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Abstract—The analysis of data series forms the basis of decision-
making in various domains, so that it is essential to ensure data
validity. Yet, current solutions for sanity checking of processing
pipelines, such as GX, TFDV, Pandera or Deequ, fall short
in accounting for data quality issues. In particular, irregular
cadences, sparsity and value uncertainty limit the applicability
of sanity checking and pose risks of false conclusions.

In this paper, we present SOUND to enable sanity checking of
pipelines in the presence of typical quality issues in data series.
In particular, SOUND evaluates a set of sanity constraints that
formalize validity expectations on the data, while incorporating
data quality issues, i.e., uncertainty of individual data points
and sparsity in a whole data series. To this end, it defines a
statistical framework for constraint checking that is based on
adaptive resampling and Bayesian hypothesis testing, minimizing
computational costs while ensuring accurate results. If a constraint
violation has been identified, SOUND also includes drill-down
strategies to guide users in the identification of the root cause of
the violation. We demonstrate the feasibility and utility of SOUND
by applying it for pipelines developed in the domains of smart
grid monitoring and astrophysics.

I. INTRODUCTION

Data series are generated in domains ranging from health-
care [1] and finance [2] to IoT [3] and Science [4], and drive
decision-making processes. In these domains, the analysis of
data series, i.e., traditional timeseries [5] and sequences of
multivariate data points [6], is important to understand the
evolution of a system over time. To this end, a data processing
pipeline is designed, which comprises several operators that
are sequentially applied over data series. To achieve scalability,
such pipelines are implemented using big data frameworks [7],
[8] or scientific workflow engines [9].

Similar to writing unit tests to ensure the reliability of a
software system [10], it is essential to ensure the validity of
processed data [11]–[14]. Changes in the inputs to a pipeline, or
changes to the pipeline itself, may compromise data consistency
and, hence, yield implausible results. To achieve reliable
analysis, therefore, sanity constraints that formulate integrity
expectations shall be evaluated on primary, intermediate, and
final data products, in order to ensure their trustworthiness.

The evaluation of sanity constraints, however, remains
challenging when faced with data quality issues. Real-world
data series show temporal gaps and sparseness, e.g., due to
costly data acquisition [15]. Also, the values in data series are
often uncertain [16], due to the use of point estimates, limited
precision of sensors, measurement errors, or data products
being available only in aggregated or anonymized form.

Current solutions to ensure data validity in data processing
pipelines, such as GreatExpectations [11], TFDV [12], or
Deequ [13], largely neglect such data quality issues. While
they support the specification of sanity constraints for data in
various computational environments, the evaluation of these
constraints assumes discrete, accurate, and complete data series.

Neglecting quality aspects in the assessment of data integrity,
however, yields results that are biased. This is problematic
for two reasons. First, false positives induce a severe manual
overhead: Complex analysis pipelines need to be debugged,
wasting countless hours of rerunning the pipeline and commu-
nicating with experts on a particular processing step or input
data file. Second, false negatives hamper the validity of the
result. Constraint violations are not noticed, which leads to
potentially wrong conclusions and flawed decision-making.

In this paper, we present SOUND, a framework for sanity
checking of processing pipelines for uncertain and sparse data
series. By incorporating data quality aspects, it flags constraint
violations more accurately, and clearly marks regions in the
series, for which conclusions on data validity cannot be made.
SOUND makes the following contributions:
1) Constraint model. To capture validity requirements on data

series in a processing pipeline, we introduce a model for
sanity constraints. It includes a taxonomy to systematically
capture validity expectations within a certain context.

2) Sanity checking for uncertain and sparse data. We provide
a statistical framework for the evaluation of sanity con-
straints in the presence of data quality issues. To cater for
uncertainty of data values and sparsity of the series, we
rely on bootstrapping and confirmatory hypothesis testing.

3) Violation analysis. We present means to support the
identification of a root-cause of a constraint violation.
We outline how changes in the validation result are traced
back to data quality issues or changes in the handled data.

We evaluate SOUND using two real-world applications. We
show that sanity checking with SOUND in Flink incurs only a
modest computational overhead. Moreover, we illustrate that
our framework indeed enables effective constraint evaluation
under data quality issues of varying severity, and that the
root-cause of a violation can be isolated successfully.

Below, we elaborate on our motivation (§II), before formaliz-
ing the problem setting (§III). We then introduce our approach
to sanity checking (§IV), and elaborate on the analysis of
violations (§V). We close with evaluation results (§VI), a
discussion of related work (§VII), and conclusions (§VIII).



II. MOTIVATION

Sanity constraints provide a general means to ensure the
validity of processed data [12]–[14]. They formulate integrity
assumptions on the processed data, which may stem from
domain knowledge, such as physical laws and scientific models,
and the semantic context of the data, including fairness aspects,
compliance rules, or real-world quantities. While the manual
specification of sanity constraints induces a certain overhead,
this effort pays off through the early and accurate detection
of validity issues, thereby saving debugging and development
efforts. Once trustworthy data is available, various types of
techniques to detect common structure and regularities in data
may also help users in constraint definition. For instance,
techniques for data profiling may determine common value
ranges [17], correlation analysis and warping may reveal
dependencies between different data series [18], and pattern
detection may hint at recurring behavior over time [19].

The importance of sanity checking of processing pipelines is
highlighted by various frameworks to define such constraints,
which emerged in recent years, such as GX [11], TFDV [12],
and Deequ [13]. However, these frameworks assume discrete,
accurate, and complete data series, and neglect the impact of
data quality issues, which creates misleading results.

As an example, consider Fig. 1, which shows an uncertain
data series of variable rate (upper panel). The values are
assigned standard deviations for upwards and downwards
uncertainty, which is a common model, e.g., in astrophysics [20]
and earth observation [21]. Here, a sanity constraint is defined
that checks whether the values of four time windows stay
below a certain threshold, which is indicated by the dashed
line. Ignoring the uncertainty and rate differences as part of a
naive approach, yields misleading and noisy results (middle
panel). In the second time window, it wrongly decides on
constraint violation, even though the measurement uncertainty
suggests that the value is likely within the range. In the third
window, it indicates a satisfied constraint (two of three values
are within the range), whereas the measurement uncertainty
suggests that this is unlikely. In the fourth window, a constraint
violation is indicated, if though there is insufficient evidence
for such a conclusion, due to having a single point with large
uncertainty intervals above and below the threshold. Using
the approach presented in this work, SOUND, we avoid these
misleading results, as shown in Fig. 1 (lower panel).

