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1 | INTRODUCTION

Process mining provides a rich set of techniques to discover
valuable knowledge on business processes based on data
that was recorded in different types of information systems.
It enables analysis of end-to-end processes to facilitate pro-
cess re-engineering and process improvement. Process min-
ing techniques rely on the availability of data in the form
of event logs. In order to enable process mining in diverse
environments, the recorded data needs to be located and
transformed to event logs. The journey from raw data to
event logs suitable for process mining can be addressed by
a variety of methods and techniques, which are the focus of
this article. In particular, proposed techniques in the litera-
ture to support the creation of event logs from raw data are
reviewed and classified. This includes techniques for iden-
tification and extraction of the required event data from di-

verse sources as well as their correlation and abstraction.
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Business process management is concerned with designing, monitoring, executing, and evaluating business processes
in organizations. The main artifact is a process model, which is an abstract representation of a business process (Weske,

2019). While research in business process management has for a long time centered around process models and
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languages to express them, recently, the focus has shifted to process mining. Process mining uses execution data in
the form of events, recorded during process executions, which may be exploited in several ways (van der Aalst, 2016).
Process mining subsumes automatic discovery of process models based on recorded behavior of the process. This
recorded behavior can be compared to designed models to find process deviations and their root causes (Carmona
et al.,, 2018). A plethora of process mining techniques have been developed in recent years; the increasing uptake in
industry shows that valuable insights across different business domains are provided by process mining.

Despite the maturity of the individual process mining techniques, in process mining projects considerable re-
sources have to be allocated for the extraction and preparation of event data, before the actual analysis can even
start. This is also indicated in the process mining manifesto (van der Aalst et al., 2012) which states that “finding,
merging, and cleaning event data” remains a challenge for application of process mining techniques.

In complex application scenarios in large companies, the data required for process mining resides in various
databases and information systems used by the organization. Most of these do not record the execution data in a
process-centric way, so that the data is not immediately ready for process mining. Examples of these information sys-
tems include Enterprise Resource Planning systems, Customer Relationship Management systems, and other legacy
systems. Data in these systems can be in various forms and formats, so that it incurs a substantial effort to locate and
transform these event data to the event log format required by process mining techniques.

Techniques for event log preparation can be organized in three groups: techniques for event data extraction,
correlation, and abstraction. Event data extraction deals with techniques to identify data elements that characterize
events from heterogeneous data sources. Event correlation helps us to group the data elements that relate to a single
process instance. Finally, event abstraction looks at the mapping of data elements to events that correspond to activity
executions in a business process. Techniques in this area assign semantics to sets of data elements by defining how
they can jointly be interpreted as the execution of a business process activity.

These event log preparation techniques are sometimes overlapping in their scope and may also adopt similar
models and algorithms. Moreover, the discussed techniques partially incorporate common pre-processing techniques,
such as filtering of data elements. However, we perceive the distinction of techniques for event data extraction,
correlation, and abstraction to be suitable to give an overview of the field as these are key steps for building meaningful
event logs.

The paper is structured as follows. Background and terminology are provided in Section 2. Section 3 focuses on
the extraction of event data from a variety of data sources. The challenge of correlating extracted data elements is
discussed in Section 4. Section 5 elaborates techniques for the abstraction of data elements to events that denote
activity executions, before Section 6 concludes the paper.

2 | BACKGROUND

This section elaborates on the problems that emerge when striving for the preparation of an event log. Event log
elements are explained with regard to process elements, thereby connecting concepts of the world of data to the
process world. An example is provided, before an essential event log format and related standards are discussed.

21 | Terminology

Process mining provides a rich set of techniques and algorithms for process discovery, conformance checking, and

enhancement (van der Aalst, 2016). Here, process discovery aims at the creation of a process model automatically
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FIGURE 1 Overview of the main concepts related to data and events in process mining, adapted from (Carmona
etal., 2018).

from the data recorded during process execution (Augusto et al., 2019). Conformance checking, in turn, takes as input
the recorded data and a process model, assessing their consistency and providing diagnostic results on their devia-
tions (Carmona et al., 2018). Process enhancement typically enriches a given process model based on the recorded
data (de Leoni and Mannhardt, 2019; Depaire and Martin, 2019), thereby providing a more complete process represen-
tation as the basis for quantitative or qualitative analysis. For all these use cases, however, most algorithms operate
on event logs, consisting of a sequential list (aka traces) of events. In fact, it is the core assumption of most process
mining techniques that events are provided in an event log format that is suitable for processing.

Investigating real-world application scenarios of process mining, the availability of suitable event logs is one of the
main obstacles for widespread adoption of process mining technology. In practice, a typical process mining project
spends considerable resources in event data extraction, correlation, and abstraction, before process mining activities
can even be started.

To provide a conceptual basis of the topics addressed in this paper, Figure 1 defines the main concepts related to
data and events in process mining. Studying concrete business processes in organizational and technical environments,
we first note that there are many instances of such a process, which are called cases. For instance, each case in an
ordering process deals with a specific customer and the articles ordered. Hence, a case is an instance of the process,
as represented by the dotted arc in Figure 1. The activities performed in the context of a case are called activity
executions, and each activity execution is part of a case. Activity executions are represented by events, and events
participate in traces. A trace is a sequence of all events that belong to one case and a log contains a set of traces for
a specific process.

In many real-world scenarios, however, events and traces are not readily available. Before a process mining tech-
nigue can be applied, event logs have to be developed from existing data sources. Aspects related to data and their
relationship to events are represented by the concepts of a data source, data store, and data element. Data elements
that are relevant for the project at hand need to be extracted from one or multiple data sources; this information is
stored in data stores. Data elements can be regarded as tuples in a relational database, rows in a spreadsheet, or any
other data format.

Event data are data elements that are recorded as a result of occurrence of events. Yet, to use this data for
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FIGURE 2 A simple order handling process model and a collection of event data extracted for this process. The
dashed rectangles indicate which elements are correlated as they refer to the same case. The dotted ovals illustrate
the abstraction of sets of event data to events that denote activity executions, while the respective activities are
highlighted by the the dotted arrows.

process mining, relevant data elements have to be extracted and event data need to be identified. They then need to

be correlated to their respective cases. These data elements might be recorded in detail and thus be low-level (several

data elements are recorded which together reflect the execution of a single activity). Therefore, mapping them to

such events that, by their definition in the process mining context, denote activity executions requires an abstraction

level. Event abstraction, therefore, aggregates low-level event data elements into higher level events that represent

the execution of activities. However, note that in some cases, the extracted data elements may already be at the

desired level of abstraction, such that they can be used for process mining right away. To summarize, techniques to

extract, correlate, and abstract event data are required, which are characterized as follows:

Event Data Extraction is the derivation of data elements, jointly captured in a data store, from data sources. The
derived event data elements are used to define events and, thereby, traces.

Event Correlation groups event data that belong to specific cases. The event data that can be correlated to a case will
be used in the definition of the events of the same trace.

Event Abstraction maps event data to events representing activity executions. As such, it enables the interpretation
of these data elements in terms of specific activity executions.

For each type of technique, Section 3, Section 4, and Section 5 will later give an overview of the existing ap-
proaches. In doing so, the relevant literature is summarized, pointing out the expected inputs and outputs of the
different approaches, the utilized pieces of information (such as domain knowledge), as well as their basic assump-
tions and limitations. Each section will close with a table that summarizes the approaches, thereby giving a concise

overview of the state-of-the-art of the respective solutions.
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Order id Event id Activity Timestamp

1 OR1720 Order received 02/01/2019:09.00
1 CI1800 Check inventory 02/01/2019:09.10
1 C0O19000 Collect order 02/01/2019:09.30
1 SI1357 Send invoice 02/01/2019:09.50
1 DO1340 Deliver order 02/01/2019:10.30
1 COMP1700 Complete order 02/01/2019:11.15
2 OR2900 Order received 02/01/2019:10.05
2 Cl2981 Check inventory 02/01/2019:10.15
2 R0O2202 Reject order 02/01/2019:10.45

TABLE 1 An excerpt of an event log for the order handling process.

2.2 | [llustrating Example

To illustrate the need for techniques to support the creation of event logs, consider the order handling process of a
supplier company shown in Figure 2. After receiving an order, the inventory is checked for availability of the ordered
goods. If the goods are out of stock, the order is rejected and the process terminates. Otherwise, the order is collected
before it is sent for delivery and, concurrently, an invoice is sent to customer. Finally, the order is completed.

