Quantitative Analysis of Time Petri Nets Used for Modelling Biochemical Networks

Louchka Popova-Zeugmann

Humboldt-Universität zu Berlin
Institut of Computer Science
Unter den Linden 6, 10099 Berlin, Germany

Max-Planck-Institut für Molekulare Pflanzenphysiologie
May 04, 2005
Outline

Definitions
- Petri Net
- Time Petri Net

Main Property
- State Space Reduction

Applications
- Reachability Graph
- T-Invariants
- Time Paths in unbounded TPNs
- Time Paths in bounded TPNs
- Time PN and Timed PN

Conclusion
chemical reactions -> atomic actions -> Petri net transitions

\[2 \text{ NAD}^+ + 2 \text{ H}_2\text{O} \rightarrow 2 \text{ NADH} + 2 \text{ H}^+ + \text{O}_2\]
r1: A -> B
\(r1: A \rightarrow B \)
\(r2: B \rightarrow C + D \)
\(r3: B \rightarrow D + E \)

\[\rightarrow \text{alternative reactions} \]
r1: A -> B
r2: B -> C + D
r3: B -> D + E
r4: F -> B + a

r6: C + b -> G + c
r7: D + b -> H + c

-> concurrent reactions
r1: A -> B
r2: B -> C + D
r3: B -> D + E
r4: F -> B + a
r5: E + H <-> F
r6: C + b -> G + c
r7: D + b -> H + c
r8: H <-> G

-> reversible reactions
r1: A -> B
r2: B -> C + D
r3: B -> D + E
r4: F -> B + a
r5: E + H <-> F
r6: C + b -> G + c
r7: D + b -> H + c
r8: H <-> G

-> reversible reactions
- hierarchical nodes
r1: $A \rightarrow B$

r2: $B \rightarrow C + D$

r3: $B \rightarrow D + E$

r4: $F \rightarrow B + a$

r5: $E + H \leftrightarrow F$

r6: $C + b \rightarrow G + c$

r7: $D + b \rightarrow H + c$

r8: $H \leftrightarrow G$

r9: $G + b \rightarrow K + c + d$

r10: $H + 28a + 29c \rightarrow 29b$

r11: $d \rightarrow 2a$
r1: A -> B
r2: B -> C + D
r3: B -> D + E
r4: F -> B + a
r5: E + H <-> F
r6: C + b -> G + c
r7: D + b -> H + c
r8: H <-> G
r9: G + b -> K + c + d
r10: H + 28a + 29c -> 29b
r11: d -> 2a
r1: A -> B
r2: B -> C + D
r3: B -> D + E
r4: F -> B + a
r5: E + H <-> F
r6: C + b -> G + c
r7: D + b -> H + c
r8: H <-> G
r9: G + b -> K + c + d
r10: H + 28a + 29c -> 29b
r11: d -> 2a
-> properties as time-less net

INA
ORD HOM NBM PUR CSV SCF CON SC Ft0 tF0 Fp0 pF0 MG SM FC EFC ES
N Y N Y N Y Y N X Y N N Y N Y Y
CPI CTI B SB REV DSt BSt DTr DCF L LV L&S
N Y N N Y N ? N Y Y Y N

ppova@informatik.hu-berlin.de, monika.heiner@informatik.tu-cottbus.de, ina.koch@tfh-berlin.de

September 2004
TRANSFORMATION, Ex1

T-INVARIANT

-> properties as time-less net

INA
ORD HOM NBM PUR CSV SCF CON SC Ft0 tF0 Fp0 pF0 MG SM FC EFC ES
N Y N Y N Y Y N X Y N N Y N Y Y
CPI CTI B SB REV DSt BSt DTr DCF L LV L&S
N Y N N Y N ? N Y Y Y N
TRANSFORMATION, Ex1

T-INVARIANTE

-> properties as time net

INA
ORD HOM NBM PUR CSV SCF CON SC Ft0 tF0 Fp0 pF0 MG SM FC EFC ES
N Y N Y N Y N Y N N Y N Y Y
CPI CTI B SB REV DSt BSt DTr DCF L LV L&S
N Y Y N N N ? N Y Y Y N
TRANSFORMATION, Ex2

-> properties as time-less net

INA
ORD HOM NBM PUR CSV SCF CON SC Ft0 tF0 Fp0 pF0 MG SM FC EFC ES
N Y N Y N Y N Y Y N N Y Y Y
CPI CTI B SB REV DSt BSt DTr DCF L LV L&S
N Y N N Y N ? N N Y Y N

ppova@informatik.hu-berlin.de, monika.heiner@informatik.tu-cottbus.de, ina.koch@tth-berlin.de

September 2004
TRANSFORMATION, Ex2

T-INVARIANTE1
T-INVARIANTE2

-> properties as time-less net

INA
ORD HOM NBM PUR CSV SCF CON SC Ft0 tF0 Fp0 pF0 MG SM FC EFC ES
N Y N Y N Y Y N Y N N Y Y Y
CPI CTI B SB REV DSt BSt DTr DCF L LV L&S
N Y N N Y N ? N N Y Y N

ppova@informatik.hu-berlin.de, monika.heiner@informatik.tu-cottbus.de, ina.koch@tth-berlin.de

September 2004
TRANSFORMATION, Ex2

- prod_A
- A
- r1
- r2
- B
- C
- cons_B
- cons_C

`->` properties as **time net**

<table>
<thead>
<tr>
<th>Property</th>
<th>INA</th>
<th>ORD</th>
<th>HOM</th>
<th>NBM</th>
<th>PUR</th>
<th>CSV</th>
<th>SCF</th>
<th>CON</th>
<th>SC</th>
<th>Ft0</th>
<th>tF0</th>
<th>Fp0</th>
<th>pF0</th>
<th>MG</th>
<th>SM</th>
<th>FC</th>
<th>EFC</th>
<th>ESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

CPI, CTI, B, SB, REV, DST, BST, DTR, DCF, L, LV, L&S

- N
- Y
- Y
- N
- N
- N
- ?
- N
- Y
- Y
- Y
- Y
- N
Definition (Petri Net)

The structure $N = (P, T, F, V, m_0)$ is a Petri Net (PN), iff
Definition (Petri Net)

The structure $N = (P, T, F, V, m_0)$ is a **Petri Net (PN)**, iff

- P, T und F are finite sets,
Definition (Petri Net)

The structure $N = (P, T, F, V, m_0)$ is a Petri Net (PN), iff

- P, T und F are finite sets,
- P—set of places
Definition (Petri Net)

The structure $N = (P, T, F, V, m_0)$ is a **Petri Net (PN)**, iff

- P, T und F are finite sets,
- P—set of places
- T—set of transitions
Definition (Petri Net)

The structure $N = (P, T, F, V, m_0)$ is a **Petri Net (PN)**, iff

- P, T und F are finite sets,
 - P—set of places
 - T—set of transitions
 - F—set of vertices
The structure $N = (P, T, F, V, m_0)$ is a Petri Net (PN), iff

- P, T und F are finite sets,
 - P—set of places
 - T—set of transitions
 - set of vertices

$P \cap T = \emptyset$, $P \cup T \neq \emptyset$, m_0
The structure $N = (P, T, F, V, m_0)$ is a **Petri Net (PN)**, iff

- P, T und F are finite sets,
- P—set of places
- T—set of transitions
- $P \cap T = \emptyset$, $P \cup T \neq \emptyset$,
- F — set of edges (arcs)
Definition (Petri Net)

