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Abstract: In complex event processing (CEP), queries are evaluated continuously over streams
of events to detect situations of interest, thereby facilitating reactive applications. However, users
often lack insights into the precise event pattern that characterizes the situation, which renders the
definition of the respective queries challenging. Once a database of finite, historic streams, each
containing a materialization of the situation of interest, is available, query discovery supports users in
the definition of the desired queries. It constructs the queries that match a certain share of the given
streams, as determined by a support threshold. Yet, upon changes in the database or changes of the
support threshold, existing algorithms need to construct the resulting queries from scratch, neglecting
the queries obtained in previous runs. In this paper, we aim to avoid the resulting inefficiencies by
techniques for incremental query discovery. We first provide a theoretical analysis of the problem
context, before presenting algorithmic solutions to cope with changes in the stream database or the
adopted support threshold. Our experiments using real-world data show that our incremental query
discovery reduces the runtimes by up to three orders of magnitude compared to a baseline solution.
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1 Introduction

Complex event processing (CEP) is a computational paradigm to facilitate reactive and
proactive applications [CA12, Gi20]. In CEP, a set of queries are evaluated continuously
over a stream of events in order to detect situations of interest in domains, such as urban
transportation [Ar14], computational finance [Ch10], and supply chain management [KL19].
Often, these situations of interest are deviating or abnormal behaviour, so that their timely
detection facilitates the implementation of counter-measures.

In essence, CEP queries capture sequential patterns of events, i.e., they describe a sequence
of events of specific types, additional conditions on the attribute values of the respective
events, and a time window for their occurrence. As the exact characterization of the event
patterns is challenging in practice, one may support users in the specification of queries with
techniques for automated query discovery [MCT14, GCW16, Kl23]. Here, the assumption is
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Fig. 1: The general setting of incremental event query discovery: An update of the stream database or
support threshold shall be incorporated in an updated set of queries.

that a database of finite, historic (sub-)streams that cover the situation of interest is available.
That is, if the situation of interest is some deviating or abnormal behaviour, the assumption
is that the database contains only the respective streams, not the common behaviour. Then,
queries that match a certain share of these streams, as determined by a support threshold,
can be extracted and subsequently be assessed and validated by a user.

However, over time, the database of streams used as a basis for query discovery may be
subject to change. Additional streams that capture a situation of interest may become
available, or streams that are already in the database may be considered outdated. As part
of that, the requirements for query discovery in terms of the adopted support threshold
may also change, i.e., it may be relaxed to increase the number of discovered queries, or
strengthened to avoid false positives in the result.

Yet, upon changes in the database or in the support threshold, existing discovery algorithms
need to construct the resulting queries from scratch. This is problematic since solving the
problem of event query discovery is computationally hard, as an exponentially growing
space of candidate queries (in the query length and attribute domains) needs to be explored
and the evaluation of a single query also shows an exponential runtime complexity (in the
number of variables, i.e., conditions over multiple events) [Kl22].

In this paper, we set out to avoid inefficient recomputation with strategies for incremental
event query discovery. Our idea is that the discovery result shall be reused and adapted once
the databases or the support threshold change, as illustrated in Figure 1. To this end, after
giving formal preliminaries (§2), we make the following contributions:

(i) We present a theoretical analysis of the problem context (§3). Specifically, we
show that under certain conditions, the result set of queries for an updated stream
database or an updated support threshold denotes a subset of the existing result.

(ii) We present algorithmic solutions for incremental query discovery (§4). They adapt
a given set of queries, thereby aiming to avoid inefficient recomputation.



We assess the feasibility of our solution in several experiments (§5), showing that incremental
discovery reduces the runtimes by up to 10x. Finally, we review related work (§6) and
conclude the paper (§7).

2 Background on Query Discovery

Below, we introduce preliminary notions to study the problem of event query discovery.

Event streams. We based our work on the notion of a multivariate event stream. Such a
stream has an event schema, captured by a tuple of attributes A = (𝐴1, . . . , 𝐴𝑛), where
dom(𝐴𝑖) is the finite domain of attribute 𝐴𝑖 , 1 ≤ 𝑖 ≤ 𝑛. All events have the same schema and
we assume that attribute domains are disjoint, ∩𝑛

𝑖=1 dom(𝐴𝑖) = ∅. As a short-hand, we write
Γ =

⋃𝑛
𝑖=1 dom(𝐴𝑖) for the alphabet defined by all possible values of attributes. Moreover,

an event is an instantiation of the event schema, captured as a tuple 𝑒 = (𝑎1, . . . , 𝑎𝑛) with
𝑎𝑖 ∈ dom(𝐴𝑖) for 1 ≤ 𝑖 ≤ 𝑛. By 𝑒.𝐴𝑖 , we denote the value of attribute 𝐴𝑖 of event 𝑒.

An event stream is a finite sequence of events 𝑆 = ⟨𝑒1, . . . , 𝑒𝑙⟩, i.e., a finite subsequence of
a potentially unbounded sequence of events. We write |𝑆 | for the length of the stream, and
𝑆[𝑖] for its 𝑖-th event. A stream database is a finite set of streams 𝐷 = {𝑆1, . . . , 𝑆𝑑}.

Event queries. We adopt a query model that captures sequences of events, which are
correlated by predicates over their attribute values [ZDI14]. We neglect the definition of an
explicit time window, as it may be derived from the maximal time difference between events
in one of the streams. That is, taking the time between the start and end of each stream,
the maximal time span over all streams is an upper bound for the time interval, in which a
situation of interest is expected to occur. Moreover, we follow [Kl23] and use a linearized
representation of event queries. Let A = (𝐴1, . . . , 𝐴𝑛) be an event schema, X be a finite
set of variables such that X ∩ Γ = ∅, and _ ∉ X ∪ Γ be a placeholder symbol. Then, we
define a query term 𝑡 = (𝑢1, . . . , 𝑢𝑛) as an 𝑛-tuple comprising attribute values, variables,
and placeholders: 𝑢 𝑗 ∈ dom(𝐴 𝑗 ) ∪ X ∪ {_}, 1 ≤ 𝑗 ≤ 𝑛, while we prohibit terms containing
only placeholders, i.e., 𝑢 𝑗 ∈ dom(𝐴 𝑗 ) ∪ X for at least one 1 ≤ 𝑗 ≤ 𝑛. By 𝜀, we denote the
empty query term that contains only placeholders, i.e., 𝜀 = (_, . . . , _). Based thereon, an
event query is a finite sequence of query terms, 𝑞 = ⟨𝑡1, . . . , 𝑡𝑘⟩, with 𝑞 [𝑖] denoting the 𝑖-th
term. In a query, variables need to occur in at least two query terms for the same attribute,
i.e., for any term 𝑞 [𝑖] = (𝑢1, . . . , 𝑢𝑛) with 𝑢 𝑗 ∈ X, 1 ≤ 𝑖 ≤ 𝑘 and 1 ≤ 𝑗 ≤ 𝑛, there exists
another query term 𝑞 [𝑝] = (𝑢′1, . . . , 𝑢

′
𝑛) with 𝑢 𝑗 = 𝑢′

𝑗
, 1 ≤ 𝑝 ≤ 𝑘 and 𝑝 ≠ 𝑖. The empty

query is ⟨𝜀⟩, i.e., the query containing the empty query term. By Q, we denote the universe
of all queries.

