Propositional Logic: Review
Propositional logic

- **Logical constants**: true, false
- **Propositional symbols**: P, Q, S, ... (atomic sentences)
- Wrapping **parentheses**: (…)
- Sentences are combined by **connectives**:
 - \wedge ...and [conjunction]
 - \lor ...or [disjunction]
 - \Rightarrow ...implies [implication / conditional]
 - \Leftrightarrow ..is equivalent [biconditional]
 - \neg ...not [negation]
- **Literal**: atomic sentence or negated atomic sentence
Examples of PL sentences

• \((P \land Q) \rightarrow R\)
 “If it is hot and humid, then it is raining”

• \(Q \rightarrow P\)
 “If it is humid, then it is hot”

• \(Q\)
 “It is humid.”

• A better way:
 \(Ho = \text{“It is hot”}\)
 \(Hu = \text{“It is humid”}\)
 \(R = \text{“It is raining”}\)
Propositional logic (PL)

• A simple language useful for showing key ideas and definitions
• User defines a set of propositional symbols, like P and Q.
• User defines the **semantics** of each propositional symbol:
 – P means “It is hot”
 – Q means “It is humid”
 – R means “It is raining”
• A sentence (well formed formula) is defined as follows:
 – A symbol is a sentence
 – If S is a sentence, then \(\neg S \) is a sentence
 – If S is a sentence, then \(\sim S \) is a sentence
 – If S and T are sentences, then \(S \lor T \), \(S \land T \), \(S \rightarrow T \), and \(S \leftrightarrow T \) are sentences
 – A sentence results from a finite number of applications of the above rules
Some terms

• The meaning or **semantics** of a sentence determines its **interpretation**.

• Given the truth values of all symbols in a sentence, it can be “evaluated” to determine its **truth value** (True or False).

• A **model** for a KB is a “possible world” (assignment of truth values to propositional symbols) in which each sentence in the KB is True.
More terms

• A **valid sentence** or **tautology** is a sentence that is True under all interpretations, no matter what the world is actually like or what the semantics is. Example: “It’s raining or it’s not raining.”

• An **inconsistent sentence** or **contradiction** is a sentence that is False under all interpretations. The world is never like what it describes, as in “It’s raining and it’s not raining.”

• **P entails Q**, written $P \models Q$, means that whenever P is True, so is Q. In other words, all models of P are also models of Q.
Truth tables

The five logical connectives:

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>¬P</th>
<th>P ∧ Q</th>
<th>P ∨ Q</th>
<th>P → Q</th>
<th>P ↔ Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
</tbody>
</table>

A complex sentence:

<table>
<thead>
<tr>
<th>P</th>
<th>H</th>
<th>P ∨ H</th>
<th>(P ∨ H) ∧ ¬H</th>
<th>((P ∨ H) ∧ ¬H) → P</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>
Models of complex sentences

- $P \lor Q$
- $P \land Q$
- $P \Rightarrow Q$
- $P \Leftrightarrow Q$
Equivalences

Which one do you remember?
Inference rules

• **Logical inference** is used to create new sentences that logically follow from a given set of predicate calculus sentences (KB).

• An inference rule is **sound** if every sentence X produced by an inference rule operating on a KB logically follows from the KB. (That is, the inference rule does not create any contradictions)

• An inference rule is **complete** if it is able to produce every expression that logically follows from (is entailed by) the KB. (Note the analogy to complete search algorithms.)
Sound rules of inference

• Here are some examples of sound rules of inference
 – A rule is sound if its conclusion is true whenever the premise is true
• Each can be shown to be sound using a truth table

