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For the c-sample location problem with ordered alternatives the test of Jonckheere
(1954) and Terpstra (1952) is a well-known competitor to the parametric test intro-
duced by Barlow et.al. (1972, p.184). Generalizations of the Jonckheere-Terpstra
test are proposed e.g. by Puri (1965), Tryon and Hettmansperger (1973) and Biining
and Kossler (1996). All these tests are based on the pairwise ranking method. In
the present paper their efficacies are compared. The Jonckheere-type and Tryon-
Hettmansperger-type test statistics can be further generalized by introducing
weight coefficients to the substatistics. For the case of a specified alternative these
weights are determined to obtain maximal efficacies. It is shown that the maximal
achievable efficacies in the defined classes of generalized Jonckheere-type tests and
Tryon-Hettmansperger-type tests always are equal.

KEY WORDS: Asymptotic Relative Efficiency, Jonckheere-Terpstra test, -
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1. INTRODUCTION

Let be X;1,...,X,, % =1,---,¢, independent random samples from a
population with an absolutely continuous distribution function F(z — %;),
¥; € R. In the following we assume that F' is twice continuously differen-
tiable on (—o00, 00) except for a set of Lebesgue measure zero; f' denotes the
derivative of the density f where it exists and it is defined to be zero, otherwise.

Furthermore, f' is assumed to be bounded. We wish to test
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against one of the following alternatives
HIAI ﬁls...SﬁCWith’l91<’l9¢OI'

Hip: ¥ <...<9, with ¥, <9, and specified 9 = (94, ... ,7,.).

The nonparametric test of Jonckheere (1954) and Terpstra (1952) is one of
the most familiar tests for the treatment of these test problems. In section
2 some generalizations of the Jonckheere-Terpstra test are considered. Their
efficacies depend on the underlying density f and the optimal score function ¢
as well as on the sample sizes and alternatives. In this paper the optimal score
function is assumed to be fixed. Only the effect of the sample sizes and the
alternatives on the efficacies and the asymptotic relative Pitman efficiencies
(ARE) of different types of statistics is studied.

In section 3 the test statistics J71 and 77 are further generalized by intro-
ducing weight coefficients for the substatistics. For the test problem (Hy, H1p)
the weights can be determined in such a way that the efficacies become max-
imal. It is shown that the generalized versions of the tests JT and TT, each
of them based on the ”optimal” weights, always have the same efficacies and

therefore they are asymptotically equivalent in the sense of ARE.

All the statistics considered are based on ranks of paired samples. Other
types of rank statistics are obtained if the ranks are taken over all ¢ sam-
ples. From Koziol and Reid (1977) we conclude that they are closely related
to the statistics considered in this paper. Some types of such statistics are
investigated by Fairley and Fligner (1987). The case of equal sample sizes was
studied by Govindarajulu and Haller (1977) and Shirahata (1980). For the test
problem (Hy, H,5) Govindarajulu and Haller (1977) obtained optimal weights
which yield the same maximal efficacy as we obtained for the tests considered

here.

Kumar, Gill and Mehta (1994) and Kumar, Gill and Dhawan (1994) con-
sidered linear combinations of two-sample statistics where the medians of sub-
samples of odd size not less than 3 are ranked. Since the use of medians
reduces the effect of extreme observations it is clear that their tests, called B,
and W,,, respectively, are suitable for long-tailed distributions. But for this



situation a much simpler JT-test with appropriate scores, e.g. the JLT-test of
Biining and Késsler (1996), is a very good competitor because for equal sam-
ple sizes and equally spaced #-values we get ARE(JLT, B.) = 1.01 if F is the
doubleexponential and ARE(JLT, B.) = 1.07 if F is the Cauchy distribution.

2. SOME TYPES OF RANK TESTS

We consider so called Jonckheere-type tests (see Biining and Kossler (1999)),
Puri-type tests (cf. Puri (1965)) and Tryon-Hettmansperger-type tests (cf.
Tryon and Hettmansperger (1973)). All these tests are generalizations of the
Jonckheere-Terpstra test (see Jonckheere (1954) and Terpstra (1952)). The
statistic of the Jonckheere-type test is defined by

JT = Sa..i-;
1=2

with

N;

St.i-1yi = Ni - Z an; (lez),

k=N;—1+1

ay,(k) € R, N; = 22:1 n;, 1 <i < cand R¥ , is the rank of the kth obser-
vation in the pooled ¢ samples Xy1,..., Xy, ...y Xj, oo, Xine Sy
is a two-sample linear rank statistic computed on the sth sample versus the

combined data in the first (i — 1) samples.