The structure $N = (P, T, F, V, m_0)$ is a Petri Net (PN), iff

- P, T und F are finite sets,
 - P—set of places
 - T—set of transitions
 - $P \cap T = \emptyset$, $P \cup T \neq \emptyset$,
- F — set of edges (arcs)
- $F \subseteq (P \times T) \cup (T \times P)$ und $dom(F) \cup cod(F) = P \cup T$
Definition (Petri Net)

The structure \(N = (P, T, F, V, m_0) \) is a **Petri Net (PN)**, iff

- \(P, T \) und \(F \) are finite sets,
 - \(P \)—set of places
 - \(T \)—set of transitions
 \(P \cap T = \emptyset, \quad P \cup T \neq \emptyset \),

- \(F \) – set of edges (arcs)
 \(F \subseteq (P \times T) \cup (T \times P) \) und \(\text{dom}(F) \cup \text{cod}(F) = P \cup T \)

- \(V : F \rightarrow \mathbb{N}^+ \) (weights of edges)
Definition (Petri Net)

The structure \(N = (P, T, F, V, m_0) \) is a **Petri Net (PN)**, iff

- \(P, T \) und \(F \) are finite sets,
 - \(P \)—set of places
 - \(T \)—set of transitions
 - \(P \cap T = \emptyset \), \(P \cup T \neq \emptyset \),
 - \(F \)—set of edges (arcs)
 - \(F \subseteq (P \times T) \cup (T \times P) \) und \(\text{dom}(F) \cup \text{cod}(F) = P \cup T \)

- \(V : F \rightarrow \mathbb{N}^+ \) (weights of edges)

- \(m_0 : P \rightarrow \mathbb{N} \) (initial marking)
Example

The image shows a Petri net with places and transitions labeled as follows:

- **Places:**
 - P_1
 - P_2
 - P_3

- **Transitions:**
 - t_1
 - t_2
 - t_3
 - t_4

- **Arcs:**
 - A directed arc from P_1 to P_2 labeled with 2.

The diagram illustrates the flow and dependencies between places and transitions in a Petri net model.
Example

\[m_0 = (0, 1, 1) \]
Example

Petri Net

- $m_0 = (0, 1, 1)$
- $t_1^- = (0, 1, 0)$
Example

- $m_0 = (0, 1, 1)$
- $t_1^- = (0, 1, 0)$
- $t_1^+ = (1, 0, 0)$
Petri Net

Example

- \(m_0 = (0, 1, 1) \)
- \(t_1^- = (0, 1, 0) \) \(t_1^+ = (1, 0, 0) \)
- \(\Delta(t_1) = -t_1^- + t_1^+ = (1, -1, 0) \)
Firing transition

Definition

- A transition \(t \in T \) is **enabled (may fire)** at a marking \(m \) iff all input-places of \(t \) have enough tokens.
Firing transition

Definition

- A transition $t \in T$ is enabled (may fire) at a marking m iff all input-places of t have enough tokens e.g. $t^- \leq m$.
Firing transition

Definition

- A transition $t \in T$ is **enabled (may fire)** at a marking m iff all input-places of t have enough tokens e.g. $t^- \leq m$.
- When an enabled transition t at a marking m fires, a **successor** marking m' is reached.
Firing transition

Definition

- A transition \(t \in T \) is **enabled (may fire)** at a marking \(m \) iff all input-places of \(t \) have enough tokens e.g. \(t^- \leq m \).

- When an enabled transition \(t \) at a marking \(m \) fires, a **successor** marking \(m' \) is reached given by \(m' := m + \Delta t \).
Firing transition

Definition

- A transition $t \in T$ is **enabled (may fire)** at a marking m iff all input-places of t have enough tokens e.g. $t^- \leq m$.

- When an enabled transition t at a marking m fires, a **successor** marking m' is reached given by $m' := m + \Delta t$

 denoted by $m \xrightarrow{t} m'$.
Example

\[
N_1: \quad \begin{array}{c}
\text{t}_1 & \text{t}_2 \\
P_2 & P_1 \\
\text{t}_3 & \text{t}_4
\end{array}
\]
firing transition

Example

Petri Net
Time Petri Net

Definitions
Main Property
Applications
Conclusion

Louchka Popova-Zeugmann
Quantitative Analysis of TPNs
firing transition

Example

Louchka Popova-Zeugmann
Quantitative Analysis of TPNs
firing transition

Example

Petri Net

Time Petri Net
firing transition

Example

[Diagram of a Petri Net with transitions labeled t₁, t₂, t₃, and t₄, and places labeled P₁, P₂, and P₃]
firing transition

Example
firing transition

Example

Louchka Popova-Zeugmann
Quantitative Analysis of TPNs
firing transition

Example

Petri Net
Time Petri Net

Definitions
Main Property
Applications
Conclusion

Quantitative Analysis of TPNs

Louchka Popova-Zeugmann
Time Petri Net

Definition (Time Petri net)

The structure $Z = (P, T, F, V, m_0, I)$ is called a **Time Petri net (TPN)** iff:
Definition (Time Petri net)

The structure $Z = (P, T, F, V, m_o, I)$ is called a **Time Petri net (TPN)** iff:

$\blacktriangleright \ S(Z) := (P, T, F, V, m_o)$ is a PN (skeleton of Z)
The structure $Z = (P, T, F, V, m_0, I)$ is called a **Time Petri net** (TPN) iff:

- $S(Z) := (P, T, F, V, m_0)$ is a PN (skeleton of Z)
- $I : T \rightarrow \mathbb{Q}_0^+ \times (\mathbb{Q}_0^+ \cup \{\infty\})$ and
Definition (Time Petri net)

The structure \(Z = (P, T, F, V, m_o, I) \) is called a **Time Petri net (TPN)** iff:

- \(S(Z) := (P, T, F, V, m_o) \) is a PN (skeleton of \(Z \))
- \(I : T \rightarrow \mathbb{Q}_0^+ \times (\mathbb{Q}_0^+ \cup \{\infty\}) \) and \(l_1(t) \leq l_2(t) \) for each \(t \in T \), where \(I(t) = (l_1(t), l_2(t)) \).
Definition (FTPN)

A TPN is called finite Time Petri net (FTPN) iff

\[I : T \rightarrow \mathbb{Q}_0^+ \times \mathbb{Q}_0^+ \.]
Time Petri Net

Example

\[Z_1: \]

[Image of a Petri Net diagram]

\[t_1 \quad t_2 \quad t_3 \quad t_4 \]

\[p_1 \quad p_2 \quad p_3 \]

\[[1,5] \quad [0,3] \quad [2,4] \quad [2,3] \]
Example

$\mathbf{m}_0 = (0, 1, 1)$ p-marking
Time Petri Net

Example

- $m_0 = (0, 1, 1)$ p-marking
- $h_0 = (0, \#, \#, 0)$ t-marking
Definition (state)

Let $Z = (P, T, F, V, m_0, I)$ be a TPN and $h : T \rightarrow \mathbb{R}_0^+ \cup \{\#\}$. $z = (m, h)$ is called a **state** in Z iff:

- m is a p-marking in Z, e.g. m is a marking in $S(Z)$.
- h is a t-marking in Z, e.g. $\forall t ((t \in T \land t - \leq m) \rightarrow h(t) \in \mathbb{R}_0^+ \land h(t) \leq lft(t))$, and $\forall t ((t \in T \land t - \not\leq m) \rightarrow h(t) = \#)$.
Definition (state)

Let $Z = (P, T, F, V, m_o, l)$ be a TPN and $h : T \rightarrow \mathbb{R}_0^+ \cup \{\#\}$. $z = (m, h)$ is called a state in Z iff:

- m is a p-marking in Z, e.g. m is a marking in $S(Z)$.
Definition (state)

