
A Short Tutorial on Order-Invariant First-Order Logic

Nicole Schweikardt

Goethe-Universität Frankfurt am Main, Germany
schweika@informatik.uni-frankfurt.de

Abstract. This paper gives a short introduction to order-invariant first-order logic
and arb-invariant first-order logic. We present separating examples demonstrating
the expressive power, as well as tools for proving certain expressive weaknesses
of these logics.

1 Introduction

Expressibility of logics over finite structures plays an important role in various areas of
computer science. In descriptive complexity, logics are used to characterise complexity
classes, and concerning databases, common query languages have well-known logical
equivalents. Order-invariant and arb-invariant logics were introduced to capture the data
independence principle in databases: An implementation of a database query may ex-
ploit the order in which the database elements are stored in memory, and thus identify
the elements with natural numbers on which arithmetic can be performed. But the use
of order and arithmetic should be restricted in such a way that the result of the query
does not depend on the particular order in which the data is stored.

Arb-invariant queries are queries that can make use of an order predicate < and
of arithmetic predicates such as + or ×, but only in such a way that the answer is
independent of the particular interpretation of <,+,×. Queries that only use the linear
order, but no further arithmetic predicates, are called order-invariant.

It is known that order-invariant least fixed-point logic LFP precisely captures the
polynomial time computable queries [12,26], while arb-invariant LFP and arb-invariant
first-order logic capture the queries computable in P/poly [15] and AC0 [13], respec-
tively. Order-invariant queries and arb-invariant queries have been studied in depth, cf.
e.g. [1,5,25,15,8,14,17,22,16,19,20,7,4,24,9,2]. A short overview of the state-of-the-art
concerning these logics can be found in [23].

The aim of this paper is to give a short tutorial on order-invariant and arb-invariant
first-order logic FO. In Section 2 we fix the basic notation. Section 3 gives the precise
definition of order-invariant and arb-invariant FO, along with a few easy examples.
Section 4 presents examples that separate order-invariant FO from plain FO. Section 5
shows how to prove that certain queries are not definable in order- or arb-invariant FO.
Section 6 gives a list of open research questions.

2 Preliminaries

Basic Notation. We write N for the set of non-negative integers, and we let N≥1 :=
N \ {0}. For n ∈ N≥1 we write [n] to denote the set {i ∈ N : 0 ≤ i < n}, i.e.,
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[n] = {0, . . . , n−1}. For a positive real number r, the logarithm of r with respect to
base 2 is denoted log r.

For a finite set A we write |A| to denote the cardinality of A. By 2A we denote the
power set of A, i.e., the set {Y : Y ⊆ A}. The set of all non-empty finite words built
from symbols in A is denoted A+. We write |w| for the length of a word w ∈ A+.

Structures. A signature σ is a set of relation symbolsR, each of them associated with
a fixed arity ar(R) ∈ N≥1. A σ-structure A consists of a non-empty set A called the
universe of A, and a relation RA ⊆ Aar(R) for each relation symbol R ∈ σ.

The cardinality of a σ-structureA is the cardinality of its universe. Finite σ-structures
are σ-structures of finite cardinality.

For σ-structures A and B and tuples a = (a1, . . . , ak) ∈ Ak and b = (b1, . . . , bk) ∈
Bk we write (A, a) ∼= (B, b) to indicate that there is an isomorphism π from A to B
that maps a to b (i.e., π(ai) = bi for each i ≤ k).

First-Order Logic. We assume that the reader is familiar with basic concepts and
notations concerning first-order logic (cf., e.g., the textbooks [14,6]). We write FO(σ)
to denote the class of all first-order formulas of signature σ. By free(ϕ) we denote the set
of all free variables of an FO(σ)-formulaϕ. A sentence is a formulaϕwith free(ϕ) = ∅.
We often write ϕ(x), for x = (x1, . . . , xk), to indicate that free(ϕ) = {x1, . . . , xk}.

If A is a σ-structure and a = (a1, . . . , ak) ∈ Ak, we write A |= ϕ[a] to indicate
that the formula ϕ(x) is satisfied in A when interpreting the free occurrences of the
variables x1, . . . , xk with the elements a1, . . . , ak.

If A and B are σ-structures and r is a natural number, we write A ≡r B to indicate
that A and B satisfy exactly the same FO(σ)-sentences of quantifier rank r.

Throughout the remainder of this paper, we will assume that σ is a fixed finite signature.

3 Order-Invariant Logic and Arb-Invariant Logic

The idea: Extend the expressive power of a logic by allowing formulas to use, apart
from the relation symbols present in the signature σ, also a linear order <, arithmetic
predicates such as + or ×, or arbitrary numerical predicates.

Definition 3.1 (Numerical predicate)
For r ∈ N≥1, an r-ary numerical predicate is an r-ary relation on N.

Three particular numerical predicates that will often be used in this paper are

– the linear order <N consisting of all tuples (a, b) ∈ N
2 with a < b,

– the addition predicate +N consisting of all triples (a, b, c) ∈ N
3 with a+b = c, and

– the multiplication predicate×N consisting of all triples (a, b, c) ∈ N
3 with a×b = c.

To allow logical formulas to use numerical predicates, we fix the following notation:
For every r ∈ N≥1 and for every r-ary numerical predicate PN (i.e., PN ⊆ N

r), we let
P be a new relation symbol of arity r — here, “new” means that P does not belong to
σ. We write ηarb to denote the set of all the relation symbols P obtained this way, and



114 N. Schweikardt

we let σarb be the disjoint union of σ and ηarb (the subscript “arb” stands for “arbitrary
numerical predicates”).