The above properties of application scenarios for sanity
checking are generic and materialize in a wide range of domains.
We illustrate several of these domains in the remainder:

Smart Grid Analytics. Load forecasting in smart grids is
based on series of measurements of energy consumption [22]–
[24]. The respective pipelines include forecasting models,
integrate contextual data, and detect abnormal user behavior.
Examples for sanity constraints define plausible value ranges
(load forecasts must stay below a threshold), limit value changes
over time (accumulated work needs to increase monotonically),
and enforce correlations (aggregates at different levels of the
monitoring hierarchy need to be show consistent trends). Yet,

misleading results
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Figure 1: Sanity check evaluation on a sparse and uncertain data series
(top) using a naive approach (middle) and using SOUND (bottom).

constraint evaluation has to handle data quality issues: Readings
of accumulated work are reported only in coarse-grained units
such as kWh, while momentary load measurements are more
fine-grained. Also, data series are sparse, since measurement
devices show periods of unavailability [23].
Data Management in Astronomy. In data-driven astronomy,
data series representing gamma-ray [25], x-ray [26], and
optical [27] measurements are processed to detect anomalies
and guide observation schedules for pointed telescopes. The
respective pipelines involve multiple levels of data cleaning
and normalization, training of background models, and outlier
classification. Here, sanity constraints capture, for instance, the
correlation of sliding averages computed over series with a
different temporal granularity. However, data quality issues
are omnipresent and need to be incorporated in constraint
evaluation: Instruments are inherently noisy and measurement
values come with an associated uncertainty (from statistical
models) and the limited scope of observation per instrument
leads to data series of varying cadences.
Urban Transportation. Systems for traffic management in-
corporate data series that capture traffic flow at junctions as
well as positional information of buses and light rails [28].
The data is processed with normalization stages, and models
to predict crowdedness and delay patterns. Sanity constraints
relate to the inertia with which traffic flow can be expected
to change over time, and the value ranges of the respective
predictions. However, the respective data series show data qual-
ity issues: Flow measurements obtained with induction loops
are inherently uncertain and the non-availability of positional
information due to limited technical coverage of specific areas
in a city shall be considered in constraint evaluation.
Finance Monitoring. In fraud detection, spending patterns
and dependencies between financial transactions are assessed
to identify fraudulent behavior [29], [30]. To this end, series
of transaction events are processed in pipelines that include
models for classifying transactions into spending classes and
for learning the geo-spatial context of regular behavior, and
deviations thereof. Sanity constraints capture invariants such
as correlations between aggregates of spending volumes over
time, but also over different classes. Yet, again, data quality
issues impact constraint evaluation, as the series inherently
show varying cadence as well as uncertainty stemming from
the various classifiers and predictors included in the pipeline.



Table I: Overview of basic notions and notations.

Notation Description

D = Q× V × V × V Domain of data points
p = (t, v, σ↑, σ↓) Data point: Timestamp t, value v, stand. dev.

σ↑, σ↓
s = ⟨p1, p2, . . . , pn⟩ Data series: Sequence of data points

P = (S,E) Pipeline: DAG with series S ⊆ D∗ as nodes;
edges E ⊆ S ×O × S denote data transforma-
tions based on operators from domain O

•s Predecessors of data series s in the pipeline

III. PROBLEM SETTING

Below, we present a model for our problem context (§III-A),
and characterize the problem of sanity checking (§III-B).

A. Data Series and Pipelines

Requirements. The above scenarios highlight two common
types of quality issues that are often observed in practice:
Value uncertainty. Data points are often uncertain, with the rea-

sons ranging from limited precision of physical instruments,
to upstream data aggregation, or anonymization techniques.
While our work is agnostic to the precise choice of an
uncertainty model, below, we adopt a widespread model
based on normal distributions [31]: A data point consists of
a value and the information on two normal distributions that
characterize the upward and downward uncertainty, each
captured by the distributions’ standard deviation.

Data sparsity. Series of data points are often irregularly scat-
tered over time, e.g., due to high costs of data acquisition
or the lack of continuous observability of a phenomenon.
As such, the data model shall include explicit temporal
information to capture the density of values over time.

Data points and data series. In the light of the above require-
ments, we rely on a model of a data point p = (t, v, σ↑, σ↓)
of domain D = Q×V ×V ×V that includes a timestamp t, a
value v, and the standard deviations σ↑ and σ↓ with which the
value shall be interpreted. As a shorthand, we use p.t, p.v, p.σ↑,
and p.σ↓ to refer to the components of a data point p. Also, we
may consider scenarios, in which timestamps and the standard
deviations are not set as they are not available or not relevant
for the analysis. A sequence s = ⟨p1, p2, . . . , pn⟩ ∈ D∗ of
n data points is a data series. As a shorthand, we use s.t,
s.v, s.σ↑, and s.σ↓ to refer to the sequences of the respective
components of all data points in s. An overview of the notations
used in the remainder is given in Table I.

To illustrate the model, consider the smart grid scenario
from above with plug measurements as a data series:

t 1.0 2.0 4.0 8.0 9.0 10.0
v 1.0 3.0 2.0 4.0 8.5 6.0
σ↑ 2.1 0.4 0.6 0.4 2.2 1.3
σ↓ 1.6 1.8 1.1 0.2 1.6 1.1

The series contains six measurements. Value uncertainty is
captured by two normal distributions with means given as the
data point’s value, and a standard deviation. Timestamps enable
us to model data sparsity, e.g., there are no measurements
between timestamps 4.0 and 8.0.

Pipelines. To capture the processing of data series, we rely on
a graph-based model. A pipeline P = (S,E) is a DAG with
the nodes S ⊆ D∗ being a set of data series and the edges
E ⊆ S ×O × S denoting their transformation using operators
from domain O. An edge (s, o, s′) ∈ E denotes that data series
s′ was derived from data series s through operator o. Operators
are generally considered as some user-defined function (UDF),
for which the exact semantics are not known. As a short-hand,
for a data series s ∈ S, we write •s = {s′ ∈ S | (s′, o, s) ∈ E}
for the data series from which s was derived.

B. Problem Characterization

To achieve reliable analysis in the presence of changes
in the data series or the pipelines defined over them, validity
expectations on the data are formulated as sanity constraints. An
evaluation of these constraints then increases the trustworthiness
of the pipeline’s results. Any realization of such sanity checking,
however, shall address the following requirements:
Expressive modelling of data expectations: Users shall be en-

abled to express their validity expectations as sanity con-
straints on properties of the processed data. Such constraints
may consider individual data points or parts of data series;
they may refer to a particular context in which the data
occurs; and they may link the data in terms of its provenance.

Robust assessment of expectations: Sanity constraints need to
be evaluated in the light of value uncertainty and data sparsity,
in order to avoid any bias or even entirely wrong results.

Effective analysis of violations: When validity expectations
are not met, users shall be supported in the exploration of
potential root-causes for the respective constraint violation.
Here, a major concern is the separation of violations that
are likely to be caused by data quality issues from those
that go along with changes in the processed data.

IV. SANITY CHECKING

In this section, we first elaborate on the formulation of
validity expectations as sanity constraints (§IV-A). Then, we
show how the evaluation of constraints is phrased as a statistical
test to enable sanity checking in the presence of data quality
issues (§IV-B). Finally, we present a collection of constraint
templates for processing pipelines over data series (§IV-C).

A. Constraint Definition

Constraint Taxonomy. To capture validity expectations on the
processed data, we introduce a taxonomy of sanity constraints
in Fig. 2. It includes the following dimensions:
Granularity refers to the selection of data points to which a

constraint is applied. Point-wise constraints refer to individual
points, whereas window-based constraints consider all points
of a data series, i.e., a global window, or only a part of it
that is selected based on the data points’ time or index.