Let $Z = (P, T, F, V, m_o, l)$ be a TPN and $h : T \rightarrow \mathbb{R}_0^+ \cup \{\#\}$. $z = (m, h)$ is called a **state** in Z iff:

- m is a p-marking in Z, e.g. m is a marking in $S(Z)$.
- h is a t-marking in Z.

state

Definition (state)

Let $Z = (P, T, F, V, m_o, l)$ be a TPN and $h : T \rightarrow \mathbb{R}_0^+ \cup \{\#\}$. $z = (m, h)$ is called a state in Z iff:

- m is a p-marking in Z, e.g. m is a marking in $S(Z)$.
- h is a t-marking in Z, e.g.
 \[
 \forall t \left((t \in T \land t^- \leq m) \rightarrow (h(t) \in \mathbb{R}_0^+ \land h(t) \leq lft(t)) \right),
 \]
Definition (state)

Let $Z = (P, T, F, V, m_o, l)$ be a TPN and $h : T \rightarrow \mathbb{R}_0^+ \cup \{\#\}$. $z = (m, h)$ is called a **state** in Z iff:

- m is a p-marking in Z, e.g. m is a marking in $S(Z)$.
- h is a t-marking in Z, e.g.
 \[
 \forall t \ ((t \in T \land t^{-} \leq m) \quad \rightarrow \quad (h(t) \in \mathbb{R}_0^+ \land h(t) \leq \text{lft}(t))),
 \]
 and
 \[
 \forall t \ ((t \in T \land t^{-} \not\leq m) \quad \rightarrow \quad h(t) = \#).
 \]
Definition (state changing)
Definition (state changing)

Let \(Z = (P, T, F, V, m_o, l) \) be a TPN, \(\hat{t} \) be a transition in \(T \) and \(z = (m, h) \), \(z' = (m', h') \) be two states.

Then (a) the transition \(\hat{t} \) is ready to fire in the state \(z = (m, h) \), denoted by \(z \xrightarrow{\hat{t}} z' \), iff (i) \(\hat{t} \leq m \) and (ii) \(eft(\hat{t}) \leq h(\hat{t}) \).
Definition (state changing)

Let $Z = (P, T, F, V, m_0, I)$ be a TPN, \hat{t} be a transition in T and $z = (m, h)$, $z' = (m', h')$ be two states. Then

(a) the transition \hat{t} is ready to fire in the state $z = (m, h)$, denoted by $z \xrightarrow{\hat{t}}$, iff
Definition (state changing)

Let $Z = (P, T, F, V, m_0, l)$ be a TPN, \hat{t} be a transition in T and $z = (m, h)$, $z' = (m', h')$ be two states. Then

(a) the transition \hat{t} is **ready** to fire in the state $z = (m, h)$, denoted by $z \xrightarrow{\hat{t}} z'$, iff

(i) $\hat{t}^- \leq m$ and
(ii) $eft(\hat{t}) \leq h(\hat{t})$.

Louchka Popova-Zeugmann
Quantitative Analysis of TPNs
Definition (state changing)

(b) the state $z = (m, h)$ is **changed** into the state $z' = (m', h')$ by firing the transition \hat{t}, denoted by $z \xrightarrow{\hat{t}} z'$, iff

(i) t is ready to fire in the state $z = (m, h)$

(ii) $m' = m + \Delta \hat{t}$ and

(iii) $\forall t (t \in T \rightarrow h'(t) = \begin{cases} \# & \text{iff } t - \hat{t} \leq m' \\ h(t) & \text{iff } t - \hat{t} > m \land t - \hat{t} \leq m' \land F_t \cap F_{\hat{t}} = \emptyset \\ 0 & \text{otherwise} \end{cases})$.

Louchka Popova-Zeugmann
Quantitative Analysis of TPNs
state changing

Definition (state changing)

(b) the state \(z = (m, h) \) is **changed** into the state \(z' = (m', h') \) **by firing the transition** \(\hat{t} \), denoted by \(z \xrightarrow{\hat{t}} z' \), iff

(i) \(t \) is ready to fire in the state \(z = (m, h) \)
state changing

Definition (state changing)

(b) the state \(z = (m, h) \) is changed into the state \(z' = (m', h') \) by firing the transition \(\hat{t} \), denoted by \(z \xrightarrow{\hat{t}} z' \), iff

(i) \(t \) is ready to fire in the state \(z = (m, h) \)
(ii) \(m' = m + \Delta \hat{t} \) and

\[\forall t \ (t \in T_{\rightarrow} h'(t) = \begin{cases} \# & \text{iff} \ t - \hat{t} \leq m' \\ h(t) & \text{iff} \ t - \hat{t} \leq m \land t - \hat{t} \leq m' \land F_t \cap F_{\hat{t}} = \emptyset \\ 0 & \text{otherwise} \end{cases} \]
Definition (state changing)

(b) the state \(z = (m, h) \) is \textbf{changed} into the state \(z' = (m', h') \) by firing the transition \(\hat{t} \), denoted by \(z \xrightarrow{\hat{t}} z' \), iff

(i) \(t \) is ready to fire in the state \(z = (m, h) \)
(ii) \(m' = m + \Delta \hat{t} \) and
(iii) \(\forall t (t \in T \rightarrow h'(t) = \begin{cases} \# & \text{iff } t^- \not\subseteq m' \\ h(t) & \text{iff } t^- \leq m \land t^- \leq m' \land Ft \cap F\hat{t} = \emptyset \\ 0 & \text{otherwise} \end{cases}) \).
(c) the state \(z = (m, h) \) is **changed** into the state \(z' = (m', h') \) by the time elapsing \(\tau \in \mathbb{R}_0^+ \), denoted by \(z \xrightarrow{\tau} z' \), iff
state changing

Definition (state changing)

(c) the state \(z = (m, h) \) is **changed** into the state \(z' = (m', h') \) by the time elapsing \(\tau \in \mathbb{R}_0^+ \), denoted by \(z \xrightarrow{\tau} z' \), iff

(i) \(m' = m \) and
state changing

Definition (state changing)

(c) the state $z = (m, h)$ is **changed** into the state $z' = (m', h')$ by the time elapsing $\tau \in \mathbb{R}_0^+$, denoted by $z \xrightarrow{\tau} z'$, iff

(i) $m' = m$ and
(ii) $\forall t \ (t \in T \land h(t) \neq \# \rightarrow h(t) + \tau \leq lft(t))$ i.e. the time elapsing τ is possible, and
(c) the state \(z = (m, h) \) is **changed** into the state \(z' = (m', h') \) by the time elapsing \(\tau \in \mathbb{R}_0^+ \), denoted by \(z \xrightarrow{\tau} z' \), iff

(i) \(m' = m \) and

(ii) \(\forall t \in T \wedge h(t) \neq \# \rightarrow h(t) + \tau \leq lft(t) \) i.e. the time elapsing \(\tau \) is possible, and

(iii) \(\forall t \in T \rightarrow h'(t) := \begin{cases} h(t) + \tau & \text{iff} \quad t^- \leq m' \\ \# & \text{iff} \quad t^- \not\leq m' \end{cases} \).
Time Petri Net