From an intuitive point of view, a query term describes a single event that shall be matched
by defining a specific value, variable, or placeholder per attribute. While a placeholder
denotes the absence of any constraint, the use of variables captures the correlation of events
as matching events need to have equivalent values for the respective attributes.



Tab. 1: Overview of notations.

Notation Explanation

A = (𝐴1, . . . , 𝐴𝑛 ) An event schema, a tuple of attributes
Γ =

⋃𝑛
𝑖=1 dom(𝐴𝑖 ) The stream alphabet

𝑒 = (𝑎1, . . . , 𝑎𝑛 ) An event, a tuple of attribute values
𝑒.𝐴𝑖 The value 𝑎𝑖 of attribute 𝐴𝑖 of event 𝑒
𝑆 = ⟨𝑒1, . . . , 𝑒𝑙 ⟩ An event stream, a finite sequence of events
𝑆 [𝑖 ] The 𝑖-th event of the event stream 𝑆

𝐷 = {𝑆1, . . . , 𝑆𝑑 } A stream database, a set of event streams

X A finite set of query variables, X ∩ Γ = ∅
_ A placeholder symbol, _ ∉ X ∪ Γ

𝑡 = (𝑢1, . . . , 𝑢𝑛 ) A query term, an 𝑛-tuple of attribute values, variables, and placeholders
𝜀 = (_, . . . , _) The empty query term, an 𝑛-tuple of placeholders
𝑞 = ⟨𝑡1, . . . , 𝑡𝑘 ⟩ An event query, a finite sequence of query terms
𝑞 [𝑖 ] The 𝑖-th term of the query 𝑞

⟨𝜀⟩ The empty query containing only the empty query term

𝑆 |= 𝑞 The stream 𝑆 supports the query 𝑞, i.e., there exists a match
𝑀+ (𝑞, 𝐷) The set of streams in 𝐷 that match the query 𝑞

supp(𝑞, 𝐷) The support of query 𝑞 in stream database 𝐷

𝜃 The support threshold, a real number in the interval (0, 1]
𝑠 ( |𝐷 | , 𝜃 ) The stream threshold, the min number of streams to match to fulfill the support threshold
Γ (𝐷, 𝜃 ) The frequent stream alphabet
𝑄𝜃

𝐷
The set of all matching queries

Moreover, we distinguish three classes of queries: A type query contains only query terms
defining attribute values (and placeholders). A pattern query contains only query terms
defining variables (and placeholders). All other queries are referred to as mixed queries.

We define the semantics of a query 𝑞 = ⟨𝑡1, . . . , 𝑡𝑘⟩ over a stream 𝑆 = ⟨𝑒1, . . . , 𝑒𝑙⟩ as
follows: A match of 𝑞 in 𝑆 is an injective mapping 𝑚 : {1, . . . , 𝑘} → {1, . . . , 𝑙}, such that:

• for each query term 𝑞 [𝑖] = (𝑢1, . . . , 𝑢𝑛), 1 ≤ 𝑖 ≤ 𝑘 , the mapped event 𝑆[𝑚(𝑖)] =
(𝑎1, . . . , 𝑎𝑛) has the required attribute values, 𝑢 𝑗 = 𝑎 𝑗 or 𝑢 𝑗 ∈ X ∪ {_} for 1 ≤ 𝑗 ≤ 𝑛;

• variables are bound to the same attribute values, i.e., for query terms 𝑞 [𝑖] = (𝑢1, . . . , 𝑢𝑛)
and 𝑞 [𝑝] = (𝑢′1, . . . , 𝑢

′
𝑛), 1 ≤ 𝑖, 𝑝 ≤ 𝑘 , it holds that 𝑢 𝑗 ∈ X, 1 ≤ 𝑗 ≤ 𝑛, with 𝑢 𝑗 = 𝑢′

𝑗

implies that 𝑆[𝑚(𝑖)] .𝐴 𝑗 = 𝑆[𝑚(𝑝)] .𝐴 𝑗 ; and
• the order of events in the stream is preserved, i.e., 𝑚(𝑖) < 𝑚(𝑝) for 1 ≤ 𝑖 < 𝑝 ≤ 𝑘 .

Note that the set of matches as induced by the above definition corresponds to a greedy
event selection policy (also known as unconstrained or skip-till-any-match). It does not
limit how often an event can participate in matches. However, in the remainder, we do not
explicitly refer to the set of matches, but consider only the existence of a match per stream.
Specifically, we say that 𝑞 matches 𝑆 and write 𝑆 |= 𝑞, if there exists a match for query 𝑞 in
stream 𝑆. Table 1 provides an overview of the introduced notations.



Support. To reason about the relation of a query 𝑞 and a stream database 𝐷, we define
𝑀+ (𝑞, 𝐷) as the set of matching streams, i.e., 𝑀+ (𝑞, 𝐷) = {𝑆 ∈ 𝐷 | 𝑆 |= 𝑞}. The support
supp(𝑞, 𝐷) of a query is then given as the fraction of streams in 𝐷 that match the query,
supp(𝑞, 𝐷) = |𝑀+ (𝑞,𝐷) |

|𝐷 | . A support threshold 𝜃 is a real number in the interval (0, 1]. A
query 𝑞 is frequent in 𝐷, if supp(𝑞, 𝐷) ≥ 𝜃. From the aforementioned notions, we derive the
stream threshold 𝑠( |𝐷 |, 𝜃) as the minimum number of streams that must match to a query
in order for the query to be considered frequent, i.e., 𝑠( |𝐷 |, 𝜃) = ⌈|𝐷 | · 𝜃⌉. Based thereon,
we also derive the frequent stream alphabet, defined by all attribute values that appear in at
least the number of streams as determined by the stream threshold, i.e., Γ(𝐷, 𝜃) = {𝑎 ∈ Γ |
|{𝑆 ∈ 𝐷 | ∃ 𝑗 ∈ {1, . . . , |𝑆 |}, 𝑖 ∈ {1, . . . , 𝑛} : 𝑆[ 𝑗] .𝐴𝑖 = 𝑎}| ≥ 𝑠( |𝐷 |, 𝜃)}. Furthermore, as
a short-hand, we define the set of all matching queries as 𝑄 𝜃

𝐷
= {𝑞 | supp(𝑞, 𝐷) ≥ 𝜃}.

