Einführung in die formale Logik für IMP

Sommersemester 2025

Übungsblatt 8

Abgabe: bis 30. Juni 2025, 10.00 Uhr über Moodle

Aufgabe 1: (19 Punkte)

Betrachten Sie die Kinodatenbank \mathcal{D} aus der Vorlesung.

- (a) Geben Sie für die folgenden Anfragen jeweils eine $\mathsf{FO}[\sigma_{\mathsf{KINO}}]$ -Formel φ und ein Variablentupel (x_1,\ldots,x_n) mit $\mathsf{frei}(\varphi)\subseteq\{x_1,\ldots,x_n\}$ an, die die Anfrage beschreiben. Berechnen Sie jeweils auch die Relation $[\![\varphi(x_1,\ldots,x_n)]\!]^{\mathcal{D}}$.
 - (i) Geben Sie alle Kombinationen aus Name eines Kinos und Uhrzeit aus, die einer Vorstellung des Films Gravity entsprechen.
 - (ii) Geben Sie alle Paare von Namen von Kinos aus, die sich im gleichen Stadtteil befinden.
 - (iii) Geben Sie die Namen aller Kinos aus, in denen mindestens ein Film gezeigt wird, in dem exakt zwei verschiedene Regisseure Regie geführt haben.
- (b) Geben Sie umgangssprachlich an, welche Anfragen durch die Formeln φ_1 , φ_2 und φ_3 beschrieben werden.
 - (i) $\varphi_1 := \exists x_F R_{Prog}(\text{`Moviemento'}, x_F, x)$
 - (ii) $\varphi_2 := \exists x_{S_1} \exists x_T \left(R_{Kino}(x_1, x_2, x_{S_1}, x_T) \land \exists x_R \exists x_{S_2} R_{Film}(x_1, x_R, x_{S_2}) \right)$

(iii)
$$\varphi_3 := \left(\exists x_K \ R_{Prog}(x_K, x_2, x_3) \land \exists x_{S_1} \left(R_{Film}(x_2, x_1, x_{S_1}) \land \forall x_F \forall x_{S_2} \left(R_{Film}(x_F, x_1, x_{S_2}) \rightarrow x_F = x_2 \right) \right) \right)$$

Aufgabe 2: (25 Punkte)

Sei $\Sigma := \{A, N, S\}$ und sei $\sigma := \sigma_{\Sigma} = \{\leqslant, P_A, P_N, P_S\}$ die in der Vorlesung definierte Signatur zur Repräsentation von Worten über dem Alphabet Σ .

(a) **Definition:** Ein FO[σ]-Satz φ beschreibt eine Sprache $L \subseteq \Sigma^*$, falls für jedes nicht-leere Wort $w \in \Sigma^*$ gilt: $w \in L \iff \mathcal{A}_w \models \varphi$.

Welche Sprache beschreibt der folgende $\mathsf{FO}[\sigma]$ -Satz ψ ?

$$\psi \ := \ \forall x \bigg(P_{\mathtt{S}}(x) \ \to \ \exists y \Big(P_{\mathtt{A}}(y) \ \land \ y \leqslant x \ \land \ \forall z \big(z \leqslant y \ \lor \ x \leqslant z \big) \Big) \bigg)$$

Sie können die Sprache durch einen regulären Ausdruck, durch eine Mengenbeschreibung oder auch umgangangssprachlich angeben.

(b) Geben Sie einen $\mathsf{FO}[\sigma]$ -Satz an, der die durch den regulären Ausdruck $(\mathtt{NSA}^*)^*$ definierte Sprache beschreibt und begründen Sie warum Ihr $\mathsf{FO}[\sigma]$ -Satz das Gewünschte leistet.

Aufgabe 3: (25 Punkte)

Sei $\sigma := \{E/2\}$. Betrachten Sie die folgenden gerichteten Graphen \mathcal{A} und \mathcal{B} :

- (a) Welches ist das kleinste m, so dass Spoiler eine Gewinnstrategie im m-Runden Ehrenfeucht-Fraïssé Spiel auf \mathcal{A} und \mathcal{B} hat? Begründen Sie Ihre Antwort, indem Sie eine Gewinnstrategie für Spoiler im m-Runden Ehrenfeucht-Fraïssé Spiel und eine Gewinnstrategie für Duplicator im (m-1)-Runden Ehrenfeucht-Fraïssé Spiel beschreiben.
- (b) Finden Sie für Ihre Antwort m aus Teil (a) einen $\mathsf{FO}[\sigma]$ -Satz ψ der Quantorentiefe m, so dass $\mathcal{A} \models \psi$ und $\mathcal{B} \models \neg \psi$.

Aufgabe 4: (31 Punkte)

- (a) Welche der beiden folgenden Aussagen ist für jede Signatur σ und jede $\mathsf{FO}[\sigma]$ -Formel φ korrekt, welche nicht? Beweisen Sie, dass ihre Antworten korrekt sind.
 - (i) $\exists x \, \forall y \, \varphi \models \forall y \, \exists x \, \varphi$ (ii) $\forall y \, \exists x \, \varphi \models \exists x \, \forall y \, \varphi$
- (b) Sei die Signatur $\sigma := \{E, f\}$. Hierbei ist E ein 2-stelliges Relationssymbol und f ein 1-stelliges Funktionssymbol. Welche der folgenden Aussagen sind korrekt, welche nicht? (Sie brauchen Ihre Antwort nicht zu begründen.)
 - (i) $\forall x \,\exists y \, E(x,y) \equiv \exists y \, \forall x \, E(x,y)$
 - (ii) $\forall x \, \forall y \, (f(x) = y \rightarrow f(y) = x) \equiv \forall y \, \forall x \, (\neg f(y) = x \rightarrow \neg f(x) = y)$
 - (iii) $\forall x \exists y \ f(x) = y \equiv \forall x \exists y ((x = y \lor E(x, y)) \rightarrow \exists z (z = y \lor E(z, y)))$
- (c) Welche der folgenden Aussagen sind für alle Signaturen σ und alle $\mathsf{FO}[\sigma]$ -Formeln φ und ψ korrekt, welche nicht? (Sie brauchen Ihre Antwort nicht zu begründen.)
 - (i) $(\forall x \varphi \land \forall x \psi) \equiv \forall x (\varphi \land \psi)$ (iii) $(\exists x \varphi \land \exists x \psi) \equiv \exists x (\varphi \land \psi)$
 - (ii) $(\forall x \varphi \lor \forall x \psi) \equiv \forall x (\varphi \lor \psi)$ (iv) $(\exists x \varphi \lor \exists x \psi) \equiv \exists x (\varphi \lor \psi)$
- (d) Beweisen Sie, dass ihre Antworten zu (i) und (iii) in Aufgabenteil (c) korrekt sind.