8. Behind the Scenes of FluxPlayer
Outline

<table>
<thead>
<tr>
<th>Date</th>
<th>What will we do?</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.10.2013</td>
<td>Introduction, Repetition propositional logic and FOL</td>
</tr>
<tr>
<td>29.10.2013</td>
<td>Repetition FOL / Datalog and Prolog</td>
</tr>
<tr>
<td>05.11.2013</td>
<td>Game Description Language</td>
</tr>
<tr>
<td>12.11.2013</td>
<td>Design of GDL games</td>
</tr>
<tr>
<td>19.11.2013</td>
<td>Search Algorithms 1</td>
</tr>
<tr>
<td>26.11.2013</td>
<td>No lecture</td>
</tr>
<tr>
<td>03.12.2013</td>
<td>Search Algorithms 2</td>
</tr>
<tr>
<td>10.12.2013</td>
<td>Real GGP 1</td>
</tr>
<tr>
<td>17.12.2013</td>
<td>Midterm competition</td>
</tr>
<tr>
<td>07.01.2014</td>
<td>GIGA 1 – State of the art 2009</td>
</tr>
<tr>
<td>14.01.2014</td>
<td>GIGA 2 – State of the art 2011</td>
</tr>
<tr>
<td>21.01.2014</td>
<td>GIGA 3 – State of the art 2013</td>
</tr>
<tr>
<td>28.01.2014</td>
<td>Summary and Outlook</td>
</tr>
<tr>
<td>04.02.2014</td>
<td>Final Competition</td>
</tr>
<tr>
<td>11.02.2014</td>
<td>Exam</td>
</tr>
</tbody>
</table>
Competition

• Single-player:
 – Three types of games (easy, medium, hard)
 – Each player plays all three games
 – Total score of a player is the weighted sum of points (goal score):
 • \(\text{TOTAL} = \text{points(easy)} + 2 \times \text{points(medium)} + 3 \times \text{points(hard)} \)
 – The player with maximum number of points wins
Competition

- Two-player: depends on number of teams
- If 9 teams:
 - Three groups with 3 player each
 - All against all in a group (2 games for each player)
 - Players are ranked by the total score
 - First team from each group goes to the final round
 - Final round:
 - one group with three teams
 - All against all in the final group (again 2 games for each player)
 - Player with highest score wins competition
- If 8/10 team:
 - Double knockout
Oral examination

- Available appointments can be found on course web page
Repetition

- What is the difference between heuristic search and Monte-Carlo tree search?
Repetition

• What is the difference between heuristic search and Monte-Carlo tree search?
FluxPlayer
Overview

• Developed at Dresden University of Technology
• Quite successful
 – Winner 2006
 – Several times runners-up
• Outline for today
 – Generating state evaluation functions
 – Identifying syntactic structures
 – Distance estimation for fluents and states
 – Proving properties of games
• Uses fuzzy logic …
Fuzzy logic
Fuzzy logic

Definition 2.15 (Fuzzy set). Let X be a set of objects. A fuzzy set μ of X is a function $\mu : X \rightarrow [0, 1]$, which associates each object in X a real number in the interval $[0, 1]$ representing the “grade of membership” of x in the fuzzy set.

Complement The complement $\neg \mu$ of a fuzzy set μ is defined elementwise using a negation function n:

$$(\neg \mu)(x) = n(x)$$

Definition 2.16 (Negation function). A negation function n is a function $n : [0, 1] \rightarrow [0, 1]$ with the following properties:

- $n(0) = 1$
- $n(1) = 0$
- $a \leq b \Rightarrow n(a) \geq n(b)$
Fuzzy logic

Intersection The intersection of two fuzzy sets \(\mu_1, \mu_2 \) is a fuzzy set \(\mu \), i.e., a function mapping each object \(x \) to a value in \([0, 1]\) representing the grade of membership of \(x \) in both sets \(\mu_1, \mu_2 \). Such a function is called a t-norm and defined as follows:

Definition 2.17 (T-norm). A function \(\sqcap : [0, 1]^2 \to [0, 1] \) is called t-norm, if

- \(\sqcap(a, 1) = a \) (neutral element),
- \(a \leq b \supset \sqcap(a, c) \leq \sqcap(b, c) \) (monotonicity),
- \(\sqcap(a, b) = \sqcap(b, a) \) (commutativity), and
- \(\sqcap(a, \sqcap(b, c)) = \sqcap(\sqcap(a, b), c) \) (associativity).