For a given stream database, it is clear that support thresholds induce a containment relation
for the sets of matching queries. As we later rely on this property, we state it as follows:

Property 1 Let 𝐷 be a stream database and 𝜃1, 𝜃2 be support thresholds. Let 𝑄 𝜃1
𝐷

and 𝑄
𝜃2
𝐷

be the sets of all matching queries. If 𝜃2 ≥ 𝜃1, then 𝑄
𝜃2
𝐷
⊆ 𝑄

𝜃1
𝐷

.

Proof. Let 𝑞 ∈ 𝑄 𝜃2
𝐷

. Then, supp(𝑞, 𝐷) ≥ 𝜃2 ≥ 𝜃1, and thus, 𝑞 ∈ 𝑄 𝜃1
𝐷

and 𝑄
𝜃2
𝐷
⊆ 𝑄

𝜃1
𝐷
.

Table 2 shows a database of three streams from a cluster monitoring application [Re12].
Each event has three attributes, denoting the ID, status, and priority of a job that is executed
on a compute cluster. Now, consider the query 𝑞 = ⟨(𝑥0, schedule, low), (_, schedule, _),
(𝑥0, evict, low)⟩. It matches streams 𝑆2 and 𝑆3, as, e.g., the three query terms of 𝑞 can be
mapped to events 𝑒32, 𝑒34, and 𝑒35 of 𝑆3 (the mapped events are highlighted in blue). Note
that these are the only possible mappings for this scenario, since the order of the query
needs to be preserved. Yet, the query does not match 𝑆1, as the third query term cannot be
mapped to any event (𝑒14, highlighted in red, does not qualify to be mapped). With a support
threshold of 0.6, query 𝑞 would be in the set of matching queries for the stream database.

3 Analysis of the Problem Context

In this section, we study the problem of event query discovery under updates, focusing
especially on the relation of the sets of matching queries before and after an update. We
first characterize the problem context. Let 𝐷0 = {𝑆1, . . . , 𝑆𝑑} be a stream database, 𝜃0 be a
support threshold, and 𝑄

𝜃0
𝐷0

be a matching query set. For this setting, we distinguish two
possible updates, as follows, which may also be combined:

• The stream database 𝐷0 is updated resulting in a new database 𝐷1. Here, we consider
the addition of 𝑘 new streams, i.e., 𝐷1 = 𝐷0 ∪ {𝑆𝑑+1, . . . , 𝑆𝑑+𝑘}, as well as the removal
of 𝑘 existing streams, i.e., 𝐷1 = 𝐷0 \ 𝐷− with 𝐷− ⊆ 𝐷0 and |𝐷− | = 𝑘 .

• The support threshold 𝜃0 is updated resulting in a new threshold 𝜃1 ∈ (0, 1].



Tab. 2: Example stream database.

Stream Event Job Id Status Priority

𝑆1 𝑒11 1 schedule low
𝑒12 1 kill low
𝑒13 1 schedule high
𝑒14 1 . . . . . .finish . . . . . .high

𝑆2 𝑒21 2 schedule low
𝑒22 3 schedule high
𝑒23 2 evict low

𝑆3 𝑒31 4 schedule high
𝑒32 5 schedule low
𝑒33 4 finish high
𝑒34 6 schedule low
𝑒35 5 evict low

These updates potentially have implications for the set of matching queries, 𝑄 𝜃0
𝐷0

, which,
hence, needs to be updated to 𝑄

𝜃1
𝐷0

, 𝑄 𝜃0
𝐷1

, or 𝑄 𝜃1
𝐷1

, respectively. Specifically, we seek to
answer the following questions:

1. Which queries are still matching? That is, which queries 𝑞 ∈ 𝑄
𝜃0
𝐷0

do still belong to
𝑄

𝜃1
𝐷0

, 𝑄 𝜃0
𝐷1

, or 𝑄 𝜃1
𝐷1

, respectively?
2. Which new queries are matching? That is, which queries 𝑞 ∉ 𝑄

𝜃0
𝐷0

belong to 𝑄
𝜃1
𝐷0

, 𝑄 𝜃0
𝐷1

,
or 𝑄 𝜃1

𝐷1
, respectively?

Ideally, the above questions shall be answered incrementally. That is, we would like to avoid
computing 𝑄

𝜃1
𝐷0

, 𝑄 𝜃0
𝐷1

, or 𝑄 𝜃1
𝐷1

from scratch, but rather derive it directly from 𝑄
𝜃0
𝐷0

.

Before turning to algorithmic solutions to the above questions, we study the three relations
between the matching query sets as illustrated in Figure 2.

𝑄
𝜃0
𝐷0

𝑄
𝜃1
𝐷0

𝑄
𝜃0
𝐷1

𝑄
𝜃1
𝐷1

(a)

(b)

(a)

(b)

(c)

Fig. 2: Illustration of matching query sets and the relations between them.

In this paper, we focus on the case that 𝐷1 is derived from 𝐷0 by the addition of 𝑘 streams,
i.e., 𝐷1 = 𝐷0 ∪ {𝑆𝑑+1, . . . , 𝑆𝑑+𝑘}, and that the support threshold is strengthened, i.e.,
0 < 𝜃0 ≤ 𝜃1 ≤ 1. The reason being that the properties discussed below hold analogously for



the mirrored updates, i.e., the deletion of existing streams and a relaxed support threshold.
In the remainder, we first study the relation of the sets of matching queries when only
the support threshold is updated (a), and when only the stream database is updated (b).
Afterwards, we turn to the case that both are updated at the same time (c).

(a): Updating only the Support Threshold

In case only the support threshold is changed, i.e., it is strengthened, we note that there
exists a containment relation between the sets of matching queries. Based on Property 1, we
conclude that the set of matching queries for the increased support threshold is a subset of
the one for the lower support threshold, i.e., 𝑄 𝜃1

𝐷𝑖
⊆ 𝑄

𝜃0
𝐷𝑖

, 𝑖 ∈ {0, 1}.

