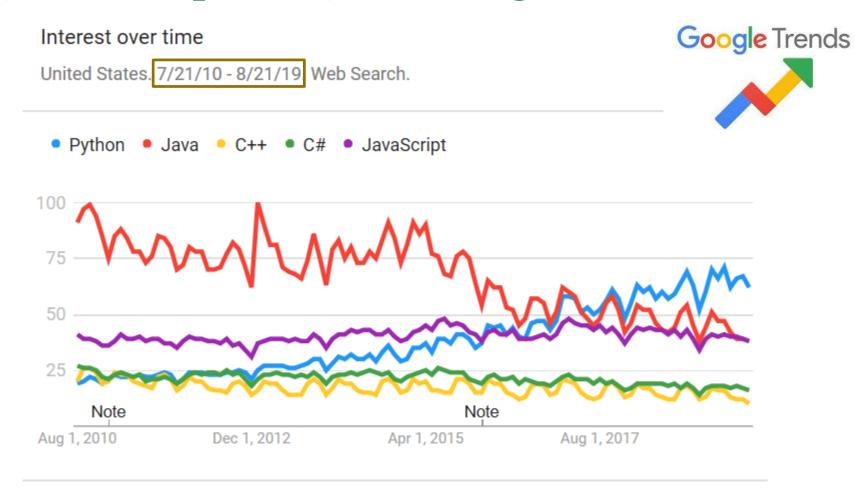
THE USE OF PYTHON IN PRACTICAL STUDENTS' WORK AT PROGRAMMING-RELATED COURSES

Costin Bădică, Ion Buligiu, Ionuț Murarețu University of Craiova, Romania

Talk Outline


- Introduction & Motivation
- Algorithms Design
- Artificial Intelligence
- Conclusions

World of Programming Languages

- Imperative vs Declarative Paradigms:
 - □ Imperative (state-oriented): focused on "how?"
 - Procedural (von Neumann): C, Ada, Fortran
 - Object-oriented: C++, Smalltalk, Eiffel, Java
 - □ Declarative (goal-oriented): focused on "what?"
 - Functional: Lisp, Haskell, ML, F# (a kind of ML), Erlang, Haskell
 - Logic: Prolog, spreadsheets
- Compiled vs Interpreted Languages:
 - □ Compiled: C, Assembler
 - □ Interpreted (scripting): Perl, Python, PHP, JavaScript
 - Partly compiled & partly interpreted: Java, C#

Python Popularity in Google Trends

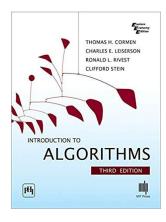
Google Trends

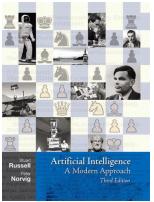
2018 vs 2015 Interactive Top

onoose a ranki	ing (choose a weighting	of make your own)							
IEEE Spectrum	Trending Jobs	Open Custom							
dit Ranking Re	move Comparison	00							
Choose a Comp	oarison (choose a weig	ghting or make your own)		Choose a Compar	rison (choose a we	eighting or m	nake your own)		
IEEE Spectrum	Trending Jobs	Open Custom		IEEE Spectrum	Trending Jobs	Open	Custom		
dit Ranking				Edit Ranking					
.anguage Types	S (click to hide)			Language Types (click to hide)				
	Mobile 🖵 Enterpri	ise Embedded		₩eb ☐ Mo	obile 🖵 Enterp	orise 🏥	Embedded		
.anguage Rank	Types	Spectrum Ranking	Custom Ranking	•		ource to t	oggle its inclusion in th	e ranking a	nd dra
1. Python	₩ 🖵 🛢	100.0	100.0	its slider to reweigh					
2 . C++	[] 🖵 🐞	99.7	99.9	Use data from: 20	2017 2016	2015	2014		
3. Java	\bigoplus \square \square	97.5	99.4	Google (search)		50	Google (trends)		50
4 . C] 🖵 🐞	96.7	96.6	Github (active)		50	Github (created)		30
5 . C#	\bigoplus \square \lnot	89.4	91.5	Stack Overflow (?s	s) —	30	Stack Overflow (views)	-0-	30
6. PHP		84.9	85.1	Reddit	-0-	20	Hacker News	-0	20
7 . R	7	82.9	84.6	Career Builder		5	Dice	0	5
8. JavaScript	$\bigoplus \square$	82.6	83.3			20			
9 . Go	₩ 🖵	76.4	76.2	Twitter		20	IEEE Xplore		
10. Assembly		74.1	73.1				Cance	el Save as	Custo
11. Matlab	Ţ	72.8	72.6						
12. Scala		72.1	71.3						
									_

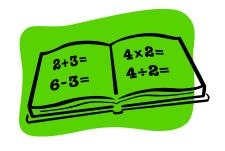
Why Python?

