
Privacy-and-Utility-Aware Publishing of Schedules
Maike Basmer1, Stephan A. Fahrenkrog-Petersen1,2, Ali Kaan Tutak1, Arik Senderovich3,

Matthias Weidlich1

1Humboldt-Universität zu Berlin, Unter den Linden 6, 10117 Berlin, Germany
2Weizenbaum Institute, Hardenbergstraße 32, 10623 Berlin, Germany

3York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
{basmermo,fahrenks,tutakali,matthias.weidlich}@hu-berlin.de

sariks@yorku.ca

Abstract

Scheduling is adopted in various domains to assign jobs to re-
sources, such that an objective is optimized. While schedules
enable the analysis of the underlying system, publishing them
also incurs a privacy risk. Recently, privacy attacks on sched-
ules have been proposed, which may reveal sensitive infor-
mation on the jobs by solving an inverse scheduling problem.
In this work, we study the protection against such attacks. We
formulate the problem of privacy-and-utility preservation of
schedules, which bounds both, the privacy leakage and the
loss in the utility of the schedule due to obfuscation. We ad-
dress the problem based on a set of perturbation functions for
schedules, study their instantiations for standard scheduling
problems, and implement privacy-and-utility-aware publish-
ing of a schedule using constraint programming. Experiments
with synthetic and real-world schedules demonstrate the fea-
sibility, robustness, and effectiveness of our mechanism.

1 Introduction
By assigning resources to tasks while incorporating a certain
objective, schedules enable the efficient utilization of scarce
resources (Pinedo 2016). Consequently, they are employed
in a variety of domains, such as healthcare, production, or
service industries. Reflecting the underlying processes and
decisions, they lend themselves to analysis and data min-
ing (Harding et al. 2005; Li and Olafsson 2005), which pos-
sibly entails sharing them with third parties.

Publishing schedules, however, holds the risk of exposing
sensitive information. In particular, an adversary may link
knowledge of the environment constraining the scheduling
outcome with the published schedule to infer private prop-
erties of the jobs (Fahrenkrog-Petersen et al. 2023). Due to
legal regulations, economic implications, and ethical con-
siderations, it is essential to counteract the threat of privacy
leakage from schedules. At the same time, the publishing of
schedules shall still be facilitated, for operational manage-
ment and the improvement of the underlying system.

As a real-world example from healthcare, taken up again
in our evaluation, consider the scheduling of infusions in
a clinic, see Fig. 1. The schedules are guided by priorities
that emerge from factors such as the patients’ medical con-
ditions, and optimize the total weighted completion time of

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

publish
schedule

share
analysis results

Clinic

Consulting Firm

(possibly
perturbed)

attend

Schedule Analysis

create optimal
 schedule

use
scheduleInfusion Schedule

Patients

Figure 1: Healthcare example for schedule publishing.

treatments. To optimize the operational processes, the clinic
shares schedules with an external consulting firm, which an-
alyzes the impact of operational decisions on performance
indicators (e.g., wait time, resource utilization). Although
the priorities that encode sensitive information on patients
are not published with the schedule, they may potentially be
reconstructed through an inverse scheduling attack.

We set out to address this challenge by an approach for
the release of schedules that preserves the undisclosed char-
acteristics of jobs, while maintaining the utility of the sched-
ule in terms of the properties that are deemed relevant for
some analysis. Based on a formal characterization of the
problem, we propose perturbation functions for schedules,
explore their instantiation, and operationalize our approach
to publishing of schedules using constraint programming.
Specifically, we make the following contributions:

• We define the problem of Privacy-and-Utility Preserva-
tion (PUP) when releasing schedules. Given a schedule,
this problem points to the existence of a transformed
schedule that satisfies a privacy loss threshold, in addi-
tion to a utility loss threshold.

• We instantiate the PUP with a set of perturbation func-
tions for schedules; and study them for two well-
established scheduling problems for parallel machines:
the minimization of (i) the total weighted completion
times and (ii) the makespan for jobs with release dates.

• To solve the instantiated PUP, we provide a formulation
using constraint programming. It exploits the neighbor-
hood of a schedule as induced by the perturbations.

We experimentally demonstrate the feasibility of our pertur-
bation functions: We solve the PUP for 58-80% of synthetic
schedules, and 20-83% of real-world schedules from a med-
ical clinic. We also highlight the effectiveness of the PUP:
Important analytical properties of schedules are preserved,
even when they are not incorporated in the utility function.

2 Related Work
2.1 Privacy Models
Various models for privacy in data publishing have been pro-
posed (Fung et al. 2010). Some limit the success rate of link-
age attacks by hiding individuals in groups (Sweeney 2002;
Samarati 2001; Machanavajjhala et al. 2007). In contrast,
differential privacy defines limits on the impact that one in-
dividual has on the published data (Dwork 2006). While dif-
ferential privacy represents a privacy guarantee for release
mechanisms, often operating on aggregations and achieved
by adding random noise, we explore the protection of a pub-
lic schedule with individual jobs that shall be preserved.
To achieve a given privacy notion, generalization, suppres-
sion, and perturbation are common anonymization opera-
tors (DeSmet and Cook 2021). Privacy concerns have also
found their way into related domains dealing with sequen-
tial or graph data, such as process mining (Mannhardt et al.
2019) or social network analysis (Majeed and Lee 2021).
Graph modifications like deleting/adding edges represent
structural changes to protect sensitive information (Casas-
Roma, Herrera-Joancomartı́, and Torra 2016; Liu and Terzi
2008) similar to ours, yet they target different attacks.

