
AnhangC

Komponenten
desTestsystems

Dieser Anhang enthält die Dokumentation der einzelnen Perl-Module und
-Skripte, die im Testsystem verwendet werden. Die Dokumentation dieser
Module steht direkt in den Quelltextdateien. Die Texte dieses Anhangs sind
mit den Standard-Perl-Werkzeugen (pod2latext bzw. pod2html) aus diesen
Quelltexten generiert worden.

Inhaltsverzeichnis

C.1 Perl Module CT.pm . 228

C.2 Perl Module ScriptGenerator.pm 240

C.3 Perl Module TestProtocol.pm 244

C.4 Perl Module Comparator.pm 249

C.5 Perl Script run test.pl . 252

C.6 Perl Script cte2cpp.pl . 254

C.7 Perl Script cte2xml.pl . 255

C.8 Perl Script cte2latex.pl . 256

227

C. Komponenten des Testsystems

C.1 Perl Module CT.pm

Overview

This Perl module implements a model of a so called classification tree, imple-
ments the import of cte-files — the documents created by the classification tree

editor , a mechanism to evaluate attributes of classification tree elements and an
experimental export to a XML-document for documenting purposes.

The intended use is to read and evaluate a given classification tree. Manipu-
lating the tree is not implemented completely.

The classes of the module

The Module contains at first classes for the elements of the Classification Tree, at
second classes for the Test Case Specification and finally it contains a managing
class for the classification tree itself and a helper class for handling attributes
and their evaluation.

------------- ----------------

| CT::Element | | CT::TestObject |

------------- ----------------

| |

| ---------- | ------------------

+-| CT::Root | +-| CT::TestSequence |

| ---------- | ------------------

| -------------------- | --------------

+-| CT::Classification | +-| CT::TestCase |

| -------------------- --------------

| ------------------------------ |

+-| CT::ClassificationRefinement | | --------------

| ------------------------------ +-| CT::TestStep |

| ----------- --------------

+-| CT::Class |

| -----------

| ---------------------

+-| CT::ClassRefinement |

| ---------------------

| ----

| ------------- | CT |

+-| CT::Comment | ----

| -------------

| ----------------- --------------

+-| CT::Information | | CTAttributes |

| ----------------- --------------

|

| -----------

+-| CT::Frame |

228

C.1. Perl Module CT.pm

Class CT

The Classification Tree.

Creation

my $ct = new CT;

$ct->read_from_cte_file($cte_file_name);

Methods and Properties

• constructor method new

Creates a new CT object.

my $ct = new CT;

• properties element, elements

element returns a tree node given by the CTE-internal ID. elements
returns a reference to an array containing all tree nodes indexed by their
ID.

$el = $ct->element($cte_id);

$aref = $ct->elements;

foreach $el (@{$aref}) {

do_anything_with($el);

}

• property frame

frame returns the CT::Frame object given by its CTE-internal ID.

my $frame = $ct->frame($frame_id);

• properties testobj_by_ctid, ..._by_namepatt, ..._by_test_id

All return a test object, i.e. a CTE::TestCase or a CTE::TestSequence.
If they didn’t find an appropriate test object they return undef.

testobj_by_ctid selects the test object by its CTE defined ID.

testobj_by_namepatt selects the test object with a name property which
matches a given pattern.

testobj_by_test_id returns a test object selected by its attribute named
test_id.

$to = $ct->testobj_by_ctid(17);

$to = $ct->testobj_by_namepatt(’^TC1000:’);

$to = $ct->testobj_by_test_id(’TC1000’);

• property root

Returns the root node of the classification tree.

229

C. Komponenten des Testsystems

• method read_from_cte_file

Reads a classification tree from a CTE file.

Note: Currently it does not import all information available in a CTE file.
Above all, layout information is completely ignored and some information
introduced by newer versions of CTE to.

$ct->read_from_cte_file(’d:\any_path\any_file.cte’);

• method print_to_xml

print_to_xml writes the classification tree and the test specifications to a
filehandle as XML data. This XML currently is thought as documentation.
Actually, not all information is written out.

The method has two optional parameters: one that gives a path used as
system identifier in the document type declaration, and 2nd a path used
to link the document with an XSL stylesheet.

open(XML, ">a_file_name") || die qq(can’t open);

$ct->print_to_xml(*XML);

$ct->print_to_xml(*XML, ’../xml/testspec.dtd’,

’../xml/testspec.xsl’);

The method takes as fourth argument, specifying the extent of the XML
output. It defaults to 0. If it is greater than 0 for each test step or test
case a list of all evaluated attributes is exported to. This may create quite
larger files and takes a little more time but may be useful to find bugs in
the test specifications.

Class CTAttributes

Methods and Properties

• method make

Makes (blesses) a normal hash into a CTAttributes object.

