y_3) = (10, 0).$$

hat eine Lösung mit n=4 und $i_1=2$, $i_2=1$, $i_3=1$, $i_4=3$, denn:

$$x_2 x_1 x_1 x_3 = 10111 \ 1 \ 1 \ 10$$

 $y_2 y_1 y_1 y_3 = 10 \ 111 \ 111 \ 0.$

Bekannt:

• Das PKP ist semi-entscheidbar. (Dies sieht man leicht.)

Das Postsche Korrespondenzproblem (PKP)

Eingabe: Eine Zahl $k \ge 1$ und k Paare $(x_1, y_1), (x_2, y_2), \ldots, (x_k, y_k)$ mit $x_1, y_1, \ldots, x_k, y_k \in \{0, 1\}^*$.

Frage: Gibt es ein $n \ge 1$ und Indizes $i_1, \ldots, i_n \in \{1, \ldots, k\}$, so dass

gilt: $x_{i_1}x_{i_2}\cdots x_{i_n}=y_{i_1}y_{i_2}\cdots y_{i_n}$?

Beispiel:

Das PKP mit Eingabe k = 3 und

$$(x_1, y_1) = (1, 111), (x_2, y_2) = (10111, 10), (x_3, y_3) = (10, 0).$$

hat eine Lösung mit n=4 und $i_1=2$, $i_2=1$, $i_3=1$, $i_4=3$, denn:

$$x_2 x_1 x_1 x_3 = 10111 \ 1 \ 1 \ 10$$

 $y_2 y_1 y_1 y_3 = 10 \ 111 \ 111 \ 0.$

Bekannt:

- Das PKP ist semi-entscheidbar. (Dies sieht man leicht.)
- Das PKP ist nicht entscheidbar. (Dies wurde in der "Einführung in die Theoretische Informatik" bewiesen.)

Satz 4.40

Sei $\sigma := \{R, f_0, f_1, c\}$, wobei c ein Konstantensymbol, R ein 2-stelliges Relationssymbol und f_0 , f_1 zwei 1-stellige Funktionssymbole sind.

Das Allgemeingültigkeitsproblem für $FO[\sigma]$ ist nicht entscheidbar.

Satz 4.40

Sei $\sigma := \{R, f_0, f_1, c\}$, wobei c ein Konstantensymbol, R ein 2-stelliges Relationssymbol und f_0 , f_1 zwei 1-stellige Funktionssymbole sind.

Das Allgemeingültigkeitsproblem für $FO[\sigma]$ ist nicht entscheidbar.

Beweis: Auf Grund der Unentscheidbarkeit des PKP reicht es, eine Reduktion vom PKP zum Allgemeingültigkeitsproblem für $FO[\sigma]$ anzugeben.

Satz 4.40

Sei $\sigma := \{R, f_0, f_1, c\}$, wobei c ein Konstantensymbol, R ein 2-stelliges Relationssymbol und f_0 , f_1 zwei 1-stellige Funktionssymbole sind.

Das Allgemeingültigkeitsproblem für $FO[\sigma]$ ist nicht entscheidbar.

Beweis: Auf Grund der Unentscheidbarkeit des PKP reicht es, eine Reduktion vom PKP zum Allgemeingültigkeitsproblem für $FO[\sigma]$ anzugeben. D.h. wir zeigen, dass bei Eingabe eines Tupels $I=\big(k,\ (x_1,y_1),\ \ldots,\ (x_k,y_k)\big)$, das eine Eingabe für's PKP repräsentiert, eine $FO[\sigma]$ -Formel φ_I konstruiert werden kann, die genau dann allgemeingültig ist, wenn I eine "ja"-Instanz für's PKP ist

Satz 4.40

Sei $\sigma := \{R, f_0, f_1, c\}$, wobei c ein Konstantensymbol, R ein 2-stelliges Relationssymbol und f_0 , f_1 zwei 1-stellige Funktionssymbole sind.

Das Allgemeingültigkeitsproblem für $FO[\sigma]$ ist nicht entscheidbar.

Beweis: Auf Grund der Unentscheidbarkeit des PKP reicht es, eine Reduktion vom PKP zum Allgemeingültigkeitsproblem für $FO[\sigma]$ anzugeben. D.h. wir zeigen, dass bei Eingabe eines Tupels $I=(k,\ (x_1,y_1),\ \dots,\ (x_k,y_k))$, das eine Eingabe für's PKP repräsentiert, eine $FO[\sigma]$ -Formel φ_I konstruiert werden kann, die genau dann allgemeingültig ist, wenn I eine "ja"-Instanz für's PKP ist (d.h. es gibt $n\geqslant 1$ und $i_1,\dots,i_n\in[k]$, so dass $x_{i_1}\cdots x_{i_n}=y_{i_1}\cdots y_{i_n})$.

Satz 4.40

Sei $\sigma := \{R, f_0, f_1, c\}$, wobei c ein Konstantensymbol, R ein 2-stelliges Relationssymbol und f_0 , f_1 zwei 1-stellige Funktionssymbole sind.

Das Allgemeingültigkeitsproblem für $FO[\sigma]$ ist nicht entscheidbar.

Beweis: Auf Grund der Unentscheidbarkeit des PKP reicht es, eine Reduktion vom PKP zum Allgemeingültigkeitsproblem für $FO[\sigma]$ anzugeben. D.h. wir zeigen, dass bei Eingabe eines Tupels $I=(k,\ (x_1,y_1),\ \dots,\ (x_k,y_k))$, das eine Eingabe für's PKP repräsentiert, eine $FO[\sigma]$ -Formel φ_I konstruiert werden kann, die genau dann allgemeingültig ist, wenn I eine "ja"-Instanz für's PKP ist (d.h. es gibt $n\geqslant 1$ und $i_1,\dots,i_n\in[k]$, so dass $x_{i_1}\cdots x_{i_n}=y_{i_1}\cdots y_{i_n}$).

Wenn das Allgemeingültigkeitsproblem für $FO[\sigma]$ entscheidbar wäre, wäre daher auch das PKP entscheidbar.

Satz 4.40

Sei $\sigma := \{R, f_0, f_1, c\}$, wobei c ein Konstantensymbol, R ein 2-stelliges Relationssymbol und f_0 , f_1 zwei 1-stellige Funktionssymbole sind.

Das Allgemeingültigkeitsproblem für $FO[\sigma]$ ist nicht entscheidbar.

Beweis: Auf Grund der Unentscheidbarkeit des PKP reicht es, eine Reduktion vom PKP zum Allgemeingültigkeitsproblem für $FO[\sigma]$ anzugeben. D.h. wir zeigen, dass bei Eingabe eines Tupels $I=(k,\ (x_1,y_1),\ \dots,\ (x_k,y_k))$, das eine Eingabe für's PKP repräsentiert, eine $FO[\sigma]$ -Formel φ_I konstruiert werden kann, die genau dann allgemeingültig ist, wenn I eine "ja"-Instanz für's PKP ist (d.h. es gibt $n\geqslant 1$ und $i_1,\dots,i_n\in[k]$, so dass $x_{i_1}\cdots x_{i_n}=y_{i_1}\cdots y_{i_n}$).

Wenn das Allgemeingültigkeitsproblem für $FO[\sigma]$ entscheidbar wäre, wäre daher auch das PKP entscheidbar.

Zur Konstruktion der Formel φ_I gehen wir in mehreren Schritten vor.

$$A_I \models \exists z \, R(z, z) \iff I$$
 ist eine "ja"-Instanz für's PKP

$$\mathcal{A}_I \models \exists z \, R(z,z) \iff I \text{ ist eine "ja"-Instanz für's PKP, d.h. es gibt } n \geqslant 1 \text{ und } i_1,\ldots,i_n \in [k], \text{ so dass } x_{i_1}\cdots x_{i_n} = y_{i_1}\cdots y_{i_n}.$$

$$\mathcal{A}_I \models \exists z \, R(z,z) \iff I \text{ ist eine "ja"-Instanz für's PKP, d.h. es gibt } n \geqslant 1 \text{ und } i_1,\ldots,i_n \in [k], \text{ so dass } x_{i_1}\cdots x_{i_n} = y_{i_1}\cdots y_{i_n}.$$

Dazu wählen wir A_I wie folgt:

Die Formel ψ_I^{Start} soll besagen, dass die Relation R^{A_I} die Tupel (x_j, y_j) für alle $j \in [k]$ enthält.

Die Formel ψ_I^{Start} soll besagen, dass die Relation $R^{\mathcal{A}_I}$ die Tupel (x_j, y_j) für alle $j \in [k]$ enthält.

Die Formel $\psi_{I}^{Schritt}$ soll besagen, dass die Relation $R^{\mathcal{A}_{I}}$ abgeschlossen ist unter Konkatenation mit (x_{j}, y_{j}) ; d.h.: Ist $(u, v) \in R^{\mathcal{A}_{I}}$ und $j \in [k]$, so ist auch $(ux_{j}, vy_{j}) \in R^{\mathcal{A}_{I}}$.

Die Formel ψ_I^{Start} soll besagen, dass die Relation $R^{\mathcal{A}_I}$ die Tupel (x_j, y_j) für alle $j \in [k]$ enthält.

Die Formel $\psi_{l}^{Schritt}$ soll besagen, dass die Relation $R^{\mathcal{A}_{l}}$ abgeschlossen ist unter Konkatenation mit (x_{j}, y_{j}) ; d.h.: Ist $(u, v) \in R^{\mathcal{A}_{l}}$ und $j \in [k]$, so ist auch $(ux_{j}, vy_{j}) \in R^{\mathcal{A}_{l}}$.

