
Noname manuscript No.
(will be inserted by the editor)

The BOSS is concerned with time series classification in
the presence of noise

Patrick Schäfer

the date of receipt and acceptance should be inserted later

Abstract Similarity search is one of the most important and probably best studied
methods for data mining. In the context of time series analysis it reaches its limits
when it comes to mining raw datasets. The raw time series data may be recorded at
variable lengths, be noisy, or are composed of repetitive substructures. These build
a foundation for state of the art search algorithms. However, noise has been paid
surprisingly little attention to and is assumed to be filtered as part of a preprocessing
step carried out by a human. Our Bag-of-SFA-Symbols (BOSS) model combines the
extraction of substructures with the tolerance to extraneous and erroneous data using
a noise reducing representation of the time series. We show that our BOSS ensemble
classifier improves the best published classification accuracies in diverse application
areas and on the official UCR classification benchmark datasets by a large margin.

Keywords Time Series · Classification · Similarity · Noise · Fourier Transform

1 Introduction

Time series are recorded from sensors and other input sources over time. Application
domains include personalised medicine [22], human walking motions [28], anthropo-
logy [27], security [15], historical documents [27], astronomy [18], spectrographs [27],
for example. While a human has an intuitive understanding of similarity, this task be-
comes very complex for a computer. It is non trivial to extract a statistical model from
time series as these may be non-stationary, and show varying statistical properties with
time. Data mining algorithms on the other hand, degenerate due to the high dimen-
sionality of the time series and noise [11]. Existing techniques can be categorised as
shape-based and structure-based [7]. Shape-based techniques use a similarity measure
in combination with 1-nearest-neighbor search. These are competitive on pre-processed

Patrick Schäfer
Zuse Institute Berlin
Takustr. 7
14195 Berlin
Tel.: +49-30-84185-168
Fax: +49-30-84185-311
E-mail: patrick.schaefer@zib.de

2 Patrick Schäfer

Figure 1: Hierarchical clustering of the Cylinder-Bell-Funnel dataset based on three
similarity metrics. There are three types of curves: cylinder, bell, funnel.

datasets [7] but fail on long or noisy data. Structure-based techniques transform a time
series into a different representation or extract feature vectors from the time series like
characteristic patterns [15,9,29,14]. This comes at a high computational cost. Typ-
ical similarity metrics are the Euclidean Distance (ED) or Dynamic Time Warping
(DTW) [19,16,17]. While DTW is four decades old, it is highly competitive and used
as the reference [7]. DTW provides warping invariance which is a peak-to-peak and
valley-to-valley alignment of two time series. This fails if there is a variable number of
peaks and valleys.

Figure 1 shows a hierarchical clustering of the first 6 samples from the synthetic
Cylinder-Bell-Funnel (CBF) dataset. This synthetic time series benchmark dataset is
widely used and contains three basic shapes: cylinders, bells and funnels. For the human
eye the distinguishing power of the first two distance measures is very disappointing.
The ED fails to cluster the funnel curves 1 and 6 as it does not provide horizontal align-
ment (phase invariance). DTW provides warping invariance, but still does not give a
satisfying clustering as the funnel curves 4 and 5 are separated. Our BOSS model
clusters the funnel curves 1-2 and cylinder curves 3-5 correctly. This toy example illus-
trates the difficulties for time series similarity. In general, several sources of invariance
like amplitude/offset, warping, phase, uniform scaling, occlusion, and complexity have
been presented in [4]. The CBF dataset requires invariance to phase (horizontal align-
ment), warping (local scaling), occlusion (noise) and amplitude/offset.

Figure 2: Effects of Gaussian noise on Cylinder-Bell-
Funnel dataset.

We believe that invari-
ance to noise was paid too
little attention to, as most al-
gorithms operate directly on
the raw data. To illustrate
the relevance of noise to the
classification task, we per-
formed another experiment
on the CBF data. All time
series were first z-normalised
to have a standard deviation
(SD) of 1. We then added
Gaussian noise with an in-
creasing SD of 0 to 1.0 to each

The BOSS is concerned with time series classification in the presence of noise 3

time series, equal to a noise level of 0% to 40%. Figure 2 shows that DTW and BOSS
provide the best classification accuracies. With an increase of noise the classification
accuracies decrease. The BOSS classifier is very robust to noise and remains stable up
to a noise level of 40%, whereas DTW degenerates starting from a noise level of 10%.

Our Bag-of-SFA-Symbols (BOSS) model is a structure-based similarity measure
that applies noise reduction to the raw time series. It first extracts substructures (pat-
terns) from a time series. Next, it applies low pass filtering and quantisation to the
substructures, which reduces noise and allows for string matching algorithms to be
applied. Two time series are then compared based on the differences in the set of noise
reduced patterns. As opposed to rivalling methods the BOSS offers multiple advant-
ages: (a) it is fast, (b) it applies noise reduction, (c) invariance to offsets is treated as
a parameter, and (d) it is a structure based similarity measure. As a result the BOSS
is as fast as DTW but much more accurate than DTW and state of the art classifiers.
Our contributions are as follows:

– We present our BOSS model that combines the noise tolerance of the Symbolic
Fourier Approximation (SFA) [20] with the structure-based representation of the
bag-of-words model [14] (Section 3).

– We present several optimisation strategies like reducing the computational com-
plexity of SFA from O(w logw) to O(1), for windows of size w (Section 4).

– We present the BOSS ensemble classifier based on multiple BOSS models at dif-
ferent window lengths (Section 5).

– We show (Section 7) that the BOSS ensemble classifier (a) achieves a up to 10
percentage points higher accuracy than any rivalling classification model on real
datasets in diverse application areas, (b) is as fast as DTW and up to 13-times as
fast as rivalling structure based classifiers and (c) shows the best test accuracies on
the UCR time series benchmark datasets.

2 Background

Before going into the details of our Bag-of-SFA-Symbols (BOSS) model, we present
the building blocks in Figure 3 based on a sample time series. First, sliding windows
of fixed length are extracted from a time series. Next, a symbolic representation called
Symbolic Fourier Approximation (SFA) [20] is applied to each sliding window. SFA
provides low pass filtering and quantisation to reduce noise. This results in a sequence
of symbols (SFA word) for each sliding window. The histogram of SFA words (Figure 3
bottom right) is then used as the indicator for structural similarity.

2.1 Definitions

A time series is a sequence of nεN real values, which are recorded over time:

T = (t1, . . . , tn) (1)

This time series is split into a set of subsequences, named windows hereafter, using
a windowing function.

4 Patrick Schäfer

0 200 400 600 800 1000
0.4
0.3
0.2
0.1
0.0
0.1
0.2
0.3
0.4
0.5

Sample

0 200 400 600 800 1000

bcc
bcc
bcc
bcc
bcc
bcc
bcc
bcc
...

ccc
ccc
bcc
bcb
bcb
bcb
bcb
bcb
...

bcb
bcb
bcb
bcb
bcb
bcb
bcb
bcb
...

bcb
bcb
ccc
ccc
ccc
ccc
ccc
ccc
...

bbb
bbb
abb
abb
abb
abb
abb
abb
...

bab
bab
cac
cac
cac
cac
cac
cac
...

cac
cac
cab
cab
cab
cac
dbc
dbd
...

ddd
ddc
cdc
cdb
bda
bda
bda
bda
...

bdb
bdc
bdc
bdc
bdc
bdc
adb
ada
...

aab
bab
bab
bab
bab
bab
bab
bac
...

bac
bac
bac
bac
cac
cac
cac
cac
...

ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
...

bdb
bdb
bdb
bdb
bdb
bdb
bdb
bdb
...

2. SFA Words

0 200 400 600 800 1000

1.0

0.5

0.0

0.5
1. Windowing

a
a
a

a
a
b

a
b
a

a
b
b

a
b
c

a
ca
a
cb

a
cc
a
d
a

a
d
b

a
d
c

b
a
a

b
a
b

b
a
c

b
b
a

b
b
b

b
b
c

b
cb

b
cc

b
d
a

b
d
b

b
d
c

b
d
d

ca
b

ca
c

cb
a

cb
b

cb
c

ccb

ccc
cd
a

cd
b

cd
c

cd
d

d
a
b

d
a
c

d
a
d

d
b
b

d
b
c

d
b
d

d
cb

d
cc

d
cd

d
d
c

d
d
d

0
2
4
6
8
10
12
14
16
18

C
o
u
n
ts

3. BOSS histogram

Figure 3: The BOSS model is extracted from a sample time series using word length 3
and 4 symbols (a-d). The black SFA words are skipped due to numerosity reduction.

Definition 1 Windowing: A time series T = (t1, . . . , tn) of length n is split into
fixed-size windows Si;w = (ti, . . . , ti+w−1) of length w using a windowing function.
Two consecutive windows at offset i and i+ 1 overlap in w − 1 positions:

windows(T,w) =

 S1;w︸︷︷︸
(t1,. . . ,tw)

, S2;w︸︷︷︸,
(t2,. . . ,tw+1)

. . . , Sn−w+1;w

 (2)

To obtain a consistent scale and vertical alignment (offset and amplitude invariance),
each window is typically z-normalised by subtracting the mean and dividing it by the
standard deviation.

2.2 From Real Values to Words

The Symbolic Fourier Approximation (SFA) [20] is a symbolic representation of time
series. That is, a real valued time series is represented by a sequence of symbols, named
SFA word, using a finite alphabet of symbols. This transformation allows for string
matching algorithms like hashing and the bag of words representation to be applied.
Figure 3 (bottom left) illustrates SFA words over the sliding windows of a time series
using 3 characters and 4 symbols (a-d). The SFA transformation aims at:

– Low pass filtering: Rapidly changing sections of a signal are often associated with
noise. These can be removed by a low pass filter. The SFA word length determines

The BOSS is concerned with time series classification in the presence of noise 5

the number of Fourier coefficients to be used and thereby the bandwidth of the low
pass filter.

– String representation: SFA uses quantisation and uses character strings. Thereby
it allows for string matching algorithms to be applied. The size of the alphabet de-
termines the degree of quantisation, which has an additional noise reducing effect,
but it might lead to a loss of information.

2.3 Symbolic Fourier Approximation (SFA)

Figure 4: SFA: A time series is (a) approximated
(low pass filtered) using DFT and (b) quantised us-
ing MCB resulting in the SFA word DAAC.

SFA is composed of two oper-
ations (Figure 4):

1. Approximation using the
Discrete Fourier Trans-
form (DFT) and

2. Quantisation using a
technique called Multiple
Coefficient Binning (MCB).

Approximation aims at rep-
resenting a signal of length n
by a transformed signal of re-
duced length l. Higher order
Fourier coefficients represent
rapid changes like dropouts or
noise in a signal. The signal
is low pass filtered by using
the first l � n Fourier coef-
ficients.

Quantisation adds to noise
reduction by dividing the fre-
quency domain into frequency ranges and mapping each real valued Fourier coefficient
to its range. MCB quantisation is data adaptive and thereby minimises the loss of
information introduced by quantisation.

Approximation (DFT)

The Discrete Fourier Transform (DFT) decomposes a signal T of length n into a sum of
orthogonal basis functions using sinusoid waves. Each wave is represented by a complex
number Xu = (realu, imagu), foru = 0, 1 . . . , n− 1, called a Fourier coefficient:

DFT (T) = X0 . . . Xn−1 = (real0, imag0, . . . realn−1, imagn−1) (3)

The n-point DFT of a discrete signal of one variable T (x), x = 0, 1, . . . , n − 1, is
given by the equation:

Xu =
1

n

n−1∑
x=0

T (x) · e−j2πux/n, foruε [0, n) , j =
√
−1 (4)

6 Patrick Schäfer

The first Fourier coefficients correlate to lower frequency ranges or the slowly chan-
ging sections of a signal. The higher order coefficients correlate to higher frequency
ranges or rapidly changing sections of a signal. The first Fourier coefficients are com-
monly used to describe a signal, thereby low pass filtering and smoothing the signal.
The first Fourier coefficient is equal to the mean value of the signal and can be discarded
to obtain offset invariance (vertical shifts).

Quantisation (MCB)

The Multiple Coefficient Binning (MCB) quantisation intervals are computed from the
samples. A matrix A = (aij)i=1..N ;j=1..l is built from the Fourier transformations of

the N training samples using only the first l
2 Fourier-coefficients - equal to an SFA word

of length l with l
2 real and l

2 imaginary values. The i-th row of matrix A corresponds
to the Fourier transform of the i-th sample Ti:

A =

DFT (T1)

.
DFT (Ti)

.
DFT (TN)

 =

real11 imag11 . . . real

1 l
2
imag

1 l
2

.
reali1 imagi1 . . . real

i l
2

imag
i l
2

.
realN1 imagN1 . . . realN l

2
imag

N l
2

 =
(
C1 . . . Cj . . . Cl

)

The j-th column Cj corresponds to either the real or imaginary values of all N
training signals. Each column is sorted by value and then partitioned into c equi-depth
bins.

Given the sorted columns Cj , with j = 1, . . . , l, and a finite alphabet Σ of size
c: MCB determines c + 1 breakpoints βj(0) < . . . < βj(c) for each column Cj , by
applying equi-depth binning. Using an alphabet of size c and l

2 Fourier coefficients,
MCB results in a total of l sets of c+1 intervals. Figure 4 (bottom left) illustrates the
intervals for c = 6 and l = 4.

Finally, we label each bin by assigning the a-th symbol of the alphabet Σ to it. For
all pairs (j, a) with j = 1, . . . , l and a = 1, . . . , c:

[βj(a− 1), βj(a)) , symbola (5)

When it comes to time series classification the precomputed and labelled MCB
intervals are obtained from a train dataset. Based on the MCB intervals we compute
the SFA words for both the train and test data.

SFA Transformation

The SFA word is obtained from a Fourier transformed time series by a simple lookup
using the precomputed MCB intervals (Figure 4 bottom).

Definition 2 SFA Word: the symbolic representation SFA(T) = s1, . . . , sl of a time
series T with approximation DFT (T) = t

′

1, . . . , t
′

l is a mapping SFA : Rl → Σl of the
real and imaginary value to a symbol over the alphabet Σ of size c. Specifically, the
j-th value t

′

j is mapped to the a-th symbol, if it falls into its interval:(
βj(a− 1) ≤ t

′

j < βj(a)
)
⇒ sj ≡ symbolaεΣ (6)

Figure 4 bottom right illustrates this mapping. The resulting SFA word is DAAC for
DFT (T) = (1.89,−4.73,−4.89, 0.56).

The BOSS is concerned with time series classification in the presence of noise 7

2.4 Related Work

Existing classification algorithms either (a) try to find a similarity metric that resembles
our intuition of similarity (shape-based) or (b) extract feature vectors or model para-
meters from the data to make existing data mining algorithms applicable (structure-
based) [7,25]. The UCR time series classification datasets [23] have been established
as the benchmark [15,14,7,23,3]. We focus on these approaches in our analysis.

