SOTA User's Guide - Version 1.0

1 Introduction
2 Overview

3 Installation and Start of Program

4 User Interface and Functionality
5 Files

6 Tutorials
7 Appendix

1 Introduction

SOTA is a tool for static program analysis and structure-oriented program testing (Structure-Oriented
Testing and Analysis). In the course of a structure-oriented program test, the tool determines the
source code coverage during the test, calculates the corresponding coverage metrics and provides a
visual representation of the results. This allows the user to evaluate the program test with regards to
source code coverage. Source code sections that have not been covered or conditions that have not
been tested adequatly can be identified easily. SOTA is not directly responsible for testing the
program but serves as a tool for evaluating test cases and developing additional tests.

SOTA determines the coverage by source code instrumentation, ie the program to be tested must be
available as compilable source code.

SOTA 1.0 only works on Java programs, but was developed to be able to support all major
imperative and object-oriented programming languages. To use SOTA for other programming
languages the user has to provide a parser as well as various classes for mapping the structure of the
programming language to a more abstract structure. This is specified in detail in the developer
documentation.

The program was developed as a standalone Eclipse-RCP-application and runs under Windows 2000
and upwards. For use in automatic testing systems, the non-GUI functionality of SOTA is provided
by the library SOTA-ATM.jar which also serves as an API for integrating SOTA into other programs.

Chapter 2 covers the main features of the program and ways to use it. The operation of the program is
then described in detail in Chapters 4-6, adopting, In Chapters 4 and 5, a systematic as well as, in
Chapter 6, a process-oriented approach. The latter includes typical application scenarios in the form
of tutorials. Lastly, all dimensions and other terms used in this manual are specified to provide a
better understanding.

The program was developed for exclusive usage in teaching!

SOTA User's Guide - Version 1.0

1 Introduction
2 Overview

3 Installation and Start of Program
4 User Interface and Functionality
5Files

6 Tutorials

7 Appendix

2 Overview
SOTA supports static program analysis and dynamic program testing.

During the static program analysis the source code of the program is analyzed and as a result SOTA determines ten
software metrics like the Cyclomatic complexity or the number of modified boundary-interior paths. Before the
analysis SOTA needs to parse the source code.

The dynamic program test (from now on referred to as program test) is a structure-oriented and control flow-related
program test forming the main part of SOTA. Depending on the specific test case SOTA determines nine code
coverage metrics during program execution, such as branch coverage or multiple-condition coverage and provides a
graphical representation of the results. Before the analysis, it is necessary to instrumentate the program that will be
tested.

There are three basic ways to employ SOTA in a program test: the manual program test, in combination with an
external testing system or integrated into an automatic testing system.

Durng the manual program test, the program is tested manually, i.e. started by hand, functions are executed, etc. This
can be done by using a development environment like Eclipse in addition to SOTA, or with SOTA itself by integrating
an Ant build file and a startup script.

The only difference when working with an external testing system is the method of testing. As with the manual test,
SOTA controls pre- and postprocessing. However, for the program test itself a separate testing system is used, such as
ATOS. Thisresultsin a program sequence SOTA, ATOSj, SOTA - without any internal linking.

When working with an automatic test system SOTA can be embedded as a library (SOTA-ATM) alowing the system
to use the non-GUI functionality of SOTA. Core functions of SOTA can either be called through command line
parameters or a SotaATM instance based on a class included in the library.

The work with SOTA is divided into the preparatory, testing and evaluation phases.

Basically, the preparatory phase for the program test consists of reading the source code, determining the type of
instrumentation and instrumentating the source files. For a manual program test or the use of an external testing system
this is done via the graphical user interface. When using SOTA-ATM with an automatic testing system the desired
behaviour is evoked by calling the appropriate library routines or starting SOTA-ATM via command line parameters.

During the testing phase the compilation, start of program and program test are executed. Compiling the instrumented
source files is outside the remit of SOTA. However, the compilation can be initiated by integrating a corresponding Ant
build script. If afitting batch file is available, it is even possible to start the program with SOTA. Given that these two
filesareincluded in SOTA the manual program test can be carried out without using an external development
environment. During the program test, the instrumentations that were added to the source code produce a log file
containing the data necessary for a complete reconstruction of the program.

Finally, during the evaluation phase the original source code is restored, the log files are read and the coverage metrics
calculated. SOTA enables the user to evaluate the results visually and export them as an HTML report.

Program Test with SOTA

exploitation method

with integrated

phases tasks manual external into
program testing automatic

test system testing

(ATOS) system

reading and

parsing source SOTA SOTA SOTA-ATM
code
preparatory configuration SOTA/'ATM
hase of SOTA SOTA : .
P instrumentation co ol e
file
Instrumentation SOTA SOTA SOTA-ATM
of source code
external
compilation of [with
source code SOTA externa external
using a
script
terfta;r;g externa
P start of [with
program SOTA externa external
using
script
program test manual external external
restoration of
original source SOTA SOTA SOTA-ATM
code
reading of log
filesand
i calculation of SOTA SOTA SOTA-ATM
evaluation coverage
phase metrics
T none / SOTA
‘r’gﬁ's'za"on & SOTA SOTA (after the
tests)
R 0F SOTA SOTA SOTA-ATM

report

SOTA User's Guide - Version 1.0

1 Introduction
2 Overview

3 Installation and Start of Program

4 User Interface and Functionality
5 Files

6 Tutorials
7 Appendix

3 Installation und Start of Program

SOTA was developed as a standal one Eclipse-RCP-application. The only requirement a system must
meet to run SOTA isan installation of Java 6.0 or higher. A simple calling of SOTA.exe starts the
program. Starting SOTA for the first time configures the Eclipse-Rich-Client-Platform.

=) soka

+|) configuration

+1-|Zyrmanual

+-|Jplugins

+- | Jwaorkspace
.eclipseproduct
|ﬂ ASCLogger . jar
|ﬂ langspec, dtd
m language, spec
H project. ded
[C)soTh.exe
E’l zota.log
| SOTA-ATM. jar

fig.: SOTA directory structure

Depending on the exploitation method it is necessary to install other systems, e.g. Eclipse or ATOS.

SOTA User's Guide - Version 1.0

1 Introduction
2 Overview

3 Installation and Start of Program
4 User Interface and Functionality

4.1 Menus und Toolbar

4.1.1 Menu Project

4.1.2 Menu Tasks

4.1.3 Menu Configuration
4.1.4 Menu Help

4.2 Views

4.2.1 View Project

4.2.2 View Testlogs
4.2.3 View |Scheme

4.2.4View Source
425 View CEFG

4.2.6 View Coverage
4.2.7 View Metrics

4.3 Preferences

4.3.1 Preferences View CEG

4.3.2 Preferences View Coverage
4.3.1 Preferences General

4.3.1 Preferences Report
4.3.1 Preferences View Source

4.4 Delete Project

5 Files
6 Tutorias

7 Appendix

4 User Interface and Functionality

Next to the compulsory menu bar and the toolbar offering quick access to the most common actions the
user interface consists of different views available in three areas by clicking the corresponding tabs. The
upper left area offers the view with the project outline. Arranged below the project outline are two views
listing the test cases and the instrumentation schemes of the project respectively. The right area takes up
the largest part of the window, consisting of different views supplying detailed information about the
source code, control flow graphs as well as coverage and metrics reports.

The views are linked so that e.g. selecting a file in the ProjectView causes the corresponding source code
to appear in the SourceView. Selecting a test in the TestView updates the coverage metrics for the entire
project and the representation of the coverage for the selected file. Wizards and dialogs are at the user's
disposal in order to guide larger actions such as creating a new project.

Lastly, a status bar can be found at the bottom of the window, providing information about the status of
the original source files as well as the parsed source code SOTA isdisplaying. The original state is
designated as CLEAN whereas the instrumented state is marked as DIRTY .

{8 SOTA - Project Digit

EBX

Project Tasks Configuration Help
MeH @ ks8R 3=
5. Project J,az F B~ || & source | &3l eFG E| Coverage D Metrics | ”li 'fifﬂ EL
= [J] Digit java : 5 L
[=@ Digt evaluateDigitSequence (String .
@ main (3tring[1) =
B evaluateDigitSeque | 3 X
lu}
iteration (2
5]
iter-body iter-end
3]
| r
| u| [m|
[| if . if H
L ! a] 5]
:? Testlogs & IScheme 4 I 3 I]
X 3 E |'_|I|| krue False False krue
D test .. 5
- = 4 2 3 1]
z r r ¥
O o
i B E return return
a] o
0 testc z/z\ 2| 0 \3\ 0 v
D kest emphy private static double evaluateDigtSegquence] String inDiotStringf rs
double wert = 0.0; v
Status of source code: CLEAMN Status of parsed code; CLEAMN

4.1 Menus und Toolbar

Fig.: main window of SOTA

4.1.1 Menu Project

Y & [

O BFEHEH e =

i Tasks Configuration Help

4 Mews Project
[= Open Project
|_;:l'_| Save Project

Close Project
e;:§’i‘- Recover Project

Exit
Fig.: menu Project

New Project

Ear
| S|

Clicking the menu item New Project opens the two-page wizard for
creating a project. On the first page the user has to indicate a name
for the project, as well as the project directory and run directory.
From the project name SOTA generates the file <project
name>.project placing it in the SOTA directory.

The project directory is the root directory of the test program
(correspondsto ".. / workspace / project-name” in Eclipse projects).
This directory contains the imported source code as well as the

reports created by SOTA at the end of a test. In the run directory the test program is started. In most
cases, the run directory corresponds to the home directory of the test program, except for Eclipse-RCP-
projects where it is the Eclipse base directory ".. \ eclipse\". In the run directory the ASCLogger.ini is
created which is read by the ASCLogger during the test. After the test the testlogs are read from the run
directory as well

Choosing a programming language in the wizard is necessary, even though the current version of SOTA
only supports JAVA. Finaly, the user can include an Ant build file for compiling and a batch file for

creating the test project.

On the second page the user has to include the source files to be considered for the test. They can either
select a directory thus including all source filesin all sub directories, or simply individual files.

After finishing the wizard, SOTA creates the project and loads all the selected source files.

i@ New Pro ject |:|@E]

Project configuration

Please enter properties of the project,

Project name: | Digit |
Project directory: |D:'I,Develcupment'l,wu:urkspace'l,Digit |

Execution directory: | [n\Developmentworkspace\Digit |

Language:

Ant: build.File: | |
Run scripk: | |

Fig.: first page of wizard

[E New Project

Source Files

Please select the source files ko import into this
project,

Project directory: | [n\Developmentworkspace\Digit |

ENm[Evicit |

] bin

= lib

= [w] = sre
Digit java

[Expand all] [Cu:ullapse all]

[Finish l [Zancel

Fig.: second page of wizard

Open Project
=

Clicking the Open Project menu item opens a project created previously. A standard dialog for loading a
file from the root directory of SOTA appears, where the desired project can be selected.

After confirming the selection by clicking OK, SOTA opens the project and loads all the associated source
files.

Open Project

Suchen in: |iﬁsuta v| €) jr s [T~
Ty |y configuration
A E} ICplugins

Zuletzt Iy workspace

venwendete D husemarg. praject

r_,._.—-% ModEiFathTesterz, project

MDdBiPatthster.prDject
Desktop Digit project

2

Eigene D ateien

48

Arbeitzplatz

D ateinarne: | Digit project b | [Dffren l

Metzwerkumaeh | Dateityp: |F'ru:uieu:t filez [*.project) v| [Abbrechen]

Fig.: dialog Open Project

Save Project

Saving the project by clicking Save Project creates, if done for the first time, a project file in the root

directory of SOTA. The name of thefile isidentical with the project and ends on 'project’. Thisfile

contains the project data and all instrumentation schemes. If the file already exists, it will be overwritten
with the current data.

Close Project
Clicking the menu item Close Project closes the current project. Consequently, SOTA isin its starting
state again.

Recover Project
69

The menu item Recover Project's task is to restore corrupted projects. Analogous to the menu item Open

Project, adialog for selecting a project appears. As a result, all source files of the chosen project are
restored and then opened.

Exit

Clicking the menu item Exit closes SOTA.

4.1.2 Menu Tasks el e rPEE PR | S

Project BEES

Configuration Help

&4 New InstrumentationSchemne

[Start Test
[Stop Test

+z Create Repork

=8 |Build Project

[&= |Run Project

é.'ﬁ%* Restare Sources
3 Read Testlogs

= Show Coverage

Fig.: menu Tasks

description field represents the
hierarchical structure of the current
project in form of atree. It shows all
files, their classes and the individual
functions. A level of instrumentation
from O to 3 can be assigned to each
of these structures by clicking the
matching button for the level after
choosing a certain structure.
Consequently, each structure is
colored according to their respective
levels. Furthermore, the substructures
associated with them receive the
same level of instrumentation. The
individual levels have the following
effects:

Level 0O - no instrumentation of
the source code,

o=
Level 1 - only instruments
blocks necessary to
determining the control-flow
relevant coverage metrics
(FEEC, CO, C1, MBI, BI),

&

Level 2 - additionally
instruments all blocks enabling
condition coverage anaysis
(C2, MMCC, MCDC, C3),

g |

New InstrumentationScheme

i:;r

Upon clicking the menu item New Instrumentation Scheme a

dialog allowing the creation of a new instrumentation scheme

(short: 1Scheme) for the current project appears. An | Scheme

represents an instrumentation pattern for all source files of
the project. It can adopt different degrees. Depending on the
test case, the memory requirements of the log files can be
very high. The purpose of this configuration optionis to
allow the user to set a reasonable limit for the size of those
files.

For creating an 1Scheme a name for management of the
scheme inside the project, must be specified in the dialog.
Entering a description is optional. The field below the

L]
New IScheme

Zreate new instrumentation scheme

IScheme name:| main_kvl1_evaluateDigtSequence w2

Description: Chosen levels of instrumentation

main - Lewvel 1
evaluateDigitSequence - Level 2

Files in project: [Expand all] [Cu:ullapse all

= & Digit java
== Digit
2| main (String[1)
@ evaluateDigitSequence (String)

Set selection I:u:u[Lewvel 0] [Level 1] [Level 2] [Level 3]

|=| Level D Moinstrumentation, leaves sourcecode as it s,

& Lewvel 1

2 Level 2
B Level 3

Instruments cfg-relevant blocks, standard coverage analysis,
Instruments also conditions, enables analysis of condition cow

Full instrumentation, every single skatement is instrumented,

[0] 4 l [Cancel

Fig.: dialog New |Scheme

Level 3 - instruments the complete source code, i.e. evaluates all instructions and conditions.

For the program test, instrumentation level 2 is recommended as it allows the identification of all coverage

metrics. If necessary, alower level can be used in order to save capacity. Using level 3 is suggested when

programs or functions are not terminating properly and the user wishes to identify the exact point of

abortion or where the exception is called.

After confirming the dialog, the instrumentation scheme as well as all selected settings are stored in the

project-specific .ischeme-file which is from then on available for the program test.

Start Test

=3
/ Restart Test

b=

By clicking the menu item Start
Test the program test is
initiated in SOTA. A dialog box
for configuring the test appears.
The user has to enter a name
for the test which also serves as
a name for the test log SOTA
creates at the end of atest, i.e.
limitations for file names set by
the respective operating system
must be considered. Adding a
description of the test isaso
possible but not mandatory.

The instrumentation of the
project has to be configured
next. In addition to the user-
generated | Schemes, the 3 basic
| Schemes which instrument to
whole project according to
Level 1, Level 2and Level 3
are also available. The
hierarchical project list shows
the specific instrumentation of
the individual project structures
for a selected 1Scheme. The list
can be fully expanded or
collapsed by clicking the
buttons Expand All or Collapse
All respectively.

Once a name for the test and an
| Scheme have been selected,
the program test can be started
by confirming the dialog.
SOTA stores the information
relevant for the logging

Start test

Press OF to augment the project,

Test name: tesk 1.1

Test description:

Seleck IScheme: | main_lv1 _evaluateDigtSequence_Ivi2
= |=| Digit java
=1 |=| Digit
£ main (String[1)
@ evaluateDigitSeqguence (String)

[Expand all] [Cu:ullapse all

[=| LewelD Mo instrurnentation, leaves sourcecode as it is,

& Lewvel 1 Instruments cfg-relevant blocks, standard coverage analysis,

@ Level 2 Instruments also conditions, enables analysis of condition coverage.,

tﬂ Level 3 Full instrumentation, every single skatement is instrumented,

[]rerun configuration. Don't change sources ar binaries,

Instruments the oroiect with the chosen IScheme,

l

l [Cancel

Fig.: didog Sart Test

component in the file '"ASCLogger.ini' by adjusting the execution path of the project. Subsequently, a
backup of al original source filesis produced by changing the file extensions to '.backup' and the source
code isinstrumented. Then the project is parsed again. Finally, the user can view the instrumented source
code in the SourceView. Now the instrumented version of the source code can be compiled and e.g.
tested systematically with an external testing system.

Three more options can be selected by ticking the check boxes at the bottom of the dialog. Rerun
configuration merely leads to a change of the name of the test and its description in the ASCL ogger.ini
leaving the source code unchanged. This enables re-testing the code with the same configurations but
without having to instrument and compile it again. Build Project causes SOTA to compile the source code
after the instrumentation. For that purpose it is necessary to embed an Ant version by providing the path
to the file "ant.bat’ under the point General of the preferences. Furthermore, the user has to include an
appropriate xml-file enabling SOTA to compile using Ant. This option is only available if a script exists
and the option Rerun configuration has not been selected. Finally, the option Run project actually causes

the project to start after compilation as long as a startup script has been specified. This will be possible,
only if one of the other two options are selected.

If atest isrunning already or SOTA finds the source code instrumented during parsing, the option

B
Sart Test will be exchanged with

[
Restart Test. It is not possible to re-instumentate the sources without having stopped the current test and
restored the original files. However, The instrumented test program may be started again with a different
name for the test. This only updates the initialization file of the logging component with the new name for
the test, but no source files or binaries are changed. Restarting the test is equivalent to the rerun option of
the norma Start-Test-dialog.

Stop Test

The Sop Test menu item terminates the
current test run. Then the original source files m
are restored and re-read. If a corresponding

Ant buildfile is available, the original sources Read TestLogs

will also be compiled again. Please select testlogs ko import, 3

Finally, a dialog appears allowing the user to
select log files from the run directory which

SOTA will then read, analyze and list in the Directory: | DiiDevelopmentiwarkspace!Digh
view TestLogs. Subsequently, the coverage [test ...lag

metrics for individual test logs or [test .z.log

combinations thereof can be computed and [test 1.1.log

displayed. D kest 1.log

D kest empty.log

[Check all] [Uncheck, all]

[Ok, l [Cancel

Fig.: dialog Read Logs

Create Report

By clicking
the menu
item Create
Reportitis
possible to
create a
coverage
report based
on the
selected test
logs for the
current
project. The
user can
adjust the

Select file name for report. @

Suchen in: | I3 Digit w > 5l
5 Iabin |'2=_°°| kest \Z.log
ba;ﬁ I i [Z] test .. log
Zuletzt Ihsrc |'2=_°°| kest emphy.log
verwendete D @ .classpath
= @ Jproject

__-'}.ﬁ.SCLDgger.ini

|&] report. html

|&] report_2009-03-05. html

|&] report_2009-03-05_1, html

.,—) |&] report_2009-03-05_2, html
|&] report_2009-03-05_3, html

Desktop

Eigene Dateien

preferences |&]report_2009-03-05_4.,html
so that for . |&] report_2009-03-05_5, html
each report -,h!j g] test 1.1.log
a prompt - [£] test 1.lag
Arbeitzplatz
appears for
setting the o
file name L '] Dateiname: v
and path. = :

. MNetzwerkumgeb | D ateityp: * w Abbrechen
Otherwise,
the report is Fig.: dialog Create Report
stored in the
root

directory of the project under the name 'report.html’. In the preferences thereis also a setting for
preventing SOTA from overwriting report files. In that case a new file is generated for each report
according to the format 'report_<date> <index>.html'. These and other settings for creating reports can be
made in the preferences menu under the item Report

Build Project

-.!.l
b

The menu item Build Project enables compiling the project in SOTA on the basis of the current source
files regardless of the test status. This menu item will only be activated, if an xml buildscript is specified
for the current project and an Ant version isincluded in the preferences.

Run Project
3

The menu item Run Project will be available, if a startup script is specified for the current project. After
clicking this item, the project will be executed.

Restore Sources
69

In order to tranglate the project into its original state, it is also possible to select the menu item Restore
Sources. Unlike the Sop Test menu item the source files are only restored and read. They are not be re-
compiled (assuming a buildfile exists), nor does the dialog for reading the test logs appear.

Read Logs

&

With the menu item Read Logs the log files can be read manually regardless of the test status of the
project. For that purpose, the same dialog as for the Stop Test menu item appears allowing the import of
log files. After selecting the log files from the run directory of the project, SOTA reads the files and
processes the test resullts.

Show Coverage

Activating the menu item Show Coverage leads to a colored display of the coverage information in the
source code and coverage views.

4.1.3 Menu Configuration

Configure Project
Project Tasks MG liliEW Help '?'.%Lég.
‘?F Zonfigure Project
Project-specific settings can be made via the menu item
Configure Project. In detail, these are the two paths of the test
Preferences project relevant to SOTA, namely the root directory and the
Fig.: menu Configuration execution directory, and, underneath them, the optional scripts
imported for the purpose of compilation and start of the

project. Confirming
selecting Ok

"y Select Sources

overwrites the Configure Project
settings made when Configure Project Ziffer
the project was

created.

Project directory: D:\Developmentiworkspace)Digit
Select Sources] ¥ \Developmentiwarkspace!Dig
i

L Execution directory: | Du\Developmentiworkspace Digit

In order to modify Ant buid.file:
the source files
included in the Run Script:
project, the user has
to select the menu

item Update [oK, l [Cancel]
?ﬁjltjarsgqﬁjently, a Fig.: dialog Configure Project

dialog identical to

the second page of the wizard for creating a project appears. The source files can be selected analogically.
After confirming the selection, the current source files are replaced by the new ones.