Um dies durch $FO[\sigma]$ -Formeln zu formulieren, nutzen wir folgende Schreibweisen:

Schritt 3: Setze
$$\varphi_I := \left(\left(\psi_I^{Start} \wedge \psi_I^{Schritt} \right) \rightarrow \exists z \, R(z,z) \right)$$

Klar: Es gibt einen Algorithmus, der bei Eingabe von I die Formel φ_I konstruiert.

Behauptung 1:

 φ_I ist allgemeingültig \iff I ist eine "ja"-Instanz für's PKP.

Schritt 3: Setze
$$\varphi_I := \left(\left(\psi_I^{Start} \wedge \psi_I^{Schritt} \right) \rightarrow \exists z \, R(z,z) \right)$$

Klar: Es gibt einen Algorithmus, der bei Eingabe von I die Formel φ_I konstruiert.

Behauptung 1:

 φ_I ist allgemeingültig \iff I ist eine "ja"-Instanz für's PKP.

Behauptung 2: Für alle $(u, v) \in R^{\mathcal{A}_I}$ gilt: $(h(u), h(v)) \in R^{\mathcal{B}}$.

Aus Satz 4.39, Satz 4.40 und den bekannten Zusammenhängen zwischen semi-entscheidbaren und entscheidbaren Problemen, sowie den Korrespondenzen zwischen Allgemeingültigkeit, (Un)Erfüllbarkeit und logischer Folgerung, erhält man leicht:

Korollar 4.41

Sei σ die Signatur aus Satz 4.40. Dann gilt:

(a) Das Allgemeingültigkeitsproblem für $FO[\sigma]$ ist

Aus Satz 4.39, Satz 4.40 und den bekannten Zusammenhängen zwischen semi-entscheidbaren und entscheidbaren Problemen, sowie den Korrespondenzen zwischen Allgemeingültigkeit, (Un)Erfüllbarkeit und logischer Folgerung, erhält man leicht:

Korollar 4.41

Sei σ die Signatur aus Satz 4.40. Dann gilt:

(a) Das Allgemeingültigkeitsproblem für $FO[\sigma]$ ist semi-entscheidbar

Aus Satz 4.39, Satz 4.40 und den bekannten Zusammenhängen zwischen semi-entscheidbaren und entscheidbaren Problemen, sowie den Korrespondenzen zwischen Allgemeingültigkeit, (Un)Erfüllbarkeit und logischer Folgerung, erhält man leicht:

Korollar 4.41

Sei σ die Signatur aus Satz 4.40. Dann gilt:

(a) Das Allgemeingültigkeitsproblem für $FO[\sigma]$ ist semi-entscheidbar aber nicht entscheidbar.

Korollar 4.41

- (a) Das Allgemeingültigkeitsproblem für $FO[\sigma]$ ist semi-entscheidbar aber nicht entscheidbar.
- (b) Das Folgerungsproblem für $FO[\sigma]$ ist

Korollar 4.41

- (a) Das Allgemeingültigkeitsproblem für $FO[\sigma]$ ist semi-entscheidbar aber nicht entscheidbar.
- (b) Das Folgerungsproblem für $FO[\sigma]$ ist semi-entscheidbar

Korollar 4.41

- (a) Das Allgemeingültigkeitsproblem für $FO[\sigma]$ ist semi-entscheidbar aber nicht entscheidbar.
- (b) Das Folgerungsproblem für $FO[\sigma]$ ist semi-entscheidbar aber nicht entscheidbar.

Korollar 4.41

- (a) Das Allgemeingültigkeitsproblem für $FO[\sigma]$ ist semi-entscheidbar aber nicht entscheidbar.
- (b) Das Folgerungsproblem für $FO[\sigma]$ ist semi-entscheidbar aber nicht entscheidbar.
- (c) Das Unerfüllbarkeitsproblem für $FO[\sigma]$ ist

Korollar 4.41

- (a) Das Allgemeingültigkeitsproblem für $FO[\sigma]$ ist semi-entscheidbar aber nicht entscheidbar.
- (b) Das Folgerungsproblem für $FO[\sigma]$ ist semi-entscheidbar aber nicht entscheidbar.
- (c) Das Unerfüllbarkeitsproblem für $FO[\sigma]$ ist semi-entscheidbar

Korollar 4.41

- (a) Das Allgemeingültigkeitsproblem für $FO[\sigma]$ ist semi-entscheidbar aber nicht entscheidbar.
- (b) Das Folgerungsproblem für $FO[\sigma]$ ist semi-entscheidbar aber nicht entscheidbar.
- (c) Das Unerfüllbarkeitsproblem für FO[σ] ist semi-entscheidbar aber nicht entscheidbar.

Korollar 4.41

- (a) Das Allgemeingültigkeitsproblem für $FO[\sigma]$ ist semi-entscheidbar aber nicht entscheidbar.
- (b) Das Folgerungsproblem f
 ür FO[σ] ist semi-entscheidbar aber nicht entscheidbar.
- (c) Das Unerfüllbarkeitsproblem für FO[σ] ist semi-entscheidbar aber nicht entscheidbar.
- (d) Das Erfüllbarkeitsproblem für $FO[\sigma]$ ist

Korollar 4.41

- (a) Das Allgemeingültigkeitsproblem für $FO[\sigma]$ ist semi-entscheidbar aber nicht entscheidbar.
- (b) Das Folgerungsproblem für $FO[\sigma]$ ist semi-entscheidbar aber nicht entscheidbar.
- (c) Das Unerfüllbarkeitsproblem für FO[σ] ist semi-entscheidbar aber nicht entscheidbar.
- (d) Das Erfüllbarkeitsproblem für $FO[\sigma]$ ist nicht semi-entscheidbar.

Korollar 4.41

Sei σ die Signatur aus Satz 4.40. Dann gilt:

- (a) Das Allgemeingültigkeitsproblem für $FO[\sigma]$ ist semi-entscheidbar aber nicht entscheidbar.
- (b) Das Folgerungsproblem f
 ür FO[σ] ist semi-entscheidbar aber nicht entscheidbar.
- (c) Das Unerfüllbarkeitsproblem für FO[σ] ist semi-entscheidbar aber nicht entscheidbar.
- (d) Das Erfüllbarkeitsproblem für $FO[\sigma]$ ist nicht semi-entscheidbar.

Beweis: Übung.

Bemerkung 4.42

Man kann zeigen, dass

(1) Korollar 4.41 für jede Signatur σ gilt, die mindestens ein Relationssymbol der Stelligkeit \geqslant 2 enthält

Bemerkung 4.42

Man kann zeigen, dass

- (1) Korollar 4.41 für jede Signatur σ gilt, die mindestens ein Relationssymbol der Stelligkeit \geqslant 2 enthält
- (2) für Signaturen σ , die ausschließlich aus Konstantensymbolen und Relationssymbolen der Stelligkeit 1 bestehen, jedes der in Korollar 4.41 betrachteten Probleme entscheidbar ist.

Bemerkung 4.42

Man kann zeigen, dass

- (1) Korollar 4.41 für jede Signatur σ gilt, die mindestens ein Relationssymbol der Stelligkeit $\geqslant 2$ enthält
- (2) für Signaturen σ , die ausschließlich aus Konstantensymbolen und Relationssymbolen der Stelligkeit 1 bestehen, jedes der in Korollar 4.41 betrachteten Probleme entscheidbar ist.

(Hier ohne Beweis)

Der Satz von Herbrand

Abschnitt 4.5:

 Im letzten Abschnitt haben wir gesehen, dass es keinen Algorithmus gibt, der das Erfüllbarkeitsproblem und das Allgemeingültigkeitsproblem der Logik erster Stufe löst und stets terminiert.

- Im letzten Abschnitt haben wir gesehen, dass es keinen Algorithmus gibt, der das Erfüllbarkeitsproblem und das Allgemeingültigkeitsproblem der Logik erster Stufe löst und stets terminiert.
- Trotzdem möchte man für verschiedene Anwendungsbereiche Verfahren haben, die das Erfüllbarkeits- oder das Allgemeingültigkeitsproblem der Logik erster Stufe "so gut wie möglich" lösen.

- Im letzten Abschnitt haben wir gesehen, dass es keinen Algorithmus gibt, der das Erfüllbarkeitsproblem und das Allgemeingültigkeitsproblem der Logik erster Stufe löst und stets terminiert.
- Trotzdem möchte man für verschiedene Anwendungsbereiche Verfahren haben, die das Erfüllbarkeits- oder das Allgemeingültigkeitsproblem der Logik erster Stufe "so gut wie möglich" lösen.
- Einen Ansatz für die Entwicklung solcher, in der Praxis nutzbarer, Verfahren liefert die Herbrand-Theorie, die nach dem französischen Logiker Jacques Herbrand (1908–1931) benannt ist.