Shape-based techniques are based on a similarity metric in combination with 1-
NN classification. Examples include 1-NN Euclidean Distance, 1-NN Longest Common
Subsequence [24], or 1-NN DTW [19,16,17]. DTW has shown to be a highly competitive
classifier on time series datasets and is used as a reference [7]. The problem with shape-
based techniques is that they fail to classify noisy or long data containing characteristic
substructures.

Structure-based techniques extract higher-level feature vectors or build a model
from the time series prior to the classification task using classical data mining al-
gorithms like SVMs, decision trees, or random forests. Techniques for extracting feature
vectors include the Discrete Fourier Transform (DFT) [1], Indexable Piecewise Linear
Approximation (PLA) [5], Symbolic Fourier Approximation (SFA) [20], or Symbolic
Aggregate approXimation (SAX) [13], to name but a few examples. These transform-
ations use the whole time series. In contrast Shapelets classifiers [15,28,18] extract
representative variable-length subsequences (called shapelets) from a time series for
classification. A decision tree is build using these shapelets within the nodes of the
tree. A distance threshold is used for branching.

The bag-of-patterns (BOP) model [14] is the closest to our work. BOP extracts
substructures as higher-level features of a time series. BOP transforms these substruc-
tures using a quantisation method called SAX and uses the Euclidean Distance as
a similarity metric. SAX-VSM [21] builds on BOP by the use of ts-idf weighting of
the bags and Cosine similarity as similarity metric. It uses one bag of words for each
class, instead of one bag for each sample. In contrast BOSS uses SFA [20], the offset
invariance as a model parameter, a different similarity metric, an ensemble of BOSS
models, and we present multiple optimisation techniques. Time-series bitmaps [12] are
a visualisation tool for time series datasets based on a histogram of SAX words. The
approach is similar to the BOP model.

SFA has been introduced in [20] in the context of similarity search on massive time
series datasets using the SFA trie. This work focuses on time series classification and
clustering (rather than indexing) and extends our previous work on SFA by introducing
the Momentary Fourier Transform [2] to SFA and the BOSS model based on SFA words
over sliding windows of a time series.

SFA uses the DFT and SAX uses mean values (PAA) to approximate a time series.
Both, have a noise cancelling effect by smoothing a time series. One disadvantage of
using mean values is that these have to be recalculated when changing the resolution -
i.e. from weekly to monthly mean values. The resolution of DFT can be incrementally
adapted by choosing an arbitrary subset of Fourier coefficients without recalculating
the DFT of a time series. Maximising the train accuracy while increasing the number
of Fourier coefficients is the core idea of our algorithm in Algorithm 3. Dropping the
rear mean values of a SAX word is equal to dropping the rear part of a time series. To
avoid this, we would have to recalculate all SAX transformations each time we chose
to represent a time series by a different SAX word length.

8 Patrick Schäfer

3 The Bag-of-SFA-Symbols (BOSS)

Figure 5: The BOSS workflow.

The BOSS model (Figure 5) describes
each time series as an unordered set
of substructures using SFA words. The
approach has multiple advantages:

– it is fast, as hashing is used to de-
termine the similarity of substruc-
tures (SFA words),

– it applies noise reduction,
– it provides invariance to phase

shifts, offsets, amplitudes and oc-
clusions.

3.1 The BOSS Model

Our model has four parameters:

– the window length wεN: represents the size of the substructures.
– mean normalisation meanε[true, false]: set to true for offset invariance.
– the SFA word length lεN and alphabet size cεN: used for low pass filtering

and the string representation.

First, sliding windows of length w are extracted from a time series. Intuitively w should
roughly represent the size of the substructures within the time series. Next, each sliding
window is normalised to have a standard deviation of 1 to obtain amplitude invariance.
The parametermean determines if the mean value is to be subtracted from each sliding
window to obtain offset invariance. The mean normalisation is treated as a parameter of
our model and can be enabled or disabled. For example, heart beats should be compared
using a common baseline but the pitch of a bird sound can be significant for the
species. Finally, the SFA transformation is applied to each real valued sliding window.
The BOSS model transforms a time series into an unordered set of SFA words. Using
an unordered set provides invariance to the horizontal alignment of each substructure
within the time series (phase shift invariance). In stable sections of a signal the SFA
words of two neighbouring sliding windows are very likely to be identical. To avoid
outweighing stable sections of a signal, numerosity reduction [14,13] is applied. That
is, the first occurrence of an SFA word is registered and all duplicates are ignored until
a new SFA word is discovered. In Figure 3 the first SFA words are identical:

S = bcc bcc bcc bcc bcc bcc bcc bcc ccc ccc bcc bcb bcb bcb bcb ...

Applying numerosity reduction to S this leads to:

S′ = bcc ccc bcc bcb ...

From these SFA words a histogram is constructed, which counts the occurrences of
the SFA words. In the above example the BOSS histogram of S′ is:

B : bcc = 2, ccc = 1, bcb = 1, ...

The BOSS is concerned with time series classification in the presence of noise 9

Algorithm 1 The BOSS transformation.

map <string ,int > BOSSTransform(sample ,w,l,c,mean)
(1) map <string ,int > boss
(2) for s in sliding_windows(sample ,w)
(3) word = SFA(s,l,c,mean)
(4) if word != lastWord // numerosity reduction
(5) boss[word]++ // increase histogram counts
(6) lastWord = word
(7) return boss

This BOSS histogram ignores the ordering of the occurrences of the SFA words
within a time series. This provides phase invariance of the substructures and thereby
eliminates the need for preprocessing the samples by a domain expert for approximate
alignment of the substructures.

Definition 3 Bag-Of-SFA-Symbols (BOSS): Given are a time series T , its sliding
windows Si;w and SFA transformations SFA(Si;w)εΣl, for i = 1, 2, . . . , (n − w + 1).
The BOSS histogram B : Σl → N is a function of the SFA word space Σl to the
natural numbers. The number represents the occurrences of an SFA word within T

counted after numerosity reduction.

BOSS transformation (Algorithm 1): The algorithm extracts sliding windows of length
w from the sample (line 2) and determines SFA words (line 3) with length l and alphabet
size c. Mean normalisation is obtained by dropping the first Fourier coefficient in each
SFA word. Finally, a new word is added to the histogram (line 5), if two subsequent
words are different (numerosity reduction).

3.2 BOSS Distance

0 50 100 150 200 250 300 350
0

1

2

3

a
a
a

a
a
b

a
b
a

a
b
b

0

1

2

C
o
u
n
ts

0 50 100 150 200 250 300 350
0

1

2

3

a
a
a

a
a
b

a
b
a

a
b
b

0

1

2

C
o
u
n
ts

0 100 200 300 400 500
1

2

b
a
a

b
a
b

b
b
a

b
b
b

0
1
2
3
4

C
o
u
n
ts

0 100 200 300 400 500

1

a
a
a

a
b
a

b
a
a

b
a
b

b
b
a

b
b
b

0

1

2

C
o
u
n
ts

0 50 100 150 200 250 300
0

1

2

3

a
a
a

a
a
b

a
b
a

a
b
b

0

1

2

C
o
u
n
ts

Figure 6: The BOSS histograms of normal
(green) and abnormal (orange) walking mo-
tions.