] (@] (8] (@]

Preferences

Under the menu item Preferences the user can make changes to the general settings of SOTA that apply to
all projects and will also be saved when exiting the program. A comprehensive explanation of the variuos
configuration options can be found under 4.3 Preferences.

4.1.4 Menu Help

Manual
Project Tasks Configuration 1]
L& rManual
Selecting the menu item Manual opens the user
About SOTA documentation on hand in the system's standard browser
Fig.. menu Help

About

The menu item About opens a dialog containing information about the current SOTA version as well as
the plug-in status of the application.

4.2 Views

4.2.1 View Project

In the view Project all source code files of the test program

and their subordinate structures, as well as classes and 5. Project B HE
methods are listed in a tree structure. The top nodes = 3] Digtjova

represent the source code files imported on creating the =) bign

project. The top-level classes and methods and their ® rmain (String[)

respective internal classes and methods are represented as BB slusteDigiSecuencersiing:

children in hierarchical order up to an arbitrary nesting
level. Using the two buttons
i3]
and
the user can fully expand or collapse the tree. The button
d
+ E
aternately causes the tree to be displayed in ascending and Fig.: view Project
descending order. On selecting an element of the tree the (hierarchical presentation)
views Source and CFG are updated automatically.

The individual structures listed in the tree are:

n
files

C]
classes

G
internal classes

L

public functions

)

protected functions

5]
private functions

If instructions for instrumentation are detected on parsing the file, e.g. during a test run on instrumented
sources, the Icon will be displayed with a red exclamation mark (e.g.:

EE
).
Viathe menu
= salectable on the T5. Projeck 1% F =
® [i- Hierarchical Presentation tOp ”ght corner C)

of the view, the

- @ Digit main (String[])
presentation of

B Digit evaluateDigitSeguence (String)

i= Flat Presentation

4 show PackageMames the project

w [J] Show Files structures can be

v (3 show Classes conflgured. T_he

v &Shuw Inner Classes tW‘? presentation

. - options
Fig.: view menu =
Flat
Presentation and . . .
k= Fig.: view Project

Hierarchical Presentation are available. The hierarchical (flat presentation without files)

presentation matches the listing in a tree structure as
described above which is the default setting. In the flat presentation all structure units are at root level, i.e.
file, classes and functions are listed coequally.

The additional options allow the following adjustments of the presentation:

H
Show PackageNames - adds the packet name to the name of the structure (default: off)

n
Show Files - additionaly lists files in the view (default: on)

C
Show Classes - lists classes in the view. This only affects the flat presentation, whereas the hierarchical
presentation always lists classes. (default: on)

@
Show Inner Classes - lists inner classes in the view (default: on).

4.2.2 View TestLogs

If log files are imported into the project, they will be listed

in the view TestLogs. In case a log file already exists, the 89 Testlogs O 15cheme | 3 1 = (5
new log data are appended to its end, so that a test log can -0 test .
contain a variety of test case data. As a default, the 20 test.2
individual test cases are hidden from the user and only the =8|
test logs are listed. In order to examine the content of the U 1 (Level 2 instrumentation)
test logs in detail, the user has to unlock the button B 2 ilevel 1 instrumentation)
,L. [j 3 (main_lvI1_werteZiffernfolgedus_|
Lock TestLogs on the toolbar of the view, which lists all test o0 test1.1
cases as well as | Schemes of every test log right beneath #- [test empty
each one. }__é husemorg kest 1.0og (invalid log)

Since not every log file may have been created by SOTA
and not all the test data belongs to the current project, the
view TESTLOG uses the following icons to represent
compatibility:

@ Abb.: View TestLogs
- fully compatible test log and test case data (unlocked)

U
- partially compatible test log, also contains invalid test case data

ik
- invalid log file or incompatible test case data

If valid test logs and test cases are selected, the coverage information in the views Source, CFG and
Coverage will be updated automatically. Clicking the buttons

&3]
and
chénges the entire selection. To select several test logs at once, the keys <Shift> or <Ctrl> respectively
have to be held down while selecting the desired test logs.

Selected test logs can be deleted with the

®
Delete TestLogs button. That not only removes them from the project but from the system. This option is

not available for test case data, i.e. individual parts of atest log.

On double-clicking onto one

of the listed test logs or test
case data a dialog appears
containing detailed

TestlLog: test 1

information on the test data.
Listed first are the name and
description of the test as well
as the name of the
instrumentation scheme. Next,
the number of paths (i.e.
function cycles) contained in
total in the test case and a list
of all functions the test hit are
indicated. For each function
the number of associated
pathsis aso listed. By

Test name: test 1

Test description:

IScheme:
Mr. of Paths in Test: | &

Function

Level 2 insktrumentation

#Paths | Lvll | Lvl2 w3

clicking the column headers Digit rmain (String(]) 3 2 1 o
the pr@entation of thelist can Digit evaluateligitSequence (String 3 1 2 0
be sorted in ascending or
descending alphabetical order
by function name and number
of paths.
[Ok l [Cancel

Fig.: dialog TestLogs

4.2.3 View I1Scheme

The view | Schemes contains only the instrumentation
schemes (short: 1Schemes) related to the project. For every
project three | Schemes are created automatically,
instrumenting the entire project into the levels 1, 2 and 3
respectively. The user can create additional 1Schemes which
will then appear in this view viathe menu item New

| Scheme.

Double-clicking on an I Scheme opens a dialog listing,
analogous to the menu item New | Scheme, stored
instrumentation settings of the 1Scheme and enabling the
user to change all information. The button

®
Delete | Scheme removes an | Scheme from the project.

533 Testlogs | &¥ IScheme

I.i:l Lewvel 1 instrumentation
I.i:l Level 2 instrumentation
I.i:l Lewvel 3 instrumentation
|_q] main_l«l1_werteZiffernfolgedus_|viz

Fig.: view | Schemes

The standard 1Schemes across levels 1,2 and 3 are exempt from these changes and cannot be deleted.

4.2.4 View Source

In the view Source the source code of the file selected in the view
Project is shown. If individual classes or methods are selected, only the

corresponding source code lines will appear.

In case the coverage indicator

Show Coverage in the toolbar is enabled, the coverage of the source
code by the test logs selected in the view TestLogs is indicated with
colors. Green lines in the source code were covered by the tests,
whereas red ones were not traversed. A line containing several
statements is marked green as soon as one of the instructions was

covered. The corresponding colors for the line coverage and the syntax
highlighting can be set in the menu item Preferences.

(=] Source &% CFG EI Coverage D Metrics

public elass Digit {
public sate void mainSming[] args) |

Sastaan out printnlevaluateDigiti e quencai™. "1,

1

private statie double avalunateDigittequenceiString inDigtiting |

double value = 0.0;
double acenracy = 1.0;
Sting wlere = "preF oint”;
boolean srvoifies = ue;
intpositon = 1;
whilaiposition <= inDigtiming length(&errorfrea) |
Sting zehn = inDigitSning substingiposition-1, positon);
ifi zeln amatelies U 0-2]"0 {
ifimdiere. aquals"postE oint”1h
acenracy = aecuraey £ 10.0;
wvilne = 10.0%valne + Dovble parzelioubladzehn);
¥
alse ifizelin aquals™. "t & wlhave. e quals“praP oint™n
whers = "postP oint’;
alze
arvorfiee = false;

position ++;

¥

ifilervosfres | inDigitining lengthi==0 | {{where. equals"postP oint 1 &einDigitiing lengthi ==1171
retyn -1.00;

alza
retyn valne*accuracy;

¥
¥

Fig.: view Source

.2.5 View CFG

While the view Source only shows line coverage and is primarily intended to give an overview of the
source code coverage, the view CFG (Control Flow Graph) provides detailed information on the coverage
of source code structures. On selecting a function in the view Project, the upper part of the view CFG
shows the corresponding control flow graph. For every function appears at least one node for entering and
one for exiting the function with the latter being the joint of all edges leaving the function. Each branching
structure is represented by a node labeled as follows:

« conditional statement (short variant): "if", "true", "if-end"
« conditional statement (long variant): "if", "true", "false", "if-end"
« pre-test iteration/while and for loop: “iteration", "iter-body", "iter-end"

 post-test iteration/do while loop: "do", "iter-body", “iteration", "iter-end"
« sdlection control/switch statement: "switch", "case”, "default”, "switch-end"

« exceptiong/try-catch block: "try”, "try-block", "catch”, "finally", "try-end"

« jump instruction: "break", "continu€e', "return”, "throw"

For assigning nodes to their corresponding parts of the source code, it is sufficient to click on a node.
Then the bottom of the view CFG focuses on the appropriate section of the source code and the lineis
highlighted in yellow. If the option

=i

Pin SourceView is selected in the toolbar of the view, only on the first selection of a node the
corresponding source code line will be displayed, afterwards the source code remains 'pinned' and does

not scroll automatically anymore. Selecting the option

|
nj

Show Number of Paths displays the number of edge traversals during the current test on the left of every
edge of the control flow graph.

In order to be able to also view large graphs clearly, the user can scale theillustration of the control flow
graph via the buttons

=
Zoom Out and

&)
Zoom In. SOTA offers seven zoom levels. The first three zoom levels still display the condition coverage
and the fourth level still shows the caption of the nodes. The three smallest zoom levels reduce the graph
to blank sguares. More detailed information is available via the tooltip or the node information dialog (see
below).

[2] source | &%l cFG . (=] Coverage | =] Metrics n| | [f'\ [E]\

evaluateDigitSequence (String)

O0a0o0O

r

]
iteration E
[m]
iter-body iter-end
7
r
O]
f |8 f |5
O [m]
5 5 1]
r r e
krue false false krue
5 2 5 0
r r
O]
if d f |5 return rekurm
O [m]
37 2 o \N
(krue false krue function-end

) -
private static double evaluateDigtSequence] String inDigtSequence)]

double wert = 0.0
Fig.: view CFG

If test logs or test case data are selected in the view TestLogs, the color of the nodes and edges will
change according to the coverage of the selected test case data. Also, the coverage data is updated
automatically. Covered nodes and edges are colored green, whereas not covered ones are colored red. To
detect covered nodes whith multiple outputs of which not all are covered- which might be the cause for
not covered sections of the source code- these are colored yellow. The user can configure this just like all
other colors and also line style and thickness in the preferences.

The user can obtain additional information by navigating the cursor over a
node. The tooltip that opens indicates the type and number of hits ('nrHits)
by test case data of each node, as well as its internal project ID and the
line number where it can be found. Branching nodes aso contain

E

ikeratian
nrHits: 5
nrSkips: 0
aning!eLu:u:ups: 3
i ulEgl elenges 2 information about the number of times each branch was taken. Therefore,
nrLoops: 7 . . .
the tooltip for if-nodes lists a value for each the true and the false branch,

ID: 22 Line: 15 whereas switch-nodes contain an overview of the chosen selections and a

_Fig.: tooltip list of the number of times each case was called. The case-node also
(iteration-node) contains this value as 'nrSelects’ which can differ from the number of hits.

Thetooltip for iteration-nodes lists, next to the number of hits, details
about how often the loop body was skipped ('nrSkips), the number of times it was executed exactly one
time ('nrSinglelLoops) and two or more times('nrMultiplelLoops) as well as the overall number of
executions ('nrLoops). For the try-nodes which initiate the exception handling, it is mentioned how often
the try block could be completed without an exception.

Information on condition

ways. On the one hand,

located on the right side of Node Information
each node containing a Iteration-Mods (22)
non-trivial condition are Line 15 in Digit java, Function_ evaluateDigtSequence (String)
four small boxes
representing the_ (_jlfferent . ;
degrees of condition el 0
coverage. From top to P
nrSingleLoops: 3
bottom, these are the _
. . . ntMultipleLoops: 4
single, minimal multiple, Loons: 15
MC/DC and multiple -
Cord't.'r?(? cact)vert?]geaThe 2 100, 0% {4i4)
g? gcr)\;erallge fersomegrgg;ee MMDC: 100, 0% (66
; MCDC: 50.0% 1)z
meaning 100% to dark red (0
. (aic? 75, 0% (3i4)
meaning 0%. The threshold
MET: 20%, {4}z
values and colors can be
set in the preferences,
where their presentatlon | Condition : [position == inDigitString length) & errorfree
can also be turned off, and
the user can salect two Trukthectar evaluates ko | postion == inDigtString lenoth errorfree
additional sets of coverage g'i' ;c":se ;c":se Ealse
alse alse rue
:j?ls?)tl?;/gdata to be 11 true true true
For more details about the [o][cancel
coverage of individual
nodes with or without a Fig.: node information with MCDC pair

condition a dialog box

which can be opened via

double clicking the node is available. Firstly, al information from the tooltip and al relevant coverage
data of this node are listed both by percentage and numerically. If the node contains a non-trivial
condition, the logical structure of the condition as well as al assignments to their elements are also shown
in atable. The first column represents the truth vector for the entire condition as read from the test log
file. The second column contains the evaluation of the entire condition and the subsequent columns show
the evaluation for each element. For each elementary condition the appropriate MCDC pair, if present,
will be highlighted by clicking the corresponding table head.

4.2.6 View Coverage

The view Coverage offers a means for essentially analyzing the coverage data of the project. Analogous
to the view Project all structures of the project are listed hierachically in a tree, which can be configured

through the menu of the view to adopt a flat representation. For each project structure the percentage of
the degree of coverage by various coverage metrics is specified in the corresponding columns. If the
option

is activated in the tool bar, the values will be highlighted in favour of clarity. The individual colors and
thresholds can be defined in the preferences.

The listed coverage metrics are: Function Entry Exit Coverage (FEEC), instruction coverage (CO0), branch
coverage (C1), single condition coverage (C2), minimal multiple condition coverage (MMDC), modified
condition/decision coverage (MCDC), multiple condition coverage (C3), modified boundary-interior path
coverage (MBI) and boundary-interior path coverage (BI). The definitions of the individual coverage
metrics are listed in the Annex.

If alineinstead of avalueis displayed in the view, the corresponding metric is not appicable to the
structure, because the class does not include e.g. conditions or instructions. The user can change the
presentation of the value itself, via the option

o

Change Info, from percentage to ratio representation and back again. With the two buttons
a3
Expand All and
Cdilapse All the hierarchical presentation of the project structure can be fully collapsed or expanded.

The user can sort the entire table by each column, i.e. by name and coverage ratio. In order to do that, it is
necessary to click the corresponding column head. The sorting is based solely on the root elements of the
tree, i.e. in hierarchical representation on the values of the files and classes respectively. However, in flat
representation the structures can be sorted by functions.

(2] Source | &/ CFG EICDverage DMetrics WE Y
Marme FEEC 0 1 2 MM M 3 MBI BI
Project Digit 80,00% §9,47% 80,00% 75,00% 68,75% 30,00% 32,14% 15,04% 6,98%
=1 |3 Digit jarea 80,00% §9,47% 80,00% 75,00% 68,75% 30,00% 32,14% 15,04% 6,98%
=R C] Diggit 80,00% §9,47% 80,00% 75,00% 68,75% 30,00% 32,14% 15,04% 6,98%
@ main {String[T) 100,00%, 100,00% --- 100,00% 100,00%

B evaluateDightSequ 66,67% §5,59% 80,00% 75,00% 68,75% a0,00% 32,14% 908956 4,76%

Fig.: view Coverage

4.2.7 View Metrics

SOTA calculates a number of static metrics during the syntactic analysis of the source code while parsing.
These can be evaluated immediately after the project was read in the view Metrics. Similar to the view
Coverage this view consists of a project tree and a mapping of the following metrics to each project unit:
cyclomatic complexity, essential complexity, lines of code, number of instructions, number of branches,
number of modified boundary-interior path segments, number of boundary-interior paths, number of
instructions evaluating conditions, number of elementsin all conditions and number of conditions.
Explanations as well as definitions of individual metrics are listed in the Annex.

Asin the view Coverage, the user can change the presentation of the project structure in the menu of the
view and expand and collapse the presentation by clicking the buttons

I+
Expand All and

Cléilapse All. Sorting the table also works through clicking the column heads.

:‘D Source ééé CFiG E| Coverage E| Metrics

Mame vl CLL
Project Digt <7
= [J] Digt jarva <7
=@ Digt 27
@ main (3tring[1) 1
B evaluateDigtSequence (@ 6
£

Ess.C... | LOC
<3 35
<3 35
<3 33

1 2

2 25

o I [
#5ta,.. | #Bran... #ModBIP | #BIP #Cond... 4
19 10 23 43 5 10
19 10 23 43 5 10
19 10 23 43 5 10
1 --- 1 1 - -
13 10 22 42 5 10
>

Abb.: View Metrics

4.3 Preferences

4.3.1 Preferences View CFG

In the first
options block of
the preferences
page of the view
CFG, the user
can determine
which coverage
metrics will be
displayed as
small square
labels next to
each node of the
control flow
graph. The
default setting
shows only four
labels for the
condition
coverage metrics
(C2, MMDC,
MCDC, C3) next
to all nodes
containing non-
trivial conditions,
and at the
function node. If
the display of
path coverage
metrics are
enabled (second
option), three

I8 Preferences

CFGEYiew
Coverageiiew
General
Report
Sourcetiew

- [B)X)
CFGYiew -

Preferences for the CFG-YWiew
Show labels for condition coverage (nodes with conditions)
[] show labels for path coverage (Function- and iterationnodes)

[] show labels for basic coverage (Functionnode)

Wisited CFG-Mode: @
Mot visited CFiG-Mode: @

Highlight branching nodes wio all exits taken

Branching CFE-nodes @

Wisited CFG-Edge: E]
Mot visited CFG-Edge: @

Width of CFG-Edges

@1pt Ozptvalue) 3pt

Current sourcode line: @

[Restore Defaults] [

Default CFiG-Mode:

Default CFG-Edge:

Apply]

[Ok, H Cancel]

more labels will
appear next to

Fig.: Preferencees View CFG

the function node

indicating the overall modified boundary-interior path coverage, the coverage of modified boundary-
interior paths by the function body and the boundary-interior path coverage. Similar to the second label
each iteration node also receives a label for the coverage of modified boundary-interior paths
corresponding to the iteration. The last option causes the remaining three coverage metrics (FEEC, CO,
C1) to appear at the function node.

In the second block, the user can configure the presentation of the nodes of the control flow graph. Colors
for normal nodes without coverage information, covered and not covered nodes can be selected. For a
more differentiated presentation branching nodes which are covered, but whose outputs are not covered
completely, are highlighted. The color of the highlights can be set under Branching CFG-nodes.
Removing the tick on the option above switches the differentiated presentation off.

Additionally, in the third block the color of the edges of the control flow graph for the presentation of
edges without coverage, as well as for covered and not covered edges can be configured. Theline
thickness of the edges can aso be set to a value from one to three.

Finally, the user can also change the color for highlighting lines in the source code corresponding to the
selected node of the control flow graph.

4.3.2 Preferences View Coverage

Here, the colors
for highlighting

I8 Preferences

the percentage of
the coverage in type filter text CoverageView =l v
the view .
Cover age can be -E'.,.'i.gu,.-.,u Preferences For the CRG-Yiew
defined as well General Firsk Bar: a9
as the percentage Report Second Bar: | 90
bounds. Sourcetiew

Third Bar: 75
Two elemental Fourth Bar: | 50
boun?Ztarzalooo/) Fifth Bar: | 25
complete 0)
and no (O%) 100%:: @
coverage. The First Bar:
user can add @
percentage values second Bar: [
for five -

L. Third Bar:

additional wdeer [
bounds, with the Fourth Bar: @
result that each _
cell is assigned a Fithear: ()
color according Above 0%: | I
to the respective
values. The o8 =]
default limits are:
25%, 50%, 75%,
90% and 99%. If [Restu:ure DeFauIts] [Apply]
the user specifies
abound with a [ok |[cancel |
value larger than
oneof the Fig.: Preferences view Coverage
bounds above it,
this bound will
be ignored.

Subsequently, the user can assign a color to each bound. In the table of the view Coverage, all cells where

the percentage of the coverage reaches the specified bounds will be colored as defined.

4.3.3 Preferences General

The user can
change the
genera settings
of SOTA under kype Filker bext General = -
the preferences
item General. In
order to use an
Ant buildfile to
compile a Sourcetiew
project
automaticaly, [] Parse instrumented sourcecode,
the
corresponding
Ant file
(\bin\ant.bat) of
an installed

iE Preferences

CFGYiew General Preferences

Location of Ant:

Create log File
Crverwrite existing log File,

[] aAutomatically rebuild project an kest stop,

version of Ant [Restu:ure DeFauIts] [Apply

has to be
embedded here.

Then, itis | o [cancel

possible to select

the option Build

Project in the

dialog Sart Test
B

, and the menu item Build Project

&
, aswell asits equivalent in the toolbar are enabled. In Eclipse an Ant buildfile for compiling the project

can be generated via File -> Export -> Ant Buildfile.

Fig.: Preferences General

If Create log file is activated, system messages of SOTA will be saved as log files of the format
sota <YY-MM-DD>_<index>.log on each program boot. Also enabling the option Overwrite existing log
file causes SOTA to create only one log file sota.log and overwrite it every time the program is booted.

The last two options define more general aspects of the behavior of SOTA. If Parse instrumented source
code is activated, the project will be parsed again after launching the test, the view of coverage metrics
will be disabled and the presentation of the project in all views will be based on the instrumented sources.
In this case, the source code displayed in the view Source is always identical with the current sources, i.e.
the two status indicators on the status bar always show the same value. Should the option be disabled, the
backup will be parsed and displayed instead of the instrumented file. This allows an evaluation of the test
logs independent of the status of the source files. The last option determines whether the test project will
be compiled automatically, provided that a corresponding Ant script was included, in addition to restoring
the original source files on stopping the test. Otherwise, the binaries of the test program would remain
instrumented and continue creating logs.