Orderedness specifies if a constraint is defined for a sequence
of data points, either derived based on their time or their
index in a data series; or if the constraint is defined for a
set of data points, independent of their ordering.



Sanity constraints

Orderedness  sequence
 set of points  by time

 by index

Granularity  point-based
 window-based

 by time
 by index
 global

Arity
 unary
 binary

 in time
 in DAG location

Figure 2: Taxonomy of sanity constraints.

Arity outlines over how many data inputs a constraint is defined,
whether it is unary, defining some absolute condition over
a single data input; or binary, defining a relative condition
that compares two data inputs.

Constraint Formalization. We formally capture sanity con-
straints as a function that maps data to a Boolean value, i.e.,
true ⊤, if the constraint is satisfied; or false ⊥, if it is violated.
The function is defined over sequences of data values, thereby
implicitly capturing also point-based constraints.

Definition 1. A sanity constraint is a function ϕk : (V ∗)k →
{⊤,⊥} that assigns a Boolean value to k sequences of
data values.

Pipeline Integration. To express sanity constraints within the
context of a pipeline, a constraint needs to be mapped to a
concrete data series. Moreover, with multiple long data series
being processed in a pipeline, a constraint can often only be
meaningfully expressed for some temporal context, such as a
time window of a fixed size. To this end, we define a sanity
check λ = (ϕk, sk, ψ) with:

1) ϕk: a constraint function,
2) sk ∈ Sk: k-tuple of data series from pipeline P = (S,E),
3) ψ : (S)k → ((D∗)k)∗: a windowing function mapping a

k-tuple of data series to a sequence of k subsequences of
the respective data series, e.g. by a sliding time window.

The semantics of a constraint check are defined as follows.
The windowing function is applied to the selected data series,
which yields a sequence of k tuples of windows:

ψ(sk) 7→ ⟨wk
1 , . . . , w

k
n⟩.

For point-based constraints, each window comprises k data
series of length one, i.e., each window has a single data point.

Next, we consider a naive approach for constraint evaluation
that does not account for data sparsity or value uncertainty.
It applies the constraint function directly to the data values
selected by the windowing function, which results in a Boolean
outcome at each sequence index. That is, with

(w(i,1), . . . , w(i,k)) = ψ(sk)(i)

as the k-tuple of windows (each itself being a data series) at
sequence index i of a k-tuple of data series, the constraint
evaluation corresponds to

ϕ((w(i,1).v, . . . , w(i,k).v)) ∈ {⊤,⊥}.

As demonstrated already in Fig. 1, such a naive approach yields
unreliable and potentially misleading results.

Table II: Overview of SOUND notions and notations.

Notation Description

ϕk Sanity constraint function, assigning a Boolean
value to k series of data values

λ = (ϕk, sk, ψ) Sanity check, consisting of a constraint, k data
series, and a windowing function

γ(ϕk, wk
i , c, N) Sanity check evaluation, assigning an outcome

to a k-valued window and a constraint with
parameters c, N

Constraint Complexity. While the above definition allows for
any constraint arity, in the remainder, we limit ourselves to
unary and binary constraints, i.e., k ∈ {1, 2}, as this suffices
to capture a wide range of validity expectations. In any case,
the model covers all types of constraints of the taxonomy in
Fig. 2. A constraint may assess only an individual data point
(i.e., be applied to a single index of a single data series) or
consider subsequences of the series; it may consider the points
as a set or leverage their ordering; and it can be required to
hold for all data points or adopt a statistical view.
Constraint Evaluation Time. Sanity constraints according
to the above definition are applied over the data series S of
a pipeline P = (S,E). However, an important consideration
is when a constraint is evaluated in terms of the progress of
pipeline execution. To give timely feedback about constraint
violations, the evaluation is performed as soon as the data
is available and in parallel to the nominal data processing.
For the densest coverage, a constraint is evaluated for every
index (i.e. data point for point-based constraints or window
for windowed constraints). This ensures high sensitivity in the
checking, while we later show empirically that it results only
in a modest performance overhead.

B. Constraint Evaluation under Uncertainty

To cater for data quality issues, we propose a robust
constraint evaluation algorithm. It comprises a resampling
function to capture the implicit variability of data series under
the influence of data quality issues, and a dynamic decision
rule to derive reliable outcomes with low computational cost.
The approach is formalized in Alg. 1 and denoted as:

ri = γ(ϕk, wk
i , c,N), ri ∈ {⊤,⊥,

⊤

}.

The evaluation of the constraint function ϕk is done per k-
valued window wk

i = ψk(sk)(i) independently. It takes two
parameters, a credibility level c, and a max sample size N .
The parameters are described below, before discussing the full
algorithm. Based on c and N , the constraint evaluation assigns
an outcome ri to each wk

i , which marks the check as either
satisfied ⊤, violated ⊥, or inconclusive

⊤

.
Credibility level c: The credibility level, comparable to a

significance level in traditional hypothesis testing, defines
of the degree of belief in a sanity check outcome that is
required to conclude it. Specifically in SOUND, it represents
the minimum probability of an evaluation outcome given
the variability from data quality issues, before defining a
sanity check outcome as satisfied or violated. A reasonable
default value is c = 0.95.



Algorithm 1: Constraint Evaluation γ.
input : constraint function ϕ, k-tuple of windows wk

i ,
credibility level c, maximum sample size N

output : satisfaction (⊤), violation (⊥) or inconclusive result (

⊤

)

1 count satisfied← 0;
2 α← 1, β ← 1

3 for i sample in range(1, N ) do // For each sample iteration

// Draw random sample to capture uncertainty and
evaluate constraint

4 sample← resample(wk);
5 is satisfied← ϕ(sample);

// Update the posterior distribution
6 count satisfied← count satisfied + is satisfied;
7 αpost ← α+ count satisfied;
8 βpost ← β + i sample− count satisfied;

// Calculate current posterior credible interval
9 [lower, upper]← BetaDistribution(αpost, βpost, c);

// Decision rule based on credible interval
10 if lower > 0.5 then return ⊤; // Constr. satisfied
11 else if upper < 0.5 then return ⊥; // Constr. violated

// Continue if no decision was made yet

12 return

⊤

; // Inconclusive Outcome

Maximum sample size N : Resampling in SOUND is motivated
by the need to capture data variability. However, the max
sample size N limits the computational effort in inconclusive
cases. If N is reached before the check is concluded to be
satisfied or violated, the outcome is inconclusive

⊤
. The

value of N is set based on resource constraints.

To evaluate a sanity check, first, variables are initialized (lines 1-
2 in Alg. 1). Then, until the max number of samples is reached,
the k-valued window is resampled (line 4). The constraint
function is evaluated on the resampled window (line 5). Based
on the outcome, the belief in the outcome is updated, modeled
by a Bayesian binomial test (lines 6-9). Finally, a decision
rule is applied to terminate the evaluation as soon as a result
materializes, or the max sample size is reached (lines 10-12).

