Ganzzahlige Optimierung (Gomory-Schnitt)

Sei

\[ (P) := \max \{ \mathbf{c}^\mathbf{T} \mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq 0, \mathbf{x} \in \mathbb{Z} \} \]

ein ILP und sei

\[ G := \{ \mathbf{x} \in \mathbb{Z}^n \mid A \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq 0 \} \] .

Betrachte die Relaxation \((P_0)\) von \((P)\):

\[ (P_0) := \{ \mathbf{c}^\mathbf{T} \mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq 0 \} , \]

d.h.

\[ M_0 := \{ \mathbf{x} \in \mathbb{R}^n \mid A \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq 0 \} . \]

Es gilt: \( G \subseteq M_0 \).

- Falls ein \( \mathbf{x}^* \in \mathbb{Z}^n \) existiert, sodass \( \mathbf{x}^* \) optimal für \((P_0)\) ist, so ist \( \mathbf{x}^* \) auch für \((P)\) optimal.
  Im Allgemeinen ist \( \mathbf{x}^* \in \mathbb{Z}^n \); man darf nicht runden, denn:

\[
\begin{array}{c|cccccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
\hline
1 & . & . & . & . & [\mathbf{x}] & . & . & . \\
2 & . & . & . & . & . & [\mathbf{x}] & . & . \\
3 & . & . & . & . & . & . & . & . \\
\end{array}
\]

Offensichtlich ist \( \mathbf{x}^* \) sowohl aufgerundet als auch abgerundet nicht zulässig!

- Falls \( \mathbf{x}^* \notin \mathbb{Z}^n \), fügen wir eine Restriktion \( \mathbf{a}^\mathbf{T} \mathbf{x} \leq a_0 \) hinzu, die \( \mathbf{x}^* \) abschneidet, also

\[ \mathbf{x}^k \notin M_1 := M_0 \cap \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{a}^\mathbf{T} \mathbf{x} \leq a_0 \} . \]

Durch diese Restriktion soll aber kein ganzzahliger Punkt von \( M_0 \) abgeschnitten werden, d.h. es soll gelten: \( G \subseteq M_1 \).

- Löse \((P_1) = \max \{ \mathbf{c}^\mathbf{T} \mathbf{x} \mid \mathbf{x} \in M_1 \} \).

Wie findet man solche Schritte?
**Formal:** Betrachte das ILP

\[(P) = \max \{ \mathbf{c}^T \mathbf{x} | \mathbf{A} \mathbf{x} = \mathbf{b}, x \geq 0, x \in \mathbb{Z}^n \}\]

mit

\[\text{rg } \mathbf{A} = m, \quad \mathbf{A} \in \mathcal{M}(m, n)\]

sowie die Relaxation\n
\[(P_0) = \max \{ \mathbf{c}^T \mathbf{x} | \mathbf{A} \mathbf{x} = \mathbf{b}, x \geq 0 \}\]

mit

\[G = \{ x \in \mathbb{Z}^n | \mathbf{A} \mathbf{x} = \mathbf{b}, x \geq 0 \}\]  
\[M_0 = \{ x \in \mathbb{R}^n | \mathbf{A} \mathbf{x} = \mathbf{b}, x \geq 0 \}\].

Sei \((P_0)\) lösbar mit \(x^* \notin \mathbb{R}^n\) optimal für \((P_0)\). Dann nennt man die Hyperebene \(a^T \mathbf{x} \leq \mathbf{P}_0\) eine Schnittebene / Cut von \(M_0\), falls \(M_0\) alle ganzzahligen Punkte außer \(x^*\) enthält, d.h.

\[x^* \notin M_0 \cap \{ x \in \mathbb{R}^n | a^T \mathbf{x} \leq a_0 \} \supseteq G.\]

**Berechnung der Gomory-Schnitte:** Betrachte \((P), (P_0), G, M_0\).
Sei \(x^*\) Lösung von \((P_0)\) und seien

\[x_i \quad \text{BV} \]
\[x_j \quad \text{NBV}.\]

