Einführung in die formale Logik für IMP

Sommersemester 2025

Übungsblatt 4

Abgabe: bis 26. Mai 2025, 10.00 Uhr über Moodle

Aufgabe 1: (50 Punkte)

Im Folgenden betrachten wir einen $Baum \mathcal{B}$ mit der $abz\ddot{a}hlbar$ unendlichen $Knotenmenge V := \mathbb{N}$. Die Wurzel von \mathcal{B} ist dabei der Knoten w := 0. Die Kanten von \mathcal{B} repräsentieren wir durch eine Funktion Kinder, die jedem Knoten $v \in V$ die Menge Kinder(v) all seiner Kinder zuordnet. Wir nehmen an, dass \mathcal{B} endlich verzweigend ist. Damit meinen wir, dass für jeden Knoten $v \in V$ die Menge Kinder(v) endlich ist.

(a) Ein Pfad in \mathcal{B} ist eine (endliche oder unendliche) Folge (v_0, v_1, v_2, \ldots) von Knoten aus V, so dass gilt: $v_0 = w$ ist die Wurzel von \mathcal{B} , und für alle v_i, v_{i+1} auf dem Pfad ist $v_{i+1} \in Kinder(v_i)$. Eine Interpretation $\mathcal{I}: \mathsf{AS} \to \{0,1\}$ repräsentiert einen Pfad $P = (v_0, v_1, v_2, \ldots)$, falls für jedes $v \in V$ und das zugehörige Aussagensymbol $A_v \in \mathsf{AS}$ gilt:

$$\mathcal{I}(A_v) = 1 \quad \Longleftrightarrow \quad v \in \{v_0, v_1, v_2, \ldots\}.$$

Das Aussagensymbol A_v repräsentiert also die Aussage "Der Knoten v gehört zum Pfad P". Geben Sie eine unendliche Formelmenge Φ an, so dass für jede Interpretation \mathcal{I} gilt:

 $\mathcal{I} \models \Phi \quad \Longleftrightarrow \quad \mathcal{I} \text{ repräsentiert einen Pfad unendlicher Länge in } \mathcal{B}.$

(b) Ein endlicher Pfad (v₀, v₁, v₂,..., v_n) hat die Länge n. Wir sagen, dass der Baum B Pfade beliebiger endlicher Länge enthält, wenn B für jedes n ∈ N einen Pfad der Länge n enthält. Beweisen Sie mit Hilfe des Endlichkeitssatzes das folgende Lemma von Dénes König (1936):
Königs Lemma. Wenn B Pfade beliebiger endlicher Länge enthält, dann enthält B einen Pfad unendlicher Länge.

Aufgabe 2: (50 Punkte)

Eine Kachel ist ein Einheitsquadrat mit gefärbten Kanten (vgl. Beispielabbildung rechts). Alle Kacheln eines Kacheltyps t besitzen dieselbe Färbung ihrer Kanten. Sei K eine endliche Menge von Kacheltypen. Seien H und V zwei Relationen auf K, die für zwei Kacheltypen t_1, t_2 besagen, dass t_1 und t_2 in dieser Reihenfolge horizontal bzw. vertikal zueinander passen, also die sich berührenden Kanten von derselben Farbe sind.



D.h. für $t_1, t_2 \in K$ gilt: $(t_1, t_2) \in H$ genau dann, wenn t_2 rechts neben t_1 passt und analog $(t_1, t_2) \in V$ genau dann, wenn t_2 über t_1 passt.

Eine (K, H, V)-Kachelung der $n \times n$ -Ebene (für $n \in \mathbb{N}_{\geq 1}$) ist eine Funktion $k : \{1, \ldots, n\}^2 \to K$, die H und V respektiert, d.h. für alle $i \in \{1, \ldots, n-1\}$ und alle $j \in \{1, \ldots, n\}$ gilt:

$$(k(i,j), k(i+1,j)) \in H$$
 und $(k(j,i), k(j,i+1)) \in V$.

Eine (K, H, V)-Kachelung der (unendlichen) $\mathbb{N}_{\geq 1} \times \mathbb{N}_{\geq 1}$ -Ebene ist eine Funktion $k : \mathbb{N}_{\geq 1}^2 \to K$, die H und V respektiert, d.h. für alle $i, j \in \mathbb{N}_{\geq 1}$ gilt:

$$(k(i, j), k(i+1, j)) \in H$$
 und $(k(j, i), k(j, i+1)) \in V$.

Benutzen Sie für die Lösung der Aufgabe Aussagensymbole der Form $A_{i,j}^t$ für $t \in K, i, j \in \mathbb{N}_{\geq 1}$ mit der Bedeutung, dass Feld (i,j) mit einer Kachel vom Typ t gekachelt wird.

(a) Sei $n \in \mathbb{N}_{\geq 1}$. Konstruieren Sie eine endliche Menge Γ_n von aussagenlogischen Formeln, so dass gilt:

Jedes Modell \mathcal{I} von Γ_n entspricht einer (K, H, V)-Kachelung der $n \times n$ -Ebene und jede (K, H, V)-Kachelung der $n \times n$ -Ebene entspricht einem Modell \mathcal{I} von Γ_n . Begründen Sie die Wahl Ihrer Formelmenge Γ_n .

(b) Zeigen Sie das folgende Theorem:

Sei K eine endliche Menge von Kacheltypen und seien H und V zwei 2-stellige Relationen auf K (d.h. $H,V\subseteq K\times K$). Wenn es für jedes $n\in\mathbb{N}_{\geq 1}$ eine (K,H,V)-Kachelung der $n\times n$ -Ebene gibt, dann gibt es auch eine (K,H,V)-Kachelung der (unendlichen) $\mathbb{N}_{\geq 1}\times\mathbb{N}_{\geq 1}$ -Ebene.