Resampling. SOUND includes the resample method (line 4)
not to improve performance, but to account for the inherent
variability in data series caused by data sparsity and value
uncertainty. Specifically, we employ techniques based on Monte
Carlo Simulation [32] and bootstrapping [33]. The specific
approach depends on the granularity and orderedness of the
constraint. We differentiate the following three cases.

Point-based checks: For the simplest case with k data points,
each sample is created by randomly adding either an upward
or downward uncertainty value to the data point. The uncer-
tainty value is sampled from the corresponding uncertainty
distribution. If there is no uncertainty, the resampling instead
yields the unaltered value of the data point.

Window-based set checks: When resampling k data series
independent of their ordering, data sparsity needs to be
handled additionally to value uncertainty. A data series with
very few data points may be uninformative with respect to the
expectation expressed in the constraint function. Then, the
samples of the data series should reflect the uncertainty from
the low data size. To address this, statistical bootstrapping

[33] is used to estimate statistics of the original data series
from several samples obtained through random sampling of
data points with replacement. Here, SOUND operates under
the assumption of bootstrapping: Data points in each wi are
i.i.d, without specific distributional assumptions. For each
sample obtained from bootstrapping, the value uncertainty
is incorporated by adding a random sample of the upward
or downward uncertainty to the point’s value.

Window-based sequence checks: In contrast to the previous
case, the ordering of data points within each of the k data
series matters. Standard bootstrapping does not maintain
the ordering of data points and is therefore unsuitable
for sequence checks. However, bootstrapping can be lifted
to sequence data [34]. In SOUND, we employ block-
bootstrap [35]: Instead of sampling from all data points
independently, each of the k data series is first divided into
subsequent blocks of size b. The sampling with replace-
ment is then carried out on blocks, such that sequential
dependencies within blocks are maintained. The block size
b is a parameter that, in practice, can be set automatically
based on the length of a data series as b =

√
n. While

block-bootstrap may alter some sequential patterns, it can
be expected to maintain patterns in the lengths that are most
relevant for window-based checks. We later discuss how to
handle potential false positives from edge cases. To maintain
the association across indices of k data series, it is crucial to
sample all data series using the same random indices, such
that the data series remain aligned.

Bayesian Binomial Test. We model the evaluation of a sanity
check using a Bayesian binomial test (lines 7-8) , assuming that
both satisfactions and violations are possible. Mathematically,
we use an uninformative (flat) prior represented by a Beta
distribution with parameters α = 1 and β = 1, which is
uniform over [0, 1] and indicates complete uncertainty. The
Beta distribution is defined as follows:

Beta(x;α, β) =
xα−1(1− x)β−1

B(α, β)
, B(α, β) =

∫ 1

0
xα−1(1− x)β−1dx.

Although we start with an uninformative prior, this approach
allows for the inclusion of prior knowledge in the evaluation
by adjusting the α and β parameters of the Beta distribution.
The posterior distribution is also a Beta distribution. After
observing n satisfied and m violated constraint evaluations, it
is given by:

Posterior = Beta(α+m,β + n).

This posterior distribution represents the updated belief about
the constraint evaluation and forms the basis for concluding
an outcome of sanity check evaluation in a decision rule.
Specifically, based on the credible interval of the posterior
distribution and a neutral probability threshold at t = 0.5, we
make the following decision after each resampling step: If
the lower bound is above t, we conclude a violation. If the
upper bound is below t, we conclude the check is satisfied.
Otherwise, the evaluation remains inconclusive (lines 9-12).



Complexity. Evaluating a sanity check (Alg. 1) has the
following complexity: Let N be the max sample size (line 3),
R be the cost of resampling k data series (line 4), and C the
cost of evaluating the constraint function (line 5). Then, the
total cost lies in O(N ·R · C). In practice, the actual number
of required samples depends on the impact of data quality and
the credibility level c. We analyze this empirically in §VI.

C. Constraint Templates

Our approach (§IV-B) is applicable to any definition of a
constraint that follows our above model (§IV-A). To illustrate
the range of validity expectations that can be formulated and
checked, we now elaborate on common types of constraints.
Numeric Ranges. A data series may be expected to respect a
numerical range. For instance, an expectation of non-negativity
may stem from the series representing distance metrics or
occurrence counts. In our taxonomy, this is an unary, point-
wise constraint over an unordered data series. Also, when
normalizing a data series, the expectation may be that a large
fraction of data points falls into the unit interval, which would
be a unary, windowed, and set-based constraint.
Monotonic Trends. A data series may be expected to be
monotonously increasing or decreasing, e.g. as it contains
accumulated data over time or describes the depletion of a
resource. Such constraints are unary, window-based, discrete,
and require a sequence data series.
Linear Correlations. Two unrelated data series may be
expected to not be correlated, as if they were, this would
hint at some issue in the pipeline. Two related data series, in
turn, may be expected to be correlated. Either way, a sanity
constraint is based on a correlation measure (e.g., Pearsson) and
an upper/lower bound on the correlation coefficient, which is a
binary, window-based, and index-ordered sequence constraint.
Explained Variances. If a pipeline processes predictions and
ground-truth values in data series, it may be expected that
the predictions are plausible. While this can be modelled in
various ways, a common assessment for regression models
is to compare the residuals against the inherent variation of
the ground truth series. This can be expressed in a constraint
function based on the coefficient of determination, i.e., R2,
which measures the explained variance of a mapping function
of an independent variable and dependent variable. A sanity
constraint checking that the explained variance between two
series is in a given range is binary, window-based and requires
index-ordered sequence series.
Equal Distributions. A common integrity expectation is that
a set of data series follows a similar distribution. Examples
include series of measurements performed by two redundant
sensors or the load over time for different nodes ingested
through a load balancing system. There exist a plethora
of similarity scores for empirical distributions, such as the
Kullback-Leibler divergence or Kolmogorov Smirnov test
statistic. To express the respective expectation, a check tests
that a distance metric is below or above a threshold, which is
a binary, windowed, and set-based constraint.

V. VIOLATION ANALYSIS

When a sanity check is violated, an explanation is required
that clarifies the violations’ root-cause and its implications.
Pinpointing exact root-causes, however, is difficult in practice.
The search space is large and cannot be explored exhaustively.
Similar to a failing software test, the identification of root-
causes is a manual process, requiring expert knowledge.

In SOUND, we assist users in the identification of violation
root-causes by (i) gathering evidence to confirm or exclude
potential explanations, and (ii) narrowing down the search
space of root-causes in a pipeline. These techniques build
upon generic concepts and, therefore, are independent of a
specific constraint definition and applicable to any user-defined
formulation of validity assumptions.

Below, we first describe our general approach to violation
analysis (§V-A). Then, we outline potential explanations and
their relevance assessment (§V-B). Finally, we describe an
algorithm to guide the analysis of potential root-causes (§V-C).

A. Change Points

We analyze violations of a sanity check based on change
points over time. That is, the transition of a sanity check from
being satisfied to being violated, or vice versa, provides an
opportunity for a direct comparison of related positive and
negative data points. In context of a sanity check λ, a change
point is a position in the series of constraint evaluation results:

Definition 2. A change point is an index i of a constraint
evaluation results ri = γ(wk

i , ϕ, c,N), for which the condition
(ri = ⊤ ∧ ri−1 = ⊥) ∨ (ri = ⊥ ∧ ri−1 = ⊤) holds.