The Puri-type test statistic is defined by
PT =) U
i<j
with

ni+n;

Uj=(ni+n;) Y tnn;(RE),

I=n;+1

tni4n; (1) €ER,1<4,j <¢, and Rl is the rank of the Ith observation in the

combined two samples Xji, ..., Xip, and Xj1, ..., Xy, .
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The Tryon-Hettmansperger-type test statistic is given by
c—1
TT =) Uiin
i=1
with U; ; defined as above.

The (exact or asymptotic) associated a-level tests reject Hy in favour of H;
(Hy4 or Hyip) if JT, PT or TT are at least as large as the upper a-quantile of
the (exact or asymptotic) null distribution of JT, PT or TT, respectively. For
convenience the corresponding tests are called JT-test, PT-test and TT-test,

respectively.

It is assumed that the scores ap/(-) in the definition of the test statis-
tics above are generated by an absolutely continuous score function ¢ with
limp oo apr (1 + [uM]) = ¢(u), 0<u <1, ¢ e Ly(0,1), where ¢ is associ-
ated with a density function g given by
¢(G () "
9(G=H(u))

The function ¢(u,g) is the so called optimal score function of the density

¢(u, ) := p(u) = -

function g with quantile function G~ and it is assumed to be fixed throughout

this paper. Define

0= | S(ug)- FFIW)du  and  I(g) = | ' $2(u,9) du,

where I(g) is the Fisher-Information of the density function g defined by
(1), ¢' represents the derivative of ¢ almost everywhere. It is assumed that
fol é(u,g)du =0 and I(g) < co.

Note that the PT- and TT-statistics are special cases of the statistics T of
Tryon and Hettmansperger (1973, cf. their equation (2)) whereas J7T is gen-
erally not. In the latter statistic the ranks are taken over ¢+ samples whereas
in the former one they are taken over two samples only. However, it can be
shown, that the J7T'- statistics can asymptotically be described as a linear com-
bination of Chernoff and Savage (1958) statistics. In this regard the present
paper generalizes results of the paper of Tryon and Hettmansperger (1973) to

unequal sample sizes.

Let be A > 0, N = N, and {(V1n,...,Yn)} a sequence of "near” al-
ternatives with NO;ny/A = 6;, 6; < ... < 0., 6; < 6. Denote
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6= (6,...,0.),n= (ny,...,n.) and assume without loss of generality 6; = 0.
Under the further assumptions

min(ni, ... ,ne) — 00, %—>)\Z~, O< <1, i=1,...,c (2)

the test statistics JT, PT and TT are, under Hy and H; (His or Hip),
asymptotically normally distributed with some parameters (0,0%) and -

(ur, 0%), respectively. Obviously, these parameters are also dependent on A,
n and 6.

Recall that, under some regularity conditions, the efﬁcacy of a statistic 7" is
defined by the fraction Kp = (*£ (0 )) with p/-(0) = d“T Y a—o (see Noether
(1955)). Under the assumptions above the statistics JT, PT and TT satisty
the regularity conditions.

3. GENERALIZED JT- AND TT- STATISTICS

Consider now the test problem (Hy, Hig). The generalized Jonckheere-type

and the generalized Tryon-Hettmansperger-type statistics are given by

GJT = Z WriS(1..i-1)i

GIT = Z sz'Uz',z‘+1

with the weight vectors w; = (wyo,...,wys.) and wr = (wWr1,... ,wWre—1),
respectively. Now, we determine the weights so that the efficacies of the tests
based on GJT and GT"T" become maximal.

Let be n, = (nso,-.- ,m5e) and  mp = (Nr1,... , Pre_1), Where

d

d
N = dA —Em (Ui,i—H) |A:0

EHl(S(l 4—1) )|A 0 and nri = IA

and Ey, denotes the expectation under H;.

The covariance matrices of the substatistics (S(1)2,...,S01..c-1)c) and -

(Ui2,...,Uc.1,) are denoted by 3; and X, respectively.