<table>
<thead>
<tr>
<th>RULE</th>
<th>PREMISE</th>
<th>CONCLUSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modus Ponens</td>
<td>A, A → B</td>
<td>B</td>
</tr>
<tr>
<td>And Introduction</td>
<td>A, B</td>
<td>A ∧ B</td>
</tr>
<tr>
<td>And Elimination</td>
<td>A ∧ B</td>
<td>A</td>
</tr>
<tr>
<td>Double Negation</td>
<td>¬¬A</td>
<td>A</td>
</tr>
<tr>
<td>Unit Resolution</td>
<td>A ∨ B, ¬B</td>
<td>A</td>
</tr>
<tr>
<td>Resolution</td>
<td>A ∨ B, ¬B ∨ C</td>
<td>A ∨ C</td>
</tr>
</tbody>
</table>
Proving things

• A proof is a sequence of sentences, where each sentence is either a premise or a sentence derived from earlier sentences in the proof by one of the rules of inference.
• The last sentence is the theorem (also called goal or query) that we want to prove.
• Example for the “weather problem” given above.

1 Hu Premise “It is humid”
2 Hu→Ho Premise “If it is humid, it is hot”
3 Ho Modus Ponens(1,2) “It is hot”
4 (Ho∧Hu)→R Premise “If it’s hot & humid, it’s raining”
5 Ho∧Hu And Introduction(1,3) “It is hot and humid”
6 R Modus Ponens(4,5) “It is raining”
Entailment and derivation

• **Entailment**: $KB \models Q$

 – Q is entailed by KB (a set of premises or assumptions) if and only if there is no logically possible world in which Q is false while all the premises in KB are true.

 – Or, stated positively, Q is entailed by KB if and only if the conclusion is true in every logically possible world in which all the premises in KB are true.

• **Derivation**: $KB \vdash Q$

 – We can derive Q from KB if there is a proof consisting of a sequence of valid inference steps starting from the premises in KB and resulting in Q
Two important properties for inference

Soundness: If \(KB \vdash Q \) then \(KB \models Q \)

- If \(Q \) is derived from a set of sentences \(KB \) using a given set of rules of inference, then \(Q \) is entailed by \(KB \).
- Hence, inference produces only real entailments, or any sentence that follows deductively from the premises is valid.

Completeness: If \(KB \models Q \) then \(KB \vdash Q \)

- If \(Q \) is entailed by a set of sentences \(KB \), then \(Q \) can be derived from \(KB \) using the rules of inference.
- Hence, inference produces all entailments, or all valid sentences can be proved from the premises.
Quick and dirty: Resolution

1) Transform set of formulae into conjunctive normal form
 => set of clauses
2) Add the negated goal/query
3) Apply resolution rule until either
 - no more application possible or
 - the empty clause is derived

If empty clause can be derived, then the goal follows from the set of formulae!
Propositional logic is a weak language

• Hard to identify “individuals” (e.g., Mary, 3)
• Can’t directly talk about properties of individuals or relations between individuals (e.g., “Bill is tall”)
• Generalizations, patterns, regularities can’t easily be represented (e.g., “all triangles have 3 sides”)
• First-Order Logic (abbreviated FOL or FOPC) is expressive enough to concisely represent this kind of information
 FOL adds relations, variables, and quantifiers, e.g.,
 • “Every elephant is gray”: \(\forall x \ (\text{elephant}(x) \rightarrow \text{gray}(x)) \)
 • “There is a white alligator”: \(\exists x \ (\text{alligator}(X) \land \text{white}(X)) \)
Propositional logic: Summary

• The process of deriving new sentences from old one is called **inference**.
 – **Sound** inference processes derives true conclusions given true premises
 – **Complete** inference processes derive all true conclusions from a set of premises

• A **valid sentence** is true in all worlds under all interpretations

• If an implication sentence can be shown to be valid, then—given its premise—its consequent can be derived

• Different logics make different **commitments** about what the world is made of and what kind of beliefs we can have regarding the facts
 – Logics are useful for the commitments they do not make because lack of commitment gives the knowledge base engineer more freedom

• **Propositional logic** commits only to the existence of facts that may or may not be the case in the world being represented
 – It has a simple syntax and simple semantics. It suffices to illustrate the process of inference
 – Propositional logic quickly becomes impractical, even for very small worlds