We denote the pair of subsequent windows located directly
at a change point as (wk

⊤, w
k
⊥), with wk

⊤ and wk
⊥ being

the windows that are evaluated positively and negatively,
respectively. To find an explanation of a violation change
point, the ordering of the windows (i.e. whether it changes
from satisfied to violated or vice versa) does not matter.

B. Potential Explanations

Our analysis of constraint violations is based on a set of
possible explanations, see Table III. The root-cause of a change
in the check outcome may lie in a difference between the
respective data inputs wk

⊥ to wk
⊤, or the sanity check λ itself.

In the former case, shifts in data distributions may result in
changes in the data values or the data quality. We differentiate
between scenarios where explanations lie in the data values
(E1), or in a change of data quality. Specifically, wk

⊥ may have a
higher data sparsity (E2), lower data sparsity (E3), higher value
uncertainty (E4) or lower value uncertainty (E5). Regarding
the sanity check λ = (ϕk, sk, ψ) itself, the constraint function
ϕk and the sk data series are identical for both wk

⊥ to wk
⊤.

Moreover, we consider ϕk to be deterministic (which applies
to all examples above). Hence, the only element potentially
causing a change in the sanity check outcome is the evaluation
function ψ (Alg. 1). Specifically, it may cause a difference in
the evaluation outcome, if the contained resample method
alters the sequence structure within wk

⊥ (E6).



Table III: Overview of SOUND root-cause candidates.
Name Description Linked root-cause Counterfactual explanation

E1 Difference in Data Values Data values v case-specific, see §V-C
E2 High Data Sparsity Temporal sparsity (t) If w⊥ were less sparse, the check would not be violated.
E3 Low Data Sparsity Temporal sparsity (t) If w⊥ were more sparse, the check would not be violated.
E4 High Value Uncertainty Uncertainty σ If w⊥ had lower value uncertainty, the check would not be violated.
E5 Low Value Uncertainty Uncertainty σ If w⊥ had higher value uncertainty, the check would not be violated.
E6 Resampling False Positive resample (Alg. 1) If resample left the sequence structure of w⊥ unaltered, the check would not be violated.

Next, we show how to systematically examine potential
explanations around a violation change point, to either confirm
or exclude them. Here, we assume that one of the potential
explanations materializes as the main root-cause. Moreover,
the assessment is carried out for each of the k input windows
separately. If an explanation applies to one of the k inputs,
it is valid in the context of the entire check. Hence, we use
w⊤, w⊥ as shorthand for one of the k input windows.
E1: Difference in Data Values. A difference in the data values
is the most difficult root-cause to identify. Typically, there exist
many differences between the values of wk

⊥ and wk
⊤, while their

relevance for the violation depends on the constraint semantics.
It can, however, remain as the only possible explanation:

E1⇔ ¬(E2 ∨ E3 ∨ E4 ∨ E5 ∨ E6). (1)

If value differences are expected to yield a violation of a sanity
check, the root-cause is traced back to data series that are
upstream in the processing pipeline. To this end, we introduce
a heuristic search for relevant upstream changes in §V-C.
E2: High Data Sparsity. When the data sparsity of w⊥is
high, there may have been no violation, if the data was more
dense. In that case, the violation’s root-cause is not a change
in the actual population distribution, but lies in w⊥ being a
small, unrepresentative sample of a population distribution. To
diagnose E2, the first criterion is that the violated window
is sparser than the neighbouring satisfied one, |w⊥| < |w⊤|.
Second, we test the aforementioned case directly by increasing
the size of w⊥. We carry out an inverse what-if analysis
to determine the applicability of E2 to a change point with
confidence. Precisely, we test whether the sanity check would
fail for w′

⊤, a version of w⊤ with increased sparsity to the level
of |w⊥| by means of random downsampling. Then, E2 can be
determined as root-cause based on the following condition:

E2 ⇔ (|w⊥| < |w⊤|) ∧ (γ(ϕ,w′
⊤, c,N) = ⊥).

E3: Low Data Sparsity. In analogy to E2, with low data
sparsity in w⊥, it is possible that there would have been no
violation, if the sparsity was as high as in w⊤. In this case,
a change in the sanity check outcome is associated with a
transition from sparse data (check satisfaction) to more dense
data (check violation). We diagnose this root-cause based on
two criteria, similar to E2. First, the data has to be more dense
when the check is violated. Second, a what-if analysis needs to
show that the check would have been satisfied if the sparsity
of w⊥ were increased to the level of w⊤ through random
downsampling:

E3 ⇔ (|w⊥| > |w⊤|) ∧ (γ(ϕ,w′
⊥, c,N) = ⊤).

E4: High Value Uncertainty. If the value uncertainty is
high and a sanity check is violated, the check may have not
been violated under less uncertainty. To identify high value
uncertainty as a root-cause, we first assess whether the relative
value (upward or downward) uncertainty has increased:

(δ↑⊥ > δ↑⊤) ∨ (δ↓⊥ > δ↓⊤) with δ
↑/↓
⊤/⊥ =

1

|w⊤/⊥|
∑ w⊤/⊥.σ↑/↓

w⊤/⊥.v
.

Further, we test whether the check result on w⊥ becomes
satisfied under downscaling of the uncertainty by the relative
difference in the mean relative uncertainties of w⊥ and w⊤:

γ(ϕ,w′, c,N) = ⊤ with w′ = w⊥ and w′.σ↑/↓ = w⊥.σ
↑/↓ ·

δ
↑/↓
⊤

δ
↑/↓
⊥

.

Combined, E4 is identified as a violation’s root-cause, if the
following condition holds:

E4 ⇔ (δ⊥ > δ⊤) ∧ (γ(ϕ,w′, c,N) = ⊤)

with δ⊤/⊥ =
1

|w⊤/⊥|
∑ w⊤/⊥.σ

↑ + w⊤/⊥.σ
↓

2w⊤/⊥.v
.

E5: Low Value Uncertainty. With a low value uncertainty
at a sanity check violation, it may be that the check would
not have been violated if there value uncertainty was higher.
Intuitively, there might be a relevant difference in the data that
is only detectable when the uncertainty is low enough. To detect
such cases, we perform a test analogous to E4. Specifically, it
checks if the check on w⊥ becomes satisfied if the uncertainty
is upscaled by the relative difference in the mean relative value
uncertainties between wk

⊥ and w⊤, which leads to the following
condition for explanation E5:

E5 ⇔ (δ⊥ < δ⊤) ∧ (γ(ϕ,w′, c,N) = ⊤)

E6: Resampling False Positive. In the evaluation of sequence
constraints, a spurious violation (i.e. false positive) may occur,
if the sequence structure is altered by the block-bootstrap
resampling in a way that affects the outcome. If this is the
case, the constraint function is true when evaluated on each
resampling block bi within w⊥ individually. We cater for this
case with the following condition:

E6 ⇔ ∀bi (ϕ(bi) = ⊤).

