Einführung in die formale Logik für IMP

Sommersemester 2024

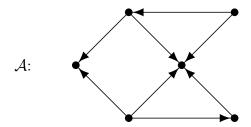
Übungsblatt 9

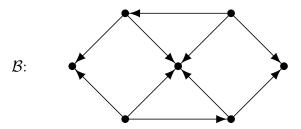
Abgabe: bis 8. Juli 2024, 10.00 Uhr über Moodle

Aufgabe 1: Ehrenfeucht-Fraïssé-Spiele

(25 Punkte)

Sei $\sigma := \{E/2\}$. Betrachten Sie die folgenden gerichteten Graphen \mathcal{A} und \mathcal{B} :





- (a) Welches ist das kleinste m, so dass Spoiler eine Gewinnstrategie im m-Runden EF-Spiel auf \mathcal{A} und \mathcal{B} hat? Begründen Sie Ihre Antwort, indem Sie eine Gewinnstrategie für Spoiler im m-Runden EF-Spiel und eine Gewinnstrategie für Duplicator im (m-1)-Runden EF-Spiel beschreiben.
- (b) Geben Sie für Ihr m aus (a) einen $FO[\sigma]$ -Satz φ an, für den gilt:

$$\mathcal{A} \models \varphi$$
 und $\mathcal{B} \not\models \varphi$

Begründen Sie, warum φ das Gewünschte leistet.

Aufgabe 2: Logische Reduktion

(25 Punkte)

Nutzen Sie zur Lösung dieser Aufgabe die Methode der logischen Reduktion (ähnlich wie im Beweis von Satz 3.58).

Wir betrachten die Signatur $\sigma = \{E\}$ für gerichtete Graphen (d.h. E ist ein 2-stelliges Relationssymbol). Sei BIPART die Klasse aller gerichteten, bipartiten Graphen, d.h. aller σ -Strukturen $\mathcal{A} = (A, E^{\mathcal{A}})$ für die gilt:

Es gibt eine Teilmenge $L \subseteq V$, sodass für alle Kanten $(a, b) \in E^{\mathcal{A}}$ gilt: $a \in L \iff b \notin L$.

Zeigen Sie: Die Klasse BIPART ist nicht FO-definierbar.

- (a) Sei $\sigma := \{E\}$ die Signatur, die aus dem 2-stelligen Relationssymbol E besteht. Betrachten Sie das Alphabet $A = A_{\mathsf{FO}[\sigma]}$ und die Menge $M := A^*$. Geben Sie einen Kalkül $\mathfrak K$ über der Menge M an, so dass gilt: $\mathsf{abl}_{\mathfrak K} = \mathsf{FO}[\sigma]$.
- (b) Betrachten Sie das Alphabet $A = \{m, i, u\}$ und die Menge $M := A^*$. Sei \mathfrak{K} der Kalkül über M, der genau die folgenden Regeln für alle $v, w \in M$ enthält:

 $\frac{\mathsf{m} w}{\mathsf{m} \mathsf{i}} \qquad \frac{\mathsf{m} w}{\mathsf{m} w w} \qquad \frac{v \mathsf{i} \mathsf{i} \mathsf{i} w}{v \mathsf{u} w} \qquad \frac{v \mathsf{u} \mathsf{u} w}{v w}$

- (i) Geben Sie eine rekursive Definition der Menge $\mathrm{abl}_{\mathfrak{K}}$ an.
- (ii) Welche der folgenden Worte $w_1, w_2, w_3 \in M$ sind aus \mathfrak{K} ableitbar, welche nicht? Beweisen Sie jeweils, dass Ihre Antwort korrekt ist.

 $w_1 = \mathsf{miiii}$ $w_2 = \mathsf{miiuu}$ $w_3 = \mathsf{mu}$

Aufgabe 4: Sequenzenkalkül

(25 Punkte)

Sei σ eine Signatur, sei $\Gamma \subseteq_e \mathsf{FO}[\sigma]$, seien $\varphi, \psi, \chi \in \mathsf{FO}[\sigma]$ und seien $x, y \in \mathsf{VAR}$. Beweisen Sie die Korrektheit der folgenden Sequenzenregeln:

(a) \vee -Einführung im Antezedens (\vee A):

$$\begin{array}{c|c} \Gamma, \varphi & \vdash \chi \\ \Gamma, \psi & \vdash \chi \\ \hline \Gamma, (\varphi \lor \psi) \vdash \chi \end{array}$$

(b) \exists -Einführung im Antezedens (\exists A):

$$\frac{\Gamma, \varphi_x^{\underline{y}} \vdash \psi}{\Gamma, \exists x \varphi \vdash \psi} \qquad \text{falls } y \not \in \text{frei}(\Gamma, \exists x \varphi, \psi)$$