The process model is now related to the concepts introduced in Figure 1. The process shown consists of activities.
A specific instance of the process (an individual order in this example) is a case. Each performed activity - like checking
the inventory for a specific order - is an activity execution.

To analyze the concrete behavior of the business process on the basis of the data generated during process execu-
tion, process mining techniques can be used. These techniques require an event log as input, in which events reflect
the activity executions. The events are correlated based on the case, for which they indicate an activity execution, so
that they form a trace. An event log is a collection of traces (multiple executions of the processes for different cases)
recorded in a specific period of time. Table 1 shows an excerpt of an event log for the order handling process.

Depending on the information systems used to support the order handling process, data might not be readily
available in the format of Table 1. It can be in multiple formats, and it might reside in different data sources. Regardless
of the information systems, the execution of activities leave a digital footprint behind. In typical application scenarios,
however, this data needs to be located and transformed into an event log, before process mining becomes applicable.

To develop an event log as shown in Table 1, relevant event data needs to be obtained. That is, the respective data
elements need to be located in data sources and extracted into a data store. Techniques to support this extraction
step are reviewed in Section 3.

Once data elements have been extracted, they need to be correlated according to cases. For example, the data
elements OR1720 and CI1800 have to be analyzed to identify that they both relate to the same case, i.e., the process-
ing of the same order. For elements OR2900 and CI2981, however, it must be established they belong to a different
case. In general, correlation is not a trivial task. For example, the order id attribute in Table 1 may not be available in
the data. We review techniques to correlate data elements in Section 4.

While mapping relevant data elements to events, further issues may stem from the granularity at which the data

is recorded. Potentially, data elements need to be grouped and abstracted to reflect an event in the process mining
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FIGURE 3 Main elements of the XES metamodel (Glinther and Verbeek, 2014).

sense, i.e., an execution of a specific activity. In our example, multiple data elements are recorded for the Collect order
activity, which together reflect the execution of the respective activity. The problem of event abstraction is discussed
in Section 5.

2.3 | Standards for Event Logs

The input for process mining techniques is commonly an event log. As detailed above, an event log is a collection of
traces and each trace is a collection of ordered events. Each event in a trace indicates the execution of one activity
for a case of the process, and each trace contains all the events recorded sequentially for one single case.

To unify the input format of process mining, a standard XML-based format, MXML (Mining XML) was introduced
(van Dongen and van der Aalst, 2005). To facilitate mapping between logs of different systems to MXML a meta model
was also provided. An MXML log named a WorkflowLog consists of a Process element, a Data element used for storing
additional attributes, and a Source element containing information about the information system used for recording
data. The process element is composed of several Processinstance entries which contain several AuditTrailEntry ele-
ments. Each AuditTrailEntry is an event and contains a WorkflowModelElement, EventType, and a number of optional
attributes such as timestamp and originator of the event. The WorkflowModelElement is the activity in the process
which the event refers to and the EventType reflects the type of the event based on the transactional model of ac-
tivity life-cycle (scheduled, started, completed, etc.). While the terminology adopted by MXML differs from the one
introduced here, we note that it supports the classic process mining model given in Figure 1.

The MXML format had been widely used as the input of process mining techniques before the new standard,
XES (eXtensible Event Stream) was introduced (IEEE (XES) Working Group, 2016; Verbeek et al., 2010). This new
standard was developed to address a few problems encountered with MXML logs (e.g. unclear semantic of additional
attributes). The new format was adopted by the IEEE Task Force on Process Mining as the standard format for event
logs. Figure 3 shows the XES meta model. In an XES event log, log is the root element containing several traces. each
trace consist of several events. Log, traces and events have a number of attributes. The semantic of an attribute is
defined by its extension. There are a number of standard extensions for common attributes such as timestamp, life-
cycle, and resource. Additional extensions and their semantics can be defined by the user in specific applications. A
classifier can be used to assign identity to each event (e.g. by a combination of event name and timestamp). XES is
the current standard for process mining event logs, and many tools and techniques require an XES event log as input.

OpenXES 1 is the reference implementation of XES as a Java library. We note that XES conforms to the classic process

Ihttp://www.xes-standard. org/openxes/start
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mining model in Figure 1.

3 | EVENT DATA EXTRACTION

The data that is required for process mining can reside in a variety of sources. Depending on the information systems
and the databases in use, this data might have different formats and characteristics. It is often the case that valuable
data resides in data sources such as relational databases where it is not recorded with a process in mind and therefore,
it is not process-centric (i.e. events and traces are not explicitly recorded). The challenge is to identify relevant event
data among a pool of data in these systems, extract and transform them to the process-centric event log format
required by process mining techniques. This requires a great amount of domain knowledge and it mostly involves
manual and ad-hoc solutions. This transformation gives rise to a number of challenges which affect the quality of the
resulting event logs. Specifically, the following challenges exist:

Challenge 1: Finding and locating the relevant event data;

Challenge 2: Creating a large number of queries to extract the data, which requires knowledge of the underlying
database;

Challenge 3: Historical data might not be recorded explicitly;

Challenge 4: Dealing with one-to-many and many-to-many relationships between data elements. Forcing the
data to event logs with a flat structure and a clear case notion, causes the problem of data convergence (where one
event relates to multiple cases) and divergence (multiple records of the same event relate to one case);

Challenge 5: Avoiding the loss of information on the data perspective (data objects, classes, and relationships).
In the remainder of this section we discuss approaches focusing on one or more of the above-mentioned challenges.
First, the works focusing mainly on identifying and extracting event data (challenges 1 and 2) are introduced (Section
3.1). Then, the works tackling the lack of recorded history (challenge 3) are presented (Section 3.2), before discussing
the approaches with the main focus on the challenges of data relationships and the data perspective (challenges 4
and 5) (Section 3.3).

3.1 | Event Data Identification and Extraction
Event
Extraction: Schema-log mapping
Domain
Database schema Process documents Domain model ~ Event model knowledge

| 4

Richness of Incorporated Information

FIGURE 4 The spectrum of incorporated information for event extraction techniques

Figure 4 provides a brief overview on the information used by the approaches to assist the identification and
extraction of event data from databases. Information on the data sources, relevant events, and the domain of interest
facilitates the identification and extraction of event data from non-event-based data sources. A database schema
describes how data elements are stored and how they are related to each other. It helps in identifying event data
by acquiring a better understanding of the database and its structure. Process-related documents and policies which
give information on the processes in organizations, if available, can be exploited as a source of information about the

underlying process, data classes and elements involved in the context of the process under analysis. Using a domain
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model that provides information on which classes of data are involved in the domain or the process under analysis,
further assists identification of the relevant event data to be extracted. Defining an event model, which identifies types
of events and their relation to the classes in the domain model, on top of the domain model facilitates event data
identification even more. These concepts together with a mapping specification to the underlying database facilitates
the data extraction. In addition, domain knowledge is usually required to define these concepts and to identify the
relevant event data in the database.

Jans and Soffer (2017) specify a set of decisions to be made, based on the domain knowledge, when creating an
event log from raw data. Based on the three main elements of an XES event log—process, trace, and event—these
decisions are classified into three categories: (i) Selecting the process to analyze, (ii) Creating a specific view on the
process (selecting the process instance), and (iii) Selecting the relevant events. Based on these decisions a procedure
to provide guidance for decision making is suggested as follows. Set business goals, collect information on the data
source, select process instance and its level of granularity (e.g. order vs order line) based on business goals, select relevant
events, and list relevant attributes. A variety of tools and techniques have been proposed in recent years in academic

literature to support this extraction phase towards a more generic and automated solution.

3.1.1 | The Process Lexicon

To support finding and locating (Challenge 1) and extracting relevant event data that match the process under analysis
and its related activities, Wang et al. (2012) introduce an approach based on text mining of organization-specific
process documents and industry standard reference models. Using text mining on documents such as process models,
process documents, and policy manuals, they identify a process lexicon containing a dictionary of process components
such as activities and data items. Based on this lexicon, tables and attributes of databases are scored and ranked
for their relevance to the process lexicon using a similarity function. This ranked data source is now called a process-
aware database which is used by the domain expert to extract the relevant data. The approach can be helpful to
domain experts, when relevant documents are available and the taxonomy used in the database matches the process
taxonomy. The approach is improved and evaluated in (Li et al., 2015).