C. Change in Data Values

When a constraint violation can only be explained by a
change in the data values, a relevant difference must be present
in one or more of the k data series evaluated by the sanity
check. Yet, the difference’s root-cause may be a change in
the primary input series to the pipeline, or a change in the
intermediate data series produced by upstream operators.



To guide the manual drill-down, we analyse relevant data
series for differences. In addition to the k series targeted by
the check, we also inspect upstream data series, when relevant
by their provenance in the pipeline DAG and the temporal
context of a change point. Ultimately, SOUND produces an
annotation of the pipeline DAG that limits the search space of
the required manual analysis. Next, we first define a notion
of a change in data values and then describe the approach for
producing the annotated pipeline DAG.

Change Constraint. The criteria of what renders a data
difference relevant to a violation change point depends on the
semantics of the constraint and position of the data series under
investigation. While this motivates flexibility in defining the
method for assessing data changes, per-default, we perform a
non-parametric statistical test for empirical distribution equality,
namely the 2-sample Kolmogorov-Smirnov test [36], denoted
as ks_test_2samp:

ϕ2change(w1, w2) : (ks_test_2samp(w1, w2).p_value < α).

Here, the significance level α is set to match the evaluation’s
credibility level, to set a min certainty, i.e., α← (1− c).
Upstream Pipeline Annotation. Based on a data change
constraint ϕ2change, we search for changes in each of the k
data series of a check λ and their respective upstream data
series, i.e. in the context of pipeline DAG P . The approach is
detailed in Alg. 2 and consists of the following general steps:
1) For each of the k change point windows (w⊥, w⊤), the

change constraint is evaluated. The respective data series
is annotated, if the evaluation found a change (lines 2-4).

2) For every upstream data series of u ∈ •s, the windows
matching those of the change points windows are deter-
mined (lines 6-7). The change constraint is evaluated on
the window pair and the upstream series is annotated, if a
change is found (lines 8-9).

The resulting annotation R, which is a set of data series in P ,
limits the search space for the violation’s root-cause. Any data
series or operator that is upstream of s ∈ R in P is excluded.

Complexity. For each change point in the violation outcomes,
the analysis of potential explanations has the following com-
plexity. Let C be the cost of evaluating the constraint function,
and let A be the cost of altering the data quality of k series (see
E2-E5). The cost of assessing explanations is O(C ·A). The
cost of detecting upstream change points (Alg. 2) is O(U · T ),
with U being the number of upstream series of all k series
targeted by a sanity check λ (lines 2, 5), and T being the cost
of evaluating a change constraint ϕ2change (line 3).

VI. EXPERIMENTAL EVALUATION

In the following, we evaluate how SOUND catches implausi-
bilities in realistic pipelines with modest overheads. Moreover,
we show the influence of data quality and the parameters c and
N on the cost and the confidence in the sanity check evaluation.
Finally, we evaluate the automated checks that provide the user
with guidance in the drill-down of potential root causes.

Algorithm 2: Upstream data change point detection.
input : check λ, pipeline P = (S,E), change point (w⊥, w⊤),

upstream change constraint ϕ2upstream
output : set of local and upstream series with present changes

1 R← ∅;
// For each of the k local series at change point

2 for s, w⊤, w⊥ in zip(sk, wk
⊤, w

k
⊥) do

// Assess difference in local series

3 has change← ϕ2upstream(w⊤, w⊥);
// Mark change in upstream series if present

4 if has change = ⊤ then R← R ∪ {s};
5 for u in •s do // For each upstream series

// Select time ranges of change point in
upstream series

6 u⊥ ← u[u.t ∈ minmax(w⊥.t)] ;
7 u⊤ ← u[u.t ∈ minmax(w⊤.t)];

// Assess difference in upstream series

8 has change← ϕ2upstream(u⊤, u⊥);

// Mark change in upstream series if present
9 if has change = ⊤ then R← R ∪ {u};

10 return R

A. Evaluation Setup

Hardware/Software. Generally, SOUND can be applied in
batch or stream processing contexts. We implemented it, along
with the applications, in Apache Flink 1.14.0. The experiments
are carried out on a MacBook Pro (2021) with a 10-core M1
Pro processor and 16GB of memory on macOS Ventura (13.6).
Experiments run for at least 90 seconds and are repeated 5
times. Unless noted otherwise, plots show the resulting average
and 95% confidence interval (shaded region or error bar). Flink
applications are executed with 4 parallel worker slots and an
operator parallelism of 4. Our evaluation setup is based on that
of Erebus [37] and all artifacts are publicly available [38].

Pipelines. We use two applications with real-world data, for
which Fig. 3 shows the pipeline DAGs including sanity checks.
Smart Grid Analytics (S) The dataset stems from the DEBS

Grand Challenge 2014 [23] and the Flink pipeline is taken
from the scenario SGA in [37]. It is an analytics pipeline to
detect faulty plugs in a smart grid environment. It computes
a minute average of the household load and compares it to
the corresponding plug loads at the start of each minute. A
load comparison forms the basis for alerts to the user.

Astrophysics (A) The dataset is real-world, public data of over
40 astronomical sources observed from the Fermi gamma-
ray telescope [39]. The pipeline captures anomaly detection,
which first filters the incoming data and then detects short-
term anomalies in comparison to a smoothed local baseline.

Sanity checks. Our evaluation covers a wide range of sanity
constraints, see Table IV. They include constraints of varying
granularity (i.e. point-based and windowed), arity (i.e. unary
and binary) and orderedness (set and sequence). In terms
of complexity, the checks range from simple cases of unary
numerical range to more complex cases like an expectation of
correlation in two different series of the pipeline DAG.



Table IV: Sanity checks and their classification in the taxonomy, as implemented in the smart grid (top) and astrophysics (bottom) pipelines.

Name Description Arity Granularity Orderedness ϕ(x, (y))

S-1 load in plausible range unary point-wise - a ≤ x ≤ b
S-2 monotonous increase in work unary windowed in tuples sequence xi < xi+1

S-3 plug count ≥ household count binary in DAG location windowed in time set |x| ≥ |y|
S-4 usage > 0.5 in alerts unary point-wise - x > 0.5
S-5 max delta in household usage unary windowed in time set (max(x)−min(x)) < a

A-1 flux in plausible range unary point-wise - a ≤ x ≤ b
A-2 input pipeline did not freeze unary windowed in tuples set std(x) ̸= 0
A-3 lower delta on average binary in DAG location windowed in time sequence (xi − xi−1) < (yi − yi−1)
A-4 has correlation binary in DAG location windowed in time sequence corr(x, y) > 0.2
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Figure 3: Pipelines for Smart Grid Analytics (left) and Astrophysics (right) along with the corresponding sanity checks.

Baselines. We evaluate SOUND against three distinct baselines:

BASE NOM The nominal, uninstrumented data processing
pipelines, used to assess any performance overhead.

BASE CHECK A simplistic validation approach ignoring data
quality issues. It is equivalent to employing existing tech-
niques, such as TFDV [12] or Deequ [13], without ac-
counting for the impact of data qualiy issues. Specifically,
the outcome of sanity check λ is considered identical to the
outcome of the associated constraint function ϕk.

