Description Logics

Franz Baader
Theoretical Computer Science
TU Dresden
Germany
Reasoning makes implicitly represented knowledge explicit, provided as service by the DL system, e.g.:

Subsumption: Is C a subconcept of D?

\[C \sqsubseteq_{\mathcal{T}} D \iff C^\mathcal{I} \subseteq D^\mathcal{I} \text{ for all models } \mathcal{I} \text{ of the TBox } \mathcal{T}. \]

Satisfiability: Is the concept C non-contradictory?

\[C \text{ is satisfiable w.r.t. } \mathcal{T} \iff C^\mathcal{I} \neq \emptyset \text{ for some model } \mathcal{I} \text{ of } \mathcal{T}. \]

Consistency: Is the ABox \mathcal{A} non-contradictory?

\[\mathcal{A} \text{ is consistent w.r.t. } \mathcal{T} \iff \text{it has a model that is also a model of } \mathcal{T}. \]

Instantiation: Is e an instance of C?

\[\mathcal{A} \models_{\mathcal{T}} C(e) \iff e^\mathcal{I} \in C^\mathcal{I} \text{ for all models } \mathcal{I} \text{ of } \mathcal{T} \text{ and } \mathcal{A}. \]
Reductions between inference problems

Subsumption to satisfiability:

\[C \subseteq_{\mathcal{T}} D \ \text{iff} \ C \cap \neg D \text{ is unsatisfiable w.r.t. } \mathcal{T} \]

Satisfiability to subsumption:

\[C \text{ is satisfiable w.r.t. } \mathcal{T} \ \text{iff} \ \neg C \not\subseteq_{\mathcal{T}} \bot \]

Satisfiability to consistency:

\[C \text{ is satisfiable w.r.t. } \mathcal{T} \ \text{iff} \ \{ C(a) \} \text{ is consistent w.r.t. } \mathcal{T} \]

Instance to consistency:

\[a \text{ is an instance of } C \text{ w.r.t. } \mathcal{T} \text{ and } \mathcal{A} \ \text{iff} \ \mathcal{A} \cup \{ \neg C(a) \} \text{ is inconsistent w.r.t. } \mathcal{T} \]

Consistency to instance:

\[\mathcal{A} \text{ is consistent w.r.t. } \mathcal{T} \ \text{iff} \ a \text{ is not an instance of } \bot \text{ w.r.t. } \mathcal{T} \text{ and } \mathcal{A} \]
Reduction

getting rid of the TBox

Since TBoxes are acyclic, expansion always terminates,
but the expanded concept may be exponential in the size of \mathcal{T}.

\[
\begin{align*}
A_0 & \equiv \forall r. A_1 \sqcap \forall s. A_1 \\
A_1 & \equiv \forall r. A_2 \sqcap \forall s. A_2 \\
& \vdots \\
A_{n-1} & \equiv \forall r. A_n \sqcap \forall s. A_n
\end{align*}
\]

The size of \mathcal{T} is linear in n,
but the expansion A_0^T contains A_n 2^n times.

Reductions:

- C is satisfiable w.r.t. \mathcal{T} iff C^T is satisfiable w.r.t. the empty TBox \emptyset.
- $C \sqsubseteq_\mathcal{T} D$ iff $C^T \sqsubseteq_{\emptyset} D^T$.
Classification

Computing the subsumption hierarchy of all concept names occurring in the TBox.

\[
\begin{align*}
\text{Man} & \equiv \text{Person} \sqcap \neg \text{Female} \\
\text{Woman} & \equiv \text{Person} \sqcap \text{Female} \\
\text{MaleSpeaker} & \equiv \text{Man} \sqcap \exists \text{gives.Talk} \\
\text{FemaleSpeaker} & \equiv \text{Woman} \sqcap \exists \text{gives.Talk} \\
\text{Speaker} & \equiv \text{FemaleSpeaker} \sqcup \text{MaleSpeaker} \\
\text{BusySpeaker} & \equiv \text{Speaker} \sqcap (\geq 3 \text{ gives.Talks})
\end{align*}
\]
Realization

Computing the most specific concept names in the TBox to which an ABox individual belongs.