3.1.2 | ProM Import Framework

Gunther and van der Aalst (2006a) developed one of the first approaches towards a generic and automated solution
for transforming event logs of a variety of process-aware information systems (PAISs) to the (by the time) standard
format, MXML. ProM Import Framework is implemented in ProM process mining framework? in an extensible plug-
in architecture allowing development of adapters to any PAIS. The tool supports the transformation of event logs
generated by a number of well-known workflow systems of that time (e.g. FLOWer, Staffware, etc.) and allows for
extensions to other PAISs through the plug-in architecture. Although the tool provides an automated environment for
converting the event logs of PAISs to MXML, it is limited to a number of PAISs and new plug-ins must be written (in
Java) for system not directly supported. This requires the analyst to have programming skills and detailed knowledge
of the system. In addition, restricting the framework to PAISs, the assumption is that events are explicitly recorded
by the source system. Therefore, the extraction of event data scattered through various sources and tables in a non-
process-aware system is not supported.

2http://www.promtools.org/doku.php
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3.1.3 | XESame, EVS Model Builder, and Eventifier

To eliminate restrictions and the programming need posed by the ProM Import Framework and to account for the
newly adapted event log format XES, XESame was developed (Verbeek et al., 2010; Buijs, 2010). XESame lifts the
assumption made by ProM Import Framework that some sort of event log already exists, thereby facilitating the
event data extraction from databases (Challenge 1 and 2). XESame provides a graphical interface for domain experts
to create a conversion definition consisting of a domain model and a mapping of database tables to the event log
requirements. Afterwards, SQL queries are generated based on the specified mapping, event data is extracted from
the data source, associated to traces, and the event log is created. The tool has been proved successful in many
applications. However, the extensive effort and domain knowledge required for identification of relevant tables and
attributes, and the definition of the mapping for conversion poses a challenge for large scale extractions.

One of the most common type of systems on which the application of process mining can be valuable is ERP sys-
tems, such as SAP, Oracle ERP, and Microsoft Dynamic. The wide usage and their support for end-to-end operational
processes make them a potential source for process mining.

EVS Model Builder was developed by Ingvaldsen and Gulla (2007) to support the extraction of SAP transaction
data. The extraction consists of four phases: First, the user has to provide a meta-description (in form of a UML class
diagram) consisting of business objects (business entities e.g., user, sales order), event descriptions, and their relation
based on the process to be analyzed. This meta-description assists in locating the relevant data. Then, the system
extracts business objects and their relations by constructing SQL statements and executing them on the database.
Afterwards, data elements and their relation to business objects are extracted. Finally, the process instances (cases)
are identified by following dependency relationships of data elements and the data is transformed to an MXML event
log. The meta-description is similar to the mapping concept in XESame. Although their approach provides automated
SQL query generation and format conversion, defining the meta-description and locating data demands considerable
effort and domain knowledge. However, they argue that this meta-description can be reused when the structure of
SAP databases is consistent.

In (Rodriguez et al., 2012) the identification and extraction of event data from operational databases is called
eventification, and the tool supporting this process eventifier. Eventification consists of event identification (identifying
and extracting event data in the database), event ordering, data association, and correlation. They assume that the
process and activities which events relate to are defined by domain experts. For identifying event data in the database,
they assume that a record in a relation between tables reflects an event, and introduce three event identification
patterns. Single row, single event, where each record corresponds to exactly one event; single row, multiple events,
where one record is the evidence for the occurrence of more than one event; multiple row, single event, where multiple
records together reflect the occurrence of one event. The suitable pattern for the analysis should be selected carefully
by a domain expert. Afterwards, events are ordered based on the timestamps found in the database. In the data
association phase the attributes required are added to events. Afterwards, they correlate events through relations
indicated in the attributes added in the data association part. One major assumption here is that all information
needed for correlation is present in the attributes. Finally, the event collection is transformed to XES using OpenXES
libraries.

3.14 | Ontology-Based Data Access Approaches

Ontology-Based Data Access (OBDA) approaches aim at extracting data using a high level conceptual view of the

domain of interest expressed as an ontology, and linking this view to the database schema. Calvanese et al. (2016)
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propose an approach for the extraction and creation of event logs for process mining based on OBDA. The conceptual
schema of the domain of interest, the domain model, is defined as a UML class diagram by the user. It is then translated
to and expressed in an ontology language, as the domain ontology. This domain ontology is then annotated by a
domain expert based on the event log ontology which is constructed based on the XES metamodel. Afterwards, data
is extracted automatically, by connecting the data from databases to the event log ontology. Decoupling the design
phase, in which the user enriches the domain ontology with regard to the elements of the event log ontology, from
the data access phase, where OBDA techniques are used to automatically extract data from the database to an XES
event log, allows the user to focus only on the domain ontology and its annotation rather than the database schema
and the actual extraction. This approach facilitates multi-perspective process mining due to the fact that different
views on the data can be taken easily by adjusting the annotations of the domain ontology.

Onprom (Calvanese et al., 2017c¢,b) is a toolchain and data extraction methodology that builds on the idea of
OBDA event data extraction. The methodology starts with the conceptual modeling step. In this step, two conceptual
models need to be created, a conceptual data model, and a mapping specification. The conceptual data model or the
domain ontology is created by the domain expert using a UML class diagram. The mapping specification connects
the database schema to the domain ontology. These models form the OBDA system which allows abstracting from
details of the information system and its database structure. The next step is to enrich the conceptual data model
with event data annotations consisting of case, event, and attribute annotation. These annotations specify the class
containing the case notion, occurrences of specific types of events from classes and relevant attributes for events,
and provide the basis for extraction and correlation of event data to form event logs. In the third step event data is
automatically extracted and an event log is created using the combination of mappings and annotation leveraging the
OBDA technology and methods.

The Onprom toolchain has been implemented as a set of ProM plug-ins with a UML editor, annotation editor and a
log extractor to create XES event logs from relational databases. Their approach provides a conceptual view that helps
understanding the information system conceptually and enables automatic extraction of event data. The approach has
been compared to a general ETL-like method in a context of a case study. For the ETL method, extensive knowledge of
the underlying database was needed and creating views on the database was labor and time intensive and error-prone,
and creating additional views required a complete iteration of the extraction and preparation effort. Their approach
however, decouples the domain ontology from details of the information system, and by leveraging OBDA, reduces
the effort needed. It also facilitates creating multiple views only by adjusting annotations of the domain ontology.
However, the first and second step of the methodology are manual and require effort and knowledge of the domain
and process to create and annotate the domain ontology manually. Additionally, the mapping specification is either
created manually or semi-automatically using the OBDA framework ontop (Calvanese et al., 2017a). They also rely on
ontop for the creation of the mapping between data and XES elements.

While XES is the standard for event logs and is supported by most of the process mining tools and techniques, it
poses a number of restrictions regarding the structure and the type of event data. A number of alternative formats
have been proposed which are discussed in the last part of this chapter. For the OBDA approach to lift the restriction
of the method to XES format and to provide a more general approach regardless of the event log format used, in
(Calvanese et al., 2018) the authors propose a second conceptual level called the upper schema for their OBDA frame-
work. In case of process mining, this upper schema replaces the XES schema. This allows the analyst to define the
upper schema in their desired format. The resulting framework named 20BDA extends the previous works by adding
this second conceptual layer and a conceptual transformation of the domain ontology to the upper schema. This trans-
formation is an ontology-to-ontology mapping which is performed in a similar way to mappings in previous approach.

The tool is extended with a transformation rule generator which automatically maps the two conceptual models based
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on the annotated domain ontology with regard to the upper ontology.

3.2 | Redo Logs for Event Extraction

It can be the case that historical data is not recorded in the database and the data is overwritten when a transaction
is performed on the database (Challenge 3). In this case the data in the database only reflects the current state of the
system and does not provide any historical data on the changes and the steps of processes.

van der Aalst (2015) proposes an approach to identify and extract event data from databases in which historical
data is not recorded. Building on the idea that current values of database tables reflect the current state of the
information systems and processes, it is suggested that changes in the database refer to events that change the state
of the system or the process. Based on the assumption that these changes are recorded in the redo logs of databases,
these logs can be used to identify events. Redo logs of relational databases therefore, can provide useful information
on the occurrence of events. The approach starts by defining an event model which relates database changes to
events. This event model enriches the data model of the database with possible event notations. After such an event
model is provided (either by a domain expert or extracted and constructed from the redo logs) event data needs to
be extracted and converted to an event log format with a clear case notion. This is done by Scoping, binding, and
classifying event data and process instances.

Scoping selects the relevant event data for the purpose of analysis. The selection can be done based on the names
of the events, a time period, or classes containing these events. Binding correlates events to process instances. This is
done by manually identifying relevant tables and relations of the database for the selected case notion. Classifying is
used to create multiple logs for different process models to facilitate process comparison. The approach conceptually
defines the idea of creating an event model which relates databases to events using changes recorded in redo logs of
such databases, which provides the conceptual basis for development of methods to facilitate event data extraction
from relational databases.