- Im letzten Abschnitt haben wir gesehen, dass es keinen Algorithmus gibt, der das Erfüllbarkeitsproblem und das Allgemeingültigkeitsproblem der Logik erster Stufe löst und stets terminiert.
- Trotzdem möchte man für verschiedene Anwendungsbereiche Verfahren haben, die das Erfüllbarkeits- oder das Allgemeingültigkeitsproblem der Logik erster Stufe "so gut wie möglich" lösen.
- Einen Ansatz für die Entwicklung solcher, in der Praxis nutzbarer, Verfahren liefert die Herbrand-Theorie, die nach dem französischen Logiker Jacques Herbrand (1908–1931) benannt ist.
- Ziel dieses Abschnitts ist, den Satz von Herbrand vorzustellen, der das Allgemeingültigkeits- bzw. das Erfüllbarkeitsproblem der Logik erster Stufe auf das entsprechende Problem der Aussagenlogik zurückführt.

ullet In diesem Abschnitt bezeichnet σ stets eine endliche oder abzählbare Signatur, die mindestens ein Konstantensymbol enthält.

- In diesem Abschnitt bezeichnet σ stets eine endliche oder abzählbare Signatur, die mindestens ein Konstantensymbol enthält.
- Die Menge aller quantorenfreien $FO[\sigma]$ -Formeln bezeichnen wir mit QF_{σ} .

- ullet In diesem Abschnitt bezeichnet σ stets eine endliche oder abzählbare Signatur, die mindestens ein Konstantensymbol enthält.
- Die Menge aller quantorenfreien $FO[\sigma]$ -Formeln bezeichnen wir mit QF_{σ} .
- Ein Grundterm über σ ist ein variablenfreier σ -Term, d.h., ein σ -Term, der keine Variable enthält.

- In diesem Abschnitt bezeichnet σ stets eine endliche oder abzählbare Signatur, die mindestens ein Konstantensymbol enthält.
- Die Menge aller quantorenfreien FO[σ]-Formeln bezeichnen wir mit QF $_{\sigma}$.
- Ein Grundterm über σ ist ein variablenfreier σ -Term, d.h., ein σ -Term, der keine Variable enthält.
 - Die Menge aller Grundterme über σ bezeichnen wir mit GT_{σ} .

- ullet In diesem Abschnitt bezeichnet σ stets eine endliche oder abzählbare Signatur, die mindestens ein Konstantensymbol enthält.
- Die Menge aller quantorenfreien FO[σ]-Formeln bezeichnen wir mit QF $_{\sigma}$.
- Ein Grundterm über σ ist ein variablenfreier σ -Term, d.h., ein σ -Term, der keine Variable enthält.
 - Die Menge aller Grundterme über σ bezeichnen wir mit GT_σ .

Beispiele:

(a) Sei $\sigma := \{ c, f/1, g/2, R/2 \}$. Grundterme über σ sind dann z.B.

- ullet In diesem Abschnitt bezeichnet σ stets eine endliche oder abzählbare Signatur, die mindestens ein Konstantensymbol enthält.
- Die Menge aller quantorenfreien FO[σ]-Formeln bezeichnen wir mit QF $_{\sigma}$.
- Ein Grundterm über σ ist ein variablenfreier σ -Term, d.h., ein σ -Term, der keine Variable enthält.
 - Die Menge aller Grundterme über σ bezeichnen wir mit GT_{σ} .

Beispiele:

- (a) Sei $\sigma := \{ c, f/1, g/2, R/2 \}$. Grundterme über σ sind dann z.B.
 - $c, f(c), g(c,c), f(f(c)), f(g(c,c)), g(c,f(c)), g(f(c),c), \dots$

- ullet In diesem Abschnitt bezeichnet σ stets eine endliche oder abzählbare Signatur, die mindestens ein Konstantensymbol enthält.
- Die Menge aller quantorenfreien FO[σ]-Formeln bezeichnen wir mit QF $_{\sigma}$.
- Ein Grundterm über σ ist ein variablenfreier σ -Term, d.h., ein σ -Term, der keine Variable enthält.

Die Menge aller Grundterme über σ bezeichnen wir mit GT_{σ} .

Beispiele:

(a) Sei $\sigma := \{c, f/1, g/2, R/2\}$. Grundterme über σ sind dann z.B.

$$c, f(c), g(c,c), f(f(c)), f(g(c,c)), g(c,f(c)), g(f(c),c), \dots$$

(b) Sei $\sigma := \{ c, R/2 \}.$

- In diesem Abschnitt bezeichnet σ stets eine endliche oder abzählbare Signatur, die mindestens ein Konstantensymbol enthält.
- Die Menge aller quantorenfreien FO[σ]-Formeln bezeichnen wir mit QF $_{\sigma}$.
- Ein Grundterm über σ ist ein variablenfreier σ -Term, d.h., ein σ -Term, der keine Variable enthält.

Die Menge aller Grundterme über σ bezeichnen wir mit GT_{σ} .

Beispiele:

(a) Sei $\sigma := \{c, f/1, g/2, R/2\}$. Grundterme über σ sind dann z.B.

$$c, f(c), g(c,c), f(f(c)), f(g(c,c)), g(c,f(c)), g(f(c),c), \dots$$

(b) Sei $\sigma := \{c, R/2\}$. Dann ist c der einzige Grundterm über σ . D.h.

$$\mathsf{GT}_{\sigma} = \{ c \}.$$

Definition 4.43

Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält. Eine σ -Herbrandstruktur ist eine σ -Struktur $\mathcal A$ mit folgenden Eigenschaften:

Definition 4.43

Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält.

Eine σ -Herbrandstruktur ist eine σ -Struktur \mathcal{A} mit folgenden Eigenschaften:

• Das Universum A von A ist genau die Menge GT_σ aller Grundterme über σ (d.h. aller variablenfreien σ -Terme).

Definition 4.43

Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält.

Eine σ -Herbrandstruktur ist eine σ -Struktur \mathcal{A} mit folgenden Eigenschaften:

- Das Universum A von A ist genau die Menge GT_σ aller Grundterme über σ (d.h. aller variablenfreien σ -Terme).
- Für jedes Konstantensymbol $c \in \sigma$ ist $c^{A} =$

Definition 4.43

Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält.

Eine σ -Herbrandstruktur ist eine σ -Struktur \mathcal{A} mit folgenden Eigenschaften:

- Das Universum A von A ist genau die Menge GT_σ aller Grundterme über σ (d.h. aller variablenfreien σ -Terme).
- Für jedes Konstantensymbol $c \in \sigma$ ist $c^{A} = c$.

Definition 4.43

Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält.

Eine σ -Herbrandstruktur ist eine σ -Struktur \mathcal{A} mit folgenden Eigenschaften:

- Das Universum A von A ist genau die Menge GT_σ aller Grundterme über σ (d.h. aller variablenfreien σ -Terme).
- Für jedes Konstantensymbol $c \in \sigma$ ist $c^{A} = c$.
- Für jedes Funktionssymbol $f \in \sigma$, für k := ar(f), und für alle variablenfreien σ -Terme $t_1, \ldots, t_k \in A$ ist

$$f^{\mathcal{A}}(t_1,\ldots,t_k) =$$

Definition 4.43

Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält.

Eine σ -Herbrandstruktur ist eine σ -Struktur \mathcal{A} mit folgenden Eigenschaften:

- Das Universum A von A ist genau die Menge GT_σ aller Grundterme über σ (d.h. aller variablenfreien σ -Terme).
- Für jedes Konstantensymbol $c \in \sigma$ ist $c^{A} = c$.
- Für jedes Funktionssymbol $f \in \sigma$, für k := ar(f), und für alle variablenfreien σ -Terme $t_1, \ldots, t_k \in A$ ist

$$f^{\mathcal{A}}(t_1,\ldots,t_k) = f(t_1,\ldots,t_k).$$

Definition 4.43

Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält.

Eine σ -Herbrandstruktur ist eine σ -Struktur \mathcal{A} mit folgenden Eigenschaften:

- Das Universum A von A ist genau die Menge GT_σ aller Grundterme über σ (d.h. aller variablenfreien σ -Terme).
- Für jedes Konstantensymbol $c \in \sigma$ ist $c^{A} = c$.
- Für jedes Funktionssymbol $f \in \sigma$, für $k := \operatorname{ar}(f)$, und für alle variablenfreien σ -Terme $t_1, \ldots, t_k \in A$ ist

$$f^{\mathcal{A}}(t_1,\ldots,t_k) = f(t_1,\ldots,t_k).$$

Beachte: Alle σ -Herbrandstrukturen haben dasselbe Universum und dieselbe Interpretation der Konstanten- und Funktionssymbole.

Definition 4.43

Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält.

Eine σ -Herbrandstruktur ist eine σ -Struktur \mathcal{A} mit folgenden Eigenschaften:

- Das Universum A von A ist genau die Menge GT_σ aller Grundterme über σ (d.h. aller variablenfreien σ -Terme).
- Für jedes Konstantensymbol $c \in \sigma$ ist $c^{A} = c$.
- Für jedes Funktionssymbol $f \in \sigma$, für $k := \operatorname{ar}(f)$, und für alle variablenfreien σ -Terme $t_1, \ldots, t_k \in A$ ist

$$f^{\mathcal{A}}(t_1,\ldots,t_k) = f(t_1,\ldots,t_k).$$

Beachte: Alle σ -Herbrandstrukturen haben dasselbe Universum und dieselbe Interpretation der Konstanten- und Funktionssymbole.

Lediglich die Interpretation der Relationssymbole kann in σ -Herbrandstrukturen frei gewählt werden.

Definition 4.43

Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält.

