
PROBLEM BASED APPROACH
IN TEACHING OOP COURSES

ANA MADEVSKA BOGDANOVA

FCSE – UKIM

MACEDONIA

OUTLINE

• WHAT IS PROBLEM BASED LEARNING

• WHY IS THIS APPROACH INTERESTING IN TEACHING OOP PROGRAMMING

• STUDENT – TEACHER ROLES

• PB ELEMENTS IN LECTURES

• CONCLUSION

PBL? LEARNING BY POSING PROBLEMS, NOT
SOLUTIONS

• PROBLEM-BASED LEARNING (PBL)
• STUDENT CENTERED APPROACHES

• PBL IS A PEDAGOGICAL APPROACH HELPING STUDENTS DEVELOP
• SELF- DIRECTED LEARNING SKILLS
• CREATIVE THINKING,
• PROBLEM SOLVING
• COMMUNICATION SKILLS

• PBL - LEARNING AS A PROCESS IN WHICH THE LEARNER ACTIVELY CONSTRUCTS NEW
KNOWLEDGE ON THE BASIS OF CURRENT KNOWLEDGE.

WHY IS PBL IMPORTANT?

• THROUGH PROBLEM-BASED LEARNING (PBL), STUDENTS USE “TRIGGERS” FROM
THE PROBLEM CASE OR SCENARIO TO DEFINE THEIR OWN LEARNING OBJECTIVES

• PBL IS NOT ONLY ABOUT PROBLEM SOLVING, BUT RATHER IT USES APPROPRIATE
PROBLEMS TO INCREASE KNOWLEDGE AND UNDERSTANDING

• PROBLEMS SHOULD BE ADEQUATE FOR THE CERTAIN LESSON
• PROBLEMS SHOULD HAVE DISTINCTIVE ‘WEIGHT’

STUDENT – TEACHER ROLES

•Group works
•Practice
•Discussion
•Individual and peer

learning

Studen
t

•Guide
•Feedback
•Support

Teache
r

FOUNDATION PROGRAMMING COURSES -
FACTS

• THE FOUNDATION COURSES IN COMPUTER SCIENCE DEVELOP
• BASIC SKILLS
• ATTITUDES WHICH ARE IMPORTANT FOR EFFECTIVE LEARNING IN LATER COURSES

• THE COURSES ARE TYPICALLY BASED UPON INDIVIDUAL WORK. BY CONTRAST,
MUCH OF THE PROGRAMMING WORKFORCE OPERATES IN TEAMS.

• A LARGE PROPORTION OF COMPUTER SCIENCE GRADUATES WILL FIND
EMPLOYMENT WHICH INVOLVES BROAD PROBLEM SOLVING SKILLS, RATHER
THAN PURELY TECHNICALLY CENTERED ACTIVITY.

• THE FOUNDATION COURSES USUALLY HAVE A NARROW TECHNICAL FOCUS

• THE MAJORITY OF STUDENTS IN THE FIRST YEAR COMPUTING COURSES ARE
ALSO IN THEIR FIRST YEAR AT UNIVERSITY.

• THESE STUDENTS ARE PARTICULARLY FRAGILE.

Vorführender
Präsentationsnotizen
Students with aptitude and a preference for team work may give up on Computer Science if their first year experiences convince them that the discipline is individualistic.

POTENTIAL PROBLEMS
• IN A CONVENTIONAL COURSE, WE USE AUTOMATED GRADING.

• MAKES THE GRADING MORE MANAGEABLE.
• BUT, BY LATTER COURSES, STUDENTS EXPECTS PROGRAMMING TASKS TO HAVE EXTREMELY

TIGHT SPECIFICATIONS AND THEY RELIED ON US TO SET THE STANDARDS WHICH DEFINED
THE SUCCESS OF THEIR WORK.

• DIVERSITY IN OUR LARGE STUDENT BODY
• SOME HAVE BEEN PROGRAMMING SINCE THEY WERE QUITE YOUNG.
• MOST HAVE NO PROGRAMMING EXPERIENCE AT ALL.