Definition 2.18 (Continuous T-norm). A t-norm \(\sqcap \) is called continuous if

\[
a < b \land c > 0 \supset \sqcap(a, c) < \sqcap(b, c)
\]
Fuzzy logic

Union The union of two fuzzy sets μ_1 and μ_2 is defined similarly to the intersection as

$$(\mu_1 \lor \mu_2)(x) = \bot(\mu_1(x), \mu_2(x)).$$

The function \bot is some t-conorm:

Definition 2.19 (T-conorm). A function $\bot : [0, 1]^2 \to [0, 1]$ is called t-conorm, if

- $\bot(a, 0) = a$ (neutral element),
- $a \leq b \Rightarrow \bot(a, c) \leq \bot(b, c)$ (monotonicity),
- $\bot(a, b) = \bot(b, a)$ (commutativity), and
- $\bot(a, \bot(b, c)) = \bot(\bot(a, b), c)$ (associativity).

Each t-norm \top defines a dual t-conorm \bot in the following way:

$$\bot(a, b) = 1 - \top(1 - a, 1 - b)$$
Fuzzy logic: motivation

• One can interpret a propositional formula as a fuzzy set and provide a fuzzy evaluation of a propositional formula. Thus, the degree of truth of the sentence “the state s is near to a goal state” can be computed by a function

\[
f = \text{true}(\text{cell}(a,1,x)) \land \text{true}(\text{cell}(b,1,x)) \land \text{true}(\text{cell}(c,1,x)) \lor \\
\text{true}(\text{cell}(a,2,x)) \land \text{true}(\text{cell}(b,2,x)) \land \text{true}(\text{cell}(c,2,x)) \lor \\
... \\
\text{true}(\text{cell}(a,3,x)) \land \text{true}(\text{cell}(b,2,x)) \land \text{true}(\text{cell}(c,1,x))
\]
Generating State Evaluation Functions
Idea

- Idea: define the fuzzy evaluation $\text{eval}(f, s)$ of arbitrary formulas f with respect to state s

Definition 5.1 (GDL Formula). A GDL formula f of a game description D is a first order formula with the usual connectives for conjunction \land, disjunction \lor, negation \neg, and existential quantifiers \exists. The atoms of f are atoms over the signature (relation symbols and function symbols) of D.
Fuzzy Formula evaluation

Definition 5.2 (Fuzzy Formula Evaluation). Let D be a set of GDL rules and parameter p be a real value with $0.5 < p \leq 1$. Furthermore, let a denote GDL atoms, f and g denote arbitrary GDL formulas, and \top denote an arbitrary t-norm with dual t-conorm \bot. We define a fuzzy evaluation function for GDL formulas wrt. a game state s as follows:

- **conjunction** If f and g contain no common variables:

 $eval(f \land g, s) = \top(eval(f, s), eval(g, s))$ \hspace{1cm} (5.1)

- **disjunction** If f and g contain no common variables:

 $eval(f \lor g, s) = \bot(eval(f, s), eval(g, s))$ \hspace{1cm} (5.2)

- **negation**

 $eval(\neg f, s) = 1 - eval(f, s)$ \hspace{1cm} (5.3)

- **atoms defined by rules** For every atom a except distinct(t_1, t_2), true(t), and does(r, m), let $a_1 : = b_1, \ldots, a_n : = b_n$ be all rules in D such that a unifies with the head a_i of each rule with unifier σ_i, that is, $a_i\sigma_i = a$ for all $i \in 1 \ldots n$. In this case,

 $eval(a, s) = eval(b_1\sigma_1 \lor b_2\sigma_2 \lor \ldots \lor b_n\sigma_n, s)$ \hspace{1cm} (5.4)

- **other** For all GDL formulas f that do not match any of the rules above:

 $eval(f, s) = \begin{cases}
P & \text{if } D \cup s^{true} \models (\exists) f \\
1 - P & \text{otherwise} \end{cases}$ \hspace{1cm} (5.5)
Example: Winning Tic-Tac-Toe with x-player

line(P) :- true(cell(a,Y,P)),
 true(cell(b,Y,P)), true(cell(c,Y,P)).
line(P) :- true(cell(X,1,P)),
 true(cell(X,2,P)), true(cell(X,3,P)).
line(P) :- true(cell(a,1,P)),
 true(cell(b,2,P)), true(cell(c,3,P)).
line(P) :- true(cell(a,3,P)),
 true(cell(b,2,P)), true(cell(c,1,P)).
goal(xplayer,100) :- line(x).
\texttt{eval(goal(xplayer, 100), s) ?}
eval(goal(xplayer, 100), s)

According to Equation 5.4:

\[
\text{eval}(\text{goal}(\text{xplayer}, 100), s) = \text{eval}(\text{line}(x), s)
\]

\[
= \text{eval}(
 [(\exists Y)\text{true(cell}(a, Y, x)) \land \text{true(cell}(b, Y, x)) \land \text{true(cell}(c, Y, x))] \lor
 [(\exists X)\text{true(cell}(X, 1, x)) \land \text{true(cell}(X, 2, x)) \land \text{true(cell}(X, 3, x))] \lor
 [\text{true(cell}(a, 1, x)) \land \text{true(cell}(b, 2, x)) \land \text{true(cell}(c, 3, x))] \lor
 [\text{true(cell}(a, 3, x)) \land \text{true(cell}(b, 2, x)) \land \text{true(cell}(c, 1, x))], s
\]
eval(goal(xplayer, 100), s)

Conjunctions and disjunctions in the formula are evaluated with a t-norm and t-conorm respectively (see Equation 5.1 and 5.2). Thus, Equation 5.6 above is equal to

\[\bot \left(\text{eval}([[\forall Y] \text{true}(\text{cell}(a, Y, x)) \land \ldots \land \text{true}(\text{cell}(c, Y, x))], s), \right. \]

\[\bot \left(\text{eval}([[\exists X] \text{true}(\text{cell}(X, 1, x)) \land \ldots \land \text{true}(\text{cell}(X, 3, x))], s), \right. \]

\[\ldots \]

\[\top(\right. \]

\[\text{eval}(\text{true}(\text{cell}(b, 2, x)), s), \]

\[\text{eval}(\text{true}(\text{cell}(c, 1, x)), s) \]

\[\right) \]

\[\ldots \]

\[\right) \]
The quantified formulas

$$(\exists Y) \text{true}(\text{cell}(a, Y, x)) \land \text{true}(\text{cell}(b, Y, x)) \land \text{true}(\text{cell}(c, Y, x))$$

and

$$(\exists X) \text{true}(\text{cell}(X, 1, x)) \land \text{true}(\text{cell}(X, 2, x)) \land \text{true}(\text{cell}(X, 3, x))$$

as well as the atoms

$$\text{true}(\text{cell}(a, 1, x)), \text{true}(\text{cell}(b, 2, x)), \text{true}(\text{cell}(c, 3, x)), \text{true}(\text{cell}(a, 3, x)), \text{and } \text{true}(\text{cell}(c, 1, x))$$

are evaluated as p or $1 - p$ depending on whether or not they are entailed by the game description in combination with the state s according to Equation 5.5.
Two degrees of freedom

- Value for \(p \)
- Actual t-norm and t-conorm
The value of p

- How about $p=1$?
The value of p

- How about $p=1$?
- Problem:

```prolog
1 goal(player, 100) :-
  true(on(a,b)), true(on(b,c)), true(ontable(c)).
```

- Just let $p<1$
For example, consider the state \(s = \{\text{ontable}(a), \text{on}(b,c), \text{ontable}(c)\} \) in which two of the three atoms of the goal condition above hold. The evaluation of the goal condition yields:

\[
\text{eval}(\text{goal}(\text{player}, 100), s) = \text{eval}(\text{true}(\text{on}(a, b)) \land \\
\text{true}(\text{on}(b, c)) \land \\
\text{true}(\text{ontable}(c)))
\]

\[
= \top(\text{eval}(\text{true}(\text{on}(a, b)), s), \\
\top(\text{eval}(\text{true}(\text{on}(b, c)), s), \\
\text{eval}(\text{true}(\text{ontable}(c)), s)))
\]

\[
= \top(1 - p, \top(p, p))
\]
The choice of T-norm and T-conorm

• Difference between min/max and others?
• There is another problem:

\[eval(a_1 \land \ldots \land a_n, s) \to 0 \text{ for } n \to \infty. \]
The choice of T-norm and T-conorm

\[eval(a_1 \land \ldots \land a_n, s) \rightarrow 0 \text{ for } n \rightarrow \infty. \]