Eine σ -Herbrandstruktur ist eine σ -Struktur \mathcal{A} mit folgenden Eigenschaften:

- Das Universum A von A ist genau die Menge GT_σ aller Grundterme über σ (d.h. aller variablenfreien σ -Terme).
- Für jedes Konstantensymbol $c \in \sigma$ ist $c^{A} = c$.
- Für jedes Funktionssymbol $f \in \sigma$, für k := ar(f), und für alle variablenfreien σ -Terme $t_1, \ldots, t_k \in A$ ist

$$f^{\mathcal{A}}(t_1,\ldots,t_k) = f(t_1,\ldots,t_k).$$

Beachte: Alle σ -Herbrandstrukturen haben dasselbe Universum und dieselbe Interpretation der Konstanten- und Funktionssymbole.

Lediglich die Interpretation der Relationssymbole kann in σ -Herbrandstrukturen frei gewählt werden.

Zur Angabe einer konkreten σ -Herbrandstruktur $\mathcal A$ genügt es also, die Interpretation der Relationssymbole anzugeben, d.h. für jedes Relationssymbol $R \in \sigma$ die Relation $R^{\mathcal A}$ anzugeben.

Beispiel

Sei
$$\sigma := \{c, R/2\}.$$

Frage: Wie sehen σ -Herbrandstrukturen aus?

Beispiel

Sei
$$\sigma := \{ c, R/2 \}.$$

Frage: Wie sehen σ -Herbrandstrukturen aus?

Antwort: Für jede σ -Herbrandstruktur \mathcal{A} gilt:

- Universum: $A = \{c\}$
- $c^{\mathcal{A}} = c$
- $R^{\mathcal{A}} \subseteq \{c\}^2$, d.h.

$$R^{\mathcal{A}} = \emptyset$$
 oder $R^{\mathcal{A}} = \{(c,c)\}.$

Somit gibt es genau 2 verschiedene σ -Herbrandstrukturen.

Bemerkung 4.44

Sei \mathcal{A} eine σ -Herbrandstruktur.

Man sieht leicht, dass Folgendes gilt:

• Für jeden variablenfreien σ -Term t (d.h. für jedes $t \in \mathsf{GT}_{\sigma} = A$) gilt:

$$[t]^{A} =$$

Bemerkung 4.44

Sei \mathcal{A} eine σ -Herbrandstruktur.

Man sieht leicht, dass Folgendes gilt:

• Für jeden variablenfreien σ -Term t (d.h. für jedes $t \in \mathsf{GT}_{\sigma} = A$) gilt:

$$\llbracket t \rrbracket^{\mathcal{A}} = t.$$

Bemerkung 4.44

Sei A eine σ -Herbrandstruktur.

Man sieht leicht, dass Folgendes gilt:

• Für jeden variablenfreien σ -Term t (d.h. für jedes $t \in \mathsf{GT}_{\sigma} = A$) gilt:

$$\llbracket t \rrbracket^{\mathcal{A}} = t.$$

• Für jede quantorenfreie FO[σ]-Formel ψ gilt: Ist $var(\psi) \subseteq \{x_1, \dots, x_n\}$ und sind $t_1, \dots, t_n \in \mathsf{GT}_{\sigma}$, so gilt:

$$\mathcal{A} \models \psi[t_1,\ldots,t_n] \iff \mathcal{A} \models \psi \frac{t_1,\ldots,t_n}{x_1,\ldots,x_n}$$

Dabei ist $\psi \frac{t_1, \dots, t_n}{x_1, \dots, x_n}$ die Formel, die aus ψ entsteht, indem für jedes $i \in [n]$ jedes Vorkommen von x_i ersetzt wird durch den Grundterm t_i .

Definition 4.45

(a) Ein Herbrand-Modell eines FO[σ]-Satzes φ ist eine σ -Herbrandstruktur, die φ erfüllt.

Definition 4.45

- (a) Ein Herbrand-Modell eines FO[σ]-Satzes φ ist eine σ -Herbrandstruktur, die φ erfüllt.
- (b) Eine $FO[\sigma]$ -Formel φ heißt gleichheitsfrei, falls das Symbol "=" nicht in φ vorkommt.

Definition 4.45

- (a) Ein Herbrand-Modell eines FO[σ]-Satzes φ ist eine σ -Herbrandstruktur, die φ erfüllt.
- (b) Eine FO[σ]-Formel φ heißt gleichheitsfrei, falls das Symbol "=" nicht in φ vorkommt.
- (c) Eine FO[σ]-Formel ist in Skolemform (auch: Skolem-Normalform), falls sie von der Form

$$\forall x_1 \cdots \forall x_n \ \psi$$

ist, wobei gilt: $n \ge 0$, x_1, \ldots, x_n sind paarweise verschiedene Variablen, und ψ ist eine quantorenfreie FO[σ]-Formel.

Definition 4.45

- (a) Ein Herbrand-Modell eines FO[σ]-Satzes φ ist eine σ -Herbrandstruktur, die φ erfüllt.
- (b) Eine FO[σ]-Formel φ heißt gleichheitsfrei, falls das Symbol "=" nicht in φ vorkommt.
- (c) Eine FO[σ]-Formel ist in Skolemform (auch: Skolem-Normalform), falls sie von der Form

$$\forall x_1 \cdots \forall x_n \ \psi$$

ist, wobei gilt: $n \ge 0$, x_1, \ldots, x_n sind paarweise verschiedene Variablen, und ψ ist eine quantorenfreie FO[σ]-Formel.

Satz 4.46

Sei σ eine Signatur, die mindestens ein Konstantensymbol besitzt.

Für jeden gleichheitsfreien $FO[\sigma]$ -Satz φ in Skolemform gilt:

$$\varphi$$
 ist erfüllbar

 φ besitzt ein Herbrand-Modell.

Die Herbrand-Expansion eines Satzes in Skolemform

Definition 4.47

Sei φ ein gleichheitsfreier FO[σ]-Satz in Skolemform, d.h. φ ist von der Form $\forall x_1 \cdots \forall x_n \ \psi$, wobei ψ quantorenfrei und gleichheitsfrei ist. Die Herbrand-Expansion von φ ist die Formelmenge

$$\mathsf{HE}(\varphi) := \left\{ \begin{array}{ll} \psi \, rac{t_1, \ldots, t_n}{\mathsf{x}_1, \ldots, \mathsf{x}_n} & : & t_1, \ldots, t_n \in \mathsf{GT}_\sigma \end{array} \right\}$$

Die Herbrand-Expansion eines Satzes in Skolemform

Definition 4.47

Sei φ ein gleichheitsfreier FO[σ]-Satz in Skolemform, d.h. φ ist von der Form $\forall x_1 \cdots \forall x_n \ \psi$, wobei ψ quantorenfrei und gleichheitsfrei ist. Die Herbrand-Expansion von φ ist die Formelmenge

$$\mathsf{HE}(arphi) \hspace{3mm} := \hspace{3mm} \left\{ \hspace{3mm} \psi \hspace{3mm} rac{t_1, \ldots, t_n}{x_1, \ldots, x_n} \hspace{3mm} : \hspace{3mm} t_1, \ldots, t_n \in \mathsf{GT}_\sigma \hspace{3mm}
ight\}$$

D.h.: Jede Formel in $HE(\varphi)$ entsteht, indem in der quantorenfreien Formel ψ jede Variable x_i ersetzt wird durch einen Grundterm t_i .

Die Herbrand-Expansion eines Satzes in Skolemform

Definition 4.47

Sei φ ein gleichheitsfreier FO[σ]-Satz in Skolemform, d.h. φ ist von der Form $\forall x_1 \cdots \forall x_n \ \psi$, wobei ψ quantorenfrei und gleichheitsfrei ist. Die Herbrand-Expansion von φ ist die Formelmenge

$$\mathsf{HE}(arphi) := \left\{ \begin{array}{ll} \psi_{rac{t_1,\ldots,t_n}{x_1,\ldots,x_n}} : t_1,\ldots,t_n \in \mathsf{GT}_\sigma \end{array}
ight\}$$

D.h.: Jede Formel in $HE(\varphi)$ entsteht, indem in der quantorenfreien Formel ψ jede Variable x_i ersetzt wird durch einen Grundterm t_i .

Beispiel 4.48

Sei $\sigma = \{c, f/1, g/2, R/3\}$ und sei $\varphi := \forall x \forall y \forall z R(x, f(y), g(z, x))$.

Dann gehören z.B. die folgenden Formeln zur Herbrand-Expansion $HE(\varphi)$:

- R(c, f(c), g(c, c)) (dies erhält man, indem jede der Variablen x, y, z durch den Grundterm c ersetzt wird)
- R(f(c), f(c), g(c, f(c))) (dies erhält man, indem x durch den Grundterm f(c) und jede der Variablen y, z durch den Grundterm c ersetzt wird)
- R(g(c,c),f(f(c)),g(c,g(c,c))) (dies erhält man, indem Variable x durch den Grundterm g(c,c), Variable y durch den Grundterm f(c) und Variable z durch den Grundterm c ersetzt wird)

Für jeden gleichheitsfreien $\mathsf{FO}[\sigma] ext{-Satz }\varphi$ in Skolemform gilt:

Jede Formel $\xi \in HE(\varphi)$ ist quantorenfrei, gleichheitsfrei und variablenfrei,

Für jeden gleichheitsfreien $FO[\sigma]$ -Satz φ in Skolemform gilt:

Jede Formel $\xi \in HE(\varphi)$ ist quantorenfrei, gleichheitsfrei und variablenfrei, und jede atomare Subformel von ξ ist von der Form $R(t_1, \ldots, t_k)$, wobei $R \in \sigma$, $k = \operatorname{ar}(R)$ und $t_1, \ldots, t_k \in \operatorname{GT}_{\sigma}$.