Next, we would like to allow FO(σarb)-formulas to make meaningful statements
about finite σ-structures. To this end, for a finite σ-structure A, we consider embed-
dings ι of the universe of A into the initial segment of N of size n = |A|, i.e., the set
[n] = {0, . . . , n−1}.

Definition 3.2 (Embedding). Let A be a finite σ-structure, and let n := |A|.
An embedding ι of A is a bijection ι : A→ [n].

Given a finite σ-structure A and an embedding ι of A, we can translate r-ary numerical
predicates PN into r-ary predicates on A as follows: The linear order <N induces a
linear order<ι onA where for all a, b ∈ A we have a <ι b iff ι(a) < ι(b). The addition
predicate +N induces an addition predicate +ι on A where for all a, b, c ∈ A we have
(a, b, c) ∈ +ι iff ι(a) + ι(b) = ι(c). In general, an arbitrary r-ary numerical predicate
PN induces the r-ary predicate P ι on A, consisting of all r-tuples a = (a1, . . . , ar) ∈
Ar where ι(a) = (ι(a1), . . . , ι(ar)) ∈ PN.

The σarb-structure Aι associated with A and ι is the expansion of A by the predicates
P ι for all P ∈ ηarb. I.e., Aι has the same universe as A, all relation symbols R ∈ σ
are interpreted in Aι in the same way as in A, and every numerical symbol P ∈ ηarb is
interpreted by the relation P ι.

To ensure that an FO(σarb)-formula ϕ makes a meaningful statement about a σ-
structure A, we evaluateϕ in Aι, and we restrict attention to those formulas whose truth
value is independent of the particular choice of the embedding ι. This is formalised by
the following notion.

Definition 3.3 (Arb-invariance and arb-inv-FO)
Let ϕ(x) be an FO(σarb)-formula with k free variables, and let A be a finite σ-structure.

(a) The formula ϕ(x) is arb-invariant on A if for all embeddings ι1 and ι2 of A and
for all tuples a ∈ Ak we have: Aι1 |= ϕ[a] ⇐⇒ Aι2 |= ϕ[a].

(b) Let ϕ(x) be arb-invariant on A.
We write A |= ϕ[a], if Aι |= ϕ[a] for some (i.e., every) embedding ι of A.

(c) ϕ(x) is called arb-invariant if it is arb-invariant on every finite σ-structure A.
(d) We write arb-inv-FO(σ) to denote the set of all arb-invariant FO(σarb)-formulas.

Example 3.4. We present an arb-invariant FO(σarb)-sentence ϕeven which is satisfied
by exactly those finite σ-structures that have even cardinality. The formula is chosen as
follows:

ϕeven := ∃x∀y ( ( y<x ∨ y=x ) ∧ Odd(x)
)
,

where OddN is the unary numerical predicate consisting of all odd numbers.
Let us consider a finite σ-structure A of size n = |A| and an embedding ι of A

into the set [n] = {0, . . . , n−1}. Obviously, Aι |= ϕeven iff the maximum element in
[n], i.e., the number n−1, is odd, i.e., the number n is even. Thus, the formula ϕeven is
arb-invariant on A, and it expresses that A is of even cardinality.

Note that <N and OddN are the only numerical predicates used by the formula ϕeven.
Both predicates can be replaced by uses of the addition predicate +N, since Odd(x) is
equivalent to ¬∃z z+z=x, and y<x is equivalent to (¬ y=x ∧ ∃z y+z=x ).
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Thus, “even cardinality” of finite σ-structures can also be expressed by an arb-
invariant FO(σarb)-sentence that only uses the numerical predicate +N. Recall that it
is well-known that “even cardinality” can neither be expressed by FO(σ), nor by arb-
invariant FO(σarb)-sentences that only use the numerical predicate <N (cf., e.g., the
textbooks [14,6], where it is shown that “even cardinality of linear orders” is not defin-
able in first-order logic).

Definition 3.5 (Order-invariance and addition-invariance)

(a) An arb-invariant formula that only uses the numerical predicate <N is called
order-invariant. By <-inv-FO(σ) we denote the set of all order-invariant FO(σ ∪
{<})-formulas.

(b) An arb-invariant formula that only uses the numerical predicate +N is called
addition-invariant. By +-inv-FO(σ) we denote the set of all addition-invariant
FO(σ ∪ {+})-formulas.

Example 3.4 shows that <-inv-FO(σ) is less expressive than +-inv-FO(σ).
It is known that for any signature σ that contains at least one symbol of arity ≥ 2,

there is no algorithm that decides whether an input FO(σ ∪ {<})-sentence is order-
invariant (this can be shown by an easy reduction using Trakhtenbrot’s theorem, see
e.g. [14]). However, if σ contains only unary relation symbols, order-invariance of an
input sentence is decidable, since commutativity of regular languages is decidable (via
checking if the language’s syntactic monoid is commutative).

Definition 3.6. An arb-invariant formula that only uses numerical predicates that be-
long to a subset S of ηarb is called S-invariant. By S-inv-FO(σ) we denote the set of all
S-invariant FO(σ ∪ S)-formulas.

The next two examples show that+-inv-FO(σ) is less expressive than {+,×}-inv-FO(σ)
which, in turn, is less expressive than arb-inv-FO(σ).

