
Towards Time Series Classification without
Human Preprocessing

Patrick Schäfer

Zuse Institute Berlin
patrick.schaefer@zib.de

Abstract Over the past decade time series classification has been at-
tracting increasing attention by the research community. Traditional al-
gorithms were designed to work on clean data, which have been prepro-
cessed by a human domain expert to remove duplicates and extract inter-
esting patterns of equal length and scaling. There is a need for algorithms
that are able to process raw input data ’as-is’, as human preprocessing
is not feasible in terms of monetary resources. Shotgun distance mimics
the task of human preprocessing by extracting and aligning z-normalized
time segments from a query to a sample. A time series is represented by
multiple time segment lengths as part of our shotgun ensemble classi-
fier. Our classifier improves the accuracy on case studies in the context
of bioacoustics, human motion detection, spectrographs or personalized
medicine. It further performs better than state of the art on the UCR
classification benchmark datasets.

1 Introduction

Time series result from recording data over time. The time series classification
task aims at assigning a class label to a time series. For this the distinguishing
features (the model) between the class labels are trained on a train dataset. When
an unlabeled query time series is recorded, the model is used to determine to
which class the time series belongs. The classification of time series has gained
increasing interest over the past decade [1,2,3]. Most research on time series
classification algorithms assumes that the data is segmented so that interesting
patterns are aligned and data frames have the same length and scaling. Sensors
and other input sources, in contrast, may produce data of variable length, noisy
data with dropouts and extraneous sections, which are highly redundant due to
the recurring patterns. These signals include ECG [4] or EEG signals from per-
sonalized medicine, human walking motions [5], wing beats from flying insects [6]
or the symmetry in the shape of objects.

Empirical evaluation suggests that classifiers based on 1-nearest-neighbour
Euclidean distance or dynamic time warping (DTW) are hard to beat [1,2].
However, these methods align two entire time series to calculate their similarity.
Therefor the data has to be preprocessed by a domain expert by hand to filter
the data and extract equal-length, equal-scale, and aligned patterns. This signif-
icantly eases the subsequent data mining task both in terms of the cost of the
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execution time and the complexity of the algorithm. However, this preprocessing
task is too time consuming in terms of human resources. Only few algorithms
exist that deal with unprocessed time series data. These are based on matching
time series by their structural similarity [7,8,9].

As traditional data mining algorithms were not designed for real world data-
sets, a multitude of international competitions were hosted [10,6,11]. These in-
cluded the task of identifying and classifying whale calls [10], human walking
motions [10] and flying insects [6], to name but a few.
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(a) shotgun query windows
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(b) shotgun distance match
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Figure 1: The shotgun distance consists of hori-
zontal and vertical alignment and scaling of each
query subsequences.

This work introduces a
novel similarity metric for
mining unaligned, unscaled,
raw time series datasets. Shot-
gun distance (Figure 1) ver-
tically and horizontally aligns
time segments (subsequences)
of a query to a sample time se-
ries, and thereby avoids pre-
processing the data by a hu-
man. This is achieved by
breaking the query into dis-
joint subsequences of fixed
length first. Next, each query
subsequence is slid along
the sample to find the best
matching position in terms of
minimizing a distance metric
(horizontal alignment). These
distances are aggregated. The
sample that minimizes this

aggregated distance is the 1-nearest-neighbor (1-NN) to a query and most sim-
ilar. Z-normalization is applied prior to each distance computation, to provide
the same vertical alignment and scaling of each subsequence. The shotgun en-
semble classifier is based on an ensemble of 1-NN classifiers using the shotgun
distance at multiple time segment lengths. Our contributions are as follows:
– We present the shotgun distance motivated by the challenges arising from
the classification of datasets, which were not preprocessed by a human, in
Section 2.

– We introduce the shotgun distance that mimics human preprocessing in Sec-
tion 3.

– We present the shotgun ensemble classifier, which represents a time series at
multiple subsequences lengths in Section 3.4.

– Two pruning strategies are presented which reduce the computational com-
plexity of the shotgun classifier by one order of magnitude in Section 3.5.

– We show that the shotgun ensemble classifier is significantly more accurate
than rivalling state of the art approaches based on 5 case studies and the
standardized benchmark datasets in Section 4.
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2 Background & Motivation
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(a) shotgun query windows
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(b) shotgun distance match

Figure 2: Matching the gait cycles in the query to
the sample is complicated due to different ampli-
tudes, phase-shifts, variable lengths and noise.