Für jeden gleichheitsfreien FO[σ]-Satz φ in Skolemform gilt:

Jede Formel $\xi \in HE(\varphi)$ ist quantorenfrei, gleichheitsfrei und variablenfrei, und jede atomare Subformel von ξ ist von der Form $R(t_1,\ldots,t_k)$, wobei $R \in \sigma$, $k = \operatorname{ar}(R)$ und $t_1,\ldots,t_k \in \operatorname{GT}_{\sigma}$.

Für jede solche atomare Formel stellen wir ein Aussagensymbol $X_{R(t_1,...,t_k)} \in AS$ bereit.

Für jeden gleichheitsfreien FO[σ]-Satz φ in Skolemform gilt:

Jede Formel $\xi \in HE(\varphi)$ ist quantorenfrei, gleichheitsfrei und variablenfrei, und jede atomare Subformel von ξ ist von der Form $R(t_1, \ldots, t_k)$, wobei $R \in \sigma$, k = ar(R) und $t_1, \ldots, t_k \in GT_{\sigma}$.

Für jede solche atomare Formel stellen wir ein Aussagensymbol $X_{R(t_1,...,t_k)} \in AS$ bereit.

Für jedes $\xi \in HE(\varphi)$ sei $al(\xi)$ die aussagenlogische Formel, die aus ξ entsteht, indem jede atomare Subformel der Form $R(t_1,\ldots,t_k)$ ersetzt wird durch das Aussagensymbol $X_{R(t_1,\ldots,t_k)}$.

Für jeden gleichheitsfreien $FO[\sigma]$ -Satz φ in Skolemform gilt:

Jede Formel $\xi \in HE(\varphi)$ ist quantorenfrei, gleichheitsfrei und variablenfrei, und jede atomare Subformel von ξ ist von der Form $R(t_1,\ldots,t_k)$, wobei $R \in \sigma$, $k = \operatorname{ar}(R)$ und $t_1,\ldots,t_k \in \operatorname{GT}_{\sigma}$.

Für jede solche atomare Formel stellen wir ein Aussagensymbol $X_{R(t_1,...,t_k)} \in AS$ bereit.

Für jedes $\xi \in HE(\varphi)$ sei $al(\xi)$ die aussagenlogische Formel, die aus ξ entsteht, indem jede atomare Subformel der Form $R(t_1,\ldots,t_k)$ ersetzt wird durch das Aussagensymbol $X_{R(t_1,\ldots,t_k)}$.

Die aussagenlogische Version der Herbrand-Expansion von φ ist die Menge

$$AHE(\varphi) := \{ al(\xi) : \xi \in HE(\varphi) \}.$$

Satz 4.49 (Satz von Gödel-Herbrand-Skolem)

Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält.

Für jeden gleichheitsfreien $FO[\sigma]$ -Satz φ in Skolemform gilt:

 φ ist erfüllbar \iff die aussagenlogische Formelmenge $\mathsf{AHE}(\varphi)$ ist erfüllbar.

Satz 4.49 (Satz von Gödel-Herbrand-Skolem)

Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält.

Für jeden gleichheitsfreien FO $[\sigma]$ -Satz φ in Skolemform gilt: φ ist erfüllbar \iff die aussagenlogische Formelmenge AHE (φ) ist erfüllbar.

In Verbindung mit dem Endlichkeitssatz der Aussagenlogik erhalten wir:

Satz 4.50 (Satz von Herbrand)

Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält.

Satz 4.49 (Satz von Gödel-Herbrand-Skolem)

Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält.

```
Für jeden gleichheitsfreien \mathsf{FO}[\sigma]-Satz \varphi in Skolemform gilt: \varphi ist erfüllbar \iff die aussagenlogische Formelmenge \mathsf{AHE}(\varphi) ist erfüllbar.
```

In Verbindung mit dem Endlichkeitssatz der Aussagenlogik erhalten wir:

Satz 4.50 (Satz von Herbrand)

Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält. Sei ψ eine gleichheitsfreie und quantorenfreie FO[σ]-Formel und sei $\{x_1, \ldots, x_n\} = \text{frei}(\psi)$.

Satz 4.49 (Satz von Gödel-Herbrand-Skolem)

Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält. Für jeden gleichheitsfreien FO[σ]-Satz φ in Skolemform gilt: φ ist erfüllbar \iff die aussagenlogische Formelmenge AHE(φ) ist erfüllbar.

In Verbindung mit dem Endlichkeitssatz der Aussagenlogik erhalten wir:

Satz 4.50 (Satz von Herbrand)

Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält. Sei ψ eine gleichheitsfreie und quantorenfreie FO[σ]-Formel und sei $\{x_1,\ldots,x_n\}=$ frei (ψ) . Dann gilt für die FO[σ]-Sätze $\varphi:=\forall x_1\cdots \forall x_n \psi$

Satz 4.49 (Satz von Gödel-Herbrand-Skolem)

```
Sei \sigma eine Signatur, die mindestens ein Konstantensymbol enthält. Für jeden gleichheitsfreien FO[\sigma]-Satz \varphi in Skolemform gilt: \varphi ist erfüllbar \iff die aussagenlogische Formelmenge AHE(\varphi) ist erfüllbar.
```

In Verbindung mit dem Endlichkeitssatz der Aussagenlogik erhalten wir:

Satz 4.50 (Satz von Herbrand)

```
Sei \sigma eine Signatur, die mindestens ein Konstantensymbol enthält. Sei \psi eine gleichheitsfreie und quantorenfreie FO[\sigma]-Formel und sei \{x_1,\ldots,x_n\}= frei(\psi). Dann gilt für die FO[\sigma]-Sätze \varphi:=\forall x_1\cdots \forall x_n \psi und \varphi':=\exists x_1\cdots \exists x_n \psi:
```

Satz 4.49 (Satz von Gödel-Herbrand-Skolem)

Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält. Für jeden gleichheitsfreien FO[σ]-Satz φ in Skolemform gilt: φ ist erfüllbar \iff die aussagenlogische Formelmenge AHE(φ) ist erfüllbar.

In Verbindung mit dem Endlichkeitssatz der Aussagenlogik erhalten wir:

Satz 4.50 (Satz von Herbrand)

Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält. Sei ψ eine gleichheitsfreie und quantorenfreie $FO[\sigma]$ -Formel und sei $\{x_1,\ldots,x_n\}= frei(\psi)$. Dann gilt für die $FO[\sigma]$ -Sätze $\varphi:= \forall x_1\cdots \forall x_n \psi$ und $\varphi':= \exists x_1\cdots \exists x_n \psi$:

(a) φ ist erfüllbar \iff jede endliche Teilmenge von AHE (φ) ist erfüllbar.

Satz 4.49 (Satz von Gödel-Herbrand-Skolem)

```
Sei \sigma eine Signatur, die mindestens ein Konstantensymbol enthält. Für jeden gleichheitsfreien FO[\sigma]-Satz \varphi in Skolemform gilt: \varphi ist erfüllbar \iff die aussagenlogische Formelmenge AHE(\varphi) ist erfüllbar.
```

In Verbindung mit dem Endlichkeitssatz der Aussagenlogik erhalten wir:

Satz 4.50 (Satz von Herbrand)

```
Sei \sigma eine Signatur, die mindestens ein Konstantensymbol enthält. Sei \psi eine gleichheitsfreie und quantorenfreie FO[\sigma]-Formel und sei \{x_1,\ldots,x_n\}= frei(\psi). Dann gilt für die FO[\sigma]-Sätze \varphi:=\forall x_1\cdots \forall x_n \psi und \varphi':=\exists x_1\cdots \exists x_n \psi:
```

- (a) φ ist erfüllbar \iff jede endliche Teilmenge von AHE (φ) ist erfüllbar.
- (b) φ ist unerfüllbar \iff es gibt eine endliche Teilmenge von AHE(φ), die unerfüllbar ist.

Satz 4.49 (Satz von Gödel-Herbrand-Skolem)

```
Sei \sigma eine Signatur, die mindestens ein Konstantensymbol enthält. Für jeden gleichheitsfreien FO[\sigma]-Satz \varphi in Skolemform gilt: \varphi ist erfüllbar \iff die aussagenlogische Formelmenge AHE(\varphi) ist erfüllbar.
```

In Verbindung mit dem Endlichkeitssatz der Aussagenlogik erhalten wir:

Satz 4.50 (Satz von Herbrand)

```
Sei \sigma eine Signatur, die mindestens ein Konstantensymbol enthält. Sei \psi eine gleichheitsfreie und quantorenfreie FO[\sigma]-Formel und sei \{x_1,\ldots,x_n\}= frei(\psi). Dann gilt für die FO[\sigma]-Sätze \varphi:=\forall x_1\cdots \forall x_n \psi und \varphi':=\exists x_1\cdots \exists x_n \psi:
```

- (a) φ ist erfüllbar \iff jede endliche Teilmenge von AHE (φ) ist erfüllbar.
- (b) φ ist unerfüllbar \iff es gibt eine endliche Teilmenge von AHE(φ), die unerfüllbar ist.
- (c) φ' ist allgemeingültig \iff

Satz 4.49 (Satz von Gödel-Herbrand-Skolem)

Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält. Für jeden gleichheitsfreien FO[σ]-Satz φ in Skolemform gilt: φ ist erfüllbar \iff die aussagenlogische Formelmenge AHE(φ) ist erfüllbar.