2.2 Scheduling and Inverse Scheduling
Scheduling concerns the sequencing of jobs and the allo-
cation of resources to them while optimizing for some ob-
jectives (Pinedo 2016). In contrast, inverse scheduling prob-
lems (ISP) adjust job parameters, to the least extent possi-
ble, such that a given sequence of jobs optimizes a prede-
termined objective (Brucker and Shakhlevich 2009). Koula-
mas (2005) also include a perturbation cost for each param-
eter to prioritize changes. In addition to altering the job pa-
rameters, Mou et al. (2015) allow for an adaptation of the job
sequence, but penalize the deviation. Particularly, minimiz-
ing the deviations from the original schedule is one of mul-
tiple objectives of the proposed ISP. To solve it, the authors
suggest a hybrid evolutionary search that applies genetic op-
erators targeting the processing times and the scheduling se-
quence. Genetic approaches have also been used in forward
scheduling, that similarly employ mutation operators like in-
sertion mutation, reciprocal exchange mutation, or shift mu-
tation to alter the sequence of jobs (Min and Cheng 1999;
Cheng, Gen, and Tsujimura 1999). Likewise, the privacy
protection framework proposed in this paper also alters a
given schedule along with the job parameters to satisfy an
objective while ensuring that the resulting schedule diverges
from the original one only to a predetermined extent.

3 Background
3.1 Parallel Machine Scheduling
We use [k] to denote the set {1, ..., k} for k ∈ N. Let
S = Rn × [m]n denote the universe of parallel schedules
with n ∈ N jobs and m ∈ N machines. A schedule s ∈ S
is a tuple of two n-size vectors (π, µ), where π denotes the
vector of starting times and µ represents the allocation of
machines, i.e., πj is the starting time of job j and µj is
the machine to which the job j is assigned (j = 1, . . . , n).

Adopting common notations, a parallel-machine scheduling
problem is a quintuple Π = (J,R,X,C(X), ϕ) where:

• J = [n] refers to the n jobs up for processing,
• R = [m] refers to the m machines (aka resources),
• X is an n×q matrix describing the job features, i.e., xj,k

denotes the k-th feature of the j-th job,
• C(X) ⊆ 2S encompasses the constraints, parametrized

by job features, that define a feasible schedule, and,
• ϕ denotes the objective function that is to be optimized.

Let SΠ ⊆ S refer to the set of feasible schedules for the
scheduling problem Π with respect to the constraints C(X),
i.e., SΠ =

⋂
c∈C(X) c. Also, by Xk, we denote the feature

domain of feature k ∈ [q]. In this work, we assume that ϕ is
a regular objective function, i.e., it is non-decreasing in job
completion times, which leads to feasible schedules without
unnecessary delays and idle times (Pinedo 2016).

Furthermore, we assume that some features of jobs are
published, whereas others remain private. Hence, there are
two submatrices Xpriv and Xpub of X , with dimensions
n × qpriv (qpriv < q) and n × qpub (qpub = q − qpriv),
s.t. X = [XprivXpub]. Let Xpriv and Xpub denote the
domains of valid private and public feature matrices, i.e.,
∀ X ∈ Xpriv, j ∈ J, k ∈ [qpriv] : (x)jk ∈ Xk (analogously
for Xpub). Further, let Π(Xpriv) be a parametrized schedul-
ing problem derived from the original problem Π, where
only the private features Xpriv and the constraints C(Xpriv)
depending on them vary, while the remaining parameters are
fixed. Then, given Xpriv and Π(Xpriv), a scheduling func-
tion f produces a schedule, while we write f(X) instead
of f(X,Π(Xpriv)), when the scheduling problem is clear
from the context. A scheduling function may yield an opti-
mal schedule (choosing one, if there are multiple candidates)
or approximate it for efficiency reasons, as discussed later.

3.2 Privacy Attack on Schedules
The features Xpriv may contain sensitive information such
as priorities in the healthcare example. Even if they are not
published, they influenced the creation of a schedule, so that
an adversary may try to infer them by an Inverse Schedul-
ing Attack (ISA) (Fahrenkrog-Petersen et al. 2023). Specif-
ically, given a schedule s ∈ SΠ, an adversary relies on par-
tial knowledge on the scheduling problem that was solved to
create s, namely the jobs J and machines R, the public fea-
tures Xpub like the job durations, the constraints C(Xpub)
depending on Xpub, and the objective function ϕ. While the
private features Xpriv are not available, the adversary is as-
sumed to be familiar with their domain, Xpriv . The adver-
sary expects that the published schedule s is an optimal or
approximated solution to Π(Xpriv), i.e., they make an as-
sumption on the scheduling function f . Then, they aim at
finding X ′ ∈ Xpriv , such that f(X ′) = s.

