Temperature Dependence of Dark Signal for Sentinel-4 Detector

Ralf Reulke^{1,2}, Michael P. Skegg³, Rüdiger Hohn³ ¹German Aerospace Center, ²HU-Berlin, ³Airbus Defence and Space 26 November, 2019 The 5th Asian Conference on Pattern Recognition (ACPR 2019) WS8: Data Processing Chain for Airborne and Spaceborne Sensors

Motivation

- Dark signal is an important parameter for sensor performance
- Has a remarkable temperature dependence
- Optimisation is an important task for scientific detector / sensor
- Modelling is significant for sensor design and calibration
- Modern calibration approach is based on models & measurement / recognition of deviations
- Dark signal measurement was done with Sentinel-4 FPA
- Model test and recognition of deviations from model behaviour

Overview

- Senstinel-4 mission, detector, verification
- Detector Signal Model
- Dark Signal Calculation
- Measurements
- Results
- Discussion & Outlook

Overview - Sentinel 4 Mission

- Part of ESA's COPERNICUS Program (Environmental Surveillance)
- Sentinel 4 → Atmospheric Surveillance
- Hyperspectral Instrument with 2 detectors:
 - UVVIS (305 nm ... 500 nm)
 - NIR (750 nm ... 775 nm)
- Geostationary orbit above Europe
- East-West Scan in frequency of 1h

Sentinel 4 QM Verification Campaign @DLR Berlin

- Verification of Opto-Electronic Payload
- First "Marriage" of FPAs and Front End Electronics after Manufacturing
- Challenging of Opto-Mechanical Boundaries
- Deployment of Thermal Vacuum Chamber (TVC):
- Operating Temperature of Detectors / FPAs = 215 K +/- 5 K
- AR-layers on detectors (without cover glass)
 - Sensitive + Hygroscopic

Sentinel-4 detector design of NIR and UV-VIS detector.

- Single point read out on NIR detector
- Separated read-out regimes on UV-VIS detector for
 - Gain adjustment (UVVIS 1)
 - Faster read out (UVVIS 2)

Measurement Setup

- Equal optical path lengths for REF-, UVVIS-, NIR-detector
- Remote flat field Illumination via integrating sphere + filters (Spectr./ND)
- Additionally 635 nm Laser
- Pressure ~ 5*10^-6 mbar
- Two different temperature circuits: FPAs:

210, 215, 220 K and 273, 283, 293 K FEEs and FSE constantly 293 K

- First "marriage" of FPAs and FEEs/FSE
- Highly automated test runs

7

Measurements & Results

Performed Test	Derived Analyses	Result
Linearity	Linearity	✓
	FPS gain / conversion factor	\checkmark
	Full Well Capacity (linear)	\checkmark
	Full Well Capacity (absolut)	\checkmark
	Signal to Noise Ratio	\checkmark
	Charge Transfer Efficiency (Serial)	\checkmark
	Charge Transfer Efficiency (Parallel)	\checkmark
Average Dark Signal	Average Dark Signal	\checkmark
	Dark Signal Non-Uniformity	\checkmark
	Read-out Noise	\checkmark
	Dynamic Range	\checkmark
Memory Effect	Memory Effect	\checkmark
Cross – Talk	Channel to Channel Cross Talk	\checkmark
Stability over 24 h	Stability over 24 h	\checkmark
Random Telegraph Signal	RTS and pixels with high dark noise	\checkmark
FPA LED Calibration	FPA LED Calibration	\checkmark
Quantum Efficiency	QE	 ✓ (verification of e2v test)
Photo Response Defects	Photo Response Defects	 ✓ (surface fit correction)
	Photo Response Non-Uniformity	✓ (surface fit correction)

Detector Signal Model for the Average Signal

$$\langle s \rangle = \eta_{DV} \cdot \eta_{V} \cdot \eta_{\lambda}^{qu} \cdot \tau \cdot A_{pix} \cdot \frac{\lambda}{hc} \cdot E + DS$$

$\langle s \rangle$	Camera output signal [DN]	
h	Plank's constant [<i>Js</i>]	
С	Speed of light $[m/s]$	
λ	Center wavelength of incident light [m]	
$G_S = \eta_{DV} \cdot \eta_V$	Overall system gain $[DN/e^{-}]$	
E	Irradiance at detector level[W/m^2]	
$ au_{int}$	Integration time [s]	
A _{pix}	Pixel area [<i>m</i> ²]	
DS	Dark signal [<i>DN</i>]	

