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Abstract

For the c-sample location problem with umbrella alternatives we
compare some generalizations of the test of Mack and Wolfe (1981).
All the tests are based on pairwise ranking methods. The asymptotic
power and asymptotic relative efficiency of the so-called Mack-Wolfe-
type test, Tryon-Hettmannsperger-type test and Puri-type test are de-
rived and compared with modifications of the test of Hettmansperger
and Norton (1987) where the ranks are taken over all samples.

The Mack-Wolfe-type test and the Tryon-Hettmansperger-type -
test are further generalized by introducing weight coefficients for the
substatistics. For the case of a specified alternative these weights are
determined in such a way that the efficacies become maximal. It is
shown that the maximal achievable efficacies in the defined classes of
the generalized Mack-Wolfe-type test and Tryon-Hettmansperger-type
test always are equal.

The case of an unknown peak is briefly discussed.

Keywords: Mack-Wolfe-type test; Tryon-Hettmansperger-type test,
Hettmansperger-Norton-type test; Chen-Wolfe-type test; Efficacy.

1. INTRODUCTION

Let Xi1,...,Xn,, ©=1,---,c, be independent random samples from a
population with an absolutely continuous distribution function F(z — 9;),
¥; € R. In the following we assume that F' is twice continuously differen-

tiable on (—o00,00) except for a set of Lebesgue measure zero; f' denotes



the derivative of the density f where it exists and it is defined to be zero,
otherwise. The Fisher information I(f) is assumed to exist. We wish to test:

Hy: % =..=49.
against one of the following umbrella alternatives

Hy: 0 <...<0>204>...>270,

with at least one strict inequality and given [  or

Hp: h<..<9>204n>...27,

with at least one strict inequality and given [ and specified ¥ = (94, ... ,9,)
or i

Hic: U {01,...,9) 01 <...<9,>041... 29}

with at least one strict inequality (the case of unknown peak).

Obviously, Hip C Hia C Hic. At first we consider the problem (Hy, Hi4)
where the peak [ is assumed to be known. Furthermore we assume [ # 1
and [ # c. If |l =1 or [ = c the problem reduces to the case of ordered
alternatives, see Biining and Késsler (1999) and Késsler and Biining (1996).
However, the results of section 2 can easily be extended to the cases [ =1 or
l=c.

The nonparametric test of Mack and Wolfe (1981) may be the most fa-
miliar test for such umbrella alternatives. In section 2 modifications of the
tests of Mack and Wolfe (1981), Puri (1965), Tryon and Hettmansperger
(1973) and Hettmansperger and Norton (1987) are considered. The so-called
Mack-Wolfe-type tests have been introduced by Biining and Késsler (1997)
where it is shown that these tests have good small and moderate sample
size properties. Local alternatives of the form ;5 = A@Z’/\/N,i =1,...,c
are considered and the asymptotic efficacies of the Mack-Wolfe-type test
(MWT-test), Puri-type test (PT-test) and the Tryon-Hettmansperger-type
test (THT-test) are derived and compared with that of the Hettmansperger-
Norton-type test (HNT-test). The efficacies of these tests depend on the
underlying density f and the score generating function ¢ as well as on the
sample sizes and the special kind of alternatives. For an investigation of the
asymptotic relative Pitman efficiencies (ARE) of the different types of rank
tests the score generating function is assumed to be fixed. Only the effect of
the sample sizes and the ARE is studied.



In section 3 the test statistics are further generalized by introducing weight
coefficients for the substatistics occurring in the statistics MWT and THT
given below. For the test problem (Hy, H ) the weights can be determined
in such a way that the efficacies become maximal. It is shown that the
generalized versions of the tests MW'T and THT, each of them based on the
”optimal” weights, always have the same efficacies and therefore they are
asymptotically equivalent in the sense of ARE.

In section 4 the test problem (Hy, Hi¢), i.e. the case of an unknown peak,
is briefly discussed and the asymptotic power of the Chen-Wolfe-type test is

obtained analytically if if ¢ = 3 and n; = n3.

2. SOME TYPES OF RANK TESTS AND THEIR ASYMP-
TOTIC POWER AND EFFICACY

2.1 The Test Statistics

We consider the so called Mack-Wolfe-type test (Biining and Késsler, 1997),
Tryon-Hettmansperger-type test, Puri-type test and Hettmansperger-Nor-
ton-type test. The first three tests are generalisations of the Mack-Wolfe
test. The Mack-Wolfe test statistic is given by

-1 l c—1 ¢
MW= % VietY > Vi,

r=1 s=r+1 r=l s=r+1
where V. is the usual two-sample Wilcoxon test statistic and Vi, = n,n, —
Vrs. Under Hy, MW is asymptotically normal (see Randles and Wolfe, 1979,
p. 397).