4.3.4 Preferences Report

Under the
preferences item
Report the output
of thereportin a
html-file can be
configured.

iE Preferences

kype filker text Report g -
EFG'-.-'iew i Preferences for the Report
overageyiemn)

. . General Prompt Faor File name.
Activating the rverwrite existing repart,
option Prompt Sourceview

. . W
for file namein s all tests Far report
the first block, Show Tests
causes afile Show Classes
selection dialog Ignore inner classes
tszlappear on Show Functions

+1.=.€C'[I o Fonk size: 10
Create Report in Use Colars
the menu. The
dialog asks for 100%: (=
the name of the Eifst Bar: @
report file which
will be created. Second Bar: @
Otherwise, Third Bar: @]
SOTA creates
the file Eourth Bar: @]
report.ntml in the :
. Eifth Bar:
root directory of @
the test program above 0%: | |
overwriting it
. 0%
every time a new = E]
report is [Restu:ure Qefaults] [Apply]
generated, or
SOTA saves [oK l [Cancel]
each report
according to the Fig.: Preferences Report
name scheme

report_<date>_<index>.html. This behavior is determined by the option Overwrite existing report.

In the second block the user can define the content and the presentation of the report. It is possible to
choose between using all test logs for the report or only the currently selected ones. Also, the user can
select elements from the following list to be included in the report: the applied tests with | Schemes and
descriptions, an overview of the coverage of al classes (including or excluding inner classes) and/or an
overview of all functions, sorted according to their classes. Finally, the font size for the report file can be
specified.

If Use Colorsis selected, the coverage metrics in the report file will be highlighted in color according to
the degree of coverage similar to the presentation in the view Coverage. The values for the bounds are
adopted from the preferences item view Coverage, but here the colors of each bound can be defined
separately for the report file.

4.3.5 Preferences View Source

The highlighting
of syntax in the
view Source can
be adjusted in the
correspondent
preferences item.
The colors for the

I8 Preferences

type filter text SourceView & -
EFG'-.-'iew i Preferences for the Sourceiisw
overageyiemn

General Eeywords: E]

k r
Eywo ds of the pr - Commments; E]

| anguage, JOUFCE VN
comments, Strings: [—
strings, and those
comments added ASC-camments: E]
by Indent size: 10
instrumentation

through SOTA Yisited source lines: @
grat:t?:rﬁgoi;r:j Mot visited source lines: @
subsequently the
font size for the
presentation of

the source code [Restu:ure Defaults] [Apply]
can be defined.
To view the [OF, l [Cancel]

coverage of the
source code in
the view source,
it is possible to select the background color for covered and not covered source code lines here. The
colored highlighting will be applied as soon as test logs are read and if the option

Fig.: Preferences view Source

Show Coverage is activated.

4.4 Delete Project

A function 'Delete Project’ was not implemented. This means that SOTA files corresponding to a project
with the exception of the log files (see View Testlogs) have to be deleted by hand.

All SOTA files are described in 5.1. The files created by SOTA that have to be deleted in order to clear
the system are in detail:

« SOTA root directory:
o <projectname>.project
« root directory of test program (Project directory)
o <xyz>.java.backup
o report.html
o report_<date>_<index>.html
o \lib\ASCLogger.jar
« execution directory of test program (Execution directory)
o <testname>.log
o ASCLogger.ini

It is absolutely necessary to restore any instrumented source files to their original state (by choosing the
menu item Restore Sources), before deleting the backup files as this is hardly possible without them!

SOTA User's Guide - Version 1.0

1 Introduction
2 Overview

3 Installation and Start of Program

4 User Interface and Functionality
5 Files

6.1 Overview

6.2 Project File
6.3 Report Files

6 Tutorials
7 Appendix

5 Files

5.1 Overview

SOTA root directory

The SOTA root directory contains the SOTA system, as e.g. the boot file SOTA.exe and the Eclipse-
Rich-Client- Platform installed with SOTA, as well as further special SOTA files and the project
files.

thg“_lggat e <index>.log Here SOTA logs al its activities.

language.spec The specification file for all supported languages.

ASCLogger.jar The logging component for Java test programs must be
included in the test programm and demands an
initalization file named ASCLogger.ini (see below) during
the test.

<projectname>.project For each project the general project data are noted here.

SOTA-ATM jar The automatic test module of SOTA enabling the testing

funcionality to be applicable without GUI. SOTA-ATM.jar
Is an executable jar file which can also be imported as a
program library. This allows access via command line
(scripts) or software. See the tutorial for more information.

Root directory of the test program (Project directory)

The root directory of the project contains (possibly in a subdirectory) the sources of the test program
and at the same location their backups that are generated by SOTA on creating the project. SOTA
puts all automatically generated report files at this location unless the user activated an inquiry via
data selection dialog in the preferences.

(\src\) <xyz>.java The source files of the test projects are (partially)
instrumented after starting the test.

(\src\) <xyz>.java.backup The backup of the original sourcefilesis created
before starting the test for all source files that are not
instrumented.

(\bin\)<xyz>.class The compiled class files which may be instrumented

report.html,

report_<datum>_<index>.html

<antbuildfilename>.xml

<runscriptname>.bat

depending on the state of the source files.
The report files generated by SOTA.

An possibly existant Ant buildfile allowing the
compilation of the test program in SOTA. For Eclipse
projects it can be exported via File -> Export -> Ant
Buildfile.

A batch file for booting the test program which allows,
in caseitisincluded in SOTA, the manual program
test in SOTA in correspondance with the Ant build
script.

Execution directory of the test program (Execution directory)

The test program is booted in the execution directory. In most cases this directory corresponds to the
root directory of the program. An exception may e.g. be the testing of an Eclipse-RCP application in
Eclipse, since then the execution direction is the root directory of the Rich-Client-Platform, i.e. in

general: ..\eclipse\ .

ASCLogger.ini

<testhame>.log

5.2 Project File

On starting the test this initialization file for the logging
component is copied into this directory where it is
accessed by the class ASCLogger.jar in order to create the
log file.

Thelog files created by ASCLogger.ini.

To use SOTA it is not necessary to adjust the project files. However, should the user wish to adopt
SOTA-ATM as an automatic test module, it may be beneficial to create or change the project files
manually or with a script in order to gain comprehensive control over the test.

The project files used by SOTA are smple XML files which contain the project specific information
as values of individual entities. Their format is specified by scheme definition project.dtd.

The project file defines a project which is at least defined by the following values:

Name
Language
Prefix

BackupExtension
ProjectDir
ExecDir
SourceFiles

The name of the project which must be identical with the filename
without ending.

The language of the project which must be listed in the language
specification.

The prefix which enables marking variables introduced by SOTA
during the instrumentation process, this avoids name collisions.
The ending used for backup files generated by SOTA.

The root directory of the project.

The execution directory of the project.

A list of sourcefiles (as SourceFile) belonging to the project.

The following values may be used optionally to enable special features of the program:

AntLocation

AntBuildFile
RunScript
| Schemes

The path to the Apache-Ant installation. This is necessary to compile the
project automatically.

The Ant buildfile, which enables the compilation of the buildfile.
The script used for booting the project.
A list of instrumentation schemes (as | Scheme) which enable the

variable instrumentation of the project. An | Scheme consists of a name
and a mapping of each structure of the project (data, class, function) to
an instrumentation level, and, optionally, a description of the IScheme.

The following code is an exemplary project file for the project Digit. It contains the defintion for an
| Scheme which instruments the only source code file according to level 1 and the method
‘eval utateDigitSequence' according to level 2.

<Project>
<Name>Digit</Name>
<Lan%uage>Java</Language>
<Prefix>asc</Prefix>
<BackupExtension>backup</BackupExtension>
<ProjectDir>D:\Development\workspace\Digit</ProjectDir>
<ExecDir>D:\Development\workspace\Digit</ExecDir>
<SourceFiles>
<File>D:\Development\workspace\Ziffer\src\Digit. java</File>
</SourceFiles>
<ISchemes>
<IScheme>
<Name>Scheme F</Name>
<EeSC{iption>Digit-java Lvll, evaluateDigitSeqeuence Lvl2</Description>
<Levell>
<ltem>Digit.java</Iltem>
</Levell>
<Level2>
<Item>Digit.java:Digit::evaluateDigitSequence(String)</Iltem>
</Level2>
</1Scheme>
</1Schemes>
</Project>

5.3 Report File

The following report is a sample report for the project Digit for the input values'..", '.2', '1', '1.1"' and
without input value. (for more information on the program see 6.1.1.)

Each report file begins with the name of the project and the date of creation. Following that is a list
of al coverage metrics including the values for this project obtained during the test, as well as
individual static metrics. The other tables of the report file will only be created, if the user selected
the corresponding options in the preferences. The standard settings cause the output of all tables.

If Show Testlogs is selected, a list with al test files used for this report follows. The corresponding
| Schemes, as well as their desciptions, are also included. Activating Use all tests for report causes all
imported test logs to be used for the report and to be listed here.

The option Show Classes generated a table which lists all classes of the project in addition to the
overall project and their individual coverage metrics which may be highlighted in color according to
their values (cf. Preferences).

Show Functions causes a table for each class to appear after the item Detailed Coverage. The tables
contain the coverage metrics of the classes themselves and all their functions. A link from each class
in the table Coverage of Classes refers to the corresponding list of their functions in the section
Detailed Coverage.

A comprehensive sample report for the project HUSemOrg is included in the user documentation.

SOTA Coverage Report

Project: Digit

created: 2009-03-23 13:54:35

Function Entry-Exit Coverage
(FEEC)

Statement Coverage (CO0)

Decision Coverage (C1)
Condition Coverage (C2)

Minimal Multiple Decision
Coverage (MMDC)

Modified Condition Decision
Coverage (MCDC)

Multiple Condition Coverage (C3)

Modified Boundary-Interior Path
Coverage (ModBl)

Boundary-Interior Path Coverage
(BI)

100,00%

100,00%

100,00%
95,00%

93,75%

50,00%
46,43%

26,09%

26,09%

Tests

#Files

Classes)

#Lines

Functions

Statements

Conditions

Classes (TopLevel- + inner

1(1+0)

35

19

16

test ..

Level 2
instrumentation

test .2

Level 2
instrumentation

test 1

Level 2
instrumentation

test 1.1

Level 2
instrumentation

test empty

Level 2
instrumentation

Coverage of Classes

1top

FEEC | CO

C1 C2

MMDC

MCDC

C3

ModBI| BI

Project Digit

100,00 | 100,00

100,00 95,00

93,75

50,00

46,43

26,09 | 13,95

Class Diqit

100,00| 100,00

100,00| 95,00

93,75

50,00

46,43

26,09 | 13,95

Detailed Coverage

top

FEEC | CO

C1 C2

MMDC

MCDC

C3

ModBI| BI

Class Digit 100,00 100,00 100,00| 95,00 | 93,75 | 50,00 46,43| 26,09
- main (String[]) 100,00| 100,00] --- -- -- 100,00
- evaluateDigitSequence (String) 100,00 100,00{100,00(95,00 | 93,75 | 50,00 | 46,43

SOTA User's Guide - Version 1.0

1 Introduction
2 Overview
3 Installation and Start of Program

4 User Interface and Functionality
5Files

6 Tutorials
6.1 Manual Program Test - Program 'Digit'

6.1.1 Program 'Digit’
6.1.2 SOTA and Eclipse
6.1.3 SOTA with Ant Buildfile and Start Script

6.2 Test using and External Testin stem (ATQOS]) - HU-Seminar-Organisation

2.1ATOS H r
6.2.2 SOTA and ATOS

6.3 Automatic Testing System - SOTA-ATM

6.3.1 SOTA-ATM viacommand line call
6.2.2 SOTA-ATM API

7A ix

6 Tutorials

The following three tutorials explain the behaviour of the three waysto use SOTA in manua program testing, program
testing with an external test program and the test as a library in an automatic testing system.

6.1 Manual Program Test - Program 'Digit’

6.1.1 Program 'Digit’

The basisfor the tutorial of the manual program test is a simple Java program which tries to read a positive rational
number from a string. The program consists of the class Digit with a main function and the function
evaluateDigitSequence which evaluates the string.

The string can either be passed as a parameter of the program or provided in the source code. The 'hardwired' string in
the source code will be evaluated once the program is called without parameters. The output of the program is either the
number in case the program was able to evaluate the string, or -1' in case of an error, i.e. the string did not contain such
a number.

public class Digit {
public static void main(String[] args) {
i f (args. | engt h==0) o
System out . printl n(eval uat eDi gi t Sequence("."));

el se
System out . printl n(eval uat eDi gi t Sequence(args[0]));

}
private static doubl e eval uateDi gitSequence(String inDigitString) {
doubl e value = 0.0;
doubl e accuracy = 1.0;
String where = "prePoint";
bool ean errorfree = true;
int position = 1;
whil e(position <= inDigitString.length() &errorfree) {
String chr = inDigitString.substring(position-1, position);

if(chr.matches("[0-9]")) {

i f (where. equal s("post Poi nt "))
accuracy = accuracy / 10.0
value = 10.0*val ue + Doubi e. parseDoubI e(chr);

}

el se if(chr.equal s(") & where. equal s("prePoint"))
where = "post Poi nt™

el se
errorfree = fal se;

position ++;

}

if(lerrorfree | inDigitString.length
((where. equal s("postPoint")& nDigitString.|engt h(% 1)))
return -1.0;
el se
return val ue*accuracy;

6.1.2 SOTA and Eclipse
General procedure

The program 'Digit' is supposed to be written in Eclipse and then tested using a structure oriented program test. This
procedureis split into 4 phases:

1. Eclipse: Create Program
2. SOTA: Preparatory Phase
3. Eclipse: Testing Phase

4. SOTA: Evaluation Phase.

The following data flow diagram reflects all important actionas as well as inputs and outputs. The four phases result

from switching between Eclipse and SOTA and are depicted in differing colors. The interface between Eclipse and
SOTA isrealised only with the specified files.

Eclipze waork spacelZiffert, S0TA AS0TAL

create project "Digit" ASClLoggerjar Diggit paroject
-import ASCLogger jar T
-create class Digt create project "Digit
Digit java > -import Digt java Digit ischeme
and parse
GLI: Digit java
[Sourcelode, CFG,
static metrics)
Diggit java backy
o i — start program test GUIE Digit jarea (nst)
I — = test name: t1 (SourceCode, CFG,
-update project (F3) Diigit jarva -IZcheme: level 2 static metries)
-recampile {instrumented)
A= CLogger.ini
Digit class
start program "Digt" i i GULE Digit java
i f|n|_sr;1p|_ug| e_!m_ telst (SourceCode, CFG,
Jog -restere eriginal static metrics)
e GULE Digt java
L read test logs with coverage
Digyit java
) and evaluate (SourceCode, CFG,
coverage data coverage metrics,
static metrics)
report.html create report

Fig.: DF-diagram manual program test with Eclipse
Detailed procedure

1. Eclipse: Create Program

The test program should be written in Eclipse. In case Eclipse is not installed yet, the user can do this following these
instructions: http://wiki.eclipse.org/Eclipse/Installation.

Firstly, the user has to create a new project for the test program. This is done via the menu File -> New ->

Java Project. A dialog opens where the name for the project 'Digit' has to be entered, for all other options the default
values can be used. Therefore the user can close the wizard on the first page clicking Finish.

To create a class Digit the user has to select File -> New ->

Class which calls the appropriate wizard. Here the name of the class - Digit - has to be entered before closing the dialog.
Then a Javafile is opened into which the source code above has to be copied.

& New Java Project

Create a Java Project i
Create & Java project in the workspace or in an external location,

Project name: | Driiyit |

Conkents

@ Create new project in workspace

{:} Create project from existing source

) [Mexk = ” Finish H Cancel

Fig.: Eclipse - New Java Project

& Mew Java Class |._!®
Java Class
15, The use of the default package is discouraged. @

Source Folder: |Dig'rtrsrc H Browse. ..]

Package: | | {default)

[CJEnclosing type: | |

Mame:! | Drigyit |
Modifiers: (%) public 1 default
[Jabstract []Final
Superclass: | java.lang. Cbject | [Browse. .,]
Interfaces: add...

wWhich method stubs would vou like to create?
[public static void mainstring[] args)
[]constructars From superclass
Inherited abstract methods
Do wiou want bo add comments? (Configure templates and default value here)

|:| Generakte comments

13 Finish l [Cancel

http://wiki.eclipse.org/Eclipse/Installation

Fig.: Eclipse - New Java Class

Next it is necessary to include the logging component as a library in the project. In order to do this, the user has to copy
the file ASCLogger.jar from the SOTA directory into a folder lib in the root directory of the porject (..\workspace\Digit\).
On refreshing the project overview in Eclipse (F5) this file as well as the folder lib appear (see figure). Now the file has
to be added to the build path of the project by right-clicking ASCLogger.jar in the context menu and selecting Build
Path ->

Add to Build Path. Thelibrary is then included in the Referenced Libraries. With this the first phase - writing the
program and preparing it for instrumentation by SOTA- is completed.

== Digit = 1= Digit
= =2 src
=3 fdefaul package) =7 (default package)
== Iil Digtt java + Iil Diiit jarva
Digit java backup Diiggit jarva hackup
[+-Bh JRE Jyskem Library [jrec] +-B JRE Svystem Library [jred]
E-i== lib =B, Referenced Libraries
|ﬂ A5 Logger, jar ECCE A S Logger jar
Fig.: Progict 'Digit' with & lin
ASCLogger.jar ... Fig.: ... and with
ASCLogger.jar added to build

path

2. SOTA: Preparatory Phase - Create Project

After starting SOTA via SOTA.exe the user has to create a project in SOTA for the test program. Selecting the menu
item

New Project opens a two-page wizard guiding the creation process.

On the first page the name of the project - Digit - as well as the root directory (project directory) of the progjct created
in point 1 have to be specified. The execution directory of the project is automatically linked to the same directory by
SOTA needing no user input since both directories are identical in this case. The first page of the wizard is now
completed and clicking the Next button calls the second page.

On the second page all sources of the project need to be imported. The project 'Digit' only consists of one file, so
marking the root directory is sufficient. The Finish button closes the wizard and then SOTA reads and parses the source
file.

Saving the project succesfully completes the creation process. When SOTA is started again, the project can be loaded via
the menu item

=
Open Project. Immediately after creating a project or loading an exisiting project respectively, the source code can be
viewed in the view Source and the control flow graph of each function isvisible in the view CFG after selecting one in
the view Project. The static metrics that were computed while parsing the sources are now listed in the view Metrics.

iE Mew Project |Z|@@ iEi New Project

Project configuration Source Files
Plzase enter properties of the project. Please select the source files to import into this
project,

Project name: |Digit | Praject directory: | O\ Developmentiworkspace| Digit |
Project directory: | Dui\DevelopmentiworkspacelDigit | =) D[E‘

= bin
Execution directary; | DnhDevelopmentworkspaceh Digit | EE& b
Language: =[] = sre

Digit java

Ant buid file: | |
Run scripk: | | [Expand all] ’Cu:ullapse all l

.

Fig.: first page of wizard Fig.: second page of wizard

3. SOTA: Preparatory Phase - Instrumentation

The next step is to instrument the project for

effect in writing data into the log file during

program execution, allowing its complete Start test

reconstruction. For this reason, the user has to Press OF ta augmert the praject.

select the menu item

B

Sart Test. A dialog opens and a test name as Test name: Test 1.1

well as an instrumentation scheme have to be Test description:

selected. The test name also determines the

name of the log file where al the log datais

saved. The mg.rumentatlon. scheme specifies Select IScheme: |Level 2 instrumentation b

the manner of instrumentation for all

structures of the project. Usually, the user = 2 Digit java

should select the 1Scheme Level 2 =& Digi

instrumentation which leads to a minimal & main (Stringl])

instrumentation but computes all coverage &l evaluteDigitSequence (String)

metrics for all files.

After confirming the dialog the file Digit.java

is saved as Digit.java.backup and then the [Expandall] [collapse al

instrumentation directions are added to the

Origi nal file. With this the pfepafalion of the Level O Mo instrumentation, leaves sourcecode as it is,

instrumentation in SOTA is completed and the

testing phase may begin. £ Level 1 Instruments cfg-relevant blocks, standard coverage analysis,
] Level 2 Instruments also conditions, enables analysis of condition coverage,
ﬂ Level 3 Full instrumentation, every single statement is instrumented,

[Jrerun configuration, Don't change sources or binaries,

Instruments the project with the chosen I1Scheme.

I Ok] [Cancel

Fig.: diadlog Sart Test

4. Eclipse: Testing Phase - Compilation

At first the modified source code of the entire project has to be loaded in Eclipse. To do this, the project Digit has to be
selected in the project overview and then refreshed by clicking 'F5' or via the context menu -> Refresh. Subsequently,
Eclipse automatically compiles the new source files.

The instrumented sources require the library ASCLogger.jar which was included in step 2. Without the correct
integration of the library the compilation process will evoke error messages.

5. Eclipse: Testing Phase - Program Test

After succesfully compiling the program it is ready for the test. In Eclipse it is started via the button
2]

Run As... . On the first start Eclipse prompts whether the program is supposed to be started as an application or applet.
Here, the user should choose Application. The following dialog asks for the application where the correct choise is Digit.

Then the program starts. For the following program starts Eclipse should aways choose the selected start configuration,
so it is sufficient to click the button

e
now labeled with Run Digit.

Select a way ko run 'Digit' ;

=] Java Applet

Java Application

(7 I oK] [Cancel

Fig.: dialog Sart Test

& Select Java Application |Z|@@

Select kype (7 = any character, * = any String, TZ = TimeZone): -
*k
Matching items:

@ Digit - (default package)

.

@,.F\.SCLDgger - soba

£ ?

EE Digitthin - (default package)

)] I K,] [Cancel

Fig.: dialog Sart Test

The parameters for the program start in Eclipse could be written into the start configurations of the project, but since this
is quiteintricate for the simple test, it is recommended to change the string in the source code line

System out. printl n(eval uat eb git Sequence("."));

and then start the program without parameters. The console in Eclipse should now show the succesful initialisation
output of the ASCLogger as well as the result of the evaluation of the string.