• AN IMPORTANT DIMENSION OF THE OO PARADIGM COMES FROM THE WRITING OF
LARGE PROGRAMS WHICH INVOLVE SEVERAL PROGRAMMERS.

• IF EACH STUDENT DOES ASSIGNMENTS ALONE, IT IS MORE DIFFICULT FOR THEM TO
APPRECIATE THIS ASPECT.

FORMING THE STATE OF MIND

• THE NATURE OF PROGRAMMING REQUIRES A SPECIFIC TYPE OF THINKING THAT
NOVICE STUDENTS ARE NOT FAMILIAR WITH.

• INSTEAD OF FOCUSING JUST ON THE INTENDED EXECUTION PATH OF THE
PROGRAM, THE STUDENT MUST ALSO CONSIDER ALL THE UNINTENDED OR
EXCEPTIONAL SITUATIONS THAT MAY BE ENCOUNTERED IN THE EXECUTION

HOW TO USE PBL IF…

• MOST COMPUTING COURSES INVOLVE SETTING ‘PROBLEMS’ WHICH STUDENTS
ARE REQUIRED TO COMPLETE.

• ACTUALLY EXERCISES, BECAUSE THEY ARE SMALL AND WELL-DEFINED

• WEEKLY EXERCISES, EACH FOCUSED ON PARTICULAR DETAILED ASPECTS OF THE
COURSE, USUALLY ONE THAT HAD BEEN ON CENTER STAGE IN THE RECENT
LECTURES;

• LARGER ASSIGNMENTS WHICH INTEGRATES MANY ASPECTS OF THE COURSE BUT
WERE STILL QUITE TIGHTLY DEFINED, IN ORDER TO BE EVALUATED IN OUR
AUTOMATIC GRADING SYSTEM.

SO, HOW TO USE PBL?

• STARTING POINT FOR LEARNING SHOULD BE A PROBLEM, A QUERY OR A PUZZLE
• USE STIMULUS MATERIAL TO ENGAGE STUDENTS IN CONSIDERING A PROBLEM WHICH

IS PRESENTED IN THE SAME CONTEXT AS THEY WOULD FIND IT IN “REAL LIFE”
• INFORMATION ON HOW TO TACKLE THE PROBLEM IS NOT GIVEN,

• RESOURCES ARE AVAILABLE TO ASSIST THE STUDENTS TO CLARIFY WHAT THE ‘PROBLEM’
CONSISTS OF AND HOW THEY MIGHT DEAL WITH IT.

• STUDENTS SOMETIMES WORK COOPERATIVELY IN A GROUP OR TEAM
• WORK WITH MUCH BROADER PROBLEMS WHICH INVOLVE A LARGER SET OF PROBLEM

SOLVING SKILLS.

FEW STEPS OF USING PL APPROACH

THE METHOD IS DESIGNED TO FOSTER
LEARNING BY

…
1. CONNECTING THE LEARNING TO SPECIFIC PROBLEM SITUATIONS THAT MAY BE

ENCOUNTERED IN PRACTICE

2. ACTIVATING PRIOR KNOWLEDGE OF STUDENTS ABOUT THE TOPIC TO LEARN

3. MAKING THE STUDENTS TO ELABORATE THE MATERIAL THAT THEY HAVE
LEARNED

EXAMPLES

A TASK, THE OUTLINE (MULTIPLE
INHERITANCE)

• A COMPANY FOR WHOSE EMPLOYEES IT HAS TO PAY A SALARY.
• THE COMPANY HAS DIFFERENT EMPLOYEE PROFILES, WHOSE SALARY IS CALCULATED

DIFFERENTLY.
• SALARIES OF COLLABORATORS DO NOT DEPEND ON THE VALUE OF THE POINT AND ARE

DETERMINED DIRECTLY.
• EMPLOYEES:

• DIRECTOR - RECEIVES A FIXED FEE;
• MECHANIC - PAID ACCORDING TO THE NUMBER OF WORKING HOURS WORKED IN THE MONTH,

ACCORDING TO A CERTAIN FEE FOR 1 HOUR;
• WORKDEALER - PAID ACCORDING TO THE NUMBER OF SALES ACHIEVED (GETS A CERTAIN BONUS