The statistic of the Mack-Wolfe-type test is defined by

1 c—1
MWT = Z S..i-1)i + Z S(enitl)i
i=2 i=l
with

N;
St.i-i = Ni- an,(RY ), i=2,...,c

k=N;—1+1
N;
S(c...i+1)i = (N - Ni—l) : Z GN—Ni_l(RIcc_,,i), 1=1,...,c—1,
k=N;—1+1
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an, (k) €ER, Ny =3 nj, 1<i<c¢, N=N, Ny =0.
RF . is the rank of the kth observation in the first pooled 4 samples
Xll; Cen ,Xlnl, ey, Xil, ce aXZm S(l...i—l)i is a two—sample linear rank

statistic computed on the ith sample versus the combined data in the first
k

()

(1 — 1) samples. R¢ , is the rank of the kth observation in the last pooled
(c—i+41)samples X;1,...,Xin;, oo Xty oo 3 Xeme- S(e.it1)i is a two-
sample linear rank statistic computed on the ith sample versus the combined
data in the last (¢ — ¢) samples. The weights N; and (N — N;_1) in the first
and in the second sum respectively, are chosen to have a simpler formula for
the asymptotic variance of MW'T which will be given later on.

The Puri-type test and the Tryon-Hettmansperger-type test as modifica-
tions of the tests of Puri (1965) and Tryon and Hettmansperger (1973) are
defined similarly to the case of ordered alternatives (cf. Biining and Kdssler
1999).

The Puri-type test statistic is given by

PT= Y Uyj,+ Y Uy

1<i<j<l I<j<i<c
with

ni+n;

Uij = (ni +ny) Z On;i+n; (Rfj)a
k=n;+1
Unitn;(k) € R, 1 < 4,5 < ¢ and R}, is the rank of the kth observation
in the combined two samples X, ..., X, and Xji,..., X;,,. Note that a
similar statistic was proposed by Archambault, Mack and Wolfe (1977) but
they use different weights for the U; ;.
The Tryon-Hettmansperger-type test statistic is given by

-1 c—1
THT = Z Uiiz1 + Z Uiy1,
i=1 i=l

with U; ; defined as above.
Notice, that PT is based on (é) + (C_éﬂ) two-sample comparisons whereas
MWT and THT include only (I — 1) 4 (¢ — [) = ¢ — 1 such comparisons.



Hettmansperger and Norton (1987) propose a test for umbrella alterna-
tives which is based on the ranks R;; of X;; in the pooled sample X1, ..., X¢p,.
Replacing the ranks R;; by arbitrarily chosen scores ay(R;;) we get the so-
called Hettmansperger-Norton-type test the statistic of which is defined by

HNT = iviﬂ,N;

i=1
where
Tin =Y an(Ry),
j=1
. e l
1 1—Un if 1< 1
v = — - —  with v — mz-l— (2l —i)n

and ay (k) € R.

The (exact or asymptotic) associated a-level tests reject Hy in favour of Hy
(Hy4 or Hig) if MWT, PT,THT or HNT are at least as large as the upper
a-quantile of the (exact or asymptotic) null distribution of MWT, PT,THT
or HNT, respectively. For convenience the corresponding tests are called
MWT-test, PT-test, THT-test and HNT-test.

It is assumed that the scores a;, (L = N; and L = N — N;_; for MWT,
L =n; +n; for PT and TT, L = N for HNT) in the definition of the test
statistics above are generated by an absolutely continuous score function ¢
with limy , ar(1 4 [uL]) = ¢(u), 0 < u < 1, where ¢ is associated with a
density function g given by

¢(u, g) := ¢(u) = - (1)

The function ¢(u, g) is the so called optimal score function of the density

function g with quantile function G~1. It is assumed that

5 =/01¢(u,g)du=0 2)



and the Fisher information I(g) is finite, i.e.

I(g) := /01 #*(u, g) du < . (3)

For convenience we use the notations

d(f,g) = / 6(u )6 (u, ) du
and

C(f.9):=d(f,g) I(g) "/

It is assumed throughout the paper that the score function ¢(u, g) and there-
fore the factors d(f,g) and C(f, g) are fixed. For the choice of the function
#(u, g) and for an investigation of the associated factor C(f, g) we refer to
Biining and Kdssler (1999 and 1996).