In Verbindung mit dem Endlichkeitssatz der Aussagenlogik erhalten wir:

Satz 4.50 (Satz von Herbrand)

Sei σ eine Signatur, die mindestens ein Konstantensymbol enthält. Sei ψ eine gleichheitsfreie und quantorenfreie $FO[\sigma]$ -Formel und sei $\{x_1,\ldots,x_n\}= frei(\psi)$. Dann gilt für die $FO[\sigma]$ -Sätze $\varphi:=\forall x_1\cdots \forall x_n \psi$ und $\varphi':=\exists x_1\cdots \exists x_n \psi$:

- (a) φ ist erfüllbar \iff jede endliche Teilmenge von AHE (φ) ist erfüllbar.
- (b) φ ist unerfüllbar \iff es gibt eine endliche Teilmenge von AHE(φ), die unerfüllbar ist.
- (c) φ' ist allgemeingültig \iff es gibt eine Zahl $m \in \mathbb{N}$ und Grundterme $t_{i,1}, \ldots, t_{i,n}$ für alle $i \in [m]$, so dass die folgende Formel allgemeingültig ist:

$$\bigvee_{i=1}^{m} \psi \frac{t_{i,1},\dots,t_{i,n}}{x_1,\dots,x_n}$$

Um nachzuweisen, dass ein gleichheitsfreier FO $[\sigma]$ -Satz φ in Skolemform unerfüllbar ist, kann man auf Grund des Satzes von Herbrand wie folgt vorgehen:

Um nachzuweisen, dass ein gleichheitsfreier FO $[\sigma]$ -Satz φ in Skolemform unerfüllbar ist, kann man auf Grund des Satzes von Herbrand wie folgt vorgehen:

Für $i = 1, 2, 3, \dots$ tue Folgendes:

Um nachzuweisen, dass ein gleichheitsfreier FO $[\sigma]$ -Satz φ in Skolemform unerfüllbar ist, kann man auf Grund des Satzes von Herbrand wie folgt vorgehen:

Für $i = 1, 2, 3, \dots$ tue Folgendes:

(1) Sei ξ_i die *i*-te Formel in AHE(φ)

Um nachzuweisen, dass ein gleichheitsfreier FO $[\sigma]$ -Satz φ in Skolemform unerfüllbar ist, kann man auf Grund des Satzes von Herbrand wie folgt vorgehen:

Für $i = 1, 2, 3, \dots$ tue Folgendes:

- (1) Sei ξ_i die *i*-te Formel in AHE(φ)
- (2) Teste, ob die aussagenlogische Formel $(\xi_1 \wedge \cdots \wedge \xi_i)$ unerfüllbar ist.

Um nachzuweisen, dass ein gleichheitsfreier FO $[\sigma]$ -Satz φ in Skolemform unerfüllbar ist, kann man auf Grund des Satzes von Herbrand wie folgt vorgehen:

Für $i = 1, 2, 3, \dots$ tue Folgendes:

- (1) Sei ξ_i die *i*-te Formel in AHE(φ)
- (2) Teste, ob die aussagenlogische Formel $(\xi_1 \wedge \cdots \wedge \xi_i)$ unerfüllbar ist.
- (3) Falls ja, halte an mit Ausgabe " φ ist unerfüllbar"

Um nachzuweisen, dass ein gleichheitsfreier FO[σ]-Satz φ in Skolemform unerfüllbar ist, kann man auf Grund des Satzes von Herbrand wie folgt vorgehen:

Für $i = 1, 2, 3, \dots$ tue Folgendes:

- (1) Sei ξ_i die *i*-te Formel in AHE(φ)
- (2) Teste, ob die aussagenlogische Formel $(\xi_1 \wedge \cdots \wedge \xi_i)$ unerfüllbar ist.
- (3) Falls ja, halte an mit Ausgabe " φ ist unerfüllbar"

Man sieht leicht, dass dies ein Semi-Entscheidungsverfahren ist, das eine gegebene Formel φ auf Unerfüllbarkeit testet.

Durch die Einschränkung auf gleichheitsfreie $FO[\sigma]$ -Sätze in Skolemform scheint dieses Verfahren auf den ersten Blick nur sehr eingeschränkt anwendbar zu sein.

Um nachzuweisen, dass ein gleichheitsfreier FO[σ]-Satz φ in Skolemform unerfüllbar ist, kann man auf Grund des Satzes von Herbrand wie folgt vorgehen:

Für $i = 1, 2, 3, \dots$ tue Folgendes:

- (1) Sei ξ_i die *i*-te Formel in AHE(φ)
- (2) Teste, ob die aussagenlogische Formel $(\xi_1 \wedge \cdots \wedge \xi_i)$ unerfüllbar ist.
- (3) Falls ja, halte an mit Ausgabe " φ ist unerfüllbar"

Man sieht leicht, dass dies ein Semi-Entscheidungsverfahren ist, das eine gegebene Formel φ auf Unerfüllbarkeit testet.

Durch die Einschränkung auf gleichheitsfreie $FO[\sigma]$ -Sätze in Skolemform scheint dieses Verfahren auf den ersten Blick nur sehr eingeschränkt anwendbar zu sein.

Im Folgenden zeigen wir jedoch, dass jede FO $[\sigma]$ -Formel in eine zu ihr erfüllbarkeitsäquivalente Formel der richtigen Form transformiert werden kann.

Seien σ_1, σ_2 Signaturen und φ_i eine $\mathsf{FO}[\sigma_i]$ -Formel, für jedes $i \in \{1,2\}$. Die Formel φ_2 heißt erfüllbarkeitsäquivalent zu φ_1 , falls gilt:

 φ_2 ist erfüllbar $\iff \varphi_1$ ist erfüllbar.

Seien σ_1, σ_2 Signaturen und φ_i eine $\mathsf{FO}[\sigma_i]$ -Formel, für jedes $i \in \{1,2\}$. Die Formel φ_2 heißt erfüllbarkeitsäquivalent zu φ_1 , falls gilt:

 φ_2 ist erfüllbar \iff φ_1 ist erfüllbar.

Satz 4.52 (Skolemisierung)

Zu jeder Signatur σ gibt es eine Signatur $\hat{\sigma}$, so dass jede $\mathsf{FO}[\sigma]$ -Formel φ in einen zu φ erfüllbarkeitsäquivalenten gleichheitsfreien $\mathsf{FO}[\hat{\sigma}]$ -Satz $\hat{\varphi}$ in Skolemform transformiert werden kann.

Seien σ_1, σ_2 Signaturen und φ_i eine $\mathsf{FO}[\sigma_i]$ -Formel, für jedes $i \in \{1,2\}$. Die Formel φ_2 heißt erfüllbarkeitsäquivalent zu φ_1 , falls gilt:

 φ_2 ist erfüllbar \iff φ_1 ist erfüllbar.

Satz 4.52 (Skolemisierung)

Zu jeder Signatur σ gibt es eine Signatur $\hat{\sigma}$, so dass jede $\mathsf{FO}[\sigma]$ -Formel φ in einen zu φ erfüllbarkeitsäquivalenten gleichheitsfreien $\mathsf{FO}[\hat{\sigma}]$ -Satz $\hat{\varphi}$ in Skolemform transformiert werden kann.

Beispiel 4.53

Die Formel $\forall x \exists y \forall z \exists u \ R(x, y, z, u)$ ist erfüllbarkeitsäquivalent zum folgenden gleichheitsfreien Satz in Skolemform:

Seien σ_1, σ_2 Signaturen und φ_i eine $\mathsf{FO}[\sigma_i]$ -Formel, für jedes $i \in \{1,2\}$. Die Formel φ_2 heißt erfüllbarkeitsäquivalent zu φ_1 , falls gilt:

 φ_2 ist erfüllbar \iff φ_1 ist erfüllbar.

Satz 4.52 (Skolemisierung)

Zu jeder Signatur σ gibt es eine Signatur $\hat{\sigma}$, so dass jede $\mathsf{FO}[\sigma]$ -Formel φ in einen zu φ erfüllbarkeitsäquivalenten gleichheitsfreien $\mathsf{FO}[\hat{\sigma}]$ -Satz $\hat{\varphi}$ in Skolemform transformiert werden kann.

Beispiel 4.53

Die Formel $\forall x \exists y \forall z \exists u \ R(x, y, z, u)$ ist erfüllbarkeitsäquivalent zum folgenden gleichheitsfreien Satz in Skolemform:

$$\forall x \forall z \ R(x, f(x), z, g(x, z))$$

Abschnitt 4.6:

Automatische Theorembeweiser

Seien φ und ψ zwei FO[σ]-Formeln.

Ziel: Automatischer Beweis, dass $\varphi \models \psi$ gilt.

Seien φ und ψ zwei FO[σ]-Formeln.

Ziel: Automatischer Beweis, dass $\varphi \models \psi$ gilt.

Dazu reicht es, zu zeigen, dass die Formel $(\varphi \land \neg \psi)$ unerfüllbar ist.

Seien φ und ψ zwei FO[σ]-Formeln.

Ziel: Automatischer Beweis, dass $\varphi \models \psi$ gilt.

Dazu reicht es, zu zeigen, dass die Formel $(\varphi \land \neg \psi)$ unerfüllbar ist.