Additionally, the corresponding log file with the name of the test should appear in the project overview of Eclipse after
the first program test. Repeating the test adds the new log data to this file.

Remark

It is also possible, and often more convenient, to execute the test cases in an automated way, so that you don't have to
enter the test data manually over and over again. Eclipse supports the creation, execution and evaluation of JUnit test-

cases. The procedure is the following:
« Add test file to Eclipse project, in a way that Eclipse will consider it a test file, i.e. use option New — JUnit Test Case
« Defineanamefor afileasDi gi t Test (If required, allow Eclipse to add build path for JUnit)
» Inacreated Javafile, copy source code of atest file.

After that, the final project content should look like the following:

File Edit Source Refactor Navigate Search Project Run Window Help

s 8 $-0 - B¥G- @/ PHCENER #H-H-vero- B % Debug (FTava)
fapr 2™ T Hi|ozo |Ju) - = DigitTestjava & =
BE&|® T 1 package hu.demo; -
=) Digit -
(8 src import junit.framework.TestCase;
£ hu.demo
[3] Digit.java public class DigitTest extends TestCase {
[3] Zifferjava
[FloatingPointNumberSca public void testScanDigitSequence() {
|Z| Zifferjava.backup I feec(); //test sequence to obtain full FEEC coverage
[testsrc I ce(); //test sequence to obtain full C@ coverage E
B h“'de_”?‘:' : I cl(); //test sequence to obtain full €1 coverage
] D_'g'tTESt‘J_E“ c2(); //test sequence to obtain full C2 coverage
b Z'ﬁer_Tm'J_“a I mmcec(); //test sequence to obtain full MMCC coverage
e F\.oatmgPo.thumbarSca L mede(); //test sequence to obtain full MCDC coverage
il Trifeclestiaa backip ol e3(); //test sequence to cbtain max C|3 coverage
=i, JRE System Library [jre6] - = 8
= JUnit 3 ¥
(s ASCLogger.jar |=
&= lib e 1N public void feec() {
4] ASCLoggerini System.out.println("z: " + Digit.evaluateDigitSequence("z"));
2 blalog System.out.println("@: " + Digit.evaluateDigitSequence("9"));
&) buildml }
= dlog
2 T_c0log public veid c@() {
[T_Cllog System.out.println(".9:" + Digit.evaluateDigitSequence(".9"));
B T_C2log System.out.println("z:" + Digit.evaluateDigitSequence("z"));
T_FEEC.log }
B Tllog
El T0llog public veid <1() {
El Tilleg System.out.println(".9:" + Digit.evaluateDigitSequence(".9"));
_D Ti2log System.out.println("z:" + Digit.evaluateDigitSegquence("z"));
HE:Z; System.out.println("9:" + Digit.evaluateDigitSequence("9"));
E Tdlog }
Té.l
BTIIZB public void c2() {
= TS"DE = System.out.println("9:" + Digit.evaluateDigitSegquence("9")); =
, o Ble _ ; . .
o+ Writable Smart Insert 14:48 = [3__ @ @ = =3

Fig.: An example for JUnit test case within Eclipse.

As can be noticed, in this test file, al of the test-cases are grouped according to the cover measure they should cover,
which is stressed by the title of a method. Additionally, some formatting was added, so that test-cases are more readable.
For each test-case, the form of a source code lineis:

Systemout.printin("z: " + Digit.evaluateDi gitSequence("."));

so that the resulting linein a log file would be "test-case" : "test-result".

After this, user should perform the actual test. Thisis performed by starting the test run with Run As — JUnit Test. The
test will run as long as necessary and the results of that run can be observed in a Console window of Eclipse. With the
above mentioned set of test-cases, the results are;

File Edit Source Refactor MNavigate Search Project Run Window Help

5 - B %-0-%r BHHE G- ®0 s~ PO

vEOER H-H-eera-

S % oeus

r[\hPrTg Hi .EEO ;'ﬁ] PN = 0O|lA DigitTestjava &5
“Fimshed a&erﬂ,bﬂﬁ seconds = || 1 package hu.demo;
o BB | @ 2 E ~ 2
| 3 dimport junit.framework.TestCase;
Runs: 1/1 ® Errors: 0 B Failures: 0 4
| 5 public class DigitTest extends TestCase {
| 6
Fi] hu.demo DigitTest [Runner: JUnit3] (0,0 7= public void testEvaluateDigitSequence() {
£l testScanDigitSequence (0,000 <) 8 feec(); //test sequence to obtain full FEEC coverage
= c@(); //test sequence to obtain full C@® coverage
1e [/ ci(); //test sequence to obtain full Cl coverage
11 // c2()5 //test sequence to obtain full C2 coverage
12 \fS mmcc(); //test sequence to obtain full MMCC coverage
13 /S mcde(); //test sequence to obtain full MCDC coverage
14 [f/ c3()5 //test sequence to cbtain max €3 coverage
15 }
16
176 public veid feec() {
18 System.out.println("z: " + Digit.evaluateDigitSequence("z"));
19 System.out.println("@: " + Digit.evaluateDigitSequence("9"));
< |] | 3 2e 1
— 21
| FETiEEs 226 public void c@() {
23 System.out.println(".9:" + Digit.evaluateDigitSequence(".9"));
24 System.out.println("z:" + Digit.evaluateDigitSequence("z"));
25 }
26
279 public void c1() {

[Z Problems | @ Javadoc @ Declaration | Bl Cansole 2

=5 Progress.

<terminated> DigitTest [JUnit] C:\Program Files (x86)\Java\jref\bin\javaw.exe (30.ﬁ9.2010 11:03:51)

z: -1.0
e: 9.0

4

A

Fig.:JUnit test case execution within Eclipse.

6. SOTA: Evaluation Phase - Reconstruction

Writable

Smart Insert 34:69

% % | x b [EE) o C

When the tests in Eclipse are completed, the user has to inform SOTA of this by selecting the menu item

Sop Test. The sources are then reconstructed into their original state. Alternatively, the sources can also be rebuilt viathe

menu item

&9

Restore Sources.

Read TestLogs

Please select bestlogs to import, :ﬂ

Directory: | DY\ Developmentworkspace Digit | [Brawse...]

ﬂ test ...log

[test .2.log

ﬂ test 1.1.log
ﬂ test 1.log

ﬂ test empty.log

[Check all] [Uncheck all]

[Ok] [Cancel

Fig.: dialog Read Logs

7. SOTA: Evaluation Phase - Evaluating the Test

In order to read the log files, a dialog opens immediately after selecting the menu item

—

(=3

=

-

m

8

=
-

A fum] »

I=

Sop Test. Here, al files in the execution directory ending on log are listed for the import. The log files selected there are
read, analysed for further evaluation and finally appear in the view TestLogs. The TestLogs marked there will now be

used for computing the soverage metrics and determine the presentation of the coverage in the views Source, CFG and
Coverage.

If the user wishes to import the log files when SOTA is not in testing mode, the menu item

Read Logs evokes the same behaviour.

8. SOTA: Evaluation Phase - Create Report
The program test is completed by creating a report. This is done via the menu item

Create Report which, depending on the settings in the preferences, either opens a dialog for entering a file name, or
automatically generates a name and creates a report file in the root directory of the test program.

6.1.3 SOTA with Ant build file and start script

General Procedure

SOTA offers the possibility to execute the manual program test in SOTA by using two scripts. The procedure matches
the procedure described in point 6.1.2 in principle, but the third phase, the testing phase, is not done in Eclipse which is

only needed for creating the project. The following data flow diagram represents an overview of the steps taken in SOTA
and the points at wich the scipts complement the procedure.

Eclipse ok spaceiitfan SOTA ASOTA)
creste project "Digit" ASCLoggerjar Digit project
-create class Digit
-export build xml — creste project "Digit" =
Diait java -import Digit java Digit izcheme
and parse
GLI Digit java
Digit java backup (SourceCode, CFG,
- static metrics)
o start program test
Digit java > .
{instrumented; [_lét:r?;IEZ!q:ng 5
= 5 ‘.--"'“ :
ASClLoggerini
/ e, (R GLI Digt, javea (inetr)
build xml e f;'_:;ﬂild[lﬁﬁ., » (SourceCode, CFG,
; static metrics)
Digit class
H— 2 - - L] gl
sarthat [« start progran "Digt
—
1 log
- o GLUIE Digit java
Digit java f'nll,se';tz'rzgéﬁ"};glﬁ [SourceCode, CFG,
- g static metrics)
GUL Digit java
read test logs with coverage
and evaluste (SourceCode, CFG,
coverage metrics covelage metrics, |
static metrics)
report.htm| create report

Abb.: DF diagramm manual test with scripts

Detailed Procedure

The detailed procedure matches the procedure described in point 6.1.2 and only differing steps are ecplained.

1. Create Project

Additionally to creating the project asin 6.1.2, an xml build file is exported from Eclipse. This can be done by selecting
[2]
Export ... in the context menu. A dialog opens where the user should select General -> Ant Buildfiles.

In the second dialog window only the corresponding project (here: Digit) has to be chosen and after finishing an xml file
named 'build.xml" is created in the root directory of the project which enables compiling the complete project.

& Export |:|E]

Select /-‘
zenerates ant Buildfiles For Eclipse Java projects. I g 5

Select an export destination:

|t';-'|:|e filker et |

== General -
& ant EuildFiles
B Archive File =
177 File System
1= Preferences

= Cfc++

[1]

®

Fig.: Eclipse export dialog

& Export |:|

Generate Ant Buildfiles L
Generates Ant buildfiles based on the configuration of the Java projects %\
1

Select the projects to use ko generate the Ant buildfiles:

122 Digt Select Al
Deselect al

Check projects For Ant compatibility

Create target to compile project using Eclipse cormpiler

Mame For Ant buildfile: | build. il |

JUnit oukput directary: | junit |

':?:' [Finish l [Cancel

Fig.: Eclipse Ant build file dialog

Finally, a batch file 'Digit.bat' has to be created in the root direcotry of the project 'Digit'. This is necessary to start the
program. The file has to contain the following Java command including the class path:

java -cp bin;lib/ASCLogger.jar; Ziffer

2. Preparatory Phase: Create Project

iE Mew Project

Project name: |

Project directory:

Execution directary:

Language:

Ank build, file:

Run scripk:

Project configuration

Plzase enter properties of the project.

Di\DevelopmentiworkspacelDigit

L |

DiiDevelopmentiworkspacelDigit |

Java (W

| DiiDevelopmentiworkspaceiDigitibuild. x|
| D.:'I,De_velalpl_'ne!jt'l,wurlss.pgcgfl,l;)i_git'l.l_}ig!t..k_:a.t |

Cancel

Fig.: create project with scripts

Creating the project in SOTA works as in point 6.1.2
with the only difference that the files 'build.xml" and
'Digit.bat’ created in the first step, have to be imported
on the first wizard page. However, it is also possible
Ero add these files at a later point via the menu item

Configure Project.

In order to succesfully compile the project using the
Ant build files, an Ant file 'ant.bat' that SOTA can
execute also has to be included in the preferences
under Preferences -> General -> Location of Ant.
Since the settings in the preferences are effective for
al projects, it is sufficient to make this entry once.

3. Preparatory Phase: Instrumentation / 4. Testing Phase: Compilation / 5. Testing Phase: Program Test

By including the two files the manual program test is available in SOTA. The dialog Start Test now offers the option
Build Project, and as soon as this has been marked also the option Run Project. If the first option is active, the first Ant
build file will be executed thus compiling the instrumented sources. The second option also runs the start script so that
the program will be started. However, the start option of the current version of SOTA does not offer parameter passing to
the test program which strongly limits testing options for our program 'Digit'. In order to test severa strings, itis
necessary to readjust the start script.

Start test

Press QK ko augment the project.

Tesk name: test .

Test description:

Select Ischeme: | Lewvel 2 inskrumentation

= @ Digit java
=3 Digit
QE main {3tring(T)
@ evaluateDigtSeguence (String)

[Expand all] [Cu:ullapse all

=] LewelD Mo instrumentakion, leaves sourcecode as it is.

& Level 1 Instruments cfg-relevant blocks, standard coverage analysis,

@ Level 2 Instruments also conditions, enables analysis of condition coverage,

&ﬂ Level 3 Fullinstrumentation, every single statement is instrumented.

[(rerun canfiguration. Don't change sources or binaries,

Build project Run project
Instruments the project with the chosen IScheme, compiles and runs project with Ant,

[[o'e i [Cancel

Fig.: dialog Start Test with compilation and start options

6. Evaluation Phase: Reconstruction / 7. Evaluation Phase: Evaluating the Test / 8. Evaluation Phase: Create

Report

The remaining steps of the manual program test are consistent with the description in 6.1.2.

6.2 Test using an External Testing System (ATOSj)) - HU-Seminar-Organisation

6.2.1 ATOSj and HUSemOrg
Touse ATOS as an external testing system and of HUSemOrg as a test program they need to be installed.

Instructions can be found here:

« Instalation reference for the program for organising seminars HUSemOrg:

« Instalation reference for ATOS;:
o ATOS): project setup for seminar organisation:

6.2.2 SOTA and ATOSj

General Procedure
he testing procedure is similar to the manual program test with the exception that the actual testing is done using the
external testing system. This leads to the following phases:

1. Eclipse: Create Program
2. SOTA: Preparatory Phase

3. ATOSj: Testing Phase
4. SOTA: Evaluation Phase.

Asin 6.1.3 Eclipse is only used to create the program and plays no further rolein the program test as an Ant buildfile is
used. The following data flow diagram indicates the phases transferred to the external testing system.

Eclipse ootk spaceiSem Qrgh SOTA LEOT AL
creste project SemOry ASCLaggerjar
-import claszes . Semirg.project
—export build zml Create Project SemOrg
*java — -impat * java
and parse
GUIL * java
[SourceCode, CFG,
* java backup static metrics)
1y —
i start prog anl1 test
{instrumernted; | Aest name: 11
Scheme: level 2
= LY 4.-""".‘
ASClLogget.ini

build xml / \

GUI: *java (instr)
[SourceCode, CFG,

compile SemCrg
"ant build ol

static metrics)
regression test
-start SemCrg t Jog
-execute test script
AN N BUI: * java
*java fInI.SI‘;th.DgI :am_ telzst [(Sourcecode, CFG,
RIS EE T static metrics)
GLI: * java
read test logs and with coverage
evaluate coverage (Sourcelode, CFG,
metrics coverage metrics,
static metrics)
repart html Create Feport

Fig.: DF diagramm Manual Test with Scripts

Detailed Procedure

The detailed procedure matches the procedure of the manual test with only a few exception which are described below.

1. Create Program

The program HUSemOrg should be unpacked into the Eclipse folder workspace and is already adapted to usage with
SOTA. Asin point 6.1.2 a project husemorg has to be created in Eclipse and the library ASCLogger.jar added to its
build path.

2. Preparatory Phase: Create Project / 3. Preparatory Phase: Instrumentation / 4. Testing Phase: Compilation

The next three steps only refer to the preparation in SOTA and are identical to the manual test.

5. Testing Phase: Program Test

After the instrumented source files have been compiled ATOS is started for the program test itself. The regression tests

are performed on the instrumented classes. SOTA may be closed for this. The usage of ATOS isin no way affected by
the preperation phase with SOTA, thereis no interaction between the two programs.

6. Evaluation Phase: Reconstruction / 7. Evaluation Phase: Evaluating the Test / 8. Evaluation Phase: Create

Report

The remaining steps match the description in 6.1.2.

6.3 Automatic Testing System - SOTA-ATM

SOTA-ATM (Automatic Test Module) is alibrary containing the test functionality of SOTA and needing no GUI at all.
This permits controlling the instrumentation of projects as well as the evaluation of log files with other programs.

There are two control options offered for the module. On the one hand, it is possiblet to start SOTA-ATM as an
executable Jar which can be controlled and started via command line parameters enabling its usage in simple scripts. On

the other hand, SOTA-ATM isalibrary which can be integrated making it an interface between functions for testing the
project and other programs.

6.3.1 SOTA-ATM via command line call

Parameters - Overview

SOTA-ATM is an executable Jar and can be called via command line with several paramters. The necessary values
about the project can either be passed to SOTA-ATM by importing a project file (-p) or by passing them on calling

SOTA-ATM (-n). A project file can be generated via the graphical user interface of SOTA, by using the option -n of
SOTA-ATM or manualy.

The other options call the different components of the module. The main aspects are the instrumentation of source files (-

i), the reconstruction of the original sources (-z) and the evaluation of tests by reading the appropriate log files (-t) as
well as creating a report thereafter (-r).

Additional functions can be combined with the ones above. Those are the compilation (-c¢) and start of the test program
(-s), provided the necessary files are available. The order of optionsisirrelevant.

Usage: java -jar SOTA-ATMjar [-options]

options include
-c [<ant - buil dfile>

) conpi |l e SOUI’e;I les; only if ant-buildfile is provided
-i (Levell | Level2 | Level 3 | ~ <i schenme- nane>

instrunent sourcefiles according to chosen |evel or |Schenme
-n <name> <l ang> <project-dir> [<exec-dir> <src dir>]

create new project file
-p <name>. proj ect

open the project file
-r [<report-file>]

create report-file; if no nane is provided it will be stored in "report.htm"
-s [<runscript>

start project; only if runscript is provided
-t <testname>.log [<t est name>. log .

name of testlog to create or to i mport
-z restore original sources

Parameters - detailed

-c [<ant-buildfile>]

The parameter ¢ evokes the compilation of the project after the file operations have been completed. This option requires

the project file to contain a reference to Apache Ant and to an Ant build file. The build file may also be passed via
command line right after -c.

-i (Levell | Level2 | Level3 | <ischeme-name=)

With the parameter i all sources of the project are saved as a backup and then instrumented. It has to be followed by
either a name of an 1Scheme specified in the project file or one of the values'Levell', 'Level2', 'Level3 which stand for a

complete instrumentation of the entire project according to the respective levels. The project will only be instrumented, if
none of the source files isinstrumented already.

The parameter i requires the declaration of a test name via the parameter t and subsequently the usage of the parameters
r to create a report and z to rebuild the sources.

-n <name> <lang> <project-dir> [<exec-dir> <src dir>]

The parameter n creates a new project on the basis of the passed values. A project name, the employed programming

language and the reference to the project directory have to be indicated at the least. The execution directory as well as
the source directory are optional values and are set to the project directory if not specified otherwise.

The project file will be saved as <name>.project. Using the paramter n prohibits the usage of parameter p.

-p <name=>.project

With this parameter the user can pass a project file which contains the data to characterize the project. Such a project file

can be generated by using the graphical user interface, by calling SOTA-ATM with the parameter n (see above) or
manually. Using the paramter p prohibits the usage of parameter n.

-r [<report-file>]

This parameter evokes the creation of a report containing the computed coverage metrics, on the basis of the test's log

files that have to be included by calling the parameter t. If a reference to an html file follows the parameter, the report
will be written into it. Otherwise a file 'report.html" will be created or overwritten.

The parameter r requires at least one log file passed viat and finally the paramter i evoking the instrumentation of the
source files. If the source files are aready instrumented, they will be restored to their original state before the test is read.

-s [<runscript>]

The parameter s starts the test program. It is necessary to reference a run script either as a parameter or in the project
file.
-t <log-file=.log [<log-file=.log ...]

This parameter is used in two contexts. When an instrumentation viai is caled, it defines the name of the test which is
also the name of the log file that will be created. For creating a report with the parameter r all log files to be imported
are listed after the parameter t.

-Z

The parameter z restores all source files of the project from the backup files. It cannot be used together with the
parameter i for the instrumentation.

Sample Usage
java -jar SOTA-ATM.jar -n Digit Java /workspace/Digit

A project 'Digit' of the programming language Java is created. Its project directory is'/workspace/Digit'. From there all
javafiles are imported into the project. After successful completion all project information is saved in the file
'Digit.project’. Various settings, e.g. build files that should be used, can be changed in that file.

java -jar SOTA-ATM.jar -p Ziffer.project -i Level2 -t testl -c -s

This call of the module has the effect that the project 'Digit' is parsed, fully instrumented according to level 2 and then
compiled and started. Additionally, the value 'test1' is passed as a test name. The order of the options isirrelevant.

java -jar SOTA-ATM.jar -p Ziffer.project -z -c
With this call the original state of the sourcesis restored.

java -jar SOTA-ATM.jar -p Ziffer.project -t testl -r

This call of the module creates a report for the project 'Digit'. The test 'test1' is read and the coverage metrics computed
there are written into the standard report file ‘report.html’. I the source files are instrumented, they will be restored to
their original state first.

6.2.2 SOTA-ATM API

Overview

SOTA-ATM can be imported as a library into a program thus enabling the usage of the non-gui-functionality of SOTA
for the static analysis and the coverage test. The javadoc documentation is available here.

The central class for the program test is SotaATM. Each of its objects represent a test instance of SOTA. A test instance
can be configured by either loading a project file or passing an instance of ProjectConfiguration which contains al
relevant data for the program test similar to a project file. For this instance the full functionality of SOTA, from
instrumentation to report creation, is available (see javadoc).

Right after opening the project a Metrics object containing al metrics of the static analysis can be returned from the test
instance. The coverage metrics are available in the very same object after testing the program and evaluating the
generated log files.

To configure the instrumentation for a test, it is possible to define variable | Schemes which can assign a different
instrumentation level to each structure (file, class, function) of the test project . The overall instrumentation of the project
according to one instrumentation level is available via a Globall Scheme.

Sample Implementation of the Manual Test of HUSemOrg
The following java program code reads the given project file, starts a test with instrumentation level 2, compiles and

starts the test program. After completing the test al source files are restored to their original state, the project is
recompiled and an html report is generated from the imported test.