(b): Updating only the Stream Database

Regarding updates of the stream database, i.e., the addition of streams, we make the following
observation based on the stream thresholds, i.e., the minimal numbers of streams that need
to match to fulfill the support threshold. Consider the case that 𝑠( |𝐷1 |, 𝜃𝑖) = 𝑠( |𝐷0 |, 𝜃𝑖) + 𝑘 ,
𝑖 ∈ {0, 1}, where 𝑘 represents the number of added streams. Intuitively, this means that
all newly added streams need to be matched for a query to remain in the set of matching
queries, under a worst-case assumption. That is, all queries that only match the minimal
numbers of streams to fulfill the support threshold need to match all the new streams. We
note though that, with a support threshold of 𝜃𝑖 = 1, this worst case applies to all queries in
the set of matching queries. If 𝑠( |𝐷1 |, 𝜃𝑖) = 𝑠( |𝐷0 |, 𝜃𝑖) + 𝑘 , then the set of matching queries
for the updated stream database can only become smaller, i.e., it is a subset of the original
set. This observation on a containment relation between the matching sets of queries under
updates to the stream database is captured by the following property:

Property 2 𝑠( |𝐷1 |, 𝜃𝑖) = 𝑠( |𝐷0 |, 𝜃𝑖) + 𝑘, 𝑖 ∈ {0, 1} =⇒ 𝑄
𝜃𝑖
𝐷1
⊆ 𝑄

𝜃𝑖
𝐷0

.

The proof of this property is directly covered by Lemma 1, which captures a more general
case as detailed below. For now, we illustrate what happens if the respective relation between
the stream thresholds does not hold true with an example.

Consider the streams 𝑆1, 𝑆2, 𝑆3, as given in Table 2. Let 𝐷0 = {𝑆1, 𝑆2} be the initial
stream database and let the support threshold be 𝜃0 = 0.6. Then, the stream threshold
is 𝑠(𝐷0, 𝜃0) = 2, i.e., a query needs to match both streams to be frequent. Now, let
𝐷1 = {𝑆1, 𝑆2, 𝑆3} be the stream database after adding one stream, 𝑆3, while leaving the
support threshold unchanged. Then, the stream threshold is still 𝑠(𝐷1, 𝜃0) = 2 and, hence,
𝑠(𝐷1, 𝜃0) ≠ 𝑠(𝐷0, 𝜃0) + 𝑘 as 𝑘 = 1 in our example.

As mentioned above, the query 𝑞 = ⟨(𝑥0, schedule, low), (_, schedule, _), (𝑥0, evict, low)⟩
matches 𝑆2 and 𝑆3, but not 𝑆1. This means that 𝑞 ∈ 𝑄 𝜃1

𝐷1
and 𝑞 ∉ 𝑄

𝜃1
𝐷0

. As such, query 𝑞



illustrates that the containment relation between the sets of matching queries does not hold
and we conclude that, if 𝑠(𝐷1, 𝜃0) ≠ 𝑠(𝐷0, 𝜃0) + 𝑘 , then the relation between 𝑄

𝜃1
𝐷1

and 𝑄
𝜃1
𝐷0

depends on the added stream(s).

The above property and our example illustrate that there is a close relation between the
amount of change applied to a stream database, i.e., the number 𝑘 of added streams, the
stream threshold, and the support threshold. In fact, the support threshold can be bounded
based on the other two parameters. These bounds, in turn, enable us to derive insights on
how often we can expect Property 2 to be applicable and, thereby, conclude that the set of
matching queries of the updated database is a subset of the original set of matching queries.

As above, let 𝐷0 = {𝑆1, . . . , 𝑆𝑑} and 𝐷1 = 𝐷0 ∪ {𝑆𝑑+1, . . . , 𝑆𝑑+𝑘} be the original and
updated databases and let 𝜃0 be the support threshold for both of them. To simplify the
presentation, we use the short-hands 𝑠0 = 𝑠( |𝐷0 |, 𝜃0) and 𝑠1 = 𝑠( |𝐷1 |, 𝜃0) for the stream
thresholds 𝐷0 and 𝐷1, respectively. Then, it holds that:

𝑠1 = ⌈(𝑑 + 𝑘) · 𝜃0⌉ ≤ ⌈𝑑 · 𝜃0⌉ + ⌈𝑘 · 𝜃0⌉ ≤ ⌈𝑑 · 𝜃0⌉ + 𝑘 = 𝑠0 + 𝑘.

Based thereon, and considering the fact that 𝑠0 ≤ 𝑠1 ≤ 𝑠0 + 𝑘 , we conclude that 𝑠1 ∈
{𝑠0, . . . , 𝑠0 + 𝑘}.

Moreover, knowing that 𝑠0 − 1 < 𝜃0 · 𝑑 ≤ 𝑠0, we derive the following bounds for the support
threshold based on the stream threshold 𝑠0 of 𝐷0:

𝑠0 − 1
𝑑

< 𝜃0 ≤
𝑠0

𝑑
.

Analogously, we derive bounds for the support threshold 𝜃0 based on the stream threshold
𝑠1 of the updated database 𝐷1:

𝑠1 − 1
𝑑 + 𝑘 < 𝜃0 ≤

𝑠1

𝑑 + 𝑘 .

Combining the above statements, we derive bounds for the support threshold based on
the stream threshold of the original database. However, we need to distinguish two cases,
i.e., 𝑠1 = 𝑠0 + 𝑘 , which means that all added streams need to be matched for a query to
remain frequent under the worst-case assumption that it only matches exactly 𝑠0 streams;
and 𝑠1 < 𝑠0 + 𝑘 , which means that only some of the new streams need to be matched for
any query to remain frequent:

Property 3 𝑠1 < 𝑠0 + 𝑘 =⇒ 𝑠0−1
𝑑

< 𝜃0 ≤ 𝑠0+𝑘−1
𝑑+𝑘 and 𝑠1 = 𝑠0 + 𝑘 =⇒ 𝑠0+𝑘−1

𝑑+𝑘 < 𝜃0 ≤ 𝑠0
𝑑
.

The bounds as stated in Property 3 are useful to derive insights in the applicability of
Property 2, i.e., they enable us to understand when 𝑠1 = 𝑠0 + 𝑘 holds after 𝑘 streams have
been added to a stream database. Intuitively, the bounds on 𝜃0 characterize the change points
for the stream threshold, depending on the size of a stream database 𝑑 and the size of the



change 𝑘 . We visualize the change points as determined by Property 3 in Figure 3. Here,
we consider databases of different sizes, 𝑑 ∈ {10, 50, 100, 500, 1000}, to which changes of
size 𝑘 ∈ {1, 2, 5} are applied. The orange ranges characterize the intervals of the support
threshold 𝜃0 for which it holds that 𝑠1 = 𝑠0 + 𝑘 , i.e., for which we know that the set of
matching queries after the change is a subset of the original set of matching queries. The
lower bound of the orange range is determined by the size of the database and the size of
the change, and can be derived from Property 3 as follows:

𝑠0

𝑑
>

𝑠0 + 𝑘 − 1
𝑑 + 𝑘 =⇒ 𝑠0

𝑑
>

𝑘 − 1
𝑘

=⇒ 𝜃0 >
𝑘 − 1
𝑘

.