The work by de Murillas et al. (2015) builds on this idea and enhances the conceptual approach with concrete
techniques and a prototype implementation and evaluation. First, they extract relevant event data from redo logs,
transforming and abstracting its records to events. Related attributes of events are transformed directly from redo
log records or extracted from affected tables in the database. After creating a set of events, these events need to be
correlated to form traces. Here, a data model is created from the database with the use of queries on tables, fields and
primary and foreign keys in the database schema. This data model is then used to identify relations and correlating
events based on the defined case notion for the trace. Their approach has been implemented as a proof of concept
and evaluated for an Oracle DBMS. However, they argue that the approach is generic and can be extended to any
database technology which guarantees the availability of redo logs with clear timestamps. One of the issues reported
for their approach is the duplication of same events into different traces in the generated event log as a result of the
algorithm used. This may cause problems for process mining techniques and leads to false statistics.

in (de Murillas et al., 2017b) the authors compared redo log event extraction techniques with other techniques
such as XESame which they refer to as traditional approaches. It is indicated that redo log approaches allow more
automation and generalization compared to traditional approaches, demanding less domain knowledge for selection
of relevant data and less dependency on a specific database. In addition, data deleted from the database can be
tracked and included in the analysis. The main challenge faced by these approaches is however, that special database
privileges needed to configure and access redo logs which might not be available in every set up. Moreover, redo
logs should be enabled in the database and archived (redo logs are overwritten by the DBMS when redo log files are

full, however they can be archived to address this issue). These assumptions might not hold on many real life cases.
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Nonetheless, if redo logs are available and configured correctly the approach proved to yield valuable results.

3.3 | Data- and Process-Centric Models

XES event logs are process-oriented and they restrict the data to fit this process-oriented frame. As mentioned before,
this can lead to problems of data convergence and divergence, and loosing information on the data perspective. New
models have been proposed for storing event data aiming to preserve the object-centric nature of data, and avoiding
data convergence and divergence (Challenge 4 and 5), while facilitating multi-perspective process mining.

3.3.1 | Artifact-Centric Approaches

As mentioned before, ERP systems, such as SAP, Oracle ERP, and Microsoft Dynamic, provide valuable sources for
potential process mining analysis. However, despite their implicit support for processes, their data is normally stored
in object-centric relational databases. In SAP data objects usually refer to instances of certain business objects such
as orders, invoices, users, etc. There are one-to-many and many-to-many relations between objects, and there is not a
clear case notion relating these objects. Flattening data from these sources to an event log format can cause problems
of convergence and divergence.

Artifact-centric approaches (Hull, 2008; Fahland et al., 2011; Popova et al., 2015) attempt to adjust the process
view of event logs to that of underlying databases. Instead of forcing the data residing in different tables of ERP
systems to be transformed into a process-oriented view with a clear case notion, they preserve the object-centric
nature by considering artifacts (Business objects in ERP systems) as the case identifier. This way, flattening the event
log to a single view with one case notion can be avoided.

Nooijen et al. (2012) propose the discovery of artifact life-cycle models for each artifact in an ERP system instead
of a traditional process model. These life-cycle models describe the evolution of one business object throughout a
specified time span. In order to discover these life-cycle models, three elements have to be discovered. The artifacts
involved in the process, the schema for each artifact in the database (i.e. their attributes and relations), and finally the
life-cycle model for each artifact. They start by (re)discovering the database schema (in case the available schema is
incomplete, they suggest to use schema extraction techniques (Zhang et al., 2010; Ahmadi et al., 2009)). Then, they
cluster the schema to discover one schema for each artifact using the k-means clustering technique. Next, a schema-
log mapping for each artifact is automatically discovered to map the schema to event log specifications. Afterwards,
they exploit XESame (Verbeek et al., 2010) to extract the event data and create one event log for each artifact (multiple
logs are created). This is done in a way that events within each artifact log are correlated to the respective artifact.
Finally, existing discovery algorithms are used to discover one life-cycle model for each artifact.

Their approach automates various steps of the log extraction. Specially, the schema-log mapping phase automates
the first step of XESame, mapping the database schema to event log schema. This enables them to leverage XESame
for extracting data in an automated way. Additionally, their approach is generic and can be applied to any ERP system
in which the timestamp of event data is recorded in a separate column. However, the approach is subject to a number
of limitations. The schema extraction step can take a long time to execute as key discovery is an NP-complete problem.
Besides, identifying value of k for clustering is still manual and difficult to select the right value to discover the right
amount of artifacts. Including domain knowledge in the selection of k and the discovery of schema-log mapping
can improve their approach. in addition, their approach only discovers individual life-cycle models for each artifact
and neglects the interaction and relation between artifacts. These interactions can be a crucial factor to discover

end-to-end meaningful process models.
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Lu et al. (2015) addresses these problems in their approach by discovering complete artifact-centric process
models including artifacts life-cycle and interaction between them. They argue that by indicating one-to-many and
many-to-many relations in the database as interactions, the problems of convergence and divergence can be totally
overcome. First, the life-cycle of each artifact, and then interactions between them are discovered. The approach
is capable of discovering the interaction between two artifacts. Discovering interaction of multiple artifacts is not
supported. Besides, identification of artifacts needs to be done manually by domain expert. After these artifacts are
known, the discovered process model can correctly capture the behavior of object-centric systems avoiding conver-
gence and divergence. However, the discovered model can be complex and hard to interpret. Besides, conformance
checking and performance analysis on these models have not been studied.

Paji¢ and Becejski-Vujaklija (2016) develop a metamodel for artifact-centric approaches. The metamodel connects
concepts of the artifact-centric approach and XES metamodel illustrating the relationship of business objects, artifacts,
their artifact schema, direct and indirect relations, and links to XES elements, traces, and events. The metamodel is

intended to facilitate understanding and adoption of these approaches in practice.

3.3.2 | OpenSLEX

de Murillas et al. (2018) propose the OpenSLEX metamodel which combines the elements of an event log with object-
related elements to store data in a way that provides sufficient information on processes, data types and relations. It
integrates the data and process view into one storage. The proposed metamodel is compatible with XES to enable
transformation to and from XES logs without data loss. Multiple event logs can be stored sharing events to avoid
duplication. The meta model contains six elements, three for data view and three for process view. The data view
contains data model (database schema), object (unique entities of data), and version (the values of attributes of an
object in a certain time window). The process side consists of process, instance (case), and event (referring to high-
level events reflecting activity executions). These two views are connected through version and event, in a way that
changes of versions are tracked as events.

The meta model has been implemented as a library, OpenSLEX, in Java and can be accessed in the same way
as XES, and it is stored in SQLite files. Additionally, the procedure of extracting, transforming and querying data has
been implemented in RapidProM (Mans et al., 2014) 3. Using adapters for each database, data can be extracted and
populated to OpenSLEX. A limitation is that an ad-hoc adapter needs to be written for every data schema, and a
general method independent of the underlying data source is missing. However, after the adapters are built, using
operators of RapidProM, logs with additional perspectives can be created automatically. Adapters for a number of
systems including Oracle redo logs, and SAP change tables are available.

OpenSLEX provides a technology to store data for process mining in a way to keep the balance between process
and data view. Multiple event logs can then be created (in XES) based on the chosen view (case notion) to be processed
by process mining techniques. Their approach is comparable to works of data warehousing (Niedrite et al., 2007;
Neumuth et al., 2008; Eder et al., 2002; Zur Muehlen, 2001) and process cubes (van der Aalst, 2013; Vogelgesang and
Appelrath, 2015; Bolt and van der Aalst, 2015; Vogelgesang and Appelrath, 2016; Vogelgesang et al., 2016) which
allow storing multidimensional data in a process-oriented way and enable analyzing data from multiple aspects using
slice and dice operations. However, OpenSLEX offers more generalization and independence from a specific process
compared to these works. in (de Murillas et al., 2017a) they apply their method for extraction and storage of event
data from audit trails of hospital information systems and show that due to independent from a single case notion at

the time of extraction, data loss is avoided and creation of different views at the time of analysis is facilitated.