String projectFile = "D:/Devel opnent/ ecl i pse/ husenorg. project";
String reportFile = "report_test_1.htm";

String testName = "husenorg_test_1";

String testDesc = "Test 08/15";

TreeSet<String> testSet = new TreeSet<String>();
t est Set . add(t est Nan®e) ;

Sot aATM at m = new Sot aATM fi | eNane) ;

atm start Test (test Nane, testDesc, new d obal | Schene("Level 2", 2) , true);
atm stopTest (testSet, true);

atm creat eReport (reportFile);

file:///D|/Users/hildebrm/Desktop/manual_english/doc_atm/index.html
file:///D|/Users/hildebrm/Desktop/manual_english/doc_atm/sota/SotaATM.html
file:///D|/Users/hildebrm/Desktop/manual_english/doc_atm/sota/ProjectConfiguration.html
file:///D|/Users/hildebrm/Desktop/manual_english/doc_atm/sota/Metrics.html
file:///D|/Users/hildebrm/Desktop/manual_english/doc_atm/sota/IScheme.html
file:///D|/Users/hildebrm/Desktop/manual_english/doc_atm/sota/GlobalIScheme.html

SOTA User's Guide - Version 1.0

1 Introduction
2 Overview

3 Installation and Start of Program

4 User Interface and Functionality
5 Files

6 Tutorials
7 Appendix

7.1 Static Metrics

7.2 Coverage Metrics
7.3 Level of Instrumentation

7.4 More Terms and Definitions (Glossary)

7 Appendix

7.1 Static Metrics

In SOTA static metrics sums up all metrics of the project that are obtained by static analysis of the
source code. They are determined while parsing the source code and it is not necessary to execute the
program contrary to the coverage metrics. The metrics provide on the one hand a means of estimating
the complexity of the source code in terms of different criteria thus giving the user an indicator for
enhancing the structure of the source code. On the other hand they enable the user to assess the costs
of testing and the number of different tests for individual criteria respectively.

The static metrics are visible in the viewMetrics for all structures of the projects right after loading it.
The values of the cyclomatic and essential complexity for classes, files and the project are the
maximum of the values of their subordinate functions, for all other metrics these values are summed

up.

Notes on the ModBI and Bl values: The entire scope of exception handling eliminate the possibility
to identify paths precisely. Therefore the computed value is always a lower bound, i.e. the minimal
number of paths and sub-paths respectively that will be reached during the ModBI and Bl test.

7.1.1 Cyclomatic Complexity

Cyclomatic complexity is computed using the control flow graph which represents al paths that
might be traversed during program execution and their branching habits(cf. view CEG). The
cyclomatic complexity z(G) isdefined as: 2(G) = e-n+ 2

where e is the number of edges and n is the number of nodes of the control flow G.

Therefore a function without branches in the program flow always has a cyclomatic complexity of 1,
and each branch, e.g. an if-statement, increases the cyclomatic complexity by 1.

7.1.2 Essential Complexity

The definition of the of the essential complexity is closely related to the cyclomatic complexity. After
recursively deleting al primitive control structures from a given control flow graph G, the cyclomatic
complexity of the resulting graph G' is defined as the essential complexity e(G) of the graph G: &(G)
= 2G).

All simple structures which contain no jumps, with the exception of break instructions in switch
statements, are considered primitive structures. The existence of jumps out of control structures
makes these structures and all structures including them irreducible thus increasing the value of the
essential complexity.

7.1.3 Lines of code (LOC)

The number of the lines of code is listed here as one of the most primitive metrics of the source code,
encompassing the appropriate structure. In contrast to al other metrics SOTA computes, LOC
strongly depends on the structure of the source code and also the commentary. Therefore it should be
regarded with care.

7.1.4 Number of Statements (#Statements)

Unlike the Lines-of -code-metric the number of statements offers an objective, format-independant
metric for the extent of the project. In order to compute this metric all executable statements are
summed up for al structures. The test of the coverage of statements consists of comparing the
number of executed statements with the number of all statements.

7.1.5 Number of Branches (#Branches)

The number of branchesis defined functionally in SOTA as a way of computing the branch coverage.
While the number of branchesin a function equates to the cyclomatic complexity - 1, in this case the
number of branchesis defined as the sum of the outputs of all branching nodes. So, for a function
without branches the number of branchesis zero, for each added if-statement the number increases by
two.

7.1.6 Number of Modified Boundary-Interior Paths (#ModBl)

The number of modified boundary-interior paths corresponds to the number of subpaths through the
control flow graph which have to be tested to fully execute the modified boundary-interior paths
coverage test. The different kinds of subpaths are defined according to Liggesmeyer (Software-
Qualitat, 2002) as follows:

« all executable paths through a function which do not enter pre-test loops nor repeat post-test loops,

« all executable subpaths of each loop, which execute the body of the loop exactly once, disregarding
the behavior for closed loops,

« all executable subpaths of each loop, which execute the body of the loop exactly twice, disregarding
the behaviour for enclosed |oops and possible following cycles of the loop body.

In the View CFG the user can find the number of subpaths which have to be tested according to the
above definition for each loop in the node info (double-click on the appropriate node). Here the value
is listed under 'ModBI'. In the node info of the function node the value for the entire function is listed
as well as the values for subpaths of loops and subpaths through the entire funtion.

7.1.7 Number of Boundary-Interior Paths (#Bl)

Analogous to the metric above, here the number of boundary-interior pathsis specified for each
funtion and accordingly for classes, files and the project the sum of all values contained in them. The
corresponding paths are defined as all executable paths through the funtion in which the limit of the
number of paths applies, so that on occurence of loops only those paths need to be tested where for
each loop

« theloop is skipped, i.e. the loop body is not executed (impossible for do-while loops),
« theloop body is traversed exactly once,
« theloop body istraversed at least twice, only regarding the first two iterations.

7.1.8 Number of Statements with Logical Conditions (#ConditionStmts.)

To compute the number of statements with logical conditions al occurences of statements with
evaluable logical conditions in the source code are summed up. Infinite loops (‘while(true)) and loops
iterating over a set (‘for(Item item : set)’) are not counted explicitly.

7.1.9 Number of Logical Atoms (#Atoms)

This metric corresponds to the sum of evaluable atomic conditions from all logical conditions. The
logical atoms true and false are not counted since they are not evaluable with regard to the coverage
test for conditions and have no influence on the control flow.

7.1.10 Number of Logical Conditions (#Conditions)

The number of logical conditions contains the sum of all atomic and compound conditions. This
valuesis important for computing the minimum multiple condition coverage. Die Anzahl der
logischen Bedingungen enthélt die Summe aller atomaren und zusammengesetzten Bedingungen.
Dieser Wert ist fur die Berechnung der minimal M ehrfach-Bedingungsiiberdeckung wichtig.

7.2 Coverage Metrics

The actual aim of SOTA isto evaluate program tests by computing coverage metrics. By including
instrumentations a log file is created with the necessary data allowing SOTA to reconstruct the
program flow and the evaluation of the conditions in retrospect. From these data the most common
coverage metrics are determined for the individual tests. These are then listed in the View Coverage.

7.2.1 Function-Entry-Exit-Coverage (FEEC)

The test for Function-Entry-Exit-Coverage requires all inputs and outputs of each function to be
regarded for full coverage. It is computed as follows:

« FEEC = (#visited function inputs + #visited function outputs) / (#function inputs + #function outputs)

In Java there exists only one input for each funtion. Counted as possible outputs are the normal
function ending, in case it was reached, as well as al return-statements and all throw-statements
outside of try-structures.

7.2.2 Statement Coverage (CO)

For the statement coverage it is necessary that every statement in the source code was executed. Since
each statement isonly listed in the log file after its execution when the source code has been
instrumented according to instrumentation level 3, the statement coverage is usually determined from
the logged key data of the control flow after the program test.

« CO = #covered statements / #statements

Note: In the view CFG not al nodes correspond to statements and not every statement corresponds to
a node. Therefore the CO-coverage cannot be computed from the covered nodes of the control flow
graph, it is rather based on the value #Satements from the view Metrics.

7.2.3 Branch Coverage (C1)

The full branch coverage was reached, if all branches of the control flow graph are covered.
Computing the percentage coverage is done differently in practice, to smplyfy matters SOTA
computes this on the basis of the branches (cf. 7.1.5) as follows:

« C1 = #covered branches / #branches
7.2.4 Simple Condition Coverage (C2)

The simple condition coverage excusively tests whether all logical atoms of the conditions were
evauated true as well as false. However, this does not mean that branch coverage was reached as a
minimum goal, therefore it is hardly possible to draw any conclusions from the simple condition
coverage. For computing the percentage coverage SOTA counts all evaluations of each atom and
compares them with the target value.

o C2 = (#true-evalutations of all atoms + #false-evaluations of all atoms) / 2 * #atoms
7.2.5 Minimal Multiple Condition Coverage (MMCC)

The minimal multiple condition coverage has established itself as a practible condition coverage
which also includes the branch coverage. Analogous to C2 all evaluation of the logical atoms are
regarded here as well as all compound, complex conditions. These have to be evaluated as true as
well as false during the tests. The number of logical structures which have to be analysed
corresponds to the number of logical conditions listed under 6.1.10.

« MMCC = (#true-evauations of al conditions + #false-evaluations of all conditions) / 2 * #conditions
7.2.6 Modified Condition/Decision Coverage (MCDC)

An even more exact test criterion is the modified condition/decision coverage test. To fulfill this
coverage is not only necessary that all logical atoms of every condition adopt the values true and
false. Additionally, it should apply for each atom that configurations of these conditions exist, which
only differ in this atom and lead to an alternative evaluation of the complete condition. This ensures
that the test checked whether changing the logical value of each atom would have an influence on the
total condition. The two truth vectors of a condition fulfilling these requirements for an atom are
called MCDC-couple. The coverage metric is then calculated using the MCDC-couples as follows:

« MCDC - Modified Condition/Decision Coverage = #MCDC-couples/ #atoms
7.2.7 Multiple Condition Coverage (C3)

The multiple condition coverage test requires the most comprehensive condition test, since all truth
vectors of every condition need to be tested. This means the costs for the test grow exponentially
with the number of conditions. Additionally, in most casesit is not possible to apply al combinations
of truth values. However, these impossible combinations usually cannot be recognized easily. The
costs for testing 2\(#atoms) is merely reduced by using short-circuit-operators which stop evaluating
the condition as soon as the result of the complete condition was determined irrevocably.

« C3 = #evaluated truth vectors / #possible truth vectors
7.2.8 Modified Boundary-Interior Path Coverage (ModBl)

The modified boundary-interior path coverage test is a test proposed by Liggesmeyer which reduces
the test cases compared to the boundary-interior path test (see definition in 7.2.9). In order to
compute the coverage metric, it is necessary to compute the MBI -paths covering the paths for every
one of them using a function during program testing. Then the sum of these covered subpathsis
compared with the number of possible MBI -paths as defined in 7.2.9.

Since the number of ModBI-pathsis only a minimum of possible subpaths according to this criterion,
in practice more MBI -paths may be traversed (e.g. due to exceptions) than defined by this minimal
bound. In this case the coverage value is naturally limited to 1.
« ModBI = #traversed MBI -paths / #possible MBI -paths

7.2.9 Boundary-Interior Path Coverage (Bl)
The boundary-interior path coverage is computed like the modified boundary-interior path coverage.
However, the BI-paths are computed only for the paths going through a funtion and then this value is
compared to the number of possible Bl-paths.

« BI = #traversed Bl-paths / #possible Bl-paths

7.3 Instrumentation Level

In order to allow the user to limit the memory requirements of the log files sensibly and variably, the
source code can be instrumented in different levels. A configuration of the instrumentation is
combined in an instrumentation scheme, short |Scheme, and saved for the corresponding project. For
all projects three basic | Schemes which correspond to instrumenting the code according to the
respective levels, are provided by SOTA.

Level O

Assigning level 0 as an instrumentation level for a structure causes this structure to be excluded from
the instrumentation. Thisis sensible for functions which create a lot of log information (due to
frequent execution or complex function flows), but have been tested adequately and can be excluded
from further testing.

Level 1

The basic instrumentation is offered vialevel 1. Here al function entires, exits and all branching
structures are instrumented, so that the control flow through the functions is can be reconstructed
from these data. With these data it is possible to compute all coverage metrics except for the
condition coverage.

Level 2

Additionally to level 1, the instrumentation according to level 2 also saves the configuration for each
atom, provided it would also be evaluated in the program, in the log file. These data allow SOTA to
compute the metrics as in level 2 as well as the condition coverage metrics for the program test.

Level 3

Finally, SOTA offers a full instrumentation of the source code with the instrumentation according to
level 3. Next to the evaluated atoms, the log file will also include entries about the execution of all
individual statements. Therefore the log file is considerably larger compared with the other
instrumentation levels. This option of instrumentation is not only offered for the sake of
completeness but also permits a detailed analysis of the control flow for programs terminating in an
unusual way and exception handling.

7.4 More Terms and Definitions (Glossary)

Ant/Ant Buildfile Apache Ant is a common tool, comparable to make, in
Java development for automatically compiling source
projects. Destinations and commands for the compilation
are stored in an XML file, the Ant buildfile, which Ant
can read and then execute the compilation.

When using Eclipse it is possible to easily export an Ant
buildfile viaFile -> Export -> Ant Buildfile zu

exportieren.
ASC-Logger.ini / The testing of Java programs requires a logging
ASCLogger.jar component named ASCL ogger.jar which has to be

included into the project, then it administers saving the
coverage data. Theinclusion in Eclipse is done via Project
-> Properties -> Java Build Path -> Add JARs or Add
External JARS, depending on whether the user included the
ASCLogger library into the project or isloading it from
the SOTA directory. Information about the individual test
cases, i.e. project name, test name, description and used

| Scheme are provided via the initialization file named

Execution Directory of the
Test Program

Base Directory of the Test
Program

Base Directory of SOTA

Dynamic Program Test

Instrumentation Scheme /
IScheme

Start Script / Batch File

Static Program Analysis

ASCLogger.ini which is created on starting the test,
written into the execution directory of the test program and
then read by ASCL ogger.

The execution directory of the test program is the directory
from where the program is started, i.e. the directory where
java-cp .. classname is executed or, when using a start
script, the directory containing this batch file. In RCP-
development with Eclipse the RCP-program is started
from the base directory of the platform, i.e. Eclipse. In this
case the execution directory is"..\eclipse\".

The ASCLogger.ini is put into the execution directory.
This file contains information about the test for the logging
component. The log files are also written into this
directory.

The base directory of the test program isits root directory
where al source files and binaries (possibly in
subdirectories) are located. From here are the sources and
the project imported and the coverage report is put into
this directory.

The base directory of SOTA is".\SOTA\". Here are the
executable SOTA.exe and the library ASCLogger.jar
stored. Aditionally, the project file <projectname>.project
as well asthe log file of SOTA with al program outputs
are created in this directory.

Every test of a program that requires the program to be
executed is a dynamic program test. Amongst those are
functional (Black-Box-) and structure-oriented (White- or
Glass-Box-)Tests. Asatool for structure-oriented testing
SOTA calculates the nine different coverage metrics for
each test.

SOTA offers several levels of instrumentation in order to
enable limiting the overhead evoked by the
instrumentation. An instrumentation scheme (short:

| Scheme) contains information about a specific way of
instrumenting the project, i.e. it provides a mapping of al
functions of the project to an instrumentation level.

SOTA aways includes the three basic | Schemes allowing
instrumentation according to levels 1, 2 and 3. If a new
IScheme is created, these data will be saved in the project
file <projectname>.project in the base directory of SOTA
and will be available for usage in this project.

The start script (a batch file under Windows) is afile
causing the start of the test program when executed.
Therefore it merely has to contain a typical Java cal "java
-cp .. classname” in way specified for the project. If the
start script isincluded in SOTA, the test program will be
executable in manual program testing with SOTA.

Contrary to the dynamic program test, the static program
analysis is done without executing the project. The

information needed for the static analysis is determined
only by parsing the program. Thisway SOTA identifies
ten different static metrics which provide information
about the structure and the complexity of the program and
their components respectively.

<IELEMENT Project (Name, Language, Prefix, BackupExtension, ProjectDir, ExecDir, SourceFiles, |Schemes?,
AntLocation?, AntBuildFile?, RunScript?)>
<IELEMENT SourceFiles (File*)>

<IELEMENT ISchemes (I Scheme*)>
<IELEMENT IScheme (Name, Description?, Level0?, Level1?, Level2?, Level3?)>
<IELEMENT LevelO (File*, Class*, Function*)>
<IELEMENT Levell (File*, Class*, Function*)>
<IELEMENT Level2 (File*, Class*, Function*)>
<IELEMENT Level3 (File*, Class*, Function*)>
<IELEMENT Description (#PCDATA)>
<IELEMENT Name (#PCDATA)>
<!IELEMENT Language (#PCDATA)>
<IELEMENT File (#PCDATA)>

<IELEMENT Class (#PCDATA)>

<IELEMENT Function (#PCDATA)>
<IELEMENT Prefix (#PCDATA)>
<IELEMENT BackupExtension (#PCDATA)>
<IELEMENT ProjectDir (#PCDATA)>
<IELEMENT ExecDir (#PCDATA)>
<IELEMENT AntLocation (#PCDATA)>
<IELEMENT AntBuildFile (#PCDATA)>
<IELEMENT RunScript (#PCDATA)>

SOTA Coverage Report

Project: husemorg

created: 2009-03-23 14:14:49

Function Entry-Exit Coverage (FEEC) 35,46% # Files 77
Statement Coverage (CO) 37,99% # Classes (TopLevel- + inner Classes) 420 (77 + 343)
Decision Coverage (C1) 26,29% # Functions 1379
Condition Coverage (C2) 20,42% # Lines 31915
Minimal Multiple Decision Coverage (MMDC) 20,12% # Statements 10747
Modified Condition Decision Coverage (MCDC) 8,67% # Conditions 1178
Multiple Condition Coverage (C3) 20,21%
Elllvtlagéféel;i Boundary-Interior Path Coverage 0,00%
Boundary-Interior Path Coverage (BI) 0,00%
Tests
1
Level 1 instrumentation
2
Level 2 instrumentation
husemorg test 1
Level 2 instrumentation
Coverage of Classes
_top FEEC (6{0] C1 c2 MMDC | MCDC C3 ModBI Bl
Project husemorg 35,46 | 37,99 | 26,29
Class semorg.sqgl.tables.AbstractTable 58,06 | 37,93 | 35,29 | 39,47 | 39,47 | 31,58 | 39,47
Class semorg.sqgl.tables.Associate 56,25 | 67,71 | 37,50 40,00 | 40,00
Class semorg.qgui.list.AssociateListWindow 38,46 | 37,14 | 33,33 | 50,00 | 50,00 50,00 | 29,41 | 29,41
Class semorg.qgui.provider.AssociateTableProvider 86,05 | 90,00 | 89,19 | 75,00 | 75,00 | 50,00 | 75,00 | 86,49 | 86,49
Class semorg.gui.AssociateWindow 96,00 | 90,84 | 70,24
| morg.qgui.util . A iationT. ntrol 41,51
Class semorg.sql.tables.Booking 52,38 | 58,95 | 30,77 | 26,92 | 26,92 26,92
1 morg.gui.util.CalendarControl 37,84 | 50,00 | 35,00 30,30 | 30,30
Class semorg.sqgl.tables.Client 48,78 | 52,67 | 25,00 | 29,17 | 29,17 29,17 | 29,27 | 26,83
| morg.sql.tables.ClientBookin
Class semorg.qui.list.ClientBookingListWindow 38,46 | 37,14 | 33,33 | 50,00 | 50,00 50,00 | 29,41 | 29,41
| morg.qui.provider.ClientBookingTableProvider
Class semorg.qui.ClientBookingWindow
Class semorg.gui.list.ClientListWindow 46,15 | 40,00 | 33,33 | 50,00 | 50,00 50,00 | 35,29 | 35,29
Class semorg.qui.provider.ClientTableProvider 87,50 | 91,94 | 91,18 | 80,00 | 80,00 | 60,00 | 80,00 | 88,24 | 88,24
Class semorg.qgui.ClientWindow 62,96 | 84,50 | 51,25 | 55,88 | 57,69 55,22
Class semorg.sgl.tables.Company 91,22 | 84,64 | 43,33 | 46,30 | 46,30 46,30
Class semorg.sqgl.tables.CompanyBooking 47,06 | 47,42 38,46 | 38,46
1 morg.gui.list. CompanyBookingListWindow 38,46 | 37,14 | 33,33 | 50,00 | 50,00 50,00 | 29,41 | 29,41
Class semorg.qui.provider.CompanyBookingTableProvider 65,52 | 75,00 | 68,00 | 50,00 | 50,00 50,00 | 60,87 | 60,87
1 morg.gui.CompanyBookingWindow 73,91 | 86,23 | 55,56 | 66,67 | 68,42 | 40,00 | 65,52
Class semorg.sgl.tables.CompanylnternalPresentation 40,00 | 37,82