Verfahren:

1. Erzeuge einen zu $(\varphi \land \neg \psi)$ erfüllbarkeitsäquivalenten gleichheitsfreien FO[$\hat{\sigma}$]-Satz χ in Skolemform (über der erweiterten Signatur $\hat{\sigma}$). Nutze dazu das im Beweis von Satz 4.52 vorgestellte Verfahren.

Seien φ und ψ zwei FO[σ]-Formeln.

Ziel: Automatischer Beweis, dass $\varphi \models \psi$ gilt.

Dazu reicht es, zu zeigen, dass die Formel $(\varphi \land \neg \psi)$ unerfüllbar ist.

Verfahren:

- 1. Erzeuge einen zu $(\varphi \land \neg \psi)$ erfüllbarkeitsäquivalenten gleichheitsfreien FO[$\hat{\sigma}$]-Satz χ in Skolemform (über der erweiterten Signatur $\hat{\sigma}$). Nutze dazu das im Beweis von Satz 4.52 vorgestellte Verfahren.
- 2. Verwende das auf Folie 359 beschriebene Semi-Entscheidungsverfahren, um zu herauszufinden, ob χ unerfüllbar ist.

Sei
$$\sigma:=\{R/1,c,f/1\},$$

$$\varphi:=R(c) \wedge \forall x \exists y ((R(x) \rightarrow R(f(f(y)))) \vee R(f(x)))$$

$$\psi:=\exists x R(f(f(x))).$$
 Dann ist $(\varphi \wedge \neg \psi)=$

Sei
$$\sigma := \{R/1, c, f/1\},$$

$$\varphi := R(c) \land \forall x \exists y ((R(x) \to R(f(f(y)))) \lor R(f(x)))$$

$$\psi := \exists x R(f(f(x))).$$
 Dann ist $(\varphi \land \neg \psi) =$
$$R(c) \land \forall x \exists y ((R(x) \to R(f(f(y)))) \lor R(f(x))) \land \neg \exists x R(f(f(x)))$$

ein gleichheitsfreier Satz.

Sei
$$\sigma := \{R/1, c, f/1\},$$

$$\varphi := R(c) \land \forall x \exists y ((R(x) \to R(f(f(y)))) \lor R(f(x)))$$

$$\psi := \exists x R(f(f(x))).$$
 Dann ist $(\varphi \land \neg \psi) =$

ein gleichheitsfreier Satz. Eine Umformung in Pränex-Normalform liefert den dazu äquivalenten Satz

 $R(c) \land \forall x \exists y ((R(x) \rightarrow R(f(f(y)))) \lor R(f(x))) \land \neg \exists x R(f(f(x)))$

Sei
$$\sigma := \{R/1, c, f/1\},$$

$$\varphi := R(c) \land \forall x \exists y ((R(x) \to R(f(f(y)))) \lor R(f(x)))$$

$$\psi := \exists x R(f(f(x))).$$

Dann ist $(\varphi \land \neg \psi) =$

$$R(c) \land \forall x \exists y ((R(x) \rightarrow R(f(f(y)))) \lor R(f(x))) \land \neg \exists x R(f(f(x)))$$

ein gleichheitsfreier Satz. Eine Umformung in Pränex-Normalform liefert den dazu äquivalenten Satz

$$\forall x \exists y \ \Big(\ R(c) \ \land \ \big(\ \neg R(x) \ \lor \ R(f(f(y))) \ \lor \ R(f(x)) \ \Big) \ \land \ \neg R(f(f(x))) \ \Big).$$

Sei
$$\sigma := \{R/1, c, f/1\},$$

$$\varphi := R(c) \land \forall x \exists y ((R(x) \to R(f(f(y)))) \lor R(f(x)))$$

$$\psi := \exists x R(f(f(x))).$$

Dann ist $(\varphi \land \neg \psi) =$

$$R(c) \land \forall x \exists y ((R(x) \rightarrow R(f(f(y)))) \lor R(f(x))) \land \neg \exists x R(f(f(x)))$$

ein gleichheitsfreier Satz. Eine Umformung in Pränex-Normalform liefert den dazu äquivalenten Satz

$$\forall x \exists y \ \Big(\ R(c) \ \land \ \big(\ \neg R(x) \ \lor \ R(f(f(y))) \ \lor \ R(f(x)) \ \big) \ \land \ \neg R(f(f(x))) \ \Big).$$

Wir erweitern die Signatur um ein 1-stelliges Funktionssymbol g und erhalten den dazu erfüllbarkeitsäquivalenten gleichheitsfreien Satz in Skolemform $\chi=$

Sei
$$\sigma := \{R/1, c, f/1\},\$$

$$\varphi := R(c) \land \forall x \exists y ((R(x) \to R(f(f(y)))) \lor R(f(x)))$$

$$\psi := \exists x R(f(f(x))).$$

Dann ist $(\varphi \land \neg \psi) =$

$$R(c) \land \forall x \exists y ((R(x) \rightarrow R(f(f(y)))) \lor R(f(x))) \land \neg \exists x R(f(f(x)))$$

ein gleichheitsfreier Satz. Eine Umformung in Pränex-Normalform liefert den dazu äquivalenten Satz

$$\forall x \exists y \ \Big(\ R(c) \ \land \ \big(\ \neg R(x) \ \lor \ R(f(f(y))) \ \lor \ R(f(x)) \ \big) \ \land \ \neg R(f(f(x))) \ \Big).$$

Wir erweitern die Signatur um ein 1-stelliges Funktionssymbol g und erhalten den dazu erfüllbarkeitsäquivalenten gleichheitsfreien Satz in Skolemform $\chi=$

$$\forall x \ (R(c) \land (\neg R(x) \lor R(f(f(g(x)))) \lor R(f(x))) \land \neg R(f(f(x))))$$

über der Signatur $\hat{\sigma} = \{R, c, f, g\}.$

$$\chi = \forall x \left(R(c) \land \left(\neg R(x) \lor R(f(f(g(x)))) \lor R(f(x)) \right) \land \neg R(f(f(x))) \right).$$

$$\xi_t := X_{R(c)} \wedge \left(\neg X_{R(t)} \vee X_{R(f(f(g(t))))} \vee X_{R(f(t))} \right) \wedge \neg X_{R(f(f(t)))}.$$

$$\chi = \forall x \ (R(c) \land (\neg R(x) \lor R(f(f(g(x)))) \lor R(f(x))) \land \neg R(f(f(x)))).$$

$$\xi_{t} := X_{R(c)} \wedge \left(\neg X_{R(t)} \vee X_{R(f(f(g(t))))} \vee X_{R(f(t))} \right) \wedge \neg X_{R(f(f(t)))}.$$

Wir zählen die Grundterme in $\mathsf{GT}_{\hat{\sigma}}$ in der folgenden Reihenfolge auf

$$t_1 = c$$
, $t_2 = f(c)$, $t_3 = g(c)$, $t_4 = f(f(c))$, $t_5 = g(f(c))$, ...

und zählen die Formeln in $AHE(\chi)$ in derselben Reihenfolge auf, also

$$\xi_1=\xi_{t_1},$$

$$\chi = \forall x \ (R(c) \land (\neg R(x) \lor R(f(f(g(x)))) \lor R(f(x))) \land \neg R(f(f(x)))).$$

$$\xi_t := X_{R(c)} \wedge \left(\neg X_{R(t)} \vee X_{R(f(f(g(t))))} \vee X_{R(f(t))} \right) \wedge \neg X_{R(f(f(t)))}.$$

Wir zählen die Grundterme in $\mathsf{GT}_{\hat{\sigma}}$ in der folgenden Reihenfolge auf

$$t_1 = c$$
, $t_2 = f(c)$, $t_3 = g(c)$, $t_4 = f(f(c))$, $t_5 = g(f(c))$, ...

und zählen die Formeln in AHE (χ) in derselben Reihenfolge auf, also

$$\xi_1 = \xi_{t_1}, \quad \xi_2 = \xi_{t_2},$$

$$\chi = \forall x \left(R(c) \land \left(\neg R(x) \lor R(f(f(g(x)))) \lor R(f(x)) \right) \land \neg R(f(f(x))) \right).$$

$$\xi_{t} := X_{R(c)} \wedge \left(\neg X_{R(t)} \vee X_{R(f(f(g(t))))} \vee X_{R(f(t))} \right) \wedge \neg X_{R(f(f(t)))}.$$

Wir zählen die Grundterme in $\mathsf{GT}_{\hat{\sigma}}$ in der folgenden Reihenfolge auf

$$t_1 = c$$
, $t_2 = f(c)$, $t_3 = g(c)$, $t_4 = f(f(c))$, $t_5 = g(f(c))$, ...

und zählen die Formeln in AHE (χ) in derselben Reihenfolge auf, also

$$\xi_1 = \xi_{t_1}, \quad \xi_2 = \xi_{t_2}, \quad \xi_3 = \xi_{t_3}, \quad \dots$$

$$\chi = \forall x \left(R(c) \land \left(\neg R(x) \lor R(f(f(g(x)))) \lor R(f(x)) \right) \land \neg R(f(f(x))) \right).$$

$$\xi_t := X_{R(c)} \wedge \left(\neg X_{R(t)} \vee X_{R(f(f(g(t))))} \vee X_{R(f(t))} \right) \wedge \neg X_{R(f(f(t)))}.$$

Wir zählen die Grundterme in $GT_{\hat{\sigma}}$ in der folgenden Reihenfolge auf

$$t_1 = c$$
, $t_2 = f(c)$, $t_3 = g(c)$, $t_4 = f(f(c))$, $t_5 = g(f(c))$, ...

