Software testing tools: from real-world software projects to educational contents

Klaus Bothe

Institute of Informatics, Humboldt University – Berlin, Germany, <u>bothe@informatik.hu-berlin.de</u>

Workshop

Cooperation at Academic Informatics Education across Balkan Countries and Beyond Jelsa, Croatia, 2nd – 6th September 2019

Contents

Introduction

- Textbooks: What are the main issues of software testing?
- Other sources for testing issues
- Main issues and problems for testing in (our) software projects
- Which tools: TESTONA, ATOS, SOTA
- Summary

Our problem

Generally accepted:

- Software testing is a key discipline in software engineering
- Sources for educational contents: textbooks, recommendations from authorities (e.g. IEEE)
- Software testing without tool support not successful in practice
- Thus, students should become familiar with some of them
 - but which ones?

Which kind of testing tools should be used in educational environments based on main issues of software testing?

Our approach

Own experiences should be included.

- Evaluate (own) typical real-world software projects
- Main issues of our real-world software projects
 determine selection of testing tools

Our solution

There is no unique (best) software testing tool: it depends on the activity to be supported

Main idea: testing tools for different needs:

- -> Regression testing
- -> Selection of test cases
- -> Check the completeness of test cases

Contents

Introduction

- Textbooks: What are the main issues of software testing?
- Other sources for testing issues
- Main issues and problems for testing in (our) software projects
- Which tools: TESTONA, ATOS, SOTA
- Summary

Textbooks

on general Software Engineering

Example: Sommerville, Software Engineering, 10th Edition, 2016

Educational contents in software testing: the case of Sommerville

Textbooks

on Software Testing

Q

🔍 Alle 🖬 Bilder

🕑 Videos 🗉 News 🔗 Shopping

: Mehr Einstellungen Tools

Introduction to Software Testing / Wird auch oft gesucht

Introduction to Software Testing / Wird auch oft gesucht

Introduction to Software Testing / Wird auch oft gesucht

Contents

Introduction

- Textbooks: What are the main issues of software testing?
 - Other sources for testing issues
- Main issues and problems for testing in (our) software projects
- Which tools: TESTONA, ATOS, SOTA
- Summary

SWEBOK: Software Engineering Body of Knowledge

(published by IEEE/ACM)

Guide to the SWEBOK® Home | Contact us What belongs to the discipline of Français **Software Engineering:** 드 Español A classified enumeration of fields Download the latest Version (Feb. 16, 2005) Corporate support by Guide to the Software Engineering Body of Also available in book format BOEING Knowledge First International Workshop (Jul. 25-28, 2005) A project of the **Reviewer Demographics CANADIAN COUNCIL OF PROFESSIONAL ENGINEERS Reviewer Response** Database Search Tool **CONSEIL CANADIEN DES INGÉNIEURS** Project Overview Software Engineering Coordinating Committee onstru Project Contributors Project managed by Université du Québec A Three-Phase École de technologie supérieure Approach National Research Conseil national Straw Man Stone Man Rational The following motion was unanimously adopted by the Industrial Advisory Board on Iron Man the e-development company™ February 6, 2004. Available Documents The Industrial Advisory Board finds that the Software Engineering Body of Knowledge project initiated in 1998 has been successfully completed; and endorses the 2004 Version of the Guide to the SWEBOK and commends it to the IEEE Computer Society Board of Governors for their approval.

http://www.swebok.org/

SWEBOK 2014: Testing knowledge areas

Chapter 4: Software Testing

- 1. Software Testing Fundamentals
- 1.1. Testing-Related Terminology
- 1.2. Key Issues
- 1.3. Relationship of Testing to Other Activities
- 2. Test Levels
- 2.1. The Target of the Test
- 2.2. Objectives of Testing
- 3. Test Techniques
- 3.1. Based on the Software Engineer's Intuition and Experience
- 3.2. Input Domain-Based Techniques
- 3.3. Code-Based Techniques
- 3.4. Fault-Based Techniques
- 3.5. Usage-Based Techniques
- 3.6. Model-Based Testing Techniques
- 3.7. Techniques Based on the Nature of the Application
- 3.8. Selecting and Combining Techniques

- 4. Test-Related Measures
- 4.1. Evaluation of the Program Under Test
- 4.2. Evaluation of the Tests Performed
- 5. Test Process
- 5.1. Practical Considerations
- 5.2. Test Activities
- 6. Software Testing Tools
- 6.1. Testing Tool Support
- 6.2. Categories of Tools

http://www.swebok.org/

ISTQB®: Certified tester

- → Founded in 2002
- → Registered in Belgium
- \rightarrow Until June 2017:

740.000 exams with 535.000 certifications in more than 120 countries

A lot of material and recommendations: What to select?