The utility of shotgun dis-
tance is based on the assump-
tion that a signal is com-
posed of characteristic pat-
terns. There is a multitude
of signals, which are com-
posed of patters like ECG
and EEG recordings, shape-
based signals, recordings in
bioacoustics or accelerometer
data (compare Section 4.1).

As a concrete example,
consider a human motion
from the CMU Graphics Lab
Motion Capture Database (C-
MU) [5]. Each motion was
categorized by the labels
normal walk and abnormal
walk. The data was captured
by recording the z-axis ac-
celerometer values of either
the right or the left toe. The difficulties in this dataset result from variable-length
gait cycles, gait styles and pace due to different subjects throughout different
activities including stops and turns. Figure 2 illustrates the walking motion of
a subject, which contains 4 gait cycles. The classification of a query is difficult,
as the samples are not preprocessed to have an approximate alignment, length,
scale or number of gait cycles.

Shotgun distance mimics human preprocessing by vertically aligning and
horizontally scaling the query to a sample (Figure 1). First, the query is broken
into disjoint subsequences of fixed length, hereafter referred to as windows. Next,
each query window is slid along the sample to find the best matching position
by minimizing the Euclidean distance (horizontal alignment). To scale the query
window to the sample, z-normalization is applied prior to the Euclidean distance
computations. Figure 2 (bottom) illustrates the result of this process. The gait
cycles perfectly match the sample, even though these differ in scale, have a
variable length, and a phase-shift and noise occurs.

The quality of the shotgun distance is subject to two parameters (Figure 1):

1. horizontal alignment using the window length: an integer parameter which
is limited by the length of the longest query.

2. vertical alignment using the mean: a Boolean parameter which defines if the
mean should be subtracted prior to the distance calculations. The standard
deviation is always normed to 1 to obtain the same scaling.
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The window length parameter controls the length of the segments and depends on
the length of the characteristic patterns in the dataset. Furthermore, it regulates
how much information on the ordering of the values within the time series is
incorporated into the matching-process. For long window lengths the whole query
will be treated as a single pattern and matched to the sample. This mostly
happens with signals which were preprocessed by a human for alignment and
length. In contrast, human motions contain repetitive gait cycles. Matching any
gait cycle in the query to any gait cycle in the sample is equivalent. Thus, the
ordering information is less relevant, resulting in a window length that should
be roughly equal to one gait cycle.

3 Shotgun Distance

3.1 Definitions

A time series consists of a sequence of real values:

T = (t1, . . . , tn)

This time series is split into subsequences (time segments) using a windowing
function.
Definition 1. Windowing: A time series T = (t1, . . . , tn) of length n is split
into fixed-length windows Si;w = (ti, . . . , ti+w−1) of length w using a windowing
function. Two consecutive windows can overlap within an interval of [0, w):

windows(T,w, overlap) =

(n−w)
(w−overlap)⋃

i=0

Si·(w−overlap)+1;w

To vertically align two samples, the query window and the sample window are
z-normalized by subtracting the mean and dividing by the standard deviation:

ω̂(T,w, overlap) = z−norms(windows(T,w, overlap))

The mean normalization is treated as a parameter of our model and can
be enabled or disabled. For example, heart beats have to be compared using a
common baseline but the pitch of a bird sound can be significant for the species.
Commonly, the similarity of two time series is measured using a distance metric.
The shotgun distance is a distance metric that minimizes the Euclidean distance
between each disjoint window in the query Q and the sliding windows in a sample
S. Intuitively, each gait cycle is slid along a longer walking motion to find the
best matching positions (compare Figure 1).
Definition 2. Shotgun distance: the shotgun distance Dshotgun(Q,S) between
a query Q and a sample S is given by aggregating the minimal Euclidean dis-
tance D(Qa, Sb) between each disjoint query window Qaεω̂(Q,w, 0) = Qs and
the sliding sample windows Sbεω̂(S,w,w − 1) = Ss:

Dshotgun(Q,S) =

len(Qs)∑
a=1

min {D(Qa, Sb) | SbεSs}
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Algorithm 1 The shotgun distance.

double ShotgunDistance(query ,sample ,W_SIZE ,M_NORM)
(1) totalDist = 0.0

// search for each disjoint query window
(2) for q in disjoint_windows(query ,W_SIZE ,M_NORM)
(3) qDist = MAX_VALUE