- Python is an *interpreted* language C is *compiled* language
- Python is *higher-level* than C, being characterized by:
 - Simple and readable syntax
 - Dynamic typing
 - High-level data types
- Python is a general-purpose programming language popular for:
 - Algorithms close to pseudocode, fast prototyping and testing
 - □ AI / ML / DS
 - Scientific (Math)
- Python is *multi-paradigm* supporting different styles of programming enabling comparisons of readability / comprehensibility and efficiency / speed
- Plethora of tools:
 - Jupyter Notebook


PyCharm by JetBrains


Courses

- Algorithms Design
 - □ 1st year, 2nd semester CE
- Artificial Intelligence
 - □ 2nd year, 2nd semester CE

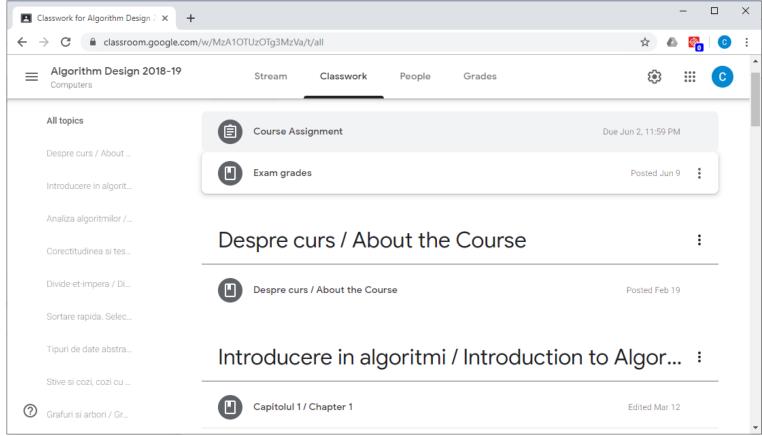


@ CLRS

(a), AIMA

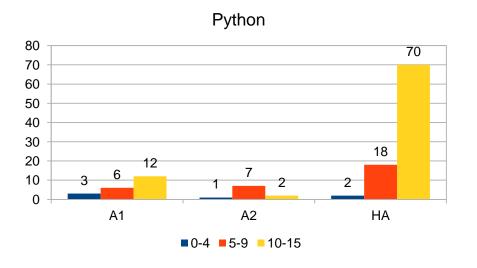
Algorithms Design – Overview

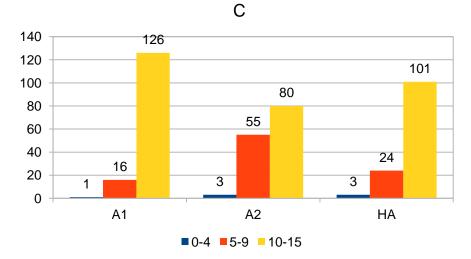
- Learning objectives:
 - □ LO1: <u>Principles</u> of algorithm analysis, modular programming and data abstraction.
 - □ LO2: <u>Fundamental</u> algorithms and <u>fundamental</u> methods of algorithm design.
 - **LO3:** <u>Practical experience</u> in programming small-scale experiments involving implementation, testing and evaluation of algorithms.
- Practical work is focused on algorithm implementation:
 - Standard C
 - Python
- Exposure to Python
 - □ Very basic: program structure, functions, modules
 - Operations with Python lists
 - □ Focus on *self-learning*


Assignments in AD

- 2 lab assignments
 - C implementation compulsory
 - Python implementation optional
- 1 course assignment (homework)
 - □ C & Python implementations compulsory
- Assignment tasks:
 - Program algorithms using C and possibly Python
 - Prepare few (usually 5) non-trivial test cases and use them to experiment with the code
 - Prepare technical report describing the work