Class semorg.gui.list. CompanylnternalPresentationListWindow

61,54

55,56

33,33

50,00

50,00

Class
morg.qgui.provider.CompanylnternalPr ntationTableProvi

r

Class semorg.gui.CompanylnternalPresentationWindow

Cla morg.qgui.list. CompanyListWindow

71,43

50,00

85,71

40,00

77,78

33,33

66,67

66,67

Class semorg.qui.provider.CompanyTableProvider

83,67

90,00

86,05

Class semorg.gui.CompanyWindow

Class semorg.sql.tables.Conduct

Class semorg.qgui.util.Configuration

Class semorg.qgui.util.ConfigurelistDIg

Class semorg.qui.util. ConfigureListWidget

| morg.sqgl. .DBA

82,61

40,00

66,67

Class semorg.sql.util.DBColumn

100,00

91,39

100,00

56,48

33,33

50,00

47,06

47,06

66,67

66,67

35,29

66,67

35,29

83,72

57,14

83,72

57,14

100,00

100,00

Class semorg.sqgl.util.DBConstraint

80,00

87,50

80,00

80,00

Class semorg.sql.util.DBTableChangedListener

| morg.qgui.util.Del Paymentltem

Class semorg.qui.provider.DelayedPaymentltemTableProvider

100,00

40,00

Class semorg.qgui.util. DelayedPaymentViewerControl

66,67

100,00

76,74

50,00

Class semorg.sql.util.DistinctVector

Class semorg.qui.util.EditorManager

Class semorg.qui.provider.EnumDIg

Class semorg.sqgl.tables.Enumeration

| morg.gui.EnumerationWindow

Class semorg.qui.util.ExtensibleSearchControl

85,71

54,05

42,86

66,67

33,01

61,59

50,00

Class semorg.qgui.util.ForeignKeyConstraintSelector

Class semorg.sqgl.tables.Instructor

Class semorg.gui.util.ltemlistener

Class semorg.sqgl.util.KeyPair

| morg.sql. les.L rer

41,18

36,84

44,30

37,98

100,00

30,00

100,00

30,00

26,67

26,67

Class semorg.qui.list.l ecturerListWindow

38,46

37,14

Class semorg.qui.provider.LecturerTableProvider

Class semorg.qgui.LecturerWindow

Class semorg.qgui.list.ListWindow

87,80

80,00

92,19

85,83

100,00

100,00

100,00

66,67

100,00

75,00

29,41

75,00

29,41

100,00

88,57

66,67

88,57

60,00

Class semorg.gui.MainWindow

85,71

98,05

83,33

75,00

78,57

Class semorg.qgui.util. Messages

50,00

83,33

75,00

50,00

50,00

| morg.sqgl. les.Person

47,83

54,29

Class semorg.sql.tables.Presentation

| morg.qgui.list.Pr ntationListWindow

Class semorg.qui.provider.PresentationTableProvider

| morg.sqgl. les.PublicPr ntation

Class semorg.qgui.list.PublicPresentationListWindow

| morg.gui.provider.PublicPr ntationTableProvider

Class semorg.qgui.PublicPresentationWindow

Class semorg.qui.Selectl anguageWindow

Class semorg.app.SemOrg

36,19

71,05

38,46

100,00

25,19

81,36

37,14

53,85

26,67

72,97

33,33

33,33

26,67

50,00

50,00

26,67

50,00

50,00

50,00

71,43

71,43

42,86

50,00
26,67

50,00

50,00

50,00

66,67

29,41

60,00

50,00

66,67

29,41

60,00

Class semorg.app.SemOrgStarter

100,00

40,00

Class semorg.sql.tables.SeminarType

42,70

38,18

Class semorg.qgui.list.SeminarTypeListWindow

38,46

37,14

50,00

33,33

| morg.qgui.provider.SeminarT TableProvider

Class semorg.gui.SeminarTypeWindow

| morg.sqgl. les.SimplelDK

73,53

82,00

75,86

50,00

29,41

50,00

29,41

71,43

71,43

Class semorg.sqgl.tables.Supervisor

Class semorg.qui.util.TableColumnProperty

Class semorg.qgui.util. TimeControl

Class semorg.qui.util.UtilityGUL 100,00 | 92,00 66,13

Class semorg.sql.util UtilitySQL 38,46 | 27,03
Detailed Coverage

_top FEEC Cco C1 c2 MMDC MCDC C3 ModBI Bl
Class semorg.sql.tables.AbstractTable 58,06 37,93 35,29 39,47 39,47 31,58 39,47

- AbstractTable (Timestamp, Timestamp) 100,00 | 100,00 |--- --- --- -—- --- 100,00 | 100,00
- getCreationDate () 100,00 | 100,00 |(--- -—- -—- -—- -—- 100,00 | 100,00
- getModificationDate () 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- setModificationDate (Timestamp) -— -— -— -— -—

- createExtendedQueryString (String, Vector, 100,00 | 40,68 36,36 42,31 42,31 30,77 42,31

String)

- getColumns (String) 100,00 | 100,00 |--- --- --- --- --- 100,00 | 100,00
- tableOK (String) -— -— -— -—

- getNext (String, DBColumn, int)

- getPrevious (String, DBColumn, int) 40,00 29,41 33,33 25,00 25,00
- fireTableChangedEvent (int) 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 71,43 | 100,00
- addDBTableChangedListener 100,00 | 100,00 |--- -— -— -— -— 100,00 | 100,00
(DBTableChangedListener)

- removeDBTableChangedListener 100,00 | 100,00 |--- - - - - 100,00 | 100,00
(DBTableChangedListener)

_top FEEC Cco C1i Cc2 MMDC MCDC C3 ModBI Bl
Class semorg.sqgl.tables.Associate 56,25 67,71 37,50 40,00 40,00
- Associate (int, String, String, String, String, 100,00 | 100,00 |--- -—- -—- -—- -—- 100,00 | 100,00
String, String, String, String, String, String,

String, String, String, Date, Date, int, String,

String, String, String, Timestamp, Timestamp)

- getVector (ResultSet) 100,00 | 93,33 75,00 | 100,00 | 100,00 | 100,00 | 100,00 | 50,00 50,00
- getVectorFromDB (Vector, String) 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- tableOK () - - - - -

- createAssociateTable (Statement) - - - - -

- getEntitlement () 100,00 | 100,00 |--- - --- - - 100,00 | 100,00
- getOccupation () 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- getPassword () 100,00 | 100,00 |--- -—- -—- -—- -—- 100,00 | 100,00
- setEntitlement (int) --- --- --- --- ---

- setOccupation (String) - - - - -

- setPassword (String) --- --- --- --- ---

- insertintoDB () 100,00 | 100,00 |(--- -—- -—- -—- -—- 100,00 | 100,00
- updateDB () - - - - -

- getNext (int)

- getPrevious (int) 100,00 | 83,33 50,00 25,00 25,00
- getColumns () 100,00 | 100,00 |--- -—- -—- --- -—- 100,00 | 100,00
_top FEEC Cco C1 c2 MMDC MCDC C3 ModBI Bl
Class semorg.qgui.list.AssociatelListWindow 38,46 37,14 33,33 50,00 50,00 50,00 29,41 29,41
- AssociateListWindow () 100,00 | 100,00 |--- - - - - 100,00 | 100,00

- AssociateListWindow
(ForeignKeyConstraintSelector)

- AssociateListWindow (AssociationTabControl)

- createSpecializedMainTableListener () 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- createSpecializedMainTableListener - - - -
(AssociationTabControl)
- createSpecializedMainTableListener - - - -
(ForeignKeyConstraintSelector)
- createSpecializedToolBarListeners () 50,00 | 100,00 |--- - - -
- createChooseButtonListener --- --- --- ---
(AssociationTabControl)
- createChooseButtonListener --- --- --- ---
(ForeignKeyConstraintSelector)
- openList () - - - -
- getTablelnputFromDB () 100,00 | 36,36 33,33 50,00 50,00
- createWindow (Shell) 100,00 | 100,00 |--- -—- - - - 100,00 | 100,00
_top FEEC Cco Ci Cc2 MMDC MCDC C3 ModBI Bl
Class semorg.qgui.provider.AssociateTableProvider 86,05 90,00 89,19 75,00 75,00 50,00 75,00 86,49 86,49
- dispose () 100,00 |--- - - -—- -—- -—- 100,00 | 100,00
- getColumnimage (Object, int) 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- getColumnText (Object, int) 87,88 91,18 89,19 75,00 75,00 50,00 75,00 87,50 87,50
- addListener (ILabelProviderListener) 100,00 |--- - - - - - 100,00 | 100,00
- isLabelProperty (Object, String) —— - — — -
- removelistener (ILabelProviderListener) 100,00 |--- --- --- --- --- --- 100,00 | 100,00
_top FEEC co c1 BI
Class semorg.gui.AssociateWindow 96,00 | 90,84 | 70,24
- AssociateWindow (Shell) 100,00 | 100,00 | 100,00
- AssociateWindow (Shell, Associate) 100,00 | 100,00 |---
- setlnput (Associate) 100,00 84,26 63,46
- setlnputComponentsEnabled (boolean) 100,00 | 100,00 | 100,00
- getEntitlementValue () 100,00 | 100,00 | 100,00
- checkinput () 100,00 | 100,00 | 100,00
- createButtonListener () 100,00 | 100,00 100,00
- commitlnputToDB () 100,00 25,00 25,00
- confirmClose () 80,00 37,50 37,50
- onSave () 100,00 100,00 | 100,00
_top FEEC co C1 c2 MMDC MCDC C3) ModBI Bl

| morg.gui.util.A: iationT. ntrol 41,51
- AssociationTabControl (Composite, int, Shell) 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 66,67 33,33
- hasLockedld (SimplelDKey) - - - -
- onDelete ()
- determineDeleteMessage (DistinctVector)
- openEditltemWindow ()
- openNewltemWindow () - - - -
- openListWindow () - - - -
- onDisconnect ()
- configureClassSpecificViewerParts () 100,00 45,16 33,33 |--- - - -
- setlnput (int) 66,67 38,00 38,89 75,00 75,00 50,00 75,00
- getObjects () --- --- --- --- ---
- setEnabled (boolean) 100,00 | 100,00 |--- -— -— -— -— 100,00 | 100,00
- addSelectedlds (SimplelDKey[], boolean)
- commitintoDB (int) 100,00 | 100,00 |--- - -—- - - 100,00 | 100,00
- disconnectIinDB () 100,00 25,32

- connectIinDB () 100,00 25,00

- deleteFromDB () 100,00 50,00 50,00
- setData (String, String) 100,00 | 100,00 | 50,00 50,00 50,00
- addltemListener (ltemListener) 100,00 | 100,00 |--- - -

- removeltemListener (ItemListener)

- fireltemChanged ()

- addUpdateListener ()

25,00

50,00

50,00 50,00 50,00
--- 100,00 | 100,00

- update ()

_top FEEC Cco C1 Cc2 MMDC MCDC C3 ModBI Bl
Class semorg.sql.tables.Booking 52,38 58,95 30,77 26,92 26,92 26,92

- Booking (int, Date, Date, Date, Date, Date, 100,00 | 100,00 |--- -— -— -— -— 100,00 | 100,00
Timestamp, Timestamp)

- tableOK () -—- -—- -—- -—- -—-

- createBookingTable (Statement) --- --- --- --- ---

- insertIntoDB () 66,67 78,57 50,00 50,00 50,00 50,00

- updateDB ()

- removeFromDB (lterable) 100,00 | 84,62 50,00 33,33 33,33
- getColumns () 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- getBilled () 100,00 | 100,00 |--- --- --- --- --- 100,00 | 100,00
- setBilled (Date) --- --- --- --- ---

~getConirmed 0
- setConfirmed (Date) --- --- --- --- ---

~getEnroled 0
- setEnrolled (Date) -—- -—- -—- -—- -—-

~gettiessaged 0
- setMessaged (Date) - - - - -

~getSigneddit 0
- setSignedOff (Date) - - - - -

- hashCode () - - - - -

- equals (Object) 66,67 66,67 50,00 50,00 50,00 50,00 50,00 50,00
_top FEEC Cco Ci Cc2 MMDC MCDC C3 ModBI Bl
Class semorg.qgui.util.CalendarControl 37,84 50,00 35,00 30,30 30,30
- CalendarControl (Composite, int) 100,00 | 100,00 |(--- -—- -—- -—- -—- 100,00 | 100,00
- onOpen ()

- fireSWTCalendarPopupClosed ()

- fireSWTCalendarPopupOpened ()

- setActivated (boolean) 100,00 | 100,00 | 100,00 | 50,00 50,00 50,00 | 100,00 | 100,00
- getDate () 66,67 66,67 50,00 50,00 50,00 50,00 50,00 50,00
- setFont (Font) - - - - -

- setDate (Date) 100,00 | 100,00 | 100,00 | 50,00 50,00 50,00 75,00 75,00
- addSWTCalendarPopuplistener - - - - -
(SWTCalendarPopupListener)

- removeSWTCalendarPopuplistener - - - - -
(SWTCalendarPopupListener)

- addSWTCalendarlistener (SWTCalendarListener) | 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- removeSWTCalendarlistener - - - - -

(SWTCalendarListener)

- fireSWTCalendarDateChanged ()

- setEnabled (boolean) 100,00 | 100,00 |--- - - - - 100,00 | 100,00

- getOpenPopupButton ()

- isPopupOpen ()

- closePopup ()

- setToolTipText (String) 100,00 | 100,00 |(--- -—- -—- -—- -—- 100,00 | 100,00
top FEEC Cco C1 c2 MMDC MCDC Cc3 ModBI Bl

| morg.sgl.tables.Clien 48,78 52,67 25,00 29,17 29,27 26,83
- Client (int, String, String, String, String, String, | 100,00 | 100,00 |--- - - - - 100,00 | 100,00

String, String, String, String, String, String,
String, String, Date, Date, String, Float, int,
String, String, Timestamp, Timestamp)

- getEmployerDescription () 40,00 25,00 25,00 25,00 25,00 25,00
- getVector (ResultSet) 100,00 | 93,75 83,33 | 100,00 | 100,00 | 100,00 | 100,00 | 37,50 25,00
- getVectorFromDB (Vector, String) 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- tableOK () --- --- --- --- ---

- createClientTable (Statement) - —— —— - —

- insertintoDB () 100,00 | 85,71 50,00 50,00 50,00 50,00 25,00 25,00

- updateDB ()

- getNext (int)

- getPrevious (int)

- getColumns () 100,00 | 100,00 |--- --= --= --= --= 100,00 | 100,00

- getEmployerld () 100,00 | 100,00 |--- - - - - 100,00 | 100,00

- setEmployerld (int)

- getTask () 100,00 | 100,00 |--- - - - - 100,00

100,00

- setTask (String)

- getTurnover () 100,00 | 100,00 |--- - - - - 100,00 | 100,00

- setTurnover (Float)

- getClient (int)

- getEmployees (int) 100,00 | 100,00 |--- - - - - 100,00 | 100,00
top FEEC Cco C1 c2 MMDC MCDC C3 ModBI Bl

Class semorg.sqgl.tables.ClientBooking

- ClientBooking (int, Date, Date, Date, Date, --- --- --- --- ---
Date, int, int, int, int, Timestamp, Timestamp)

- getSubstituteDescription ()

- getVector (ResultSet) 100,00 50,00 50,00 50,00 50,00 25,00 25,00
- getVectorFromDB (Vector, String) 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- tableOK () --- --- --- --- ---

- createClientBookingTable (Statement) J—_— - - - -

- insertintoDB ()

- updateDB ()

- getColumns () 100,00 | 100,00 |--- -— -— -— -— 100,00 | 100,00

- getClientBooking (int) - — ——- - -

- getNext (int)

- getPrevious (int)

- getClientld () - —_— — - -

- setClientld (int) — — — — —

- getDebitorld () — — — — —

- setDebitorld (int) — — — — —

- getPresentationld () - — — — —

- setPresentationld (int) - — — — —

- getBookingsOfClient (int) 100,00 | 100,00 |--- - - - - 100,00 | 100,00

- getBookingsForPresentation (int) — - - — —

- getSubstituteld () — — — — —

|— setSubstituteld (int)

top

| morg.gui.list.ClientBookingListWindow

- ClientBookingListWindow ()

- ClientBookingListWindow
(ForeignKeyConstraintSelector)

- ClientBookingListWindow
(AssociationTabControl)

- createSpecializedMainTableListener ()

- createSpecializedMainTableListener
(AssociationTabControl)

- createSpecializedMainTableListener
(ForeignKeyConstraintSelector)

- createSpecializedToolBarListeners ()

- createChooseButtonListener
(AssociationTabControl)

- createChooseButtonListener
(ForeignKeyConstraintSelector)

- openList ()

- getTablelnputFromDB ()

- createWindow (Shell) 100,00 | 100,00

_top FEEC Co C1 Cc2 MMDC MCDC C3 ModBI Bl

Class
morg.qgui.provider.ClientBookingTableProvider

- dispose () 100,00 | 100,00
- getColumnimage (Object, int)

- addListener (ILabelProviderListener) 100,00 | 100,00
- isLabelProperty (Object, String)

- getColumnText (Object, int)

- removelistener (ILabelProviderListener) 100,00 |--- -—- -—- -—- -—- -—- 100,00 | 100,00
top FEEC Cco C1 c2 MMDC MCDC C3 ModBI Bl
| morg.qui.ClientBookingWindow

- ClientBookingWindow (Shell,
AssociationTabControl)

- ClientBookingWindow (Shell, ClientBooking,
AssociationTabControl)

- setlnput (ClientBooking)

- setlnputComponentsEnabled (boolean)

- createButtonListener (Composite,
AssociationTabControl)

- checklnput ()

- commitlnputToDB ()

- confirmClose ()

- onSave ()

top
I T - - -
- ClientListWindow ()

- ClientListWindow (AssociationTabControl)

- ClientListWindow (ForeignKeyConstraintSelector)

- createSpecializedMainTableListener ()

- createSpecializedMainTableListener
(AssociationTabControl)

- createSpecializedMainTableListener
(ForeignKeyConstraintSelector)

- createSpecializedToolBarListeners ()

- createChooseButtonListener
(AssociationTabControl)

- createChooseButtonListener
(ForeignKeyConstraintSelector)

- openList () 100,00 | 100,00 |--- - --

- getTablelnputFromDB () 100,00 | 36,36 33,33 50,00 50,00

- createWindow (Shell) 100,00 | 100,00 |--- - --

_top FEEC Cco C1 c2 MMDC MCDC C3 ModBI Bl
Class semorg.qui.provider.ClientTableProvider 87,50 91,94 91,18 80,00 80,00 60,00 80,00 88,24 88,24
- dispose () 100,00 |--- - -—- - - - 100,00 | 100,00
- getColumnimage (Object, int) 100,00 | 100,00 |--- - -- - - 100,00 | 100,00
- getColumnText (Object, int) 90,00 93,33 91,18 80,00 80,00 60,00 80,00 89,66 89,66
- addListener (ILabelProviderListener) 100,00 |--- - - -- - - 100,00 | 100,00
- isLabelProperty (Object, String) - - -- - -

- removelistener (ILabelProviderListener) 100,00 |--- -—- --- -- --- --- 100,00 | 100,00
_top FEEC co C1 c2 MMDC | MCDC C3 ModBI Bl
Class semorg.qui.ClientWindow 62,96 84,50 51,25 55,88

- ClientWindow (Shell) 100,00 | 100,00 |--- - -- -—- - 100,00 | 100,00
- ClientWindow (Shell, Client, 100,00 | 100,00 |--- --- - --- - 100,00 | 100,00
AssociationTabControl)

- ClientWindow (Shell, Client, - - -- - -
ForeignKeyConstraintSelector)

- setlnput (Client) 100,00 83,19 60,00 60,42 61,54 59,57

- setlnputComponentsEnabled (boolean) 100,00 | 100,00 |--- - -- - - 100,00 | 100,00
- createButtonListener (AssociationTabControl) 100,00 81,82 50,00 50,00 50,00 50,00 50,00 50,00
- createButtonListener

(ForeignKeyConstraintSelector)

- checklInput () 100,00 | 50,00 50,00 50,00 50,00 50,00

- commitlnputToDB () 100,00 37,50 50,00 50,00 50,00

- confirmClose ()

- onSave () 75,00 85,71 75,00 75,00 83,33 50,00 75,00 66,67 66,67
_top FEEC co C1 c2 MMDC MCDC C3 ModBI Bl
Class semorg.sql.tables.Company 91,22 84,64 43,33 46,30 46,30 46,30

- Company (int, String, String, String, String, 100,00 | 100,00 |--- - -- - - 100,00 | 100,00
String, String, String, String, String, String,

String, String, String, String, String, String,

String, String, String, String, String, String,

String, Date, String, String, String, Float, Date,

Timestamp, Timestamp)

- tableOK () - - -- - -

- createCompanyTable (Statement) - - -- - -

- insertintoDB () 66,67 86,67 50,00 50,00 50,00 50,00

- updateDB () 100,00 | 86,79 50,00 50,00 50,00 50,00

- removeFromDB (lterable) 100,00 84,62 50,00 50,00 50,00 50,00 33,33 33,33
- getVector (ResultSet) 100,00 | 95,12 66,67 75,00 75,00 50,00 75,00 25,00 25,00
- getVectorFromDB (Vector, String) 100,00 | 100,00 |--- - -- - - 100,00 | 100,00
- getColumns () 100,00 | 100,00 |(--- -—- -- -—- -—- 100,00 | 100,00

- getNext (int)

- getPrevious (int)

- getCompany (int)

- hashCode ()