Example 3.7. Consider the formulaϕeven from Example 3.4. Let ϕsquare be the formula
obtained from ϕeven by replacing the atom Odd(x) by Square′(x), where Square′N :=
{i2−1 : i ∈ N≥1}. Obviously, ϕsquare is an arb-invariant sentence satisfied by exactly
those finite σ-structures whose cardinality is a square number.

Note that i2−1 = (i−1)2 + 2(i−1). Thus, Square′(x) is equivalent to

∃y ∃z1 ∃z2
(
y×y=z1 ∧ y+y=z2 ∧ z1+z2=x

)
.

Therefore, “square number cardinality” can be expressed in {+,×}-inv-FO(σ). It is
well-known that this cannot be expressed in +-inv-FO(σ) (since, by the theorem of
Ginsburg and Spanier, FO(+)-definable subsets of N are semi-linear; see e.g. [21] for
an overview).

Example 3.8. It is straightforward to see that {+,×}-inv-FO(σ)-sentences can only
define decidable properties of finite σ-structures. However, arb-inv-FO(σ) can define
also undecidable properties. For example, let UN be an undecidable subset of N (such a
set exists, since there are uncountably many subsets of N, but only a countable number
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of decidable sets). Now let ϕU be the formula obtained from ϕeven by replacing the
atom Odd(x) by U ′(x), where U ′N := {i−1 : i ∈ U and i �= 0}. Clearly, ϕU is an
arb-invariant sentence satisfied by exactly those finite σ-structures whose cardinality
belongs to UN. As UN is undecidable, also the class of finite σ-structures satisfying ϕU

is undecidable.

The examples seen so far are simple in the sense that they only refer to the cardinality
of structures and do not make use of the relation symbols present in σ. Showing that
<-inv-FO(σ) is more expressive than plain FO(σ) requires much more sophisticated
constructions and depends on the particular choice of the signature σ. In fact, if σ is the
empty signature ∅ (as could have been chosen for the examples above), it is straightfor-
ward to see that <-inv-FO(∅) has exactly the same expressive power as FO(∅).

4 Three Examples Showing That Order-Invariant FO Is More
Expressive Than FO

In the literature, basically only three examples are known that separate <-inv-FO(σ)
from plain FO(σ), for various signatures σ. These examples go back to Gurevich (who
did not publish this example; but it can be found in the textbooks [1,14]), Potthoff [18],
and Otto [17].

Gurevich’s Example. For a finite set X let BX := (2X ,⊆) be the Boolean algebra
overX . Thus, BX is a finite σ-structure, where σ := {⊆} is the signature consisting of
a single binary relation symbol ⊆.

Theorem 4.1 (Gurevich). There is an order-invariant FO(σ∪{<})-sentenceϕGurevich,
but no FO(σ)-sentence, such that for every finite set X we have: BX |= ϕGurevich ⇐⇒
|X | is even.

Proof sketch. Part 1: Construction of the <-inv-FO(σ)-sentence ϕGurevich. An element
y ∈ 2X is called an atom if it is a singleton set. Thus, |X | is the number of atoms in
2X . Obviously, the following FO(σ)-formula atom(x) expresses that x is an atom:

atom(x) :=
(¬emptyset(x) ∧ ∀y ( y ⊆ x → ( y=x ∨ emptyset(y)

))
,

where emptyset(y) := ∀z y⊆ z.
The order-invariant FO(σ ∪ {<})-sentence ϕGurevich states that

(1) the underlying σ-structure is indeed a Boolean algebra (2X ,⊆), and
(2) there exists a set z ∈ 2X that contains the first (w.r.t. <) atom of 2X and every

other atom (w.r.t. <) of 2X , and that has the property that the last (w.r.t. <) atom
of 2X does not belong to z.

Note that the statements (1) and (2) ensure that ϕGurevich is order-invariant on the class
of all finite σ-structures, and that a finite Boolean algebra BX satisfies ϕGurevich if and
only if |X | is even. It is an easy exercise to express statement (1) by an FO(σ)-sentence
and statement (2) by an FO(σ ∪ {<})-sentence.
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Part 2: Proof of the non-expressibility in FO(σ). By using a standard Ehrenfeucht-
Fraı̈ssé game argument one can show that BX1 ≡r BX2 is true for all r ∈ N and all
finite sets X1 and X2 of size at least 2r. Thus, for every quantifier rank r ∈ N, we can
find sufficiently large finite sets X1 and X2 of odd and even cardinality, respectively,
that cannot be distinguished by FO(σ)-sentences of quantifier rank r.

A detailed exposition of Gurevich’s proof can be found in the textbook [14]. ��

Potthoff’s Example. We consider unordered finite binary trees T where every node is
either a leaf or has exactly two children. The height of a leaf x of T is the length of the
path from the root to x. The height of T is the largest height of a leaf of T . A tree T is
full if all leaves are of the same height.

Let σ := {E,D} be the signature consisting of two binary relation symobls E and
D. We represent an unordered finite binary tree T by a σ-structure AT whose universe
is the set of nodes of T , and where E is the directed edge relation connecting every
non-leaf node with its two children, and D is the descendant relation, i.e., the transitive
closure of E.

Theorem 4.2 (Potthoff [18]). There exists an order-invariant FO(σ ∪ {<})-sentence
ϕPotthoff, but no FO(σ)-sentence, such that for every full unordered finite binary tree T
we have: AT |= ϕPotthoff ⇐⇒ T is of even height.

Proof sketch. Part 1: Construction of the <-inv-FO(σ)-sentence ϕPotthoff. To keep the
description of the formula simple, we here present a sentence ϕPotthoff that is order-
invariant only on the class of all full unordered finite binary trees. A more sophisti-
cated sentence that is order-invariant on all finite σ-structures is outlined below, after
Lemma 4.3.