2.2 The asymptotic power and efficacies of the test statistics

Under the assumptions (??) and (??) the limiting distributions of MWT /oy,
PT/op, THT/or and HNT /oy are, under H,, asymptotically standard
normal where the asymptotic variances o%;, 0%, 02 and 0% of MWT, PT,
THT and HNT are given by

i l ¢
1

o2 = I(g)- 3 (Nl?’ — an’ + (N —N_,)? - an’) +2Niym(N — Nl)]

L i=1 =l
)

[c—2

op = I(g)- Zninz’—i—l(ni +nip1 — 2n449) | +
Li=1

+I(g) - [ne—1ne(ne—1 + ne) + dng_1nynyi1]
J?—I = anvzzl(g)a
i=1

cf. Biining and Késsler (1997) for MWT | Puri (1965) for PT and Hdjek
and Siddk (1967, theorem 5.1.6a) for HNT. The formula for o2 can eas-
ily be obtained from Biining and Kossler (1999) by introducing the term
2cov(U—14, Uig1y)-



The asymptotic normality is obtained under the following assumptions (A):

Let be A > 0 and {(Y1n,...,9:n)} a sequence of "near” alternatives with

NY29,n /A = 6;, 6, < ...< 6, >0, >...>0, and at least one
strict inequality. Denote @ = (61,...,0.), n = (ny,...,n.) and assume
without loss of generality ¢; = 0. Let min (n,...,n.) — 00, n;/N — X\,
O<h<l i=1,...,c

THEOREM 1:  Under assumptions (A) the statistics (MWT — uy)/oum,
(PT—pup)/op, (THT—pr)/op and (HNT — 1y ) /oy have a limiting standard

normal distribution with

pu = A-NTY2d(f.g) - (4)
l c
D 0mi(Niy + Ni — N+ > 0mi(N — Ny + Ny — Nil)]
i—2 i=l

pp = A-N2.4(fg)- Z (0; — 0:)nin; + Z nmjl

| 1<i<5<I I<j<i<c
= ,U'M
[1—1
HT = A- N71/2 : d(f, 9) ) Z(9i+1 nan—l + Z - z+1 nan—l]
| i=1
c
g = A-N"1%2.4q anvl

Proof: 1. For convenience we first summarize some results from Hdjek and
Siddk (1967, chs. 5,6). Define

:Z¢(F(XZ]))5 i:]-a"'aca
j=1

where ¢ is the score function (??). The statistics W are, under Hy, sums
of n; iid random variables and therefore asymptotically normally distributed

with asymptotic expectations zero and variances o;? = n;I(g). Denote

. 1 if =4 o - 1 A
%',j:{o Ti TN “N:NZZ“N(R“)’

else, oo



and rewrite T; x as

zN—ZZ’YZ/ ")/Z GNR )+nZ&N

=1 j=1

Let be

> 2(72',j —7:.)0(F(Xij)) + niay

i'=1 j=1
N —n;
N

~J

w; Z Wi + nian- (5)

z’ 1,4/ #14

Since the W/ are independent, under Hy, the variance of the T; 5 can easily

be computed

~ nz(N - TL,)

of == var(T; ) ~ — -I(g). (6)

From Hdajek and Siddk (1967, see proof of theorem 5.1.5a) we have, under
Hy, (T;n — %i,N)/ai 250, ie. T; ny/o; is asymptotically standard normal.

The asymptotic normality of %Z ~ and of T} v, under H,, both with vari-
ances o2, follows from Hdjek and Siddk (N1967, see proof of theorem 6.2.4).

The asymptotic expectations of T; y and T’; 5 are given by

E(TzN) ~ E(Ti,N) ~ ni(ﬁz’,N —dn)-d(f,9), (7)
where 1_9N =~ > nidiN.

2. Since Y ;_, n;v; = 0 we obtain from (??)

HNT ~ Z v

i=1
and HNT is asymptotically normal with expectation pz and variance o%.
3. From Koziol and Reid (1977) we have that the two-sample statistics U; ;

are asymptotically equivalent to a linear combination of T; 5 and T} , more

precisely U; j ~ n;T; v — n;T; n. From (??) we have

Uij~ nZW —n,; W



4. For the T HT-statistic we obtain (ng = n..1 = 0)

-1 c—1
THT ~ Z(nz‘Tiﬂ,N —nip1TiN) + Z(ni—l—lTi,N —niTiy1,N)
=1 =l
-1 c—1
= Y (i1 —ni))Tiw + (s +n)Tow + Y (i — ni1) iy
=1 i=l+1
c
~ > oW
i=1
with
N;—1 — N1 if 2<l
ar; = § N-1 + ny if =1 (8)
Njy1 — N1 if 7> 1.

From (??) and (??) we obtain that THT is asymptotically normal with

expectation pr and variance o7.

5. For the PT-statistic we obtain (Ny = 0) after some straightforward but

somewhat tedious calculations

-1
PT ~ Y (Nii+Ni—= N)Tin + (N = Ny + N2 Tow +

=1
c

Z (N=N; = Ni_1+ Nia)Tin
i=l+1

c

*

~ D oW
=1

with

N;_1+ N; — N, if 1<l
ap; = N — N;+ N4 if i=1 (9)
N —N; — N;_1+ N1 if >1

Again from (??) and (??) we obtain that PT is asymptotically normal with

expectation pp and variance o%.