// search for the best matching sliding window
(4) for s in sliding_windows(sample ,W_SIZE ,M_NORM)
(5) qDist = min(qDist ,EuclideanDist(q,s))
(6) totalDist += qDist
(7) return totalDist

This definition of similarity resembles the task of preprocessing of raw time
series data, which is otherwise carried out by a human. Characteristic patterns
(i.e. the gait cycles) are extracted, scaled and the cycles are aligned. The latter
provides invariance to the time ordering of the patterns and allows for comparing
variable length time series. For n equal to w, the shotgun distance is equal to
the Euclidean distance.

The shotgun distance metric allows for searching for the most similar sample
time series (the 1-nearest-neighbor) to a query time series and labeling the query
by this sample.

3.2 Shotgun Distance Algorithm

The brute-force shotgun distance algorithm is described in Algorithm 1. It makes
use of the Euclidean distance, and can be tuned by the two parameters window
length W_SIZE and mean M_NORM (the standard deviation of q and s is
always normed to 1 regardless of M_NORM). It first obtains disjoint query
windows (line 2) and searches for the best sliding window, i.e., the position in the
sample that minimizes the Euclidean distance (line 4-5). Finally, the distances
are accumulated for each query window (line 6).

Time Complexity: The computational complexity is quadratic in the length of
the time series Q and S: for each query window, all sample windows are iterated
and the Euclidean distance for each pair of windows is calculated. There are |Q|w
disjoint query windows and |S| − w + 1 sliding windows for a constant window
length w:

O(Shotgun) = O

 |Q|
w︸︷︷︸

disjoint windows

· w · (|S| − w + 1)︸ ︷︷ ︸
sliding windows


for n = max(|Q| , |S|)

⇒ O
(
n2 − nw

)
Note, that for large window lengths w ∼ n this complexity is close to linear

in n. For small window lengths w � n the complexity is quadratic in n2.
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Algorithm 2 The Shotgun Ensemble Classifier.

String predict(query ,samples ,W_SIZE ,M_NORM)
(1) (dist , nn) = (MAX_VALUE , NULL)
(2) for sample in samples
(3) D = ShotgunDistance(query ,sample ,W_SIZE ,M_NORM)
(4) if D < dist
(5) (dist , nn) = (D, sample)
(6) return nn.label

String predictEnsemble(query ,samples ,bestScore ,windows ,M_NORM)
// stores for each window length a label

(1) windowLabels = []
// determine the label for each window length

(2) for (correct , len) in windows
(3) if (correct > bestScore*factor)
(4) windowLabels[len] = predict(query ,samples ,len ,M_NORM)
(5) return most frequent label from windowLabels

[(int ,int)] fit(samples ,labels ,M_NORM)
(1) scores = []

// search for best window lengths in parallel
(2) for len = maxLen down to minLen
(3) correct = 0
(4) for query in samples
(5) nnLabel = predict(query ,samples \{query},len ,M_NORM)
(6) if (nnLabel == query.label) correct ++

// store scores for each window length
(7) scores.push((correct , len))
(8) return scores

3.3 Shotgun Classifier

The shotgun classifier is based on 1-NN classification and the shotgun distance.
Given a query, the predict-method (Algorithm 2) searches for the 1-NN to a
query within a set of samples using the shotgun distance (line 3-5). Finally, the
query is labeled by the class label of the 1-NN nn.

The fit-method (Algorithm 2) is applied to maximize the accuracy of the
train samples by the use of leave-one-out cross-validation (lines 4-8). It records
the accuracies for all window lengths starting from the maxLen (the length of
the longest time series) down to minLen (lines 2-7). The M_NORM -parameter
is a Boolean parameter, which is constant for a whole dataset and not set per
sample. It depends on the characteristics of the dataset.

3.4 Shotgun Ensemble Classifier

By intuition every dataset consists of substructures at multiple window lengths
caused by different walking motions, heart beats, duration of vocals, length of
shapes, to name but a few examples. For example, each human may have a
different length of a gait cycle. Thus, we represent each sample by a set of
window lengths.