The result of the ISA is a set Y(s) = {X ′ ∈ Xpriv |
f(X ′) = s} containing candidate private feature val-
ues. Then, a distance-based privacy loss ξDist measures
the incurred information leakage, as follows. Let Y l

j,k be
the k-th feature of the j-th job in the l-th guess in the
candidate set Y. The guessed value Y l

j,k is compared to
the actual value xj,k using a distance measure, denoted

d(xj,k, Y
l
j,k), depending on the feature domain: the absolute

difference for numeric domains, and the discrete metric for
discrete domains. With p̂Y (x) as the frequency of value x

in the multi-set Yj,k = [Y 1
j,k, . . . , Y

|Y|
j,k] induced by the |Y|

guesses, the plain loss is derived by Lebesgue integration
as D(xj,k, Yj,k) =

∫
x∈Xk

d(xj,k, x)p̂Y (x) dx. Then, nor-
malization yields DN (xj,k, Yj,k) = D(xj,k, Yj,k)/D(xj,k,Xk)

with D(xj,k,Xk) =
∑

x∈Xk
d(xj,k, x)/|Xk| as the normal-

ization factor. The privacy loss is the max value over all
jobs and features, capturing the worst case, i.e., ξdist(s) =
maxj∈J,k∈[qpriv] (1−DN (xj,k)).

As such, if Y(s) is empty, then the loss is zero; with one
or more elements, the distances are computed accordingly.

3.3 Attacks on Specific Scheduling Problems
In the remainder, we consider two well-established schedul-
ing problems for n jobs over m identical parallel machines:
P ||

∑
j∈J wjCj , the minimization of total weighted com-

pletion times (TWCT); and P |rj |Cmax , the minimization of
makespan under release dates (MAKE). Here, available ma-
chines start available (released) jobs without delay.

In TWCT, each job j ∈ J has a weight wj ∈ Xw and pro-
cessing time pj ∈ Xp of domains Xw and Xp, respectively.
Thus, X is a two-dimensional matrix. The feasible schedules
Stwct are determined by two constraints: each job is sched-
uled once, and jobs do not overlap on a given machine. With
Cj as the completion time of job j, an optimal TWCT sched-
ule minimizes

∑
j∈J wjCj . The single-machine version of

the problem, 1||
∑

wjCj , is efficiently solvable using the
Weighted Shortest Processing Time (WSPT) dispatching
rule (Pinedo 2016). It sorts the jobs in non-decreasing order
of their ratios wj/pj . For more than one machine, the prob-
lem is NP-hard (Bruno, Coffman, and Sethi 1974). Yet, in
this case, sorting the jobs by WSPT and assigning them in
the order in which machines become available yields an ap-
proximation, with an objective value within (

√
2 + 1)/2 of

the optimum (Kawaguchi and Kyan 1986).
In MAKE, each job j ∈ J has a release date rj ∈ Xr (of

domain Xr) and processing time pj ∈ Xp, rendering X a
two-dimensional matrix. The feasible schedules Smake are
determined by the two above constraints, and those derived
from the release dates, i.e., the starting time πj of job j must
not be smaller than its release date rj , i.e., πj ≥ rj . An
optimal schedule minimizes the makespan, i.e., the maxi-
mal completion time maxj∈J Cj . While the problem is NP-
hard (Garey and Johnson 1978), it can be approximated with
a dispatching rule: Sorting jobs in non-increasing order of
their durations and assigning them in the order in which ma-
chines become available or jobs are released yields a 3/2-
approximation (Chen and Vestjens 1997).

Turning to the ISA, processing times p are publicly avail-
able (published or derived from the schedule for TWCT).
An adversary aims to find the weight vector w (for TWCT)
or the release date vector r (for MAKE). In our healthcare
example, these features may denote patients’ priorities and
their availability for treatments following preparatory steps,
both originating from sensitive medical diagnoses.

The attack on a schedule is framed as a constraint satis-
faction problem (CSP). The inputs originate from the pub-
lic schedule and the domain knowledge, the decision vari-
able represents possible assignments to the private features,
and the scheduling function f determines the constraints that
limit the space of variable assignments. Thus, the CSP for a
given schedule s = (π, µ) can be defined as follows:

Inputs: J set of jobs
π start times in s
p processing times
Xpriv priv. feature domains

Decision Var.: X ′ ∈ Xpriv private features

Constraints: f(X ′) = s

Output: Y(s) ∈ P(Xpriv) cand. priv. features
For TWCT, for instance, the CSP incorporates the weight
domain Xpriv = Xn

w as input, the weight vector w ∈ Xn
w

as decision variable, and a set of candidate weight vectors
Y(s) = W ⊆ Xn

w as output.
As mentioned, defining f to construct an optimal sched-

ule is NP-hard for TWCT and MAKE. To implement the
attack efficiently, in practice, an adversary adapts the above
CSP by approximating an optimal schedule. In that case, the
constraint f(X ′) = s is represented by a dispatching rule
for the considered scheduling problem. For TWCT, for in-
stance, the constraint represents the WSPT rule:

wj

pj
≥ wj′

pj′
∀ j ∈ J ∀ j′ ∈ succ(s, j)

where succ(s, j) = {k ∈ J | πj < πk ∧ ∄ j′ ∈ J : πj <
πj′ < πk} are the direct successors of a job j in schedule s.

4 Privacy-and-Utility Preservation Problem
In the light of the above privacy threat, publishing of a
schedule for operational analysis shall be done in a way that
protects private information about jobs. With an adversary
trying to infer the ‘true’ private feature matrix, the amount
of information disclosed is tied to the distance of the actual
private values to the feature values in the ISA solution set
Y(s). Hence, one may try to deceive the adversary by dis-
torting the schedule before publishing it.

Yet, when distorting the schedule, the utility of the pub-
lished schedule for legitimate analyses must be considered.
We quantify the potential negative implications of a distor-
tion for any analysis conducted on the published schedule by
a utility loss. To this end, let z : S → R be a function that
maps a schedule to real values capturing a property deemed
relevant for the analysis, such as the average waiting time.
We further define d : R× R → R as the deviation in utility
between two schedules, e.g., the absolute difference between
the average waiting times. Applying the distance measure to
the optimal schedule and the distorted schedule enables us
to quantify the utility loss for the analysis of the system. We
call χ(s∗, s) = d(z(s), z(s∗)) the utility loss function.