Example

\[
(m_0, \begin{pmatrix}
0 \\
\# \\
0
\end{pmatrix})
\]
Time Petri Net

Example

\[
\begin{pmatrix} 0 \\ \# \\ 0 \end{pmatrix} \stackrel{1.3}{\rightarrow} \begin{pmatrix} 1.3 \\ \# \\ 1.3 \end{pmatrix}
\]

\[
(m_0, \begin{pmatrix} 0 \\ \# \\ 0 \end{pmatrix}) \stackrel{1.3}{\rightarrow} (m_1, \begin{pmatrix} 1.3 \\ \# \\ 1.3 \end{pmatrix})
\]
Example

\[z_0 \xrightarrow{1.3} (m_1, \begin{pmatrix} 1.3 \\ \# \\ \# \\ 1.3 \end{pmatrix}) \xrightarrow{1.0} (m_2, \begin{pmatrix} 2.3 \\ \# \\ \# \\ 2.3 \end{pmatrix}) \]
Example

\[
\begin{align*}
Z_1: & & P_1 & & P_2 & & P_3 \\
\{1,5\} & & t_1 & & t_2 & & t_3 & & t_4 \\
\end{align*}
\]

\[
Z_0 \xrightarrow{1.3} \xrightarrow{1.0} (m_2, \begin{pmatrix} 2.3 \\ \# \\ \# \\ 2.3 \end{pmatrix}) \xrightarrow{t_4}
\]
Time Petri Net

Example

\[Z_0 \xrightarrow{1.3} Z_1 : (m_2, \begin{pmatrix} \# \\ \# \\ 2.3 \end{pmatrix}) \xrightarrow{t_4} (m_3, \begin{pmatrix} 2.3 \\ \# \\ 0.0 \end{pmatrix}) \]
Time Petri Net

Example

\[Z_0 \xrightarrow{1.3} t_1 \xrightarrow{1.0} t_2 \xrightarrow{t_4} (m_3, \begin{pmatrix} 2.3 \\ \# \\ 0.0 \\ \# \end{pmatrix}) \xrightarrow{2.0} (m_4, \begin{pmatrix} 4.3 \\ \# \\ 2.0 \\ \# \end{pmatrix}) \]
Example

\[Z_0 \xrightarrow{1.3} t_1 \xrightarrow{1.0} t_4 \xrightarrow{2.0} (m_4, \begin{pmatrix} 4.3 \\ \# \\ 2.0 \end{pmatrix}) \xrightarrow{t_1} \]
Time Petri Net

Example

\[
Z_0 \xrightarrow{1.3} \xrightarrow{1.0} t_4 \xrightarrow{2.0} (m_4, \begin{pmatrix} 4.3 \\ \# \\ 2.0 \end{pmatrix}) \xrightarrow{t_1} (m_5, \begin{pmatrix} \# \\ 0.0 \\ 2.0 \end{pmatrix})
\]
Example

\[
Z_0 \xrightarrow{1.3} Z_1 \xrightarrow{1.0} t_4 \xrightarrow{2.0} t_1 \xrightarrow{t_2} (m_5, \begin{pmatrix} 0.0 \\ 2.0 \\ \# \end{pmatrix})
\]
Example

\(Z_0 \xrightarrow{1.3} 1.0 \xrightarrow{t_4} 2.0 \xrightarrow{t_1} (m_5, \begin{pmatrix} \# \\ 0.0 \\ 2.0 \end{pmatrix}) \xrightarrow{t_2} (m_6, \begin{pmatrix} 0.0 \\ \# \\ \# \end{pmatrix}) \)
Transition sequences, Runs

Definition

- **transition sequence**: $\sigma = (t_1, \cdots, t_n)$
Transition sequences, Runs

Definition

- **transition sequence:** $\sigma = (t_1, \cdots, t_n)$
- **run:** $\sigma(\tau) = (t_1, \tau_1, \cdots, \tau_{n-1}, t_n)$
Transition sequences, Runs

Definition

- **transition sequence:** $\sigma = (t_1, \cdots, t_n)$
- **run:** $\sigma(\tau) = (t_1, \tau_1, \cdots, \tau_{n-1}, t_n)$
- **feasible run:** $z_0 \xrightarrow{\tau_1} z_0^* \xrightarrow{t_1} z_1 \xrightarrow{\tau_2} \cdots \xrightarrow{t_n} z_n$
Transition sequences, Runs

Definition

- **transition sequence:** \(\sigma = (t_1, \cdots, t_n) \)
- **run:** \(\sigma(\tau) = (t_1, \tau_1, \cdots, \tau_{n-1}, t_n) \)
- **feasible run:** \[Z_0 \xrightarrow{\tau_1} Z_0^* \xrightarrow{t_1} Z_1 \xrightarrow{\tau_2} \cdots \xrightarrow{t_n} Z_n \]
- **feasible transition sequence:** \(\sigma \) is feasible if there ex. a feasible run \(\sigma(\tau) \)
Reachable state, Reachable marking, State space

Definition

- z is **reachable state** in Z if there exists a feasible run $\sigma(\tau)$ and

 $z_0 \xrightarrow{\sigma(\tau)} z$
Reachable state, Reachable marking, State space

Definition

- \(z \) is **reachable state** in \(Z \) if there ex. a feasible run \(\sigma(\tau) \) and \(z_0 \xrightarrow{\sigma(\tau)} z \)
- \(m \) is **reachable marking** in \(Z \) if there ex. a reachable state \(z \) in \(Z \) with \(z = (m, h) \)
Reachable state, Reachable marking, State space

Definition

- z is **reachable state** in Z if there ex. a feasible run $\sigma(\tau)$ and $z_0 \xrightarrow{\sigma(\tau)} z$

- m is **reachable marking** in Z if there ex. a reachable state z in Z with $z = (m, h)$

- The set of all reachable states in Z is the **state space** of Z (denoted: $StSp(Z)$).
State class

Definition (state class)

Let Z be a TPN and σ be a feasible transition sequence. The set C_{σ} is called a state class, iff
State class

Definition (state class)

Let Z be a TPN and σ be a feasible transition sequence. The set C_{σ} is called a state class, iff

\[C_e := \{ z \mid \exists \tau (\tau \in \mathbb{R}_0^+ \land z_0 \xrightarrow{\tau} z) \} \]

Basis: $C_e := \{ z \mid \exists \tau (\tau \in \mathbb{R}_0^+ \land z_0 \xrightarrow{\tau} z) \}$
Definition (state class)

Let Z be a TPN and σ be a feasible transition sequence. The set C_σ is called a state class, iff

Basis:

$$C_e := \{ z \mid \exists \tau (\tau \in \mathbb{R}_0^+ \land z_0 \xrightarrow{\tau} z) \}$$

Step: Let C_σ be already defined. Then $C_{\sigma t}$ is derived from C_σ by firing t ($C_\sigma \xrightarrow{t} C_{\sigma t}$), iff

$$C_{\sigma t} := \{ z \mid \exists z_1 \exists z_2 \exists \tau (z_1 \in C_\sigma \land \tau \in \mathbb{R}_0^+ \land z_1 \xrightarrow{t} z_2 \xrightarrow{\tau} z) \}.$$
Definition (state class)

Let Z be a TPN and σ be a feasible transition sequence. The set C_{σ} is called a state class, iff

Basis: $C_e := \{z | \exists \tau (\tau \in \mathbb{R}_0^+ \land z_0 \xrightarrow{\tau} z)\}$

Step: Let C_σ be already defined. Then $C_{\sigma t}$ is derived from C_σ by firing t ($C_\sigma \xrightarrow{t} C_{\sigma t}$), iff

$C_{\sigma t} := \{z | \exists z_1 \exists z_2 \exists \tau (z_1 \in C_\sigma \land \tau \in \mathbb{R}_0^+ \land z_1 \xrightarrow{t} z_2 \xrightarrow{\tau} z)\}$.

Obviously: $StSp(Z) = \bigcup_{\sigma} C_\sigma$
Properties

▶ static properties:

▶ dynamic properties:
Properties

- **static properties: being**
 - pure
 - ordinary
 - free choice
 - extended simple
 - conservative, etc.

- **dynamic properties:**
Properties

- **static properties: being**
 - pure
 - ordinary
 - free choice
 - extended simple
 - conservative, etc.