$ahashref = { ... };

$atts = CTAttributes->make($ahashref);

$atts->evaluate(...);

• method add

Adds all given hashes (given as references) to the attribute hash. Attribu-
tes in the new hashes override the previous settings.

$ahashref1 = { "a1" => "v1", "a2" => "v2" };

$ahashref2 = { "a3" => "v3", "a2" => "v4" };

$atts = CTAttributes->make($ahashref1);

$atts->add($ahashref2);

sets $atts to:

{ "a1" => "v1", "a2" => "v4", "a3" => "v3" }

230

C.1. Perl Module CT.pm

• method set_context

Sets the so called evaluation context . The given object must implement
the predefined_var-property. That is used by the get_var-method to
find not directly defined attributes.

• method get_var

Returns the value of an attribute. If the attribute is not defined in the
underlying hash the so called evaluation context is requested for the value
using its predefined_var-property. It returns undef if no such attribute
can be found.

• method set_var

Set the value of an attribute.

• method del_var

Deletes an attribute from the hash.

• method ren_var

Renames an attribute.

$atts->{’att1’} = ’value’;

$atts->ren_var(’att1’, ’att2’);

$v1 = $atts->{’att1’};

$v2 = $atts->{’att2’};

sets $v1 to undef and $v2 to ’value’.

• method get_names

Returns an array of all variable names

• method expand

Expands all attribute values and attribute names using the expand_string-
method. The 1st parameter is the prefix that marks Variables.

Note: Both, variable values and names are expanded, but with two dif-
ferences: 1. variables in names are only expanded if the name does not
start with the variable, i.e. in a variable name line ’%var|any’, %var is
not expanded, and 2. variables in values are recognized with the pattern
[\d\w|] and in the names with [\d\w]; this allows the use of so called
hierarchical attributes in attribute values.

$href = { ’att1’ => ’%var1’,

’%var1’ => ’string’,

’pre|%var1’ => ’& "%var2" . "%var1"’,

’%var2’ => ’gnirts’,

’%pre|any’ => ’100’,

’att2’ => ’& %pre|any * 0.5’,

};

$atts = CTAttributes->make($href);

$atts->expand(’%’);

changes $href to:

231

C. Komponenten des Testsystems

{ ’att1’ => ’string’,

’%var1’ => ’string’,

’pre|string’ => ’& "gnirts" . "string"’,

’%var2’ => ’gnirts’,

’%pre|any’ => ’100’,

’att2’ => ’& 100 * 0.5’,

};

• method evaluate

Does the same a expand, but evaluates variable value (and names) if they
start with an ampersand (&) using evaluate_string.

To continue the example above evaluate(’%’) will set $href to:

{ ’att1’ => ’string’,

’%var1’ => ’string’,

’pre|string’ => ’gnirtsstring’,

’%var2’ => ’gnirts’,

’%pre|any’ => ’100’,

’att2’ => 50,

};

• method expand_string

Expands all variables in the given string, using the attribute hash as varia-
ble definitions. Expansion is done recursively. Expansion means a simple
search and replace.

The 1st parameter is the string to be expanded, the 2nd is the prefix used
to mark variables (e.g. ’%’) and the 3rd is a pattern which variables names
must match (defaults to ’[\d\w]+’).

This method does not change the attribute hash itself.

$atts->{’%var1’} = 100;

$atts->{’%var2’} = 2;

$atts->{’%var3’} = ’$var2 - 1’;

$s = $atts->expand_string(’%var1 + %var3’, ’%’);

sets $s to ’100 + 2 — 1’

• method eval_string

Same as expand_string. But if the string starts with an ampersand (&)
the remaining string is evaluates as a perl expression. Evaluation is done
recursively.

$atts->{’%var1’} = 100;

$atts->{’%var2’} = 2;

$atts->{’%var3’} = ’$var2 - 1’;

$s = $atts->eval_string(’& %var1 + %var3’, ’%’);

sets $s to 101.

232

C.1. Perl Module CT.pm

• method make_tree

Expands all hierarchical attributes in the hash to be hashes of hashes
A hierarchical attributes is an attribute with bar (’|’) in its name. A hash
like

$h = { ’ini|hw.ini|Motor0|Name’ => ’TL’,

’ini|hw.ini|Motor0|Type’ => ’C-832’ }

is changed to

$h = { ’ini|hw.ini|Motor0|Name’ => ’TL’,

’ini|hw.ini|Motor0|Type’ => ’C-832’,

’ini’

=> { ’hw.ini’

=> { ’Motor0’

=> { ’Name’ => ’TL’ },

{ ’Type’ => ’C_832’ } } } }

this allows access the the attributes

as before make_tree

$val = $h->{’ini|hw.ini|Motor0|Name’};

and

$val = $h->{’ini’}->{’hw.ini’}->{’Motor0’}->{’Name’};

and allows iteration (that’s the reason)

foreach $ini_file (keys %{$h->{’ini’}}) {

...