From the visualization, we draw two main conclusions:

• The higher the support threshold, the more likely it is that Property 2 is applicable, so
that the containment relation between the sets of matching queries holds true.

• The larger the size of the change, the less likely the property is applicable.
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Fig. 3: Visualization of the change points for the stream threshold in relation to the support threshold,
for different scenarios of database sizes and change sizes.

(c): Updating both, the Stream Database and the Support Threshold

Finally, we consider the most general case of a change, where streams are added to the
database and the support threshold is increased. Again, we note that the change in the stream
thresholds that is induced by the change determines whether the sets of matching queries are
in a containment relation, i.e., whether the change leads only to frequent queries being no
longer frequent, but not to additional frequent queries. We capture this property as follows:

Lemma 1 Let 𝐷0 = {𝑆1, . . . , 𝑆𝑑} and 𝐷1 = 𝐷0 ∪ {𝑆𝑑+1, . . . , 𝑆𝑑+𝑘} be stream databases,
and 𝜃0 and 𝜃1 with 𝜃0 ≤ 𝜃1 be support thresholds for 𝐷0 and 𝐷1, respectively. Then, it
holds that 𝑠( |𝐷1 |, 𝜃1) ≥ 𝑠( |𝐷0 |, 𝜃0) + 𝑘 =⇒ 𝑄

𝜃1
𝐷1
⊆ 𝑄

𝜃0
𝐷0

.



Proof. Let 𝑞1 be a query in𝑄 𝜃1
𝐷1

. Recall that 𝑀+ (𝑞1, 𝐷1) is the set of streams in 𝐷1 that match
𝑞1, 𝑀+ (𝑞1, 𝐷0) is the set of streams in 𝐷0 that match 𝑞1, and 𝑀+ (𝑞1, 𝐷1\𝐷0) is the set of
newly added streams that match 𝑞1. Let |𝑀+ (𝑞1, 𝐷1\𝐷0) | = 𝑗 be the number of these streams,
for which it holds that 𝑗 ∈ [0, 𝑘]. Then, it suffices to show that |𝑀+ (𝑞1, 𝐷0) | > 𝑠( |𝐷0 |, 𝜃0).
As before, we define 𝑠0 = 𝑠( |𝐷0 |, 𝜃0) and 𝑠1 = 𝑠( |𝐷1 |, 𝜃1). Then, we derive the following
bounds for the cardinality of the aforementioned sets:

|𝑀+ (𝑞1, 𝐷0) | = |𝑀+ (𝑞1, 𝐷1) | − |𝑀+ (𝑞1, 𝐷1\𝐷0) | ≥ 𝑠1 − 𝑗 ≥ 𝑠0 + 𝑘 − 𝑗 ≥ 𝑠0.

Hence, indeed, it holds that 𝑄 𝜃1
𝐷1
⊆ 𝑄

𝜃0
𝐷0

.

We note that Lemma 1 provides a generalization of Property 2. That is, if 𝜃1 = 𝜃0, i.e.,
streams are added to the database, but the support threshold remains unchanged, due to the
definition of the stream threshold, 𝑠0 + 𝑘 is an upper bound for 𝑠1. As such, the condition of
the implication on the containment relation becomes 𝑠1 = 𝑠0 + 𝑘 .

The above lemma gives a condition, i.e., 𝑠1 ≥ 𝑠0 + 𝑘 , to conclude on a containment relation
for the sets of matching queries under an update of the stream database, regardless of the
streams that are added.

Considering the general problem context as visualized in Figure 2, one might assume that
𝑄

𝜃1
𝐷1
⊆ 𝑄

𝜃0
𝐷0

=⇒ 𝑄
𝜃0
𝐷1
⊆ 𝑄

𝜃0
𝐷0

or 𝑄 𝜃1
𝐷1
⊆ 𝑄

𝜃1
𝐷0

. That is, if the set of matching queries is
only reduced by changes of potentially both, the stream database and the support threshold,
the containment relation is expected to hold also if only one of the changes is considered.
However, this is actually not the case, which we illustrate with a counter example in Table 3.

𝑑 𝑑 + 1 𝜃0 𝜃1 𝑠(𝑑, 𝜃0) 𝑠(𝑑 + 1, 𝜃0) 𝑠(𝑑, 𝜃1) 𝑠(𝑑 + 1, 𝜃1)

99 100 0.8 0.9 80 80 90 90

Tab. 3: Stream thresholds under an example change in the stream database and the support threshold.

Here, we consider the setting of a stream database of size 𝑑 = 99, for which one stream is
added to obtain a database of size 𝑑+1 = 100. Moreover, we consider a change of the support
threshold from 𝜃0 = 0.8 to 𝜃1 = 0.9. For this setting, it holds that 𝑠(𝑑 + 1, 𝜃0) = 𝑠(𝑑, 𝜃0)
as well as 𝑠(𝑑 + 1, 𝜃1) = 𝑠(𝑑, 𝜃1), i.e., the stream threshold does not change, if though a
stream was added to the database. Hence, without information on this stream, we cannot
conclude that 𝑄 𝜃0

𝐷1
⊆ 𝑄

𝜃0
𝐷0

or 𝑄
𝜃1
𝐷1
⊆ 𝑄

𝜃1
𝐷0

. However, the change of both, the stream
database and the support threshold, actually leads to a change in the stream threshold, i.e.,
𝑠(𝑑 +1, 𝜃1) ≥ 𝑠(𝑑, 𝜃0). Based thereon, using Lemma 1, we can conclude on the containment
relation for the sets of matching queries, 𝑄 𝜃1

𝐷1
⊆ 𝑄

𝜃0
𝐷0

.

4 Algorithms for Incremental Discovery of Event Queries

In this section, we show how event query discovery is realized incrementally, under the
changes discussed in the previous section. To this end, we first summarize a basic discovery



Algorithm 1: Discovery
Input: Stream database 𝐷, support threshold 𝜃, frequent stream alphabet Γ(𝐷, 𝜃),

set of queries 𝑄, parent dictionary 𝑃, query stack 𝑂 .
Output: Updated set of queries 𝑄, updated parent dicitionary 𝑃.
/* Explore queries that are pushed to the stack */

1 while 𝑂 not empty do
2 𝑞 ← 𝑂.pop();
3 if Match(𝑞, 𝐷, 𝜃) then

/* For frequent queries, explore their children */

4 𝑄 ← 𝑄 ∪ {𝑞};
5 𝑃← ChildQueries(q, 𝛤(D, 𝜃),P);
6 𝐶 ← {𝑞′ ∈ dom(𝑃) | 𝑃(𝑞′) = 𝑞};
7 if 𝐶 ≠ ∅ then
8 foreach 𝑞′ ∈ 𝐶 do 𝑂.push(𝑞′);

9 return Q,P

procedure that serves as a baseline (§4.1). Then, we discuss how to update the set of
matching queries (i) once streams are added and/or the support threshold is increased (§4.2),
and (ii) once existing streams are deleted and/or the support threshold is decreased (§4.3).