Using the predictEnsemble-method (Algorithm 2), a label is determined for
the best window lengths. Using a constant parameter factorε[0, 1] and the best
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Algorithm 3 Pruning techniques based on early abandoning.

double EuclideanDist(query ,sample ,bestDist)
(1) for i = 1 to len(query)
(2) dist += (sample[i] - query[i])^2
(3) if (dist > bestDist) return MAX_VALUE // early abandoning
(4) return dist

double ShotgunDistance(query ,sample ,W_SIZE ,M_NORM ,bestDist)
(1) totalDist = 0
(2) for q in disjoint_windows(query ,W_SIZE ,M_NORM)
(3) qDist = MAX_VALUE
(4) for s in sliding_windows(sample ,W_SIZE ,M_NORM)

// early abandoning
(5) qDist=min(qDist ,EuclideanDist(q,s,min(qDist ,bestDist)))
(6) totalDist += qDist
(7) if (totalDist > bestDist) return MAX_VALUE // window pruning
(8) return totalDist

String predict(q,samples ,W_SIZE ,M_NORM)
[...]
(2) for sample in samples
(3) D = min(D,ShotgunDistance(q,sample ,W_SIZE ,M_NORM ,D))
[...]

accuracy bestScore obtained from the train samples, the best window lengths
are given by: correct > bestScore · factor (line 3). Finally, the most frequent class
label is chosen from the set of labels.

While it might seem that we add yet another parameter factor, the train-
ing of the shotgun ensemble classifier depends solely on the factor and mean
parameters. The shotgun ensemble classifier model is derived from these two
parameters using the fit-method, which returns the set of window scores. These
scores are used as the model and to predict the label of an unlabeled query. In
our experiments factors in between [0.95, 1] were best throughout most datasets.

3.5 Pruning the Search Space

The rationale of search space pruning is to early abandon computations, as
soon as these can not result in finding a new optimum. Previous work aims at
stopping Euclidean distance calculations when the current distance exceeds the
best distance found so far [7,12,13].

Early Abandoning: The purpose of the ShotgunDistance-method (Algorithm 3)
is to accumulate the Euclidean distances for each query window. The Euclidean
distance computations are pruned by reusing the best result qDist of the previous
calculations (line 5). The ShotgunDistance-method is executed multiple times for
each pair of query and sample. Passing the distance to the current calculation
as bestDist allows for pruning calculations as soon as this bestDist is exceeded
(line 7). Otherwise the sample is a new nearest-neighbor candidate and the
distance is used to prune subsequent calls to ShotgunDistance. In the best case
scenario, we have to compute the distance between one pair of time series and
all other distance computations stop after one iteration of the for-loop in line 7.
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Algorithm 4 Use an upper bound on the current accuracy.

[(int ,int)] fit(samples ,labels ,M_NORM)
(1) scores = [], bestCorrect = 0
(2) for len = maxLen down to minLen
(3) correct = 0
(4) for q in [1.. len(samples)]
(5) nnLabel = predict(samples[q],samples \{ samples[q]},len ,M_NORM)
(6) if (nnLabel == samples[q]. label) correct ++
(7) if (correct +(len(samples)-q)) < bestCorrect*factor
(8) break
(9) bestCorrect = max(bestCorrect ,correct)
[...]

Upper Bound on Accuracy: While lower bounding on distance computations aims
at reducing the complexity in the length n, we present a novel optimization that
also aims at reducing the complexity in the number of samples N . For each
window length, the best achievable accuracy at any point is given by: correct ≤
(current correct + remaining samples) = N .

Thus, we do not need to obtain the exact accuracy for a window length in
Algorithm 4 (lines 7-8), if the remaining samples will not result in finding a
better accuracy (or at least within factor to the best accuracy).

4 Experimental Evaluation

The utility of the shotgun ensemble classifier is underlined by case studies and the
UCR time series classification benchmark datasets [3]. Each dataset is split into
two subsets: train and test. By the use of the same train/test splits the results are
comparable to the previously published ones [1,2,7,13,14,15]. The train subset
is used for parameter and model selection. The test subset is used to
test the accuracy of the classifiers solely. Our web page [16] contains a
spreadsheet with all raw numbers, the shotgun ensemble classifier source code,
and the python code to train and test the more complex SVM and random
forests classifiers. All benchmarks were performed on a shared memory machine
running Linux with 8 Quad-Core AMD Opteron 8358 SE processors and Java
JDK x64 1.7.

