
Control-flow Reconstruction Attacks on Business
Process Models

Henrik Kirchmann1, Stephan A. Fahrenkrog-Petersen1,2, Felix Mannhardt3, and
Matthias Weidlich1

1 Humboldt-Universität zu Berlin, Berlin, Germany
{henrik.kirchmann, stephan.fahrenkrog-petersen,

matthias.weidlich}@hu-berlin.de
2 Weizenbaum Institute for the Networked Society, Berlin, Germany

3 Eindhoven University of Technology, Eindhoven, Netherlands
f.mannhardt@tue.nl

Abstract. Process models may be automatically generated from event
logs that contain as-is data of a business process. While such models
generalize over the control-flow of specific, recorded process executions,
they are often also annotated with behavioural statistics, such as exe-
cution frequencies. Based thereon, once a model is published, certain
insights about the original process executions may be reconstructed, so
that an external party may extract confidential information about the
business process. This work is the first to empirically investigate such
reconstruction attempts based on process models. To this end, we propose
different play-out strategies that reconstruct the control-flow from process
trees, potentially exploiting frequency annotations. To assess the potential
success of such reconstruction attacks on process models, and hence the
risks imposed by publishing them, we compare the reconstructed process
executions with those of the original log for several real-world datasets.

Keywords: Reconstruction Attacks· Process Analysis · Model Play-out

1 Introduction

Under the umbrella of process mining, event logs that have been recorded by in-
formation systems facilitate the analysis of qualitative and quantitative properties
of business processes [27]. Event logs support information systems engineering
through the discovery of process models [1], which are useful for understanding
the flow of the process and, once annotated with performance characteristics,
help to identify performance bottlenecks and improvement opportunities.

Discovery algorithms generalize and aggregate the behaviour recorded in
an event log. As a consequence, individual process executions are not directly
represented, when publishing the model [18], e.g., to an external party for the
purpose of process certification, staff training or consulting. However, in practice,
process models are not limited to the generalized control-flow of a process. Rather,
they also contain summary statistics about the behaviour, most prominently
execution frequencies or branching probabilities [3,4,10].

2 H. Kirchmann et al.

ID Trace

1 Register (R), IV Liquid (L), Antibio (A), Rel. D (D), Return (U)
2 Register (R), Antibio (A), Antibio (A), Antibio (A), Rel. E (E)
3 Register (R), IV Liquid (L), Rel. B (B), Return (U)

(a)

⟲

UBEDALRτ

(b)
×

→

UBLR

→

EAAAR

→

UDALR

(c)

→:3

×:3

U:2τ :1

×:3

B:1E:1D:1

⟲:3

A:4τ :8

×:3

L:2τ :1

R:3

(d)

Fig. 1: (a) A log of patient treatments and three process models for it: (b) a ‘flower
model’ describing any set of traces; (c) a ‘trace model’ enumerating all traces;
(d) a model offering some generalization, potentially annotated with frequencies.

Once a process model is enriched with behavioural statistics, it may be a
target of a reconstruction attack. That is, similar to reconstruction attacks in
machine learning (ML) [12,14,23], which strive for a characterization of the data
used for training the ML model, such an attack aims at deriving insights about
the original process executions. Even if the exact reconstruction of the executions
is not possible, which would yield severe privacy risks for process stakeholders [28],
it is problematic: The combination of the control-flow of a process model with
behavioural statistics may facilitate conclusions on confidential information about
the underlying business process. For instance, one may reconstruct dependencies
between activity executions and behavioural patterns, which reveal internal
decision procedures that may be exploited for malicious purposes.

Consider the event log in Fig. 1a, which contains three traces of patient
treatments in a hospital. The impact of the generalization adopted in a process
model on revealing insights on the original process executions is illustrated by
two extreme cases: Fig. 1b shows a ‘flower model’ that represents any log of traces
comprising executions of the respective activities and, hence, does not enable any
conclusions. Fig. 1c shows a ‘trace model’, which models a lossless representation
of each recorded trace variant, but has no information on their probability or
frequency. The model represents an infinite number of possible event logs with
different frequencies of those traces. Nonetheless, all possible logs include all steps
of all process executions for this procedure in the hospital. A middle ground is
offered by the model in Fig. 1d, which enables control-flow reconstruction to some
extent. In particular, annotating the model with frequency information reduces
number of event logs modeled by this model and reveals certain insights on the
treatments: We conclude that (i) antibiotics have been given at least twice to a
single patient, (ii) all release types appear to be equally likely, and (iii) there is
at least one patient, who returned after receiving intravenous (IV) liquid. These
insights are shared across the control-flow of all possible logs that this model
represents.

In this paper, we study reconstruction attacks on process models and analyse
how the information contained in process models influences one’s ability to

Control-flow Reconstruction Attacks on Business Process Models 3

reconstruct the control-flow of process executions. We formulate reconstruction
attacks as play-out strategies that for process models given as process trees will
generate new event logs with the goal of incorporating control-flow that should
be as close as possible to the control-flow of the original log.

In our experiments with real-world data, we measure the distance between
the reconstructed control-flow and the original control-flow, and thus the recon-
struction success in four dimensions: 1) the ability to reconstruct identical traces,
2) the ability to reconstruct traces with similar activity sequences, 3) the ability
to reconstruct relations between activities and 4) the ability to reconstruct traces
of the same length. Our results indicate that frequency-annotated models of
structured processes are particularly vulnerable.

Below, we first review related work (Section 2), before defining preliminary
notions (Section 3). We then present our approaches to control-flow reconstruction
(Section 4), report on our evaluation (Section 5), and conclude (Section 6).

2 Related Work

Any attempt to reconstruct the original process executions from a process model
is related to privacy risks, which received much attention in recent years. However,
we notice that existing work on the quantification of privacy risks in process
mining [28] and the development of a large number of related privacy-preserving
techniques [11,13,21,22] has focused primarily on event logs. As such, there is a
reasonable level of understanding of these risks and possible mitigation strategies.