- **dynamic properties: being/having**
 - bounded
 - live
 - reachable marking/state
 - place- or transitions invariants
 - deadlocks, etc.
Properties

- static properties: being
 - pure
 - ordinary
 - free choice
 - extended simple
 - conservative, etc.

decidable **without knowledge** of the state space!

- dynamic properties: being/having
 - bounded
 - live
 - reachable marking/state
 - place- or transitions invariants
 - deadlocks, etc.
Properties

- static properties: being
 - pure
 - ordinary
 - free choice
 - extended simple
 - conservative, etc.

 decidable **without knowledge** of the state space!

- dynamic properties: being/having
 - bounded
 - live
 - reachable marking/state
 - place- or transitions invariants
 - deadlocks, etc.

 decidable, if at all (TPN is equiv. to TM!),

 with implicit/explicit knowledge of the state space
Parametric Description of the State Space

Let $Z = [P, T, F, V, m_0, I]$ be a TPN and $\sigma = (t_1, \ldots, t_n)$ be a transition sequence in Z.
$\delta(\sigma) = [m_\sigma, \Sigma_\sigma, B_\sigma]$ is the parametric description of σ, if
Parametric Description of the State Space

Let $Z = [P, T, F, V, m_0, I]$ be a TPN and $\sigma = (t_1, \cdots, t_n)$ be a transition sequence in Z.
$\delta(\sigma) = [m_{\sigma}, \Sigma_{\sigma}, B_{\sigma}]$ is the parametric description of σ, if
$\quad \triangleright \ m_0 \xrightarrow{\sigma} m_{\sigma}$
Let $Z = [P, T, F, V, m_0, I]$ be a TPN and $\sigma = (t_1, \cdots, t_n)$ be a transition sequence in Z.\[\delta(\sigma) = [m_\sigma, \Sigma_\sigma, B_\sigma] \text{ is the parametric description of } \sigma, \text{ if}\]

$\begin{align*}
\triangleright & \quad m_0 \xrightarrow{\sigma} m_\sigma \\
\triangleright & \quad \Sigma_\sigma(t) \text{ is a term (in a FO Logic), } "1/2-interpreted" \text{ as a sum of variables for each transition } t
\end{align*}$
Let $Z = [P, T, F, V, m_0, I]$ be a TPN and $\sigma = (t_1, \cdots, t_n)$ be a transition sequence in Z.

$\delta(\sigma) = [m_{\sigma}, \Sigma_{\sigma}, B_{\sigma}]$ is the parametric description of σ, if

- $m_0 \xrightarrow{\sigma} m_{\sigma}$
- $\Sigma_{\sigma}(t)$ is a term (in a FO Logic), "1/2–interpreted” as a sum of variables for each transition t
- B_{σ} is a set of formulae (in a FO Logic), "1/2–interpreted” as a system of inequalities.
Let $Z = [P, T, F, V, m_0, I]$ be a TPN and $\sigma = (t_1, \cdots, t_n)$ be a transition sequence in Z.

$\delta(\sigma) = [m_\sigma, \Sigma_\sigma, B_\sigma]$ is the parametric description of σ, if

- $m_0 \xrightarrow{\sigma} m_\sigma$
- $\Sigma_\sigma(t)$ is a term (in a FO Logic), ”1/2–interpreted” as a sum of variables for each transition t
- B_σ is a set of formulae (in a FO Logic), ”1/2–interpreted” as a system of inequalities.

Obviously $\delta(\sigma) = C_\sigma$.

Louchka Popova-Zeugmann
Quantitative Analysis of TPNs
Example

\[\sigma = (e) \Rightarrow \delta(\sigma) = C \]

\[\sigma, (x, \#, \#, x) \in \Sigma \]

\[0 \leq x \leq 3 \]

\[Louchka Popova-Zeugmann \]

Quantitative Analysis of TPNs
Example

\[\sigma = (e) \quad \Rightarrow \quad \delta(\sigma) = C_e = \left\{ \left(\begin{array}{c} 0, 1, 1 \\ m_{\sigma} \end{array} \right), \left(x_1, \#, \#, x_1 \right) \right\} \mid 0 \leq x_1 \leq 3 \]
Example

\[\sigma = (e) = \Rightarrow \delta(\sigma) = C e = \{ ((0, 1, 1), \ldots, (x_1, \#, \#, x_1)) | 0 \leq x_1 \leq 3 \} \]
Example

\[\sigma = (e) \Rightarrow \delta(\sigma) = C e = \{ ((0,1,1), \Sigma) \mid 0 \leq x_1 \leq 3 \} \]

Louchka Popova-Zeugmann
Quantitative Analysis of TPNs
Example

\[
\sigma = (e) \Rightarrow \delta(\sigma) = C e = \{ (0,1,1), (0,1,2), (0,1,3) \} \cup \{ (x_1, \#, \#, x_1) \} | 0 \leq x_1 \leq 3 \}
\]
Example

\[\sigma = (t_4, t_3) \]
Example

\[\sigma = (t_4, t_3) \implies \delta(\sigma) = C_{t_4 t_3} = \]

\[\left\{ \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} x_1 + x_2 + x_3 \\ \# \\ \# \\ x_3 \end{pmatrix} \right\} \mid \begin{align*}
2 & \leq x_1 \leq 3, \quad x_1 + x_2 \leq 5 \\
2 & \leq x_2 \leq 4, \quad x_1 + x_2 + x_3 \leq 5 \\
0 & \leq x_3 \leq 3
\end{align*} \]
State Space Reduction

Theorem (1)

Let Z be a TPN and $\sigma = (t_1, \cdots, t_n)$ be a feasible transition sequence in Z, with a run $\sigma(\tau)$ as an execution of σ, i.e.

$$z_0 \xrightarrow{\tau_0} t_0 \xrightarrow{\tau} \cdots \xrightarrow{\tau_n} t_n \xrightarrow{\tau} z_n = (m_n, h_n),$$

and all $\tau_i \in \mathbb{R}_0^+$. Then, there exists a further feasible run $\sigma(\tau^*)$ of σ with

$$z_0 \xrightarrow{\tau^*_0} t_0 \xrightarrow{\tau^*} \cdots \xrightarrow{\tau^*_n} t_n \xrightarrow{\tau^*} z_n^* = (m_n^*, h_n^*),$$

such that
Theorem (1 – continuation)

\[z_0 \xrightarrow{\tau_0} t_0 \xrightarrow{\tau} t_n \xrightarrow{\tau} z_n = (m_n, h_n), \quad \tau_i \in \mathbb{R}_0^+. \]

\[z_0 \xrightarrow{\tau_0^*} t_0 \xrightarrow{\tau_n^*} t_n \xrightarrow{\tau} z_n^* = (m_n^*, h_n^*) \]
Theorem (1 – continuation)

\[z_0 \xrightarrow{\tau_0} t_0 \xrightarrow{\tau_n} t_n \rightarrow z_n = (m_n, h_n), \tau_i \in \mathbb{R}_0^+. \]

\[z_0 \xrightarrow{\tau_0^*} t_0 \xrightarrow{\tau_n^*} t_n \rightarrow z_n^* = (m_n^*, h_n^*) \]

1. For each \(i, 0 \leq i \leq n \) holds: \(\tau_i^* \in \mathbb{N} \).
State Space Reduction

Theorem (1 – continuation)

\[z_0 \xrightarrow{\tau_0} t_0 \xrightarrow{\tau_n} t_n \xrightarrow{\tau_n} z_n = (m_n, h_n), \tau_i \in \mathbb{R}^+_0. \]

\[z_0 \xrightarrow{\tau_0^*} t_0 \xrightarrow{\tau_n^*} t_n \xrightarrow{\tau_n^*} z_n^* = (m_n^*, h_n^*), \tau_i^* \in \mathbb{N}. \]