Using these notions, we define the Privacy-and-Utility-
Preservation Problem (PUP).
Problem 1 (PUP). Given a schedule s∗ ∈ SΠ, find a sched-
ule s ∈ SΠ, such that ξ(s) ≤ ϵ and χ(s∗, s) ≤ δ.

The two thresholds, i.e., the utility loss threshold δ and the
maximum privacy loss ϵ, are user-defined. The former de-
limits the maximal tolerable utility loss, e.g., for downstream
analysis, whereas the latter constrains the privacy loss.

Note that the complexity of the PUP depends on three as-
pects: the complexity of finding a feasible solution to Π′, the
complexity of computing ξ(s) (which can be hard, as it re-
quires obtaining the set of all solutions Y(s)), and the com-
plexity of computing the distance between z(s) and z(s∗).

5 Perturbation Functions
Since parallel scheduling involves sequencing jobs on the
corresponding machines, changing these sequences and ma-
chine allocations influences the outcome of an inverse
scheduling attack. Thus, perturbing the sequence and alloca-
tion of jobs lends itself to the PUP. Distorting job properties
may also serve as a perturbation mechanism, as those fea-
tures influence the inferences the adversary can draw. In this
part, we propose a set of perturbation functions that distort
published schedules to prevent the success of an ISA.

5.1 Definition of Perturbations
Let Π be a scheduling problem and s = (π, µ) ∈ SΠ be a
schedule with public feature matrix Xpub of dimension n×
qpub. We propose the following perturbation mechanisms for
the protection of published schedules: ⇄ to swap jobs; ↷ to
move jobs; and ↑↓ to perturb public features.

Swap Jobs (⇄) Swapping jobs is modeled by a function
that, given a schedule s ∈ SΠ, changes the position of two
jobs j, j′ ∈ J , such that j takes the position of j′ on the
same machine, and vice versa. As a shorthand, we write
⇄ (j, j′) to denote the respective swapping of jobs. The re-
sulting schedule is then determined by the earliest starting
time (EST) principle, i.e., setting the starting times of the
jobs assigned to a certain machine as the earliest time points
that the jobs may be processed (i.e., as derived from the end
time of the preceding job and additional constraints, such as
release dates).

Move Jobs (↷) Moving a job is defined as a function that
moves a job j ∈ J to position k ∈ {1, . . . , li + 1} on ma-
chine i ∈ R, where li is the number of jobs on machine i. By
↷ (j, i, k), we denote such a move. As before, the resulting
schedule is derived by EST. Note that in the case of m = 1,
moving a job to a different position reduces to a sequence
of swaps. Otherwise, moving jobs allows us to relocate jobs
to different machines, and thus change the number of jobs
allocated to a machine.

Perturb Features (↑↓) Perturbing features is captured by
a function that sets (xpub)jk to a new value x ∈ Xk for job
j ∈ J and feature k ∈ {qpub, . . . , q}. We write ↑↓ (qpub)
to denote the change of public features. Again, the schedule
is then constructed adopting EST. In contrast to swapping
or moving, changing the job features allows for relatively
fine-grained changes. In general, only features involved in
the schedule generation are sensible targets for perturbation.
For example, manipulating processing times impacts any ob-
jective function that relies on completion times.

j1

j3

j2

t

r1

r2

j1

j3

j2

t

r1

r2

j1

j3 j2

t

r1

r2

j1

j3

j2

t

r1

r2

Figure 2: Application of perturbation functions to schedule
s = ((0, 7, 0), (1, 1, 2)) with Xpub = p = (7, 5, 8)T .

Since EST respects the scheduling constraints, the pertur-
bations guarantee closure. They yield a feasible (not neces-
sarily optimal) schedule when applied to a feasible schedule.

Figure 2 illustrates the application of a sequence of per-
turbations to an exemplary schedule s with the public fea-
tures being the processing times of 7 (j1), 5 (j2), and 8 (j3)
time units (upper left). First, jobs j1 and j2 are swapped (up-
per right). Then, the first public feature (i.e., the processing
time) of the first job (j1) is perturbed, i.e. set to 9 time units
(lower left). Finally, the second job (j2) is moved to the sec-
ond position of the second machine (lower right).

5.2 Reachability with Perturbations
Perturbation functions can be used to randomly add noise
until no more information is leaked. Due to their nature, they
also allow for the systematic exploration of schedule spaces.
In particular, we obtain the following reachability properties.

Proposition 1 (Reachability). Let Π be a scheduling prob-
lem with a regular objective function. For all s, ŝ ∈ SΠ, s is
reachable from ŝ using the operators {↑↓, ↷}.

Proof. Assume ŝ is given and s is the target schedule. Set a
temporary schedule t := ŝ, and move all jobs in t to machine
1. Then, redistribute all the jobs in t that are not allocated to
machine 1 in s to their respective machines and positions,
ordered by their positions in s, by applying ↷ in the corre-
sponding order. Reorder the remaining jobs on machine 1 in
t by moving the jobs based on the order of jobs on machine
1 in s. Finally, adapt the features in Xpub of t by applying ↑↓
to each job, such that they reflect Xpub of s. By definition of
{↑↓,↷}, none of the steps violate the constraints of Π nor
introduce unnecessary idling.