The risks induced by process models discovered from event logs, in turn,
have been described only recently in [18]. Here, the authors quantify the re-
identification risk in frequency annotated block-structured process models with
a two-step approach: First, a play-out strategy is used to reconstruct event
logs from the process model. Second, the measures proposed in [20] are used to
quantify the re-identification risk in the reconstructed log, to then assess the
re-identification risk of the original log caused by the release of the process model.
However, this approach is only feasible if there is a strong similarity between the
reconstructed logs and the original log. This aspect is not further studied in [18],
though, which is a research gap that we close with our work.

Play-out strategies and the comparison of the obtained output with a ground
truth are also studied in other process mining settings: Conformance checking [6]
relates the behaviour described by a process model with behaviour in an event
log. Yet, often we cannot fully trust both our model and the source event log,
as indicated in [25]. In our context, missing or extra behaviour in the process
model as assumed in conformance checking would further impair the chance of a
successful reconstruction attack. As such, we assume the process model to be a
good representation of the observed process behaviour, which presents the worst
case for any attempt to derive insights on the underlying business process, as it
simplifies the reconstruction.

Moreover, in conformance checking, measures for precision quantify how much
of the control-flow present in the model does not appear in the log from which the

4 H. Kirchmann et al.

model was discovered. Hence, when a model has high precision, reconstruction
might become easier, since the amount of behaviour in the model that is not
representing any behaviour of the original event log is smaller.

Both process simulation [5] and stochastic process mining [3] aim to more
accurately capture the underlying process observed in process executions. These
streams of research investigate how close simulated process executions [7] or the
probability distributions in stochastic process model executions [16] are to the
actual observations. Unlike our work, however, these approaches do not target
the reconstruction of the original log, but on representing the general process
behaviour including possible future process executions.

3 Preliminaries

Below, we summarize essential notions for event logs and process trees that are
used in the remainder of the paper.
Event Log. Let A be the universe of activities. A trace t ∈ A∗, where A∗ is the
set of all finite sequences over A, is a sequence of activities. In such a trace, each
activity a denotes the recorded event of the execution of a well-defined step in a
process. T = A∗ denotes the universe of traces. A trace t ∈ T is represented as
t = ⟨a1, a2, ..., an⟩, where a1, a2, ..., an ∈ A. With |t| we denote the length of a
trace t ∈ T , i.e., the number of activities in the trace. Denoting with B(X) the
set of all possible multisets over X, let L = B(T) be the universe of event logs.
An event log l ∈ L is a finite multiset of traces.
Process Tree. In this work, we consider process trees as the formal model to
capture business processes. A process tree represents a process in a hierarchical
(block-structured) way [4,15]. Process trees can be transformed into models of
other languages for business processes, such as Petri nets or BPMN models [27].
As such, the ideas outlined in the remainder are not limited to process trees. In
general, a process tree denotes a process as a rooted tree. Its leaf nodes represent
activities and all other nodes represent operators. Following the aforementioned
references, we formally define a process tree as follows:

Definition 1 (Process Tree). Let A ∈ A be a finite set of activities and let
τ ̸∈ A denote the silent activity, which cannot be observed in a trace. A process
tree Q, is defined recursively as:
– If a ∈ A ∪ {τ}, then Q = a is a process tree.
– If n ≥ 1, Q1, Q2, . . . , Qn are process trees, and ⊕ ∈ {→,×,∧}, then Q =

⊕(Q1, Q2, . . . , Qn) is a process tree.
– If n ≥ 2, Q1, Q2, . . . , Qn are process trees, and ⊕ =⟲,

then Q = ⊕(Q1, Q2, . . . , Qn) is a process tree.

A process tree might be annotated with information about probabilities or
frequencies of the recorded behaviour. We capture such information by a weight
w ∈ R that is assigned to a process tree Q, which is denoted by Q : w.

Consider Fig. 2, which shows the process tree Q = → (∧(a,×(b, c)),⟲ (d, τ)).
The → operator refers to the execution of the child nodes in sequential order,

Control-flow Reconstruction Attacks on Business Process Models 5

→

⟲

τd

∧

×

cb

a

Sequential
Composition

Parallel
Composition

Exclusive
Choice

Redo Loop

Process Tree Operators

Normal
Activity

Silent
Activity

Fig. 2: Visualization of the process tree Q = → (∧(a,×(b, c)),⟲ (d, τ)).

i.e., the execution of ∧(a,×(b, c)) is followed by the execution of ⟲ (d, τ). The ∧
operator defines the execution of all of its child nodes in any order, while the ×
operator specifies an exclusive choice. The ⟲ operator has at least two children,
the first being the “do” part of a loop; all other children representing “redo” parts.
The “do” part is always executed; execution of the “redo” part is optional and
only one of the “redo” parts is executed, before the “do” part is executed again.

To formalize the semantics of process trees, we need the following auxiliary
operators for general sequences [27]:

Definition 2 (Auxiliary Operators). Let σ1, σ2 ∈ A∗ be two sequences over
A and let S1, S2, . . . , Sn ⊆ A∗. We define two operators as:
– Concatenation: σ1 · σ2 ∈ A∗ concatenates two sequences. The concatenation

operator can be generalized to sets of sequences by S1 · S2 = {σ1 · σ2 | σ1 ∈
S1 ∧ σ2 ∈ S2} and

⊙
1≤i≤n Si = S1 · S2 · · ·Sn concatenates an ordered

collection of sets of sequences.
– Shuffle: σ1 ⋄σ2 ∈ A∗ generates the set of all interleaved sequences. The shuffle

operator can be generalized to sets of sequences by S1 ⋄ S2 = {σ1 ⋄ σ2 | σ1 ∈
S1 ∧ σ2 ∈ S2} and ♢1≤i≤nSi = S1 · S2 · · ·Sn shuffles an ordered collection of
sets of sequences.