5



Let n, w and X stand for n;, w;, X, or p, wy, . Then the efficacy is
given by

(w'n)? 3)

K= .
wXw

Assume, that ¥ is a regular (c-1,c-1) matrix, then the efficacy becomes

maximal if
w = w = 2’177

(see Rao (1966, p.48)). Given the vectors n and 6, the maximal achievable

efficacy is

Kmaa: — 7’,2_177-

In the following theorem it is shown that K™ is the same for the tests
based on GJT and GTT, each test with its optimal weights.

Theorem 1: The maximal achievable efficacy is the same for the tests based
on GJT and GTT, i.e.

77{72;1"] = W}E;ITIT
2 (.9
= S s 0O — (N — ) - LD
i<j
c—1
1 d(f.g
3 > (611 — 6:)°Ni(N = N;) - /:9)

=1

Proof: 1. For the Jonckheere-type test the covariance matrix is diagonal and

the optimal weights are given by

opt __ lu’(l...i—l)i
2

w i )
! O(1..i-1)i
1=2,...,c, where

i—1

H@..i-1) = N_l/z[— Z eknkni -+ QZNZ_an] . d(f, g)
k=1
i—1

= N—1/2n,- Z(0k+1 — ek)Nk ; d(f, g) and

k=1

0h.icy = NiNioang - 1(g)
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(see Biining and Késsler (1996)). With the optimal weights w?" the efficacy

becomes

c 2
KTa$ _ Z(;...zl)z
—2 “(1l..i—1)
2
1 [ &(f,9)
~ N4 Noh, L_l(ek“_e’“w’“] 1(g)
2 d*(f, g
— s X B~ 00— NN - ) T
1<j 9
1 d*(f,9)
+m;(ez~+1 0:;)>N;(N — N;) 1)

after having rearranged the sums and by using the relation

: N=N,_
> = =Lofor [=2,...,c¢

1=l N;_1N; N-N;_3

2. For the Tryon-Hettmansperger-type test statistics the covariance matrix

Y1 =(01,)ij-1.... i8given by (see also Puri (1965)):

N1 (N + Nig1) if j=1
o = I(g) =M 1Mt 2 if j=i+1
i —M 1My if j=i—1
0 else.

In order to calculate optimal weights the inverse 3,' of X7 is needed.

21_11 = (O-;-Z)i,jzl,... ,c—1

Theorem 12.2) where

can be obtained by using arguments of Fiedler (1972,

i _
O-T —

I(g) Nniniingmjg

1 1 N;(N — N;) if 1<y
N;(N — N;) else.

Optimal weights are proportional to

1
opt ,__
C()Tp; B m ]EZI N N N) j+1 — 0 E N N N 0]_|_1 0; )}

j=i+1



The maximal achievable efficacy becomes

K7 =np¥p'ng =

2 d*(f,
= ;j(em —0;) (0541 — 0;) Ni(N — N;) - I((g)g) +
R (£, 9)
7 O = PNV =)
= Ky g

Corollary 1: The test statistics J7', P1" and 1T have the efficacies K;r =
KPT = AJT(n, 0) . C(f, g) and KTT = ATT(H, 0) . C(f, g), where

3 Ok (N + Ny — N)P?
A8 = TN - )
(325, Oins(niy — mip) + ocncflnc]2
N - [ch;f n’ini+1(ni + Ni4+1 — 2ni—|—2) + ncflnc(nc—l + nc):|
and C(f, 9) = d*(f,9) - [I(g)] "

Proof: The assertion for JT' and 71T follows easily from inserting w =

ATT(II, 0) =

(1,...,1) in (3). The rest follows from the asymptotic equivalence of JT'
and PT. 1

Corollary 2: In the special case of equal sample sizes n; = ...n. =: m the

efficacies are given by

3- [ hath(2k—1-)

KJT:KJT(G) = 02_(02_1) C(fag)
and
02
Krr = Krr(0) = —Cc -C(f,9)-

Corollary 3: In the special case of equal sample sizes and equally spaced 6-
values, 0,1 —0; =6,i=1,...,c— 1, the efficacies are given by K;7(0) =
c— C c— 2

(D52 C(f,9) and Krr(0) = 52262 - C (£, g).

Corollary 4: (see Tryon and Hettmansperger (1973, Theorem 3.4)) In the
special case of equal sample sizes and equally spaced @-values optimal weights

: i t . .
are proportional to w7 =1 and w’ =i - (c —1).
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In the last very special case we have K;r > Kpp if ¢ > 4 and the JT-
statistic is optimal in the class of the generalized J7T'- statistics.