- equals (Object) 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00
- getid () 100,00 | 100,00 |--- -—- -—- - - 100,00 | 100,00
- getAnnex () 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- setAnnex (String) 100,00 | 100,00 |--- --- --- --- --- 100,00 | 100,00
- getCity () 100,00 | 100,00 |--- - - -—- - 100,00 | 100,00
- setCity (String) 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- getCountry () 100,00 | 100,00 |--- - - 100,00 | 100,00
- setCountry (String) 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- getCpBirthDay () 100,00 | 100,00 |--- - - 100,00 | 100,00
- setCpBirthDay (Date) 100,00 (| 100,00 |--- - - - - 100,00 | 100,00
- getCpDepartment () 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- setCpDepartment (String) 100,00 | 100,00 |(--- - - - - 100,00 | 100,00
- getCpEmail) 100,00 | 100,00 |--- --- - - - 100,00 | 100,00
- setCpEmail (String) 100,00 | 100,00 |--- -—- -—- -—- -—- 100,00 | 100,00
- getCpFax () 100,00 | 100,00 |--- -—- - -—- - 100,00 | 100,00
- setCpFax (String) 100,00 | 100,00 |(--- -—- -—- -—- -—- 100,00 | 100,00
- getCpFirstname () 100,00 | 100,00 |--- --- --- --- --- 100,00 | 100,00
- setCpFirstname (String) 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- getCpMobile () 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- setCpMobile (String) 100,00 | 100,00 |--- - - 100,00 | 100,00
- getCpName () 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- setCpName (String) 100,00 | 100,00 |--- - - 100,00 | 100,00
- getCpPhone () 100,00 | 100,00 |--- - - - -—- 100,00 | 100,00
- setCpPhone (String) 100,00 | 100,00 |--- - - 100,00 | 100,00
- getCpSalutation () 100,00 | 100,00 |--- --- - --- - 100,00 | 100,00
- setCpSalutation (String) 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- getCpTask () 100,00 | 100,00 |--- --- - - --- 100,00 | 100,00
- setCpTask (String) 100,00 | 100,00 |--- -—- - -—- - 100,00 | 100,00
- getCpTitle () 100,00 | 100,00 |--- - - -—- - 100,00 | 100,00
- setCpTitle (String) 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- getCustomerSince () 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- setCustomerSince (Date) 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- getEmail () 100,00 | 100,00 |--- --- --- --- --- 100,00 | 100,00
- setEmail (String) 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- getFax () 100,00 | 100,00 |--- -—- -—- -—- -—- 100,00 | 100,00
- setFax (String) 100,00 | 100,00 |--- --- - --- - 100,00 | 100,00
- getFirstname () 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- setFirstname (String) 100,00 | 100,00 |--- -—- -—- -—- -—- 100,00 | 100,00
- getMobile () 100,00 | 100,00 |--- -—- - -—- - 100,00 | 100,00
- setMobile (String) 100,00 | 100,00 |--- --- - - - 100,00 | 100,00
- getName () 100,00 | 100,00 |--- -—- - - - 100,00 | 100,00
- setName (String) 100,00 | 100,00 |(--- -—- -—- -—- -—- 100,00 | 100,00
- getNotices () 100,00 | 100,00 |--- -—- - - - 100,00 | 100,00
- setNotices (String) 100,00 | 100,00 |--- -—- -—- -—- -—- 100,00 | 100,00
- getPhone () 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- setPhone (String) 100,00 | 100,00 |--- -—- -—- -—- -—- 100,00 | 100,00
- getSalutation () 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- setSalutation (String) 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- getShortinfo () 100,00 | 100,00 |--- - -—- - - 100,00 | 100,00
- setShortInfo (String) 100,00 | 100,00 |--- -—- -—- -—- -—- 100,00 | 100,00

- getShortName () 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- setShortName (String) 100,00 | 100,00 |--- --- --- --- --- 100,00 | 100,00
- getStreet () 100,00 | 100,00 |--- --- - - - 100,00 | 100,00
- setStreet (String) 100,00 | 100,00 |--- - - - -—- 100,00 | 100,00
- getTitle () 100,00 | 100,00 |--- -—- -—- -—- -—- 100,00 | 100,00
- setTitle (String) 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- getTurnover () 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- setTurnover (Float) 100,00 | 100,00 |--- --- --- --- --- 100,00 | 100,00
- getZipCode () 100,00 | 100,00 |--- --- --- --- --- 100,00 | 100,00
- setZipCode (String) 100,00 | 100,00 |--- - - - -—- 100,00 | 100,00
_top FEEC (6{0] C1 c2 MMDC MCDC C3 ModBI Bl

| morg.sgl.tables.CompanyBookin 47,06 47,42 38,46 38,46
- CompanyBooking (int, Date, Date, Date, Date, 100,00 | 100,00 |--- - - - - 100,00 | 100,00
Date, int, int, Timestamp, Timestamp)
- getVector (ResultSet) 100,00 88,24 75,00 100,00 | 100,00 | 100,00 | 100,00 75,00 75,00
- getVectorFromDB (Vector, String) 100,00 | 100,00 |--- - - - - 100,00 | 100,00

- tableOK ()

- createCompanyBookingTable (Statement)

- insertintoDB ()

updateDB ()

- getColumns ()

- getNext (int)

- getPrevious (int)

- getCompanyld ()

- setCompanyld (int)

- getPresentationld ()

- setPresentationld (int)

- getBookingsOfCompany (int)

- getBookingsForPresentation (int)

- getCompanyBooking (int)

100,00

1000
0000

100,00

100,00

100,00

100,00

100,00

100,00

100,00

100,00

100,00

100,00

(10000
(10000

100,00

top

FEEC

Co

MMDC

Class semorg.qgui.list. CompanyBookingListWindow

38,46

37,14

50,00

- CompanyBookingListWindow ()

- CompanyBookingListWindow
(ForeignKeyConstraintSelector)

- CompanyBookingListWindow
(AssociationTabControl)

- createSpecializedMainTableListener ()

- createSpecializedMainTableListener
(AssociationTabControl)

- createSpecializedMainTableListener
(ForeignKeyConstraintSelector)

- createSpecializedToolBarListeners ()

- createChooseButtonListener
(AssociationTabControl)

- createChooseButtonListener
(ForeignKeyConstraintSelector)

- openList ()

- getTablelnputFromDB ()

100,00

100,00

50,00

100,00

100,00

100,00

100,00

36,36

MCDC

ModBI

Bl

29,41

29,41

--- 100,00

- createWindow (Shell)

100,00

100,00

100,00

100,00

top

FEEC

Cco

C1

c2

Bl

MMDC ‘ MCDC C3 ModBI

%mor .gui.provider.CompanyBookingTableProvider 65,52 75,00 68,00 50,00 50,00 - 50,00 60,87 60,87
- dispose () 100,00 |--- -—- --- - -- -—- 100,00 | 100,00
- getColumnimage (Object, int) 100,00 | 100,00 |--- - -- -- - 100,00 | 100,00
- getColumnText (Object, int) 57,89 76,32 68,00 50,00 50,00 - 50,00 55,56 55,56

- addListener (ILabelProviderListener) 100,00 |--- -—- --- -- -- - 100,00 | 100,00
- isLabelProperty (Object, String) — — - - S H
- removelListener (ILabelProviderListener) 100,00 - --- -- -- - 100,00 | 100,00
_top FEEC Cco C1 Cc2 MMDC MCDC C3 ModBI Bl
Class semorg.gui.CompanyBookingWindow 73,91 86,23 55,56 66,67 68,42 40,00 65,52

- CompanyBookingWindow (Shell, 100,00 | 100,00 |--- -—- -—- -- -—- 100,00 | 100,00
AssociationTabControl)

- CompanyBookingWindow (Shell, 100,00 | 100,00 |--- --- --- -- --- 100,00 | 100,00
CompanyBooking, AssociationTabControl)

- setlnput (CompanyBooking) 100,00 | 100,00 91,67 85,71 83,33 71,43

- setlnputComponentsEnabled (boolean) 100,00 | 100,00 |--- - - -- - 100,00 | 100,00
- createButtonListener (Composite, 100,00 84,62 50,00 50,00 50,00

AssociationTabControl)

- checkinput () 100,00 | 54,55 | 50,00 | 50,00 | 50,00

- commitinputToDB () 100,00 | 31,58 | 33,33 | 50,00 | 50,00

- confirmClose ()

- onSave ()
_top FEEC co
Class . 40,00 | 37,82
morg.sgl. | mpanylnternalPr ntation
- CompanylnternalPresentation (int, int, Integer, 100,00 | 100,00 100,00 | 100,00
Date, Date, Time, Time, Time, Time, String,
String, String, String, String, String, boolean,
Float, Integer, Timestamp, Timestamp)
- getVector (ResultSet) 100,00 84,85 60,00 62,50 62,50 25,00 62,50
- getVectorFromDB (Vector, String) 100,00 | 100,00 |--- - - -- - 100,00 | 100,00
- tableOK ()
- createCompanylnternalPresentationTable
(Statement)

- insertintoDB ()

- updateDB ()

- getColumns ()

- getColumnsWithSemtype ()

- getNext (int)

- getPrevious (int)

- getCompanylInternalPresentation (int)

- getCurrentEntrantsCount ()

- getMaxEntrants ()

- setMaxEntrants (Integer)

- getPackagePrice ()

- setPackagePrice (Float)

_top FEEC (6{0] C1 c2 MMDC | MCDC C3 ModBI Bl
Class 61,54 | 55,56 | 33,33 | 50,00 | 50,00 50,00 | 47,06 | 47,06
semorg.qui.list. CompanylnternalPresentationListWindow ’ ’ . ’ ’ : : :

- CompanylnternalPresentationListWindow () 100,00 | 100,00 |(--- -— -—- -— -—- 100,00 | 100,00
- CompanylnternalPresentationListWindow 100,00 | 100,00 |--- - - - - 100,00 | 100,00
(ForeignKeyConstraintSelector)

- CompanylnternalPresentationListWindow _ - - - - - _

(AssociationTabControl)

- createSpecializedMainTableListener ()

- createSpecializedMainTableListener
(AssociationTabControl)

- createSpecializedMainTableListener 100,00 | 100,00 |--- - - - - 100,00 | 100,00
(ForeignKeyConstraintSelector)
- createSpecializedToolBarListeners () 50,00 | 100,00 |--- - - - - 100,00 | 100,00

- createChooseButtonListener (AssociationTabControl)

- createChooseButtonListener
(ForeignKeyConstraintSelector)

100,00

100,00 |---

100,00

100,00

- getTablelnputFromDB () 100,00 | 33,33
- createWindow (Shell) 100,00 | 100,00 100,00 | 100,00
_top FEEC co Cc1 c2 MMDC | MCDC C3 ModBI Bl
Uass - . . . 71,43 | 85,71 | 77,78 | 66,67 | 66,67 | 33,33 | 66,67 | 66,67 | 66,67
semorg.qgui.provider.CompanylnternalPresentationTableProvider ’ ’ ’ g : ¢ ’ ’ ’
- getColumnText (Object, int) 71,43 | 85,71 | 77,78 | 66,67 | 66,67 | 33,33 | 66,67 | 66,67 | 66,67
_top FEEC Cco C1 Cc2 MMDC MCDC C3 ModBI Bl
Class

morg.qui.CompanylnternalPresentationWindow

- CompanylnternalPresentationWindow (Shell)

- CompanylnternalPresentationWindow (Shell,
CompanylnternalPresentation,
AssociationTabControl)

- CompanylnternalPresentationWindow (Shell,
CompanylnternalPresentation,
ForeignKeyConstraintSelector)

- setlnput (CompanylnternalPresentation)

- setlnputComponentsEnabled (boolean)

- createButtonListener (AssociationTabControl)

- createButtonListener
(ForeignKeyConstraintSelector)

- checklnput ()

- commitinputToDB ()

- confirmClose ()

- onSave ()

top FEEC Cco C1 c2 MMDC MCDC C3 ModBI Bl
Class semorg.gui.list. CompanylistWindow 50,00 | 40,00 [33,33 50,00 50,00 35,29 [35,29
- CompanyListWindow () 100,00 | 100,00 |--- - - -- - 100,00 | 100,00
- CompanylListWindow (AssociationTabControl) - - - --

- CompanyListWindow - - - --

(ForeignKeyConstraintSelector)

- createSpecializedMainTableListener () 100,00 | 100,00 |--- - - -- 100,00 | 100,00
- createSpecializedMainTableListener - - - --

(AssociationTabControl)

- createSpecializedMainTableListener - - - --

(ForeignKeyConstraintSelector)

- createSpecializedToolBarListeners () 75,00 | 100,00 (--- - - -- 100,00 | 100,00
- createChooseButtonListener - - - --

(AssociationTabControl)

- createChooseButtonListener -— -— -— --

(ForeignKeyConstraintSelector)

- openList () 100,00 | 100,00 |--- -—- -—- -- 100,00 | 100,00
- getTablelnputFromDB () 100,00 | 36,36 33,33 50,00 50,00

| - createWindow (Shell)

100,00 | 100,00 |--- | 100,00 | 100,00 |

_top FEEC co C1 c2 MMDC MCDC C3 ModBI Bl

1 morg.gui.provider.CompanyTableProvider | 83,67 90,00 86,05 50,00 50,00 50,00 83,72 83,72
- dispose () 100,00 |--- --- --- --- - - 100,00 | 100,00
- getColumnimage (Object, int) 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- getColumnText (Object, int) 84,62 91,03 86,05 50,00 50,00 - 50,00 84,21 84,21
- addListener (ILabelProviderListener) 100,00 |--- - - - - - 100,00 | 100,00
- isLabelProperty (Object, String) - - - - - H
- removelListener (lLabelProviderListener) 100,00 |--- -—- -—- -—- -—- -—- 100,00 | 100,00
_top FEEC co C1 c2

1 morg.gui.CompanyWindow 82,61 91,39 56,48 58,51
- CompanyWindow (Shell) 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- CompanyWindow (Shell, Company, 100,00 | 100,00 |--- --- --- -—- --- 100,00 | 100,00
ForeignKeyConstraintSelector)
- setlnput (Company) 100,00 | 80,26 56,94 57,14 58,11
- setlnputComponentsEnabled (boolean) 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- createButtonListener 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00
(ForeignKeyConstraintSelector)
- checkinput () 100,00 | 43,48 | 50,00 | 50,00 | 50,00
- commitinputToDB () 100,00 | 84,00 | 60,00 | 100,00 | 100,00 | 100,00
- confirmClose () 40,00 | 46,15 | 33,33 | 50,00 | 50,00
- onSave () 75,00 85,71 75,00 75,00 83,33
_top FEEC co C1 c2 MMDC
Class semorg.sqgl.tables.Conduct -— -— -—
- Conduct (int, int, Timestamp, Timestamp) - - -
- tableOK () - - -
- createConductTable (Statement) - - -
- insertintoDB () - - -
- deleteFromDB () -— -— -—
- getColumns () --- --- ---
- getLecturerld () - - -
- getSeminartypeld () --- --- ---

top

Class semorg.qgui.util.Configuration

- Configuration (boolean)

FEEC
40,00
100,00 25,00 25,00

- saveConfiguration ()

makeStdConfiguration (boolean)

- setProperty (String, String)

- getProperty (String)

top

Class semorg.qui.util.ConfigureListDlg

- ConfigurelListDlg (Shell, TableColumn[], int[])

- createButtonsForButtonBar (Composite)

- buttonPressed (int)

- okPressed ()

- cancelPressed ()

- createDialogArea (Composite)

getColumnProperties ()

|- configureShell (Shell)

top

| morg.gui.util.ConfigureListWi

- ConfigureListWidget (Composite,
TableColumn([], int[])

- setListViewerlnputs (TableColumnProperty[],
int[])

- updateColumnNumbers ()

- getColumns ()

- onSelect ()

onDeselect ()

Class semorg.qui.util.DelayedPaymentitem

- DelayedPaymentltem (int, Date)

- getPresentationld ()

- getBilled ()

- getDebt ()

_top Cc2 MMDC MCDC C3 ModBI Bl

1 morg.sql. .DBA - - - - 57,14 | 57,14
- DBAccess () -—- -- -—- -—- 50,00 50,00
- createDatabaseAndConnect () --- -- --- ---
- createTables () - -- - -
- init () 100,00 | 100,00 |--- -—- -- -—- - 100,00 | 100,00
- getPreparedStatement (String) 100,00 | 100,00 |--- -—- -- -— -— 100,00 | 100,00
- getStatement () 100,00 | 100,00 |--- - -- - - 100,00 | 100,00
_top FEEC (6{0] C1 c2 MMDC MCDC C3 ModBI Bl
Class semorg.sqgl.util.DBColumn 100,00 | 100,00 |--- - - -—- -—- 100,00 | 100,00
- DBColumn (String, String, Class) 100,00 | 100,00 |--- - -- - - 100,00 | 100,00
- getInternalColumnName () 100,00 | 100,00 |--- --- -- --- --- 100,00 | 100,00
- getPublicColumnName () 100,00 | 100,00 |--- -— -- -— -— 100,00 | 100,00
- getColumnType () 100,00 | 100,00 |--- - -- - - 100,00 | 100,00
_top FEEC (60] C1 c2 MMDC MCDC C3 ModBI Bl
Class semorg.sqgl.util. DBConstraint 80,00 87,50 |--- - - - -—- 80,00 80,00
- DBConstraint (String, int, Object, int) 100,00 | 100,00 |--- - -- - - 100,00 | 100,00
- getColumnName () 100,00 (| 100,00 |--- - -- - - 100,00 | 100,00
- getRelation () 100,00 | 100,00 |--- - -- - --- 100,00 | 100,00
- getvalue () 100,00 | 100,00 |--- - - - - 100,00 | 100,00
_top FEEC co C1 c2 MMDC | MCDC C3 ModBI Bl
Class semorg.sqgl.util. DBTableChangedListener 100,00 | 100,00 |--- - -- - - 100,00 | 100,00
- DBTableChangedListener (int) 100,00 | 100,00 |--- - -- - - 100,00 | 100,00
- getType () 100,00 | 100,00 |--- --- - - --- 100,00 | 100,00
_top FEEC ModBI

_top

Class

semorg.qui.provider.DelayedPaymentltemTableProvider

- getColumnimage (Object, int)

- getColumnText (Object, int)

- addListener (ILabelProviderListener) | 100,00 |--- |--- —- — —- | 100,00 | 100,00 |
- dispose () - - - - - 100,00 | 100,00
- isLabelProperty (Object, String) -—- - -—- --- -

- removelistener (ILabelProviderListener) 100,00 |--- -— -— -— -—- -— 100,00 | 100,00
_top FEEC (6{0] C1 Cc2 MMDC MCDC C3 ModBI Bl
Class R . 66,67 76,74 50,00 62,50 62,50 50,00 62,50 26,67 26,67
semorg.qui.util. DelayedPaymentViewerControl

- DelayedPaymentViewerControl (Composite, 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 33,33 33,33
Shell)

- setlnput (int)

- addUpdateListener (int)

- update ()

top

FEEC

Class semorg.sql.util.DistinctVector

85,71

- DistinctVector ()

100,00

MCDC

ModBI

Bl

75,00

75,00

100,00

100,00

- DistinctVector (Collection)

100,00

- add (E)

66,67

100,00

100,00

50,00

50,00

top

FEEC

Class semorg.qui.util.EditorManager

- addEditingld (int)

- removeEditingld (int)

- isEditing (int)

ModBI

Bl

top

FEEC

Class semorg.qui.provider.EnumDIg

- EnumDlg (Shell, String)

- createButtonsForButtonBar (Composite)

- buttonPressed (int)

- okPressed ()

- cancelPressed ()

createDialogArea (Composite)

- getNewValue ()

- configureShell (Shell)

Co

Ci

Cc2

C3

ModBI

Bl

top FEEC Cco
| morg.sql. les.Enumeration 54,05 33,01
- Enumeration (int, String) 100,00 | 100,00

- createEnumerationTable (Statement)

C1

ModBI

Bl

- getVectorFromDB (int) 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- getVector (ResultSet) 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 66,67 33,33
- getValue () - - - - -

- getType O - - - - -

- createNewEnumInDB (int, String) 100,00 | 100,00 |--- --- --- --- --- 100,00 | 100,00
- removeFromDB ()

- setValuelnDB (String)

- addEnums (Combo, int) 100,00 | 83,33 75,00 | 100,00 | 100,00 | 100,00 | 100,00 | 50,00 25,00
- addSalutationEnums (Combo) 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- addTitleEnums (Combo) 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- addCountryEnums (Combo) 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- addAnnexEnums (Combo) 100,00 | 100,00 |--- - - - - 100,00 | 100,00

- insertSalutationStringInDB (String)

100,00

- insertTitleStringInDB (String)

insertcountryStringIlnDB (String)

insertAnnexStringInDB (String)

100,00

100,00

100,00

100,00

top

FEEC

Class semorg.gqui.EnumerationWindow

- EnumerationWindow (Shell)

- onDelete (Enumeration)

- onNew ()

- onEdit (Enumeration)

Co

ModBlI

Bl

_top FEEC co C1 c2 MMDC | MCDC C3 ModBI Bl
Class semorg.qui.util.ExtensibleSearchControl 42,86 61,59 34,38 34,38 34,85 25,00 34,38

- ExtensibleSearchControl (Composite, int) 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 66,67 33,33
- createFilterExtension (int) 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00
- addExtensionListener (SelectionListener) 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 66,67 33,33

addModifyListener (ModifyListener)

- getConstraints ()

- setColumns (Vector)

- getComparatorString (String)

- getDBColumn (String)

- setData (String, String)

- getConjunction (String)

- getRelation (String)

_top

Class
semorg.qgui.util.ForeignKeyConstraintSelector

- ForeignKeyConstraintSelector (Composite, int)

C1

ModBI

Bl

- ForeignKeyConstraintSelector (Composite, int,

boolean)

- updateText () 100,00 | 44,74 55,56 | 100,00 | 100,00 | 100,00 | 100,00 | 37,50 37,50
- setSelectedld (int) 100,00 | 100,00 |--- -—- -—- -—- -—- 100,00 | 100,00
- addModifyListener (ModifyListener) 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- setEnabled (boolean) 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- setData (String, String) 100,00 | 100,00 | 50,00 50,00 50,00 50,00 50,00 50,00
- isLockedld (int) - - - -

- onDelete ()

- determineDeleteMessage () - - - -

- deleteFromDB () --- --- --- ---

- getSelectedld () 100,00 | 100,00 |--- -—- - -—- - 100,00 | 100,00
_top FEEC co C1 c2 MMDC | MCDC C3 ModBI Bl

Class semorg.sqgl.tables.Instructor

- Instructor (int, int, Timestamp, Timestamp)

- tableOK ()

- createlnstructorTable (Statement)

- insertintoDB ()

- deleteFromDB ()

- getColumns ()

- getLecturerld ()

- getPresentationld ()

_top FEEC co C1 c2 MMDC | MCDC c3 ModBI BI
Class semorg.gui.util. Itemlistener --- --- --- --- --- --- --- --- ---
_top FEEC Cco Ci Cc2 MMDC MCDC C3 ModBI Bl
Class semorg.sqgl.util.KeyPair --- --- --- --- ---