Given two sequences σ1 = ⟨a, b⟩ and σ2 = ⟨c, d⟩, the operators yield σ1 · σ2 =
⟨a, b, c, d⟩ as well as σ1⋄σ2 = {⟨a, b, c, d⟩, ⟨a, c, b, d⟩, ⟨c, a, b, d⟩, ⟨a, c, d, b⟩, ⟨c, a, d, b⟩,
⟨c, d, a, b⟩}. Furthermore, we define the language of a process tree as follows.

Definition 3 (Language of a Process Tree). Let Q ∈ Q be a process tree
over a set A. L(Q) denotes the language of Q, i.e., the set of traces that can be
generated. L(Q) is defined recursively:
– L(Q) = {⟨a⟩}, if Q = a ∈ A,
– L(Q) = {⟨⟩}, if Q = τ ,
– L(Q) =

⊙
1≤i≤n L(Qi), if Q =→ (Q1, Q2, . . . , Qn),

– L(Q) =
⋃

1≤i≤n L(Qi), if Q = ×(Q1, Q2, . . . , Qn),
– L(Q) = ♢1≤i≤nL(Qi), if Q = ∧(Q1, Q2, . . . , Qn),
– L(Q) = {σ1 · σ′

1 · σ2 · σ′
2 · · ·σm ∈ A∗ | m ≥ 1 ∧ ∀ 1 ≤ j ≤ m : σj ∈

L(Q1) ∧ σ′
j ∈

⋃
2≤i≤n L(Qi)}, if Q =⟲ (Q1, Q2, . . . , Qn).

Based on the definition above, we see that L(⟲ (Q1, Q2, . . . , Qn)) = L(⟲
(Q1,×(Q2, . . . , Qn))), i.e., a restriction to a single “redo” child does not lower the
expressiveness of the model. As a consequence, without loss of generality, we as-
sume that an ⟲ operator has only one “redo” child in the remainder, to simplify the

6 H. Kirchmann et al.

Strategy C, D, SOTA -
 Frequency Information

Strategy B -
 Probability Information

Strategy A -
 No additional Information

Fig. 3: The three common scenarios how a model discovered from log L =
[⟨a, b, d⟩, ⟨a, c, d⟩, ⟨c, a, d, d, d, d, d⟩2, ⟨b, a, d, d, d⟩] can be released.

presentation. Turning to Fig. 2, the language of Q is unbounded due to the loop op-
erator, i.e., L(Q) = {⟨a, b, d⟩, ⟨a, c, d⟩, ⟨b, a, d⟩, ⟨c, a, d⟩, ⟨a, b, d, d⟩, ⟨a, c, d, d⟩ . . . }.

4 Control-Flow Reconstruction

As illustrated in our initial example in Fig. 1, process models may facilitate
conclusions on the event log from which the model was discovered. We therefore
formulate the respective control-flow reconstruction attacks as five different play-
out strategies that, given a process tree, generate a reconstructed event log. We
will compare in Section 5 the control-flow of the reconstructed log with the
control-flow of the original log. The strategies are motivated to reflect the three
common ways a process model can be released, see Fig. 3, and how they utilize
this information to reconstruct the control-flow. This enables us to analyze the
impact different kinds of additional information, as well as different usage of this
information, have on the reconstruction success. We first introduce our play-out
strategies in Section 4.1. Next, in Section 4.2, we discuss specific issues related
to the handling of loops.

4.1 Play-out Strategies for Process Trees

In essence, a play-out strategy defines a particular traversal of the process tree
according to the control-flow structure defined by it.

Definition 4. Given a process tree Q, a play-out strategy p is a function that,
applied to Q, returns an event log Lp ⊆ B(2L(Q)).

Before we formalize the individual aspects of each play-out strategy, we define
some general rules that guide all strategies and apply to any traversal of a process
tree, i.e., the generation of a single trace based on the process tree:

R0 Start the traversal with an empty trace.
R1 If a non-silent leaf node (i.e., not τ) is encountered during the traversal, the

respective activity is concatenated to the current trace.

Control-flow Reconstruction Attacks on Business Process Models 7

R2 If a silent leaf node (τ) is encountered during the traversal, the current trace
remains unchanged.

R3 Once the traversal considered all children of a node Q, it returns to and
continues with the parent node. If Q is the root node, the reconstructed
trace will be added to the result.

Similarly, we provide some general rules for the play-out of process trees that
relate to the operators for sequential composition and parallel composition. R∧
does not apply to the SOTA Strategy [18].

R→ When Q = → (Q1, . . . , Qn) is encountered, the traversal continues with the
child nodes Q1, . . . , Qn in the respective order.

R∧ When Q = ∧(Q1, . . . , Qn) is encountered, all U1, . . . , Un sub-trees are ex-
ecuted until all sub-trees reach a leaf node or Q again, then it is chosen
uniformly at random which leaf node is executed. This is repeated until all
sub-trees are completely executed and back to Q. Thus, true parallelization
of activities is achieved.

Based thereon, we define a first basic play-out strategy that is not based on any
additional information on frequencies.
Strategy A. This strategy considers only the semantics of the operators in
a process tree. For the exclusive choice operator and the loop operator, the
respective control-flow choices are taken uniformly at random:

RA
× When Q = ×(Q1, . . . , Qn) is encountered, traversal continues with one child

Qi, 1 ≤ i ≤ n, chosen uniformly at random.
RA

⟲ When Q =⟲ (Q1, Q2) is encountered, traversal continues with the child Q1.
Then, a choice between executing child Q2 and then child Q1 or ending the
traversal of Q is made. This decision is made with probability 1/2, until the
option to end the traversal of Q is taken.

Strategy B. This strategy interprets the weights assigned to nodes as fixed
branching probabilities. These probabilities will be derived from frequencies. For
notational purposes, we let the strategy compute these probabilities using the
actual frequencies. But the derived fixed probabilities that are computed and
used by this strategy correspond to the probabilities a probability-annotated
model would have:

RB
× When Q = ×(Q1 : w1, . . . , Qn : wn) : w is encountered, traversal continues

with one child Qi, 1 ≤ i ≤ n, chosen with probability wi/∑
1≤j≤n wj

.
RB

⟲ When Q =⟲ (Q1 : w1, Q2 : w2) : w is encountered, we follow the approach
from RA

⟲, but adopt the probability of 1− w/w1
for the option to continue

with children Q2 and Q1, and w/w1 for the option to end Q’s traversal.

