A case study In
Test-Driven Development

The Huffman coding

M.Ganaj, L.Jubica

" JE
Agenda

m The Huffman code
m Red/Green/Refactor
m Implementation

m Statistics

m Conclusions

= JEE
The Huffman code

m The encoding has 4 steps
Count the characters’ occurrences
Build the Huffman tree

Get the new binary representation for each
character

Represent the text with the new codes

" JEE
The Huffman code (Step 1)

m Our plain text is “test_driven_development”

" JEE
The Huffman code (Step 2)

m Build the Huffman tree
Sort the table
Join the last two items in a node
Sort again

The Huffman code (Step 2)

Join the last two items in a node

2
i~1 1 1 1 1 1 2 2 2 2 3

p m s o r i | n d v t

Sort again
Join the last two items in a node

2 2
1Al 1 1 1 2 2 2 2 A 3

s o r i | n d v p m t

The Huffman code (Step 2)

Sort again

Join the last two items in a node

2 2 2
r i I n _ d v p m s o t e
Sort again

Join the last two items in a node

3 2 2 2

l n _ d v p m s o r i t e

The Huffman code (Step 2)

Sort again

Join the last two items in a node

4 2 2 2 3
N2 2 N0 N N 8 Al S
d v pm s o r i t | n e
Sort again

Join the last two items in a node

4

VN

" JEE
The Huffman code (Step 2)

Sort again
Join the last two items in a node

4 4
N N
2 2 3 4 2
NN 3 oA N 2 A0 B
s o r i t I n d v p m e

The Huffman code (Step 2)

Sort again
Join the last two items in a node

10

" JEE
The Huffman code (Step 2)

Sort again
Join the last two items in a node

11

" J
The Huffman code (Step 2)

Sort again
Join the last two items in a node

9
N N
4
N N N
2 2 3 4 2
NN 83 A N 2 N

s o r i e t | n d v p m

12

" JE
The Huffman code (Step 2)

Sort again
Join the last two items in a node

8 9
N N
6 4 4
N N N
3 4 2 2 2
S0 N N0 N A N N
t | n d v p m s o0 r i e

The Huffman code (Step 2)

Sort again 23
Join the last T~
two items in a 14
node /\
9 8
N N
4 6 4
N N N

Red/Green/Refactor m:

Refactor

m Create a list of tests

m Implement a few just to see the tests fall
(Red)

m Implement just to pass the test ()
m Refactor the code (Refactor)

m Run the tests to see you did not break
anything

15

Implementation

m List of tests

Create the Huffman class verify it can be
created

Set the plain text, verify the class returns it

Verify the sum of frequences of all
characters to be 23

Verify the frequency table is :

t | els |d |r i |v [n I o |m|p

3|5 1 2 1 1 2 2 2 1 1 1 1

16

"

Implementation (cont.)
Test 1

<Test()> Public Sub TestCreation ()
Dim cHuffman as new HuffmanCode

Assert.AreNotSame(Nothing, cHuffman)
End Sub

Test 2

<Test()> Public Sub TestPassText()
Dim cHuffman as new HuffmanCode
cHuffman.plainText="test_driven_development"
Assert.AreEqual(cHuffman.plainText,"test_driven_development")

End Sub

17

=L
D Pes Promct Dxk teb

] EI [C ocumres and S s ety Docures e ks

Ve V]| Corce D | Comae o |

Tast Caves 2 TestiFun Fatom T 11800

18

"
Implementation (cont.)

Implement Class
Public Class HuffmanCode
‘Just pass the test

Public Shared plainText As String

End Class

19

o | o i T r%::-—nnw-wm.mm

[Ervy arvs Fkrws | Tmute t44 s | Goneste Ous | Goneste Emor |

=k

=

Tosia Fum - 2

20

10

Refactoring

Implement Class

Public Class HuffmanCode
‘Just pass the test
Private Shared plainText As String

Public Shared Sub setPlainText(ByVal Text As String)
plainText = Text
End Sub
Public Shared Function getPlainText() As String
getPlainText = plainText
End Function
End Class

21

Test 3

<Test()> Public Sub TestSumFrequency()