6. Define for 7 =2,...,1

i—1

H(1..i-1)i = N2y, [— Z Oxnr, + 9z'Nz'—1] -d(f,9)

k=1

The statistics S;...i—1); are asymptotically normal with expectations A1, ;—1);

and variances
0_(21...i71)i = niN;_1 NI (g)

(cf. Biining and Kossler, 1999).

The linear combination of the W;,j =1,...,¢
i1

Li=Ni W} =) nW;
k=1

is asymptotically normal with the same expectation Apyi..;—1); and variance
0(21“_1._1)1., i.e. Sqi..i-1; and L; are asymptotically equivalent.
Analoguously we have

Cc

Sty ~ L= (N = NgW; = 3 mWj.

k=i+1
Hence
! i—1 c—1 ¢
MWT ~ S (NeaW7 =3 maWi) + Y (N = Ngwy = S nivy)
=2 k=1 i=l k=i

c
= Yon;
i=1
is asymptotically normal with expectation pj; and variance o3,, where the

coefficients ap; are given by (?7). 1

Denote A; = 35 1 Aj, A= (A1,..., Ac) and let @ be the c.d.f and z_q the
(1 — a)-quantile of standard normal distribution.

The asymptotic power functions of all the tests considered have the form

ﬂA,O(A) =1- cI)(217(1 - AA(A’ O)C(fa g))a

10



i.e. power comparisons can be made in terms of the asymptotic efficacies
A%(X,0) - C?(f,g) or simply in terms of the A%(A,8). Denoting the corre-
sponding terms by A2, for MWT, A% for PT, A% for THT and A% for HNT

then we have

2
(Zé:z 0idi(ANicy + N — Ay) + 370 0 hi(1 — Ay + Ay — Ai—l))

A2 (X, 0) =
M( ) %(A? - Z'L?Zl )\’:L)) - )\? + (1 - Al—l)s) + 2Al_1Al(1 — Al)
= A3(X,0)
2
(Zi;i(em — 00 Nidis1 + 2o (0 — 0i+1))\i)\i+1)
A7(X,0) =

ch;l? Aidit1 (A + Aig1 — 2Xi12) + Aem1Ac(Aem1 + Ae) + 4NN A

¢ \uib;)?
A2 — (Zz_l ] )
S Y ¥

Remark:  The MWT-test and the PT-test are asymptotically equivalent.
Since the MW T-test is easier to perform the PT-test is not considered in the
following. Note that the MWT-test and the PT-test are generally not exactly
equivalent. If the MWT-test and the PT-test are based on the Wilcoxon

scores then, however, the tests are equivalent.

Under the assumptions (A) the ARE of the tests MWT and THT, for ex-
ample, is given by

A (A, 0)

T )

(cf. Héjek and Siddk, 1967, ch.7.2.1, or Noether, 1955). For the case of equal
sample sizes some asymptotic efficacies and ARE are computed in the next

section.

Note that the results can easily be extended to the cases | = 1 or [ = c if
we introduce the conventions Ny = n, = nei1 = 0, Ag = Ag = Aey1 = 0,

Usj = Ueer1 =0and )i 2z =0if k < for arbitrarily chosen z;.

’

11



TABLE I: The terms By, Br, By and ARE in the case of equal
sample sizes and equally spaced alternatives for ¢ = 3,4, 5,6

¢ 1 By Br By ARE(MWT,THT) ARE(MWT,HNT)
3 2 2/9  2/9  2/9 1 1
42 25/56  3/8  1/2 1.19 0.89
4 3 25/56  3/8  1/2 1.19 0.89
5 2 121/140 8/15 26/25 1.62 0.83
5 3 8/15  8/15 14/25 1 0.95
5 4 121/140 8/15 26/25 1.62 0.83
6 2 147/100 25/36 65/36 2.12 0.81
6 3 49/60 25/36 11/12 1.18 0.89
6 4 49/60  25/36 11/12 1.18 0.89
6 5  147/100 25/36 65/36 2.12 0.81

2.3 The Special Case of Equal Sample Sizes

In the special case of equal sample sizes, ny = ... =

(1,...,1)/c and therefore

ne, we have A =

2
3 [ZLQ 0:(20 — 1= 1)+ >, 0i(c—2i+1)

A3 (X, 0) =

and

AZ(X,0) =

(26, — 6.)?

6¢

cl>?—=1)+(c=1l+1)((c—1+1)2=1)+6(1—1)(c—1)]

If c =3 and [ = 2 we obtain A3,(X,0) = A%(X,0) = A% (X, 0) = (26, —
63)%/18, i.e. the ARE of these three tests is 1. (This fact is evident for MWT

and THT, since the statistics are the same.)

For ¢ = 3,4,5,6 tables I and

IT contain ARE-values for equally spaced alternatives and some other types

of alternatives, respectively. For equally spaced alternatives, § := |6;11 — 6;],

i=1,...,c— 1, the asymptotic efficacies have the form

K(0) =B-6*-C*(f,9),

where K and B stand for K,;, By; or Ky, By or Ky, By. Some values for

B are also presented in table I. In this special case the HNT-test is the

asymptotically most powerful one, MWT is second and THT is third best.