Sei \(\mathbf{A} \mathbf{x} = \mathbf{b}\) äquivalent zu

\[x_i + \sum_{j \in \mathbb{N}} \pi_{ij} \cdot x_j = \bar{b}_i \quad \forall i \in B \forall x \in M_0\]

mit

\[x_i^* = \bar{b}_i, \quad i \in B, \quad x_j^* = 0, \quad j \in \mathbb{N}.\]

Es gilt:

\[x_i + \sum_{j \in \mathbb{N}} \pi_{ij} \cdot x_j = \bar{b}_i \quad \forall x \in G \forall i \in B \quad (1)\]

\[\overset{G \subseteq \mathbb{R}^n}{\Rightarrow} x_i + \sum_{j \in \mathbb{N}} [\pi_{ij}] \cdot x_j \leq \bar{b}_i \quad \forall x \in G \forall i \in B \quad (2)\]

\[\overset{G \subseteq \mathbb{Z}^n}{\Rightarrow} x_i + \sum_{j \in \mathbb{N}} [\pi_{ij}] \cdot x_j \leq [\bar{b}_i] \quad \forall x \in G \forall i \in B \]

\[\overset{(1)-(2)}{\Rightarrow} \sum_{j \in \mathbb{N}} (\pi_{ij} - [\pi_{ij}]) \cdot x_j \geq \bar{b}_i - [\bar{b}_i] \quad \forall x \in G \forall i \in B. \quad (3)\]
Bemerkung: Es gilt:
(a) $x^*$ wird abgeschnitten, d.h.
\[ M_1 := M_0 \cap \{ x \in \mathbb{R}^n \mid x \text{ genügt (3)} \} \neq x^*. \]
(b) Wenn $\tilde{x} \in \mathbb{Z}^n \cap M_0$, so ist $\tilde{x} \in M_1$.
D.h. (3) definiert eine Schnittebene für $M_0$.

Beweis:
zu (a) Wir wissen, dass
\[ x_j^* = 0 \quad \forall j \in \mathbb{N}. \]
Angenommen, $x^* \in M_1 \Rightarrow x^*$ erfüllt auch (3).
\[ \Rightarrow 0 = \sum_{j \in \mathbb{N}} (\pi_{ij} - \lfloor \pi_{ij} \rfloor) \cdot x_j^* \geq b_i - \lfloor b_i \rfloor \quad \forall i \in B. \quad (4) \]
Wegen $x^* \notin \mathbb{Z}^n,$
\[ x_i^* = b_i \quad \forall i \in B \]
gibt es aber ein $i_0 \in B$ mit $\lfloor b_{i_0} \rfloor \neq b_{i_0}$ und damit $b_{i_0} - \lfloor b_{i_0} \rfloor > 0.$
Damit gilt für $i_0$ wegen (4):
\[ 0 \geq b_{i_0} - \lfloor b_{i_0} \rfloor > 0 \]
zu (b) Sei $\tilde{x} \in \mathbb{Z}^n$ und $\tilde{x} \in M_0 \Rightarrow \tilde{x} \in G$. Wegen (3) gilt:
\[ \tilde{x} \in M_0 \cap \{ x \in \mathbb{R}^n \mid x \text{ genügt (3)} \}. \]

Bezeichnung: Die in (3) definierte Schnittebene heißt Gomory-Schnitt.
Beispiel: \( \max \{ x_2 \mid 3x_1 + 2x_2 \leq 6, -3x_1 + 2x_2 \leq 0, x \geq 0, x \in \mathbb{Z} \} \)

\[
\begin{align*}
z &= d_{00} - \sum_{j \in N} d_{0j} x_j \\
x_i &= d_{i0} - \sum_{j \in N} d_{kj} x_j
\end{align*}
\]

\[
\begin{array}{c|cc}
  x_1 & x_2 & \downarrow \\
  \hline
  z & 0 & 0 & -1 \\
  u_1 & 0 & 0 & -1 \\
  u_2 & 0 & 0 & -1 \\
\end{array}
\]

\[
\begin{array}{c|cc}
  x_1 & u_1 \downarrow & u_2 \\
  \hline
  z & 0 & -\frac{3}{2} & \frac{1}{2} \\
  x_1 & 1 & \frac{1}{2} & \frac{1}{2} \\
  x_2 & \frac{3}{2} & \frac{1}{2} & \frac{1}{2} \\
\end{array}
\]

\[
\begin{array}{c|cc}
  u_1 & u_2 \downarrow \\
  \hline
  z & \frac{3}{2} & \frac{1}{4} & \frac{1}{4} \\
  x_1 & \frac{3}{2} & \frac{1}{4} & \frac{1}{4} \\
  x_2 & \frac{3}{2} & \frac{1}{4} & \frac{1}{4} \\
\end{array}
\]