1. goal(player, 100) :- % goal A
2. true(on(a,b)), true(on(b,c)), true(ontable(c)).
3. goal(player, 100) :- % goal B
4. true(on(block1,block2)),
5. true(on(block2,block3)),
6. ...
7. true(on(block999,block1000)),
8. true(ontable(block1000)).

- \(s_1 = \{ \text{ontable}(a), \text{on}(b, c), \text{ontable}(c), \text{ontable}(\text{block1}), \ldots, \text{ontable}(\text{block1000}) \} \) That is, 2 of the 3 atoms of “goal A” are fulfilled but only one of the 1000 atoms of “goal B”.
- \(s_2 = \{ \text{ontable}(a), \text{ontable}(b), \text{ontable}(c), \text{on}(\text{block1,block2}), \text{on}(\text{block2,block3}), \ldots, \text{on}(\text{block999,block1000}) \} \) That is, only one of the 3 atoms of “goal A” are fulfilled but all of the 1000 atoms of “goal B”.
The choice of T-norm and T-conorm

• With t-norm a*b:

\[
\begin{align*}
\text{eval}(\text{goal}(\text{player}, 100), s_1) &= \perp(p^2 * (1 - p), p * (1 - p)^{999}) \\
&= p^2 * (1 - p) + p * (1 - p)^{999} - p^3 * (1 - p)^{1000} \\
&\approx p^2 * (1 - p) \\
\text{eval}(\text{goal}(\text{player}, 100), s_2) &= \perp(p * (1 - p)^2, p^{1000}) \\
&= p * (1 - p)^2 + p^{1000} - p^{1001} * (1 - p)^2 \\
&\approx p * (1 - p)^2 \\
\text{eval}(\text{goal}(\text{player}, 100), s_1) &> \text{eval}(\text{goal}(\text{player}, 100), s_2) \text{ although the goal is already fulfilled in } s_2 \text{ but not in } s_1.
\end{align*}
\]

The approximate values \(p^2 * (1 - p) \) and \(p * (1 - p)^2 \) result from the fact that \(p * (1 - p)^{999} - p^3 * (1 - p)^{1000} \) and \(p^{1000} - p^{1001} * (1 - p)^2 \) are nearly zero. Thus, \(\text{eval}(\text{goal}(\text{player}, 100), s_1) > \text{eval}(\text{goal}(\text{player}, 100), s_2) \) although the goal is already fulfilled in \(s_2 \) but not in \(s_1 \).

\[
\begin{align*}
\top(a, b) &= \begin{cases}
\max(\top'(a, b), t) & \text{if } \min(a, b) > 0.5 \\
\top'(a, b) & \text{otherwise}
\end{cases} \\
\perp(a, b) &= 1 - \top(1 - a, 1 - b)
\end{align*}
\]
State evaluation function

- So far, the degree of truth of a formula can be measured
- How to evaluate a state (with respect to multiple goals)?
- For a role r in state s, $h(r,s)$ is defined as:

\[
h(r, s) = \frac{100}{\sum_{gv \in GV} gv} \cdot \sum_{gv \in GV} gv \cdot h(r, gv, s)
\]

\[
h(r, gv, s) = \begin{cases}
\text{eval}\left(\text{goal}(r, gv) \lor \text{terminal}, s\right) & \text{if } D \cup s^{\text{true}} \models \text{goal}(r, gv) \\
\text{eval}\left(\text{goal}(r, gv) \land \neg \text{terminal}, s\right) & \text{else}
\end{cases}
\]
Identifying syntactic structures
• So far, only binary fluents
• Cannot distinguish pos(1) from pos(7), if the goal is pos(8)
• Evaluation function should reflect the distance to the goal
Computing domains