Shttp://www.rapidprom. org/
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In (de Murillas, 2019), the approach for extracting data and building event logs has been extended and improved.
In addition, the techniques to create event logs are applied on a Hospital Information System (HIS) in six steps. Data
exploration, where the underlying database is analyzed and information on its size, existing tables, and relations is
collected. Data schema discovery, in which the complete database schema is discovered, including primary and foreign
key relations that might have only been created in the application layer. Data extraction, that populates OpenSLEX by
data objects and object versions. Event data discovery, to identify and extract event data from multiple tables. This
is done by automatically identifying timestamp columns and using them as event data. Case notion discovery, which
discovers and recommends possible case notion based on the data schema, for correlation. Event log building, to
construct multiple event logs based on the extracted event data and different case notions, in order to create multiple
views on the database and processes. The techniques for the above steps are implemented as a python library called
eddytools. The approach however, is semi-automatic as the domain knowledge is exploited to analyze and refine the

output of each step, and provide more information for achieving meaningful event logs.

3.3.3 | XOC Event Log Format

Li et al. (2018b) developed the eXtensible Object-Centric (XOC) event log format, as an alternative to XES. It lifts the
assumption of existence of a case notion in the log to avoid flattening the data. As a result, there is no trace which
events are grouped into it. Instead, events are related to each other based on objects (data elements) and their relation.
XOC logs contain five elements for each event. event identifier, event type, object references (modified objects by
the event), object model (objects and relations), and event ordering. In order to extract event data, domain knowledge
is required to identify event types to link events to database changes. XOC Log Generator is a plug-in in ProM which
automatically extracts XOC logs from redo logs or change tables of databases, after relevant event types are specified
using domain knowledge.

Based on XOC logs, data-aware models in a novel modelling notation called OCBC (Object-Centric Behavioral
Constraint) can be discovered. These models combine the data model, consisting of data object classes, and relations,
with the process model, including activities and behavioral constraints expressed in a declarative model (Declare
(van der Aalst et al., 2009)). Declarative models are constraint-based, that instead of explicitly modelling the ordering
between activities, define constraints which implicitly imply possible ordering of activities in the model. These OCBC
models can then be exploited for conformance checking to reveal deviations with regard to the related data which
could not be detected previously. These OCBC models discovered from XOC logs include relationships between
objects capturing one-to-many and many-to-many relations. However, they can be difficult to interpret as they do
not have a process instance notion, and have constructs different than the procedural modelling notations (e.g. BPMN).
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TABLE 2 Overview of event data extraction approaches (ordered based on their main focus)

Authors (Year) Approach Main Focus Input Output Limitations
. requires manual annota-
. text mining ranked . L
Wang et al. (2012); Li et . 3 . tion and validation of
on process event identification process documents tables of )
al. (2015) meaningful text compo-
documents databases
nents
ProM -
Giinther and van der 5 limited to a number of
Import event log conversion PAIS logs MXML
Aalst (2006) PAISs
Framework
) knowledge and time in-
Ingvaldsen and Gulla EVS Model event log extraction and user defined meta- ) i
. A - . MXML tensive conversion and
(2007) Builder conversion of SAP description (mapping) . .
mapping definition
event log extraction . Knowledge and time in-
Verbeek et al. (2010); . domain model + map- . .
. XESame (query generation) and . . XES tensive conversion and
Buijs (2010) ) ping definition . .
conversion mapping definition
X event identification and records of table joins are naive assumption on
Rodriguez et al. (2012) eventifier ) . XES . ) .
extraction considered as events event identification
OBDA- . L
Calvanese et al. (2016, ) domain model + event manual and time inten-
based event log extraction ) i XES ) ) "
2017c,b) annotation + mapping sive mapping definition
(onprom)
) ) redo-logs of databases
redo-log- databases with no histor- event ) )
van der Aalst (2015) . + data model + event no implementation
based ical data logs
model
) 5 . duplicate events across
de Murillas et al. (2015, redo-log- databases with no histor- redo-logs of databases + .
) XES traces, accessibility and
2017b) based ical data data model o
availability of redo-logs
limited to discovering
) . 3 database  schema + XES (for ) X
. artifact- dealing with many-to- ) artifact life-cycle models
Nooijen et al. (2012) K . schema log mapping each . ) .
centric many relations . . neglecting interaction
(automatic) artifact) )
between artifacts
rifact Dealing with one-to- database  schema + limited to discovering in-
artifact-
Lu et al.(2015) . many and many-to- schema log mapping XES teraction between two
centric
many relations (semi-automatic) artifacts
preserving data perspec-
X . ) ad-hoc  adapters re-
de Murillas et al. (2018) OpenSLEX tive, and extracting logs data model XES .
o . quired for new systems
with different views
dealing with many-to-
) XOCllog cre- many relations, and limited to discovery of
Li et al. (2018b) ) ) redo logs/change tables XOoC
ation preserving data perspec- OCBC process models

tive

Table 2 provides an overview of the extraction approaches. Despite the efforts for automating extraction of
event data from databases, no fully automated approach exists to date. Although, many approaches automate the
generation of queries, most approaches rely on domain knowledge to identify event data in the database. Several
approaches also attempt to mitigate the problem caused by many-to-many relations and propose novel approaches
and modeling notations to achieve this. However, overcoming this issue, while discovering an end-to-end process

model in the conventional process modeling notations such as BPMN or Petri net remains a challenge.
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4 | EVENT CORRELATION

Event correlation aims at associating event data extracted from data sources to cases of a business process. Thereby,
the vast majority of approaches pursuing this endeavor agree on the assumption that each event will be correlated to
a case, but there may be differences regarding the information exploited to achieve the correlation. For example, only
information about the event name may be used (Ferreira and Gillblad, 2009), but also additional event attribute values
(such as timestamps) (Motahari-Nezhad et al., 2011), and even the corresponding process model (Bose et al., 2013)
are consulted. This is illustrated in Figure 5. Therefore, in the following we will describe event correlation approaches
from the literature and emphasize what event attribute information they rely on, and whether or not they assume an
existing process model whose instances the events are to be correlated with. Also, limitations of the approaches are

mentioned.

Event Event Event Process  Further Domain
Correlation: Names Attributes Model Knowledge

| >

Richness of Incorporated Information

FIGURE 5 The spectrum of event correlation techniques.

A probabilistic approach to correlate events with process instances as well as discovering a process model is de-
scribed in (Ferreira and Gillblad, 2009) based on Markov chains and an expectation-maximization technique (Dempster
et al.,, 1977). This approach only requires the ordered event log with event names as input. From that information, it
estimates an initial transition probability matrix that gives for each pair of events a probability that one follows the
other. Given that matrix, it can assign an event to a process instance by choosing the instance whose last event is
most likely to be followed by the current event. Note that it may also be the case that the current event is most likely
to start a new instance or terminate a running instance. After all events have been assigned to a process instance,
the estimate of the transition probability matrix can be improved, and the events can be reassigned based on the
improved matrix. This procedure is iterated until the matrix and the event assignment do not change anymore. The
approach, however, is unable to deal with existence of loops and parallelism.

Walicki and Ferreira (2011) provide a sequence partitioning approach to derive a set of partitions that represents
the minimum cover of the unlabeled log. The input to that approach is a stream of events missing case identifiers
which are then clustered into traces by applying sequence partitioning. Their method only requires the event names
and orderings. Again, it is unable to deal with loops and parallelism.

Pourmirza et al. (2015) tackle the correlation problem by simply mining models from logs without relying on case
identifiers. Therefore, even after a model was discovered from the log, there will still be no information about which
event in the log belongs to which process instance. This approach only relies on event names and timestamps in
the log, no additional event attributes are required. The idea is based on orchestration graphs, as for example used
by the process mining tool Disco (Gunther and Rozinat, 2012). Those graphs consist of nodes that correspond to
events in the log and directed edges between those nodes. Each node is associated with the number of times the
corresponding event was observed in the event log. In the same way each edge is annotated with the number of
times the corresponding transition was taken. Finally, the number of incoming and outgoing transition counts of a
node must be equal to the count that is associated with that node. Based on those constraints, several orchestration
graphs can be generated from the log. The generated orchestration graphs are assigned a score based on two metrics.

On the one hand, a precede/succeed score indicates how many times an event has occurred before another event in
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the log. If this score is high, it is likely that there is a corresponding edge in the process model. On the other hand,
a duration score indicates the time difference between two events. If this score is low, it is also likely that there is
an edge between the two events in the model. In the end, integer linear programming is used to find the optimal
orchestration graph. Still, loops are not supported.