\(\Rightarrow z \notin \mathbb{Z} \Rightarrow \) Gomory-Schnitt für \( z \): 

\[
\left( \frac{1}{2} - \left| \frac{1}{4} \right| \right)_{=0} \cdot u_1 + \left( \frac{1}{2} - \left| \frac{1}{4} \right| \right)_{=0} \cdot u_2 \geq \left| \frac{3}{2} \right|_{=1}
\]

\(\Leftrightarrow \frac{1}{2} u_1 + \frac{1}{4} u_2 \geq \frac{1}{2} \)

\(\Leftrightarrow u_1 + u_2 \geq 2 \)

\(\Leftrightarrow u_1 + u_2 - u_3 = 2 \)

\(\Leftrightarrow -u_1 - u_2 + u_3 = -2 \)

\(\Rightarrow \) Nachoptimieren:

\[
\begin{array}{c|ccc}
  u_1 & u_2 & \downarrow \\
  \hline
  z & \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\
  x_1 & 1 & \frac{1}{3} & \frac{1}{3} \\
  x_2 & \frac{1}{3} & \frac{1}{4} & \frac{1}{4} \\
  u_3 & -2 & -1 & -1 \\
\end{array}
\]

\[
\begin{array}{c|ccc}
  u_3 & u_2 & \downarrow \\
  \hline
  z & 1 & \frac{1}{4} & 0 \\
  x_1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
  x_2 & 1 & \frac{1}{4} & 0 \\
  u_1 & 1 & \frac{1}{4} & 0 \\
\end{array}
\]

\[
\begin{array}{c|ccc}
  u_3 & u_4 & \downarrow \\
  \hline
  z & 1 & \frac{1}{4} & 0 \\
  x_1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
  x_2 & 1 & \frac{1}{4} & 0 \\
  u_2 & 1 & \frac{1}{4} & -\frac{1}{4} \\
\end{array}
\]

4
→ Gomory-Schnitt für $x_1$:

$$\begin{pmatrix} \frac{1}{6} - \frac{1}{6} \\ 0 \end{pmatrix} \cdot u_3 + \begin{pmatrix} - \frac{1}{3} - \frac{1}{3} \\ -1 \end{pmatrix} \cdot u_2 \geq \frac{2}{3} - \frac{2}{3} = 0$$

$\Leftrightarrow \frac{1}{6} u_3 + \frac{2}{3} u_2 \geq \frac{2}{3}$

$\Leftrightarrow u_3 + 4u_2 \geq 4$

$\Leftrightarrow -4u_2 - u_3 + u_4 = -4.$

$\Rightarrow x^* = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ ist optimal für das ILP, $ZF(x^*) = 1.$
Betrachte das ILP

\[
\max \{ c^T x \mid Ax \leq b, x \geq 0, z \in \mathbb{Z} \}
\]

sowie das LP

\[
\max \{ c^T x \mid Ax \leq b, x \geq 0 \}
\]

und die Zielfunktion

\[
z = c^T x = d_{00} - \sum_{j \in N}^{} d_{0j} x_j
\]

\[
x_i = d_{i0} - \sum_{j \in N}^{} d_{ij} x_j.
\]

NBV

\[
\begin{array}{c|c|c}
-z & d_{0j} & \\
\hline
x_1 & d_{i0} & d_{BN} \\
\vdots & \vdots & \\
x_m & \end{array}
\]

Satz: Wenn man bei der dualen Simplex-Methode folgendermaßen vorgeht:

(a) Wähle die erste Zeile mit nicht-ganzzahligem \(d_{i0}\) aus und

(b) Benutze ggf. die lexicographische Version der SM,

und das ILP zulässig, d.h. nach unten beschränkt ist, so berechnet die DSM in endlich vielen Schritten eine ganzzahlige Lösung oder stellt die Unlösbarkeit des ILP fest.