1. For each \(i, 0 \leq i \leq n \) holds: \(\tau_i^* \in \mathbb{N} \).
Theorem (1 – continuation)

\[z_0 \xrightarrow{\tau_0} t_0 \xrightarrow{\cdot \cdot \cdot} t_n \rightarrow z_n = (m_n, h_n), \ \tau_i \in \mathbb{R}_0^+. \]

\[z_0 \xrightarrow{\tau_0^*} t_0 \xrightarrow{\cdot \cdot \cdot} t_n \rightarrow z_n^* = (m_n^*, h_n^*), \ \tau_i^* \in \mathbb{N}. \]

1. For each \(i, 0 \leq i \leq n \) holds: \(\tau_i^* \in \mathbb{N}. \)
2. For each enabled transition \(t \) at marking \(m_n(=m_n^*) \) it holds:
 2.1 \(h_n(t)^* = \lfloor h_n(t) \rfloor. \)
 2.2 \(\sum_{i=1}^{n} \tau_i^* = \lfloor \sum_{i=1}^{n} \tau_i \rfloor \)
Theorem (2 – similar to 1)

Let Z be a TPN and $\sigma = (t_1, \ldots, t_n)$ be a feasible transition sequence in Z, with a run $\sigma(\tau)$ as an execution of σ, i.e.

$$z_0 \xrightarrow{\tau_0} t_0 \xrightarrow{} \cdots \xrightarrow{} t_n \xrightarrow{} z_n = (m_n, h_n),$$

and all $\tau_i \in \mathbb{R}_0^+$. Then, there exists a further feasible run $\sigma(\tau^*)$ of σ with

$$z_0 \xrightarrow{\tau_0^*} t_0 \xrightarrow{} \cdots \xrightarrow{} t_n \xrightarrow{} z_n^* = (m_n^*, h_n^*).$$

such that
State Space Reduction

Theorem (2 – continuation)

1. For each $i, 0 \leq i \leq n$ the time τ_i^* is a natural number.
2. For each enabled transition t at marking $m_n(= m_n^*)$ it holds:
 2.1 $h_n(t)^* = \lceil h_n(t) \rceil$.
 2.2 $\sum_{i=1}^{n} \tau_i^* = \lceil \sum_{i=1}^{n} \tau_i \rceil$
Definitions
Main Property
Applications
Conclusion

State Space Reduction

Example

\[\sigma(\tau) := z_0 \rightarrow t_1 \rightarrow 0 \rightarrow t_2 \rightarrow 0 \rightarrow t_4 \rightarrow 1 \rightarrow t_5 \rightarrow 1 \rightarrow \ldots \]
State Space Reduction

Example

\[\sigma = (t_1 t_3 t_4 t_2 t_3) \]

\[\sigma(\tau) := z_0 \xrightarrow{0.7} t_1 \xrightarrow{0.0} t_3 \xrightarrow{0.4} t_4 \xrightarrow{1.2} t_2 \xrightarrow{0.5} t_3 \xrightarrow{1.4} z \]
State Space Reduction

Example

\[\sigma = (t_1 t_3 t_4 t_2 t_3) \]

\[\sigma(\tau) := z_0 \xrightarrow{0.7} t_1 \xrightarrow{0.0} t_3 \xrightarrow{0.4} t_4 \xrightarrow{1.2} t_2 \xrightarrow{0.5} t_3 \xrightarrow{1.4} z \]
State Space Reduction

Example

\[\sigma = (t_1 t_3 t_4 t_2 t_3) \]

\[\sigma(\tau) := Z_0 \xrightarrow{0.7} t_1 \xrightarrow{0.0} t_3 \xrightarrow{0.4} t_4 \xrightarrow{1.2} t_2 \xrightarrow{0.5} t_3 \xrightarrow{1.4} Z \]
State Space Reduction

Example

\[\sigma = (t_1 t_3 t_4 t_2 t_3) \]

\[\sigma(\tau) := z_0 \xrightarrow{0.7} t_1 \xrightarrow{0.0} t_3 \xrightarrow{0.4} t_4 \xrightarrow{1.2} t_2 \xrightarrow{0.5} t_3 \xrightarrow{1.4} z \]
State Space Reduction

Example

\[\sigma \sigma(\tau) := Z_0 \xrightarrow{0.7} t_1 \xrightarrow{0.0} t_2 \xrightarrow{0.4} t_4 \xrightarrow{1.2} t_2 \xrightarrow{0.5} t_3 \xrightarrow{1.4} Z \]

\[\sigma = (t_1 t_3 t_4 t_2 t_3) \]

\[Z_2: \]

- \(t_4 \) from \([0,2] \)
- \(t_1 \) from \([0,2] \)
- \(t_2 \) from \([0,2] \)
- \(t_6 \) from \([0,2] \)
- \(t_3 \) from \([0,2] \)

- \(P_1 \)
- \(P_2 \)
- \(P_3 \)
- \(P_4 \)
- \(P_5 \)
Example

\[\sigma = (t_1 t_3 t_4 t_2 t_3) \]

\[\sigma(\tau) := Z_0 \xrightarrow{0.7} t_1 \xrightarrow{0.0} t_3 \xrightarrow{0.4} t_4 \xrightarrow{1.2} t_2 \xrightarrow{0.5} t_3 \xrightarrow{1.4} Z \]
State Space Reduction

Example

\[\sigma = (t_1 t_3 t_4 t_2 t_3) \]

\[m_\sigma = (1, 2, 2, 1, 1) \]
Example (continuation)

\[\Sigma_\sigma = \begin{pmatrix}
 x_4 + x_5 \\
 x_5 \\
 x_5 \\
 x_5 \\
 x_0 + x_1 + x_2 + x_3 + x_4 + x_5 \\
 \#
\end{pmatrix} \]

and
State Space Reduction

Example (continuation)

\[B_\sigma = \{ \begin{align*} &0 \leq x_0, \quad x_0 \leq 2, \quad x_0 + x_1 + x_2 \leq 5 \\
&0 \leq x_1, \quad x_2 \leq 2, \quad x_2 + x_3 \leq 5 \\
&1 \leq x_2, \quad x_3 \leq 2, \quad x_0 + x_1 + x_2 + x_3 \leq 5 \\
&1 \leq x_3, \quad x_4 \leq 2, \quad x_0 + x_1 + x_2 + x_3 + x_4 \leq 5 \\
&0 \leq x_4, \quad x_5 \leq 2, \quad x_0 + x_1 + x_2 + x_3 + x_4 + x_5 \leq 5 \\
&0 \leq x_5, \quad x_0 + x_1 \leq 5 \quad x_4 + x_5 \leq 2 \end{align*} \} . \]
Example (continuation)

The run $\sigma(\tau)$ with

$$\sigma(\tau) := z_0 \xrightarrow{0.7} t_1 \xrightarrow{0.0} t_3 \xrightarrow{0.4} t_4 \xrightarrow{1.2} t_2 \xrightarrow{0.5} t_3 \xrightarrow{1.4} z$$

is feasible.
State Space Reduction

Example (continuation)

The run \(\sigma(\tau) \) with

\[
\sigma(\tau) := z_0 \xrightarrow{0.7} t_1 \xrightarrow{0.0} t_3 \xrightarrow{0.4} t_4 \xrightarrow{1.2} t_2 \xrightarrow{0.5} t_3 \xrightarrow{1.4} z
\]

is feasible.
Example (continuation)