Two time series are considered sim-
ilar, if they share the same set of SFA
words. Figure 6 illustrates the BOSS
histograms for abnormal and normal
walking motions. There is noise, erro-
neous data (a peek in the first motion)
and the motions are not aligned. Still
the BOSS histograms for the normal
walking motions 1, 2, 5 are very sim-
ilar, while the histograms of the abnor-
mal motions 3, 4 clearly differ.

When comparing two time series,
the absence of SFA words has two reas-
ons: noise distorts the substructures
or a substructure is not contained in
another signal. Consider two identical
signals, whereas the second signal con-
tains extraneous data at the begin-
ning, i.e. as the sensor was not connec-
ted. These signals will have identical

10 Patrick Schäfer

BOSS histograms except for the SFA words at the beginning of the second recording.
We have to ignore these SFA words for the signals to become identical. Thus, we chose
to ignoring missing substructures in our distance measure. The BOSS distance is a
modification of the Euclidean distance: we omit all SFA word counts of 0 in the query
when computing the pairwise SFA word count differences. For example, the BOSS
model of the first and fourth motion in Figure 6 is:

aaa aab aba abb baa bab bba bbb
B1 = 2 2 1 2 0 0 0 0
B4 = 1 0 1 0 1 2 2 2

D(B1, B4) = (2− 1)2 +(2)2 +(1− 1)2 +(2)2 +0 +0 +0 +0
D(B4, B1) = (2− 1)2 +0 +(1− 1)2 +0 +(1)2 +(2)2 +(2)2 +(2)2

The resulting pairwise BOSS distances are: D(B1, B4) = 9 and D(B4, B1) = 14.

Definition 4 BOSS distance: Given two BOSS histograms B1 : Σl → N and B2 :
Σl → N of two time series T1 and T2, the BOSS distance is defined as:

D(T1, T2) = dist(B1, B2) (7)

with
dist(B1, B2) =

∑
aεB1;B1(a)>0

[B1(a)−B2(a)]
2 (8)

The BOSS distance is not a distance metric as it neither satisfies the symmetry condi-
tion nor the triangle inequality. As a consequence the BOSS distance does not allow for
indexing (triangle inequality) and the nearest neighbour of X may not be the nearest
neighbour of Y (symmetry). In the context of time series classification the BOSS dis-
tance gave the best classification accuracy. However, other distance metrics such as the
Euclidean distance or Cosine similarity may be applied, if the two conditions have to
be met.

4 Optimisation of the BOSS Model

4.1 Incremental Fourier Transform

The SFA transformation is dominated by the runtime of a single DFT. As part of
Algorithm 1, n − w + 1 sliding windows of length w are extracted from a sample of
length n. A single DFT of a window of length w has a complexity of O(w logw),
which is time consuming considering we need only l � w Fourier coefficients. Let us
assume that we are interested in the first l � w Fourier coefficients of the sliding
windows {S1;w, . . . , Sn−w+1;w}. A sliding window at time interval i is inferred from
its predecessor by one summation and one subtraction:

Si;w = Si−1;w + xi − xi−w , for i > 1 (9)

The Momentary Fourier Transform (MFT) [2] makes use of this recursive property
as the first l Fourier coefficients at the time interval i : Xi;0 . . . Xi;l−1 can be computed
from the previous time interval i− 1 : Xi−1;0 . . . Xi−1;l−1 using:

Xi;0
Xi;1
.
.

Xi;l−1

 =

1 0 . 0
0 υ−1 . .
. 0 . .
. . . 0

0 . . υ−(l−1)

 ·

Xi−1;0 + xi − xi−w
Xi−1;1 + xi − xi−w
.
.
Xi−1;l−1 + xi − xi−w

 (10)

The BOSS is concerned with time series classification in the presence of noise 11

with the definition of υk = e−j2πk/n and imaginary number j =
√
−1. In this

representation each Fourier coefficient at time interval i can be independently computed
from time i − 1 using only O(1) complex multiplications and summations: Xi;f =

υ−f (Xi−1;f + (xi − xi−w)).
By use of the MFT the computational complexity to compute l SFA features is

reduced to O(l) for all but the first window, which has a complexity of O(w logw).
Thus, the computational complexity for all windows is reduced from O(n ·w logw) to:

O(nl+ w logw) = O(nl) = O(n), with l� w � n (11)

4.2 Incremental Refinement of SFA word lengths

Using smaller SFA word lengths has the effect of reducing noise but you also loose
signal details. A core idea of our BOSS model is to test different SFA word lengths
to find the optimal trade-off between word length and noise reduction by maximising
the classification accuracy on a train dataset. To avoid redundant computations we
can vary the length of an SFA word by first calculating long SFA words and then
dropping the rearward characters which are equal to higher-order Fourier coefficients.
The ability to vary the SFA word length on the fly is one of the main differences to
the symbolic representation SAX used in the bag-of-pattern representation, as stated
in the background.

Our rationale is to (a) calculate the SFA transformation for the largest required
SFA word length l and (b) incrementally remove the last character(s) from each word.
However, we still have to adapt the BOSS histograms when changing the SFA word
length. Fortunately, this can be achieved by a simple addition of counts from the
histograms of the larger SFA word lengths. We use the 4th sample from Figure 6 to
illustrate this operation using an alphabet Σ of size 2:

The histograms are incrementally updated by dropping the last character(s) and
recounting the occurrences: i.e., bba and bbb are merged to bb and the counts of both
add up to 4. In general the following holds for histograms B1 : Σl1 → N at word length
l1 and and B2 : Σl2 → N at word length l2 = l1 + 1 with SFA alphabet Σ:

B1(α) =
∑
βεΣ

B2(αβ), with αεΣl1 and αβεΣl2 (12)

4.3 Lower Bounding of SFA world lengths

An important observation is that the smaller SFA word length l1 can be used to
lower bound the distance computations on the larger word lengths l2 > l1 to avoid
unnecessary computations. That means we can use the distance on length l1 to decide,
if we have to test l2.

12 Patrick Schäfer

Algorithm 2 Predict: 1-nearest-neighbor classification using the BOSS model.

TimeSeries predict(qId ,samples ,histograms)
(1) (bestDist , bestTs) = (MAX_VALUE , NULL)
(2) for i in 1..len(samples) // search for the 1-NN
(3) dist = 0

// iterate only those words with a count > 0!
(4) for (word ,count) in histograms[qId]
(5) dist += (count -histograms[i].get(word))^2
(6) if dist < bestDist // store current 1-NN
(7) (bestDist , bestTs) = (dist , samples[i])
(8) return bestTs

Proof Given alphabet size c, two BOSS histograms B1;l1and B2;l1 at word length l1
and B1;l2 and B2;l2 at word length l2 = l1 + 1, the following applies:

(l2 = l1 + 1) ⇒
(
1

c
· dist(B1;l1 , B2;l1) ≤ dist(B1;l2 , B2;l2)

)
(13)

Proof idea: Given any SFA word aεΣl1 , and the SFA words (ab)εΣl2 derived from
concatenating a of length l1 with a symbol bεΣ. The following applies:

1

c

[
B1;l1 (a)−B1;l1 (a)

]2
= c

[
B1;l1 (a)

c
−
B2;l1 (a)

c

]2
︸ ︷︷ ︸

(x−y)2

≤
∑
bεΣ

[
B1;l2 (ab)−B2;l2 (ab)

]2︸ ︷︷ ︸
(xi−yi)2

(14)

as B1;l1(a) =
∑
bB1;l2(ab) and B2;l1(a) =

∑
bB2;l2(ab). Eq. 14 mimics the for-

mula that was proven in [10]: c(x − y)2 ≤
∑

(xi − yi)2. Our proof ends by extending
Eq. 14 to all SFA words in B1;l1 :

1

c
· dist(B1;l1 , B2;l1) = c

∑
aεB1;l1

[
B1;l1 (a)−B2;l1 (a)

]2
≤

∑
aεΣl1

∑
bεΣ

[
B1;l2 (ab)−B2;l2 (ab)

]2 (15)

=
∑
aεΣl2

[
B1;l2 (a)−B2;l2 (a)

]2
= dist(B1;l2 , B2;l2)

We have to skip normalising the histograms to allow for this lower bounding between
different word lengths.