}

Class CT::Element

Base class for all nodes in the Classification Tree (CT).

Requirements to derived classes

must implement

• print_tree_to_xml

Methods and Properties

• constructor new

Creates a new CT::Element. In dependency the the 1st parameter the
returned object will be an object of the appropriate class. The 2nd para-
meter is the CT-object to which the element belongs, and the 3rd is the
ID of the CTE-frame on which the element appears.

$elem = CT::Element->new("Root", $ct, $frame_id);

creates an object of class CT::Root.

233

C. Komponenten des Testsystems

• property type

The type of the node as string, e.g. Root”, Composition”, etc.

• property id

The CTE internal ID of the node. An integer.

• properties att, atts, att_inherited, atts_inherited

att returns the value of the attribute given by name. atts returns a
reference to a hash containing all the nodes attributes.

att_inherited does same as att, but if the node does not have the gi-
ven attribute, all ancestors a checked for the attribute. atts_inherited
returns a reference to a hash of all attributes available at the element
itself at any ancestor. att_inherited and atts_inherited are read only
properties.

reading an attribute named ’a1’

$val = $el->att(’a1’);

setting an attribute named ’a1’

$el->$el->att(’a1’, $val);

• property frame_id

Returns the CTE internal ID of the frame that contains the element.

• property parent_id

Returns the CTE internal parent ID of the direct parent element. Frame
objects and elements that are roots in a frame will have a frame_id of
−1.

• property parent

The parent node of the element in the CT.

parent skips frames, i.e. returns only real CT elements”. For a element
that is a root element in a frame, it returns the corresponding refinement
element.

• properties ancestors, ancestors_and_self

A reference to an array of all tree ancestors. The first node in the array
is the root node. With ancestors the last is the direct parent. With
ancestors_and_self the last is the node itself.

The properties skip frames, see property parent.

• properties ct_children, ct_children_cnt, ct_child

ct_children returns a reference to an array of all children of the node
in the CT, except children of type ’Information’ and type ’Comment’.
ct_children_cnt returns the corresponding array size.

ct_child returns the i-th child of the node. The first child has the index
0.

ct_children skips frames, that means refinements does not return the
corresponding frame as child, but the children of the frame. Thats why
ct_children is overridden by class CT::Frame.

234

C.1. Perl Module CT.pm

• property first_ct_child

Returns the first child of the element which is of the given type, or undef
if not such child is found.

$el->first_ct_child("classification");

returns the first classification child of $el or undef if that does not exist.

• property name

The name of the node.

• property cte_spec

The content of ’Specification’-property.

• property cte_descr

The content of ’Description’-property.

Class CT::Root (a CT::Element)

The root on an CT.

Class CT::Comment (a CT::Element)

A CT comment. Currently not exported to XML.

Class CT::Information (a CT::Element)

A CT information. Currently not exported to XML.

Class CT::Composition (a CT::Element)

A CT Composition.

Class CT::Classification (a CT::Element)

A CT classification.

Class CT::ClassificationRefinement (a CT::Element)

A CT classification refinement.

Class CT::Class (a CT::Element)

A CT class.

Class CT::ClassRefinement (a CT::Element)

A CT class refinement.

235

C. Komponenten des Testsystems

Class CT::Frame

A mediating class between refinements and their children. Represents the extra
view root for all children of a refinement.

Frames ID is equal to the ID of the refinement element for which the frame
is the panel.

Class CT::TestObject

Base class for test objects.

• constructor new

Creates an initializes a new CT::TestObject object. Takes no arguments.

• property id

Returns or sets the CTE internal ID of the test object. An integer.

• property name

Return or sets the name of the test object.

• property cte_descr

Returns or sets the content of the description field supplied by CTE.

• properties att, atts

att returns or sets an attribute given by its name. atts returns a reference
to a hash containing all attribute definitions.

Class CT::TestSequence (a CT::TestObject)

A sequence of test steps.

Properties

• constructor method new

Creates and initializes a new CT::TestObject object. Takes no arguments.

• properties step, steps

step returns a CT::TestStep object by its position in the test sequence.
steps returns a reference to an array of all test steps of the sequence.

foreach my $step (@{$seq->steps()}) {

... do any with the step

}

Class CT::TestCase (a CT::TestObject)

A test case — a collection of CT::Classes which constitute the test case, i.e.
which has marks in the CTE combination table for the test case.

236

C.1. Perl Module CT.pm

Properties and Methods

• constructor method new

Creates and initializes a new CT::TestCase object.

• property classes

A reference to an array of all CT::Classes which constitute the test case.
There is nothing (known) promised about the order in which the classes
occur.