12



TABLE II: The ARE(MWT, THT) and ARE(MWT,HNT) for some types of
alternatives in the case of equal sample sizes

c 1 type of alternative ARE(MWT, THT) ARE(MWT,HNT)
3 2 arbitrary 1 1
4 2 0, <0y=0;=20, 0.43 o0
0, =05 >0;=20, 1.71 0.57
0, =0, = (93 > 0y 1.71 0.57
5 2 01 < 02 = 03 = 04 = 05 0.21 1.16
01 = 02 > 03 = 04 = 95 1.93 0.52
01 = 02 = 03 > 04 = 95 3.43 0.61
01 = 02 = 03 = 04 > 95 1.93 0.65
5 3 01<02:03:94:95 1 0.73
01:02<03:94:95 1 1.30
0, =0, =03 >0,=0; 1 1.30
0y =0, =0;=20,> 05 1 0.73
6 2 0, < b, = 03 =0, = 05 = 06 0.12 0.31
0, =0, > 03 =0, = 05 = 06 1.92 0.49
0 =0,=03>0,=05=0¢ 4.32 0.64
0p =0, =03=0,> 05 =0 4.32 0.70
01 =05 =05 =0,=05 > b 1.92 0.74
6 3 01 <Oy =05 =0,=05=0 0.6 2.2
01:92<03:04:05:05 0.6 o0
01 = 92 = 03 > 04 = 05 = 05 135 055
01 = 92 = 03 = 04 > 05 = 05 24 055
0r =0, =03=0,=05> 0 1.35 0.55

13



In table IT some other alternatives are considered. This table contains
only the case | < ¢/2. Entries for | > ¢/2 can be obtained by considering
the symmetric case, for example: ¢ = 4,1 = 2,0, < 6, = 04 is symmetric to
c=4,l= 3,0, =03 > 0,. From table II we see that in most cases the HNT-
test has the highest efficacy. But there are also types of alternatives for which
the THT-test performs best and the HNT-test is bad. The entry oo denotes
that the efficacy of the HN'T-test is zero for that alternatives. The MWT-test

seems to be a good compromise over the whole range of alternatives.

Remarks: 1. In the case of ordered alternatives simulation studies based
on various sample sizes show that for n; = 40,2 =1,... , ¢, the power of the
considered tests is generally well approximated by their asymptotic power
function. However, the approximation often works well even for n; = 10,7 =

1
1999). We conjecture that similar results can be obtained for the types of

,...,C, as for the normal and double exponential (cf. Biining and Kossler,

tests considered here.

2. For equal sample sizes and for the general alternative H;4 the MWT-
test seems to be preferred. For unequal moderate up to large sample sizes
the efficacies of the three tests (MWT, THT and HNT) can be computed for
the extreme cases (one difference ;.1 — 6; # 0, the other differences zero)
and possibly for the equispaced case. Then it might be that a decision for

one of the tests can be made.

3. GENERALIZED MWT- AND THT- STATISTICS

Consider now the test problem (Hy, H;p). The generalized Mack-Wolfe type

and the generalized Tryon-Hettmansperger-type statistics are given by
-1 c—1
GMWT = Y wuiSu.iic1 + Y wniS(e..isni
i=1 i=1
-1 c—1
GTHT = Y wriliii+ > wriliin
i=1 i=l
with the Welght vectors Wy = (le, e ,ch_l) and Wwr = (le, - ,ch_l),

14



respectively. Now, we determine the weights in such a way that the efficacies
of the tests based on GMWT and GT HT become maximal.

Let be ny;, = (M1, - -« yMme—1)  and gy = (71, - -, Nre—1), Where

EH1 Sq.. z)z—|—1)‘A o if i<l
Nymi =
S(c 4+1) )|A =0 if > la

(
En,(
" o 1(Um—|—1)|A 0 if 1<l
T: — . .
EHl( +1 z)|A 0 if 1 Z l

and Ey, denotes the expectation under Hyp. The covariance matrices of
the substatistics S1)2, ... , S(t..i=1)1y S(edt )iy - -+ s Se(e—1y and Ui, ... , U1y,
Uit - -+ ;Uce—1, are denoted by X, and 3y, respectively.

Let , w and ¥ be written for n,,, wy, Xy or Ny, wr, Xp. Then the
efficacy is given by

_ (w'n)?

T Wlw

where K,, may be Ky, or K7, Assume, that X is a regular (c-1,c-1) matrix,

then the efficacy becomes maximal if

w=w? =% (10)
(cf. Rao 1966, ch. 1f.1). Given the vectors n and €, the maximal achievable
efficacy is

Krrlnaz — ,’712717’.