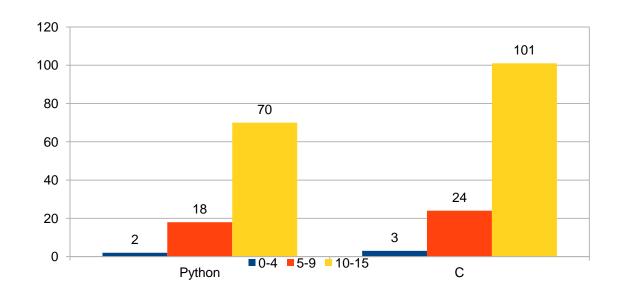
Google Classroom





AD Lab Assignments Results

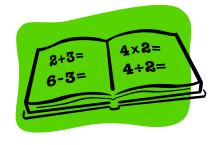
	Python			С		
	0-4	5-9	10-15	0-4	5-9	10-15
A 1	3	6	12	1	16	126
A2	1	7	2	3	55	80
HA	2	18	70	3	24	101



AD HW Assignment Results

	Homework Assignment			
	0-4	5-9	10-15	
Python	2	18	70	
С	3	24	101	

Homework Assignment



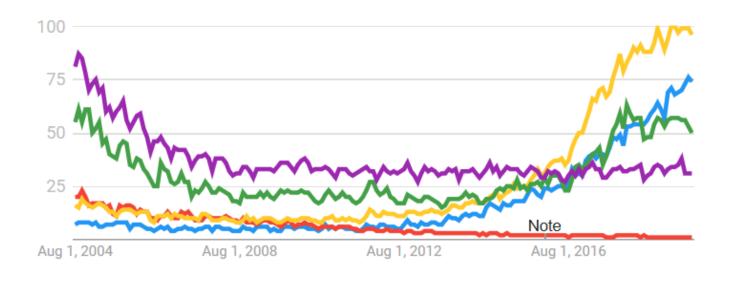
AD – Summary

	Total number of students	169
A1	Total number of submissions	143
	Submissions with Python	21
A2	Total number of submissions	138
	Submissions with Python	10
HW	Total number of submissions	138
	Submissions with Python	90

Artificial Intelligence – Overview

- Introduction to basic AI topics
- Follow the <u>traditional</u> approach AIMA textbook
- Main topics:
 - Logic
 - Problem solving (searching): uninformed & informed
 - Constraint satisfaction
 - Probabilistic reasoning
 - Semantic networks
- Practical Work
 - Prolog as practical application of logic
 - □ Implementation of AI algorithms using various programming languages

Popularity of AI-Related Disciplines


Interest over time

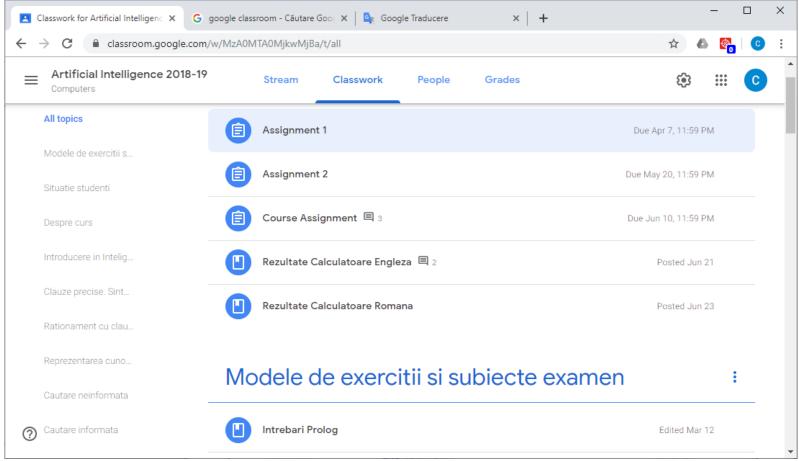
Worldwide. 7/21/04 - 8/21/19. Web Search.