• property sub_tree

Returns a subtree of the classification tree with these classes an leaves
only, which constitutes the test case or step.

The tree is given as a hash reference of hash references of hash references
.... Keys are the IDs of the nodes.

$tree = $tc->subtree;

$tree = {

’1’ => {

’2’ => {

’45’ => {}

},

’7’ => {},

’23’ => {

...

}

}

};

• property predefined_var

Returns the value of a predefined variable if an appropriate name is given.
The following variables are treated as predefined:

assert|<label>|literal

The value of that variable will be the unevaluated value of the attri-
bute assert|<label>. This is only useful for script generators which
need the original value e.g. for error messages.

enabled

That variable will always be predefined as 1. This can be use by script
generators to skip a test step in generation. The user may signal that
by setting the enabled attribute to 0.

• properties overriding_atts1, overriding_atts2

Properties to be used by atts_evaluated. overriding_atts1 shall re-
turn a reference to a hash containing attributes which override all at-
tributes in the tree BUT NOT the attributes of the test object itself.
overriding_atts2 returns a hash reference with all attributes which over-
ride all attributes in the tree AND the attributes of the test object itself.

This will be overridden by derived classes. The default implementation
returns empty hashes.

237

C. Komponenten des Testsystems

• property atts_evaluated

At the first call it collects all inherited, expanded and evaluated attributes
of the test case, stores the result, and returns the result as a CTAttributes
object. At the second call it returns the stored result.

The property uses the properties overriding_atts1 and overriding_atts2
while collecting the attributes. Indirectly it uses the predefined_vars

property, but predefined variables are only stores ind the result hash if
they are directly referenced in any attribute definition.

• property att_evaluated

Returns the value of an attribute given by name, using the result of
atts_evaluated and the predefined_vars property.

Class CT::TestStep (a CT::TestCase)

A test step. The same as a test case, but part of a sequence of steps.

• constructor method new

Creates and initializes a new CT::TestStep object. Expects the sequence
to which the step belongs as argument.

• property sequence

Returns the sequence to which the step belongs.

• property step_nr

Returns the position of the step within the sequence. The first step of a
test sequence has a step_nr of 1.

• property predefined_var

Returns the value of a predefined variable if an appropriate name is given.
The following variables are treated as predefined:

%test|step_nr

The value of the step_nr property.

%test|pred_step|<variable>

The atts_evaluated property of all preceding test steps are searched
for a value for <variable> in backward direction. If one is found it
will be the value of the named variable. Otherwise the value will be
undef.

assert|<label>|literal

The value of that variable will be the unevaluated value of the attri-
bute assert|<label>. This is only useful for script generators which
need the original value e.g. for error messages.

enabled

That variable will always be predefined as 1. This can be use by script
generators to skip a test step in generation. The user may signal that
by setting the enabled attribute to 0.

• properties overriding_atts1, overriding_atts2

overriding_atts1 returns the attributes of the test sequence to which

238

C.1. Perl Module CT.pm

the test step belongs. They have to override the attributes in the classes
constituting the test step, but not the attributes at the test step itself.

overriding_atts2 returns an empty hash.

239

C. Komponenten des Testsystems

C.2 Perl Module ScriptGenerator.pm

Class ScriptGenerators::ScriptGenerator

This module implements only one class. This class may be used as a base class for
implementations of script generators used by the cte2cpp test script generation
tool.

The only method which MUST at least be defined by derived classes is the
generate-method which takes a single CT::TestCase or a CT::TestSequence

object as argument.
This class is intended to collect reusable methods for test script generation.

Methods and Properties

• contructor method new

Takes no arguments. If your derived class implements its own new, this
should this method like this:

sub new {

my $this = shift;

my $class = ref($this) || $this;

my $self = $class->SUPER::new;

... do any new things

return bless ($self, $class);

}

• property output

This returns or sets a output filehandle as default target for generating
procedures. This property is set to *STDOUT by default.

open(FILE, qq(>$fn)) || die qq(can’t open $fn ($!));

$gen->output(*FILE);

• property testobj

Returns or sets the test object for which the script shall be generated.

• property generate

This method is not defined by this class and has to be implemented by
derived classes. This method should implement the job of test script ge-
neration for the given test object.

sub generate

{

my ($self, $testobj) = @_;

$self->testobj($testobj) if (defined $testobj);

... to be redefined

}

240

C.2. Perl Module ScriptGenerator.pm

• method generate_ini_file

This method requires as argument a CTAttributes object as returned
by the atts_evaluated-property of the test object. If , e.g., the attri-
bute definitions at the test object in the CTE-file contains the following
attributes:

ini|hw.ini|Motor0|Name: Tilt

ini|hw.ini|Motor0|Type: C-832

ini|hw.ini|Motor1|Name: CC

ini|hw.ini|Motor1|Type: C-832

ini|dp.ini|Sp|User: ab

ini|dp.ini|Sp|Type: NULL

the CTAttributes will contain a part like that:

{ ’ini’ => {

"hw.ini" => {

"Motor0" => {

"Name" => "Tilt",

"Type => "C-832"

}

"Motor1" => {

"Name" => "CC",

"Type => "C-832"

}

},

"dp.ini" => {

"Sp" => {

"User" => "ab",

"Type" => "NULL"

}

}

}

}

and generate_ini_file will generate the following ini-files:

;file hw.ini

[Motor0]

Name=Tilt

Type=C-832

[Motor1]

Name=CC

Type=C-832

;file dp.ini

[Sp]

User=ab

Note the special handling of attributes with a value of NULL. They are not
written out.

241

C. Komponenten des Testsystems

• method generate_ini_structure

This takes the same information as generate_ini_file. It does not ge-
nerates files but an output which can be used for a data driven generator
for the needed files. Continuing the example above

$generator->generate_ini_structure(’ini_data’,

$to->atts_evaluated(), *OUTPUT);

will write the following to the OUTPUT filehandle:

INI_BEGIN(ini_data)

INI_ENTRY("hw.ini", "Motor0", "Name", "Tilt")

INI_ENTRY("hw.ini", "Motor0", "Type", "C-832")

INI_ENTRY("hw.ini", "Motor1", "Name", "CC")

INI_ENTRY("hw.ini", "Motor1", "Type", "C-832")

INI_ENTRY("dp.ini", "Sp", "User", "ab")

INI_ENTRY("dp.ini", "Sp", "Type", NULL)

INI_END

This can be used as a C/C++ macro. With an appropriate macro definition
this may be used to create a structure that can be used by a test driver
to generate the needed files while test execution. For example:

typedef struct {

char* filename;

char* section;

char* name;

char* value;

} TIniEntry;

#define INI_BEGIN(name) \

TIniEntry name[] = {

#define INI_ENTRY(filename, section, name, value) \

{ filename, section, name, value },

#define INI_END \

{ 0, 0, 0, 0} };

or:

#define INI_BEGIN(name)

#define INI_ENTRY(file, section, name, value) \

WritePrivateProfileString(section, name, value, file);

#define INI_END

Note again the special handling of attributes with a value NULL. The 3rd
argument defaults to the output property.

• method generate_teststeps_code

This method expects as first argument a reference to an array of test
objects (CT::TestStep or CT::TestCase) and as second an output fi-
lehandle. The second argument defaults to output property.

242

C.2. Perl Module ScriptGenerator.pm

This is intended to generate code in the test script, e.g. to proceed test
steps. This uses the so called step attributes at the test objects given in
the first argument.

If a first test object has the following evaluated attributes

step|1: LOG_ANY_IMPORTANT("message")

step|2: DO_THE_TEST_STEP("anArgument")

and a second has something like that

step|a: cout << "message";

step|b: call_a_function(100, "abc");

generate_teststeps_code will produce the following on the output:

LOG_ANY_IMPORTANT("message")

DO_THE_TEST_STEP("anArgument")

cout << "message";

call_a_function(100, "abc");

The second part of the attribute name (the part after ’|’) is used to sort
the step attributes and the value of the attribute is written to a single
line of the output, indented with a tab character.

The method uses an attribute named enabled. If the attribute is set to 0
the test object is skipped. This is intended to give the user the possibility
to avoid the output of a test step in a sequence without deleting them or
changing attributes.

• methods evaluate_assertions_for_teststep and *_for_testseq

These methods are expecting both a test object (a CT::TestStep or
a CT::TestSequence respectively as argument. They use the expanded
assert attributes to evaluate there values as (boolean) Perl expressions.
If the evaluation returns 0, ’0’, ’’ (empty string) or undef the assertion is
treated as failed. Than a warning is printed to STDERR. E.g., the following
attributes at a test case

assert|position : -1000 <= 100 && 100 <= 1000

assert|direction: -1 == 1

will produce a warning like

warn: assertion direction failed

’%direction == %upwards’ (-1 == 1)

assuming that the unexpanded attribute definition of assert|direction
is %direction = %upwards and %direction is set to −1 and %upwards

to 1. The second part of the attribute name is thought as an identifier
string.

243

C. Komponenten des Testsystems

C.3 Perl Module TestProtocol.pm

Overview

This module uses the Perl module XMLElement. It derives classes from the the
class XMLElement specializing them for the needs to evaluate test results. It
provides the import of log and baseline files and implements the algorithm to
extract the output data for comparing them while test evaluation.