The run $\sigma(\tau)$ with

$z_0 \xrightarrow{0.7} t_1 \xrightarrow{0.0} t_3 \xrightarrow{0.4} t_4 \xrightarrow{1.2} t_2 \xrightarrow{0.5} t_3 \xrightarrow{1.4} (m, \begin{pmatrix} 1.9 \\ 1.4 \\ 1.4 \\ 4.2 \end{pmatrix})$

is feasible.
State Space Reduction

Example (continuation)

<table>
<thead>
<tr>
<th>β</th>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>$\Sigma_\sigma(t_1)$</th>
<th>$\Sigma_\sigma(t_2)$</th>
<th>$\Sigma_\sigma(t_5)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_0</td>
<td>0.7</td>
<td>0.0</td>
<td>0.4</td>
<td>1.2</td>
<td>0.5</td>
<td>1.4</td>
<td>1.9</td>
<td>1.4</td>
<td>4.2</td>
</tr>
<tr>
<td>β_1</td>
<td>0.7</td>
<td>0.0</td>
<td>0.4</td>
<td>1.2</td>
<td>0.5</td>
<td>1</td>
<td>1.5</td>
<td>1.0</td>
<td>3.8</td>
</tr>
<tr>
<td>β_2</td>
<td>0.7</td>
<td>0.0</td>
<td>0.4</td>
<td>1.2</td>
<td>0</td>
<td>1</td>
<td>1.0</td>
<td></td>
<td>3.3</td>
</tr>
<tr>
<td>β_3</td>
<td>0.7</td>
<td>0.0</td>
<td>0.4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td>3.1</td>
</tr>
<tr>
<td>β_4</td>
<td>0.7</td>
<td>0.0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td>3.7</td>
</tr>
<tr>
<td>β_5</td>
<td>0.7</td>
<td>0.0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td>3.7</td>
</tr>
<tr>
<td>β_6</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td>4.0</td>
</tr>
</tbody>
</table>
Example (continuation)

<table>
<thead>
<tr>
<th>$\hat{\beta}$</th>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>$\Sigma_σ(t_1)$</th>
<th>$\Sigma_σ(t_2)$</th>
<th>$\Sigma_σ(t_5)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_0</td>
<td>0.7</td>
<td>0.0</td>
<td>0.4</td>
<td>1.2</td>
<td>0.5</td>
<td>1.4</td>
<td>1.9</td>
<td>1.4</td>
<td>4.2</td>
</tr>
<tr>
<td>β_1</td>
<td>0.7</td>
<td>0.0</td>
<td>0.4</td>
<td>1.2</td>
<td>0.5</td>
<td>2</td>
<td>2.5</td>
<td>2.0</td>
<td>4.8</td>
</tr>
<tr>
<td>β_2</td>
<td>0.7</td>
<td>0.0</td>
<td>0.4</td>
<td>1.2</td>
<td>0</td>
<td>1</td>
<td>2.0</td>
<td></td>
<td>4.3</td>
</tr>
<tr>
<td>β_3</td>
<td>0.7</td>
<td>0.0</td>
<td>0.4</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td>5.1</td>
</tr>
<tr>
<td>β_4</td>
<td>0.7</td>
<td>0.0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td>4.7</td>
</tr>
<tr>
<td>β_5</td>
<td>0.7</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td>4.7</td>
</tr>
<tr>
<td>β_6</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td>5.0</td>
</tr>
</tbody>
</table>
State Space Reduction

Example (continuation)

Hence, the runs
\[\sigma(\tau_1^*) := z_0 \xrightarrow{1} t_1 \xrightarrow{0} t_3 \xrightarrow{1} t_4 \xrightarrow{1} t_2 \xrightarrow{0} t_3 \xrightarrow{1} [z] \]

and
\[\sigma(\tau_2^*) := z_0 \xrightarrow{1} t_1 \xrightarrow{0} t_3 \xrightarrow{0} t_4 \xrightarrow{2} t_2 \xrightarrow{0} t_3 \xrightarrow{2} [z] \]

are feasible in \(Z \), too.
State Space Reduction

Corollary

- Each feasible t-sequence σ in Z can be realized with an "integer" run.
State Space Reduction

Corollary

> Each feasible t-sequence σ in Z can be realized with an "integer" run.

> Each reachable marking in Z can be found using "integer" runs only.
Corollary

- Each feasible t-sequence σ in Z can be realized with an "integer" run.
- Each reachable marking in Z can be found using "integer" runs only.
- If z is reachable in Z, then $\lfloor z \rfloor$ and $\lceil z \rceil$ are reachable in Z, too.
Corollary

- Each feasible t-sequence σ in Z can be realized with an "integer" run.
- Each reachable marking in Z can be found using "integer" runs only.
- If z is reachable in Z, then $\lfloor z \rfloor$ and $\lceil z \rceil$ are reachable in Z, too.
- The length of the shortest and longest time path between two arbitrary states are natural numbers.
State Space Reduction

Definition

A state $z = (m, h)$ in a TPN is integer one iff for all enabled transitions t at m holds: $h(t) \in \mathbb{N}$.

Theorem (3)

Let Z be a FTPN. The set of all reachable integer states in Z is finite if and only if the set of all reachable markings in Z is finite.

Remark:
Theorem 3 can be generalized for all TPNs (applying a further reduction).
State Space Reduction

Definition

A state $z = (m, h)$ in a TPN is **integer** one iff for all enabled transitions t at m holds: $h(t) \in \mathbb{N}$.

Theorem (3)

Let Z be a FTPN.

The set of all reachable integer states in Z is finite if and only if the set of all reachable markings in Z is finite.
State Space Reduction

Definition

A state \(z = (m, h) \) in a TPN is **integer** one iff for all enabled transitions \(t \) at \(m \) holds: \(h(t) \in \mathbb{N} \).

Theorem (3)

Let \(Z \) be a FTPN.

The set of all reachable integer states in \(Z \) is finite

if and only if

the set of all reachable markings in \(Z \) is finite.

Remark: Theorem 3 can be generalized for all TPNs (applying a further reduction).
Reachability Graph

Definition

Basis)

\[z_0 \in RG(Z) \]
Reachability Graph

Definition

Basis)
$z_0 \in RG(Z)$

Step)
Let z be in $RG(Z)$ already.
Reachability Graph

Definition

Basis)
\(z_0 \in RG(Z) \)

Step)
Let \(z \) be in \(RG(Z) \) already.
1. for \(i=1 \) to \(n \) do
 if \(z \xrightarrow{t_i} z' \) possible in \(Z \) then \(z' \in RG(Z) \) end

Louchka Popova-Zeugmann

Quantitative Analysis of TPNs
Definition

Basis

\[z_0 \in RG(Z) \]

Step

Let \(z \) be in \(RG(Z) \) already.

1. for \(i=1 \) to \(n \) do

 if \(z \xrightarrow{t_i} z' \) possible in \(Z \) then \(z' \in RG(Z) \) end

2. if \(z \xrightarrow{1} z' \) possible in \(Z \) then \(z' \in RG(Z) \)
Reachability Graph

Definition

Basis

\[z_0 \in RG(Z) \]

Step

Let \(z \) be in \(RG(Z) \) already.