Dim sumFreq As Integer
Dim i As Integer

HuffmanCode.generateFrequenceTable()

sumFreq =0
For i = 0 To HuffmanCode.frequencyTable.Length - 1

sumFreq = sumFreq + HuffmanCode.frequencyTable(i).Frequency
Next

Assert.AreEqual(HuffmanCode.getPlainText.Length, sumFreq)

End Sub

22

11

"
Oh Red Again!!

i
e e
e e)
S ot b |t P | om0 | Comaste s |
B
| gJ
TormmmutaiVisusl Stedis P it 19 |
Lal | 2f sl _I:r,
ot

TostCommn 3 Mot . 3 Voo 1 Tow !wﬂ’_‘-

23

"

Public Class treeNode
Public Frequency As Integer
End class

Public Class HuffmanCode
‘Just pass the test

Private Shared plainText As String
Public Shared frequencyTable() As treeNode

Focus on this
method to pass
the test

Public Shared Sub setPlainText(ByVal Text As String)
plainText = Text
End Sub

Public Shared Function getPlainText() As String
getPlainText = plainText
End Function

Public Shared Sub generateFrequenceTable()
‘applied to the plaintext

end sub

End Class

24

12

Public Shared Sub generateFrequenceTable()

Dim tempresult(-1) As treeNode
Public Class treeNode
Public Character As String
Public Frequency As Integer

Dim i As Integer
End class

Dim j As Integer
Dim found As Boolean
Fori=0 To plainText.Length - 1
found = False
For j = 0 To tempresult.Length - 1
If Not IsNothing(tempresult(j)) Then
If plainText.Chars(i). ToString = tempresult(j). Character Then

found = True
tempresult(j).Frequency += 1
End If
End If

Next
If Not found Then
ReDim Preserve tempresult(tempresult.Length)
tempresult(tempresult.Length - 1) = New treeNode(plainText.Chars(i). ToString, 1)

End If Public Class treeNode
Next Public Sub New(ByVal Character As String,
ByVal Frequency As Integer)
frequencyTable = tempresult Me.Character = character
Me.Frequency = Frequency
End Sub End Sub

"
Tests passed, next test...
%.]““..‘;";‘?«.".*.';.““::;';I“l“;‘.i;l“““:ﬂ

13

"

Test list

m Create the Huffman class verify it can be
created......... done

m Set the plain text, verify the class returns
it.......... done

m Verify the sum of frequences of all
characters to be 23........ done

m Verify the frequency table is

t | e|s |[d |[r |i |v |n I o |[m|p

315 1 2 1 1 2 2 2 1 1 1 1

27

'_
Test 4

<Test()> Public Sub TestStringFrequency()
Dim i As Integer
Dim j As Integer
Dim FrequencyTable() As treeNode
FrequencyTable = cHuffman.frequencyTable
Assert.AreEqual(VerifyTable.Length, FrequencyTable.Length)
Fori=0 To VerifyTable.Length - 1
For j =0 To FrequencyTable.Length - 1
If VerifyTable(i).Character = FrequencyTable(j).Character Then
Assert.AreEqual(FrequencyTable(j).Frequency,VerifyTable(i).Frequency)
End If
Next
Next
End Sub

28

14

CDoamerts i Semg iy Dicumertoud Shao
AERNEEEEEEEENENEEENRERERERENN NN ENY

[et e P | Tt it i | oo Dt | o e |

=l

29

" JdEE
Some more tests

5. Verify the tree created is not nothing

6. Verify the character with 100% frequency is
coded with 1 bit

7. Verify the coding of “p” is 10011
Verify the decoding of “10011” is “p”

9. Verify the text coding of
"test_driven_development” is the known value

10. Verify the text decoding of the known value is
"test_driven_development”

30

15

F——
All Green

TR

= : oty o Semmora oty ot S
NN ENENNNNEEEEEENEEENEEEE
DT] Vesestoa P | Commat O | Eormii |
:] | Cewiit -
1 _-_]';'l
=]
1 | =] Lol _,_I

31

'_
Statistics

m 9 test cases

m 81 lines of code for the test

m 141 lines for the implementation
m 4 hours for the whole process

32

16

" JE
Conclusions

m A little bit strange at the beginning
m What to test?? Which first?? How to test?

m May be the TDD must be introduced early
in the programmer education

m Anyway at the end you have a very good
feeling about your software

33

To whom it may concern:

THANK |

34

17