5 The BOSS Classifier

The classification of time series has gained increasing interest over the past decade [3,
7,23]. The time series classification task aims at assigning a class label to a time series.
For this the features (the model) to distinguish between the class labels are trained
based on a labelled train dataset. When an unlabelled query time series is recorded,
the model is applied to determine the class label.

The BOSS is concerned with time series classification in the presence of noise 13

Algorithm 3 Fit: Train the parameters using leave-one-out cross validation.

[(int ,int ,int ,histogram [])] fit(samples ,labels ,mean)
(1) scores = [], maxF=16, c=4, minSize = 10
(2) for w = maxSize down to minSize // search all window lengths
(3) for i in 1..len(samples) // obtain histograms
(4) hist[i]= BOSSTransform(samples[i],w,maxF ,c,mean)
(5) bestCor=0, bestF=0
(6) for f in {8 ,10.. maxF} // search all word lengths
(7) histShort = shortenHistogram(hist , f) // incremental refinement
(8) correct =0
(9) for qId in 1.. len(samples) // leave -one -out
(10) best = predict(qId ,samples \{ sample[qId]},histShort)
(11) if labels(best)== labels(sample) correct ++
(12) if correct > bestCor // store best
(13) (bestCor , bestF) = (correct , f)

// store scores for each window length
(14) scores.push((correct , w, bestF , hist))
(15) return scores

Prediction (Algorithm 2):The BOSS classifier is based on 1-nearest-neighbour (1-NN)
classification and the BOSS model. We chose to use 1-NN classification as it is very
robust and doesn’t introduce any parameters for model training. Given a query, the
predict-method in Algorithm 2 searches for the 1-NN within a set of samples by min-
imising the distance between the query and all samples (predict lines 2ff). The lookup
operation histograms[i].get(word) is a bottleneck as it is iterated for each sample (pre-
dict line 5). Thus, we implemented each BOSS histogram as a map to allow for constant
time lookups.

Training (Algorithm 3):We use grid-search over the parameter space window length
wε[10, n], SFA word length fε {8, 10, 12, 14, 16} and alphabet size c = 4 using leave-
one-out cross-validation to train the BOSS classifier from a set of train samples. All
window lengths (fit line 2ff) are iterated to obtain for each window length the optimal
SFA word length. Based on the incremental refinement in Section 4.2 the first BOSS
histograms are constructed using the longest word length maxF (fit lines 3–4). Shorter
word lengths are then tested by dropping the last characters of each word and rebuilding
the histogram (fit line 7). In case of an accuracy tie between two word lengths, the
smaller word length is kept (fit lines 12–13). This follows the assumption that the
patterns should be kept as simple as possible and therefor a stronger noise reduction
is generally preferable. Finally, the accuracy counts for each pair of window length
and SFA word length are returned (fit line 15). The mean normalisation parameter is
a Boolean parameter, which is constant for a whole dataset and not set per sample.
If set to true, the first Fourier coefficient (DC coefficient) is dropped to obtain offset
invariance. We empirically observed that a constant alphabet size of 4 was optimal for
most datasets. This observation is in accordance with SAX [13,14] which reported 4
symbols to work best for most time series datasets. Thus, we keep the alphabet size c
fixed to four symbols.

5.1 BOSS Ensemble Classifier

By intuition every dataset is composed of substructures at multiple window lengths
caused by different walking motions, heart beats, duration of vocals, or length of shapes.

14 Patrick Schäfer

Algorithm 4 Predict: The BOSS Ensemble Classifier.

String predictEnsemble(qId ,samples ,windowScores)
// stores for each window length a label

(1) windowLabels = []
// determine best accuracy

(2) maxCorrect = max([correct | (correct ,_,_,_) in windowScores])
// determine the label for each window length

(3) for (correct , _, _, histograms) in windowScores
(4) if (correct > maxCorrect * FACTOR)
(5) windowLabels[len] = labels(predict(qId ,samples ,histograms))
(6) return most frequent label from windowLabels

For example, each human may have a different length of a gait cycle. Thus, we represent
each sample by a set of window lengths using an ensemble technique.

The BOSS classifier in Algorithm 2 predicts the classification accuracy using one
fixed window length. In the following we represent each time series by multiple window
lengths to allow for different substructural sizes. The fit-method in Algorithm 3 returns
a set of scores resulting from each window length on the train samples. The BOSS
ensemble classifier (Algorithm 4) classifies a query using the best window sizes. It first
obtains the best accuracy maxCorrect from the set of window scores (line 2) which
result from the train data. All window lengths that have an accuracy that lies within
a user defined constant threshold factorε (0, 1] multiplied by this best score are used
for prediction (lines 3–5):

score.correct > maxCorrect · factor

A label is determined for each window length based on the 1-NN to the query
(line 5). Finally, the most frequent class label is chosen from the set of labels (line 6).
In our experiments a constant factor set to 0.92 or 0.95 was best throughout most
datasets. Our web page contains the c++-code of the BOSS ensemble classifier.

6 Computational Complexities

The BOSS model (Algorithm 1):The BOSS model has a runtime that is linear in n:
there are n − w + 1 sliding windows in each time series of length n. Using the MFT,
the SFA transformation for word length l have a complexity of (Eq. 11):

T (BOSS) = O(w logw + l · (n− w))
= O(n) with l� w � n

The BOSS Distance (Algorithm 2 lines 4–5):The computational complexity of the
BOSS distance is linear in the length of the time series n. Each BOSS histogram
contains at most n − w + 1 SFA words. A histogram lookup for an SFA word has a
constant time complexity by the use of hashing. This results in a total complexity that
is linear in n:

T (BOSSDistance) = O(n− w + 1) = O(n)

While the computational time is bound by the time series length n, the actual
number of unique SFA words is much smaller due to the numerosity reduction.

The BOSS is concerned with time series classification in the presence of noise 15

The BOSS Classifier Predict (Algorithm 2):The computational complexity of the pre-
dict-method performs a 1-NN search over the N samples using the BOSS distance
calculations (line 2ff):

T (Predict) = O(N · T (BOSSDistance)) = O(N · n)

The BOSS ensemble classifier increases this runtime by a constant factor by testing
a constant number of window lengths.

The BOSS Classifier Fit (Algorithm 3):The computational complexity of the fit-method
results from leave-one-out cross-validation in combination with the 1-NN search. To
obtain the best window lengths, at most n window lengths have to be tested to predict
N labels each. This results in a computational complexity quadratic in the number of
samples N and in the time series length n:

T (Fit) = O(Nn[T (BOSS) + T (Predict)])

= O(Nn2 +N2n2) = O(N2n2)

If the length of patterns within a dataset is known ahead of time, the computational
complexity can be trivially reduced to O(Nn+N2n) by testing only window lengths
that are roughly equal to the pattern length.