For constructing ϕPotthoff let us consider a full binary tree T of height h. We use the
linear order < to order the children of each node a of T : If b1 and b2 are a’s children
and b1 < b2, then b1 is called the 1-child, and b2 is called the 2-child of a. Now, we
consider the zig-zag-path which starts in the root, visits the root’s 1-child, that node’s
2-child, that nodes 1-child, etc. I.e., the zig-zag-path is the path (x0, x1, x2, . . . , xh)
where x0 is the root, xh is a leaf, and for odd i ≥ 1, xi is the 1-child of xi−1, whereas
for even i ≥ 1, xi is the 2-child of xi−1.

As T is a full binary tree, the height h of T is even if and only if the last node of
the zig-zag-path is a 2-child — and this is exactly the statement made by the formula
ϕPotthoff. Note that a formula making this statement will be order-invariant on the struc-
ture AT , for all full binary trees T .

The statement “the last node of the zig-zag-path is a 2-child” can be formalised by
an FO(σ ∪ {<})-sentence ϕPotthoff, which states the following:

(1) There exists a node x0 which is the root, and there exists a node xh which is a
leaf, such that

(2) xh is the 2-child (w.r.t. <) of its parent,
(3) the node x1 which satisfies

(
E(x0, x1) ∧ D(x1, xh)

)
is the 1-child (w.r.t. <) of

its parent, and
(4) for any three nodesu, v, w such thatE(u, v) andE(v, w) and

(
w=xh∨D(w, xh)

)

we have that v is the 1-child of its parent iff w is the 2-child of its parent.
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Part 2: Proof of the non-expressibility in FO(σ). By using a standard Ehrenfeucht-
Fraı̈ssé game argument, one can show that AT1 ≡r AT2 is true for all r ∈ N and all
full unordered finite binary trees T1 and T2 of height ≥ 2r+1 (the duplicator’s winning
strategy in the Ehrenfeucht-Fraı̈ssé game is a straightforward generalisation of the win-
ning strategy in the game on two linear orders, cf. e.g. [14]). Thus, for every r ∈ N,
we can find sufficiently big full unordered finite binary trees of odd and even height,
respectively, that cannot be distinguished by FO(σ)-sentences of quantifier rank r. ��
For completeness, let us give the precise statement of Potthoff’s result. Instead of con-
structing an order-invariant FO(σ)-formula, Potthoff constructs an FO(σ′)-formula for
the signature σ′ = σ ∪ {C1, C2}, where C1 and C2 are unary relation symbols. An or-
dered finite binary tree T is represented by the σ′-structure BT which is the expansion
of the structure AT by unary relationsC1 andC2, where C1 consists of all nodes which
are the first child of their parent, andC2 consists of all nodes which are the second child
of their parent.

Lemma 4.3 (Lemma 5.1.8 in [18]). There is an FO(σ′)-sentence ψPotthoff such that for
every ordered finite binary tree T we have: BT |= ψPotthoff ⇐⇒ every leaf of T is of
even height.

The order-invariant sentence ϕPotthoff whose existence is claimed in Theorem 4.2 is now
obtained as the conjunction of

– a straightforward FO(σ)-axiomatisation of unordered binary trees, and
– the formula obtained from ψPotthoff by replacing atoms of the form Ci(x) (for i ∈
{1, 2}) with an FO(E,<)-formula stating that x is the i-child (w.r.t.<) of its parent.

Otto’s Example. For every n ∈ N≥1 and every undirected graph G on 2n vertices, we
consider a σ-structure S2n(G) into whichG is embedded. The signature σ = {E,∼,∈,
V, V ′, P ′} consists of three binary relation symbols E,∼,∈ and three unary relation
symbols V, V ′, P ′.

We let σ′ := σ \ {E} and define, for each n ∈ N≥1, the σ′-structure S2n as
follows: The universe of S2n is partitioned into three disjoint sets V, V ′, P ′, where
V = {v0, . . . , v2n−1}, V ′ = {v′0, . . . , v′2n−1}, and P ′ = 2V

′
. The relation ∈ is the

“element”-relation between V ′ and 2V
′
, connecting for each X in 2V

′
every node

v′ ∈ X with X . The relation ∼ is the equivalence relation on V ∪ V ′ whose equiv-
alence classes are {vi, v′i, vn+i, v

′
n+i} for all i < n. For every graph G = (V,E), the

σ-structure S2n(G) is the expansion of the structure S2n with the graph’s edge relation
E. An illustration can be found in Figure 1.

Theorem 4.4 (Otto [17]). There is an order-invariant FO(σ∪{<})-sentence ϕOtto, but
no FO(σ)-sentence, such that for every n ∈ N≥1 and every graph G on 2n nodes we
have: S2n(G) |= ϕOtto ⇐⇒ G is connected.

Proof sketch. Part 1: Construction of the <-inv-FO(σ)-sentence ϕOtto. Otto’s proof
shows a stronger result, namely that every monadic second-order sentence Φ of signa-
ture {E} can be translated into an order-invariant FO(σ ∪ {<})-sentence ϕΦ, such that
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Fig. 1. The σ-structure S2n(G) where G = G1
2n is a cycle on 2n nodes V =

{v0, v1, . . . , v2n−1}. G is represented in the leftmost box of the picture. The box in the middle
contains the set V ′ = {v′ : v ∈ V }. The 4-cliques between V and V ′ represent the equivalence
relation ∼. The box on the right contains a node X for each element X in P ′ = 2V

′
. The edges

between the box in the middle and the box on the right represent the ∈-relation connecting, for
each X in 2V

′
, every node v′ ∈ X with the node X .

for every n ∈ N≥1 and every graph G on 2n nodes we have: S2n(G) |= ϕΦ ⇐⇒
G |= Φ.