Further strategies leverage the actual frequencies and interpret them in absolute
terms. That is, traversal changes the respective counts, which is captured by the
following rule that applies to all remaining strategies:

8 H. Kirchmann et al.

R4 Upon traversal of a node Q : w, the value of w will be decreased by one.

Based thereon, we distinguish two strategies to incorporate the absolute frequen-
cies in the traversal of nodes that model control-flow choices.

Strategy C. This strategy takes control-flow choices related to exclusive choice
operators and loop operators, with probabilities that are determined based on
the leftover frequencies:

RC
× When Q = ×(Q1 : w1, . . . , Qn : wn) : w is encountered, traversal continues

with one child Qi, 1 ≤ i ≤ n, chosen with probability wi/∑
1≤j≤n wj

. Note
that this rule differs from the one of Strategy B, since the weights wi are
continuously updated during traversal, as mentioned above.

RC
⟲ When Q =⟲ (Q1 : w1, Q2 : w2) : w is encountered, traversal first continues

with child Q1. If after this, w1 = w2 holds, traversal iteratively continues
with children Q2 and Q1, until w1 = 0. Intuitively, such an approach collects
all leftover frequencies with the last trace that is generated. Otherwise, if
w1 ̸= w2, we distinguish w1 = 0, in which case traversal of Q ends, and
w1 > 0, in which case traversal iteratively continues in the loop as in Strategy
B, with probability 1− w/w1

for the option including the children Q2 and
Q1, and w/w1

for the option to end traversal.

Strategy D with Variance v. This strategy denotes an adaptation of Strategy C.
While it also takes all control-flow choices with probabilities that are determined
based on the leftover frequencies, it includes a normal distribution to decide
on the number of loop iterations. As usual, by N (µ, σ2), we denote a normal
distribution with mean µ and variance σ2. Then, the strategy replaces the rule
of Strategy C for the loop operator by the following rule:

RD
⟲ When Q =⟲ (Q1 : w1, Q2 : w2) : w is encountered, traversal continues the

same way as in RC
⟲. All rules apply, except for the case when w1 ̸= w2 and

w1 > 0. In this case, we will traverse the loop, i.e., children Q2 and Q1 a
total of min(⌊|x|⌋, w2)-times, where x is randomly sampled from the normal
distribution, x ∼ N (w2

w , v). To get a positive integer, we compute ⌊|x|⌋. Our
experiments have shown that rounding up or concatenating the functions
in different order had no measurable impact. We return to the parent node
after we traversed the loop min(⌊|x|⌋, w2)-times or w1 = 0.

State-of-the-Art (SOTA) Strategy. This strategy was introduced in [18]. It
traverses a process tree like Strategy C but does a sequential play-out for the
parallel composition, hence RSOTA

∧ = R→ , and for the exclusive choice operator:

RSOTA
× When Q = ×(Q1 : w1, . . . , Qn : wn) : w is encountered, consider the

child nodes Q1, . . . , Qn in their respective order. Traversal continues
with the first child Qi with a positive weight, i.e., wi > 0.

Control-flow Reconstruction Attacks on Business Process Models 9

40
0

250

500

750

1000
C

ou
nt

123

Play-Out Strategy A

40

Play-Out Strategy B

40

Play-Out Strategy C

40

Play-Out Strategy D with
Variance 0.5

0 20 40
Trace Length

0

250

500

750

1000

C
ou

nt

Play-Out Strategy D with
Variance 1

0 20 40
Trace Length

Play-Out Strategy D with
Variance 3

0 20 40
Trace Length

Play-Out Strategy D with
Variance 5

0 20 40
Trace Length

Play-Out Strategy Quantifying the
Re-identification Risk in Published

Process Models

Trace Length Distribution of the Original L Log Average Trace Length Distribution of 100 Play-Outs

Fig. 4: The distribution of the average trace length when playing out 100 traces
using each play-out strategy from ⟲ (a:10000, τ :9000):1000, along with the
distribution of the original log L = [⟨a, a, a, a, a, a, a, a, a, a⟩1000].

4.2 Reconstructing the Number of Loop Iterations

Next, we discuss the motivation for the approach presented in Strategy D that
determines the number of loop iterations upfront, instead of relying solely on
branching probabilities.

As an illustrative example, consider the process tree ⟲ (a:10000, τ :9000):1000
discovered from event log L = [⟨a, a, a, a, a, a, a, a, a, a⟩1000]. Fig. 4 shows the
trace length distribution of L and the normalized trace length distribution of 100
play-outs, each containing 1000 traces for each play-out strategy. The majority
of traces produced by all strategies except Strategy D are much shorter than
the traces of log L. The reason is that these play-out strategies, and modelling
techniques such as [24] or partly [4], capture the execution of the “redo” child of a
loop operator with some probability p. Suppose p is fixed, like in Strategy A and
B. In that case, each iteration is a Bernoulli trial with the number of iterations
being a geometric variable [4]. Because in Strategy C and the SOTA Strategy,
the probability changes at each loop iteration, the sequence of iterations is not a
sequence of Bernoulli trials. Nonetheless, our experiments show that the resulting
distributions of iterations are actually close to a geometric distribution.

To reconstruct traces with consistently more loop iterations, one must decide
on the number of loop iterations upfront. When playing out a process tree
Q =⟲ (Q1 : w1, Q2 : w2) : w, we know that the traces of the original log, took in
w ⟲-executions, on average w2/w loop repetitions. In our example, traces took,
on average, 9000/1000 = 9 loop repetitions. Strategy D uses this information to
set the mean of the normal distribution to w2/w, each time we execute the ⟲

10 H. Kirchmann et al.

node. Here, the choice of a normal distribution is motivated by the fact that,
in each process execution, multiple choices on (re)entering the loop are taken.
Once these choices can be assumed to be independent and identically distributed
(i.i.d.), the observational error is expected to tend to a normal distribution. Even
in the absence of knowledge on the variance parameter v of the distribution, we
expect it to provide a suitable representation of the number of loop iterations
per process execution.