Note that the result does not hold if one relaxes the assump-
tion that the objective function, ϕ, is regular. The following
result is immediate from Proposition 1.

Corollary 1. For all s, ŝ ∈ SΠ such that Π ∈
{make, twct}, s is reachable from ŝ using {↑↓,↷}.

Proof. Both makespan and total weighted completion time
are regular objective functions, which implies that Smake

and Stwct are special cases of Proposition 1.

6 Implementation
6.1 PUP
Following the definition of the PUP, we can frame the
privacy-and-utility-aware publishing of a schedule as a CSP.
For a scheduling problem Π, the latter is defined as:
Inputs: s∗ ∈ SΠ original schedule

Decision Var.: s ∈ SΠ schedule

Constraints: ξ(s) ≤ ϵ
d(z(s∗), z(s)) ≤ δ

Output: s ∈ SΠ feasible, privacy-aware,
utility-aware schedule

We realize the PUP as a Breadth-First Search. A neighbor-
hood function h : SΠ → 2SΠ induces the neighborhood of
a given schedule and, thus, defines the search space. Here,
the perturbation functions introduced in the previous section
serve as neighborhood functions that allow the PUP to sys-
tematically explore SΠ.

6.2 Neighborhood Functions
Let s = (π, µ) ∈ SΠ be a schedule with public features
Xpub. The ⇄-neighborhood of a schedule s = (π, µ) is
computed by swapping each job j ∈ J with every other job.

Similarly, the ↷-neighborhood of s is defined by moving
every job j ∈ J to every valid position k on every machine
i ∈ R within the schedule, where each move defines a sepa-
rate neighboring schedule.

We obtain the ↑↓-neighborhood for feature k ∈
{qpub, . . . , q} by setting (xpub)jk to max({x ∈ Xk : x <
(xpub)jk}) to generate one neighboring schedule and to
min({x ∈ Xk : x > (xpub)jk}) to generate another one for
each job j ∈ J , assuming that Xk is discrete. For example,
if Xk ⊆ N is consecutive, (xpub)jk is incremented by 1 to
generate one neighboring schedule and decremented by 1 to
generate another for each job j ∈ J in s, unless the resulting
(xpub)jk is not in Xk anymore. Combined distortion mech-
anisms, such as using moving jobs together with changing
processing times, are realized by joining the corresponding
neighborhoods.

7 Evaluation
We assess our approach in a series of experiments that eval-
uate the PUP along three axes: feasibility, robustness to var-
ious privacy and utility configurations, and effectiveness in
preserving key properties of the original schedule. Feasibil-
ity concerns the success rate of each perturbation function S
({⇄}) , M ({↷}), P ({↑↓}) and the combination of multiple
perturbation functions SP ({⇄, ↑↓}) and MP ({↷, ↑↓}). Ro-
bustness evaluates PUP under different configurations, con-
sidering different privacy and utility thresholds. Effective-
ness pertains to potential downstream analyses that are dif-
ferent from the original objective function. For example, for
MAKE we ask: While the ISA targets the original sched-
ule, which uses makespan as the objective function, can PUP
preserve waiting times by adjusting utility z?

Data We rely on two datasets: (i) a synthetically generated
set of schedules in a controlled setup, and (ii) a dataset drawn
from real-world historical schedules of a health facility.

Synthetic data: A dataset consisting of 1000 schedules
was created by using randomly drawn scheduling parame-
ters to construct new schedules. The number of machines
m and number of jobs n were drawn from {1, . . . , 4} and
{5, . . . , 20}, respectively. The parameters p and p, were se-
lected at random from {5, . . . , 50}, s.t. p ≤ p, to set the pro-
cessing time domain Xp = {p, . . . , p}. For TWCT, the range
{1, . . . , wmax} was assigned to the weight domain Xw, with
wmax ∈ {2, . . . , 10}. Once the scheduling environment
was determined, a schedule was instantiated by drawing pj
and wj uniformly at random from domains Xp and Xw,
respectively, for each job j ∈ J . Similarly for MAKE,
the release date domain Xr was set to {0, . . . , rmax}, with
rmax ∈ {1, . . . , 9}, and a scheduling problem was created
by drawing pj and rj uniformly at random from domains
Xp and Xr, respectively, for each job j ∈ J . The instanti-
ated TWCT or MAKE scheduling problems were solved by
employing the respective dispatching rule.

Real-world data: The dataset bases upon jobs extracted
from real patient scheduling data of an outpatient cancer
hospital in the United States. A schedule is generated by
applying the WSPT rule to the n jobs that are assigned to
the treatment “Infusion” (chemotherapy infusion) for each
day and medical floor (with min = 17, median = 48.5,
and max = 84 jobs per day and floor). Different medical
floors correspond to different cancer types. The processing
time domain Xp (in minutes) comprises the values from 5 to
720, which are also the observed minimum and maximum
in the data (with median = 120). The weight domain Xw is
assumed to span [1 . . . 5]. The number of infusion chairs per
floor represents the number of available machines m (with
min = 15, median = 28, and max = 33) and the estimated
time of a job j as the processing time pj .

The time a job j was scheduled serves as a proxy for its
weight wj by ranking all the timestamps and then binning
the ranks to fit the weight domain Xw. In total, we consid-
ered 5 days (1 working week in April 2021) and 6 medical
floors, which amounts to 30 historical schedules in total.