In (Motahari-Nezhad et al., 2011) the authors propose an approach to associate events from different data sources
belonging to the same case based on correlation conditions. Such conditions are formulated in reference to the attribute
values of the events. In simple cases one can compose conditions from identifier attributes of the events, for instance,
events may have the same OrderID. However, also more complex correlation conditions are conceivable that consist
of conjunctions and/or disjunctions of attribute values. An example for this is given in (Engel et al., 2016, 2013) where
authors correlate EDI messages using their OrderID and ItemID. However, those approaches do rely on a conceptual
diagram, such as an entity-relationship model, to link events from different data sources. Similarly, (Burattin and Vigo,
2011), relate different activities to the same process instance via the identification of relations among their attributes.
Such relations are simply established by matching the attribute values of the different activities. This method highly
relies on user-defined parameters, though, for instance, the number of events in a case.

Motahari-Nezhad et al. (2011) furthermore suggest a method to automatically derive those conditions on the
basis of their “interestingness”. For example, an attribute is not interesting for correlation if it is unique for every
event since that would lead to one process instance per event. Similarly, attributes with very small domains such as
Booleans will not be particularly useful for correlation either. Hence, only attributes that have a good ratio of distinct
values across the event log are considered for correlation conditions. Also, the correlation condition should not cause
the log to be partitioned into very few long instances or into a very high number of short instances. Relying on such
heuristics different types of log partitions (i.e., event correlations) can be proposed, that may then be validated by a
domain expert.

In (Beheshti et al., 2011) that approach is further developed with an extension of the query language SPARQL so
as to partition events in logs into groups and paths, in order to facilitate the discovery of event correlations.

Another extension of the above technique is proposed by Pérez-Castillo et al. (2014), in which authors also dis-
cover correlation sets over attributes from events. This work, however, makes use of additional external knowledge,
namely the source code, which is extended in order to collect events during their execution, together with potential
event correlation attributes, defined by domain experts. Afterwards, the approach of Motahari-Nezhad et al. (2011)
is applied to correlate events with process instances. Obviously, a limitation of this technique is that it requires access
to the source code for event logging.

Rozsnyai et al. (2011) determine correlation candidates by calculating various statistics on the event attribute
values. Those statistics include, for instance, the size of the attribute’s domain, a count for how many times each
value of the domain is encountered in the data, and the total number of instances in which the attribute occurs.
Based on such statistics, correlation pairs are determined automatically, ranked by a confidence value. For example,
if an attribute value occurs more than a certain number of times, it is unlikely that it can be used for correlation. Note
that this is similar to the ratio of distinct values determined by the approach of Motahari-Nezhad et al. (2011).

In (Reguieg et al., 2012) and (Reguieg et al., 2015) a MapReduce-based approach is described that is supposed to
discover correlation conditions from big process data. The authors also intend to automatically discover atomic and
conjunctive/disjunctive correlation conditions, using the same metrics as Motahari-Nezhad et al. (2011). However,
they make this approach more efficient by generating all possible candidate conditions and partitioning them over the
network. This way, all potential correlation conditions can be processed in parallel. This, however, results in a huge
amount of network traffic. Therefore, the idea of parallel processing of potential correlation conditions was further

continued by Cheng et al. (2017), including a filtering step in the procedure to prune a large number of uninteresting
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rules. Therefore, not all potential correlation conditions are examined but only those that fulfill certain criteria will be
sent over the network for parallel processing.

Abbad Andaloussi et al. (2018) assume that the case id is a hidden attribute inside the log. After filtering out
attributes that have a low probability to be the case id because they contain many distinct values (such as an event
id), for each of the remaining attributes they assume that it is indeed the case id and discover a process model based
on this assumption. The attribute that yields the best model according to the known control-flow quality dimensions
of process mining is then suggested as the case id. Due to the iterative nature of this approach, with large event logs
there is a possibility of memory overhead. They propose to use a sample of the log to avoid this issue. However,
the selection of an optimal sample size is a challenge. Their evaluation shows that in case of small sample size the
accuracy drops and wrong case id candidates might receive good scores. They suggest, however, as future work that
heuristics or domain knowledge can be used to filter out unlikely candidate attributes.

In (Bose et al., 2013) authors correlate events relying on both attribute values from an event log and a process
model represented in the declarative process modeling language Declare (van der Aalst et al., 2009). Two events are
considered to be correlated if they, for example, share common data objects of the process or if they are executed
by the same resource. In that way, correlation candidates are determined, which are then filtered with the help of
the temporal logic constraints on the corresponding events formulated in the Declare model: If a fulfilled constraint
of the Declare model can be observed in a trace and additionally the potential correlation is true in that trace, then
the correlation’s significance is increased. This approach actually does not produce a correlated event log. Rather, it
enhances an existing Declare map.

In (Bayomie et al., 2016b) the authors correlate events to cases using the names and completion timestamps
of the events. Furthermore, they employ the corresponding process model containing activities that have the same
name as the events, and heuristic information about the execution duration of the activities in the model. From the
process model the authors are able to compute a behavioral profile (Weidlich et al., 2011) that defines for every pair of
activities in the model whether they occur in sequence, in parallel, in reverse order, exclusively, or in no order. On the
basis of the behavioral profiles and the execution times, the authors can then label the event log with case identifiers.
For example, from the behavioral profile they can derive which events can and cannot appear in the same case, and
in which order. Further, from the completion timestamps and the average execution durations, they can refine the
correlation, by excluding events from a case whose average duration would contradict the timestamps of the case.
In (Bayomie et al., 2016a) the approach is extended with a pre-processing and a filtering step to account for cyclic
process models containing loops. However, in this approach the quality of the output is sensitive to its input. For
example if the process model contains activities or activity relations different than in the log, the output labeled log
will contain noise or missing events.

In (Mannhardt et al., 2015) the authors enrich existing event logs with supplementary events from other data
sources. While the existing event log contains case identifiers, the events from the additional sources do not, and
need to be correlated with the existing events. To do so, the approach requires as another input, the process model
corresponding to the existing event log, which should be specified as a data Petri net (DPN) (de Leoni et al., 2014).
DPNs are an extension of Petri nets with transitions that can read and write variables. Therefore, transitions may
have expressions over the variables attached to them (called guards) that must be fulfilled in order for the transition
to be enabled. Also, the transitions may update the variables. Given a process model specified as a DPN and the
corresponding event log, the authors compute alignments (Mannhardt et al., 2016) between those two artifacts. An
alignment essentially matches each event of a trace with its corresponding activity in the process model. In this way it
is possible to find out if there are activities in the model that were not recorded in the event log. The objective is then

to find those missing events in the additional event sources. For each missing event three steps are executed: First, all
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the events that correspond to the missing event are searched for in the additional sources. Second, the found event
set is filtered for events that have compatible timestamps with the events in the trace under investigation. Third, the
filtered event set is further filtered by excluding events that do not conform to the data requirements specified by
the DPN together with the trace under investigation. This should give a small set of candidate events that may be
correlated with the trace missing that event. In general, in the model-based approaches the accuracy and reliability of
final result depend on the quality and fitness of the model. If the model contains many different behavior or activities
from the event log the approaches may produce noisy or incorrect logs with missing events.

Data correlation is also a topic in the context of discovering artifact life-cycles, such as in (Nooijen et al., 2012;
Popovaetal.,2015; Luetal., 2015). The life-cycles of artifacts are assumed to be related to potentially multiple process
instances, such that the discovered processes are called artifact-centric. The main challenge of such approaches is the
discovery of the artifacts around which the process is centered. The events can then be correlated to an artifact via
primary key-foreign key relationships. In this paper, however, we consider an activity-centric setting as described
in Section 2.1 and Section 2.1, requiring different approaches to correlation since the events cannot be related to a
central artifact.

Li et al. (2018a) correlate events extracted from service-oriented systems (such as ERP and CRM systems) via
object paths. The events are extracted from various data sources, for example, from the redo logs of the databases,
which essentially record the history of database changes, also referring to the objects that were changed. Since objects
in the database are related to each other via primary/foreign keys, the authors are able to correlate events of the redo
logs by means of so called objects paths. An object path is a sequence of objects in which adjacent objects are related
to each other. Therefore, if redo events refer to the objects in the same object path, they must be related to each
other. The assumption here is that the events extracted from the data sources can always be related to some database
object. Note that in this case events are not further grouped into traces. The method described in (de Murillas et al.,
2015; de Murillas, 2019), however, allows to generate different sets of cases by defining particular case notions on
the basis of data relations in the data model. A case notion defines which events should be part of the same trace by
determining database objects that all the events must refer to directly or indirectly via primary/foreign keys relations.