4.1 Case Studies

Astronomy / Scalability: We test the scalability using the largest dataset in
the UCR time series archive [3]. It contains three types of star objects: Eclipsed
Binaries, Cepheids and RR Lyrae Variables. To test the scalability of the shotgun
fit-method, we used the train subset containing 1000 time series each of length
1024. The size of the dataset was iteratively doubled, starting from 100 to 1000
samples. We measured the different pruning strategies presented in this paper
on the length n and the number of samples N .
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Dataset Rivalling Method Shotgun Ensemble Classifier

Personalized Medicine 92.4% [8] 99.3% factor = 1, mean=true

Walking Motions 91% [17] 96.9% factor = 0.95, mean=true

Spectrographs 72.6% [12] 80.7% factor = 0.95, mean=true

Bio Acoustics 93.29% [6] 92.38% factor = 1, mean=true

Astronomy 93.68% [13] 95.3% factor = 0.97, mean=true

Table 1: Test accuracies on the case studies.
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Figure 3: The time required to execute the shot-
gun fit-method on the StarLightCurves dataset
using the presented pruning strategies.

To the best of our knowl-
edge, the highest reported
test accuracy is 93.68% [13]
with a run-time of 52 minutes
for training. The test accu-
racy of the shotgun ensemble
classifier is 95.3% when using
factor = 0.97 and mean =
true. The results in Figure 3
show that the elapsed time
of the brute force algorithm
grows quadratically with the
number of objects, requir-
ing approximately 9 hours for
1000 objects. Early abandon-
ing reduces this by a factor of 7 and in combination with the upper bound by a
factor of 12 to only 41 minutes. Both pruning strategies combined significantly
reduce the run-time for training when the number of samples is increased.

Personalized Medicine: The BIDMC Congestive Heart Failure Database [4]
consists of ECG recordings of 15 subjects, which suffer from severe congestive
heart failures. The recordings contain noisy or extraneous data, when the record-
ings started before the machine was connected to the patient. ECG signals show
a high level of redundancy due to repetitive heart beats but even a single patient
can have multiple different heart beats. To deal with these distortions a classi-
fier has to be invariant to amplitude, uniform scaling, phase shifts and occlusion.
The total size of this dataset is equal to 9 million data points (10 hours sampled
at at 250 Hz). We used the train/test split in [8], which selected 150 minutes
for training and 450 minutes for testing and search for individual patient heart
beats (15 distinct classes). There are 600 samples for training at length 3750 and
600 samples for testing at length 11250.

To the best of our knowledge, the best rivalling approach reported a test
accuracy of 92.4% on this dataset [8]. The shotgun ensemble classifier obtains a
much higher test accuracy of 99.3%, when using factor = 1 and mean = true.



10

This is a result of the design of the shotgun distance: ECG signals are composed
of recurring patterns, which are distorted by all kinds of noise. To obtain this
score, training the shotgun ensemble classifier took roughly 2 days. Testing all
600 samples took roughly 1.5 hours.

Human Walking Motions: The CMU [5] contains walking motions of 4 sub-
jects. Each motion was categorized by the labels normal walk and abnormal walk.
The data were captured by recording the z-axis accelerometer values of either the
right or the left toe. The difficulties in this dataset result from variable-length
gait cycles, gait styles and pace due to different subjects throughout different
activities including stops and turns. To deal with these distortions, a classifier
needs to be invariant to amplitudes, uniform scaling, phase shifts and occlusions.
To make our results comparable to [17], we used the data provided by their first
segmentation approach. The dataset contains 40 samples for training and 228
samples for testing, each of variable lengths with an upper limit of 500 points. We
search for normal or abnormal walking patterns, representing the two distinct
classes.

Training the shotgun ensemble classifier took less than a minute. This results
in a test classification accuracy for the shotgun classifier of 96.9% when using
factor = 0.95 and mean = false. The accuracy is significantly higher than that
of the best rivalling approach in [17] which reports an accuracy of 91%.

Spectrographs: Wheat [12] is dataset of 775 spectrographs of wheat samples
grown in Canada. The data is split into 49 samples of length 1050 for training
and 726 samples of length 1050 for testing. The dataset contains different wheat
types like Canada Western Red Spring, Soft White Spring or Canada Western
Red Winter. The class label define the year in which the wheat was grown. This
makes the classification problem difficult, as the same wheat types in different
years belong to different classes.

The best rivalling approach [12] reported a test accuracy of 72.6% on this
dataset and the 1-NN Euclidean distance classifier obtains a test accuracy of
66.9%. Our shotgun ensemble classifier obtains a much higher test accuracy of
80.69%, when using factor = 0.95 and mean = true.