- Three noise-components:
 - photon noise,
 - dark current noise, and
 - read-noise.
- Photon and dark current noise are Poisson distributed.

$$\sigma_s^2 = \eta_{DV}^2 \cdot \eta_v^2 \cdot \left(\left\langle n_{el} \right\rangle + \left\langle n_{el}^D \right\rangle \right) + \eta_{DV}^2 \cdot \sigma_k^2.$$

• Or

$$\sigma_s^2 = G_s \cdot \langle s \rangle + \eta_{DV}^2 \cdot \sigma_k^2$$

 This linear equation is a relation between variance of measured noise and averaged signal (PTC -- Photon Transfer Curve).

Dark Signal Calculation

- Variation of dark signal $D = G_s \cdot \langle n_{el}^D \rangle$ by either the integration time or the operating temperature (\rightarrow PTC!)
- Slope of dark signal dependence as a function of integration time

$\sigma_D^2 = D$	Variance of the dark signal
$D = \tau_{int} \cdot D_R$	Dark signal depends from
$ au_{int}$	integration time in [s]
D_R	average dark current rate [e/s]

$$D_{R}\left[nA/cm^{2}
ight] = 10^{9} \cdot \left(Q \cdot D_{R}\left[e/s\right]\right) / A_{pix}$$

$$D_{R}[e/s] = D_{R}[nA/cm^{2}] \cdot 10^{-9} \frac{A_{pix}}{Q}$$

Temperature Dependence of the Dark Current Rate

Model from Janesick $D_R = 2.55 \times 10^{15} A_{pix} \cdot D_{FM} \cdot T^{1.5} \cdot e^{-E_g/2kT}$ Empirical model from Skegg $D_R = D_{FM}^* \cdot T^3 \cdot e^{-6400/T}$ with $D_{FM}^* = D_R (T = 300K)$ $A_{pix} = 27.5 \cdot 10^{-4} \times 15 \cdot 10^{-4}$ Pixel area $[cm^2]$ D_{FM} DC figure-of-merrit @300K in [e/s] or $[nA/cm^2]$ $E_g = 1.1557 - \frac{7.021 \times 10^{-4}T^2}{1108+T}$ Silicon bandgap energy [eV] $k = 8.6173324 \times 10^{-5}$ Boltzmann's constant [eV/K] $Q = 1.602176565 \times 10^{-19}$ elementary charge [C] = [As]

- Measurements of the dark current with an integration time of $\tau_{int} = 30s$
- Continuous cooling from 293 K to 215 K over a period of 12 hours
- After 10 hour cooling stopped and temperatures increased again
- Measurement mode was Long Dark (with separate read-out of image and store areas)
- 42.723 temperature measurements for NIR and VIS detector

Measurements

- Measurements of the dark current with an integration time of $\tau_{int} = 30s$
- continuous cooling from 293 K to 215 K over a period of 12 hours
- After 10 hour cooling stopped and temperatures increased again
- Measurement mode was Long Dark (with separate read-out of image and store areas)
- 42.723 temperature measurements for NIR and VIS detector

DS - Comparison with Models

26.11.19

Change of the activation Energy

NIR Temperature Dependence of the Dark Current Rate @Pixel=(240,360). Noticeable is the significant change in the activation energy at 280K

Spatial distribution of the activation eneries

Histogram of the Activation Energy

Histogram values (+), in green a Gauss-fit to the histogram values, red line is the Gauss distribution derived from mean and standard-deviation of the histogram)

Discussion & Outlook

- Investigation of temperature behaviour of the dark signal / current between 215K and 290K for a scientific CCD
- Exceptionally high number of measuring points (900 measurements with an integration time of 30s)
- Basically, the temperature behaviour of the dark current is as expected theoretically and experimentally
- Two parts of the temperature dependence of the dark can be characterized by different activation energies
- Clear separation of the activation energies at 280K
 - Low temp activation energy = 0.628eV ± 0.004eV
 - High temp activation energy = \$0.537eV ± 0.009\$eV
- The variation width for the activation energies for the entire chip was extremely small (1% -2%)

Discussion & Outlook

- The main finding of the article is the change of the activation energy from dark current rate with the temperature
- The reason is assumed to be the changing electric field within the silicon chip, since the depletion depth decreases as the number of electrons increases
- Further measurements, which are to be carried out as part of the verification of the flight model, should deepen this knowledge