The claimed formula ϕOtto can then be chosen as ϕΦ where Φ is a monadic second-
order formalisation of graph connectivity.
For constructing ϕΦ, the following observations are crucial:

(1) We can use the linear order < to define a bijection β< from V to V ′ such that
v ∼ β<(v) for every v ∈ V . This bijection can be described by an FO(V, V ′,∼
, <)-formula.

(2) Using this bijection, we can identify V with V ′. And using P ′ and the ∈-relation
between V ′ and P ′, we can simulate monadic second-order quantification over V
by first-order quantification of elements in P ′. Utilising this, it is straightforward
to translate Φ into an FO(σ ∪ {<})-sentence ψΦ.

(3) Finally, the formula ϕΦ is chosen as the conjunction of ψΦ with an FO(V,E)-
sentence stating that E is a subset of V × V , and an FO(σ′)-axiomatisation of
σ′-structures isomorphic to S2n for some n ∈ N≥1.

The resulting formulaϕΦ is satisfied by Aι, for a finite σ-structure A and an embedding
ι of A if, and only if, A is isomorphic to S2n(G) for some n ∈ N≥1 and some graph
G on 2n vertices satisfying Φ. This also shows that ϕΦ is order-invariant on all finite
σ-structures.

Part 2: Proof of the non-expressibility in FO(σ). For each n ∈ N≥1 let G1
2n be

the cycle (v0, v1, . . . , v2n−1, v0), and let G2
2n be the disjoint union of the two cycles

(v0, v1, . . . , vn−1, v0) and (vn, vn+1, . . . , v2n−1, vn). An illustration ofG1
2n is given in
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the leftmost box of Figure 1. It suffices to show that for all r ∈ N and all sufficiently
large n, the structures S2n(G

1
2n) and S2n(G

2
2n) cannot be distinguished by FO(σ)-

sentences of quantifier rank r.
For each b ∈ {1, 2} let Ĝb

2n be the expansion of Gb
2n where each node is labeled by

its equivalence class with respect to ∼ in S2n(G
b
2n). An easy Hanf-locality argument

(cf., [14]) shows that for every r ∈ N and all sufficiently large n, the structures Ĝ1
2n and

Ĝ2
2n cannot be distinguished by first-order sentences of quantifier rank r.
A closer inspection of the structures S2n(G

1
2n) and S2n(G

2
2n) shows that the dupli-

cator’s winning strategy in the r-round Ehrenfeucht-Fraı̈ssé game on Ĝ1
2n and Ĝ2

2n can
be translated into a winning strategy on S2n(G

1
2n) and S2n(G

2
2n). Thus, the latter two

structures cannot be distinguished by FO(σ)-sentences of quantifier rank r. ��

5 Limitations of the Expressive Power of Arb-Invariant FO

The results stated in this section hold for arbitrary signatures σ. For simplicity of presen-
tation, however, we let σ = {E} be the signature consisting of a single binary relation
symbol E. Thus, finite σ-structures are finite directed graphs.

Connections between arb-inv-FO(σ) and Circuit Complexity. For proving non-ex-
pressibility results for arb-inv-FO(σ), tools from circuit complexity are of major use.
We assume that the reader is familiar with basic notions and results in circuit complexity
(cf., e.g., the textbook [3]). We consider Boolean circuits consisting of AND- and OR-
gates of unbounded fan-in, NOT-gates, input gates, and constant gates 0 and 1. The size
of a circuit is the number of its gates, and the depth is the length of the longest path
from an input gate to the output gate.

Let Cm be a circuit with m ∈ N≥1 input gates, and let w ∈ {0, 1}m be a bitstring
of length m. We say that Cm accepts w if Cm evaluates to 1 when for every i ≤ m the
i-th input gate of Cm is assigned the i-th symbol of w.

The non-expressibility proofs for arb-inv-FO(σ) presented in this section rely on
Håstad’s following well-known circuit lower bound.

Theorem 5.1 (Håstad [10]). There exist numbers 
,m0 > 0 such that for every d ∈ N

with d ≥ 2 and every m ∈ N with m ≥ m0 the following is true: No circuit of depth d
and size at most 2�·

d−1
√
m accepts exactly those bitstrings w ∈ {0, 1}m that contain an

even number of ones.

To establish the connection between circuits and arb-inv-FO(σ), we need to repre-
sent graphs by bitstrings. This is done in a straightforward way: Consider a directed
graph G = (V,E) on |V | = n nodes. Let ι be an embedding of G into [n], and
let (ai,j)0≤i,j<n be the adjacency matrix of G with respect to ι, i.e., ai,j = 1 if
(ι−1(i), ι−1(j)) ∈ E, and ai,j = 0 otherwise. The bitstring representation Repι(G)
of G w.r.t. ι is then chosen as Repι(G) := a0,0 · · ·a0,n−1 · · · an−1,0 · · ·an−1,n−1. I.e.,
Repι(G) is the concatenation of all rows of the adjacency matrix (ai,j)0≤i,j<n. The
connection between FO(σarb) and Boolean circuits is obtained by the following result.
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Theorem 5.2 (Immerman [13]). For every FO(σarb)-sentence ϕ there exist numbers
d, s ∈ N (with d ≥ 2) such that for every n ∈ N≥1 there is a circuit Cn2 with n2 input
gates, depth d, and size ns such that the following is true for all graphsG = (V,E) with
|V | = n and all embeddings ι of V into [n]: Cn2 accepts Repι(G) ⇐⇒ Gι |= ϕ.