BASE VA A baseline approach to the analysis of violation
change points, based on existing provenance techniques
[37]. Data quality is ignored, s.t. a potential root cause is
identified as a change in the local data values (E1) and
traced back to upstream series. Change constraints ϕ2change
are evaluated proactively and their results are propagated
through the pipeline to the corresponding sanity check.

Evaluation metrics. Performance overhead is captured in terms
of throughput (data points processed per second) and latency
(delay in seconds between the creation of a data point and the
ingestion of all required data points). To analyze the impact
of data quality issues on sanity check outcomes, we mea-
sure and compare the accuracy of evaluation outcomes from
BASE CHECK and SOUND. Moreover, as part of a sensitivity
analysis, we capture the probability distribution of constraint
violation along with the concluded sanity check outcome. In the
violation analysis, for each explanation E1-6 from SOUND, we
report the corresponding number of explained change points.
To quantify the explanation quality of SOUND, we also measure
the false positive rate of explanations obtained from BASE VA.
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Figure 4: Performance overhead of SOUND measured in throughput
and latency for the original and instrumented version of the smart
grid application (left) and astrophysics application (right).

B. Performance Overhead

As sanity checks are additional computations that need to
be carried out on top of a nominal pipeline, we evaluate the
performance overhead of SOUND. Overall, our results show
that sanity checking is feasible with modest overheads.

Costs compared to nominal pipeline. An assessment of the
overhead in terms of latency and throughput once sanity checks
are included is shown in Fig. 4. For the smart grid scenario
(left) and the astrophysics scenario (right), the latency and
throughput are recorded over wall-clock time, after a warm-
up period of 15% of the experiment’s duration. SOUND is
configured with c = 0.95 and N = 100. For the smart grid
scenario, the overhead is minimal. The throughput decreases
to 95% of BASE NOM, while the latency is on par, i.e., 0.2041
seconds for BASE NOM and 0.2089 seconds for SOUND. For
the astrophysics case, the throughput with SOUND is 76% of
BASE NOM; latency increases from 0.016 to 0.021 seconds.
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Figure 5: Smart grid scenario: Overhead as a function of the
maximum number of samples and credible interval. The dashed line
is BASE NOM and the solid line SOUND.
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Figure 6: Astrophysics scenario: Overhead as a function of the
maximum number of samples and credible interval. The dashed line
is BASE NOM and the solid line SOUND.

For both applications, the overhead is constant over time,
hence SOUND and the application pipelines are in a stable
state. The overhead for the smart grid scenario is smaller in
comparison to the one in the astrophysics scenario. This is
expected: First, data quality issues are more pronounced in the
astrophysics case, leading to more samples being required to
evaluate sanity checks. Second, the constraint functions in the
astrophysics application are computationally more expensive.
Finally, the smart grid pipeline is more complex, resulting in
lower relative overhead of SOUND.

Overhead and framework parameters. The maximum num-
ber of samples N and the credible interval c control a trade-off
between confidence and computational cost. In the following,
we evaluate their effect on the performance overhead. The
overhead in throughput and latency for both scenarios is shown
in Fig. 5 and Fig. 6. With varying c, the maximum sample
sized N is fixed to 100, and with varying N , the credible
interval c is fixed to 0.95. A general expectation is that with
increasing N and c, the throughput decreases and the latency
grows. When varying N ∈ [10, 200] and c ∈ [0.9, 0.99], in
the smart grid case, the changes in latency and throughput
are negligible. In the astrophysics case, the effect is visible
more clearly. Here, the mean latency increases from 0.0196

Table V: Scenario A: Outcomes of BASE CHECK.

A-1 A-2 A-3 A-4 Combined

Satisfied Outcome Acc. 0.961 0.071 0.628 1.0 0.634
Violated Outcome Acc. 0.993 - 0.107 0.001 0.161

Inconcl. Outcome Ratio 40.1% 0.0% 24.0% 0.4% 27.8%

to 0.0219 seconds and the mean throughput decreases from
1.007M, to 947k tuples per second, when increasing c = 0.90
to c = 0.99. When changing N = 10 to N = 200, the mean
latency increases from 0.0188 to 0.0227 seconds, and the mean
throughput decreases from 1.05m to 962k tuples per second.

C. Effectiveness of Sanity Checking

Next, we demonstrate that data quality issues may indeed
have a large impact on the outcome of the evaluation of sanity
checks. To this end, we compare the evaluation outcomes
of SOUND to a naive approach. The latter ignores value
uncertainty and data sparsity by directly considering the result
of the constraint function ϕ as the sanity check outcome.
Here, we control for spurious violations in sequence checks by
considering an outcome to be satisfied when condition E6 holds
(see §V). For this experiment, we focus on the astrophysics
scenario, as it features extensive data quality issues that are
directly grounded in the respective data sources.

As illustrated in Table V, we analyze the accuracy of the
naive approach in the detection of satisfied and violated sanity
checks. The combined accuracy for all constraints lies at
0.634 for satisfied and 0.161 for violated outcomes. The result
highlights that neglecting data quality issues may drastically
change the result of sanity checking, i.e., a naive approach
yields numerous checks having the opposite outcome compared
to their evaluation under data quality issues. Moreover, the
accuracy varies notably among the constraints, so that this issue
cannot be addressed by simply tuning the general sensitivity
of the naive approach.

The results are further underpinned by an assessment of the
cases, where SOUND yields an inconclusive outcome. Here,
our approach determines that the uncertainty arising from data
quality issues is too large to derive a reliable conclusion. Yet,
the naive approach yields either satisfied or violated check
outcomes with false confidence, potentially resulting in wrong
conclusions. This is the case for ≈ 27.8% of the outcomes.

D. Confidence in Constraint Evaluation

The confidence in a sanity check being satisfied or violated
depends on several factors, including (i) a data value’s proximity
to the decision threshold modelled in a constraint, (ii) the extent
of value uncertainty and data sparsity and their relevance for
the constraint, as well as (iii) the number of samples drawn in
the evaluation. Next, we investigate these influencing factors.
Framework parameters. To assess the impact of N and c
on the constraint evaluation quality, we compare four cases of
high/low parameter combinations in the evaluation of constraint
S-4, see Fig. 7. The overall certainty in the violation probability
decreases, as expected, when c is increased, as can be observed
by the shorter intervals between the left and the right cases.
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Figure 7: Smart grid scenario: Sanity check evaluation cases with representative parameter pairings, being high/low maximum sample size N
and credibility level c. Error bars show 95% confidence interval of final violation probability.
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Figure 8: Astrophysics scenario: Sanity check evaluation change point with original and amplified value uncertainty (left) and sparsity (right).

However, in scenarios where the data quality issues render
the evaluation of a sanity check not straightforward, a larger
sample size is required to reach a conclusive outcome. This
can be observed when comparing the top right and the top
left panel, where multiple inconclusive outcomes occur with a
high c and low N , and mostly disappear when N is increased.
Here, it is beneficial to increase N , as more samples make
it possible to reach a conclusive outcome. When c is lower,
the tolerance for wrong conclusions becomes higher. This is
illustrated by the false positive in the bottom left panel, that is
not present in the right panels, where c is larger.