In the following theorem it is shown that K'** is the same for the tests based
on GMWT and GTHT, each test statistic with its optimal weights.

For simplicity, denote the spacings of the alternative by ¢; := 6,11 —6;,7 =
1,...,c—1 and recall that C%(f, g) = d*(f,9)/I(9)-

THEOREM 2: The maximal achievable efficacy is the same for the tests
based on GMW'T and GT HT, and it is given by

NS M = n’TEElnT =

c—1
1
C%(f,9) Z(S(SN (N — N)—i—NQZéfNi(N—Ni)
1<j i=1

15



Proof: 1. For the Mack-Wolfe-type test the asymptotic covariance matrix

Yy = (UM,ij)i,jzl,...,c—l is given by

(7(21...i)z'+1 if 1=7<I

2 . . .
of . if 1=9>1
Onij = (c...i+1)2 J =z

p if i=1—1,j=1 or i=lj=1—1
0 else,
where
04 i1 = NiNianial(g)
(7(20...z'+1)z' == (N = Ni_1)(N = Ny)nil(g)

p = lel(N - Nl)nlj(g) = covasy(S(l...lfl)la S(c...H—l)l)

(cf. e.g. Puri, 1965). The inverse matrix X;; = (aﬂ)i,jzl,___,c_l is given by

[ if i=j<i—1
O(1...4)i+1
021 if i:j2l+1
(c...i+1)i
Gij:<51 if i=5=101-1
N = if i=j=1
D
—% if i=1—-1,7=1 or i1=0L5j=1—-1
L0 else,

where

D = di_id;—p* = Nn}N,_1(N — N))I(9g)
di—1 = Nl—lNlnlI(g)
d = (N—=N_1)(N-=N)nlI(g).

16



The components 7,2 =1,... ,¢— 1, of ,, are given by

e = N VPnig[— Z Ok + 0ia V] - d(£, 9)
k=1

= N"Pniy ) 6Ni-d(f,9)
k=1
=: ,U(l...i)i—i—l if ¢ S [—1 and

mei = N7YPni[= ) Oeng + 0;(N — Ny)] - d(f, 9)

k=i+1
c—1

= —N7'’n;> 6(N = Ny) - d(f,9)
k=i
= Wit i 1>1

With the optimal weights w3, from (?7) ,

( l;gl...i)H—l T <l-1
#El'"%)l- ¢ l
o C...7 3 i Z' >
]\52 == < (c i41)4 '
Dﬂ(1 d-1)0 T Du(c 1)1 if i=1-1
L dD Ke..a+1)t — 5#(1...1—1)1 if 2=1
the efficacy becomes
-2 2 c—1 ,2
M. a)iv1 M it1i  dy dy_,
K}\"/}?:f = Z (2 i) + gc i )z. + Bﬂfl...lfl)l + D ,u(c 14+1)l

o .
i=1 (L)l =g

—2£u %
D (1. d=1)M(c..+1)1

-2

1 i
- N; ”;}V [Zéka

1 n;
N ;1 (N = Ni_1)(N = N;) Lz_:é’“(N_N’“)
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-C*(f,9)

1 N-— Nll
e [wak

2
+ NQN Nl [2_;6k (N—=Ny)| -C*(f,9)
1 -1 ¢—1
2
+ QFZZ(S’“deN N;) - C*(f,9)
k=1 j=I
1 1-2 -2
= VN [Z&Z?Ni(Nl_l—Ni)+2 > 66;N;(Nies — Ny) | C*(f, 9)
-1 =1 1,j=1,1<j
1
S @MV - N) +2 Z 8:0;Ni(N = N;) | C*(f, 9)
N(N Nl !z l i,j=1,4<j

2

C*(f,9)

1 N— N
_ 0N,
+N2 N, [Zkk

N2 N N [Z 0e(N — Ni) CQ(f, 9)
9 -1 c-1 -
27 2 O Ok Ne(N = Nj)CP(£, 9),
k=1 j=I

where the identity Y n;/(N;21N;) = (Ne—Ni—1)/(NeN,—1), 1 <t <k <,
is used. Summarizing the terms of the first and the third row and also the

terms of the second and fourth row we obtain

-1 -1
1
Kyn = N2 [Z(S?Ni(N_ Ni) +2 Z 8:0;Ni(N = N;) | C*(f,9) +
i=1 i j=1,i<j
c—1 c—1
to [ 2L NN =N +2 Y 6NN = Ny)| C*(f,9) +
il i =1i<
-1 c-1
2225’“5]\[’9]\[ N)CQ(f; 9)
k=1 5=l
2 RS 2
= |57 2 G0N(N = N)) + 5 DO NN — Ni) | C°(,9).
i<j =1
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2. For the Tryon-Hettmansperger-type test statistics the asymptotic co-

variance matrix Xz = (or;;) is given by (see also Puri, 1965):

3,j=1,...c—1

rrLirLiH(rLi + Mig1) if j=1
—MiMi 1M g2 if j=i4+1 and 1#1-1
orgi; =1(9) - § —ni_1nini1 if j=i—1 and ¢#1
Ng—1 MMy 1 if j=i—1=1—-1 or j=i+1=1
0 else.