- Computation of a domain graph

```
1 succ(0, 1).
2 succ(1, 2).
3 succ(2, 3).
4 init(step(0)).
5 next(step(X)) :-
6    true(step(Y)),
7    succ(Y, X)).

dom(step, 1) = dom(succ, 1) = dom(succ, 2) = \{0, 1, 2, 3\}
dom(init, 1) = dom(next, 1) = dom(true, 1) = \{step/1\}
```
Static Structures: Successor/Order relations

• For every binary relation:

1. Compute the domains $\text{dom}(r, 1)$ and $\text{dom}(r, 2)$ of both arguments of r using the algorithm described in Section 5.2.1.
2. If $\text{dom}(r, 1) \neq \text{dom}(r, 2)$, we do not consider r as successor or order relation, otherwise.
3. If for all $x, y, z \in \text{dom}(r, 1)$, the two properties

$$D \models r(x, y) \land r(y, x) \supset x = y$$ (antisymmetry) and

$$D \models r(x, y) \land r(y, z) \supset r(x, z)$$ (transitivity)

hold, then r is an order relation.

4. If for all $x, y, z \in \text{dom}(r, 1)$, the three properties

$$D \models r(x, y) \land r(y, x) \supset x = y$$ (antisymmetry),

$$D \models r(x, y) \land r(x, z) \supset y = z$$ (functional), and

$$D \models r(y, x) \land r(z, x) \supset y = z$$ (injective)

hold, then r is a successor relation.
Dynamic Structures

• Game boards
 – Criteria:
 • some arguments of a predicate are ordered
 • Distinguished input/output arguments

• Quantities
 – Fluent that has an ordered output argument
 – (step counter are quantities as well)
Distance Estimates for fluents and states
Disadvantages of previous approaches

- Distances are computed based on predefined metrics on the board
 - Do not take into account the type of piece to be moved
New approach

• Compute an admissible heuristic for the number of steps necessary to make a fluent true

• Advantages
 – Does not depend on syntactic pattern
 – No internal simulation of games needed
 – Not limited to board-like structures
Example game

```
role(xplayer). role(oplayer).

init(cell(1,1,b)). init(cell(1,2,b)).
init(cell(1,3,b)). ...
init(cell(1,3,b)). init(control(xplayer)).

legal(P, mark(X, Y)) :-
  true(control(P)), true(cell(X, Y, b)).
legal(P,noop) :-
  role(P), not true(control(P)).

next(cell(X,Y,x)) :- does(xplayer,mark(X,Y)).
next(cell(X,Y,o)) :- does(oplayer,mark(X,Y)).
next(cell(X,Y,C)) :-
  true(cell(X,Y,C)), distinct(C, b).
next(cell(X,Y,b)) :- true(cell(X,Y,b)),
  does(P, mark(M, N)),
  (distinct(X, M) ; distinct(Y, N)).

goal(xplayer, 100) :- line(x).
...
terminal :- line(x) ; line(o) ; not open.

line(P) :- true(cell(X, 1, P)),
  true(cell(X, 2, P)), true(cell(X, 3, P)).
...
open :- true(cell(X, Y, b)).
```
Definition 1 (Game). Let Σ be a set of ground terms and 2^Σ denote the set of finite subsets of Σ. A game over this set of ground terms Σ is a state transition system $\Gamma = (R, s_0, T, l, u, g)$ over sets of states $S \subseteq 2^\Sigma$ and actions $A \subseteq \Sigma$ with

- $R \subseteq \Sigma$, a finite set of roles;
- $s_0 \in S$, the initial state of the game;
- $T \subseteq S$, the set of terminal states;
- $l : R \times A \times S$, the legality relation;
- $u : (R \mapsto A) \times S \rightarrow S$, the transition or update function; and
- $g : R \times S \mapsto \mathbb{N}$, the reward or goal function.

$$u(A, s) = \{ f \in \Sigma : D \cup s^{\text{true}} \cup A^{\text{does}} \models \text{next}(f) \}$$
Question: How do fluents evolve over time?

- Construct a fluent-graph
 - Each fluent of a game is a node
 - A directed edge \((f_i, f)\) is added, if at least one of the predecessor states must hold in the current state, for \(f\) to hold in the next state.