Setup We employ the privacy loss measure ξdist and the
following instantiations of the utility function z: 1. the ob-
jective function of the scheduling problem considered, i.e.,∑

j wjCj for TWCT or Cmax for MAKE, and 2. the average
waiting time

∑
j πj/n (AWT), an important characteristic of

a schedule that is not directly incorporated in the scheduling
objective. In the presence of release dates, AWT is adapted
to

∑
j(πj − rj)/n. The difference d in utility between two

schedules s and ŝ is measured as the relative change in utility
|z(s)− z(ŝ)|/z(ŝ).

For both TWCT and MAKE, a set of schedules is gen-
erated for each utility function as described above. Fur-
ther, perturbation functions h ∈ {S, P,M,MP, SP} are as-
sessed, with S denoting swapping of jobs ({⇄}), M denoting
moving of jobs ({↷}), P and denoting feature perturbation
({↑↓}), while MP and SP capture their combinations.

M MP P S SP0%
20%
40%
60%
80%

100%

Re
l.

Fr
eq

ue
nc

y

δ = 0.005

M MP P S SP

ε = 0.01

δ = 0.02

M MP P S SP
Perturbation

0%
20%
40%
60%
80%

100%

Re
l.

Fr
eq

ue
nc

y

M MP P S SP
Perturbation

ε = 0.5

NEMP EMP BOTH EXH T/O

(a) z = TWCT.

M MP P S SP0%
20%
40%
60%
80%

100%

Re
l.

Fr
eq

ue
nc

y

δ = 0.005

M MP P S SP

ε = 0.01

δ = 0.02

M MP P S SP
Perturbation

0%
20%
40%
60%
80%

100%

Re
l.

Fr
eq

ue
nc

y

M MP P S SP
Perturbation

ε = 0.5

NEMP EMP BOTH EXH T/O

(b) z = AWT.

7 63

3
0

21

3

5

33

0

2

3
92

96
3

5
113

0

0 07

1

8

0

2

0

2

0

554

P
S
M
MP
SP

(c) z = TWCT, δ = 0.02, ϵ = 0.5.

Figure 3: (a) and (b): Breakdown of the outcomes of the PUP for different perturbation functions under varying configurations
(TWCT, synth. data); (c): Number of schedules exclusively solved by subsets H ∈ P{M,P,S,SP,MP} (TWCT, synth. data).

We consider the values {0.01, 0.5} for the privacy param-
eter ϵ and {0.005, 0.02} for the utility threshold δ.

For each utility function and each parameter combina-
tion (h, ϵ, δ), the PUP is applied to each schedule with the
respective configuration. Each PUP instance is allocated a
time budget of 5min. A PUP instance failed, when the search
stopped – due to either the timeout or exhausting the search
space – without finding a solution. The PUP for a sched-
ule s is considered successful, when (i) a solution with
a non-empty candidate set (Y(s) ̸= ∅) or (ii) a solution
with an empty candidate set (Y(s) = ∅) had been encoun-
tered within the time limit. We also consider the case when
both were eventually found (in which case the search also
stopped). Thus, we distinguish the following outcomes:
• Solution found: Non-Empty (NEMP), Empty (EMP), or

Both (BOTH)
• No solution found: Exhausted (EXH) or Timeout (T/O)

A time budget of 60s was enforced when computing the
privacy loss of a release candidate. If it was exceeded, the
candidate was dismissed. The experiments with synthetic
data ran on a Dell R920 server with 1TB RAM, 4/60/120
CPUs/cores/threads at 2.5GHz, running openSUSE 15.3.
The real-world data experiments ran on a laptop with an i7-
12800H 2.40 GHz processor and 64.0GB RAM. We used
Python 3.10 along with several libraries, most impor-
tantly or-tools 9.4.1874 (Perron and Furnon 2022) for
the ISA in the privacy loss computation. The code is publicly
available on GitHub1.

Results Figures 3a and 3b illustrate the distribution of out-
comes across the 1000 synthetic PUP instances as well as the
overall success rate for the utility functions AWT and TWCT,
respectively. The PUP was solved successfully for 58.7-
74.4% TWCT instances and 58.3-80.1% AWT instances, de-
pending on the PUP configuration and the perturbation func-
tion in use. We note that using P alone consistently performs
the worst. The other perturbation functions yield better suc-
cess rates, but perform similarly among each other.

1https://github.com/hu-dbis/privacy-scheduling-tools

2 4 6 8 10
wmax

0

20

40

60

80

100

120

140

160

Ti
m

e
(in

 s
)

Perturbation
M
MP
P
S
SP

Figure 4: Time (in s) until first solution found depending on
wmax with z = TWCT, δ = 0.02, ϵ = 0.5 (synth. data).

With AWT, the perturbation function SP performs best in
3 out of 4 PUP configurations (with success rates ranging
from 72.6-80.1% throughout the settings). The other pertur-
bation functions S, M, and MP follow closely. Likewise, SP
performs best for all PUP configurations when using TWCT
as a utility function (with success rates ranging from 68.9-
74.4% throughout the settings), most often followed by MP
(with 66.3-71.0%). Furthermore, it becomes clear that the
outcome Empty constitutes the majority of the solved PUPs,
with the number of non-empty solutions increasing under a
higher ϵ and δ. We observe that sometimes the search space
was exhausted, but often a timeout caused the PUP to fail.