4.1 Basic Algorithm for Event Query Discovery

As a basic algorithm for event query discovery, we consider an approach that searches
through the space of candidate queries to collect all matching queries. To this end, it follows
an iterative generate-and-test scheme. For each query that matches the stream database,
stricter child queries are generated through the addition of query terms, or the insertion of
variables and attribute values for placeholders in existing query terms. The child queries are,
in turn, evaluated over the stream database. If they match, they become part of the result set
and their child queries are considered further.

By starting the approach with an empty query, the approach iteratively explores the search
space of candidate queries. It terminates once all child queries of all matching queries have
been assessed.

The essence of this approach is captured by the function Discovery, formalized in Alg. 1.
It takes as input a stream database 𝐷; a support threshold 𝜃; the frequent stream alphabet
Γ(𝐷, 𝜃); a set of queries 𝑄 that are frequent in 𝐷; a parent dictionary 𝑃 that is modelled as
a function 𝑃 : Q → Q, mapping child queries to their parent; and a stack 𝑂 of queries that
are frequent in 𝐷 and still shall be explored by a depth-first search through the space of
candidate queries.

Function Discovery then explores the queries on the given stack. Each of them is evaluated
against the stream database using the Boolean function Match, which returns true if query



𝑞 is frequent in the stream database 𝐷 as defined by the support threshold 𝜃; otherwise, it
returns false. If the query is frequent, it is added to the result set 𝑄 and its child queries
are generated using function ChildQueries and recorded in the aforementioned parent
dictionary 𝑃. If such child queries have indeed been generated, i.e., set 𝐶 is not empty,
these queries are pushed to the stack for further exploration. When the stack is empty, the
function returns the set of matching queries as well as the updated parent dictionary.

Moreover, we summarize the functionality of ChildQueries to generate child queries of
a query 𝑞 as follows. It generates child queries by the insertion of a single symbol, i.e., a
variable or an attribute value from the frequent stream alphabet, for a placeholder in one of
the existing query terms. In addition, it also generates further child queries by appending
a new query term to the query that is empty (i.e., comprises placeholders) except for one
position that is filled with a symbol (variable or attribute value). In general, these insertions
consider all possible attribute values, as well as a set of possible variables (for which the
size is bounded by half of the length of the shortest stream in the database).

While we use function Discovery also in our incremental approaches for event query
discovery, a basic discovery algorithm simply instantiates by adding the empty query to the
query stack and creating its entry in the parent dictionary. We formalize this instantiation in
Alg. 2. Given a stream database 𝐷 and support threshold 𝜃, it initializes the result set 𝑄,
derives the frequent stream alphabet Γ(𝐷, 𝜃), constructs the empty query ⟨𝜀⟩ and pushes it
to the stack, before starting the exploration with function Discovery.

Algorithm 2: Basic Discovery Algorithm
Input: Stream database 𝐷, support threshold 𝜃.
Output: Set of matching queries 𝑄, updated parent dictionary 𝑃.

1 Q← ∅;
2 Γ(𝐷, 𝜃) = {𝑎 ∈ Γ | |{𝑆 ∈ 𝐷 | ∃ 𝑗 ∈ {1, . . . , |𝑆 |}, 𝑖 ∈ {1, . . . , 𝑛} : 𝑆[ 𝑗] .𝐴𝑖 = 𝑎}| ≥ 𝑠( |𝐷 |, 𝜃)};
3 𝑞 ← ⟨𝜀⟩;
4 𝑃(𝑞) ← ⟨𝜀⟩;
5 𝑂 ← empty stack;
6 𝑂.push(𝑞);
7 𝑄, 𝑃← Discovery(𝐷, 𝜃, Γ(𝐷, 𝜃), 𝑄, 𝑃, 𝑂);
8 return Q,P

4.2 Stream Insertion and/or Increased Support Threshold

Having discussed a basic discovery algorithm, we now present a first algorithmic solution
to incremental processing under changes. Specifically, we consider the case that streams are
added and/or that the support threshold is increased.

We summarize the idea behind the algorithm as follows: From Lemma 1, we know that the
set of matching queries after the update will be a subset of the original set of matching
queries. As such, no new queries need to be generated; we only need to check whether the



Algorithm 3: UpdatePlus
Input: Stream database 𝐷0, support threshold 𝜃0, set of matching queries 𝑄0,

parent dictionary 𝑃, updated stream database 𝐷1, updated support threshold 𝜃1.
Output: Set of matching queries 𝑄1, parent dictionary 𝑃.

1 Q1 ← ∅;
2 if 𝜃1 > 𝜃0 then 𝐷 ← 𝐷1;
3 else 𝐷 ← 𝐷1\𝐷0;
4 𝑂 ← empty stack;
5 𝑂.push(⟨𝜀⟩);
/* Explore queries that are pushed to the stack */

6 while 𝑂 not empty do
7 𝑞 ← 𝑂.pop();
8 if Match(𝑞, 𝐷, 𝜃) then

/* For frequent queries, add the query to the result set and push their

child queries onto the stack */

9 𝑄1 ← 𝑄1 ∪ {𝑞};
10 𝐶 ← {𝑞′ ∈ dom(𝑃) | 𝑃(𝑞′) = 𝑞};
11 foreach 𝑞′ ∈ 𝐶 do 𝑂.push(𝑞′);

12 return Q1,P

queries in the given set are still frequent. Moreover, the scope of this verification depends
on the support threshold. If it remains unchanged and only the database changed, it suffices
to evaluate the existing queries over the newly added streams. Otherwise, if the threshold is
increased as well, the entire updated stream database needs to be considered.

We formalize this approach in Alg. 3. It takes as input the original stream database 𝐷0; the
original support threshold 𝜃0; the set of matching queries 𝑄0 obtained for 𝐷0 and 𝜃0; the
parent dictionary 𝑃 for these queries; the updated stream database 𝐷1; and the updated
support threshold 𝜃1. It returns the set of matching queries 𝑄1 for 𝐷1 and 𝜃1 along with the
updated parent dictionary 𝑃.

After initializing the result set 𝑄1, the algorithm determines the scope for the verification of
the existing queries, as the entire updated stream database 𝐷1 or the added streams 𝐷1 \ 𝐷0.
Then, the verification is operationalized with stack onto which we push the queries that
shall be checked. We start with the empty query and then go through 𝑄0 by means of the
parent-child-relation between queries, as stored in the parent dictionary.

4.3 Stream Deletion and/or Decreased Support Threshold

Next, we turn to incremental event query discovery once streams are deleted from the
database and/or the support threshold is decreased. Again, our approach relies on Lemma 1,
and exploits that all queries in the existing set of matching queries will also match the
updated stream database.