- KeyPair (int, int) - - - - -

- equals (KeyPair) --- --- --- --- ---

- getkeyl () - - - - -

- getKey2 () --- --- --- --- ---

_top FEEC co C1 c2 MMDC | MCDC C3

Class semorg.sqgl.tables.Lecturer 36,84 37,98 25,00 27,27 27,27 27,27 27,27

- Lecturer (int, String, String, String, String, 100,00 | 100,00 |--- - - - - 100,00 | 100,00

String, String, String, String, String, String,

String, String, String, Date, Date, String, Float,

Float, String, String, Timestamp, Timestamp)

- getVector (ResultSet)

100,00

94,12

- getVectorFromDB (Vector, String)

- tableOK ()

- createlLecturerTable (Statement)

- insertintoDB ()

updateDB ()

- getColumns ()

- getBio ()

- setBio (String)

- getDailyFee ()

100,00

- setDailyFee (Float)

- getHourlyFee ()

100,00

- setHourlyFee (Float)

- getNext (int)

- getPrevious (int)

- getLectInstructing (int)

- getLectSupervising (int)

- getLectConducting (int)

100,00

100,00

top

FEEC

Cco

MMDC

38,46

37,14

50,00

- LecturerListWindow ()

100,00

- LecturerListWindow (AssociationTabControl)

- LecturerListWindow
(ForeignKeyConstraintSelector)

- createSpecializedMainTableListener ()

100,00

- createSpecializedMainTableListener
(AssociationTabControl)

- createSpecializedMainTableListener
(ForeignKeyConstraintSelector)

- createSpecializedToolBarListeners ()

50,00

- createChooseButtonListener
(AssociationTabControl)

- createChooseButtonListener
(ForeignKeyConstraintSelector)

- openList ()

- getTablelnputFromDB ()

100,00

100,00

100,00

100,00

36,36

MCDC

ModBI Bl

29,41 29,41

-—- 100,00 | 100,00

- createWindow (Shell)

100,00

100,00

100,00

_top FEEC (6{0] C1 c2 MMDC MCDC C3 ModBI Bl

1 morg.gui.provider.L rerTableProvider 87,80 92,19 91,67 83,33 83,33 66,67 83,33 88,57 88,57
- dispose () 100,00 |--- - -—- -—- -—- - 100,00 | 100,00
- getColumnimage (Object, int) 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- getColumnText (Object, int) 90,32 93,55 91,67 83,33 83,33 66,67 83,33 90,00 90,00
- addListener (ILabelProviderListener) 100,00 |--- - - - - - 100,00 | 100,00
- isLabelProperty (Object, String) - - - —_— —
- removelListener (lLabelProviderListener) 100,00 |--- -—= -—= -—= -—= -—= 100,00 | 100,00
_top FEEC (6{0] C1 c2 MMDC MCDC C3 ModBI Bl

| morg.gui.L rerWindow

- LecturerWindow (Shell, AssociationTabControl)

- LecturerWindow (Shell, Lecturer,
AssociationTabControl)

- setlnput (Lecturer)

- setlnputComponentsEnabled (boolean)

- createButtonListener (Composite,
AssociationTabControl)

- checklnput ()

- commitinputToDB ()

- confirmClose ()

- onSave ()

_top FEEC co C1 c2 MMDC MCDC C3 ModBI Bl
Class semorg.qgui.list.ListWindow 80,00 85,83 100,00 | 100,00 | 100,00 | 100,00 | 100,00 66,67 60,00

- ListWindow (Shell, Vector) 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- ListWindow (Shell, Vector, - - - - - - -
AssociationTabControl)

- ListWindow (Shell, Vector, 100,00 | 100,00 |--- -—- -—- -—- -—- 100,00 | 100,00
ForeignKeyConstraintSelector)

- createButtonArea () 100,00 | 100,00 |(--- -—- -—- -—- -—- 100,00 | 100,00
- setVisible (boolean) 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- update () 100,00 (| 100,00 |--- - - - - 100,00 | 100,00
- createlListToolbarBasics (boolean) 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 50,00 50,00

- createTableBasics () 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 66,67 33,33

- addUpdateListener (int) 100,00 | 100,00 |--- - - - - 100,00 | 100,00
_top FEEC co C1 Cc2 MMDC MCDC C3 ModBI Bl
Class semorg.gui.MainWindow 85,71 98,05 83,33 75,00 78,57 50,00 71,43 71,43 42,86

- MainWindow (Display) 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 71,43 -
- createListWindows () 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- centerShell () 100,00 | 100,00 |--- --- --- --- --- 100,00 | 100,00

- createStatusBar () — — —

- createMenu () 100,00 | 99,17 50,00 50,00 50,00 50,00
- getShell () 100,00 | 100,00 |--- --- --- --- --- 100,00 | 100,00
- getinstance () 100,00 | 100,00 |--- -—- -—- -—- -—- 100,00 | 100,00

top FEEC Cco C1 c2 Bl

Class semorg.qgui.util. Messages 50,00 83,33 75,00 50,00

- Messages () — — —

- getString (String) 75,00 83,33 75,00 50,00

_top FEEC co C1 c2 MMDC MCDC C3 ModBI Bl

| morg.sql.tables.Person 47,83 | 54,20 | 26,67 | 26,67 | 26,67
- Person (int, String, String, String, String, 100,00 | 100,00 |--- -- - - - 100,00 | 100,00
String, String, String, String, String, String,
String, String, String, Date, Date, String, String,
Timestamp, Timestamp)
- getAnnex () 100,00 | 100,00 |--- -- -—- -—- -—- 100,00 | 100,00
- getBirthday () 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- getCity () 100,00 | 100,00 |--- - --- --- --- 100,00 | 100,00
- getCountry () 100,00 | 100,00 |--- -- - - - 100,00 | 100,00
- getEmail () 100,00 | 100,00 |--- - --- --- --- 100,00 | 100,00
- getFax () 100,00 | 100,00 |--- -- --- - --- 100,00 | 100,00
- getFirstname () 100,00 | 100,00 |--- -- - - - 100,00 | 100,00
- getMobile () 100,00 | 100,00 |--- -- - - - 100,00 | 100,00
- getName () 100,00 | 100,00 |--- - -—- - -—- 100,00 | 100,00
- getNotices () 100,00 | 100,00 |--- -- - - -—- 100,00 | 100,00
- getid () 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- getPhone () 100,00 | 100,00 |--- -- -—- -—- -—- 100,00 | 100,00
- getSalutation () 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- getShortinfo () 100,00 | 100,00 |--- - -—- -—- -—- 100,00 | 100,00
- getStreet () 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- getTitle) 100,00 | 100,00 |--- - --- --- --- 100,00 | 100,00
- getZipCode () 100,00 | 100,00 |--- -- --- - --- 100,00 | 100,00
- getFirstContact () 100,00 | 100,00 |--- -- - - - 100,00 | 100,00
- setAnnex (String) --- -- --- --- ---
- setBirthday (Date) - -- - - -
- setCity (String) - -- - - -
- setCountry (String) --- -- --- --- ---
- setEmail (String) - -- - - -
- setFax (String) --- -- --- --- ---
- setFirstContact (Date) - -- - - -
- setFirstname (String) --- -- --- --- ---
- setMobile (String) - -- - - -
- setName (String) --- -- --- --- ---
- setNotices (String) -— -- -— -— -—
- setNumber (int) — -- — — —
- setPhone (String) -— - -— -— -—
- setSalutation (String) — - — — —
- setShortinfo (String) - -- - - -
- setStreet (String) - -- - - -
- setTitle (String) - -- - - -
- setZipCode (String) - -- - - -
- tableOK () - -- - - -
- createPersonTable (Statement) - -- - - -
- insertIntoDB () 66,67 85,71 50,00 50,00 50,00 50,00
- updateDB ()
- removeFromDB (lterable)
- getColumns () 100,00 | 100,00 |--- - -—- -—- -—- 100,00 | 100,00
- hashCode () - -- - - -
- equals (Object) 66,67 66,67 50,00 50,00 50,00 50,00 50,00 50,00
_top FEEC co C1 c2 MMDC | MCDC C3 ModBI BI

| morg.sqgl. les.Pr ntation

- Presentation (int, int, Integer, Date, Date,
Time, Time, Time, Time, String, String, String,
String, String, String, boolean, Timestamp,
Timestamp)

- getSeminarTypeDescription ()

tableOK ()

createPresentationTable (Statement)

insertintoDB ()

updateDB ()

removeFromDB (lterable)

getColumns ()

getVector (ResultSet)

getPresSupervisedBy (int)

getPresinstructedBy (int)

getPresForSemType (int)

getPresentationVectorFromDB (Vector, String)

getPresentation (int)

getColumnsWithSemtype ()

hashCode ()

equals (Object)

getShortDescription ()

getSeminarTypeForPresid (int)

getAnnex ()

setAnnex (String)

getBeginningDay ()

setBeginningDay (Date)

isCancelled ()

setCancelled (boolean)

getCity)

setCity (String)

getCountry ()

setCountry (String)

getDuration ()

setDuration (Integer)

getEndingDay ()

setEndingDay (Date)

getEndingTime ()

setEndingTime (Time)

getFirstStartingTime ()

setFirstStartingTime (Time)

getLastEndingTime ()

setLastEndingTime (Time)

getLocation ()

setLocation (String)

getSeminarTypeld ()

setSeminarTypeld (int)

getStartingTime ()

setStartingTime (Time)

getStreet ()

setStreet (String)

- getZipCode ()

100,00

100,00

100,00

100,00

100,00

100,00

100,00

100,00

100,00

100,00

[00:001
[eotoal
=
[|
=
| 43523 |
[ozics]
10000
[100.00
10000

100,00

0000
000

100,00

10000

100,00

100,00

0000
0000

100,00

100,00

100,00

1

1

1

1

1

1

1

1

1

00,00

00,00

00,00

00,00

00,00

00,00

00,00

00,00

00,00

100,00

001007
[Eczionl
e
=
=
| woe.ge |
(e]
10000
10000
10000

100,00

100,00

0000 |
0000 |

5000 | 2000 | 2500

10000

100,00

100,00

10000
10000

100,00

- setZipCode (String)

- getld ()

’ 100,00 ’ 100,00 \

’ 100,00 | 100,00

top

FEEC

Class semorg.qgui.list.PresentationListWindow

- PresentationListWindow ()

- PresentationListWindow (AssociationTabControl)

- PresentationListWindow
(ForeignKeyConstraintSelector)

- createSpecializedMainTableListener ()

- createSpecializedMainTableListener
(AssociationTabControl)

- createSpecializedMainTableListener
(ForeignKeyConstraintSelector)

- createSpecializedToolBarListeners ()

- createChooseButtonListener
(AssociationTabControl)

- createChooseButtonListener
(ForeignKeyConstraintSelector)

- openList ()

- getTablelnputFromDB ()

- createWindow (Shell)

Co

C1

c2

C3

ModBI

Bl

_top FEEC Cco Ci Cc2 MMDC MCDC C3 ModBI Bl
C""r‘]fsr aui brovider PresentationTableProvider 71,05 | 81,36 | 72,97 | 50,00 66,67 | 66,67
- dispose () 100,00 |--- - - -- - - 100,00 | 100,00
- getColumnimage (Object, int) 100,00 | 100,00 |--- -—- -- -—- -—- 100,00 | 100,00
- getColumnText (Object, int) 67,86 82,46 72,97 50,00 50,00 - 50,00 64,29 64,29
- addListener (ILabelProviderListener) 100,00 (--- -—- -—- -- -—- -—- 100,00 | 100,00
- isLabelProperty (Object, String) - - - - -

- removelistener (ILabelProviderListener) 100,00 |--- - - -- - - 100,00 | 100,00
_top FEEC Cco C1 c2 MMDC MCDC C3 ModBI Bl
Cla morg.sql.tables.PublicPresentation

- PublicPresentation (int, int, Integer, Date, Date,

Time, Time, Time, Time, String, String, String,
String, String, String, boolean, String, Float,
Timestamp, Timestamp)

- getVector (ResultSet)

- getVectorFromDB (Vector, String)

- tableOK ()

- createPublicPresentationTable (Statement)

- insertintoDB ()

- updateDB ()

- getColumns ()

100,00

100,00

- getColumnsWithSemtype ()

- getCoopPartner ()

- setCoopPartner (String)

- getCancelFee ()

- setCancelFee (Float)

- getNext (int)

- getPrevious (int)

- getPublicPresentation (int)

- getCurrentEntrantsCount ()

100,00

100,00

_top c2 | mmbc
Class
morg.qui list. PublicPresentationL istWindow SORY || B

- PublicPresentationListWindow () 100,00 | 100,00 100,00 | 100,00

- PublicPresentationListWindow
(AssociationTabControl)

- PublicPresentationListWindow
(ForeignKeyConstraintSelector)

- createSpecializedMainTableListener ()

- createSpecializedMainTableListener
(AssociationTabControl)

- createSpecializedMainTableListener
(ForeignKeyConstraintSelector)

- createSpecializedToolBarListeners ()

- createChooseButtonListener
(AssociationTabControl)

- createChooseButtonListener
(ForeignKeyConstraintSelector)

- openList ()

- getTablelnputFromDB ()

- createWindow (Shell) 100,00 | 100,00

top FEEC co Ci Cc2 MMDC MCDC C3 ModBI Bl

Class
morg.gui.provider.PublicPr ntationTableProvider

- getColumnText (Object, int)

_top FEEC Co C1 Cc2 MMDC MCDC C3 ModBI Bl

Class semorg.qgui.PublicPresentationWindow

- PublicPresentationWindow (Shell)

- PublicPresentationWindow (Shell,
PublicPresentation, AssociationTabControl)

- PublicPresentationWindow (Shell,
PublicPresentation, ForeignKeyConstraintSelector)

- setlnput (PublicPresentation)

- setlnputComponentsEnabled (boolean)

createButtonListener (AssociationTabControl)

- createButtonListener
(ForeignKeyConstraintSelector)

- checklnput ()

- commitlnputToDB ()

- confirmClose ()

- onSave ()

_top FEEC Co C1 c2 MMDC MCDC C3 ModBI =]

Class semorg.qui.SelectlanguageWindow

- SelectLanguageWindow (Shell)

- getCurrentLanguage ()

_top FEEC co C1 c2 MMDC | MCDC C3 ModBI Bl

Class semorg.app.SemOrg 100,00 - - - 60,00 60,00
- initializeApplication (boolean) 100,00 | 100,00 |--- - - --= -—= 100,00 | 100,00
- getConfiguration () 100,00 | 100,00 |--- - - - - 100,00 | 100,00

- main (String[]) 100,00

_top FEEC Cco C1i Cc2 MMDC MCDC C3 ModBI Bl
Class semorg.app.SemOrgStarter 100,00 40,00 50,00 |--- -— -— -— 50,00 50,00
- main (String[1) 100,00 | 40,00 50,00 |--- --- --- --- 50,00 50,00
_top FEEC co C1 c2 MMDC MCDC €3] ModBI Bl

| morg.sql.tables.SeminarT 42,70 38,18
- SeminarType (int, String, String, String, String, | 100,00 | 100,00 |--- - - - - 100,00 | 100,00
String, String, Integer, String, String, String,
Float, Integer, Integer, Timestamp, Timestamp)
- tableOK () --- --- --- --- ---
- createSeminarTypeTable (Statement) —— - — — -
- insertintoDB ()
- updateDB ()
- removeFromDB (lterable)
- getVector (ResultSet) 100,00 | 83,87 58,33 60,00 60,00 60,00
- getVectorFromDB (Vector, String) 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- getSeminarTypeFromDB (int) 66,67 83,33 50,00 50,00 50,00 50,00 50,00 50,00
- getColumns () 100,00 | 100,00 |--- -—- -—- - - 100,00 | 100,00
- getAudience () 100,00 | 100,00 |--- - - - - 100,00 | 100,00

setAudience (String)

getCharge ()

setCharge (Float)

getDocuments ()

setDocuments (String)

getDuration ()

setDuration (Integer)

getMaxEntrants ()

setMaxEntrants (Integer)

getMethodology ()

setMethodology (String)

getMinEntrants ()

setMinEntrants (Integer)

getObjective ()

setObjective (String)

getRequirements ()

setRequirements (String)

getRoutine ()

setRoutine (String)

getShortTitle ()

setShortTitle (String)

getTitle ()

setTitle (String)

getTopic ()

setTopic (String)

getld ()

getNext (int)

getPrevious (int)

getSemTypeConductedBy (int)

hashCode ()

equals (SeminarType)

equals (Object)

100,00

100,00

100,00

100,00

100,00

100,00

[100.00
10000
00001
[00:001
[eotol
=
==
| 435.c3 |
| 25523 |
)
10000
10000

100,00

100,00

100,00

100,00

100,00

100,00

0000

100,00

0000 |

100,00

10000

100,00

_top FEEC co Ci Cc2 MMDC MCDC C3 ModBI Bl
Class semorg.qgui.list.SeminarTypeListWindow 38,46 37,14 33,33 50,00 50,00 H 50,00 29,41 29,41
- SeminarTypeListWindow () 100,00 | 100,00 |--- -—- -—- -—- -—- 100,00 | 100,00
- SeminarTypeListWindow (AssociationTabControl) - - - -

- SeminarTypeListWindow - - - -

(ForeignKeyConstraintSelector)

- createSpecializedMainTableListener () 100,00 | 100,00 |--- - - -
- createSpecializedMainTableListener - - - -

(AssociationTabControl)

- createSpecializedMainTableListener - - - -

(ForeignKeyConstraintSelector)

- createSpecializedToolBarListeners () 50,00 | 100,00 |--- - - -
- createChooseButtonListener -—- -—- -—- -—-

(AssociationTabControl)

- createChooseButtonListener --- --- --- ---

(ForeignKeyConstraintSelector)

- openList () - - - -

- getTablelnputFromDB () 100,00 36,36 33,33 50,00 50,00

- createWindow (Shell) 100,00 | 100,00 |--- --- - --- - 100,00 | 100,00
_top FEEC (6{0] C1 c2 MMDC MCDC ModBI Bl
Ulass - . - - 73,53 82,00 75,86 50,00 50,00 71,43 71,43
semorg.qgui.provider.SeminarTypeTableProvider . ’ ! . . : .

- dispose () 100,00 |--- - - - - - 100,00 | 100,00
- getColumnimage (Object, int) 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- getColumnText (Object, int) 70,83 83,33 75,86 50,00 50,00 - 50,00 69,57 69,57
- addListener (ILabelProviderListener) 100,00 |--- - - - - - 100,00 | 100,00
- isLabelProperty (Object, String) - - - - -

- removelistener (ILabelProviderListener) 100,00 |--- - - - - - 100,00 | 100,00
_top FEEC co C1 c2 MMDC | MCDC Cc3 ModBI Bl

Class semorg.gui.SeminarTypeWindow

- SeminarTypeWindow (Shell)

- SeminarTypeWindow (Shell, SeminarType,
AssociationTabControl)

- SeminarTypeWindow (Shell, SeminarType,
ForeignKeyConstraintSelector)

- setlnput (SeminarType)

- setlnputComponentsEnabled (boolean)

- createButtonListener (AssociationTabControl)

- createButtonListener
(ForeignKeyConstraintSelector)

- checklnput ()

- commitinputToDB ()

- confirmClose ()

- onSave ()

top

Class semorg.sql.tables.SimplelDKey

top

| morg.sql. | rvisor

- Supervisor (int, int, Timestamp, Timestamp)

- tableOK ()

- createSupervisorTable (Statement)

- insertintoDB ()

- deleteFromDB ()

- getColumns ()

- getLecturerld ()

- getPresentationld ()

top FEEC (6{0) Ci Cc2 MMDC MCDC C3 ModBI Bl

| morg.qgui.util.Tabl lumnPr r

- TableColumnProperty (int, int, String, int, int,
boolean)

- getAlignment ()

- setAlignment (int)

- getColumnNumber ()

- setColumnNumber (int)

- getResizable ()

- setResizable (boolean)

- getWidth ()

- setWidth (int)

- getText ()

- setText (String)

- getindex ()

top FEEC (6{0) Ci Cc2 MMDC MCDC C3 ModBI Bl

- TimeControl (Composite)

- getHours ()

- getMinutes ()

- getTime ()

- firelnputChanged ()

- addTimeChangelListener (TimeChangeListener)

- removeTimeChangeListener
(TimeChangelListener)

- setTime (Time)

setActivated (boolean)

setEnabled (boolean)

- setData (String, String)

- setToolTipText (String)

_top FEEC co C1 c2 MMDC | MCDC C3 ModBI Bl
Class semorg.qui.util. UtilityGUI 100,00 92,00 83,33 63,04 66,13 43,48 65,79

- getFormData (Object, int, Object, int, Object, 100,00 | 100,00 | 100,00 | 83,33 87,50 66,67 80,00

int, Object, int)

- isvalidPercentage (int) 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- createTextTab (TabFolder, String, Font, int) 100,00 86,67 50,00 50,00 50,00 50,00 50,00 50,00
- setLength (Text, int) 100,00 | 87,50 50,00 25,00 33,33 33,33 50,00 50,00
- setLength (Text, int, int) 100,00 | 87,50 50,00 25,00 33,33 33,33 50,00 50,00
- setLength (Combo, int) 100,00 | 87,50 50,00 25,00 33,33 33,33 50,00 50,00
- alignRight (Control) 100,00 | 85,71 50,00 25,00 33,33 33,33 50,00 50,00
- getlmage (String) 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 75,00 75,00
- initimage (String) 100,00 | 100,00 |--- - - - - 100,00 | 100,00
- disposelmages () 100,00 | 100,00 |(--- -—- -—- -—- -—- 100,00 | 100,00
_top FEEC co | C1 | c2 MMDC MCDC C3 ModBI Bl

| morg.sgl.util. Utili L

convertToSQLDate (java.util.Date)

convertToTimestamp (java.util.Date)

parseFloat (String)

isCorrectFloat (String)

parselnteger (String)

isCorrectinteger (String)

createFloatText (Float)

initUtilitySQL ()

EXE

50,00

castArray (Object[], Class)

100,00 | 100,00