Beweis: Sei die Hauptschleife definiert als die Reoptimierung, in der man man \((P_k)\) berechnet (mit \(u_k\)).

Betrachte eine Abschlusstabelle (optimale Tabelle) einer solchen Reoptimierung. Sei diese Tabelle \(A\) nach der \(l\)-ten Reoptimierung.

Sei weiterhin die \(i\)-te Zeile \((i \geq 0)\) die erste Zeile, in der die 0-te Spalte eine nicht-ganzzahlige Zahl enthält, d.h. \(b_{i0} \notin \mathbb{Z}\).

\[
\begin{array}{c|c|c}
\text{int} & \\
\hline
\text{int} & \\
\vdots & \vdots & \\
\text{int} & A^l = (a^l_{ij}) \\
i & b_{i0} \\
\vdots & \vdots & \\
\end{array}
\]

6
Die 0-ten Spalten $A^0_l$, $l = 1, 2, \ldots$ bilden eine lexikographisch monoton fallende Folge, d.h. es gilt:

$$A^0_1 \succ A^0_2 \succ \ldots$$

(1)

und der Wert $d^0_{00}$ ist nach unten beschränkt.

Wegen der Monotonie konvergiert also die Folge $(d^l_{00})_l$ gegen

$$W_{00} = \lfloor W_{00} \rfloor + f_{00}.$$ 

⇒ $\exists k \in \mathbb{N}$, so dass $\forall l \geq k$ gilt:

$$d^k_{00} = \lfloor W_{00} \rfloor + f^k_{00}.$$ 

Vor. (a) Die 0-te Zeile ist die erzeugende für die $(k+1)$-te Reoptimierung. Der Schritt ist:

$$- \sum_{j \in \mathbb{N}} f^k_{0j} x_j + s = -f^k_{00}.$$ 

<table>
<thead>
<tr>
<th></th>
<th>$\ldots$</th>
<th>$x_p$</th>
<th>$\ldots$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d^k_{00}$</td>
<td>$\ldots$</td>
<td>$d^k_{0p}$</td>
<td>$\ldots$</td>
</tr>
<tr>
<td>$s$</td>
<td>$-f^k_{00}$</td>
<td>$\ldots$</td>
<td>$f^k_{0p}$</td>
</tr>
</tbody>
</table>

OBdA sei die $p$-te Spalte die Pivot-Spalte.

$$d^{k+1}_{00} = d^k_{00} - \frac{d^k_{0p}}{f^k_{0p}} \cdot f^k_{00}.$$ 

Es gilt:

$$d^k_{0p} \geq 0 \implies d^k_{0p} \geq f^k_{00},$$

denn wegen

$$d^k_{0j} = \lfloor d^k_{0j} \rfloor + f^k_{0j}$$

gilt

$$f_{ij} = a_{ij} - \lfloor a_{ij} \rfloor, \quad \text{bzw.}$$

$$f_{0j} = d_{0j} - \lfloor d_{0j} \rfloor$$

$$f_{00} = \overline{f}_{00} - \lfloor \overline{f}_{00} \rfloor$$

⇒

$$d^{k+1}_{00} \leq d^k_{00} - f^k_{00} = \lfloor d^k_{00} \rfloor = \lfloor W_{00} \rfloor$$

d.h. $\forall l \geq k + 1$ gilt:

$$d^l_{00} = \lfloor W_{00} \rfloor.$$ 

Ab hier $(k+1)$ ist also $d^{k+1}_{00}$ ganzzahlig.
Da die Folge der 0-ten Spalten $A_0^1, A_0^2, \ldots$ lexikographisch monoton fallend ist (d.h. (1) gilt), muss für die Folge der 2. Komponenten (die größer oder gleich 0 ist) gelten: $(\bar{b}_{10}^l)_l$ ist

- monoton fallend und
- nach unten beschränkt.

Analog zu oben ist $(\bar{b}_{10}^l)_l$ ab einem hinreichend großen $l$ konstant und ganzzahlig. Diese Argumentation kann bis $(\bar{b}_{1m}^l)_l$ fortgesetzt werden. 

\hfill \Box