Compared to Strategy D the other strategies will perform worse when number
of loop iterations is distributed such that the values are large and the variance is
low. Strategy D performs worse when the number of loop iterations is distributed
with large variance and the values are not centered around the chosen mean.

5 Experimental Evaluation

In this section, we evaluate how well our proposed play-out strategies can re-
construct the control-flow of logs from their discovered models. We present our
experimental setup in Section 5.1, and discuss evaluation measures in Section 5.2.
Then, we describe our results in Section 5.3 and discuss them in Section 5.4.

5.1 Experimental Setup

Experimental Pipeline. We use the inductive miner without noise filtering to
discover the process trees. The lack of noise filtering results in a perfect fitting
process model, a necessary condition to be able to fully reconstruct the log from
the model. In our setting, it is impossible to reconstruct control-flow information
about the event log that is not present in the model. To determine the frequency
of nodes, we replay each trace of the original event log on the process tree. Each
time we visit a node, we increase its weight by one. For each strategy, we do
100 play-outs of each process tree to obtain the evaluation logs. For Strategy A
and Strategy B, we fix the number of traces generated to the number of traces in
the original log. Hence, our results for these strategies are an upper bound for
the reconstruction risks, since usually the number of traces is not known to the
adversary, when the model is not annotated with absolute frequencies.
Dataset. We evaluate the play-out strategies using four real-world event logs:
the BPIC 2015 Municipalities log [9], the BPIC 2017 log [8], the BPIC 2013
Closed Problems log [26], and the Sepsis log [19]. In Table 1 we show certain
characteristics of the logs. The logs range from unstructured (BPIC 2015) to
structured (BPIC 2013) and also differ drastically in the number of their activities.
In addition to different levels of structuredness, we also considered different trace
lengths, since longer traces are potentially harder to reconstruct. The logs differ
from having relatively short (BPIC 2013) to very long traces (BPIC 2015).
Implementation. Our implementation is available on GitHub4. We used the
inductive miner and earth mover’s distance of PM4Py [2]. The runtime of our
4 https://github.com/henrikkirchmann/Control-Flow-Reconstruction

https://github.com/henrikkirchmann/Control-Flow-Reconstruction

Control-flow Reconstruction Attacks on Business Process Models 11

Table 1: Descriptive statistics of the event logs.

Trace Length
Event Log # of

Traces
of

Variants
of Variants
of Traces Min. Avg. Max.

of
Activities

BPIC 2017 31509 15930 0.505 10 38.1 180 27
BPIC 2015 Municipalities 1199 1170 0.975 2 43.5 101 399

BPIC 2013 Closed Problems 1487 183 0.123 1 4.4 35 5
Sepsis Cases 1050 846 0.805 3 14.4 185 17

implemented play-out strategies is fast. On a machine with an AMD Ryzen
5600G a play-out of the BPIC 2013 log is generated in under one second and in
30 seconds one play-out for the BPIC 2017 log.

5.2 Evaluation measures

Trace Length Distribution. We look into the trace length distribution to
investigate the impact of how different play-out strategies handle the ⟲ operator.
We plot the normalized distributions of each play-out strategy and the distribution
of the original log as histograms for the BPIC 2017 log. The plots for the other
event logs can be found in our appendix5. We calculate the similarity of the
distributions using the normalized histogram intersection for all logs:

Definition 5 (Normalized histogram intersection (NHI) size). Let I and
M be histograms, each containing n bins, and let Ij respectively Mj denote the
number of elements in bin j of I respectively of M . The normalized histogram
intersection size is defined to be

NHI(I,M) =

∑n
j=1 min(Ij ,Mj)∑n

j=1 Mj
.

Earth Mover’s Distance (EMD). We compare the reconstructed logs with
the original log through the earth mover’s distance (EMD) introduced in [17].
The EMD measures the distance, by the Levenshtein distance function, between
the trace variant distributions of the event logs. Through the EMD, we can
measure the difference between the logs in terms of their control-flow of each
trace. This allows us to see if the play-out strategies produce logs that have
similar control-flow to the original log, without the need for traces to be the
same.
Normalized Multiset Intersection (NMI) Size. The multiset intersection
size between two event logs represents the count of traces from the original log
that are completely and successfully reconstructed. The normalized multiset
intersection size, denoted by NMI(L1, L2), is defined as the sum of the minimum
5 https://github.com/henrikkirchmann/Control-Flow-Reconstruction/tree/main/

Appendix

https://github.com/henrikkirchmann/Control-Flow-Reconstruction/tree/main/Appendix
https://github.com/henrikkirchmann/Control-Flow-Reconstruction/tree/main/Appendix

12 H. Kirchmann et al.

occurrences of each trace σ in both multi sets L1 and L2 divided by |L1|. For
example, given the event logs L1 = [⟨a, b⟩2, ⟨a, b, c⟩2] and L2 = [⟨a, b⟩3, ⟨a, b, b⟩],
we have NMI(L1, L2) = 2/4. Through this metric, we can determine if the
play-out strategies create traces that are exactly the same as the traces of the
original log.
Reconstructed Eventually Follows Relations. To check how many depen-
dencies between activities we can reconstruct, we compare the eventually follows
relations of the reconstructed logs to the original log. An eventually follows
relation between two activities a and b, can be one of three types: (i) The relation
between a and b is of type always follows when in all traces of the log activity
b will occur eventually after a; (ii) sometimes follows when in some but not
all traces of the log b will occur eventually after a; (iii) never follows when in
no trace of the log b will eventually occur after a. To quantify the differences
between the predicted eventually follows relations of our play-out strategies and
the ones of the original log, we calculate the F1-Scores, as the harmonic mean of
precision and recall.