A more detailed view on the results obtained with the dif-
ferent distortion mechanisms is provided in the Venn dia-
gram presented in Figure 3c. Specifically, we visualize the
number of schedules exclusively solved by a certain sub-
set of perturbation functions. It shows that the majority of
the PUP was solved using all perturbation functions. Yet,
each of the considered perturbation mechanisms was able to
solve some instances of the PUP exclusively, meaning that
any other set of perturbation functions was not successful

MMP S SP P
Perturbation

0%

25%

50%

75%

100%
Re

l.
Fr

eq
ue

nc
y

δ = 0.005

MMP S SP P
Perturbation

δ = 0.02

(a) z = Cmax.

MMP S SP P
Perturbation

0%

25%

50%

75%

100%

Re
l.

Fr
eq

ue
nc

y

δ = 0.005

MMP S SP P
Perturbation

δ = 0.02

(b) z = AWT.

Figure 5: Breakdown of PUP results for perturbation func-
tions with ϵ = 0.01 and varying δ (MAKE, synth. data).

MMP S SP P
Perturbation

0%

33%

67%

100%

Re
l.

Fr
eq

ue
nc

y

δ = 0.005

MMP S SP P
Perturbation

δ = 0.02

(a) z = TWCT.

MMP S SP P
Perturbation

0%

33%

67%

100%

Re
l.

Fr
eq

ue
nc

y

δ = 0.005

MMP S SP P
Perturbation

δ = 0.02

(b) z = AWT.

Figure 6: Breakdown of PUP results for perturbation func-
tions with ϵ = 0.5 and varying δ (real-world data).

for the respective problem instances. This empirical result
highlights that the perturbation functions are, to some ex-
tent, complementary.

As part of our feasibility assessment, Figure 4 explores
the efficiency of our approach. It shows that the runtime
grows when wmax increases. Note that only the time mea-
surements of successful PUP instances, whose number de-
creases with increasing wmax, are considered.

Figure 5 illustrates the breakdown of outcomes for solv-
ing the PUP for MAKE schedules with z = Cmax and
z = AWT, respectively (ϵ = 0.5 omitted here due to ob-
taining similar results). We observe that M, MP, S, and SP
were able to solve 83.8-87.9% of the PUP instances for
z = Cmax, whereas S managed 53.1-55.2% of the cases.
Similarly, M, MP, S, and SP found a solution for 83-88.4%
of the PUP instances with z = AWT, while S solved 51.2-
61.7% PUP instances successfully. As empty is the only
recorded successful outcome, no solution with a non-empty
candidate set during the ISA was found. The remaining PUP
instances almost always ended in timeouts, and rarely due to
exhausting the search space.

Figure 6 shows the overall success rate for the real-world
data set for configurations that include a privacy loss thresh-
old of ϵ = 0.5 and varying utility thresholds (the outcomes
are denoted in the same way as in Figures 3a and 3b). In
general, M and MP tend to perform better than the other
perturbation functions. There is also a noticeable difference
in success rate with a higher utility threshold. We obtain the
same results for ϵ = 0.01 (omitted due to space constraints).

Discussion The results demonstrate that the PUP can be
successfully solved for most synthetic schedules across var-
ious scheduling problems and privacy-utility configurations,
highlighting both the feasibility and robustness of our ap-

proach. Using AWT as a utility function shows that the PUP
effectively preserves schedule properties beyond the original
objective function. However, for MAKE, while the empty
outcome prevents an adversary from finding a combination
of release dates that satisfy ISA constraints, it does not pre-
vent the derivation of individual release dates for certain
jobs. Also, the range of Xr and the spread of release dates
may aid the adversary. We leave this area for future research.

Considering the choice among the proposed perturbation
functions, the combined perturbation function MP shows
the best overall success rate, which is in line with Prop-
erty 1. However, the perturbation function SP mostly per-
forms better than MP on the synthetic data set; functions S
and M achieve a similar performance to MP, while inducing
smaller neighborhoods. Also, each perturbation function ap-
pears to be uniquely suited to solve certain instances within
the given time frame (see Figure 3c).

As expected, we found that a higher utility loss threshold
δ leads to more neighboring schedules being evaluated w.r.t.
the privacy loss, i.e., P performs slightly worse for δ = 0.02,
ϵ = 0.5, and utility function TWCT compared to the same
setup with δ = 0.005. Further, the runtime depends on the
size of the domain Xw, which is expected since it determines
the solution space of the solver used in the ISA.

The experiments on the real-world data confirm the gen-
eral trends observed for the synthetic data. Our results indi-
cate that the PUP is feasible for the majority of the schedules
when using M or MP, once some utility loss is tolerated.
A tighter utility bound reduces the number of successfully
solved instances, especially with the AWT objective. The
exclusive occurrence of the outcomes Empty and Timeout
indicates that a large search space was explored at runtime.

8 Conclusion
This work addressed the challenge of protecting schedules
from inverse scheduling attacks by introducing the Privacy-
and-Utility Preservation Problem (PUP), which balances the
trade-off between privacy and utility. The PUP seeks to iden-
tify a schedule that meets pre-determined privacy and util-
ity criteria when published. We defined the problem for
parallel machine environments and applied it to two well-
known scheduling problems. We introduced scheduling-
specific perturbation functions to solve the PUP.

Experiments on both synthetic and real-world schedules
demonstrated (i) the general feasibility of the PUP, (ii)
the robustness of the perturbation functions across different
thresholds, and (iii) the effectiveness of our approach in pre-
serving key analytical properties, such as average waiting
time, beyond those captured by the utility function.