Contents

Introduction

- Textbooks: What are the main issues of software testing?
- Other sources for testing issues
- Main issues and problems for testing in (our) software projects
- Which tools: TESTONA, ATOS, SOTA
- Summary

(Own) Real-world software projects

Practical software projects (which are safety-critical)

-> Bachelor and Master thesis with industry (e.g. with car industry, suppliers to car industry)

-> ATEO: experiments in psychology

XCTL: control a device for experiments in physics (safety-critical, long-term practical project, 2001-2014, real customer: Institute of Physics, HU)

Real-life project XCTL (control a device for experiments in physics)

X-ray topography camera

Real-life project XCTL (control a device for experiments in physics)

Main issues of software testing in our projects (esp. XCTL)

- How to automate regression testing, i.e. to prove that there is no regression after modifications of software?
- How to support the development test cases?
- How to check the completeness of test cases?

Contents

Introduction

- Textbooks: What are the main issues of software testing?
- Other sources for testing issues
- Main issues and problems for testing in (our) software projects
 - Which tools: TESTONA, ATOS, SOTA
- Summary

Main issues of software testing in our projects

- How to automate regression testing, i.e. to prove that there is no regression after modifications of software?
- How to support the development test cases?
- How to check the completeness of test cases?

→ Each issue should be supported by a testing tool

Real-life project XCTL: three testing tools

Many developers are working at different parts of the system

Find errors as early as possible: test very often (but: test takes 2 days)

Main issues of software testing in our projects

- How to automate regression testing, i.e. to prove that there is no regression after modifications of software?
- How to support the development test cases?
- How to check the completeness of test cases?

Problem: systematic testing after each program modification

70.000 LOC in C/C++:

92 files with: includes: 158 functions: 130 types: 74 classes: 198 Regression testing

Regression testing:

- Testing that after modifications there are no new errors included (no step backward = no regression)
- The same test cases before and after modifications
 - Tool support:

Automatic run and documentation

Many developers are working at different parts of the system

Instead of manual testing 2 days: now only 1 hour

GUI-oriented automatic regression testing: sequence of test activities

Manuelle Justage NEU			? 🔀	Test sequence:
Beugung Fein Direktbetrieb (F:) Fahrbetrieb (F3) Start	-1255,00 Sekunden Sollposition -110,00 Geschwindigkeit 2,0	1255,00 Sekunden Sekunden/ sec	RELATIVE NULL setzen aufheben ISTPOSITION -100,00 Sekunden	 Start the system XCTL Open window 'Manuelle Justage' Initial state: of dialogue box; source: .ini-File Activities on the dialogue box
C Schrittbetrieb (F4)	Schrittweite 50,000	Sekunden	Offset KEINER	- Combo box: select motor (Beugung Fein) - Radio button: Direktbetrieb
kein Antrieb	-314,0 Minuten	288,0	setzen aufheben	- Edit box: Sollposition: -110,00 - Edit box: Geschwindigkeit: 2,0 - Button: Start
C Fahrbetrieb (F6) C Fahrbetrieb (F7) Start C Schrittbetrieb (F8)	Sollposition 1,0 Geschwindigkeit 1,0 Schrittweite 1,00	Minuten Minuten/sec Minuten	ISTPOSITION 1,0 Minuten Offset KEINER	 Button, Start Close dialogue box 'Manuelle Justage' Stop the system XCTL
kein Antrieb	-1093,0 Mikrometer) 1122,0	RELATIVE NULL setzen aufheben	
C Direktbetrieb (F10) Fahrbetrieb (F11) Start Schrittbetrieb (F12)	Sollposition 0.0 Geschwindigkeit 10.0 Schrittweite 3.00	Mikrometer Mikrometer/sec Mikrometer	ISTPOSITION 0,0 Mikrometer Offset KEINER	Manual input into the GUI: Time-consuming, error-prone
PSD-Offset Halbwertsbreite messe	en		Hilfe (F1) Beenden	- If you repeat it again and again

GUI-oriented automatic regression testing: Capture and replay tool ATOS for GUI systems

Manuelle Justage NEU		? 🛛	Test sequence:
Beugung Fein		BELATIVE NULL 5,00 setzen	 Start the system XCTL Open window 'Manuelle Justage'
C Fahrbetrieb (F3) C Fahrbetrieb (F3) C Schrittbetrieb (F4)	Sollposition -110,00 Sekunden Geschwindigkeit 2,0 Sekunden/ Schrittweite 50,000 Sekunden	v sec ISTPOSITION -100,00 Sekunden Offset KEINER	 Initial state: of dialogue box; source: .ini-File Activities on the dialogue box - Combo box: select motor
kein Antrieb	-314,0 Minuten 2	RELATIVE NULL \$88,0 setzen aufheben	(Beugung Fein) - Radio button: Direktbetrieb - Edit box: Sollposition: -110,00 - Edit box: Geschwindigkeit: 2,0
Direktbetrieb (F6) Fahrbetrieb (F7) Schrittbetrieb (F8)	Sollposition1,0MinutenGeschwindigkeit1,0Minuten/ seSchrittweite1,00Minuten	ec ISTPOSITION 1,0 Minuten Offset KEINER	 Button: Start Close dialogue box 'Manuelle Justage' Stop the system XCTL
kein Antrieb	-1093,0 Mikrometer 11.	RELATIVE NULL 22,0 setzen aufheben	Capture: Manual input into the CIII:
Direktbetrieb (F10) Fahrbetrieb (F11) Start Schrittbetrieb (F12)	Sollposition0.0MikrometerGeschwindigkeit10.0MikrometerSchrittweite3.00Mikrometer	/ sec 0,0 Mikrometer	Manual input into the GUI: The test tool ATOS stores the input in a test script file. • Replay:
PSD-Offset Halbwertsbreite mes	sen	Hilfe (F1) Beenden	Later on, under the control of
	ATOS	WinRunner	ATOS, this script file directs the run of the system (regression testing)