FROM EACH SALE, BUT NO WORKING HOURS);
• VENDOR - HAS A FIXED FIXED BASIS FOR THE SALARY TO WHICH INCENTIVE BONUSES ARE ADDED

ACCORDING TO THE SALES MADE (THERE IS A SHOP FLOOR)

• ASSOCIATES :
• FREELANCE - TEMPORARILY HIRED BY THE FIRM BY CONTRACT FOR A CONTRACT FOR AN

AGREED AMOUNT THAT DOES NOT DEPEND ON THE VALUE OF THE POINT.
• CONSULTANT: ENGAGED LUMP-SUM WITH A (MULTI) ANNUAL CONTRACT WITH A SPECIFIC

PAYOUT DYNAMICS (MONTHLY, FOR EXAMPLE). UNDER THE AGREEMENT, IN SOME CASES, IT
ALSO PAYS BONUSES FOR COSTS (ABOVE THE AGREED AMOUNT). IT DOES NOT DEPEND ON THE
VALUE OF THE POINT.

FIRST ITERATION (1)
#INCLUDE <IOSTREAM>

#INCLUDE <STRING>

USING NAMESPACE STD;

CLASS RABOTNIK {

PUBLIC:

RABOTNIK(CHAR *NAME = ""):IME(NAME) { } //
KONSTRUKTOR

VIRTUAL ~RABOTNIK() { }

STATIC VOID SETBOD(FLOAT NEWBOD) { BOD=NEWBOD; }

CONST STRING &IME(VOID) CONST { RETURN IME; }

FLOAT VREDNOSTBOD(VOID) CONST { RETURN BOD; }

VOID SMENIIME(CONST STRING &NOVOIME) { IME=NOVOIME; }

VIRTUAL FLOAT PLATA(VOID) CONST = 0;

VIRTUAL VOID SHOW(VOID) CONST = 0;

PRIVATE:

STRING IME;

STATIC FLOAT BOD;

};
15

Workdealer Mechanic Freelance

Vendor

Director

Consultant

Workers

FIRST ITERATION (2)
CLASS DIREKTOR : PUBLIC RABOTNIK {

PUBLIC:

DIREKTOR(CHAR *IME = "", FLOAT PLATA = 0): RABOTNIK(IME), BOD_PLATA(PLATA) {}

~DIREKTOR() { }

FLOAT PLATA(VOID) CONST { RETURN BOD_PLATA*VREDNOSTBOD(); }

VOID SHOW(VOID) CONST { COUT << IME() << ' ' << PLATA(); }

VOID OSNOVICA(FLOAT VREDNOST) { BOD_PLATA = VREDNOST; }

PRIVATE:

FLOAT BOD_PLATA;

};

CLASS MEHANICAR : PUBLIC RABOTNIK {

PUBLIC:

MEHANICAR(CHAR *IME = "", FLOAT PLATA_PO_CAS = 0, INT RAB_CASOVI = 0):

RABOTNIK(IME), SATNINA(PLATA_PO_CAS), CASOVI(RAB_CASOVI) { }

~MEHANICAR() { }

FLOAT PLATA(VOID) CONST { RETURN SATNINA*CASOVI*VREDNOSTBOD(); }

VOID SHOW(VOID) CONST { COUT << IME() << ' ' << PLATA(); }

VOID RABOTNICASOVI(INT CAS) { CASOVI = CAS; }

VOID SATNICA(FLOAT VREDNOST) { SATNINA = VREDNOST;}

PRIVATE:

FLOAT SATNINA;

INT CASOVI;

};
16

CLASS DILER : PUBLIC RABOTNIK

{

PUBLIC:

DILER(CHAR *IME = "", FLOAT PROV = 0, INT BRPROD = 0):