\[
\begin{align*}
\text{Man} & \equiv \text{Person} \sqcap \neg \text{Female} \\
\text{Woman} & \equiv \text{Person} \sqcap \text{Female} \\
\text{MaleSpeaker} & \equiv \text{Man} \sqcap \exists \text{gives.Talk} \\
\text{FemaleSpeaker} & \equiv \text{Woman} \sqcap \exists \text{gives.Talk} \\
\text{Speaker} & \equiv \text{FemaleSpeaker} \sqcup \text{MaleSpeaker} \\
\text{BusySpeaker} & \equiv \text{Speaker} \sqcap (\geq 3 \text{ gives.Talks})
\end{align*}
\]

\[
\begin{align*}
\text{Man(FRANZ)}, & \quad \text{gives(FRANZ, T1)}, \\
\text{Talk(T1)}
\end{align*}
\]

FRANZ is an instance of Man, Speaker, MaleSpeaker.

most specific
Complexity of reasoning in Description Logics

A commonly held belief in the 1980ies:

reasoning in KR systems should be tractable, i.e., of polynomial time complexity

- **KL-ONE** and its early successor systems (BACK, MESON, K-Rep, ...) employed polynomial-time algorithms

- even in rather inexpressive DLs, reasoning may be intractable [Brachman&Levesque, 1987]

- reasoning in **KL-ONE** is undecidable [Schmidt-Schauß, 1989]

- reasoning w.r.t. a TBox is intractable even in the minimal DL \mathcal{FL}_0 (value-restriction, conjunction) [Nebel, 1990]
Ways out of this dilemma

- **Expressive DL**
 - Sound, but incomplete
 - Tractable algorithms

- **Inexpressive DL**
 - Sound and complete
 - Intractable algorithms

Make bug into a feature?

Made possible by the development of tableau algorithms
Reasoning procedures

requirements

- The procedure should be a decision procedure for the problem:
 - soundness: positive answers are correct
 - completeness: negative answers are correct
 - termination: always gives an answer in finite time

- The procedure should be as efficient as possible:
 preferably optimal w.r.t. the (worst-case) complexity of the problem

- The procedure should be practical:
 easy to implement and optimize, and behave well in applications

Example
- Satisfiability in first-order logic does not have a decision procedure.
- Satisfiability in propositional logic has a decision procedure, but the problem is NP-complete.
Tableau algorithm for \mathcal{ALC}

It is sufficient to design a decision procedure for consistency of an ABox without a TBox:

- TBoxes can be eliminated by expanding concept descriptions
- satisfiability, subsumption, and the instance problem can be reduced to consistency

The tableau-based consistency algorithm tries to generate a finite model for the input ABox \mathcal{A}_0:

- applies tableau rules to extend the ABox \textit{one rule per constructor}
- checks for obvious contradictions
- an ABox that is complete (no rule applies) and open (no obvious contradictions) describes a model
Tableau algorithm

\[\mathcal{T} \text{ GoodStudent} \equiv \text{Smart} \sqcap \text{Studious} \]

Subsumption question:
\[\exists \text{attended.} \text{Smart} \sqcap \exists \text{attended.} \text{Studious} \sqsubseteq_{\mathcal{T}} \exists \text{attended.} \text{GoodStudent} \]

Reduction to satisfiability: is the following concept unsatisfiable w.r.t. \(\mathcal{T} \)?
\[\exists \text{attended.} \text{Smart} \sqcap \exists \text{attended.} \text{Studious} \sqcap \neg \exists \text{attended.} \text{GoodStudent} \]

Reduction to consistency: is the following ABox inconsistent w.r.t. \(\mathcal{T} \)?
\[\{ (\exists \text{attended.} \text{Smart} \sqcap \exists \text{attended.} \text{Studious} \sqcap \neg \exists \text{attended.} \text{GoodStudent})(a) \} \]

Expansion: is the following ABox inconsistent?
\[\{ (\exists \text{attended.} \text{Smart} \sqcap \exists \text{attended.} \text{Studious} \sqcap \neg \exists \text{attended.} (\text{Smart} \sqcap \text{Studious}))(a) \} \]

Negation normal form: is the following ABox inconsistent?
\[\{ (\exists \text{attends.} \text{Smart} \sqcap \exists \text{attends.} \text{Studious} \sqcap \forall \text{attends.} (\neg \text{Smart} \sqcup \neg \text{Studious}))(a) \} \]
Is the following ABox inconsistent?