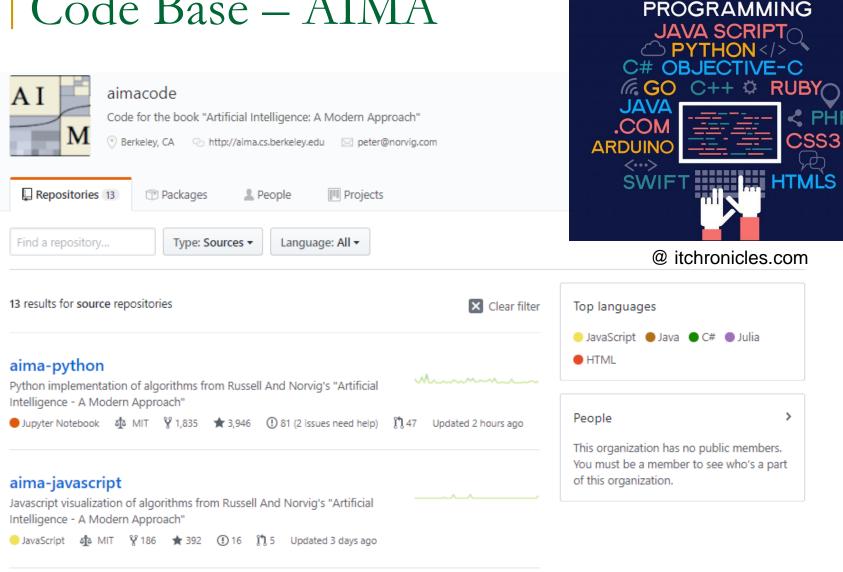
data science
Semantic Web
Machine Learning
Artificial Intelligence

Google Trends

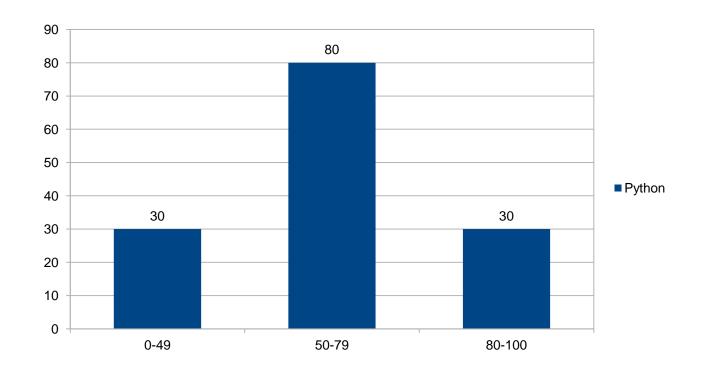
Software Engineering

Google Trends

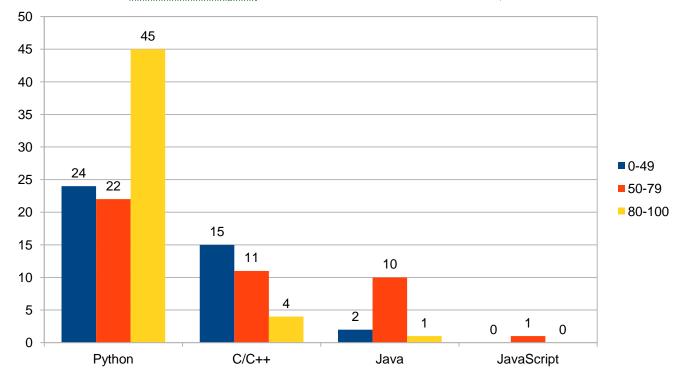

AI Assignments


- 2 lab assignments A1 and A2
 - □ A1: use of Prolog was compulsory (not considered here)
 - A2: use of Python was compulsory
- 1 course assignment (homework) HW
 - Programming language was chosen by the student
- Assignment tasks:
 - Program AI problems / algorithms
 - □ Prepare few non-trivial test cases and use them to experiment with the code
 - Prepare technical report describing the work

Google Classroom


Code Base – AIMA

AI Lab Assignment 2 Results


	Assignment 2				
	0-49	50-79	80-100		
Python	30	80	30		

AI HW Assignment Results

	Homework Assignment				
	0-49 50-79 80-100				
Python	24	22	45		
C/C++	15	11	4		
Java	2	10	1		
JavaScript	0	1	0		

AI – Summary

	Total number of students	194
A2	Total number of submissions	140
	Submissions with Python	140
HW	Total number of submissions	165
	Submissions with Python	91

Educational Issues

- 2nd year students did better with Python programming. They had additional Python knowledge from Object-Oriented Programming course.
- Hints given to 1st year students during AD course regarding selfinstruction with Python were very useful – for example using Python to solve simple algorithmic projects on Project Euler.
- Despite only very basic exposure to Python, most of 1st year students responded well to Python adaptation, about 75% obtaining good results at the HW assignment.
- To increase Python acceptance, we decided to dedicate at least one lab session to Python during next year AD course.

Conclusions

- We presented our approach for introducing Python language to 1st year students.
- We presented our focus on Python of 2nd year students of introductory AI course.
- We presented the outcomes of using Python in practical work at AD & AI courses.