5.3 Results

Trace Length Distribution. Table 2 shows the NHI size with higher values,
meaning better reconstruction of the trace length distribution. We can observe
NHI values above 0.7 for 3 out of 4 of the event logs, with the exception being the
BPIC 2015 log. Therefore, we can conclude that it is generally possible to mimic
the trace length distribution and to rediscover general control-flow properties.

Considering the results in more detail, the success of the reconstruction might
depend highly on the handling of loops. This aspect can be seen by the difference
between the different settings for Strategy D. For BPIC 2015 the worst setting
(Strategy D with Variance 0.5) reached a NHI of 0.19, while the best setting
(Strategy D with Variance 5) led to a NHI value of 0.44. In Fig. 5, we can see
that, compared to the other strategies, Strategy D with Variance 0.5-3 creates
considerably fewer traces of length below 20.
Earth Mover’s Distance. Table 2 shows the EMD. Smaller values, correspond
to higher similarity between the control-flow of the play-outs and the original log.
Unfortunately, computing the EMD for the BPIC 2017 log was not feasible. We
can observe that for the BPIC 2013 log, it is possible to generate logs that can be
very close to the original event log. However, the BPIC 2015 log shows that this
might not be possible for all logs. We can observe that the difference between the
logs is significantly larger than between the strategies. This lets us conclude that
specifics of the process itself determine the chance of success for the adversary.
Strategy A that has no additional information about the control-flow performs
the worst but is followed by the SOTA Strategy, despite having knowledge about
the absolute frequencies. The other Strategies reconstruct the control-flow of the
original log with similar success in terms of the EMD.
Normalised Multiset Intersection Size. For all logs except the BPIC 2013
log, the NMI Size was below 0.01. The values for the BPIC 2013 log are shown

Control-flow Reconstruction Attacks on Business Process Models 13

50
0

1000

2000

C
ou

nt
NHI = 0.559

123

Play-Out Strategy A

50

NHI = 0.49

Play-Out Strategy B

50

NHI = 0.49

Play-Out Strategy C

50

NHI = 0.611

Play-Out Strategy D with
Variance 0.5

0 25 50 75 100
Trace Length

0

1000

2000

C
ou

nt

NHI = 0.686

Play-Out Strategy D with
Variance 1

0 25 50 75 100
Trace Length

NHI = 0.7

Play-Out Strategy D with
Variance 3

0 25 50 75 100
Trace Length

NHI = 0.541

Play-Out Strategy D with
Variance 5

0 25 50 75 100
Trace Length

NHI = 0.273

Play-Out Strategy Quantifying the
Re-identification Risk in Published

Process Models

Trace Length Distribution of the Original BPIC 2017 Log Average Trace Length Distribution of 100 Play-Outs

Fig. 5: The trace length distributions for the BPIC 2017 log.

in Table 2. This strongly suggests that the adversary might often not be able to
generate the specific traces of the original log. However, for the BPIC 2013 log, we
can see that Strategy A performs worse than the strategies with knowledge about
frequencies. The results indicate again that knowledge about relative or absolute
frequencies in process models can significantly increase the reconstruction success.
Also, differences between the different settings of Strategy D can be significant.

Reconstructed eventually follows relations. Table 3 shows the F1-Scores of
the reconstructed eventually follows relations. Regarding the reconstruction of
always follows (AF) relations, all strategies perform similar, except for A, which
performed the worst, and the SOTA Strategy, which is the second worst. Notably,
the F1-Scores of SOTA are by far the lowest in 3 out of 4 evaluated logs. For the
sometimes follows (SF) relations, the SOTA Strategy again performs the worst,
despite having access to absolute frequency information, that is not available to
strategies A and B. Strategy B outperforms D, despite having only knowledge of
branching probabilities and the number of traces to generate. In the case of never
follows (NF) relations, the performance of all strategies, except for A, which
performed the worst, is again very similar.

Overall, we observe a significant level of variance in the F1-Scores, reaching
from cases where no reconstruction is possible to values as high as 0.89. While
it is expected that the highest values are obtained for the never follows (NF)
relations, since they relate to behaviour that shall not be generated according
to the process model, we also observe relatively high F1-Scores for the always
follows (AF) relations. Those can be interpreted as invariants on the presence of
activity executions, and hence, are particular interesting from a reconstruction
point of view. With F1-Scores around 0.6, we conclude that a good share of these
relations are reconstructed successfully.

14 H. Kirchmann et al.

Table 2: NHI size, EMD and NMI size of 100 play-out logs and the original log.
Higher NHI/NMI values and lower EMD values denote higher reconstruction
success, the values that indicate the highest reconstruction success are bold.

BPIC17 BPIC13 BPIC15 Sepsis Average

Strategy NHI EMD NHI EMD NMI NHI EMD NHI EMD NHI EMD

A 0.55 - 0.66 0.35 0.19 0.17 0.93 0.50 0.74 0.47 0.67
B 0.49 - 0.83 0.10 0.59 0.43 0.87 0.70 0.52 0.61 0.50

C 0.49 - 0.83 0.11 0.59 0.43 0.87 0.70 0.51 0.61 0.50
D Var. 1⁄2 0.61 - 0.60 0.22 0.37 0.19 0.86 0.54 0.51 0.48 0.53
D Var. 1 0.68 - 0.66 0.18 0.44 0.22 0.86 0.61 0.50 0.54 0.51
D Var. 3 0.70 - 0.88 0.10 0.59 0.38 0.87 0.61 0.51 0.64 0.49
D Var. 5 0.54 - 0.76 0.17 0.51 0.44 0.87 0.51 0.53 0.56 0.52

SOTA [18] 0.27 - 0.83 0.14 0.52 0.38 0.92 0.69 0.62 0.54 0.56

Avg. for Log 0.54 - 0.75 0.17 0.47 0.33 0.88 0.60 0.55 0.55 0.53

5.4 Discussion

Comparison of Play-out Strategies. Overall, Strategy A performed the worst
of all play-out strategies. This is expected, since Strategy A lacks information
about probabilities or frequencies in the process model. We conclude that it
is indeed harder or even impossible to successfully reconstruct much of the
control-flow of the original log the un-annotated process model was discovered
from.