For future work, the PUP may be accelerated by use of
adequate heuristics to enhance scalability. Another poten-
tial avenue for exploration is minimizing privacy or utility
loss while constraining the other. Beyond that, advanced ad-
versaries possessing comprehensive background knowledge
may be assumed. Here, the case of an adversary not finding
any values for the private features (i.e., Y(s) = ∅), in partic-
ular, raises the question of a more flexible strategy that also
incorporates schedules similar to the published one.

Acknowledgments
This work was supported by the German Federal Ministry of
Education and Research (BMBF), grant number 16DII133
(Weizenbaum-Institute). We further acknowledge the sup-
port of the Natural Sciences and Engineering Research
Council of Canada (NSERC) under the grant [RGPIN-2022-
04593].

References
Brucker, P.; and Shakhlevich, N. V. 2009. Inverse Schedul-
ing with Maximum Lateness Objective. Journal of Schedul-
ing, 12(5): 475–488.
Bruno, J.; Coffman, E. G.; and Sethi, R. 1974. Scheduling
Independent Tasks to Reduce Mean Finishing Time. Com-
munications of the ACM, 17(7): 382–387.
Casas-Roma, J.; Herrera-Joancomartı́, J.; and Torra, V. 2016.
A Survey of Graph-Modification Techniques for Privacy-
Preserving on Networks. Artificial Intelligence Review,
47(3): 341–366.
Chen, B.; and Vestjens, A. P. 1997. Scheduling on identical
machines: How good is LPT in an on-line setting? Opera-
tions research letters, 21(4): 165–169.
Cheng, R.; Gen, M.; and Tsujimura, Y. 1999. A Tutorial Sur-
vey of Job-Shop Scheduling Problems Using Genetic Algo-
rithms, Part II: Hybrid Genetic Search Strategies. Computers
& Industrial Engineering, 36(2): 343–364.
DeSmet, C. N.; and Cook, D. J. 2021. Recent Developments
in Privacy-preserving Mining of Clinical Data. Trans. Data
Sci., 2(4): 28:1–28:32.
Dwork, C. 2006. Differential Privacy. In Automata, Lan-
guages and Programming, 1–12. Springer Berlin Heidel-
berg.
Fahrenkrog-Petersen, S. A.; Senderovich, A.; Tichauer, A.;
Tutak, A. K.; Beck, J. C.; and Weidlich, M. 2023. Privacy
Attacks on Schedule-Driven Data. Proceedings of the AAAI
Conference on Artificial Intelligence, 37(10): 11972–11979.
Fung, B. C. M.; Wang, K.; Chen, R.; and Yu, P. S. 2010.
Privacy-Preserving Data Publishing: A Survey of Recent
Developments. ACM Computing Surveys, 42(4): 1–53.
Garey, M.; and Johnson, D. 1978. Strong NP-completeness
results: motivation, examples, and implications. J. Assoc.
Comput. Mach., 25(3): 499–508.
Harding, J. A.; Shahbaz, M.; Srinivas; and Kusiak, A. 2005.
Data Mining in Manufacturing: A Review. Journal of Man-
ufacturing Science and Engineering, 128(4): 969–976.
Kawaguchi, T.; and Kyan, S. 1986. Worst Case Bound of an
LRF Schedule for the Mean Weighted Flow-Time Problem.
SIAM Journal on Computing, 15(4): 1119–1129.
Koulamas, C. 2005. Inverse Scheduling with Controllable
Job Parameters. International Journal of Services and Op-
erations Management, 1(1): 35.
Li, X.; and Olafsson, S. 2005. Discovering Dispatching
Rules Using Data Mining. Journal of Scheduling, 8(6): 515–
527.

Liu, K.; and Terzi, E. 2008. Towards Identity Anonymiza-
tion on Graphs. In Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data. ACM.
Machanavajjhala, A.; Kifer, D.; Gehrke, J.; and Venkita-
subramaniam, M. 2007. L-Diversity: Privacy beyond k-
Anonymity. ACM Transactions on Knowledge Discovery
from Data, 1(1): 3.
Majeed, A.; and Lee, S. 2021. Anonymization Techniques
for Privacy Preserving Data Publishing: A Comprehensive
Survey. IEEE Access, 9: 8512–8545.
Mannhardt, F.; Koschmider, A.; Baracaldo, N.; Weidlich,
M.; and Michael, J. 2019. Privacy-Preserving Process Min-
ing - Differential Privacy for Event Logs. Bus. Inf. Syst.
Eng., 61(5): 595–614.
Min, L.; and Cheng, W. 1999. A genetic algorithm for mini-
mizing the makespan in the case of scheduling identical par-
allel machines. Artificial Intelligence in Engineering, 13(4):
399–403.
Mou, J.; Li, X.; Gao, L.; and Yi, W. 2015. An Effective L-
MONG Algorithm for Solving Multi-Objective Flow-Shop
Inverse Scheduling Problems. Journal of Intelligent Manu-
facturing, 29(4): 789–807.
Perron, L.; and Furnon, V. 2022. OR-Tools. Google.
Pinedo, M. L. 2016. Scheduling. Springer International Pub-
lishing.
Samarati, P. 2001. Protecting Respondents Identities in Mi-
crodata Release. IEEE Transactions on Knowledge and
Data Engineering, 13(6): 1010–1027.
Sweeney, L. 2002. K-Anonymity: A Model for Protecting
Privacy. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 10(05): 557–570.