Proof sketch. For every fixed n, we translate ϕ into a Boolean formula with n2 Boolean
variables:

(1) Replace every existential quantification “∃x” of ϕ into a big disjunction
∨

0≤x<n,
(2) replace every universal quantification “∀x” of ϕ into a big conjunction

∧
0≤x<n.

After these two tranformation steps, the “atomic formulas” remaining in ϕ are either of
the formE(x, y) for x, y ∈ [n], whereE is the edge relation of the graph, or of the form
P (x1, . . . , xr) for x1, . . . , xr ∈ [n], where P is a symbol for a numerical predicate PN

of arity r (here, equality of the form “x1 = x2” is also viewed as a numerical predicate).

(3) Replace every “atom” of the formE(x, y) for x, y ∈ [n] with the Boolean variable
ax,y representing the edge from ι−1(x) to ι−1(y) in Gι, and

(4) replace every “atom” of the form P (x1, . . . , xr) for x1, . . . , xr ∈ [n], where P is
a symbol for a numerical predicate PN by the constant 1 if (x1, . . . , xr) ∈ PN,
and by the constant 0 otherwise.

The result of this transformation is a Boolean formula with Boolean variables ax,y for
x, y ∈ [n]. This Boolean formula can easily be turned into the desired circuit Cn2 . ��
As an immediate consequence of the Theorems 5.2 and 5.1 one obtains the following.

Corollary 5.3. There is no arb-inv-FO(σ)-sentence ϕ that is satisfied by exactly those
finite directed graphs that consist of an even number of edges.

Proof. For contradiction, assume that ϕ is an arb-inv-FO(σ)-sentence satisfied by ex-
actly those finite directed graphs that consist of an even number of edges.

Let d, s and Cn2 (for every n ∈ N≥1) be chosen according to Theorem 5.2. It can
easily be seen that the circuit Cn2 accepts exactly those bitstrings w of length n2 that
contain an even number of ones: Every w ∈ {0, 1}n2

can be viewed as the bitstring
representation Repι(G) of some graph G = (V,E) on n nodes. Clearly, Gι |= ϕ iff
G |= ϕ iff G contains an even number of edges. By Theorem 5.2 we furthermore know
that Gι |= ϕ iff w = Repι(G) is accepted by Cn2 .

Thus, for m := n2, Cm is a circuit of depth d and size ns = ms/2 that accepts
exactly those bitstrings w ∈ {0, 1}m that contain an even number of ones. However,
for any fixed 
 and all sufficiently large m we have ms/2 < 2�·

d−1
√
m, contradicting

Theorem 5.1. ��

Gaifman Locality of Arb-Invariant FO. A k-ary query q is a mapping that associates
with every finite directed graph G = (V,E) a k-ary relation q(G) ⊆ V k, which is
invariant under isomorphisms, i.e., if π is an isomorphism from a graphG to a graphH ,
then for all a = (a1, . . . , ak) ∈ Ak we have a ∈ q(G) iff π(a) = (π(a1), . . . , π(ak)) ∈
q(H). Every arb-inv-FO(σ)-formula ϕ(x) with k free variables defines a k-ary query
qϕ via qϕ(G) = {a ∈ V k : G |= ϕ[a]}.
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The notion of Gaifman locality is a standard tool for showing that particular queries
are not definable in certain logics (cf., e.g., the textbook [14] for an overview). For
presenting the precise definition of Gaifman locality, we need the following notation.

The Gaifman graph of a directed graph G = (V,E) is the undirected graph G(G)
with the same vertex set as G, where for any a, b ∈ V with a �= b there is an undirected
edge between a and b iff (a, b) ∈ E or (b, a) ∈ E. The distance distG(a, b) between
two nodes a, b of G is the length of the shortest path between a and b in G(G).

For every r ∈ N, the r-ball NG
r (a) around a node a is the set of all nodes b with

distG(a, b) ≤ r. The r-ball NG
r (a) around a tuple a = (a1, . . . , ak) ∈ V k is the union

of the r-balls around the nodes a1, . . . , ak. The r-neighborhood of a is the induced
subgraph NG

r (a) of G on NG
r (a).

Definition 5.4 (Gaifman locality). Let k ∈ N≥1 and f : N → N. A k-ary query q
is Gaifman f(n)-local if there is an n0 ∈ N such that for every n ∈ N with n ≥ n0

and every directed graph G = (V,E) on n nodes, the following is true for all k-tuples
a, b ∈ V k with (NG

f(n)(a), a)
∼= (NG

f(n)(b), b): a ∈ q(G) ⇐⇒ b ∈ q(G).

I.e., in a graph of size n, a query that is Gaifman f(n)-local cannot distinguish between
k-tuples of nodes whose neighborhoods of radius f(n) are isomorphic. Gaifman local-
ity is a powerful tool for showing that certain queries cannot be defined by formulas of
particular logics.

