Einführung in die formale Logik für IMP

Sommersemester 2025

Übungsblatt 9

Abgabe: bis 7. Juli 2025, 10.00 Uhr über Moodle

Aufgabe 1: (25 Punkte)

Nutzen Sie zur Lösung dieser Aufgabe die Methode der logischen Reduktion (ähnlich wie im Beweis von Satz 3.58).

Sei 3-COL die Klasse aller gerichteten dreifärbbaren Graphen, d.h. aller $\{E/2\}$ -Strukturen $\mathcal{A} = (A, E^{\mathcal{A}})$ für die gilt:

Es gibt eine Funktion $f: A \to \{rot, gelb, blau\}$, so dass für jede Kante (a, b) in E^A gilt: $f(a) \neq f(b)$.

Zeigen Sie: Die Klasse 3-COL ist nicht FO-definierbar.

Aufgabe 2: (20 Punkte)

Hunde äußern sich bekanntlich mit Hilfe der Laute "W", "A" und "U".

Sei $\Sigma := \{W, A, U\}$ und sei die *Hundesprache H* definiert durch $H := abl_{\mathfrak{K}}$, wobei \mathfrak{K} der folgende Kalkül über der Menge Σ^* ist:

$$\mathfrak{K} := \left\{ \frac{v}{\mathrm{WA}} \right\} \cup \left\{ \frac{v}{vv} : \text{ für alle } v \in \Sigma^* \right\} \cup \left\{ \frac{v\mathrm{A}w}{v\mathrm{A}\mathrm{U}w} : \text{ für alle } v, w \in \Sigma^* \right\}$$

$$\cup \left\{ \frac{v\mathrm{U}\mathrm{U}w}{v\mathrm{A}\mathrm{A}w} : \text{ für alle } v, w \in \Sigma^* \right\} \cup \left\{ \frac{v\mathrm{A}\mathrm{A}w}{vw} : \text{ für alle } v, w \in \Sigma^* \right\}$$

- (a) Geben Sie für jedes der folgenden Worte aus Σ^* an, ob es zur Menge H gehört oder nicht. Begründen Sie jeweils Ihre Antwort!
 - (i) WA (ii) UWAA (iii) WAWAUU (iv) WU
- (b) Zeigen Sie, dass für jedes Wort $w \in H$ gilt: Die Anzahl $|w|_A$ der Vorkommen des Lauts A in w ist *nicht* durch 3 teilbar (d.h., es gibt eine Zahl $k \in \mathbb{N}$, so dass gilt: $|w|_A = 3k + 1$ oder $|w|_A = 3k + 2$).
- (c) Kann ein Hund "WAAA" machen? D.h., ist WAAA $\in H$?

Aufgabe 3: (25 Punkte)

Sei σ eine Signatur, sei $\Gamma \subseteq_e \mathsf{FO}[\sigma]$ und seien $\varphi, \psi \in \mathsf{FO}[\sigma]$.

(a) Zeigen Sie die Korrektheit der folgenden Sequenzen. Bei Angabe einer Ableitung im Sequenzenkalkül \mathfrak{K}_S halten Sie sich bitte an das Format aus Beispiel 4.19 im Skript.

(i)
$$\varphi$$
, $(\neg \varphi \lor \psi) \vdash \psi$

(ii)
$$\neg \neg \varphi \vdash \varphi$$

(b) Beweisen Sie die Korrektheit der Sequenzenregel ∃-Einführung im Antezedens (∃A):

$$\frac{\Gamma, \varphi \frac{y}{x} \vdash \psi}{\Gamma, \exists x \varphi \vdash \psi} \quad \text{falls } y \not \in \text{frei}(\Gamma, \exists x \varphi, \psi)$$

Aufgabe 4: (30 Punkte)

Sei $\sigma := \{E\}$ die Signatur mit dem 2-stelligen Relationssymbol E. Wir interpretieren σ -Strukturen als gerichtete Graphen.

Wir sagen, ein Graph ist zyklisch, falls es ein $\ell \in \mathbb{N}_{\geq 1}$ und Knoten a_1, \ldots, a_ℓ gibt, sodass (a_ℓ, a_1) und (a_i, a_{i+1}) für alle $i \in [\ell - 1]$ Kanten im Graphen bilden. Ein Graph ist azyklisch, falls er nicht zyklisch ist.

- (a) Zeigen Sie, dass die Klasse aller azyklischen (endlichen oder unendlichen) Graphen erststufig axiomatisierbar ist.
- (b) Nutzen Sie den Endlichkeitssatz der Logik erster Stufe, um zu zeigen, dass die Klasse aller zyklischen (endlichen oder unendlichen) Graphen *nicht* erststufig axiomatisierbar ist.