Figure 1: Partial fluent graph for Tic-Tac-Toe.
Fluent graph: definition

Definition 2 (Fluent Graph). Let Γ be a game over ground terms Σ. A graph $G = (V, E)$ is called a fluent graph for Γ iff

- $V = \Sigma \cup \{\emptyset\}$ and
- for all fluents $f \in \Sigma$, two valid states s and s'

\[(s' \text{ is a successor of } s) \land f' \in s' \Rightarrow (\exists f)(f, f') \in E \land (f \in s \cup \{\emptyset\})\]

Why do they need a new symbol?
The extra symbol ...

- A fake node to capture fluents in the game that do not have preconditions
 - For instance:
 - next(g):-distinct(a,b)
- In addition, some fluents might not be connected at all
 - For instance:
 - next(g):- distinct(a,a)
Are fluent graphs unique?
Are fluent graphs unique?

• No
• Only some of the necessary preconditions are covered

Figure 2: Alternative partial fluent graph for Tic-Tac-Toe.
Definition 3 (Distance Function). Let $\Delta_G(f, f')$ be the length of the shortest path from node f to node f' in the fluent graph G or ∞ if there is no such path. Then

$$\Delta(s, f') = \min_{f \in s \cup \{\emptyset\}} \Delta_G(f, f')$$

Intuitively, each edge (f, f') in the fluent graph corresponds to a state transition of the game from a state in which f holds to a state in which f' holds.

Thus, the length of a path from f to f' in the fluent graph corresponds to the number of steps in the game between a state containing f to a state containing f'.
Admissible heuristic

• The distance function is a lower bound on the actual number of steps
• Thus, it is an admissible heuristic!
• Before we show how the heuristic is applied, we look into the construction of fluent graphs from rules
From Rules to Fluent Graphs

For each ground fluent f' of the game:

1. Construct a ground disjunctive normal form ϕ of $\text{next}(f')$, i.e., a formula ϕ such that $\text{next}(f') \supset \phi$.

2. For every disjunct ψ in ϕ:
 - Pick one literal $\text{true}(f)$ from ψ or set $f = \emptyset$ if there is none.
 - Add the edge (f, f') to the fluent graph.
How to pick a literal?

- The distance function is admissible (lower bound)!
- What is the goal ... ?
How to pick a literal?

- The distance function is admissible (lower bound)!
- One wants to increase the shortest paths lengths as much as possible, while still remaining admissible
 - The fluent graph contains as few edges as possible, but as many as strictly necessary
- The other extreme: complete fluent graph
Two open problems

1. How to construct a ground formula in DNF?
2. Which true(f) is selected?
Algorithm 1 Constructing a formula ϕ in DNF with $\text{next}(f') \supset \phi$.

Input: game description D, ground fluent f'

Output: ϕ, such that $\text{next}(f') \supset \phi$

1: $\phi := \text{next}(f')$
2: $\text{finished} := \text{false}$
3: while $\neg \text{finished}$ do
4: Replace every positive occurrence of $\text{does}(r, a)$ in ϕ with $\text{legal}(r, a)$.
5: Select a positive literal l from ϕ such that $l \neq \text{true}(t), l \neq \text{distinct}(t_1, t_2)$ and l is not a recursively defined predicate.
6: if there is no such literal then
7: $\text{finished} := \text{true}$
8: else
9: $\tilde{l} := \bigvee_{h: \exists b \in D, l\sigma = h\sigma} b\sigma$
10: $\phi := \phi\{l/\tilde{l}\}$
11: end if
12: end while
13: Transform ϕ into disjunctive normal form, i.e., $\phi = \psi_1 \lor \ldots \lor \psi_n$ and each formula ψ_i is a conjunction of literals.
14: for all ψ_i in ϕ do
15: Replace ψ_i in ϕ by a disjunction of all ground instances of ψ_i.
16: end for
Tic-Tac-Toe example

1. \texttt{next(cell(M,N,x)) :- does(xplayer,mark(M,N)).}
2. \texttt{next(cell(M,N,o)) :- does(oplayer,mark(M,N)).}
3. \texttt{next(cell(M,N,C)) :- true(cell(M,N,C)),}
 \texttt{does(P,mark(X,Y)), distinct(X,M).}
4. \texttt{next(cell(M,N,C)) :- true(cell(M,N,C)),}
 \texttt{does(P,mark(X,Y)), distinct(Y,N).}

Formula for \texttt{next(cell(c,1,X))}?
Tic-Tac-Toe example

1. next(cell(M,N,x)) :- does(xplayer,mark(M,N)).
2. next(cell(M,N,o)) :- does(oplayer,mark(M,N)).
3. next(cell(M,N,C)) :- true(cell(M,N,C)), does(P,mark(X,Y)), distinct(X,M).
4. next(cell(M,N,C)) :- true(cell(M,N,C)), does(P,mark(X,Y)), distinct(Y,N).

