Patrick Schäfer
(Dr. rer. nat. Dipl. Inform.)

Contact:

Address: Postal Address
Humboldt-Universität zu Berlin
Department of Computer Science
Unter den Linden 6
10099 Berlin

Visiting Address
Rudower Chaussee 25
12489 Berlin
Room 4.407

Phone: 030-2093-41287
EMail: patrick.schaefer hu-berlin.de
Google Scholar
DBLP
0000-0003-2244-6065
Github Profile

Teaching:

Source codes and Frameworks:

Selected Publications

2026

  • A. Ermshaus, P. Schäfer, U. Leser. CLaP - State Detection from Time Series, PVLDB, Boston, MA, USA, 2026. (accepted)

2025

  • L. Feremans, P. Schäfer, und W. Meert. MotiPlus and MotiSet: Discovering the best set of Motiflets in Time Series, ECML/PKDD 2025, Porto, Portugal (accepted)
  • P. Schäfer, J. Brand, U. Leser, P. Botao, and T. Palpanas. Fast and Exact Similarity Search in less than a Blink of an Eye, ICDE 2025, Hong Kong SAR, China. (Paper, Code)
  • P. Schäfer, U. Leser, Discovering Leitmotifs in Multidimensional Time Series, PVLDB, London, UK, 2025. (Paper, Webpage/Code)
  • A. Ermshaus, P. Schäfer, U. Leser. CLaP - State Detection from Time Series, Prepint. (Paper-Draft)

2024

2023

2022

2021

2020

2019

2018

2017

2016

2015

2014

2013

Organizer

  • AALTD Workshop, Organization Comittee, '22, '23, '24, '25
    "Advanced Analytics and Learning on Temporal Data"
  • Human Activity Segmentation Challenge@ECML/PKDD'23, Link
  • Guest editorial for special issue on time series classification, 2019. Link
  • ECML Tutorial 2024: An Introduction to Machine Learning from Time Series
  • Past Supervisions

    • Master Thesis (in chronological order)
      • R. Moczalla, A. Ermshaus, L. Clauss, M. Hirsch, A. Ilieva, M. Wüstner
    • Study Projects / Bachelor Thesis (in chronological order)
      • J. Spenger, A. Ermshaus, N. Schneider, L. Clauss, R. Moczalla, B. Leppich, F. Heinrichs, M. Hirsch, J. Brand, J.H. Stoll, J. Pfeiffer, S. Kühn, A. Hartwich, C. Mackenow, A. Hamami, N. Huseyn-zada, M. Wüstner, M. Baude, V. Munacoha, E. Kohlmann
    Research Interests:
    • Time Series:
      • Classification (BOSS, WEASEL)
      • Motif Discovery (Motiflets, Leitmotifs)
      • Segmentation (ClaSP, ClaSS, ClaP)
      • Indexing / Similarity Search (SFA, SOFA)
    • Vector Search

    Reviewer & Program Committee:

    • KDD '25
    • VLDB '25 - '26
    • ECML since '21 - '24
    • AAAI '21 - '23
    • IJCAI '20
    • ADBIS '20
    • AALTD since '16 - "Advanced Analytics and Learning on Temporal Data"
    • LDWA '19 - "Large-Scale Data Management and Processing - Applications in Research and Industry"
    • IEEE/CAA '19 - Special Issue on Time Series Classification
    • TKDE, since '17
    • Data Min Knowl Disc (Journal), since '16
    • IEEE Cybernetics, since '18

    Current Projects:

    • aeon (Core developer): aeon is an open-source Python toolkit for machine learning on time series data, offering modules for forecasting, classification, clustering, similarity search, segmentation, and regression. It follows the scikit-learn API for easy integration.

    Past Projects:

    • sktime (Former Core developer)
    • MoSGrid
    • Harness
    • Contrail
    • XtreemFS