\{ (\exists \text{attended. Smart} \cap \exists \text{attended. Studious} \cap \forall \text{attended. (\neg \text{Smart} \cup \neg \text{Studious})})(a) \} \\
\exists r. A \cap \exists r. B \cap \forall r. (\neg A \cup \neg B) \\
\exists r. A, \exists r. B, \forall r. (\neg A \cup \neg B)

\begin{itemize}
\item \text{a}
\item \text{b}
 \begin{itemize}
 \item A
 \item \neg A \cup \neg B
 \item \neg A \quad \neg B
 \end{itemize}
\item \text{c}
 \begin{itemize}
 \item B
 \item \neg A \cup \neg B
 \item \neg A
 \end{itemize}
\end{itemize}

and thus a counterexample to the subsumption relationship
Tableau algorithm

more formal description

Input: An \mathcal{ALC}-ABox \mathcal{A}_0

Output: “yes” if \mathcal{A}_0 is consistent
“no” otherwise

Preprocessing:

transform all concept descriptions in \mathcal{A}_0 into negation normal form (NNF)
by applying the following rules:

$\neg(C \sqcap D) \leadsto \neg C \sqcup \neg D$

$\neg(C \sqcup D) \leadsto \neg C \sqcap \neg D$

$\neg\neg C \leadsto C$

$\neg(\exists r.C) \leadsto \forall r.\neg C$

$\neg(\forall r.C) \leadsto \exists r.\neg C$

The NNF can be computed in polynomial time, and it does not change the semantics of the concept.
Tableau algorithm

more formal description

Data structure:
finite set of ABoxes rather than a single ABox: start with \(\mathcal{A}_0 \)

Application of tableau rules:
the rules take one ABox from the set and replace it by finitely many new ABoxes

Termination:
if no more rules apply to any ABox in the set

Answer:
“yes” if the set contains an open ABox, i.e., an ABox not containing an obvious contradiction of the form

\[A(a) \text{ and } \neg A(a) \quad \text{for some individual name } a \]
Tableau rules

one for every constructor (except for negation)

<table>
<thead>
<tr>
<th>Rule</th>
<th>Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>The (\sqcap)-rule</td>
<td>(\mathcal{A}) contains ((C \sqcap D)(a)), but not both (C(a)) and (D(a))</td>
<td>(\mathcal{A}' := \mathcal{A} \cup {C(a), D(a)})</td>
</tr>
<tr>
<td>The (\sqcup)-rule</td>
<td>(\mathcal{A}) contains ((C \sqcup D)(a)), but neither (C(a)) nor (D(a))</td>
<td>(\mathcal{A}' := \mathcal{A} \cup {C(a)}) and (\mathcal{A}'' := \mathcal{A} \cup {D(a)})</td>
</tr>
<tr>
<td>The (\exists)-rule</td>
<td>(\mathcal{A}) contains ((\exists r. C)(a)), but there is no (c) with ({r(a, c), C(c)} \subseteq \mathcal{A})</td>
<td>(\mathcal{A}' := \mathcal{A} \cup {r(a, b), C(b)}) where (b) is a new individual name</td>
</tr>
<tr>
<td>The (\forall)-rule</td>
<td>(\mathcal{A}) contains ((\forall r. C)(a)) and (r(a, b)), but not (C(b))</td>
<td>(\mathcal{A}' := \mathcal{A} \cup {C(b)})</td>
</tr>
</tbody>
</table>
Tableau algorithm

1. **local correctness:** rules preserve consistency

2. **termination:** no infinite paths

3. **soundness:** any complete and open ABox has a model

 completeness: closed ABoxes do not have a model

 trivial
Local correctness

rules preserve consistency

The \exists-rule

Condition: \mathcal{A} contains $(\exists r.C)(a)$, but there is no c with \{\(r(a, c), C(c)\)\} $\subseteq \mathcal{A}$

Action: \(\mathcal{A}' := \mathcal{A} \cup \{r(a, b), C(b)\}\) where b is a new individual name

To show: \mathcal{A} has a model iff \mathcal{A}' has a model

⇒ Let \mathcal{I} be a model of \mathcal{A}.