The play-outs from Strategy B and Strategy C were almost similar in our
evaluated statistics. Knowledge of each node’s left-over frequency did not help
Strategy C to make better reconstruction decisions than Strategy B, when Strategy
B knows how many traces to generate. This indicates that when a log with
branching probabilities and the number of how many traces the original log
contains are released, the model will reveal nearly the same amount of control-
flow information as it would have done when released with absolute frequencies.

Strategy D with Variance v was unable to consistently outperform Strategy
C or Strategy B. In our experiments, we could observe that setting the variance
value between 1 and 3 led to good results. A limitation of this strategy is that
an attacker does not know what variance to pick. When we sample from the
normal distribution with a large variance, like in Strategy D with Variance 5
we generate traces that took numerous loop iterations. The longest trace we
generated with Strategy D with Variance 5 for the BPIC 2017 log was 863
activities long. Those long traces consume much of the frequency weights, thus
forcing the other reconstructed traces to be shorter.

The State-of-the-Art Strategy [18] performed worse than Strategy B despite
knowing the left-over frequencies of each node. This indicates that we should not
execute × and ∧ nodes sequentially if we want to reconstruct the control-flow

Control-flow Reconstruction Attacks on Business Process Models 15

Table 3: Average F1-scores of 100 play-outs for the reconstructed always (AF),
sometimes (SF) and never follows (NF) relations. Higher values denote higher
reconstruction success, the highest values are bold.

BPIC17 BPIC13 BPIC15 Sepsis Average

Strat. AF SF NF AF SF NF AF SF NF AF SF NF AF SF NF

A 0.40 0.38 0.39 0.69 0.63 0.00 0.03 0.16 0.81 0.23 0.46 0.02 0.34 0.41 0.30
B 0.52 0.54 0.47 0.75 0.80 0.87 0.20 0.48 0.71 0.52 0.60 0.33 0.51 0.61 0.60

C 0.55 0.55 0.47 0.75 0.79 0.85 0.20 0.49 0.76 0.49 0.60 0.32 0.50 0.61 0.60
D 1⁄2 0.64 0.54 0.46 0.64 0.52 0.87 0.22 0.48 0.80 0.59 0.61 0.36 0.52 0.54 0.62
D 1 0.64 0.52 0.46 0.63 0.50 0.890.23 0.47 0.79 0.57 0.60 0.35 0.52 0.52 0.62
D 3 0.61 0.43 0.45 0.61 0.43 0.86 0.23 0.44 0.77 0.59 0.60 0.30 0.51 0.48 0.60
D 5 0.62 0.43 0.46 0.61 0.43 0.86 0.23 0.43 0.76 0.56 0.57 0.25 0.51 0.47 0.58

SOTA 0.16 0.30 0.57 0.71 0.71 0.41 0.01 0.06 0.86 0.14 0.34 0.53 0.44 0.35 0.59

Avg. 0.51 0.46 0.47 0.67 0.60 0.70 0.17 0.36 0.78 0.46 0.55 0.31 0.48 0.50 0.56

from the original log. We saw for example that this results in many false positive
always follows relations and hence low F1-scores.
Assessment of Reconstruction Risk. In our experiments, we observed that
we were able to reconstruct control-flow properties (trace length distribution).
Additionally, we were also able to generate logs with a small distance to the
original log for one process and a reasonable distance for another. However, we
were only able to reconstruct concrete cases from one log. Finally, we illustrated
that information on the eventually follows relations of the underlying process
may be reconstructed to a significant extent, revealing co-occurrences of activity
executions and their mutual exclusiveness.

However, we acknowledge that, in practice, an attacker also always faces
uncertainty about the reconstructed information, i.e., if a reconstructed trace was
actually part of the original log. This, in general, hinders the operationalization of
the insights obtained through a reconstruction attack. This leads to the following
assessment in terms of the reconstruction risk of process models: In general, it
is possible to retrieve traces from process models. However, this is not possible
for all process models. Therefore, reconstruction risks of process models need
to be considered and taken seriously, but their risk should not be overstated.
Instead, it should be considered that while process models might not lead to the
reconstruction of complete traces, even partially reconstructed information might
be exploitable for an adversary.

6 Conclusion

To mitigate confidentially risks, one may resort to publishing a process model
instead of an event log for operational analysis. In this paper, we argued that
such an approach also potentially incurs risks, since some information about

16 H. Kirchmann et al.

the original process executions may be reconstructed from the released process
model. We studied this risk and formulated reconstruction attacks as play-out
strategies for models given as process trees. We conclude from our experiments
that the reconstruction risk for process trees modelled by the inductive miner
from complex real-world event logs is very low. However, there is a considerable
reconstruction risk for more structured event logs. The annotation of process
trees with frequency information increases the reconstruction risk considerably.
Compared to the state of the art, our approaches can consistently provide better
results, even with less background knowledge.

In future work, we plan to shift our focus from the quantity of information
that can be reconstructed to a more nuanced analysis. This will involve examining
the specific types of information that can be reconstructed and the associated
uncertainties from an attacker’s point of view. Our goal is to develop algorithms
capable of answering questions such as: given a process model, which traces can
be reconstructed that occurred with absolute certainty in the original log.

Acknowledgements. This work was supported by the German Federal Ministry
of Education and Research (BMBF), grant number 16DII133 (Weizenbaum-
Institute).