The classes of the module are the following:

| XMLElement |

| (from XMLElement) |

|

| -------------------

|--| XMLDocument |

| | (from XMLElement) |

| -------------------

| | ----------------

| --| TestProtocol |

| |----------------|

| | create_child() |

| ----------------

|

| ----------------

--| TestElement |

|----------------|

| create_child() |

| ---------------

|--| TestContainer |

| ---------------

| ---------

|--| TestSeq |

| ---------

| ----------

|--| TestStep |

| ----------

| --------

|--| Output |

| --------

| -----------

--| OutputSeq |

All classes are derived from XMLElement and have to implement some com-
mon methods and properties:

• method create_child

This method determines how XML child elements of an element are crea-

244

C.3. Perl Module TestProtocol.pm

ted while parsing. Actually it maps element names to classes. This is
implemented at the classes TestElement and TestProtocol only.

• property accepts_data

this property has to be 1 if the XML element can contain data (i.e. PC-
DATA) and 0 if not.

• properties static_qname, qname

static_qname determines whether the class redefines the qname property.
The qname property returns the qualified name of the XML element.

In the current state of the module the following elements of a test protocol
or a baseline file are imported: test-log, test-bas, test-seq, test-step,
output, regexp, output-seq, error. For some elements exist specialized clas-
ses, e.g. Output and OutputSeq for the elements output and output-seq.
Some other elements are mapped to the generic classes TestElement and
TestContainer, e.g. test-log and regexp.

The expected structure of the XML data describe the following document
type definition. Any other XML elements in the XML data are ignored.

<!-- actual output -->

<!ELEMENT test-log (title, date, test-step*)>

<!ATTLIST test-log id CDATA #REQUIRED>

<!-- target output -->

<!ELEMENT test-bas (title, date, test-step*)>

<!ATTLIST test-bas id CDATA #REQUIRED>

<!ELEMENT test-step (title,

(output|output-seq|error)*)>

<!ATTLIST test-step number CDATA #IMPLIED>

<!ELEMENT output (#PCDATA)>

<!ATTLIST output context (all|baseline|targetline) ’all’>

<!ATTLIST output comp (regexp) #IMPLIED>

<!ELEMENT output-seq (output|output-seq|error)*>

<!ATTLIST output-seq min-occur CDATA #REQUIRED>

<!ATTLIST output-seq max-occur CDATA #REQUIRED>

<!ELEMENT title (#PCDATA)>

<!ELEMENT date (#PCDATA)>

<!ELEMENT error (#PCDATA)>

Class TestElement (a XMLElement)

Base class for all test protocol element classes. Redefines the create_child

method.

May be used for all element types which contain data as a generic imple-
mentation and need no specialized behavior.

245

C. Komponenten des Testsystems

Class TestProtocol (a XMLDocument)

The class for the protocol itself. This is the container for all logging and baseline
information.

my $protocol = new TestProtocol;

$protocol->create_from_file("$any_path/$test_id.LOG");

to do any thing with every test-step

my $iter = XMLElementIterator->new($protocol, ’test-step’);

while (my $step = $iter->next()) {

....

}

Class TestContainer (a TestElement)

May be used as a generic implementation for all elements which does not contain
data.

Class TestSeq (a TestElement)

Container for a number of test steps.

Class TestStep (a TestElement)

Container for all the output of a test step. In the current test system a test
step is the level on that test evaluation happens. That means that the collected
output of a test step is evaluated as whole.

All the implementations of collecting the output delegate all the work to the
containing elements and collects their return values.

Methods and Properties

• property title

Returns the content of the title element of the test step.

• property number

Returns the content of the number attribute of the test step.

• property target_output_pattern

Collects all output of the test step and returns it as a regular expression. It
can be used by a comparator to compare the actual_output (see below)
against this expression.

It takes as its single argument the name of a so called context . This is
used to filter the output by its context attribute. That means that in the
regular expression all output will occur which has no context attribute
or a context attribute equal to the given argument.

• property actual_output

Returns a string containing all output of the test step. This can be used

246

C.3. Perl Module TestProtocol.pm

to evaluate the output by matching this string with the regular expression
returned by target_output_pattern.

It accepts the same context argument as target_output_pattern.

• property output_diffable

Returns a string representing the output of the test step for comparing
the string with an other one using a tool like diff .

It expects the same context argument as target_output_pattern.

Class Output (a TestElement)

A unit out output.

Properties and Methods

• property context

The value of the context attribute or ’all’ if the element has no context
attribute.

• property actual_output

See actual_output at class TestStep. Returns the data content of its
own and its children surrounded by o tags if its context attribute is all
or equal to the argument. Otherwise it returns an empty string.

• property target_output_pattern

See target_output_pattern at class TestStep. If its context attribute
is all or equal to the given argument it transforms the contained data
to an regular expression surrounded by o tags. If the element has a comp

attribute with regexp the data is not transformed and embedded regexp

elements are handled the same way.