7 Experimental Evaluation

We evaluated the BOSS ensemble classifier using case studies and established bench-
mark datasets. Our web page reports all raw numbers and contains source codes [26].
The BOSS ensemble classifier was implemented in JAVA and c++. All experiments
were performed on a shared memory machine running LINUX with 8 Quad Core AMD
Opteron 8358 SE processors, using the JAVA implementation and JAVA JDK x64 1.7.
In all experiments we optimised the parameters of the classifiers based on the train
dataset. The optimal set of parameters is then used on the test dataset. For example,
the BOSS ensemble classifier requires two parameters: factor and mean (compare Sec-
tion 5.1). We use the term BOSS or BOSS classifier as an equivalent to the BOSS
ensemble classifier.

7.1 Case Studies

Astronomy

It is easy to get large amounts of data, but it can be very time consuming to obtain
labels for each data item. Thus, it is difficult to obtain large amounts of labelled data.
The StarlightCurves dataset is one of the largest freely available datasets [23] that
consists of N = 9236 starlight curves, each of length n = 1024. There are 3 types
of star objects: Eclipsed Binaries (purple), Cepheids (blue) and RR Lyrae Variables
(green). This dataset is of particular interest as there are dozens of papers referencing
this dataset.

16 Patrick Schäfer

Figure 7: Hierarchical clustering of StarlightCurves. There are 3 types of star objects:
Eclipsed Binaries, Cepheids and RR Lyrae Variables.

0 2000000 4000000 6000000 8000000 10000000

Number of Values (Nn)

10-1

100

101

102

103

104

105

M

Wallclock Times on StarLightCurves

BOSS TRAIN
BOSS PREDICT
DTW PREDICT
Euclid PREDICT

(a) Wallclock times on the Star-
lightCurves dataset.

(b) BOSS parameter space on the Star-
lightCurves dataset.

Figure 8

Hierarchical Clustering: Figure 7 illustrates a hierarchical clustering of the data. The
Cepheids and RR Lyrae Variables have a similar shape and are difficult to separate.
Both, the ED and DTW result in a visually unpleasing clustering, as they fail to
separate Cepheids from RR Lyrae Variables. BOSS performs best in separating these
two classes, which is a result of the noise reduction of SFA and the phase invariance of
the BOSS model.

Classification: The BOSS classifier outperforms previous approaches in terms of classi-
fication accuracy. The 1-NN DTW classifier achieves a test accuracy of 90.7% and the
highest reported test accuracy is 93.68% [18]. Our BOSS classifier has a test accuracy
of 97.6% (Table1), which is the best published accuracy.

Scalability: We test the scalability based on subsets of 100 to 9236 samples. Figure 8b
shows four curves: (a) BOSS train including grid search on the parameter space (b)
BOSS predict, (c) 1-NN DTW predict and (d) 1-NN Euclidean predict. The DTW is
implemented using the lower bounding techniques presented in [16], which result in a
close to linear runtime. BOSS predict has the same asymptotic runtime as the DTW,
yet yields in a much higher accuracy. BOSS predict takes at most 4 minutes for 1000
samples and 56 minutes for 9236 samples. The best rivalling method in [18] reports

The BOSS is concerned with time series classification in the presence of noise 17

Figure 9: Hierarchical clustering of human walking motions. There are two motions:
normal walk and abnormal walk.

a more than 13 times higher runtime (52 minutes), to obtain a lower accuracy. The
BOSS prediction takes at most 0.36 seconds on average for a single query. We conclude
that the BOSS classifier is as fast as 1-NN DTW but significantly more accurate.

Parameter Space: Figure 8b shows that the BOSS classifier is very robust to the choice
of parameters window length and number of features on this dataset. A small number
of features is favourable, which is equivalent to a strong reduction in noise (low pass
filter). We observed similar patterns on the other case studies. We omit these plots for
the sake of brevity.

Human Walking Motions:

The CMU [6] contains walking motions of four subjects. The authors [28] provide
multiple segmentation approaches and we used their first segmentation approach. Each
motion was categorised by the labels normal walk (green) and abnormal walk (orange).
The data were captured by recording the z-axis accelerometer values of either the right
or the left toe. The difficulties in this dataset result from variable length gait cycles,
gait styles and paces due to different subjects throughout different activities including
stops and turns. A normal walking motion consists of up to three repeated similar
patterns.

Hierarchical Clustering: Figure 9 shows a hierarchical clustering of the walking mo-
tions. The ED fails to identify the abnormal walking styles, thus these are not clearly
separated from the normal walking motions. DTW provides invariance to phase shifts
by a peak-to-peak and valley-to-valley alignment of the time series. This still does
not result in a satisfying clustering as the abnormal and normal walking patterns are
intermingled. As part of our BOSS model the patterns from the walking motions are ex-
tracted and noise reduction is applied. As a result the separation of the normal walking
motions from the abnormal walking motions is much clearer with just the 19th walking
motion being out of place.

Classification: The 1-NN DTW classifier gives a test accuracy of 66%. The best repor-
ted accuracy in literature [28] is 91%. Training the BOSS classifier using grid search
took about a second. This results in a test classification accuracy for the BOSS classifier
of 98.2% (Table1), which is by far the best reported accuracy.

18 Patrick Schäfer

Dataset Best Rival DTW BOSS BOSS Parameters

Anthropology (Arrowhead) 80% [28] 66.3% 88.6% factor : 0.95,mean : T

Medicine (BIDMC) 92.4% [9] 62.8% 100% factor : 0.95,mean : F

Security (Passgraph) 70.2% [15] 71.8% 74% factor : 0.95,mean : F

Historical Document (Shield) 89.9% [28] 86% 90.7% factor : 0.95,mean : T

Astronomy (StarlightCurves) 93.7% [18] 90.7% 97.6% factor : 0.95,mean : F

Motions (Toe Segmentation) 91% [28] 66.2% 98.2% factor : 0.95,mean : T

Spectrographs (Wheat) 72.6% [28] 71.3% 82.6% factor : 0.95,mean : T

Table 1: Test accuracies along with test accuracies of the best rivalling methods and
DTW (without a warping window).

Arrowheads Heartbeats Passgraphs Shields Starlight Curves Walking Motions Wheat

Figure 10: One sample for each class of the case studies.

Anthropology, Historical Documents, Personalised Medicine, Spectrography and Se-
curity.

We complement the case studies using datasets covering personalised medicine, an-
thropology, historical documents, mass spectrography and security (Figure 10). Pass-
graph [15] represents grids of dots, which a user has to connect to gain access to a
resource like his smartphone. Arrowheads [27] is a dataset representing the shape of
projectile points of variable lengths. Shield [27] contains heraldic shields of variable
lengths. Wheat [27] is dataset of spectrographs of wheat samples grown in Canada
clustered by year. The BIDMC Congestive Heart Failure Database [22] is a dataset
that contains ECG recordings (heartbeats) of different subjects. These suffer from
severe congestive heart failures. The results in Table 1 show that the BOSS classifier is
applicable to a large scope of application areas including raw, extraneous, erroneous,
and variable length data. It performs significantly better than the best, specialised
rivalling methods by up to 10 percentage points. The accuracy gap to DTW is up to
37 percentage points.

7.2 UCR Benchmark

The BOSS classifier is compared to state of the art classifiers like structure-based shape-
lets [15] and bag-of-patterns [14] or shape-based 1-NN classifiers using Euclidean dis-
tance or DTW with the optimal warping window. Additionally, more complex classifiers
such as support vector machines (SVM) with a quadratic and cubic kernel and a tree

The BOSS is concerned with time series classification in the presence of noise 19

0.4 0.5 0.6 0.7 0.8 0.9 1.0

BOSS

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
h
a
p
e
le
ts

Shapelets
vs.