Since $(\exists r.C)(a) \in \mathcal{A}$, there is a $d \in \Delta^\mathcal{I}$ such that $(a^\mathcal{I}, d) \in r^\mathcal{I}$ and $d \in C^\mathcal{I}$.

Let \mathcal{I}' be the interpretation that coincides with \mathcal{I}, with the exception that $b^\mathcal{I}' = d$.

Since b does not occur in \mathcal{A}, \mathcal{I}' is a model of \mathcal{A}.

By definition of $b^\mathcal{I}'$, it is also a model of \{\(r(a, b), C(b)\)\}.

⇐ trivial since $\mathcal{A} \subseteq \mathcal{A}'$.
Termination is an easy consequence of the following facts:

The label $\mathcal{L}(a)$ of an individual name consists of the concepts in concept assertions for a.

1. rule application is monotonic: every application of a rule extends the label of an individual, and does not remove anything;

2. concepts in labels are subdescriptions of concepts occurring in the input ABox \mathcal{A}_0;

\Rightarrow finite number of rule applications per individual

3. the number of new individuals that are r-successors of an individual is bounded by the number of existential restrictions in \mathcal{A}_0;

4. the length of successor chains of new individuals is bounded by the maximal size of the concepts in \mathcal{A}_0:
 - if x is a new individual, then it has a unique predecessor y
 - the maximal size of concepts in $\mathcal{L}(x)$ is strictly smaller than in $\mathcal{L}(y)$

\Rightarrow finitely many new individuals
Soundness

any complete and open ABox has a model

Let \mathcal{A} be a complete and open ABox.

The canonical interpretation $\mathcal{I}_\mathcal{A}$ induced by \mathcal{A} is defined as follows:

- $\Delta^\mathcal{I}_\mathcal{A} := \{ x \mid x \text{ is an individual name occurring in } \mathcal{A} \}$
- $x^\mathcal{I}_\mathcal{A} := x$ for all individual names occurring in \mathcal{A}
- $A^\mathcal{I}_\mathcal{A} := \{ x \mid A(x) \in \mathcal{A} \}$ for all $A \in N_C$
- $r^\mathcal{I}_\mathcal{A} := \{ (x, y) \mid r(x, y) \in \mathcal{A} \}$ for all $r \in N_R$

Claim

$\mathcal{I}_\mathcal{A}$ is a model of \mathcal{A}.
Tableau algorithm is a decision procedure for consistency

1. Started with a finite ABox \mathcal{A}_0 in NNF
 the algorithm always terminates with
 a finite set of complete ABoxes $\mathcal{A}_1, \ldots, \mathcal{A}_n$

2. Local correctness: \mathcal{A}_0 consistent iff
 one of $\mathcal{A}_1, \ldots, \mathcal{A}_n$ consistent

3. Answer “no”:
 none of $\mathcal{A}_1, \ldots, \mathcal{A}_n$ open
 $\mathcal{A}_1, \ldots, \mathcal{A}_n$ inconsistent
 \mathcal{A}_0 inconsistent

4. Answer “yes”:
 one of $\mathcal{A}_1, \ldots, \mathcal{A}_n$ open
 \mathcal{A}_0 consistent
Adding number restrictions

Number restrictions: \((\geq n \cdot r. C), (\leq n \cdot r. C)\) with semantics

\[
\begin{align*}
(\geq n \cdot r. C)^I & := \{d \in \Delta^I \mid \text{card}\{e \mid (d, e) \in r^I \land e \in C^I\} \geq n\} \\
(\leq n \cdot r. C)^I & := \{d \in \Delta^I \mid \text{card}\{e \mid (d, e) \in r^I \land e \in C^I\} \leq n\}
\end{align*}
\]

Negation normal form:

\[
\begin{align*}
\neg(\geq n + 1 \cdot r. C) & \iff (\leq n \cdot r. C) \\
\neg(\geq 0 \cdot r. C) & \iff \perp \\
\neg(\leq n \cdot r. C) & \iff (\geq n + 1 \cdot r. C)
\end{align*}
\]

Extension of algorithm:

- new rules: \(\geq\)-rule and \(\leq\)-rule
- new assertions: inequality assertions of the form \(x \neq y\) with obvious semantics \(x^I \neq y^I\) viewed as symmetric
- new obvious contradictions
Adding number restrictions

The \geq-rule

Condition: \mathcal{A} contains $(\geq n \mathit{r.C})(a)$, but there are no c_1, \ldots, c_n with
\[
\{r(a, c_1), C(c_1), \ldots, r(a, c_n), C(c_n)\} \cup \{c_i \neq c_j \mid 1 \leq i < j \leq n\} \subseteq \mathcal{A}
\]

Action:

\[
\mathcal{A}' := \mathcal{A} \cup \{r(a, b_1), C(b_1), \ldots, r(a, b_n), C(b_n)\} \cup \{b_i \neq b_j \mid 1 \leq i < j \leq n\}
\]

where b_1, \ldots, b_n are new individual names

The \leq-rule

Condition: \mathcal{A} contains $(\leq n \mathit{r.C})(a)$, and there are b_1, \ldots, b_{n+1} with
\[
\{r(a, b_1), C(b_1), \ldots, r(a, b_{n+1}), C(b_{n+1})\} \subseteq \mathcal{A},
\]
but $\{b_i \neq b_j \mid 1 \leq i < j \leq n + 1\} \not\subseteq \mathcal{A}$

Action:

for all $i < j$ with $b_i \neq b_j \not\in \mathcal{A}$

\[
\mathcal{A}_{i,j} := \mathcal{A}[b_i \leftarrow b_j]
\]

b_i replaced by b_j
Adding number restrictions

- A contains $(\leq n r.C)(a)$, and there are b_1, \ldots, b_{n+1} with
 $$\{r(a, b_1), C(b_1), \ldots, r(a, b_{n+1}); C(b_{n+1})\} \subseteq A$$ and
 $$\{b_i \neq b_j \mid 1 \leq i < j \leq n + 1\} \subseteq A$$

- A contains $a \neq a$ for some individual name a
Adding GCIs

\(C \subseteq D \) with semantics \(C^I \subseteq D^I \)

A finite set of GCIs can be encoded into one GCI of the form \(\top \subseteq C \):

\[
\{ C_1 \subseteq D_1, \ldots, C_n \subseteq D_n \} \quad \rightarrow \quad \{ \top \subseteq (\neg C_1 \cup D_1) \cap \ldots \cap (\neg C_n \cup D_n) \}
\]

Consider a GCI \(\top \subseteq C \) where \(C \) is in NNF.

The GCI-rule for \(\top \subseteq C \)

Condition: \(\mathcal{A} \) contains the individual name \(a \), but not \(C(a) \)

Action: \(\mathcal{A}' := \mathcal{A} \cup \{ C(a) \} \)
Task

What do you think could be a problem with GCIs?
Adding GCIs

does this yield a decision procedure?

- local correctness, completeness, and soundness are easy to show

- termination does not hold:

Test consistency of \(\{ P(a) \} \) w.r.t. the GCI \(\top \subseteq \exists r. P \)

\[
\begin{align*}
& a \xrightarrow{r} P \xrightarrow{r} P \xrightarrow{r} P \\
& \exists r. P \quad \exists r. P \quad \exists r. P
\end{align*}
\]

Solution: blocking

- \(y \) is blocked by \(x \) iff \(\mathcal{L}(y) \subseteq \mathcal{L}(x) \)

- to avoid cyclic blocking we fix an enumeration of the individual names, and add to the blocking condition that \(y \) comes after \(x \) in the enumeration

- generating rules are not applied to blocked individuals
Complexity of Reasoning

- For \(\text{ALC} \), the subsumption problem and the instance problem are \(\text{PSpace} \)-complete.

 The tableau algorithm as described needs exponential space, but it can be modified such that it needs only polynomial space.

- Both TBoxes and number restrictions can be added without increasing the complexity.

- W.r.t. general TBoxes, the subsumption and the instance problem are \(\text{ExpTime} \)-complete.

 Tableau algorithms do not “easily” yield this upper bound, but they are more practical than the worst-case optimal automata-based algorithms.

- The tableau algorithms implemented in systems like FaCT and Racer are highly optimized, and behave quite well on large knowledge bases.