Feature extraction

Preprocessing STFT SFA
Shotgun 
Classifier

Feature matching

Figure 4: Insect Classification Workflow.

Bioacoustics: The classifi-
cation of audio recordings to
measure the occurrences of a
species has been employed as
one indicator of biodiversity.
The University of California
Riverside (UCR) built sensors
to collect data from flying in-
sects by an optical sensor [6].

The sensor detects the speed and wing beats of flying insects. The insect signal,
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characterized by a distinctive buzz, is typically only a few hundredths of a sec-
ond long. The samples for the insect motions were recorded at 16 kHz and are
1s long. The bandwidth between 0.2-4 kHz is most characteristic.
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inverse SFA(a) The query (top) is cut into windows, and a SFA
representation (bottom) is calculated using an al-
phabet of size 26.

0 130 260 390 520 650 780 910 1040 1170 1300 1430 1560 1690 1820 19502080

Time

0.6
0.4
0.2
0.0
0.2
0.4
0.6

A
m

p
li

tu
d

e Sample

0 130 260 390 520 650 780 910 1040 1170 1300 1430 1560 1690 1820 19502080

Time

0.6
0.4
0.2
0.0
0.2
0.4
0.6

A
m

p
li

tu
d

e Sample & Query

0 130 260 390 520 650 780 910 104011701300143015601690182019502080

Time

0.6
0.4
0.2
0.0
0.2
0.4
0.6

A
m

p
li

tu
d

e Query Windows
extraneous 
data

extraneous 
data

extraneous 
data

extraneous 
data

(b) An insect passes the laser multiple times, caus-
ing an echo. The shotgun classifier aligns these two
signals by matching the distinctive sound.

Figure 5

To connect time series
analysis with bioacoustics, we
use Symbolic Fourier Approx-
imation (SFA) [18]. Its sym-
bolic and thus compact repre-
sentation of a time series has
shown to be capable of exact
similarity search and to index
terabyte-sized datasets. The
workflow consists of feature
extraction and feature match-
ing and is represented in Fig-
ure 4. SFA is applied to ex-
tract features, which are then
passed to the shotgun classi-
fier.

The solution utilizes SFA
to reduce noise by the use of
quantization applied on top
of the Fourier-transformation.
SFA can be thought of as the
chromatic scale. Pitch levels
are mapped to a finite al-
phabet of symbols. For ex-
ample: {C-D-E-F-G-A-H} for
the C major scale. The SFA
transformation results in a
character string. Each symbol
represents an interval in the
frequency domain (see Fig-
ure 5a).

In particular, noise is gen-
erated by the angle or the
speed of an insect passing a
sensor. This affects the inten-
sity of the recorded signal.
SFA’s noise reduction accounts for these differences in the recorded intensities.
By introducing the shotgun classifier for feature matching, the horizontal align-
ment of the samples is simplified. This is mainly caused by the invariance to the
time ordering when matching two signals. Shotgun distance further deals with
outliers like multiple insects passing the laser within a short time frame (see
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Figure 5b). For the sake of brevity, the interested reader is referred to [19] for
details on the approach and SFA.

Figure 6: Classifier accuracies on the D1 test
dataset. ZIB_Schaefer represents the shotgun
classifier.

We focus on the dataset
D1, which was collected from
5 distinctive classes and con-
sists of 5000 objects, whereas
a subset of 500 samples were
used to train the classifier.
Using a small window length
of 130 and a small number
of SFA symbols of 8-10 per-
formed best. Our approach
scored within 1 percentage
point of the best approach
(Figure 6).

These results show that
time series analysis is appli-
cable to computational bioa-
coustics and that our ap-

proach competes with the rivalling methods applied in the UCR insect contest.

4.2 UCR classification benchmark datasets

We evaluated our shotgun ensemble classifier using a standardized benchmark [3].
Each dataset consists of a train and a test subset. The shotgun ensemble classifier
with factor = 0.95 and mean = [true, false] (see [16]) is compared to state-of-
the-art classifiers in the context of time series classification like shapelets [7],
fast shapelets [13] and 1-NN classifiers using Euclidean distance or dynamic
time warping (DTW) with a warping window. Complex classifiers such as sup-
port vector machines (SVM) with a quadratic and cubic kernel and tree based
ensemble methods such as random forests were benchmarked, too. We follow
the setup of the experiments in [13] and [7]. Our web page [16] contains all raw
numbers.