<output>12[0-9]</output>

is transformed to

<o>12\[0-9\]</o>

and matches exactly the string ’12[0-9]’. But

<output comp="regexp">12[0-9]</output>

is transformed to

<o>12[0-9]</o>

and matches all string representing the numbers 120 to 129.

• property output_diffable

See output_diffable at class TestStep. If the context attribute is ap-
propriate the content is surrounded by output tags and returned as a
single line.

247

C. Komponenten des Testsystems

Class OutputSeq (a TestElement)

An output sequence, i.e. a container for output elements which occur in the
logged data optionally or repeated a changing number of times. Output se-
quences occur in baseline data only. That’s why this class does not implement
the actual_output method.

Properties

• property min_occur

The minimal number of occurrences the sequence is expected in the logged
data. Returns the value of the min_occur attribute or 0 of it is implied.

• property max_occur

The maximal number of occurrences the sequence is expected in the logged
data. Returns the value of the max_occur attribute or * of it is implied.

• property target_output_pattern

See target_output_pattern at class TestStep. If its context attribute
is all or equal to the given argument it collects the patterns of all contai-
ning output elements, surrounded with parenthesis and with a appended
quantifier according to Perl regexp syntax.

<output-seq min-occur="2" max-occur="24">

<output>a</output>

<output>b</output>

</output-seq>

is transformed to

(<o>a</o><o>b</o>){2,24}

• property output_diffable

See output_diffable at class TestStep.

248

C.4. Perl Module Comparator.pm

C.4 Perl Module Comparator.pm

Overview

This module provides an algorithm to compare the actual output of test exe-
cution with the target output . Both have to be given as XML data. It uses the
objects provided by the module TestProtocol to access the information in the
given files. See there for the expected structure of the data.

The module does not implement a class but a simple public method named
compare. This method expects the following arguments:

1. build ID

2. root directory of the test system

3. test ID

4. package label

5. target data label

6. name of the file containing the actual output

7. name of the file containing the target output

8. name of the file where the results of comparison are to be stored

First it reads two files: the actual output and the target output and than it
does the comparison test-step by test-step. For each test-step it extracts
the output data in the target output , transforms it to an regular expression,
extracts the output data in the actual output , transforms it to a simple string
and tests whether the string matches the regular expression. If it does, the
test-step is treated as successful. If not, an error description file is created for
that test-step (s. save_diff).

If the target output contains different output for the baseline — the output
produced while the last test — and the targetline — the output that should
be produced — the test described above is done for both. Differences between
baseline and targetline are marked with the context attribute (s. module Test-
Protocol).

It returns the number of test-steps with an error.

Private Methods

• method count_logged_errors

Counts the error elements in the XML tree given by a single XML element
and returns the number.

• method save_diff

Creates an error description file. It expects five arguments. The 1st
is the test ID. The next two are the test objects (CT::TextStep or
CT::TestCase) to be compared, i.e. the comparator decided that their
output doesn’t match. The 3dr argument is the context attribute to filter
the output and the last is the name of the error description file to be
created.

249

C. Komponenten des Testsystems

The method first extracts the diff able output of both test objects stores
it in two files and uses diff to find the differences. The output of diff is
transformed into a simple XML structure that may be used to visualize
the differences. That XML is stored in the given error description file.

The diff tool must be reachable via the PATH environment variable.

• method diff_nice

Interprets the left and right input and the output of the diff tool and
returns XML to represent the differences.

$bas =

"<o>value1</o>

<o>value2</o>

<o>value3</o>

<o>

line1

line2

line3

</o>";

$log =

"<o>value1</o>

<o>value3</o>

<o>value4</o>

<o>

line1

line3

line4

</o>";

$dif =

"2d1

< <o>value2</o>

3a3

> <o>value4</o>

6d5

< line2

7a7

> line4";

diff_nice($bas, $log, $dif) returns

"<o>value1</o>

<o sty=’deleted’>value2</o>

<o>value3</o>

<o sty=’added’>value4</o>";

<o>

line1

<deleted>line2</deleted>

line3

250

C.4. Perl Module Comparator.pm

<added>line4</added>

</o>";

• method output_deleted

Takes a string (a line of diff’ed output) and marks it as deleted. If the line
contains a starttag the attribute sty=’deleted’ is added. If it is a normal
line it is surrounded with deleted tags and if it is an endtag nothing is
done, i.e.

output_deleted("<output>")

returns

"<output deleted>"

output_deleted("output")

returns

"<deleted>output</deleted>"

and output_deleted("</output>")> returns

"</output>"

• method output_added

Does the same as output_deleted but uses added as mark.

251

C. Komponenten des Testsystems

C.5 Perl Script run test.pl

Description

This executes a test and compares the actual output with the target output . It
has the following options:

--root-dir=<directory>

Specifies the root directory of the test system. This is the directory where
a directory for the test package and the build can be found.