und zählen die Formeln in AHE (χ) in derselben Reihenfolge auf, also

$$\xi_1 = \xi_{t_1}, \quad \xi_2 = \xi_{t_2}, \quad \xi_3 = \xi_{t_3}, \quad \dots$$

Bei dem auf Folie 359 beschriebenen Verfahren wird dann beispielsweise im Schleifendurchlauf für i=5 getestet,

$$\chi = \forall x \left(R(c) \land \left(\neg R(x) \lor R(f(f(g(x)))) \lor R(f(x)) \right) \land \neg R(f(f(x))) \right).$$

$$\xi_{\mathsf{t}} := X_{R(c)} \wedge \left(\neg X_{R(t)} \vee X_{R(f(f(g(t))))} \vee X_{R(f(t))} \right) \wedge \neg X_{R(f(f(t)))}.$$

Wir zählen die Grundterme in $\mathsf{GT}_{\hat{\sigma}}$ in der folgenden Reihenfolge auf

$$t_1 = c$$
, $t_2 = f(c)$, $t_3 = g(c)$, $t_4 = f(f(c))$, $t_5 = g(f(c))$, ...

und zählen die Formeln in $AHE(\chi)$ in derselben Reihenfolge auf, also

$$\xi_1 = \xi_{t_1}, \quad \xi_2 = \xi_{t_2}, \quad \xi_3 = \xi_{t_3}, \quad \dots$$

Bei dem auf Folie 359 beschriebenen Verfahren wird dann beispielsweise im Schleifendurchlauf für i=5 getestet, ob die aussagenlogische Formel

$$(\xi_1 \wedge \xi_2 \wedge \xi_3 \wedge \xi_4 \wedge \xi_5)$$

unerfüllbar ist.

$$\chi = \forall x \left(R(c) \land \left(\neg R(x) \lor R(f(f(g(x)))) \lor R(f(x)) \right) \land \neg R(f(f(x))) \right).$$

$$\xi_t := X_{R(c)} \wedge \left(\neg X_{R(t)} \vee X_{R(f(f(g(t))))} \vee X_{R(f(t))} \right) \wedge \neg X_{R(f(f(t)))}.$$

Wir zählen die Grundterme in $GT_{\hat{\sigma}}$ in der folgenden Reihenfolge auf

$$t_1 = c$$
, $t_2 = f(c)$, $t_3 = g(c)$, $t_4 = f(f(c))$, $t_5 = g(f(c))$, ...

und zählen die Formeln in $AHE(\chi)$ in derselben Reihenfolge auf, also

$$\xi_1 = \xi_{t_1}, \quad \xi_2 = \xi_{t_2}, \quad \xi_3 = \xi_{t_3}, \quad \dots$$

Bei dem auf Folie 359 beschriebenen Verfahren wird dann beispielsweise im Schleifendurchlauf für i=5 getestet, ob die aussagenlogische Formel

$$(\xi_1 \wedge \xi_2 \wedge \xi_3 \wedge \xi_4 \wedge \xi_5)$$

unerfüllbar ist. Dazu können wir beispielsweise das Resolutionsverfahren oder den DPLL-Algorithmus anwenden.

In unserem Beispiel entspricht die Formel $(\xi_1 \wedge \cdots \wedge \xi_5)$ der Klauselmenge

$$\begin{split} \Gamma \; &:= \; \left\{ \; \left\{ \; X_{R(c)} \; \right\} \; , \\ & \left\{ \; \neg X_{R(c)} \; , \; X_{R(f(f(g(c))))} \; , \; X_{R(f(c))} \; \right\} \; , \; \left\{ \; \neg X_{R(f(f(c)))} \; \right\} \; , \\ & \left\{ \; \neg X_{R(f(c))} \; , \; X_{R(f(f(g(f(c)))))} \; , \; X_{R(f(f(c)))} \; \right\} \; , \; \left\{ \; \neg X_{R(f(f(f(c))))} \; \right\} \; , \\ & \left\{ \; \neg X_{R(g(c))} \; , \; X_{R(f(f(g(g(c)))))} \; , \; X_{R(f(g(c))))} \; \right\} \; , \; \left\{ \; \neg X_{R(f(f(g(f(c)))))} \; \right\} \\ & \left\{ \; \neg X_{R(g(f(c)))} \; , \; X_{R(f(f(g(g(f(c))))))} \; , \; X_{R(f(g(f(c)))))} \; \right\} \; , \; \left\{ \; \neg X_{R(f(f(g(f(c)))))} \; \right\} \; , \\ & \left\{ \; \neg X_{R(g(f(c)))} \; , \; X_{R(f(g(g(f(c))))))} \; , \; X_{R(f(g(f(c)))))} \; \right\} \; , \; \left\{ \; \neg X_{R(f(f(g(f(c)))))} \; \right\} \; , \\ & \left\{ \; \neg X_{R(g(f(c)))} \; , \; X_{R(f(g(g(f(c))))))} \; , \; X_{R(f(g(f(c)))))} \; \right\} \; , \; \left\{ \; \neg X_{R(f(f(g(f(c))))))} \; \right\} \; , \end{split}$$

Wir konstruieren eine Resolutionswiderlegung für Γ :

- (1) $\{X_{R(c)}\}$ in Γ
- (2) $\left\{ \neg X_{R(c)}, X_{R(f(f(g(c))))}, X_{R(f(c))} \right\}$ in Γ
- (3) $\left\{X_{R(f(g(c)))}, X_{R(f(c))}\right\}$ Resolvente aus 1,2
- $(4) \qquad \left\{ \neg X_{R(f(f(g(c))))} \right\} \qquad \text{in } \Gamma$
- (5) $\left\{X_{R(f(c))}\right\}$ Resolvente aus 3,4
- (6) $\{ \neg X_{R(f(c))}, X_{R(f(f(g(f(c)))))}, X_{R(f(f(c)))} \}$ in Γ
- (7) $\{X_{R(f(f(g(f(g)))))}, X_{R(f(f(g)))}\}$ Resolvente aus 5,6
- (8) $\{\neg X_{R(f(f(c)))}\}$ in Γ
- $\{ \neg \land R(f(f(c))) \}$
- (9) $\left\{X_{R(f(g(f(c))))}\right\}$ Resolvente aus 7,8
- $(10) \quad \left\{ \neg X_{R(f(f(g(f(c)))))} \right\}$
- (11) \emptyset Resolvente aus 9,10

in Γ

Somit ist Γ unerfüllbar (gemäß Satz 2.58). Das auf Folie 359 angegebene Verfahren hält daher (spätestens) im Schleifendurchlauf für i=5 mit der Ausgabe

Somit ist Γ unerfüllbar (gemäß Satz 2.58). Das auf Folie 359 angegebene Verfahren hält daher (spätestens) im Schleifendurchlauf für i=5 mit der Ausgabe " χ ist unerfüllbar" an.

Somit ist Γ unerfüllbar (gemäß Satz 2.58). Das auf Folie 359 angegebene Verfahren hält daher (spätestens) im Schleifendurchlauf für i=5 mit der Ausgabe " χ ist unerfüllbar" an. Da χ erfüllbarkeitsäquivalent zur Formel ($\varphi \wedge \neg \psi$) ist, wissen wir also, dass $\varphi \models \psi$ gilt.

Somit ist Γ unerfüllbar (gemäß Satz 2.58). Das auf Folie 359 angegebene Verfahren hält daher (spätestens) im Schleifendurchlauf für i=5 mit der Ausgabe " χ ist unerfüllbar" an. Da χ erfüllbarkeitsäquivalent zur Formel ($\varphi \wedge \neg \psi$) ist, wissen wir also, dass $\varphi \models \psi$ gilt. Dies beendet Beispiel 4.54.

Kapitel 5:

Literatur

Patrick Blackburn, Johan Bos, and Kristina Striegnitz.

Learn PROLOG Now!

Kings College Publications, 2006.

Online Version: http://www.learnprolognow.org/.

Logic for Mathematics and Computer Science.

Prentice Hall, 1998.

Sets, Logic and Categories. Springer, 1998.

Heinz-Dieter Ebbinghaus.

Einführung in die Mengenlehre.

Spektrum Akademischer Verlag, 2003.

4. Auflage.

Einführung in die Mathematische Logik.

Spektrum Akademischer Verlag, 2007.

Jörg Flum and Martin Grohe.

Parameterized Complexity Theory. Springer, 1998.

M. Huth and M. Ryan.

Logic in Computer Science — Modelling and Reasoning About Systems. Cambridge University Press, 2004.

M. Kreuzer and S. Kühling. Logik für Informatiker. Pearson, 2006.

Leonid Libkin.

Elements of Finite Model Theory.

Springer, 2004.

Uwe Schöning.

Logik für Informatiker.

Spektrum Akademischer Verlag, 2000.

5. Auflage.

Nicole Schweikardt.

"Logik in der Informatik", Skript zur gleichnamigen Vorlesung am Institut für Informatik der Humboldt-Universität zu Berlin, 2018.

Verfügbar unter https:
//www2.informatik.hu-berlin.de/logik/lehre/WS19-20//Logik/.

Ehud Shapiro and Leon Sterling.

The Art of PROLOG: Advanced Programming Techniques.

MIT Press, 1994.

2. Auflage.

🚺 D. van Dalen.

Logic and Structure.

Springer, 2004.