In general, the idea of handling stream deletion and/or a decreased support threshold in
an incremental manner can be summarized as follows. We consider the queries, for which
the child queries are not frequent. Intuitively, these queries denote the frontier of frequent
queries in the space of all query candidates. For these queries, we derive the child queries and
add them to the stack of queries to be explored further using the basic discovery procedure.
However, this exploration first considers solely the attribute values that have been frequent
in the original database. In order to ensure completeness of the set of matching queries,
in a second step, we therefore also check whether the frequent alphabet in the updated
stream database contains new attribute values. If so, we generate the child queries of all
frequent queries found so far, but only incorporate the new frequent attribute values (and no
insertion of variables) in the respective generation. All queries generated in this way, had not
been considered previously. If one of these queries is frequent, we iteratively continue the
exploration with their child queries, this time inserting all frequent attribute values as well
as variables. As such, the algorithm is similar to the basic discovery procedure introduced
in §4.1, but shows an important difference: It only assesses queries that have been not been
checked as part of the previous discovery run over the database before the change.

We formalize the respective algorithm in Alg. 4. The input is the same as discussed for
Alg. 3, in terms of the stream databases, support thresholds, parent dictionary and the set
of matching queries. The algorithm then initializes the frequent alphabets for the stream
databases before and after the change, i.e., Γ(𝐷0, 𝜃0) and Γ(𝐷1, 𝜃1). Then, we collect all
parents of frequent queries, as a set 𝑅, to be able to iterate over all queries, for which the
child queries are not frequent, given by 𝑄1 \ 𝑅. For these queries, the child queries are
generated using function ChildQueries, considering the frequent alphabet Γ(𝐷0, 𝜃0),
and pushed to a query stack. The latter is used in function Discovery, from Alg. 1, to
explore the space of candidate queries, starting from the queries on the stack.

As mentioned, we need to consider that an update to the stream database changed the
frequent alphabet, i.e., attribute values became frequent due to the removal of streams. If
so, i.e., if Γ(𝐷1, 𝜃1)\Γ(𝐷0, 𝜃0) is not empty, for each query obtained so far, we need to
consider the child queries constructed only through the insertion of these new frequent
attribute values (neglecting the insertion of additional variables), which is captured by
function ChildQueriesNoVars. For these queries, further exploration may be needed,
so that they are pushed onto the query stack, which is then used in function Discovery.

5 Experimental Evaluation

This section presents an evaluation of the algorithms proposed in §4. We first introduce our
experimental setup (§5.1), before comparing our algorithms for incremental event query
discovery against a baseline solution (§5.2).



Algorithm 4: UpdateMinus
Input: Stream database 𝐷0, support threshold 𝜃0, set of matching queries 𝑄0,

parent dictionary 𝑃, updated stream database 𝐷1, updated support threshold 𝜃1.
Output: Set of matching queries 𝑄1, updated parent dictionary 𝑃.

1 Q1 ← Q0;
2 𝑠0 ← 𝑠( |𝐷0 |, 𝜃0);
3 Γ(𝐷0, 𝜃0) ← {𝑎 ∈ Γ | |{𝑆 ∈ 𝐷0 | ∃ 𝑗 ∈ {1, ..., |𝑆 |}, 𝑖 ∈ {1, ..., 𝑛} : 𝑆[ 𝑗] .𝐴𝑖 = 𝑎}| ≥ 𝑠0};
4 𝑠1 ← 𝑠( |𝐷1 |, 𝜃1);
5 Γ(𝐷1, 𝜃1) ← {𝑎 ∈ Γ | |{𝑆 ∈ 𝐷1 | ∃ 𝑗 ∈ {1, ..., |𝑆 |}, 𝑖 ∈ {1, ..., 𝑛} : 𝑆[ 𝑗] .𝐴𝑖 = 𝑎}| ≥ 𝑠1};
6 R← ∅;
7 𝑂 ← empty stack;
8 foreach 𝑞 ∈ 𝑄1 do 𝑅 ← 𝑅 ∪ {𝑃(𝑞)};
9 foreach 𝑞 ∈ 𝑄1\𝑅 do

10 𝑃← ChildQueries(q, 𝛤(D0, 𝜃0),P);
11 𝐶 ← {𝑞′ ∈ dom(𝑃) | 𝑃(𝑞′) = 𝑞};
12 if 𝐶 ≠ ∅ then
13 foreach 𝑞′ ∈ 𝐶 do 𝑂.push(𝑞′);

14 𝑄1, 𝑃← Discovery(𝐷1, 𝜃1, Γ(𝐷0, 𝜃0), 𝑄1, 𝑃, 𝑂);
15 if Γ(𝐷1, 𝜃1)\Γ(𝐷0, 𝜃0) ≠ ∅ then
16 foreach 𝑞 ∈ 𝑄1 do
17 𝑃← ChildQueriesNoVars(q, 𝛤(D1, 𝜃1)\𝛤(D0, 𝜃0),P);
18 𝐶 ← {𝑞′ ∈ dom(𝑃) | 𝑃(𝑞′) = 𝑞};
19 if 𝐶 ≠ ∅ then
20 foreach 𝑞′ ∈ 𝐶 do 𝑂.push(𝑞′);

21 𝑄1, 𝑃← Discovery(𝐷1, 𝜃1, Γ(𝐷1, 𝜃1), 𝑄1, 𝑃, 𝑂);
22 return Q1,P

5.1 Experimental Setup

Datasets. We use two real-world datasets to evaluate our algorithms, namely NASDAQ stock
trade events [EO15] and the Google cluster traces [RWH11]. We adopted the methodology
for obtaining stream databases from the [GCW16]. For each dataset, we define three queries
to generate streams, as described below.

The attributes considered in the finance data are: stock name, volume, and closing value.
The queries to construct streams capture two events with stock name ‘GOOG’ (F1); three
events with stock names appearing in the sequence ‘AAPL’, ‘GOOG’, and ‘MSFT’ (F2);
and four events for which the volume remains constant (F3).

Events in the Google cluster traces contain four attributes: job ID, machine ID, task status,
and priority. One query defines three events running on the same machine with identical
job IDs, with the first and last ones of status ‘submit’, while the second one has status ‘kill’
(G1); one query encompasses four events executing on the same machine with status ‘finish’



(G2); and one query detects job eviction resulting from the scheduling of another job on the
same machine (G3).

Using these queries, we generated the stream databases summarized in Table 4 by evaluating
the queries over the datasets. For each match (of the first at most 1000 matches), we
constructed a stream by including the events preceding the match. The number of events
taken into account for each stream is detailed in the column ’stream length’.