--test-pkg=<package>

Specifies the name of the test package. This is used to find the directory
of the test package within the root directory.

--build=<build>

Specifies the name of the build to be tested. This is used to find the
directory with the binaries of the application to be tested and the test
programms within the root directory.

--test=<test-id>

Gives the ID of the test to be executed.

--test-list=<filename>

Specifies a file name containing a list of IDs of tests to be executed. The
file has to contain a single line for each test ID.

--baseline=<baseline>

Gives the name of the target output version. This is used as a directory
name which is expected in the package directory.

--execute-only

Suppresses the comparison.

--compare-only

Suppresses the test execution.

One of the options --test or --test-list is required.
With the parameters the following directories and files are expected:

<directory>/<package>

The test package directory.

<directory>/<package>/<baseline>

The directory containing the version of target output which is used in the
comparison.

<directory>/<package>/<baseline>/<test-id>.BAS

The file containing the target output of the test test-id

<directory>/<build>

The directory containing the build of the application under test and the
test programms.

252

C.5. Perl Script run test.pl

<directory>/<build>/<test-id>.EXE

The test programm to be executed.

<directory>/<build>/<test-id>.LOG

The actual output of the execution of the test programm. If --compare-only
is given, this file must always exist.

253

C. Komponenten des Testsystems

C.6 Perl Script cte2cpp.pl

Description

This programm takes a CTE file, imports it, looks for a script generator, crea-
tes it and let them generate the the needed things for a specified test case or
sequence.

It has two mandatory and an optional parameters:

--cte-file=<file>

Specifies the CTE file from which the test scripts has to be generated.

--test-id=<id>

Gives the identifier of the test case or the test sequence for which the
script should be generated. To identify a test case the test_id attribute
is used.

--generator=<name>

Gives the name of the script generator to be used.

If no script generator is given with the --generator-option, this programm
looks for a ScriptGenerator attribute as the root node of the classification tree
to determine the script generator to be used. The value of that attribute or the
option is interpreted as a module name. So, if the value is any all include direc-
tories are searched for a perl module named any.pm. An appropriate directory
can be given via the /I option of the perl interpreter. For example:

perl -I ../bin/lib/ScriptGenerators ../bin/cte2cpp.pl

--cte-file=m_rpl.cte --test-id=RPL001

adds ../bin/lib/ScriptGenerators to the include directories. Uses the gi-
ven m_rpl.cte file in the current directory, searches it for a test case or sequence
with a test_id attribute with a value of RPL001 and generates with the help of
a hopefully found script generator the test script file(s).

This tool requires the Perl module CT (Classification Tree).

254

C.7. Perl Script cte2xml.pl

C.7 Perl Script cte2xml.pl

Description

This tool converts a CTE file to an XML document using the services of the CT
Perl module. It has three option:

--cte-file=<file1>

Specifies the CTE file to be converted. This option is mandatory.

--xml-file=<file2>

Specifies the XML file to be exportet. This option is optional. It defaults
to <file1>.xml

--extent=<number>

This option controls the extent of the exported XML. Currently if number
is greater than 0 for each test step of a sequence all evaluated attributes
are exportet to. This produces bigger XML files and takes a little more
time but may sometimes usefull finding bugs in the test specifications.
This option defaults to 0.

255

C. Komponenten des Testsystems

C.8 Perl Script cte2latex.pl

Description

This tool reads a CTE file containing a classification tree and transforms it into
a LaTeX file for printing a textual form of the tree for documenting purposes.
Reading and evaluating the CTE file is done using the CT module.

It has three option:

--cte-file=<file1>

Specifies the CTE file to be converted. This option is mandatory.

--tex-file=<file2>

Specifies the file to be exportet. This option is optional. It defaults to
<file1>.tex

--tree-only

This flag suppresses the export of attributes and descriptions for the tree
nodes.

LaTeX-Output

The generated LaTeX output looks like the following example:

\begin{ct}{<name of the root node>}

\begin{ct-attributes}

\ctAttribute{<attribute1>}{<value1>}

\ctAttribute{<attribute2>}{<value2>}

\end{ct-attributes}

\begin{ct-classification}{<name of classification>}

\begin{ct-class}{<name of class>}

\ctDescription{<content of description>}

\begin{ct-classification-refinement}{<name of refinement>}

\ctDescription{<content of description>}

\begin{ct-attributes}

\ctAttribute{<attribute1>}{<value1>}

\ctAttribute{<attribute2>}{<value2>}

\end{ct-attributes}

...

\end{ct-classification-refinement}

\end{class}

...

\end{ct-classification}

...

\end{ct}

Refinement nodes in the classification tree with only one child node are
suppressed in the output. These nodes are only placeholder in the graphical
representation and are treated as obsolete in an textual representation.

256