Example 5.5. Let F be a class of formulas such that every query q definable by a
formula in F is Gaifman fq(n)-local for a function fq : N → N where fq(n) ≤ n/5
for all sufficiently large n. Then, none of the following queries is definable in F :

– reach(G) := {(a, b) : G contains a directed path from node a to node b},
– cycle(G) := {a : a is a node that lies on a cycle of G},
– triangle-reach(G) := {a : a is reachable from a triangle in G},
– same-distance(G) := {(a, b, c) : distG(a, c) = distG(b, c)}.

Assume, for contradiction, that reach is definable in F . By assumption, freach(n) ≤ n/5
for all sufficiently large n. Now, consider for each n the graph Gn consisting of two
disjoint directed paths of length n/2, and let a be the first node of the first path, let b
be the last node of the first path, and let b′ be the last node of the second path. Then,
NGn

n/5(a, b) consists of two disjoint paths of length n/5, where a is the first node of the

first path and b is the last node of the second path. Obviously, (NGn

n/5(a, b), (a, b))
∼=

(NGn

n/5(a, b
′), (a, b′)). Thus, due to the assumed Gaifman freach(n)-locality of the query

reach, we have (a, b) ∈ reach(Gn) iff (a, b′) ∈ reach(Gn). However, in Gn there is a
directed path from a to b, but no directed path from a to b′ — a contradiction.
Similar constructions can be used to show that none of the queries cycle, triangle-reach,
same-distance is definable in F .

It is well-known that FO(σ)-definable queries are Gaifman local with constant local-
ity radius, i.e., for every FO(σ)-definable query q there is a constant c such that q is
Gaifman c-local [11]. This can be generalised to order-invariant FO:
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Theorem 5.6 (Grohe, Schwentick [8]). Order-invariant FO is Gaifman local with
constant locality radius. I.e., for every <-inv-FO(σ)-definable query q there is a con-
stant c such that q is Gaifman c-local.

The result for constant locality radius (independent of the size of the graph) cannot
be lifted to arb-invariant FO: In [2] it was shown that for every d ∈ N there is an
{+,×}-inv-FO(σ)-definable unary query qd that is not Gaifman (logn)d-local. But
still, for arb-invariant FO we get a Gaifman locality result for neighborhoods whose
radius is bounded polylogarithmically in the size of the underlying graphs:

Theorem 5.7 (Anderson, Melkebeek, Schweikardt, Segoufin [2]). Arb-invariant FO
is Gaifman local with polylogarithmic locality radius. I.e., for every query q definable
in arb-inv-FO(σ) there is a constant c such that q is Gaifman (logn)c-local.

Note that this suffices to conclude that none of the queries mentioned in Example 5.5 is
definable in arb-inv-FO(σ).

The proof of Theorem 5.6 relies on a sophisticated construction using Ehrenfeucht-
Fraı̈ssé games. A simplified proof a weaker version of Theorem 5.6 can be found in the
textbook [14]. The proof of Theorem 5.7 exploits the connection between arb-invariant
FO and Boolean circuits. In the following, we present the proof of a weaker version of
Theorem 5.7 for the particular case of unary queries and the notion of weak Gaifman
locality [14], where “a ∈ q(G) ⇐⇒ b ∈ q(G)” needs to be true only for those tuples
a and b whose f(n)-neighborhoods are disjoint.

Definition 5.8 (Weak Gaifman locality). Let f : N → N. A unary query q is called
weakly Gaifman f(n)-local if there is an n0 ∈ N such that for every n ∈ N with n ≥ n0

and every directed graph G = (V,E) on n nodes, the following is true for all nodes
a, b ∈ V with (NG

f(n)(a), a)
∼= (NG

f(n)(b), b) and NG
f(n)(a) ∩ NG

f(n)(b) = ∅:
a ∈ q(G) ⇐⇒ b ∈ q(G).

We give a proof of the following weaker version of Theorem 5.7:

Proposition 5.9. For every unary query q definable in arb-inv-FO(σ) there is a con-
stant c such that q is weakly Gaifman (logn)c-local.

Proof. Let q be a unary query expressed by an arb-inv-FO(σ)-formula ϕ(x). By using
a variation of Theorem 5.2, there exist numbers d, s ∈ N such that for every n ∈ N≥1

there is a circuit Cn2+n with n2+n input gates, depth d, and size ns such that the
following is true for all graphs G = (V,E) with |V | = n, for all nodes a ∈ V , and all
embeddings ι of V into [n]:

Cn2+n accepts Repι(G, a) ⇐⇒ G |= ϕ[a]. (1)

Here, Repι(G, a) = Repι(G)Repι(a) is the bitstring representation of (G, a), where
Repι(a) is the bitstring b0 · · · bn−1 with bι(a) = 1 and bj = 0 for all j �= ι(a).

For contradiction, let us now assume that for every c ∈ N the query q defined by
ϕ(x) is not weakly Gaifman (log n)c-local. Thus, in particular for c := 2(d−1) we
obtain that for all n0 ∈ N there exists an n ≥ n0, and
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(∗): a graph G = (V,E) on n nodes, and nodes a, b ∈ V such that
for m := (log n)c = (log n)2(d−1) we have:

(NG
m (a), a) ∼= (NG

m (b), b), NG
m(a) ∩NG

m(b) = ∅, G |= ϕ[a], G �|= ϕ[b].

Claim. The circuit Cn2+n can be transformed into a circuit C̃m on m input bits, such
that C̃m has the same depth and size as Cn2+n and accepts exactly those bitstrings
w ∈ {0, 1}m that contain an even number of ones.

Before proving this claim, let us point out how it can be used to conclude the proof of
Proposition 5.9. According to the claim, C̃m is a circuit of depth d and size ns, which
accepts exactly those bitstrings w ∈ {0, 1}m that contain an even number of ones.