1. *for* \(i=1 \) *to* \(n \) *do*

 if \(z \xrightarrow{t_i} z' \) *possible in* \(Z \) *then* \(z' \in RG(Z) \) *end*

2. *if* \(z \xrightarrow{1} z' \) *possible in* \(Z \) *then* \(z' \in RG(Z) \)

\[\implies \] The reachability graph is a weighted directed graph.
A TPN and its full Reachability Graph

Example (A TPN Z and its full reachability graph $RG^{(1)}(Z)$)
Example (The reduced reachability graphs $RG^{(2)}(Z)$ and $RG(Z)$)
Example (The reachability graph \(RG(Z_3) \))
Definition

The transition sequence σ is a **feasible T-invariant** in a TPN Z if for each marking m in Z holds: $m \xrightarrow{\sigma} m$.
Definition

The transition sequence σ is a **feasible T-invariant** in a TPN Z if for each marking m in Z holds: $m \xrightarrow{\sigma} m$.

For **timeless PN**: σ is a feasible T-invariant iff $m = m + C \cdot \psi(\sigma)$ and $\psi(\sigma)$ - the Parikh-vector of σ. $\xrightarrow{\longrightarrow}$ easy to be found.
Lemma

Let Z be a TPN, $S(Z)$ be the skeleton of Z and σ be a feasible T-invariant in $S(Z)$.

σ is a feasible T-invariant in Z iff B_σ has a solution.
Lemma

Let Z be a TPN, $S(Z)$ be the skeleton of Z and σ be a feasible T-invariant in $S(Z)$.

σ is a feasible T-invariant in Z iff B_σ has a solution.

Computing the T-invariants of a Z:

- Solve the linear system of equations $C \cdot x = 0$ for $x \in \mathbb{N}$.
Lemma

Let Z be a TPN, $S(Z)$ be the skeleton of Z and σ be a feasible T-invariant in $S(Z)$. σ is a feasible T-invariant in Z iff B_σ has a solution.

Computing the T-invariants of a Z:

- Solve the linear system of equations $C \cdot x = 0$ for $x \in \mathbb{N}$.
- Decide feasibility of a T-invariant σ with $\text{Parikh}(\sigma) = x$.

Louchka Popova-Zeugmann
Quantitative Analysis of TPNs
Lemma

Let Z be a TPN, $S(Z)$ be the skeleton of Z and σ be a feasible T-invariant in $S(Z)$.

\(\sigma\) is a feasible T-invariant in Z iff B_σ has a solution.

Computing the T-invariants of a Z:

- Solve the linear system of equations $C \cdot x = 0$ for $x \in \mathbb{N}$.
- Decide feasibility of a T-invariant σ with $\text{Parikh}(\sigma) = x$.
- If σ is feasible, then solve the linear system of inequalities B_σ in \mathbb{R}^+.
Remark: The reachability graph of a TPN is not used for computing the feasible T-invariants of Z

\implies

feasible T-invariants for **unbounded** nets can be computed!
Let $Z = (P, T, F, V, I, m_0)$ be a TPN. Then the following problems can be decided/computed without knowledge of its RG:
Let $Z = (P, T, F, V, I, m_0)$ be a TPN. Then the following problems can be decided/computed without knowledge of its RG:

Result 1:

Input: The time function I is fixed, σ is an arbitrary transition sequence.

Output: Feasibility of σ in Z?

Solution: Solve a linear system of inequalities in \mathbb{R}_0^+.

Louchka Popova-Zeugmann

Quantitative Analysis of TPNs
Let \(Z = (P, T, F, V, I, m_0) \) be a TPN.
Then the following problems can be decided/computed without knowledge of its RG:

Result 2:

Input: The time function \(I \) is not fixed, \\
\(\sigma \) is an arbitrary transition sequence.

Output: Feasibility of \(\sigma \) in \(Z \) for a fixed \(I \)?

Solution: Solve a linear system of inequalities in \(\mathbb{Q}_0^+ \).
Let $Z = (P, T, F, V, I, m_0)$ be a TPN. Then the following problems can be decided/computed without knowledge of its RG:

Result 3:

Input: The time function I is fixed, σ is an arbitrary transition sequence.

Output: min / max-length of σ.

Solution: Solve a linear program in \mathbb{R}_0^+. (Actually, the solution is in \mathbb{N}.)
Let \(Z = (P, T, F, V, I, m_0) \) be a TPN. Then the following problems can be decided/computed without knowledge of its RG:

Result 4:

Input: The time function \(I \) is not fixed, \(\sigma \) is an arbitrary transition sequence, and \(\lambda \) is an arbitrary real number.

Output: Existence of a fixed \(I \) and a run \(\sigma(\tau) \) in \(Z \) and the length of \(\sigma(\tau) \leq \lambda \)?

Solution: Solve a linear program in \(\mathbb{Q}_0^+ \).
Result 5:

Input: The time function I is not fixed, $\sigma_1 = (\sigma, t')$ is an arbitrary t-sequence and $\sigma_2 = (\sigma, t'')$ is an arbitrary t-sequence.

Output: Existence of a fixed I so that σ_1 is feasible in Z and σ_2 is not feasible in Z?

Solution: Solve

\[
\max\left\{<c', x> \mid A' \cdot x \leq b'\right\} < \min\left\{<c'', x> \mid A'' \cdot x \leq b''\right\}.
\]

linear program in \mathbb{Q}_0^+

linear program in \mathbb{Q}_0^+.

Louchka Popova-Zeugmann

Quantitative Analysis of TPNs
Let \(Z = (P, T, F, V, I, m_o) \) be a bounded TPN. Additionally the following problems can be decided/computed with the knowledge of its RG, amongst others:
Let $Z = (P, T, F, V, I, m_o)$ be a bounded TPN. Additionally, the following problems can be decided/computed with the knowledge of its RG, amongst others:

Result 6:

Input: z and z' - two states (in Z).

Output:
- Is there a path between z and z' in $RG(Z)$?
- If yes, compute the path with the shortest time length.

Solution: By means of prevalent methods of the graph theory, e.g., Bellman-Ford algorithm (the running time is $O(|V| \cdot |E|)$) and $RG(Z) = (V, E)$.
Let $Z = (P, T, F, V, I, m_o)$ be a bounded TPN. Additionally the following problems can be decided/computed with the knowledge of its RG, amongst others:

Result 7:

Input: m and m' - two markings (in Z).

Output:
- Is there a path between m and m' in $RG(Z)$?
- If yes, compute the path with the shortest time length.

Solution: By means of prevalent methods of the graph theory, for computing all-pairs shortest paths. The running time is polynomial, too.
Definition

The **longest path** between two states (vertices in \(RG(Z) \)) \(z \) and \(z' \) is \(lp(z, z') \) with

\[
lp(z, z') := \begin{cases}
\infty, & \text{if a cycle is reachable starting on } z \\
\max \sum_{\sigma(\tau)} \tau_i, & \text{if } z \xrightarrow{\sigma(\tau)} z'
\end{cases}
\]
Result 8:

Input: z and z' - two states (in Z).

Output:
- Is there a path between z and z' in $RG(Z)$?
- If yes, compute the path with the longest time length.

Solution: By means of prevalent methods of the graph theory, e.g. Bellman-Ford algorithm (polyn. running time). or by computing all strongly connected components of $RG(Z)$. (linear running time)
Result 9:

Input: m and m' - two states (in \mathbb{Z}).

Output:
- Is there a path between z and z' in $RG(Z)$?
- If yes, compute the path with the longest time length.

Solution: By means of prevalent methods of the graph theory, e.g. Bellman-Ford algorithm (polyn. running time). or by computing all strongly connected components of $RG(Z)$. (linear running time)
Transformation Timed PN \longrightarrow Time PN

Louchka Popova-Zeugmann
Quantitative Analysis of TPNs
Conclusion

- theoretical approach

 $BN \rightarrow modelling \rightarrow PN \rightarrow \text{modelling of steady state} \rightarrow$

 $DPN \rightarrow analysing \rightarrow TPN$

- experimental approach

 $BN \rightarrow modelling \ & analysing \rightarrow TPN$