Main issues of software testing in our projects

- How to automate regression testing, i.e. to prove that there is no regression after modifications of software?
- How to support the development of test cases?
- How to check the completeness of test cases?

TESTONA: Classification Tree Method

Developed by Daimler-Chrysler:

Originally: Embedded into a test system for car industry

http://www.testona.net/en/index.html

- Widely propagated usage: Airbus, Mercedes, BMW, Audi etc.
- Free academic version

Classification Tree Method

Driving assistant: Determine the distance between objects

Source of case-study: Wegener, DaimlerChrysler

TESTONA

Editions

TESTONA Light	TESTONA Express	TESTONA Professional	TESTONA Enterprise Enterprise-Edition with full scope of performance and all features tailored to individual needs		
Free Edition with reduced functionality	Edition for the cost- effective entry into professional software testing	Professional Edition conceived for sophisticated software testing			
AddOns not available	AddOns not available	Alle AddOns available	All AddOns included (e.g. AUTOSAR, Matlab)		
Support & Maintenance not available	Maintenance Maintenance available		Incl. 2-days On-site Training		
Only Node Locked Licence	Only Node Locked Licence	Node Locked, Hard Locked, Floating-Licence	Floating-Licence incl. Borrow-Functior		
Details about Features Features	Details about Features Features	Details about Features Features	Details about Features Features		
		Additional features included such as Requirements tracing, colouring			
		Numerous Import/ Export-connections (e.g. DOORS, QualityCenter)			
Free Download	Buy TESTONA	Buy TESTONA Professional	Buy TESTONA		

Main issues of software testing in our projects

- How to automate regression testing, i.e. to prove that there is no regression after modifications of software?
- How to support the development test cases?
- How to check the completeness of test cases?

- Delivers coverage degrees

 for a given test data set and a program
 (based on structure-oriented testing / white box testing)
 Visualization of coverage
- \rightarrow Quality of test data assessed

Author: Ronny Treyße, Diploma thesis, HU

SOTA: coverage degrees for nine criteria

🔋 Source 🚯 CFG 🖹 Coverage 📄 Metrics									
Name	FEEC	C0	C1	C2	MMDC	MCDC	C3	MBI	BI
; Project Ziffer	80,00%	89,47%	80,00%	75,00%	68,75%	30,00%	32,14%	13,04%	6,98%
🗄 🕖 Ziffer.java	80,00%	89,47%	80,00%	75,00%	68,75%	30,00%	32,14%	13,04%	6,98%
🗄 🕒 🖸 Ziffer	80,00%	89,47%	80,00%	75,00%	68,75%	30,00%	32,14%	13,04%	6,98%
main (String[])	100,00%	100,00%						100,00%	100,00%
🛄 🔲 werteZiffernfolge	66,67%	88,89%	80,00%	75,00%	68,75%	30,00%	32,14%	9,09%	4,76%

FEEC: Function-Input-Output-coverage C0: Statement coverage C1: Branch coverage C2: Simple condition coverage MMDC: Minimal multiple conditions coverage MCDC: Modified Condition Decision Coverage C3: Multiple conditions coverage MBI: Modfied Boundary-Interior path coverage BI: Boundary-Interior-Path Test

Control-flow graph and coverage visualization

Contents

Introduction

- Textbooks: What are the main issues of software testing?
- Other sources for testing issues
- Main issues and problems for testing in (our) software projects
- Which tools: TESTONA, ATOS, SOTA
 - Summary

Conclusion

There is no unique (best) software testing tool: it depends on the activity to be supported

Selection of three different kinds of testing tools for different purposes:

- ATOS/ATOSj *) : Regression testing for GUI software
- TESTONA +): Systematic selection of test cases
- SOTA *): Check the completeness of test cases with respect to different criteria of structure-oriented testing (white box testing, e.g. branch coverage)

*) own development

+) industry product (Daimler, free academic version)

→ Students worked with three different tools in practical assignments

Own free software tools

https://www2.informatik.hu-berlin.de/~wwwcompsoft/lehre/TestTools/

Thank you