 BOSS

0.4 0.5 0.6 0.7 0.8 0.9 1.0

BOSS

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1
-N

N
 D

T
W

 o
p

t.
 W

a
rp

in
g

 W
in

d
o
w

1-NN DTW opt. Warping Window
vs.

 BOSS

0.4 0.5 0.6 0.7 0.8 0.9 1.0

BOSS

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1
-N

N
 E

u
cl

id
e
a
n

 D
is

ta
n

ce

1-NN Euclidean Distance
vs.

 BOSS

0.4 0.5 0.6 0.7 0.8 0.9 1.0

BOSS

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
V

M
 Q

u
a
d

ra
ti

c
K

e
rn

e
l

SVM Quadratic Kernel
vs.

 BOSS

0.4 0.5 0.6 0.7 0.8 0.9 1.0

BOSS

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
a
n

d
o
m

 F
o
re

st

Random Forest
vs.

 BOSS

0.4 0.5 0.6 0.7 0.8 0.9 1.0

BOSS

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B
a
g
-o
f-
P
a
tt
e
rn
s

Bag-of-Patterns
vs.

 BOSS

0.4 0.5 0.6 0.7 0.8 0.9 1.0

BOSS

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1
-N

N
 E

D
 s

m
o
o
th

(3
)

1-NN ED smooth(3)
vs.

 BOSS

0.4 0.5 0.6 0.7 0.8 0.9 1.0

BOSS

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1
-N

N
 E

D
 s

m
o
o
th

(7
)

1-NN ED smooth(7)
vs.

 BOSS

0.4 0.5 0.6 0.7 0.8 0.9 1.0

BOSS

0.4

0.5

0.6

0.7

0.8

0.9

1.0

b
e
st

 c
la

ss
if

ie
r

best classifier
vs.

 BOSS

Figure 11: Classifier accuracies on test subsets for the BOSS ensemble classifier vs.
rivalling methods. Each dot represents a dataset. A dot below the line indicates that
the BOSS ensemble classifier is more accurate than its rival.

based ensemble method (random forest) were benchmarked. The classifiers were eval-
uated using time series datasets from the UCR time series classification archive [23].
Each dataset provides a train/test split. By the use of these train/test splits, the results
are comparable to those previously published in [3,4,7,8,14,15,18]. All our results
show the test accuracy of the classifiers. The BOSS ensemble classifier is trained
using a constant factor : 0.92 and mean : {true, false}. The latter is selected based on
the train datasets.

The scatter plots (Figure 11) show a pair-wise comparison of two classifiers. In these
plots each dot represents the test accuracies of the two classifiers on one dataset. The
farther a dot is located from the diagonal line, the greater the difference in accuracy. A
dot below the line indicates that the BOSS classifier is more precise than the rivalling
method.

20 Patrick Schäfer

The scatter plots show that the BOSS is significantly better than each of the
rivalling shape-based methods, structure-based methods and complex classifiers on a
majority of the 32 datasets. These datasets have been preprocessed by a human for
approximate horizontal alignment, still the BOSS classifier performs significantly better
than the rivalling approaches.

The BOSS achieves a perfect test accuracy of 100% on 6 datasets and a close
to optimal accuracy on several other datasets. For most datasets there is a huge gap
between the accuracy of the BOSS classifier and the rivalling methods. The 1-NN DTW
classifier (with an optimal warping window) is used as a reference, as it has shown to be
highly competitive [7]. However, DTW performs much worse than BOSS on a majority
of datasets. This is a remarkable result, as it implies that either (a) most time series
datasets do not require time warping, or (b) the BOSS implicitly provides some kind
of time warping. This remains part of our ongoing research.

Invariance to Noise

To underline the influence of noise, we applied different levels of smoothing to the data
prior to the classification task using matlab’s smooth-function prior to the 1-NN ED
classification. The results are presented in the two scatter plots in Figure 11 (bottom):
1-NN ED smooth(3) and smooth(7). When smoothing is applied the 1-NN ED classifier
accuracy improves by more than 10 percentage points on three datasets (FaceAll,
synthetic_control, Beef) with hard coded parameters of 3 or 7. This underlines the
importance of smoothing a signal to counter noise. The BOSS classifier optimises the
amount of noise reduction as part of the training and outperforms both smoothed 1-NN
ED classifiers even without the additional use of the smooth-function. This is a result
of noise cancelling and also to the invariances provided by our BOSS model.

Building a Golden Classifier

We showed that the BOSS classifier is better than every single classifier presented in
this paper for a majority of datasets. To give a complete view, we assume that we could
predict ahead of time which of the 7 classifiers (Shapelets, Fast Shapelets, 1-NN ED,
1-NN DTW, SVM, Random Forest, Bag-of-Patterns) will give the best accuracy for a
dataset and use the classifier on this particular dataset. The scatter plot in Figure 11
(bottom right) shows the results. When compared to the best of 7 classifiers our BOSS
classifier performs better on 17 datasets, scores a tie on 2 datasets and is worse on
13 datasets. We can not claim that the BOSS classifier is the best classifier to use on
all datasets. However, in total it is competitive to a combination of 7 state of the art
classifiers.

7.3 Texas Sharpshooter Plot

The Texas sharpshooter plot [4] illustrates a method to predict ahead of time if one
algorithm is better than another algorithm in terms of classification accuracy. The aim
is to predict the test accuracy for the 1-NN Euclidean distance (ED) and the BOSS

The BOSS is concerned with time series classification in the presence of noise 21

classifier based on the accuracy on the train data. The gain in accuracy when using
the BOSS classifier as a replacement of 1-NN ED can be measured by:

gain =
accuracy BOSS classifier

accuracy 1-NN ED

Figure 12: Expected accuracy gain
from train data compared to actual
accuracy gain on test data.

Gain values greater than 1 indicate that
the BOSS classifier is better than 1-NN ED for
one particular dataset. The gain is measured on
both the train and test dataset splits. The plot
in Figure 12 shows the actual gain on the test
dataset versus the expected gain on the train
dataset. There are four regions of interest:

– True Positive (TP): We expected the ac-
curacy to improve and were correct. 27 out
of 32 datasets fall into this region.

– False Negative (FN): We expected the ac-
curacy to drop but it increased. This is a
lost chance to improve (MedicalImages).

– True Negative (TN): We correctly predicted
the accuracy to decrease. One dataset falls
into this region (ItalyPowerDemand).

– False Positive (FP): We expected the
accuracy to improve but it decreased.
This is the bad region as we lost accur-
acy by deciding to use the BOSS clas-
sifier. Three datasets (CinC_ECG_torso,
ECG200, SonyAIBORobotSurface) fall into this region. However, for all of these
datasets the loss in accuracy is less than 2 percentage points.

7.4 Impact of Design Decisions

The BOSS model is based on three design decisions:

1. The BOSS distance as opposed to the commonly used Euclidean distance or Cosine
similarity.

2. MCB using equi-depth binning as opposed to MCB using equi-width binning.
3. Mean normalisation as a parameter as opposed to always normalising the mean of

all windows.