From Theorem 5.1 we know that the size ns of C̃m must be bigger than 2�·
d−1

√
m.

However, we had chosen m = (log n)2(d−1), and hence 2�· d−1
√
m = 2�·(logn)2 =

n�·logn > ns for all sufficiently large n — a contradiction! Thus, for concluding the
proof of Proposition 5.9, it suffices to prove the claim.

Proof of the claim. LetG = (V,E) be the graph chosen according to (∗), and let ι be an
arbitrary embedding of V into [n]. The idea is to define, for every bitstringw ∈ {0, 1}m,
a graph Gw such that

(∗∗): (Gw , a) ∼=
{

(G, a) if w contains an even number of ones,

(G, b) otherwise.

The circuit C̃m is constructed in such a way that on inputw ∈ {0, 1}m it does the same
as circuit Cn2+n does on input Repι(Gw , a). From (1) we then obtain that

C̃m accepts w ⇐⇒ Cn2+n accepts Repι(Gw , a) ⇐⇒ Gw |= ϕ[a].

If w contains an even number of ones, (Gw , a) ∼= (G, a). As we know from (∗) that
G |= ϕ[a], we therefore obtain that C̃m accepts w.
If w contains an odd number of ones, (Gw , a) ∼= (G, b). As we know from (∗) that
G �|= ϕ[b], we therefore obtain that C̃m does not accept w.
Thus, circuit C̃m accepts exactly those w ∈ {0, 1}m that contain an even number of 1s.

Definition of Gw: From (∗) we know that there exists an isomorphism π from
NG

m(a) to NG
m(b) with π(a) = b. Furthermore, we know that NG

m(a) ∩ NG
m(b) = ∅,

and thus G contains no edges that link vertices of NG
m−1(a) with vertices of NG

m−1(b).
For x ∈ {a, b}, we partition NG

m(x) into shells Si(x) := {y ∈ V : distG(x, y) = i},
for all i ≤ m. Note that π(Si(a)) = Si(b).
In the following, we write Si for the set Si(a) ∪ Si(b).
For a bitstring w = w1 · · ·wm ∈ {0, 1}m the graph Gw is defined as follows:

– Gw has the same vertex set V as the graph G.
– All edges of G that do not link a vertex of shell Si−1 with a vertex of shell Si, for

some i ≤ m, are copied into Gw.
– Edges ofG that link a vertex of shell Si−1 with a vertex of shell Si, for some i ≤ m

are modified depending on the i-th bit wi of the bitstring w:
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– If wi = 0, then edges of G that link a vertex of shell Si−1 with a vertex of
shell Si are copied into Gw.

– If wi = 1, then for every edge of G that links a vertex u of shell Si−1(a)
with a vertex v of shell Si(a), we insert into Gw an edge that links vertex
u (in shell Si−1(a)) with vertex π(v) (in shell Si(b)), and we also insert the
according edge that links vertex π(u) (in shell Si−1(b)) with the vertex v (in
shell Si(a)).

Thus, for every i with wi = 1, the roles of the shells Si(a) and Si(b) are swapped. It
is straightforward to see that the resulting graph Gw satisfies (∗∗); see Figure 2 for an
illustration.

Fig. 2. Illustration of the graph Gw for neighborhoods of radius m = 4

Construction of C̃m: Let us fix an embedding ι of V into [n]. The circuit C̃m is
obtained from Cn2+n by replacing the input gates of Cn2+n as follows:

Let u, v ∈ V , and let gμ,ν for μ := ι(u) and ν := ι(v) be the input gate of Cn2+n

that corresponds to the entry aμ,ν of G’s adjacency matrix w.r.t. ι (i.e., aμ,ν = 1 iff
(u, v) ∈ E).

In case that (u, v) does not belong to (Si−1 × Si) ∪ (Si × Si−1) for any i ≤ m, the
gate gμ,ν is replaced by the constant gate 1 if (u, v) ∈ E, and by the constant gate 0 if
(u, v) �∈ E.

In case that (u, v) belongs to (Si−1(a)×Si(a))∪(Si(a)×Si−1(a)) for some i ≤ m,
let g := gμ,ν , and let g′, g̃, g̃′ be the input gates of Cn2+n corresponding to the potential
edges (π(u), π(v)), (u, π(v)), and (π(u), v), respectively.
If (u, v) �∈ E, then g, g′, g̃, g̃′ are replaced by the constant gate 0.
If (u, v) ∈ E, then g and g′ are replaced by ¬wi, whereas g̃ and g̃′ are replaced by wi,
where wi is the input gate for the i-th bit of the input bitstring of length m.

It is straightforward to see that on inputw ∈ {0, 1}m the circuit C̃m does the same as
circuit Cn2+n does on input Repι(Gw, a). This completes the proof of Proposition 5.9.

��
6 Some Open Questions

We conclude with a list of open research questions:

(1) Is addition-invariant FO Gaifman local with constant locality radius? (Cf., [8,14].)
(2) Can addition-invariant FO define string-languages that are not regular? (See [24]

for details.)
(3) Are there analogues of the Theorems 5.6 and 5.7 for the notion of Hanf locality?

(Cf. [14] for the definition of Hanf locality.)
(4) Does order-invariant FO have a zero-one law? (See [6,14] for zero-one laws.)
(5) Are there decidable characterisations of order-invariant FO, addition-invariant

FO, or {+,×}-invariant FO? (See [4,24,9] for related results.)
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