Description Logics and OWL

Based on slides from
Ian Horrocks
University of Manchester (now in Oxford)
Where are we?

- XML
- RDF(S)/SPARQL
- PL/FOL
- OWL
- OWL Reasoning
- OWL in practice
- DL Extensions
- Scalability
- Practical Topics

Combining the strengths of UMIST and The Victoria University of Manchester
Task

Translate the following inclusion axioms in the language of First order logic

- \(\text{Female} \subseteq \text{Human} \)
- \(\text{Child} \subseteq \text{Human} \)
- \(\text{StudiesAtUni} \subseteq \text{Human} \)
- \(\text{SuccessfulMan} \equiv \text{Man} \)
 - \(\text{InBusiness} \sqsubseteq \exists \text{married}. \text{Lawyer} \)
 - \(\exists \text{hasChild}. (\text{StudiesAtUni}) \)
- \(\neg \text{Female}(\text{Pedro}) \)
- \(\text{InBusiness}(\text{Pedro}) \)
- \(\text{Lawyer}(\text{Mary}) \)
- \(\text{married}(\text{Pedro}, \text{Mary}) \)
- \(\text{child}(\text{Pedro}, \text{John}) \)
Task

• Write down one interpretation for the previous knowledge base.
Task

Show that $\models C \subseteq D$ implies $\models \exists R. C \subseteq \exists R. D$
Note on DL Naming

• Basic description logic is \mathcal{ALC} (equiv modal $K_{(m)}$)
 – Concepts constructed using $\cap, \cup, \neg, \exists$ and \forall

• S often used for \mathcal{ALC} with transitive roles

• Additional letters indicate other extension, e.g.:
 – \mathcal{H} for role inclusion axioms (role hierarchy)
 – \mathcal{O} for nominals (singleton classes, written $\{x\}$)
 – \mathcal{I} for inverse roles
 – \mathcal{N} for number restrictions (of form $\leq n \ R$, $\geq n \ R$)
 – \mathcal{Q} for qualified number restrictions (of form $\leq n \ R.C$, $\geq n \ R.C$)
 – ...
Basic Inference Tasks

• Ontology \mathcal{O}: Tbox + ABox

• Knowledge is correct (captures intuitions)
 – Does C subsume D w.r.t. ontology \mathcal{O}? ($C^I \subseteq D^I$ in every model I of \mathcal{O})

• Knowledge is minimally redundant (no unintended synonyms)
 – Is C equivalent to D w.r.t. \mathcal{O}? ($C^I = D^I$ in every model I of \mathcal{O})

• Knowledge is meaningful (classes can have instances)
 – Is C is satisfiable w.r.t. \mathcal{O}? ($C^I \neq \emptyset$ in some model I of \mathcal{O})

• Querying knowledge
 – Is x an instance of C w.r.t. \mathcal{O}? ($x^I \in C^I$ in every model I of \mathcal{O})
 – Is $\langle x, y \rangle$ an instance of R w.r.t. \mathcal{O}? ($\langle x^I, y^I \rangle \in R^I$ in every model I of \mathcal{O})

• Above problems can be solved using highly optimised DL reasoners
Short History of Description Logics

Phase 1:
- **Incomplete** systems (Back, Classic, Loom, . . .)
- Based on **structural algorithms**

Phase 2:
- Development of **tableau algorithms** and complexity results
- Tableau-based systems for **Pspace** logics (e.g., Kris, Crack)
- Investigation of **optimisation techniques**

Phase 3:
- Tableau algorithms for **very expressive** DLs
- **Highly optimised** tableau systems for **ExpTime** logics (e.g., FaCT, DLP, Racer)

Phase 4:
- Mainstream applications and tools
Why Ontology Reasoning?

• Given key role of ontologies in many applications, it is essential to provide tools and services to help users:
 – Design and maintain high quality ontologies, e.g.:
 • **Meaningful** — all named classes can have instances
 • **Correct** — captured intuitions of domain experts
 • **Minimally redundant** — no unintended synonyms
 • **Richly axiomatised** — (sufficiently) detailed descriptions
 – Answer queries over ontology classes and instances, e.g.:
 • Find more general/specific classes
 • Retrieve individuals/tuples matching a given query
 – **Integrate** and align multiple ontologies
Why Correct Reasoning?

- Need to have high level of confidence in reasoner
 - Most interesting/useful inferences are those that were unexpected
 - Likely to be ignored/dismissed if reasoner known to be unreliable
- Many realistic web applications will be agent ↔ agent
 - No human intervention to spot glitches in reasoning
Why Decidable Reasoning?

- OWL is an W3C standard DL based ontology language
 - OWL constructors/axioms restricted so reasoning is decidable
- Consistent with Semantic Web's layered architecture
 - XML provides syntax transport layer
 - RDF(S) provides basic relational language and simple ontological primitives
 - OWL provides powerful but still decidable ontology language
 - Further layers (e.g. SWRL) will extend OWL
 - Will almost certainly be undecidable
- W3C requirement for “implementation experience”
 - “Practical” decision procedures
 - Several implemented systems
 - Evidence of empirical tractability
Task

• Design a correct reasoning algorithm for any description logic knowledge base, deciding entailment.
Summary

• DLs are a family of logic based Knowledge Representation formalisms
 – Describe domain in terms of concepts, roles and individuals

• DLs are (usually) decidable subsets of FOL

• An Ontology is an engineering artefact consisting of:
 – A vocabulary of terms
 – An explicit specification of their intended meaning