To give an intuitive illustration of the performance of the classifiers, scatter
plots for a pair-wise comparison of the classifiers with the shotgun ensemble
classifier are presented. In the scatter plot the test accuracies of the two classifiers
are represented by one dot, each dot representing one concrete dataset. The
further a dot is located from the line, the greater the difference in accuracy of
the two classifiers. If there are more dots on one side of the diagonal, then one
classifier is more precise than the other in a majority of datasets.

Figure 7 shows that the shotgun ensemble classifier is better than fast shape-
lets and shapelets on the majority of the datasets presented in this paper. We
conclude that this is a result of the overfitting of the shapelet classifiers. The
difference between the train and test accuracy makes up for up to 50 percentage-
points for shapelet-based classifiers. In contrast the shotgun classifier is more
robust towards overfitting (see raw data [16]).
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Figure 7: Accuracy of the shotgun ensemble classifier vs. rivalling approaches.

1-NN DTW is known to be a very competitive classifier and has been widely
used for time series classification [2]. Shotgun ensemble classification is better
than 1-NN DTW or 1-NN Euclidean distance on the majority of datasets by
a large margin in terms of accuracy. This implies that either (a) the datasets
do not require local scaling (warping) or (b) the shotgun ensemble classifier
provides this kind of invariance. This will be part of future work. Recall that
shotgun distance is equal to Euclidean distance, if the window length is equal
to the query length. Thus, the shotgun ensemble classifier performs better than
the 1-NN Euclidean distance.

SVMs and the shotgun ensemble classifier seem to complement each other
quite well in the sense that one classifier is good on a dataset in which the other
performs badly. So, at least for datasets which were preprocessed for approximate
alignment and fixed length, the choice of the classifier depends on the dataset.
When comparing the shotgun ensemble classifier with random forests, the results
suggest that the former is more accurate by a large margin.

We conclude that the shotgun ensemble classifier is a very competitive classi-
fier for time series classification. In a majority of datasets the shotgun ensemble
classifier is significantly more accurate than the rivalling methods.
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5 Related Work

There is a multitude of literature on time series classification and mining in-
cluding [1,2,3]. This includes benchmarks for SVMs and random forests, too, as
well as classification based on matching the shape of the entire time series using
a distance measure like the Euclidean distance or dynamic time warping. The
closest work to the shotgun ensemble classifier is that of shapelets [7] and fast
shapelets [13], which use subsequences for classification, too. In contrast to the
shotgun classifier, these approaches create a decision tree based on representa-
tive variable-length subsequences (shapelets) and use thresholds for branching.
Today, only few algorithms exist that deal with time series classification with-
out human preprocessing. One notable exception is [8], but even here it remains
unclear how to cope with the increased time complexity compared to traditional
data mining algorithms. Moreover, the authors did not present a general model
for training the parameters of their classifier. The shotgun classifier is inspired
by shotgun sequencing. The latter is a technique introduced in bioinformatics
to find an alignment of two DNA or protein sequences [20]. These sequences
are represented as a character string over a finite alphabet of characters, rather
than numerical features. Shotgun sequencing has been applied to find the hori-
zontal displacements in the production of steel coils [21]. To find the horizontal
displacement the authors use the median on the differences of the calculated
starting positions for every pair of subsequences.

6 Conclusion

The time series classification task is complicated by noise, dropouts, subtle dis-
tinctions, variable lengths or extraneous data. Time consuming human prepro-
cessing is needed to filter the data. The shotgun distance is a novel distance
measure based on the characteristic patterns in time series. Shotgun distance
utilizes time segments which are vertically and horizontally aligned and scaled
between the query and a sample, and thereby mimics human preprocessing.
Based on an ensemble of 1-nearest-neighbor classifiers the shotgun ensemble clas-
sifier is presented. To deal with the increased complexity, two pruning strategies
for the length and the number of time series are presented. This reduces the
computational complexity by one order of magnitude. The experimental evalu-
ation shows that the shotgun ensemble classifier performs better than rivalling
methods in the context of computational bioacoustics, human motion detection,
spectrographs, astronomy, or personalized medicine. This is underlined by the
best classification accuracy on the UCR time series classification datasets when
compared to state of the art.
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