Formula for next(cell(c,1,X))?

\[\phi = \text{does(xplayer,mark(c,1))} \lor \text{true(cell(c,1,x))} \land \text{does(P,mark(X,Y))} \land \text{distinct(X,c)} \lor \text{true(cell(c,1,x))} \land \text{does(P,mark(X,Y))} \land \text{distinct(Y,1)} \]
\[
\phi = \text{does(xplayer,mark(c,1))} \lor \\
\text{true(cell(c,1,x))} \land \text{does(xplayer,mark(a,1))} \land \text{distinct(a,c)} \lor \\
\text{true(cell(c,1,x))} \land \text{does(xplayer,mark(b,1))} \land \text{distinct(b,c)} \lor \\
\ldots \lor \\
\text{true(cell(c,1,x))} \land \text{does(xplayer,mark(c,3))} \land \text{distinct(c,c)} \lor \\
\text{true(cell(c,1,x))} \land \text{does(xplayer,mark(a,1))} \land \text{distinct(1,1)} \lor \\
\ldots \lor \\
\text{true(cell(c,1,x))} \land \text{does(xplayer,mark(c,3))} \land \text{distinct(3,1)} \lor \\
\text{true(cell(c,1,x))} \land \text{does(oplayer,mark(a,1))} \land \text{distinct(a,c)} \lor \\
\ldots \lor \\
\text{true(cell(c,1,x))} \land \text{does(oplayer,mark(c,3))} \land \text{distinct(c,c)} \lor \\
\text{true(cell(c,1,x))} \land \text{does(oplayer,mark(a,1))} \land \text{distinct(1,1)} \lor \\
\ldots \lor \\
\text{true(cell(c,1,x))} \land \text{does(oplayer,mark(c,3))} \land \text{distinct(3,1)}
\]
Tic-Tac-Toe example (legal instead of does!)

1. `next(cell(M,N,x)) :- does(xplayer,mark(M,N)).`
2. `next(cell(M,N,o)) :- does(oplayer,mark(M,N)).`
3. `next(cell(M,N,C)) :- true(cell(M,N,C)),
 does(P,mark(X,Y)), distinct(X,M).`
4. `next(cell(M,N,C)) :- true(cell(M,N,C)),
 does(P,mark(X,Y)), distinct(Y,N).`

\[\phi = \text{true(control(xplayer))} \land \text{true(cell(c,1,blank))} \]
\[\lor \]
\[\text{true(cell(c,1,x))} \land \text{true(control(P))} \land \text{true(cell(X,Y,blank))} \]
\[\land \text{distinct(X,c)} \]
\[\lor \]
\[\text{true(cell(c,1,x))} \land \text{true(control(P))} \land \text{true(cell(X,Y,blank))} \]
\[\land \text{distinct(Y,1)} \]
Selecting Preconditions for the Fluent Graph

1. Add only edges if necessary
 - Use existing edges, if possible
2. Prefer \text{true}(f) over \text{true}(g), if \(f\) is more similar to \(f'\) than \(g\) is to \(f'\)

We define the similarity \(\text{sim}(t, t')\) recursively over ground terms \(t, t'\):

\[
\text{sim}(t, t') = \begin{cases}
1: & t, t' \text{ have arity 0 and } t = t' \\
\sum_i \text{sim}(t_i, t'_i): & t = f(t_1, \ldots, t_n) \text{ and } \\
0: & t' = f(t'_1, \ldots, t'_n) \\
& \text{else}
\end{cases}
\]
How to apply distance measures for search?
Distances in Tic-Tac-Toe

Figure 3: Two states of the Tic-Tac-Toe. The first row is still open in state s_1 but blocked in state s_2.