In order to calculate optimal weights the inverse 7' := (0 )ijet. o Of
37 is needed. This matrix can be obtained by using arguments of Fiedler
(1972, Theorem 12.2) or by using the result for ordered alternatives (cf.

Késsler and Biining, 1996) where only two entries in ¥ are changed. Define

N;(N — N;) if i<j<l or I<i<j
N;(N = N;) if i>j>1 or [>i>]
~Ni(N=N;) if i<l<j
—N;(N—=N;) if i>1>]

Then the entries aéj are given by

g 1 ]
O’T I

I(g) Nninipingnj

Since nr; = N’l/annjH\(Sj\ the optimal weights are proportional to

c—1

w;};t e 21 E :a’ij|5j|
N32nin,, —
]:

and because of K7'1" = 137 7 the maximal achievable efficacy becomes

c—1

max 2 1
Krn' = |2 Z5z’5sz‘(N —N;) + N2 Z@QNi(N - N) | C*(f,9)- 1
i<j i=1
Remarks:
1. a) In the special case of 6, # 0,6; = 0 for j # k, optimal weights for
the THT-test can easily be obtained by
1

M1

*,0pt __
Wp; =

ik -
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b) In the special case of |0x| = 6,k = 1,...c and equal sample sizes optimal
weights for the MWT-test are

. c if i<l—1 or i>1
w;{;;ptzzz—c (c=1+1)Q2—¢c) if i=1-1
Il(c—20+2) if =1

The formulas for the optimal weights of the MWT-test in the special case
1.a) as well as for the THT-test in the special case 1.b) are more complex
and therefore omitted here.

2. Generalized HNT-tests (GHNT-tests) can be defined in a similar way.
In the light of theorem 1 it can be seen that to each weight vector wr of the
GTHT-test there exists a weight vector wg of the GHNT-test and vice versa
so that these tests are asymptotically equivalent. Therefore the maximal
achieveable efficacy for the GHNT-test is the same as for the GTHT-test.

4. THE CASE OF UNKNOWN PEAKS

Assume now that the alternative is given by H;c, i.e the peak [ is unknown
and it has to be estimated from the data. We follow the proposal of Chen
and Wolfe (1990) and Chen (1991) who consider only Mann-Whitney scores.
For the balanced design, i.e. n; = ...n,, they determine asymptotical critical
values of the statistic

MW ey '= max MW/

l=1,...,c
where

. MW, — EMW)
MWE= v araawyyre

are the standardized Mack-Wolfe statistics with a given peak [. Now we apply
this idea to the Mack-Wolfe-type statistics with arbitrarily chosen scores, cf.
section 2.1.

Let MW, be the Mack-Wolfe type statistic with peak | and MWT}* the

standardized statistics

mwry = MWL

oM,
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where 07, is given in 2.2. The cases | = 1 and [ = ¢ also make sense since one
of the sums in the MWT-statistic vanishes. The formula for o7, remains
valid if we set Ny = 0. Then the peak [ is estimated by

[:= arg max MWT}

l=1,...,c

and the statistic

CWT := lmax MWT

has, under Hy, the same asymptotic c.d.f. as the MW, ,-statistic. The vec-
tor MWT* .= (MWTY,... , MWT?) is, under Hy, asymptotically normally
distributed with expectation vector equal to zero and a covariance matrix
which depends only on the sample sizes n; (cf. Chen, 1991). For equal
sample sizes the critical values of Chen (1991) can be used.

Let be x = (1,... ,2.1)" and X}, the covariance matrix of the statistic
MWT* which is assumed to be regular. Then, for 7 > 0,

. det(X%,)~1/2 1 .
PO(l:Ifl.E.ic}il MW <) / / / (2m) (e 1)/2 exp(—ﬁxTEMlx) dx.

Let 71, be the (1 — a)-quantile of this c.d.f. Hy is rejected in favour of Hi¢
if CWT > 11_,. This test is called Chen-Wolfe-type test (CWT-test).
Denote by jipr; the Ith component of the expectation vector of MWT*
which is given by (??) and let p = (uap1,-.. , are—1) = p(A). Then the
asymptotic power function of the Chen-Wolfe-type test is given by
B (D) = 1 — det(X%,) 712 (2m) (=72 (11)
f'rl a f’n a f’rl a exp %(X— H)szw—l(x_ /J')) dX.
To get an impression of the shape of this function we consider the case ¢ = 3

separately. The case ¢ = 2 is trivial since it boils down to comparing a

two-sided power to a one-sided one.
In the case ¢ = 3 the statistics MWT;,l = 1,2, 3 are given by