We chose to use 1-NN classification as it doesn’t introduce any new parameters for
model training which allows us to focus on the BOSS model. Thus we omit to study
the effects of different classification algorithms. The scatter plots in Figure 13 justify
the use of each of the design decisions. Overall the BOSS distance showed a better
or equal accuracy on 21 datasets when compared to ED or Cosine similarity. The ED
and Cosine similarity performed equally worse with 8 and 10 ties/wins respectively.
However, these can be applied if a distance metric to satisfy the symmetry condition or
the triangle inequality is required as for indexing. The difference between equi-depth
and equi-width binning is marginal, whereas equi-depth performed slightly better or
equal to equi-width on 21 out of 32 datasets. As for mean normalisation the accuracies
increased by up to 6.5 percentage points (Lighting2) when treated as a parameter.

22 Patrick Schäfer

0.4 0.5 0.6 0.7 0.8 0.9 1.0

BOSS

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B
O

S
S

 +
 E

u
cl

id
e
a
n

 D
is

ta
n

ce

BOSS + Euclidean Distance
vs.

 BOSS

0.4 0.5 0.6 0.7 0.8 0.9 1.0

BOSS

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B
O

S
S

 +
 C

o
si

n
e
 S

im
il

a
ri

ty

BOSS + Cosine Similarity
vs.

 BOSS

0.4 0.5 0.6 0.7 0.8 0.9 1.0

BOSS

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B
O

S
S

 +
 E

q
u

i-
W

id
th

 B
in

n
in

g

BOSS + Equi-Width Binning
vs.

 BOSS

0.4 0.5 0.6 0.7 0.8 0.9 1.0

BOSS

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B
O

S
S

 +
 z

-n
o
rm

BOSS + z-norm
vs.

 BOSS

Figure 13: Classifier accuracies on test subsets for the BOSS ensemble classifier us-
ing two different distance metrics, a different binning technique or always apply z-
normalisation.

8 Conclusion

The time series classification task is complicated by extraneous, erroneous, and un-
aligned data of variable length. Human assistance is commonly used to prepare the
data so that similarity search algorithms can be applied. We introduce the BOSS
model based on the structural representation of the bag-of-words model and the tol-
erance to extraneous and erroneous data of the SFA representation. It allows for fast
data analytics on raw time series datasets as it is very robust to noise and compares
two time series based on their higher-level substructures. The BOSS ensemble classi-
fier is based on 1-NN classification and represents each time series by multiple BOSS
models at different substructural sizes. Optimisation techniques are presented to re-
duce the computational complexity of the BOSS classifier prediction up to the level of
Dynamic Time Warping while being much more accurate. As part of our experimental
evaluation we show that the BOSS ensemble classifier improves the best published test
accuracies in diverse application areas. Finally, the BOSS ensemble classifier performs
significantly better than the state of the art classifiers on the UCR benchmark datasets.

Acknowledgements

The author would like to thank the anonymous reviewers, Claudia Eichert-Schäfer,
Florian Schintke, Florian Wende, and Ulf Leser for their valuable comments on the
paper and the owners of the datasets.

References

1. Agrawal, R., Faloutsos, C., Swami, A.: Efficient similarity search in sequence databases.
Foundations of Data Organization and Algorithms (1993)

2. Albrecht, S., Cumming, I., Dudas, J.: The momentary fourier transformation derived from
recursive matrix transformations. In: Digital Signal Processing Proceedings, 1997. IEEE
(1997)

3. Bagnall, A., Davis, L.M., Hills, J., Lines, J.: Transformation Based Ensembles for Time
Series Classification. In: SDM. SIAM / Omnipress (2012)

4. Batista, G., Wang, X., Keogh, E.J.: A Complexity-Invariant Distance Measure for Time
Series. In: SDM. SIAM / Omnipress (2011)

The BOSS is concerned with time series classification in the presence of noise 23

5. Chen, Q., Chen, L., Lian, X., Liu, Y., Yu, J.X.: Indexable PLA for Efficient Similarity
Search. In: VLDB. ACM (2007)

6. CMU Graphics Lab Motion Capture Database: URL http://mocap.cs.cmu.edu/
7. Ding, H.: Querying and mining of time series data: experimental comparison of represent-

ations and distance measures. VLDB Endowment (2008)
8. Fast Shapelet Results: (2012). URL http://alumni.cs.ucr.edu/~rakthant/

FastShapelet/
9. Hu, B., Chen, Y., Keogh, E.: Time Series Classification under More Realistic Assumptions.

In: SDM, 2013
10. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Dimensionality reduction for fast

similarity search in large time series databases. Knowledge and information Systems (2001)
11. Keogh, E., Kasetty, S.: On the need for time series data mining benchmarks: a survey and

empirical demonstration. In: Proceedings of the 8th KDD, pp. 102–111. ACM (2002)
12. Kumar, N., Lolla, V.N., Keogh, E.J., Lonardi, S., Ratanamahatana, C.A.: Time-series

Bitmaps: a Practical Visualization Tool for Working with Large Time Series Databases.
In: SDM (2005)

13. Lin, J., Keogh, E.J., Wei, L., Lonardi, S.: Experiencing SAX: a novel symbolic represent-
ation of time series. Data Mining and Knowledge Discovery (2007)

14. Lin, J., Khade, R., Li, Y.: Rotation-invariant similarity in time series using bag-of-patterns
representation. J. Intell. Inf. Syst. (2012)

15. Mueen, A., Keogh, E.J., Young, N.: Logical-shapelets: an expressive primitive for time
series classification. In: KDD. ACM (2011)

16. Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B., Zhu, Q., Zakaria,
J., Keogh, E.: Searching and mining trillions of time series subsequences under dynamic
time warping. In: ACM SIGKDD. ACM (2012)

17. Rakthanmanon, T., Campana, B.J.L., Mueen, A., Batista, G.E.A.P.A., Westover, M.,
Zakaria, J., Keogh, E.J.: Searching and mining trillions of time series subsequences under
dynamic time warping. In: KDD. ACM (2012)

18. Rakthanmanon, T., Keogh, E.: Fast Shapelets: A Scalable Algorithm for Discovering Time
Series Shapelets. In: SDM (2013)

19. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word re-
cognition. IEEE Transactions on Acoustics, Speech, and Signal Processing (1), 43–49
(1978)

20. Schäfer, P., Högqvist, M.: SFA: a symbolic fourier approximation and index for similarity
search in high dimensional datasets. In: EDBT. ACM (2012)

21. Senin, P., Malinchik, S.: SAX-VSM: Interpretable Time Series Classification Using SAX
and Vector Space Model. In: Data Mining (ICDM), 2013 IEEE 13th International Con-
ference on. IEEE (2013)

22. The BIDMC congestive heart failure database.: URL http://www.physionet.org/
physiobank/database/chfdb/

23. UCR Time Series Classification/Clustering Homepage: URL http://www.cs.ucr.edu/
~eamonn/time_series_data

24. Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional trajectories.
In: ICDE, San Jose (2002)

25. Warren Liao, T.: Clustering of time series data—a survey. Pattern Recognition 38(11),
1857–1874 (2005)

26. Webpage, The BOSS: (2014). URL http://www.zib.de/patrick.schaefer/boss/
27. Ye, L., Keogh, E.J.: Time series shapelets: a new primitive for data mining. In: KDD.

ACM (2009)
28. Ye, L., Keogh, E.J.: Time series shapelets: a novel technique that allows accurate, inter-

pretable and fast classification. Data Min. Knowl. Discov. (2011)
29. Zakaria, J., Mueen, A., Keogh, E.J.: Clustering Time Series Using Unsupervised-Shapelets.

In: ICDM. IEEE Computer Society (2012)