RABOTNIK(IME), BONUS(PROV), PRODAZBI(BRPROD) { }

~DILER() { }

FLOAT PLATA(VOID) CONST { RETURN BONUS*PRODAZBI*VREDNOSTBOD(); }

VOID SHOW(VOID) CONST { COUT << IME() << ' ' << PLATA(); }

VOID BONUS(FLOAT VREDNOST) { BONUS = VREDNOST; }

VOID PRODAZBI(INT BR) { PRODAZBI = BR; }

PRIVATE:

FLOAT BONUS;

INT PRODAZBI;

};

CLASS PRODAVAC : PUBLIC DILER

{

PUBLIC:

PRODAVAC(CHAR *IME = "", FLOAT OSNOVA = 0, FLOAT PROV = 0, INT BRPROD = 0):

DILER(IME,PROV,BRPROD), MESECNA(OSNOVA) { }

~PRODAVAC() { }

FLOAT PLATA(VOID) CONST { RETURN MESECNA*VREDNOSTBOD()+DILER::PLATA(); }

VOID SHOW(VOID) CONST { COUT << IME() << ' ' << PLATA(); }

VOID OSNOVICA(FLOAT VREDNOST) { MESECNA = VREDNOST; }

PRIVATE:

FLOAT MESECNA;

};

17

FIRST ITERATION (3)

SECOND ITERATION
#INCLUDE <IOSTREAM>

#INCLUDE <STRING>

USING NAMESPACE STD;

CLASS RABOTNIK {

PUBLIC:

. . .

};

CLASS DIREKTOR : VIRTUAL PUBLIC RABOTNIK {

. . .

};

. .

CLASS PRODAVAC : PUBLIC DIREKTOR, PUBLIC DILER

{

PUBLIC:

PRODAVAC(CHAR *IME = "", FLOAT OSNOVA = 0, FLOAT PROV = 0, INT BRPROD = 0)

{ SMENIIME(IME); BONUS(PROV); PRODAZBI(BRPROD); OSNOVICA(OSNOVA); }

~PRODAVAC() { }

FLOAT PLATA(VOID) CONST { RETURN DIREKTOR::PLATA()+DILER::PLATA(); }

VOID SHOW(VOID) CONST { COUT << IME() << ' ' << PLATA(); }

};

. . .
18

Worker

Workdler Mechanic Freelance

Venor

Director

Consultant

THE FINAL VERSION
#INCLUDE <IOSTREAM>

#INCLUDE <STRING>

USING NAMESPACE STD;

CLASS RABOTNIK {

PUBLIC:

RABOTNIK(CHAR *NAME = ""):IME(NAME) { } // KONSTRUKTOR

VIRTUAL ~RABOTNIK() { }

CONST STRING &IME(VOID) CONST { RETURN IME; }

VOID SMENIIME(CONST STRING &NOVOIME) { IME=NOVOIME; }

VIRTUAL FLOAT PLATA(VOID) CONST = 0;

VOID SHOW(VOID) CONST

{ COUT << IME() << ' ' << PLATA(); }

PRIVATE:

STRING IME;

};

19

Emloyee

Workdeaer Mechanic Freelancer

Vendor

Director

Consultant

Worker

THE FINAL VERSION (2)
CLASS VRABOTEN: PUBLIC RABOTNIK

{

PUBLIC:

VRABOTEN(CHAR *NAME = ""):

RABOTNIK(NAME) { } // KONSTRUKTOR

VIRTUAL ~VRABOTEN() { }

STATIC VOID SETBOD(FLOAT NEWBOD) { BOD=NEWBOD; }

PROTECTED:

STATIC FLOAT BOD;

};

20

THE FINAL VERSION (3)
CLASS DIREKTOR : VIRTUAL PUBLIC VRABOTEN

{

PUBLIC:

DIREKTOR(CHAR *IME = "", FLOAT PLATA = 0): VRABOTEN(IME), BOD_PLATA(PLATA) {}

~DIREKTOR() { }

FLOAT PLATA(VOID) CONST { RETURN BOD_PLATA*BOD; }

VOID OSNOVICA(FLOAT VREDNOST) { BOD_PLATA = VREDNOST; }

PRIVATE:

FLOAT BOD_PLATA;

};

CLASS MEHANICAR : PUBLIC VRABOTEN

{

PUBLIC:

MEHANICAR(CHAR *IME = "", FLOAT PLATA_PO_CAS = 0, INT RAB_CASOVI = 0):

VRABOTEN(IME), SATNINA(PLATA_PO_CAS), CASOVI(RAB_CASOVI) { }

~MEHANICAR() { }

FLOAT PLATA(VOID) CONST { RETURN SATNINA*CASOVI*BOD; }

VOID RABOTNICASOVI(INT CAS) { CASOVI = CAS; }

VOID SATNICA(FLOAT VREDNOST) { SATNINA = VREDNOST; }

PRIVATE:

FLOAT SATNINA;

INT CASOVI;

};

21

THE FINAL VERSION(4)
CLASS DILER : VIRTUAL PUBLIC VRABOTEN

{

PUBLIC:

DILER(CHAR *IME = "", FLOAT PROV = 0, INT BRPROD = 0):

VRABOTEN(IME), BONUS(PROV), PRODAZBI(BRPROD) { }

~DILER() { }

FLOAT PLATA(VOID) CONST { RETURN BONUS*PRODAZBI*BOD; }

VOID BONUS(FLOAT VREDNOST) { BONUS = VREDNOST; }

VOID PRODAZBI(INT BR) { PRODAZBI = BR; }

PRIVATE:

FLOAT BONUS;

INT PRODAZBI;

};

CLASS PRODAVAC : PUBLIC DIREKTOR, PUBLIC DILER

{

PUBLIC:

PRODAVAC(CHAR *IME = "", FLOAT OSNOVA = 0, FLOAT PROV = 0, INT BRPROD = 0)

{ SMENIIME(IME); BONUS(PROV); PRODAZBI(BRPROD); OSNOVICA(OSNOVA); }

~PRODAVAC() { }

FLOAT PLATA(VOID) CONST { RETURN DIREKTOR::PLATA()+DILER::PLATA(); }

PRIVATE:

FLOAT MESECNA;

};

22

WE ASKED STUDENTS ABOUT THE PBL
APPROACH

• THE STUDENTS REPORTED THAT GROUP WORK IN PBL:
• IMPROVED THE MOTIVATION,
• PROVIDED EMOTIONAL SUPPORT,
• GAVE A SOCIAL CONTEXT FOR THE COURSE
• IT’S FUN

• WE SHOULD MAKE THIS APPROACH SYSTEMATIC IN THE WHOLE COURSE AND
MEASURE THE BENEFIT OF THIS LEARNING METHOD, COMPARED TO THE
CURRENT ONE

• THE DROP-OUT RATE
• THE SUCCESS IN THE FOLLOWING PROGRAMMING COURSES

AS A CONCLUSION…

• IN SUMMARY, PBL IS CHARACTERIZED BY:
• OPEN-ENDED PROBLEMS WHICH DRIVE THE LEARNING;
• EXPLICIT TEACHING AND IMPROVING OF GENERIC AND METACOGNITIVE SKILLS;
• COLLABORATIVE LEARNING IN GROUPS
• IT IS FUN FOR THE TEACHER AS WELL

• IT IS GOOD IDEA TO BE INCLUDED IN THE OOP CURSES, AT LEAST PARTIALLY

QUESTIONS?

	Problem based approach in teaching OOP courses
	Outline
	PBL? Learning by posing problems, not solutions�
	Why is PBL important?
	Student – teacher Roles
	Foundation programming courses - facts
	Potential problems
	Forming The state of mind
	How to use PBL if…
	So, How to use pbl?
	Few steps of using PL approach
	The method is designed to foster learning by�…
	Examples
	A task, the outline (multiple inheritance)
	First iteration (1)
	First iteration (2)
	Foliennummer 17
	Second iteration
	The final version
	The final version (2)
	The final version (3)
	The final version(4)
	We Asked students about the PBL approach
	As a conclusion…
	Questions?

