Einführung in die formale Logik für IMP

Sommersemester 2025

Übungsblatt 3

Abgabe: bis 19. Mai 2025, 10.00 Uhr über Moodle

Aufgabe 1: (30 Punkte)

Finden Sie für jede der Mengen

- (a) $\tau_1 := \{ \vee, \mathbf{1} \}$ und
- (b) $\tau_2 := \{\neg, \rightarrow\}$

heraus, ob sie adäquat ist (siehe Definition 2.33). Beweisen Sie, dass Ihre Antwort korrekt ist.

Aufgabe 2: (20 Punkte)

Betrachten Sie die Formel

$$\varphi := \left(A_3 \wedge \left((\neg A_2 \to (\neg A_0 \wedge A_1)) \vee A_4 \right) \right)$$

- (a) Wandeln Sie die Formel φ jeweils in eine äquivalente Formel φ_{DNF} in DNF und φ_{KNF} in KNF um. Gehen Sie dazu analog zu Beispiel 2.43 vor, das heißt erzeugen Sie φ_{DNF} und φ_{KNF} aus φ mittels Äquivalenzumformungen.
- (b) Beschreiben Sie Schritt für Schritt, wie Sie vorgehen würden, um φ unter Verwendung einer Wahrheitstafel jeweils in eine äquivalente Formel $\varphi'_{\rm DNF}$ in DNF und $\varphi'_{\rm KNF}$ in KNF umzuwandeln. Warum wäre dieses Verfahren für das konkrete φ nicht ratsam?

Aufgabe 3: (50 Punkte)

Sei $n \in \mathbb{N}$ mit $n \geq 1$ und sei φ_n die in Satz 2.45 der Vorlesung betrachtete aussagenlogische Formel.

- (a) Bestimmen Sie alle Interpretationen \mathcal{I} , für die gilt:
 - \mathcal{I} erfüllt φ_n und
 - für jedes $i \in \{1, ..., n\}$ existiert eine Interpretation, die sich von \mathcal{I} nur dadurch unterscheidet, dass sie *genau* eines der beiden Aussagensymbole X_i , Y_i auf einen anderen Wahrheitswert abbildet als \mathcal{I} , und die φ_n nicht erfüllt.
- (b) Beweisen Sie Satz 2.45 aus der Vorlesung. Zur Erinnerung:

Satz 2.45. Sei $n \in \mathbb{N}$ mit $n \geq 1$, seien X_1, \ldots, X_n und Y_1, \ldots, Y_n genau 2n verschiedene Aussagensymbole und sei

$$\varphi_n := \bigwedge_{i=1}^n (X_i \vee \neg Y_i).$$

Jede zu φ_n äquivalente Formel in DNF hat mindestens 2^n konjunktive Klauseln.

— auf der nächsten Seite geht's weiter —

(c) Gibt es für alle $n \in \mathbb{N}$ mit $n \geq 1$ DNF-Formeln φ'_n der Länge $\mathcal{O}(n)$, so dass jede zu φ'_n äquivalente KNF-Formel mindestens 2^n disjunktive Klauseln hat? Beweisen Sie, dass Ihre Antwort korrekt ist.