Now, let us present some results on the asymptotic relative efficiency (ARE)
of the tests JT and TT. Under the assumption (2) the ARE of the tests JT
and TT is given by

ARE(JT,TT) = Tim 2226

N—o0 TT(n, 0)
(see Noether (1955) and Héjek and Siddk (1967, ch.7.2.1)). The evaluation
of Ayr(n,0) and Arr(n,0) is generally rather difficult since there are subsets
©',0" of the parameter space © = {0 : 6, < ... < 6,6, < 0.} with
Ajr(n,0) > Arr(n,0) for 8 € © and Ajr(n,0) < Arr(n, ) for 8 € 0.
But if the alternative is restricted to some subset ©; C © with ©; C © or

O, C ©" just one of the inequalities above holds. In the case of equal sample

sizes we obtain:

The ARE(JT,TT) is maximal for 0, =---=60¢ <0z =---=0.if cis
even and for ¢, =-.- = 0051 < 0# =...=4§, if cis odd. It is then equal to
3 ct if ¢ is even
ARE™@(JT,TT) = ————— -
( ) 8(c® —¢) {(c2 —1)? ifcis odd.
The ARE(JT,TT) is minimal for 6, = --- =60, 1,6, < 0. and it is then equal
to
) -1
ARE™ (T, 7T) = =1
clc+1)

Table 1 represents ARE-values for some subsets of the parameter space ©
with ¢ = 4,5 and 6.

In most cases ARE(JT,TT) > 1 holds and the ARE™"(JT, TT) is much
closer to 1 than ARE™*(JT,TT). Therefore, for the general alternative H; 4,
the JT-test should be preferred.



Table 1: The ARE(JT,TT) in the case of equal sample sizes

c subset of © ARE(JT,TT)
4 0 equally spaced 1.111
01 = 92 < 03 < 04, 94 = (\/%5_3) 1.000
01 =0y < 03 < 04, 0, = 203 1.225
0, <0y = 03 < 04, 0, <0, 0.900 (mln)
0, =04 < 03 =0, 1.600 (max.)
5 0 equally spaced 1.250
0, =6, <05 <6y <65, 6; = %31’4_2 1.000
0, < 0y < 65 <6y =05, 05 = 3_933 1.000
0, =06, < 03 <0, < 05, 05 =20, 1.250
01 < 02 = 03 = 04 < 05, 01 < 05 0.800 (mln)
01 = 02 < 03 < 04 = 05, 01 < 05 1.800 (max.)
6 0 equally spaced 1.400
01 = 02 < 03 = 04 < 05 < 065 06 = \/%5_5 1.000
01 < 02 S 03 = 04 S 05 = 067 06 = 873?/2% 1000
0 =0, <0;3=0,<0;< 067 O = 205 1.207
01:92§03:04S05:06 01<05 1.829
0, <b0,=0;=0,=05<0s 0, <8 0.714 (mln)
01 == 92 == 93 < 94 == 05 == 96 2.314 (max.)

4. CONCLUSIONS

The goal of this paper was twofold, first of all, to show, that for the test
problem (Hy, H,p) the tests based on GJT and GTT, each with their optimal
weights, are asymptotically equivalent, and second, that for the test problem
(Hy, Hi4) the JT-test is a very good competitor to the other existing tests.
For equal sample sizes and equally spaced alternatives all the tests, the JT-
test, the GTT-test with the weights i(c —4) and the test of Govindarajulu and
Haller (1977) with appropriate weights are optimal in the sense of ARE.

If the choice of the score generating function (1) is based on f in such a way
that the coefficient C'(f, g) becomes large (see Biining and Kossler (1996)) we

obtain a test with comparable high power.

But usually the practising statistician has no exact information about the

underlying distribution of his data. Thus an adaptive test should be applied
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which takes the given data into account. Examples of such adaptive tests
based on the concept of Hogg et.al. (1975) are given by Biining (1999) and
Biining and Kossler (1998).

Applying this idea now we can obtain a ”"double-adaptive test”. On the
one hand the type of the statistics (Jonckheere, Tryon-Hettmansperger, RM
of Fairley and Fligner (1987) or possibly other) is chosen with respect to the
sample sizes nq,...,n, and to the subset of the parameter space. On the
other hand the choice of the score generating function (1) for the chosen type
of rank test is based on some measures classifying the (unknown) underlying

distribution function.
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