MWT, = Sgaa1+ S3)2
MWT, = Say+ Sa)p2
MWT3 = S(12)3 + 5(1)2 ~ —MWT1

21



with the asymptotic variances

3
1
o? = 0%/[,1 =1(9) [g(N3 - an’)] = 0%/1’3 =: 02

0y =0y = I(9) [g (N3 —n} —nj + (N — N1)* = n3 —n3) + 2ninang
= I(g)na(n? + ning + ngns + nj + 2nyns)

= I(9)Nns(ny + ng3).
The asymptotic covariances are given by
coo(MWTy, MWTy) ~ —cov(MW T3, MWTy) ~ I(g)Nng(ng — ny).
Therefore,

3NTL2

1/2
3 3 (ng —m)
(N3 — 320 nd)(n1 + n3)
~ —cov(MWT;, MWTY).

cov(MWT], MWTy)

Given nq, ng, n3 the covariance matrix X3, is regular (n; # 0) and the asymp-
totic power can be computed from (??) numerically. Here we only consider
the case ny = n3, ny chosen arbitrarily.

The asymptotic null distribution of CWT can easily be calculated (7 > 0):
P,(CWT <71) = P,(max |MWT1| MWT,) <71)
~ —3(#+u?)
/_ ) /_ 27T dt du
= O(=7))®(7).

The (1 — a)-quantile of this c.d.f can be computed numerically. For o = 0.05
we obtain 71_, = 2.123 which coincides with the value calculated by Chen
(1991) via simulation.

Recall that 6; = 60,1 — 6;,i = 1,2. Under H; we have

Pg(CWT < 11_4) = Pg(max(|MWT,|, MWT,) < 71_4) ~

(cp(ﬁ_a By (- ﬂ)) B(ri_q — 2)

1 01 02
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Figure 1: The asymptotic power of the MWT-test and CW'T-test with known
and unknown peaks, respectively, if ¢ = 3,1 =2
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where

M1 = Eo,asy(MWTl)

Mo = Ee,asy(MWT2)

Let A’ = A(51 +52)()\1/2)

(01n11m9 + domang + (61 + d2)ninz)d(f, g)
(01 + d2)n1 (1 + n2)d(f, 9),

(51n1n2 - 52”2"3)d(f, 9)

Sl Sl 3o

—=(01 — d2)nuinad(f, g).

3

12C(f,g) and A" = A(81—32) ((AiX2)/2)/2C(f, g).

Then the asymptotic power of the CWT-test can be determined in terms of

A" and A":

BALA"Y =1 — (B(11_g — A) — B(—T1_q — A)) B(11_q — A"

This asymptotic power has a lower bound which depends on only one vari-

able, either A’ or A":

BAY, A" > 1= (B(ri_q — A) = B(=71_q — A')) =2 7, (A)
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and
BALA") > 1= (@(T1-a) — P(—T1-0a)) 2(T1—a — A”) =: 12(A")

The lower bound in the last inequality is attached if A’ =0, i.e. [ = 2 and
|01| = |d2]. Let us compare the peak-unknown asymptotic power 7, with the

peak-known asymptotic power, which is is for [ = 2 given by
BX g(A") =1 — (2o — A").

Of course, the asymptotic power is larger if the peak of the umbrella is known,

as illustrated by figure 1.

Remark:  The idea of Chen and Wolfe (1990) and Chen (1991) can also be
applied to THT- and H NT-statistics. For ¢ = 3 and n; = ng3, ny chosen
arbitrarily, the tests based on the corresponding statistics max;—; . .THT
and max;—;,.. . HNT have the same asymptotic power as the CWT-test. It
can be shown that for unequal sample sizes, n; # nj3, the test based on
max;—1,. . HNT is always slightly better than the CWT-test and the CWT-
test is always better than the test based on max;—y . . THT.

Another proposal for estimating the unknown peak [ is given by Hothorn
and Liese (1991).

5. OUTLOOK

The goal of this paper was threefold, first, to demonstrate, that for the
test problem (Hy, H14) the MWT-tests are also asymptotically serious com-
petitors to the other existing tests, second to show, that for the test problem
(Hy, H,p) the tests based on GMWT and GTHT, each test statistic with
optimal weights, are asymptotically equivalent, and third, to compare the
peak-known with the peak-unknown asymptotic power.

Analogously to the case of ordered alternatives the score generating func-
tion (1) can be chosen in such a way that the coefficient C(f, g) becomes
large (Biining and Kossler 1999). Thus a test with comparable high power
is obtained.

If the practising statistician has no exact information about the underlying

distribution of his data an adaptive test can be applied which takes into
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account the given data. Examples of such adaptive tests based on the concept
of Hogg et.al. (1975) are given by Biining (1996) and Biining and Kossler
(1998).
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