Tab. 4: Stream databases used in the experiments.

stream length number of streams

Finance
F1 50 69-79
F2 40 990-1000
F3 25 240-250

Google G1-G3 7 990-1000

Note that the runtime is not determined by the size of the stream database, |𝐷 |, but rather
by the structure of the streams. A small database with intricate and repetitive patterns can
trigger a combinatorial explosion of candidate queries, leading to runtimes of minutes or
hours. Conversely, a large database with simple, non-repetitive patterns may be processed
in a matter of seconds.

Baseline. We compare the runtime of our algorithms making use of incremental updates
against the baseline approach, in which no prior information is given to the discovery.

Measures. We primarily measure the efficiency of event query discovery in terms of the
algorithms’ runtime. We report averages over five experimental runs, including error bars
(mostly negligible).

Environment and Implementation. We implemented the whole experimental evaluation
in Python. The code and the evaluation routine is publicly available on GitHub2. All
experiments were conducted on a server with a E7-4880 CPU @2.5GHz and 1TB of RAM.

5.2 Baseline Comparison

We first conducted experiments on the datasets described in Table 4 by reducing the
candidate query space—either by adding streams, increasing the support threshold, or both.

In Figure 4a, we plotted the relative time change of the incremental algorithm compared to
the baseline, when adding up to 10 streams to the different stream databases. It can be seen
that our incremental algorithm is at least an order of magnitude faster for all settings. For
the google dataset G1, the improvement is even up to three orders of magnitude.

2 https://github.com/rebesatt/IncDISCES
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Fig. 4: Relative time change of updated algo-
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Fig. 5: Relative time change of updated algo-
rithm compared to baseline for different stream
databases while increasing the search space.

In Figure 4b, we consider the change of increasing the support threshold. The original
support threshold is 0.75, which is increased stepwise, up to 1.0. Here, we see a drop
in the relative time change for increasing support values. This is especially true for the
finance stream databases. One reason for this observation is the decreasing search space. For
example, the number of queries for F1 and support threshold 1.0 is four. As consequence,
both, the baseline and the incremental algorithm terminate quickly, in less than a second.

In Figure 4c, we examine the simultaneous effect of increasing the support threshold and
adding streams. Like in the previous experiment, the original support threshold is 0.75
and is increased stepwise up to 1.0. At the same time, for each step, we add one stream to
the stream database. Similar to Figure 4b, we see a drop in the relative time change for
increasing support values, but still the runtime of the incremental algorithm is always lower
than the baseline solution.

Next, we evaluated the behaviour of the algorithms when increasing the space of candidate
queries that need to be searched, by deleting streams from the database and/or by decreasing
the support threshold.



In Figure 5a, for each dataset, the incremental algorithm outperforms the baseline solution.
For the google stream database G2, the incremental algorithm is twice as fast independently
of the number of streams deleted from the original database. The highest benefit is observed
for the google dataset G3, where the updated algorithm is up to 50 times faster.

In Figure 5b, we see that for decreasing support threshold for all datasets, the two algorithms
need roughly the same runtime to discover the queries. This is because the original setting
has a small set of matching queries. As a consequence, the benefit of the incremental
discovery algorithms is also small, which yields a similar runtime as the baseline solution.

Similarly, in the experiment shown in Figure 5c, where both the support threshold and
the number of streams are decreased, the results follow the same trend. The small set of
matching queries in the original setting limits the advantage of the incremental discovery
algorithms, leading to comparable runtimes with the baseline approach.

6 Related Work

Our work relates to existing approaches for automated query discovery, as well as incremental
algorithms for sequential pattern mining and frequent itemset mining.

Automated Query Discovery So far research in the area of automated query discovery did
not take into account updates in the database or the support threshold. We adopted the query
model used in [Kl23]. But the proposed algorithm does not find all matching queries but
only discovers one matching query for each run. The other approaches [GCW16, MCT14]
further lack in the query expressiveness. While [MCT14] cannot discover queries with
multiple occurrences of an attribute value, [GCW16] lacks the ability to find query terms
which only contain variables.

Incremental Sequential Pattern Mining A related field in which incremental algorithms
have been proposed is sequential pattern mining. Here, the input is a database of strings
rather than a stream of events which can contain multiple attributes. Furthermore, the
discovery is limited to type level without the ability to discover variables or patterns. In
[Zh02, ZXM03], the authors propose two algorithms, one for adding and one for deleting
data to the original database. The algorithms make use of negative border sequences which
are those sequences whose sub-sequences are frequent to recalculate the results. [MGG13]
presents a survey that summarizes the incremental approaches in this area. There the
highlighted algorithms are based on common frequent sequence mining algorithms.

Incremental Frequent Itemset Mining In frequent itemset mining sets of items are
discovered that occur frequently together in a database. This setting differs from our query
discovery since the events in a discovered query are order sensitive whereas item sets can
occur in arbitrary order. High-utility pattern mining, a sub-field of frequent itemset mining,
discovers itemsets based on a user-defined utility threshold. The incremental algorithm
introduced in [YR15] proposes a tree structure to update the item sets.



Sequential Rule Mining Sequential rule mining [FVNT11, Fo14] is a combination of
sequential pattern mining and frequent itemset mining. The goal is to find rules that describe
a relationship between itemsets in a sequence. The rules are of the form 𝑋 → 𝑌 where 𝑋

and 𝑌 are itemsets. The rules are evaluated based on metrics like support and confidence,
and my also be found incrementally [DBF20]. However, one limitation of such rules is
that they are bounded to one implication whereas our queries can contain multiple events.
Also, the rules are limited in their expressiveness as the itemset captures only type-level
information, not allowing for variables.

7 Conclusions

In this paper, we focused on the problem of event query discovery in the presence of changes.
That is, once all frequent queries have been discovered for a given stream database and a
given support threshold, we studied how this set can be updated incrementally if the database
changes and/or the support threshold changes, in order to avoid to recompute the respective
queries from scratch. We first provided a theoretical analysis of the problem context. Here,
we could establish conditions under which the set of matching queries after the change is a
subset of the respective set before the change or vice versa. This information is valuable as
it highlights when it is sufficient to verify whether the existing queries are still frequent, but
there is no need for the generation of additional queries. Based on these insights, we also
presented algorithmic solutions that adapt the set of queries incrementally. Our experiments
using real-world data demonstrate that our approach to incremental query discovery is
significantly faster than a baseline that recomputes the queries, reducing runtime by up to
three orders of magnitude. In future work, we intend to increase the efficiency further, e.g.,
through the design of data structures that capture further details on where in the streams the
queries match as well as through the use of statistics about the stream database (e.g., on
the distribution of attribute values over streams) and we plan to extend our evaluations by
adding alternative performance metrics, such as memory usage.
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