\begin{verbatim}
1 line(x) :- true(cell(1,1,x)),
2 true(cell(2,1,x)), true(cell(3,1,x)).
\end{verbatim}
Distances in Breakthrough

Figure 4: Initial position in Breakthrough and the move options of a pawn.

```
1 goal(black, 100) :-
2   index(X), true(cellholds(X, 1, black)).
```
Distances in Breakthrough

Figure 5: A partial fluent graph for Breakthrough, role black.
Evaluation

Figure 6: Advantage in Win Rate of flux_distance
Summary

• Search is much more goal-directed
• However, smaller number of evaluated states/second
• Grounding of goal formulae is main problem
 – Out-of-memory or time-out
• Possible solution: non-grounded fluent-graphs
Proving properties of games
Main question

• How can a general game player *deduce* that a fact is true for all finitely reachable states?
 – For instance, the feature control(P) in Tic-Tac-Toe is unique in every single state => Ability to identify turn-taking games
 – Z is output for cell(X,Y,Z); so far no proof!

• Solution?
Main question

• How can a general game player *deduce* that a fact is true for all finitely reachable states?
 – For instance, the feature control(P) in Tic-Tac-Toe is unique in every single state => Ability to identify turn-taking games
 – Z is output for cell(X,Y,Z); so far no proof!

• Solution?

• Induction:
 – Property p holds in the initial state
 – If p holds in the current state, then p holds in all successor states

• Use answer set programming …
Example for induction with answer set progr.

• Proof of initial state is trivial

```prolog
1 init(cell(a,1,blank)). ... init(cell(c,3,blank)).
2 init(control(xplayer)).
3 cdom(xplayer).
4 cdom(oplayer).
5 phi_init :- 1 { init(control(X)) : cdom(X) } 1.
6 :- phi_init.
```
Example for induction

- Inductive step:

```prolog
1 dom_control(xplayer). dom_control(oplayer).
2 dom_cell1(a). dom_cell1(b). dom_cell1(c).
3 dom_cell2(1). dom_cell2(2). dom_cell2(3).
4 dom_cell3(x). dom_cell3(o). dom_cell3(blank).
5
6 dom_fluent(control(X)) :- dom_control(X).
7 dom_fluent(cell(X,Y,C)) :-
8     dom_cell1(X), dom_cell2(Y), dom_cell3(C).
9
10 dom_move(mark(X,Y)) :- dom_cell1(X), dom_cell2(Y).
11 dom_move(nocp).
12
13 0 { true(F) : dom_fluent(F) }.
14
15 1 { does(R,M) : dom_move(M) } 1 :- role(R).
16 :- does(R,M), not legal(R,M).
17
18 phi_true :- 1 { true(control(X)) : dom_control(X) } 1.
19 :- not phi_true.
20
21 phi_next :- 1 { next(control(X)) : dom_control(X) } 1.
22 :- phi_next.
```
Summary FluxPlayer

• Key techniques:
 – Modeling of degree of truth of formulae with fuzzy logic
 – Estimation for similarity of states w.r.t. goals states
 – Extraction of static/dynamic structures from game descriptions
 – Shortest paths in fluent graphs as lower bound for state distances
 – Proving properties of games using induction

Competition history

- 2005: Cluneplayer, by Jim Clune (UCLA)
- 2006: Fluxplayer, by Stephan Schiffel and Michael Thielscher (Dresden University of Technology)
- 2007: Cadiaplayer, by Yngvi Björnsson and Hilmar Finnsson (Reykjavik University)
- 2008: Cadiaplayer, by Yngvi Björnsson, Hilmar Finnsson and Gylfi Þór Guðmundsson (Reykjavik University)
- 2009: Ary, by Jean Méhat (Paris 8 University)
- 2010: Ary, by Jean Méhat (Paris 8 University)
- 2011: TurboTurtle, by Sam Schreiber
- 2012: Cadiaplayer, by Hilmar Finnsson and Yngvi Björnsson (Reykjavik University)
- 2013: TurboTurtle, by Sam Schreiber
Acknowledgements

Main source for the slides was:
Stephan Schiffel: Knowledge-based General Game Playing, dissertation at TU Dresden

In addition:
Michulke et.al.: Distance features for General Game Playing (GIGA 2011)