Table 3 summarizes the approaches described in this section. It not only lists which pieces of information of the
spectrum of Figure 5 they include, but also specifies their outputs and limitations. In summary, event correlation
approaches that are able to deal with real-world data and processes make strong assumptions about the availability
of extra information in addition to raw events. For example, the data must come from databases with an underlying
data model, or an existing process model must be available that perfectly fits the data. This cannot be guaranteed in
every situation such that those approaches lack the flexibility to be universally applicable.
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TABLE 3 Overview of event correlation approaches (ordered based on the incorporated information as outlined
in Figure 5)

Further
Event Event Process . .
Authors (Year) ) Domain Output Limitations
Names Attributes Model
Knowledge
Ferreira and Gillblad correlated no support for paral-
yes no no no .
(2009) events lelism/loops
Walicki and Ferreira correlated no support for paral-
yes no no no 5
(2011) events lelism/loops
. yes (times- process
Pourmirza et al. (2015) yes no no no support for loops
tamp) model
Motahari-Nezhad et conceptual di- correlated requires conceptual dia-
yes yes no
al. (2011) agram events gram
correlated limited to EDI message
Engel et al. (2013, 2016) yes yes no no
events events
) ) correlated dependent on user-
Burattin and Vigo (2011) yes yes no no
events defined parameters
) conceptual di- correlated requires conceptual dia-
Beheshti et al. (2011) yes yes no
agram events gram
Pérez-Castillo et correlated X
yes yes no source code requires source code
al. (2014) events
. correlated X
Rozsnyai et al. (2011) yes yes no no requires large data set
events
Reguieg et al. (2012, correlated .
yes yes no no high network traffic
2015) events
correlated requires event data parti-
Cheng et al. (2017) yes yes no no -
events tioning
Abbad Andaloussi et correlated memory overhead possi-
yes yes no no " o
al. (2018) events bility and sampling bias
enhanced
Bose et al. (2013) yes yes Declare no Declare no event log output
map
sensitive to the quality
Bayomie et al. (2016a, yes (times- . event data correlated of its input (e.g. a fitting
yes Petri net .
2016b) tamp) constraints events process model and accu-
rate activity durations)
. assumes existence of a
data  Petri extended ) .
Mannhardt et al. (2015) yes yes no main event log with case
net event log X )
identifier
extracted events must
; correlated
de Murillas et al. (2015) yes yes no data schema 0 be related to database
events
objects
extracted events must
. . correlated
Li et al. (2018a) yes yes no objects paths t be related to database
events

objects
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5 | EVENT ABSTRACTION

Techniques for event abstraction aim to bridge differences in the granularity at which data is recorded and at which
it shall be analyzed. In Figure 1, this step can be seen as the transition from data elements that reside in a data
store to the events that represent the execution of an activity and are correlated to traces in an event log. As such,
event abstraction can be seen as a way to assign semantics to data elements, by identifying which data elements
jointly describe the execution of an activity. Note though, that in the literature, data elements are often referred to
as low-level events, whereas the events that represent activity executions are called high-level events.

Process
. Models
Event Clustering Supervised ) )
Abstraction: Learning Behavioral ~ Further Domain
Patterns Knowledge

Richness of Incorporated Information

FIGURE 6 The spectrum of event abstraction techniques.

A general overview of the spectrum of approaches for event abstraction is given in Figure 6. We note that
approaches differ in the richness of the information that is considered as a starting point.

A first angle to approach the abstraction of data elements to events is to exploit techniques for clustering. Clus-
tering may simply be applied to all attribute values of data elements (Brzychczy and Trzcionkowska, 2018). Yet, for
real-world data, this can be expected to only support a semi-automated process to abstraction, as expert input on
relevant attributes and the exact cluster definitions is needed. Moreover, it was shown by Giinther and van der Aalst
(2006b) that clustering may in particular exploit the proximity of temporal information that is assigned to data ele-
ments. Here, the underlying assumption is that only data elements that are assigned timestamps which are close
to each other, qualify for being aggregated into a single event. Specifically, the approach considers the notion of a
sliding window over the timestamps of data elements to identify initial clusters for abstraction. The resulting clusters
are then refined based on further attribute values, e.g., by requiring the data elements to have the same values for
attributes that indicate originators or cases. Also, overlap among clusters is resolved, so that, eventually, one event is
derived per cluster. Note that similar ideas of aggregating elements based on their proximity may also be employed
on the model level (Gunther and van der Aalst, 2007), i.e., a model is discovered first from low-level data elements
and clustering is then applied for the vertices of the resulting graph.

Clustering of data elements has also been used in the context of feature engineering for predictive models, see
van der Aalst et al. (2011); Folino et al. (2014, 2015). When aiming to learn a predictive model from historical data
recorded for a process, the construction of features from sets of data elements can be seen as a form of event ab-
straction. However, the goal of this abstraction is not the precise determination of an event that denotes an activity
execution, but rather the construction of features with high predictive power.

Data elements may also be clustered based on linguistic analysis of the labels assigned to them. Based on the
observation that process-related data is often referring to actions that are applied to objects, the identification of
these actions and objects (i.e., the verbs and nouns in labels) using techniques of Natural Language Processing (NLP)
provides an angle to construct clusters (Richetti et al., 2014). Elements are grouped based on semantic relations, such
as hypernymy, by employing common measures for the semantic distance between terms.

Beyond clustering, techniques for supervised learning may be used for event abstraction. Specifically, Tax et al.
(2016a) and Tax et al. (2016b) showed how to phrase event abstraction as a sequence labeling problem. Then, features

are defined that relate to some ordering of data elements, organizational information attached to them, or temporal
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aspects. Given some labelled training data, Conditional Random Fields are learned to obtain a probabilistic mapping
of data elements to events, i.e., to activity executions is learned. A similar idea is followed by Fazzinga et al. (2018b),
who suggest to train a Hidden Markov Model where the hidden states are events that denote activity executions,
while the observations are given by the data elements.

Another set of techniques proposes event abstraction based on behavioral patterns. Assuming that data elements
are ordered (e.g., by a timestamp) and partitioned into traces (e.g., by a case attribute), the regularities in sequences
of data elements may be analyzed to identify candidates for abstraction. Bose and van der Aalst (2009) provide a
taxonomy of behavioral patterns for event abstraction. For instance, they define patterns based on the repetition of
(approximate) sub-sequences of data elements, which may originate from choices or concurrency as part of loops in a
process. Such patterns may be detected within the sequence of data elements that belong to a single case, or among
those of different cases. In any case, the detection of these patterns, along with an evaluation of their significance,
facilitates event abstraction: The respective pattern occurrences denote events and represent the execution of an
activity. Various extensions of this general idea have been proposed. In particular, the relations between patterns,
i.e., whether one pattern covers another pattern, as well as measures to assess the frequency and significance of
patterns have been proposed (Li et al., 2011; Bose et al., 2011). Based thereon, fine-granular control on the selection
of patterns to use for event abstraction is achieved.

A richer notion of patterns has been proposed by Mannhardt et al. (2018) for event abstraction. That is, activity
patterns capture common behavioural structures that denote activity executions. Unlike the aforementioned patterns,
activity patterns are semantically richer as they are defined using common process modelling approaches. Assuming
that data elements are ordered and partitioned according to cases, activity patterns may specify not only sequential
ordering of data elements, but also exclusive choices, concurrency, and repetitions. From a set of these activity
patterns, a so-called abstraction model is then derived by defining further control-flow between them. Sequences
of data elements may then be aligned with this abstraction model by constructing a matching between the data
elements and the activity patterns. The elements that are matched to the same pattern are then subject to abstraction
and vyield a single event, which represents the execution of an activity or a transition in the life-cycle of transition
execution (e.g., its start or end). While this approach enables event abstraction based on activity patterns that have
been manually defined by domain experts, it may also be combined with approaches that discover frequent process
model fragments (Mannhardt and Tax, 2017). This way the above idea of frequent sub-sequence mining for event
abstraction (Bose and van der Aalst, 2009) is lifted to the richer notion of activity patterns. Moreover, it was argued
that supervised techniques for pattern-detection shall be combined with unsupervised ones (e.g., based on clustering
as mentioned above) when aiming at the identification of patterns among data elements (Lu et al., 2017), thereby
achieving a more interactive approach of event abstraction.

Instead of going the path via model synthesis, a process model may also directly be used for event abstraction.
Baier et al. (2014, 2018) show that such a process model, along with accompanying documentation, provides a starting
point for abstraction based on textual analysis. That is, data elements are correlated with the activities of a process
model based on the similarity of their assigned labels, which potentially involves linguistic analysis using techniques
for NLP as mentioned above. Moreover, context information, e.g., in terms of ordering constraints that are imposed
between the data elements, is exploited to reduce the number of possible matches. While these approaches support
event abstraction, they cannot be completely automated though and require manual intervention. Neglecting tex-
tual information and focusing on ordering constraints, Fazzinga et al. (2018a) presented an approach to relate data
elements to (a set of) process models. They show how to assign probabilities to different interpretations of data
elements in terms of activity executions (of potentially even different processes).