References

1. Augusto, A., Conforti, R., Dumas, M., Rosa, M.L., Maggi, F.M., Marrella, A.,
Mecella, M., Soo, A.: Automated discovery of process models from event logs:
Review and benchmark. IEEE TKDE 31(4), 686–705 (2019)

2. Berti, A., van Zelst, S.J., Schuster, D.: Pm4py: A process mining library for python.
Softw. Impacts 17, 100556 (2023). https://doi.org/10.1016/J.SIMPA.2023.100556

3. Burke, A., Leemans, S.J., Wynn, M.T.: Stochastic process discovery by weight
estimation. In: ICPM Workshops. pp. 260–272. Springer (2020)

4. Burke, A., Leemans, S.J., Wynn, M.T.: Discovering stochastic process models by
reduction and abstraction. In: Petri Nets. pp. 312–336. Springer (2021)

5. Camargo, M., Dumas, M., González, O.: Automated discovery of business process
simulation models from event logs. DSS 134, 113284 (2020)

6. Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance Checking
- Relating Processes and Models. Springer (2018). https://doi.org/10.1007/978-3-
319-99414-7

7. Chapela-Campa, D., Benchekroun, I., Baron, O., Dumas, M., Krass, D., Senderovich,
A.: Can I trust my simulation model? measuring the quality of business process
simulation models 14159, 20–37 (2023). https://doi.org/10.1007/978-3-031-41620-
0_2

8. van Dongen, B.: Bpi challenge 2017. 4tu. Centre for Research Data, Dataset (2017)
9. van Dongen, B.F.: Bpi challenge 2015. In: 11th International Workshop on Business

Process Intelligence (BPI 2015) (2015)
10. Elkoumy, G., Pankova, A., Dumas, M.: Privacy-preserving directly-follows graphs:

Balancing risk and utility in process mining. arXiv preprint arXiv:2012.01119 (2020)
11. Fahrenkrog-Petersen, S.A., Kabierski, M., van der Aa, H., Weidlich, M.: Semantics-

aware mechanisms for control-flow anonymization in process mining. Information
Systems p. 102169 (2023)

https://doi.org/10.1016/J.SIMPA.2023.100556
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/978-3-031-41620-0_2
https://doi.org/10.1007/978-3-031-41620-0_2

Control-flow Reconstruction Attacks on Business Process Models 17

12. Hidano, S., Murakami, T., Katsumata, S., Kiyomoto, S., Hanaoka, G.: Model
inversion attacks for online prediction systems: Without knowledge of non-
sensitive attributes. IEICE Trans. Inf. Syst. 101-D(11), 2665–2676 (2018).
https://doi.org/10.1587/TRANSINF.2017ICP0013

13. Hildebrant, R., Fahrenkrog-Petersen, S.A., Weidlich, M., Ren, S.: PMDG: privacy for
multi-perspective process mining through data generalization. In: CAiSE. Lecture
Notes in Computer Science, vol. 13901, pp. 506–521. Springer (2023)

14. Hilprecht, B., Härterich, M., Bernau, D.: Monte carlo and reconstruction member-
ship inference attacks against generative models. Proc. Priv. Enhancing Technol.
2019(4), 232–249 (2019). https://doi.org/10.2478/POPETS-2019-0067

15. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs - A constructive approach. In: Colom, J.M., Desel,
J. (eds.) Petri Nets. LNCS, vol. 7927, pp. 311–329. Springer (2013)

16. Leemans, S.J.J., Polyvyanyy, A.: Stochastic-aware precision and recall measures for
conformance checking in process mining. Inf. Syst. 115, 102197 (2023)

17. Leemans, S.J., Syring, A.F., van der Aalst, W.M.: Earth movers’ stochastic confor-
mance checking. In: BPM Forum. pp. 127–143. Springer (2019)

18. Maatouk, K., Mannhardt, F.: Quantifying the re-identification risk in published
process models. In: ICPM Workshops. pp. 382–394. Springer (2021)

19. Mannhardt, F.: Sepsis cases-event log, 4tu. ResearchData. Dataset. DOI: https://doi.
org/10.4121/uuid: 915d2bfb-7e84-49ad-a286-dc35f063a460 (2016)

20. Rafiei, M., van der Aalst, W.M.P.: Towards quantifying privacy in process mining.
In: ICPM Workshops. LNBIP, vol. 406, pp. 385–397. Springer (2020)

21. Rafiei, M., van der Aalst, W.M.P.: Group-based privacy preservation techniques for
process mining. Data Knowl. Eng. 134, 101908 (2021)

22. Rafiei, M., Wangelik, F., Pourbafrani, M., van der Aalst, W.M.P.: Travag: Differen-
tially private trace variant generation using gans. In: RCIS. LNBIP, vol. 476, pp.
415–431. Springer (2023)

23. Rigaki, M., García, S.: A survey of privacy attacks in machine learning. ACM
Comput. Surv. 56(4), 101:1–101:34 (2024). https://doi.org/10.1145/3624010

24. Rogge-Solti, A., van der Aalst, W.M., Weske, M.: Discovering stochastic petri nets
with arbitrary delay distributions from event logs. In: BPM Workshops. pp. 15–27.
Springer (2014)

25. Rogge-Solti, A., Senderovich, A., Weidlich, M., Mendling, J., Gal, A.: In log and
model we trust? A generalized conformance checking framework. In: BPM. LNCS,
vol. 9850, pp. 179–196. Springer (2016)

26. Steeman, W.: Bpi challenge 2013, closed problems. URL: https://doi.
org/10.4121/uuid: c2c3b154-ab26-4b31-a0e8-8f2350ddac11. doi: doi 10 (2013)

27. Van Der Aalst, W.: Process mining: data science in action, vol. 2. Springer (2016)
28. Nuñez von Voigt, S., Fahrenkrog-Petersen, S.A., Janssen, D., Koschmider, A.,

Tschorsch, F., Mannhardt, F., Landsiedel, O., Weidlich, M.: Quantifying the re-
identification risk of event logs for process mining: Empiricial evaluation paper. In:
CAiSE. pp. 252–267. Springer (2020)

https://doi.org/10.1587/TRANSINF.2017ICP0013
https://doi.org/10.2478/POPETS-2019-0067
https://doi.org/10.1145/3624010

	Control-flow Reconstruction Attacks on Business Process Models