Value uncertainty. To study the impact of value uncertainty,
we compare three variants of a constraint evaluation (S-4),
while manually altering the value uncertainty. Fig. 8 (left)
shows cases of the value uncertainty being low (top), moderate
(middle), or high (bottom) regarding the decision criteria of the
constraint S-4. Low value uncertainty (top panel) results in an
overall low variability in the violation probability, and a clear
distinction between violation and satisfaction. With increasing
value uncertainty in the middle panel, there is more variety in
the result, with more inconclusive outcomes and larger spread in
violation probability mass. With high value uncertainty (bottom
panel), there is large variability in the outcome, and clear cases
of high-confidence constraint violations or satisfactions become
rare. Instead, the violation probability distribution falls closer
to 0.5 and outcomes become inconclusive.

Impact of data sparsity. To evaluate the impact of data sparsity,
Fig. 8 (right) shows the evaluation of constraint A-4 with
the original data distribution and with amplified data sparsity.
Compared to the original series, higher sparsity (middle panel)
potentially changes the outcome to be either inconclusive or
the opposite. With higher sparsity (bottom), the outcomes
frequently change compared to the original series. Opposite
outcomes are contexts where the data series with amplified
sparsity is unrepresentative of the original, but clearly suggests
a wrong outcome. When outcomes change to be inconclusive,
the series is ambiguous with respect the sanity check. Here,
the amplified data sparsity disturbs the constraint evaluation
results, which shows that the propagation of uncertainty from
data sparsity works as expected.

E. Violation Analysis

Turning to root-cause analysis of constraint violations, we
analyze the effectiveness and efficiency of our automated checks
aimed to guide a user’s drill-down of potential root causes.
In the following, we focus on the constraints A-3 and A-
4 in Astrophysics pipeline, as they located far downstream
in the DAG and data quality issues are prevalent in general.
Hence, they pose the most interesting scenario for violation
analysis. We compare SOUND to the BASE VA baseline based
on existing provenance-based techniques.



Table VI: Number of identified explanations (E1-6) and false positive
outcome ratio (FPR) of BASE VA for change points in the violation
analysis of the Astrophysics scenario.

E1 E2 E3 E4 E5 E6 BASE VA FPR
constraint

A-3 28243 0 0 9936 957 1 0.278356
A-4 3179 0 0 452 0 0 0.124484

Event Time (JD)

10
4

10
5

# Evaluations of ϕ2
change

BASE_VA
SOUND

Figure 9: Number of evaluated change constraints for A-3 and A-4
of the Astrophysics scenario, comparing SOUND and BASE VA.

In Table VI, we show the number of change points associated
with each potential explanation in SOUND. Also, we show the
false positive rate of BASE VA. The results demonstrate that
SOUND effectively finds explanations for change points, and
that a naive approach (BASE VA) yields spurious explanations,
if a change in data quality can explain a violated check. This
holds despite data sparsity not being a root-cause, as both
investigated constraints operate on fixed-size count-windows.

In Fig. 9, we evaluate the efficiency of SOUND compared to
BASE VA, which proactively carries out checks of data changes
in local and upstream data series to isolate root-courses in the
pipeline DAG. The results show that SOUND is substantially
more efficient, as the reactive approach allows to avoid per-
forming unnecessary data change checks, which on average
constitute to about 95% of the checks carried out in BASE VA.

VII. RELATED WORK

Sanity checking of pipelines links to work on debugging
data-driven systems [40], [41], data validation [12], and data
provenance [42], [43]. Our work is also related to models
developed for probabilistic databases [44] and time series
anomaly detection [45]. Yet, SOUND focuses on the impact
of data quality issues, whereas probabilistic databases and
anomaly detection typically do not model those explicitly.
Debugging Data-Driven Systems. In recent years, various
approaches to debug the pipelines executed by data-driven
systems have been proposed. MLInspect [46], [47] instruments
pipelines extracted from Python scripts with user-specified
checks for data distribution issues. BugDoc [48], in turn,
finds root-causes for system failures in the parameters of data
processing pipelines. Similarly, DataExposer [49] identifies
data profiles that are causally connected to system malfunction,
based on successful/failed runs. Both BugDoc and DataExposer
require an oracle to declare the correctness of a pipeline result, a
limitation known as the oracle problem in software testing [50].

Slice Finder [51] relies on a statistical analysis of perfor-
mance measures for a pipeline to identify data slices for which
a machine learning model performs poorly. Coco [52], [53]
is a line of work for identifying conformance constraints as
invariant relations between attributes of a dataset for data

exploration, cleaning and debugging. Root-cause analysis of
processing pipelines was realized based on stack traces and
data dependencies in Dagger [54] and for fairness-related data-
issues in Gopher [55]. Similarly, AID [56] identifies root-
causes of bugs by automated code changes and causal inference.
Complaint-Driven Data Debugging [57] points out elements in
training data that cause undesired model predictions.

The above systems outline a wide range of strategies to
explore the validity of processing pipelines. Yet, none of them
caters explicitly for the impact of data quality issues on the
results. Since data quality issues are omnipresent in many
scientific fields, with potentially drastic implications on the
ability to assess the validity of processing pipelines, they shall
be incorporated in sanity checking, though.
Data Validation. The idea to formulate data validity expecta-
tions as constraints was brought forward by Deequ [13] for
pipelines in Apache Spark. Since then, similar approaches have
been developed for various data processing platforms, including
Tensorflow data validation (TFDV) [12], Pandera [58] for the
validation of Python dataframes, and GreatExpectations (GX)
[11] as a platform for validation, profiling, and documentation
of data in Python pipelines. Data Linter [59], in turn, focuses
on the validation of training data for machine learning, e.g.,
class imbalances issues. These approaches are similar in that
they also rely on user-defined constraints for capturing validity
requirements. Unlike SOUND, they do not cater for data quality
issues or non-unary constraints in context of a pipeline.
Data Provenance. Our strategy to identify a root-cause of
a sanity check violation, if it is suspected to be a change in
data values, exploits the pipeline provenance. Many systems
are available to track and visualize such provenance informa-
tion, e.g., VAMSA [60], Vizier [61], and VisTrails [62]. An
integration of SOUND with these systems may enable even
richer analytics, e.g., by including pipeline revisions in the
identification of root-causes of validity issues.

VIII. CONCLUSIONS

In this paper, we presented SOUND to enable sanity checking
of pipelines for data series in the presence of data quality
issues. We proposed a rich constraint model to formalize
validity expectations for data series and presented a statistical
framework for their evaluation once data series include value
uncertainty and intervals of data sparsity. Further, we proposed
automated checks for drilling into the root-cause of constraint
violations, thereby guiding users in the interpretation of a
constraint violation. We demonstrated the feasibility and utility
of SOUND by applying it for pipelines developed in the domains
of smart grid monitoring and astrophysics. Here, we showed
that SOUND enables sanity checking with a modest performance
overhead, while incorporating data quality issues effectively
and providing guidance on the identification of root-causes.
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