Model-based approaches may also be combined with an analysis of patterns among the timestamps, and thus,
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ordering of data elements. In Ferreira et al. (2014), for instance, event abstraction was phrased as a mapping problem
between sets of data elements and events that represent executions of activities in a model. Construction of such a
mapping shall not only consider the control-flow constraints imposed by the model, but be based on common patterns
among the data elements, assuming that these patterns indicate a meaningful scope for abstraction.

Lastly, comprehensive domain knowledge on the context of process execution provides a valuable source of in-
formation for event abstraction techniques. A prime example here is the approach proposed by Senderovich et al.
(2016). It first relates data elements that have been recorded for different resources. Based on temporal and spatial
information assigned to the data elements, intervals of interaction between resources are determined. These inter-
actions are then matched to events, i.e., activity executions with the help of domain knowledge, e.g., on common
execution times of certain activities (and, thus, lengths of the respective intervals), the involvement of certain types of
resources in activities, or the ordering of several different activities for specific resources. As such, domain knowledge

provides a set of constraints to optimize a matching between sets of data elements and events.

TABLE 4 Overview of event abstraction approaches (ordered by the richness of the incorporated information as
outlined in Figure 6)

Authors (Year)

Brzychczy and  Trz-
cionkowska (2018)

Giinther and van der
Aalst (2006)

van der Aalst et al
(2011); Folino et al.
(2014,2015)

Richetti et al. (2014)

Tax et al. (2016b); Tax et
al. (2016a)

Fazzinga et al. (2018b)

Bose and van der Aalst
(2009); Li et al.(2011);
Bose et al. (2012)

Mannhardt et al. (2018);
Mannhardt and  Tax
(2017)

Baier et al. (2014,2018)

Fazzinga et al. (2018a)

Ferreira et al. (2014)

Senderovich et al.(2016)

Leonardi et al. (2017)

Approach

clustering based on attribute values

clustering based on temporal proxim-

ity and attribute values

learning of compound features that

induce abstraction

group elements based on linguistic
relations and textual, semantic dis-
tances

supervised sequence labeling to
learn a function that maps elements

to events

training of a Hidden Markov Model
to derive events

identify frequent sequential patterns

for abstraction

abstraction based on predefined or
mined activity patterns

abstraction based on textual match-
ing of event data and process model

abstraction using matching of pro-
cess models and event data based on
ordering constraints

combined model-based abstraction

with temporal analysis of data

identify events based on spatial data

abstraction based on a given domain
ontology

Input

relational data

timestamped data elements

data that is labelled for a prediction
task

textual data

data elements labelled with events

labelled data elements

sequential data

activity patterns or labelled data

process models and textual event
data

process models and sequential data

timestamped data and process model

spatial data of resources and domain
knowledge on possible activities
mapping of data elements to ontol-
ogy

Main Assumption/Limitation

requires domain knowledge on relevant at-

tributes,  semi-automated construction of

clusters

temporal information needs to indicate abstrac-

tion

tailored to the setting of predictive analytics

data carries labels that are amendable to linguistic
analysis

multivariate data that enables the derivation of
useful features

abstraction must follow a state-based, Markovian

model

assumption of events materializing as repetitive

patterns

predefined patterns are assumed to be given or
assumed to be frequent for mining

assumes a strong link between the model and
data, as well as user input

ordering is assumed to characterize abstraction

strong link between model and data is assumed

tailored to data of real-time locating systems

domain ontology and contextual rules need to be
known
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In the same vein, it was suggested to first map data elements to elements of a formal ontology that describes the
domain (Leonardi et al., 2017). Based thereon, rules to select among different interpretations, i.e., different abstrac-
tions, of these data elements are exploited. Those encode context, for instance, as ordering constraints for activity
executions. In a final step, data elements are abstracted into a single event, if they are assigned consecutive times-
tamps and if the rules selected the same abstractions for them.

Recently, Koschmider et al. (2018) argued that such contextual information provide a rich basis for the event
abstraction. In particular, a classification of context factors to consider has been developed, featuring personal and
social context, task context, environmental context, and spatial-temporal context.

Table 4 provides an overview of the event abstraction approaches. The approaches range from using clustering
techniques to behavioral patterns, or even existing process models. As can be observed from the table, the approaches
operate on different inputs, make different assumptions, and are exposed to certain limitations. Depending on the

problem settings and available information, certain approaches become relevant.

6 | CONCLUSION

Creating event logs from data residing in various information systems, enables the application of process mining
to extract meaningful knowledge and insights on the behavior of these systems and the underlying processes. By
discovering and analyzing end-to-end processes, this knowledge can trigger substantial improvement in the design
and performance of systems and business processes. In an event log, events are recorded reflecting the execution of
activities, and are related to specific instances of running processes, and thereby grouped into traces. However, in
most systems, data is not recorded in the suitable way for process mining. Therefore, to extract and transform this
data from a variety of data sources with different characteristics, to the event log format required by process mining
techniques, several challenges have to be overcome. This article provides a comprehensive review of the techniques
introduced in the academic literature to support the three steps towards the creation of event logs from raw data,
in order to present the state-of-the-art, and encourage future work in this crucial and challenging phase of process
mining. These three steps are, event data extraction, correlation, and abstraction.

Databases of most information systems such as ERP or legacy information systems are not process-aware and
do not record events explicitly. Therefore, techniques need to be developed to identify relevant event data in these
databases, extract and transform them. These techniques normally involve various manual steps and rely on the
knowledge of the database and the domain. To support the domain expert, to automate this process as much as
possible, and to decouple the database knowledge and the domain knowledge, several event data identification and
extraction techniques have been developed. A number of these techniques rely on defining a domain model, which
represents the domain of interest, an event model, which enriches the domain model by event information, and a
mapping specification, connecting these models to event data and databases.

The extracted event data needs to be correlated to specific instances of processes and grouped into respective
traces to enable the analysis of end-to-end process executions. This correlation is not trivial when a clear notion of a
process instance is not available or events come from sources in which correlation is non-existent. Correlation tech-
nigues have been proposed depending on the available information, ranging from event attributes, available process
models, or relations between data.

Events in event logs also need to relate to activity executions. Therefore, data extracted from data sources need
to be mapped to respective activities. In case low-level events are recorded (for example, by sensors, devices , X-

ray machines), they need to be grouped and abstracted to a higher level of granularity to reflect activity executions.



Diba et al. 25

Abstraction techniques range from clustering, supervised learning techniques to behavioral patterns. Abstraction
techniques bridge the granularity gap between recorded data and that of required by process mining.

The approaches to date are subject to a number of limitation. Often they make strong assumptions or depend
on the domain expert to provide the necessary information. In the context of event data identification and extraction,
in spite of various works, a fully automatic approach is missing and most approaches rely on domain knowledge. The
distinct characteristics of various existing data sources is one of the main obstacles for an automatic generic approach.
Studying and analyzing different types of system and their characteristics can lay the foundation for the design of
a generic approach. Besides, a number of problems caused by the nature of data storage, in which the required
data is stored and relates to other data objects remains unsolved. Many-to-many relationships cause the problem of
convergence and divergence in event logs. Although, approaches preventing these problems have been developed,
the problem is not fully avoided, or new and often complicated process modellings languages are used. Preventing
this issues for more conventional process models requires further investigation. Moreover, events might be recorded
in different levels (parent-child relations between tables e.g. order vs. order line). This can lead to incorrect result
(incorrect sequence relations) if they are mixed in an event log. New approaches capable of handling this problem are
required (e.g. Multi-level process mining).

Event correlation approaches often make strong assumptions about the availability of extra information in addi-
tion to raw events, to guide the correlation. Domain knowledge is also required for a number of these approaches.
Besides, many of the approaches have problems with scalability when it comes to large scale projects. In terms of
event abstraction more empirical evaluations and comparative studies will be beneficial to evaluate and compare the
performance of the different approaches. The potential of using approaches from the area of Complex Event Process-
ing (CEP) (Soffer et al., 2018) as a basis for abstraction of event data is an interesting area for further future work.
One interesting direction for future work on event log creation is studying the possibility of combining a few of the
approaches from different areas to create an end-to-end and generic solution for event log creation from raw data of
different data sources. A number of the approaches can potentially be combined leveraging the ideas and techniques

developed separately, in an integrated manner.
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