Reveal Your Faults: It's Only Fair!

Stefan Haar <u>César Rodríguez</u> Stefan Schwoon

LSV, ENS Cachan & CNRS, INRIA Saclay, France

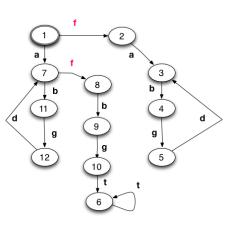
DATE Workshop Cordoba, Nov 1st, 2013

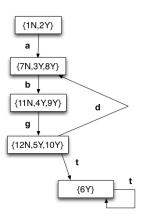
Fault Diagnosis

- Partially observable system: observable + unobservable actions
- Some unobservable actions are faults
- Given observation, all executions consistent with it contain a fault?

Fault Diagnosis

- Partially observable system: observable + unobservable actions
- Some unobservable actions are faults
- Given observation, all executions consistent with it contain a fault?
- This talk:
 - Fault diagnosis in concurrent systems
 - Using weak fairness assumptions





Diagnosis Problem

Do all runs that explain a given observation $s \in \Sigma^*$ contain a fault?

Diagnosis for Concurrent Systems

- Oncurrent systems have huge number of states!
- Global time can be a hard assumption
 - Partially-ordered observations

[BFHJ03]

- System has no unobservable cycle
 - Solved only for sequential observations

[EK12]

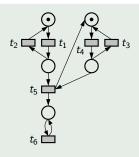
Assuming progress, or weak-fairness, is reasonable

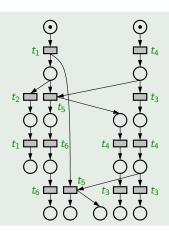
Contribution

We build on [BFHJ03, EK12] to:

- Allow for unobservable cycles and partially-ordered observations
- weak diagnosis: diagnosis + weak fairness
- Characterize weak diagnosis with reveals relation
- SAT-based algorithms for deciding weak diagnosis

Petri Net Unfoldings





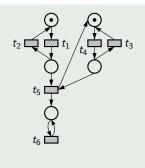
Remarks

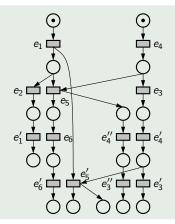
- \bullet \mathcal{U}_N is acyclic, 1-safe
- Events and conditions

- Labelling is a homomorphism
- Infinite in general

Structural Relations

The structure of an unfolding induces three relations over its events:





Causality: e < e' iff e' occurs $\Rightarrow e$ occurs before

Conflict: e # e' iff e and e' never occur in the same run

Concurrency: $e \parallel e'$ iff not e < e' and not e' < e and not e # e'

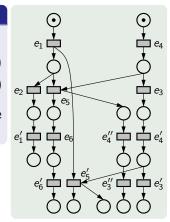
Configurations and Weak Fairness

Configuration

A set of events C is a configuration iff:

- $\bullet e \in \mathcal{C} \land e' < e \Rightarrow e' \in \mathcal{C} \quad \text{(causally closed)}$

Intuition: C configuration iff all its events can be arranged to form a run.



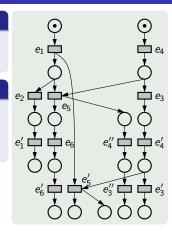
Configurations and Weak Fairness

Configuration

A set of events C is a configuration iff: [...]

Weakly Fair Firing Sequence

 $e_1, e_2, \ldots \in E^{\omega}$ is weakly fair iff it eventually fires one spoiler of each e enabled, where $spoilers(e) := \{e' : {}^{\bullet}e \cap {}^{\bullet}e' \neq \emptyset\}$



Configurations and Weak Fairness

Configuration

A set of events \mathcal{C} is a configuration iff: [...]

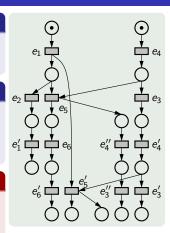
Weakly Fair Firing Sequence

 $e_1, e_2, \ldots \in E^{\omega}$ is weakly fair iff it eventually fires one spoiler of each e enabled, where $spoilers(e) := \{e' : {}^{\bullet}e \cap {}^{\bullet}e' \neq \emptyset\}$

Maximal Configuration

Run e_1, e_2, \ldots weakly fair iff $\{e_1, e_2, \ldots\}$ maximal configuration w.r.t. \subseteq iff $\{e_1, e_2, \ldots\}$ does not enable any event

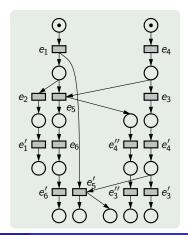
• Ω : set of maximal configurations



Reveals Relation

Definition [Haa10]

Event e reveals event e', written $e \triangleright e'$, iff for all $\omega \in \Omega$, if $e \in \omega$, then $e' \in \omega$.

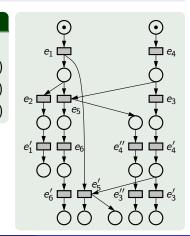


Reveals Relation

Definition [Haa10]

Event e reveals event e', written $e \triangleright e'$, iff for all $\omega \in \Omega$, if $e \in \omega$, then $e' \in \omega$.

- if e < e', then $e' \triangleright e$
- $e_1 \triangleright e_4$ (all ω contain e_4)
- $e_3 \triangleright e_4'$ (by progress assumption)
- $e_2 \triangleright e_3$ (e_2 disables e_5 + progress)

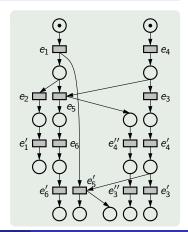


Extended Reveals Relation

Definition [BCH11]

Let A, B be sets of events. A extended-reveals B, written $A \rightarrow B$, iff for all $\omega \in \Omega$,

if $A \subseteq \omega$, then $B \cap \omega \neq \emptyset$.



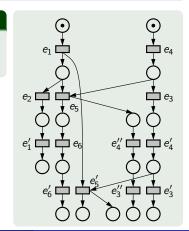
Extended Reveals Relation

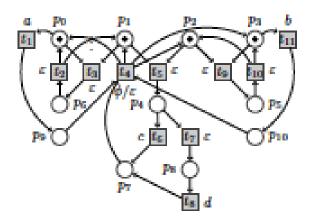
Definition [BCH11]

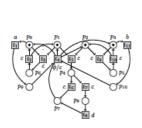
Let A, B be sets of events. A extended-reveals B, written $A \rightarrow B$, iff for all $\omega \in \Omega$,

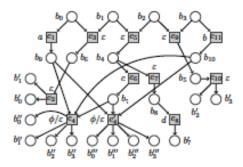
if $A \subseteq \omega$, then $B \cap \omega \neq \emptyset$.

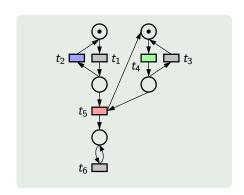
- if $e \triangleright e'$, then $\{e\} \rightarrow \{e'\}$
- $\{e_1\}$ \rightarrow $\{e_2, e_5\}$ (due to progress)

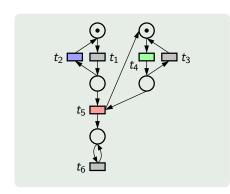


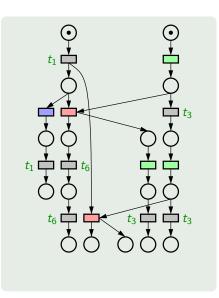


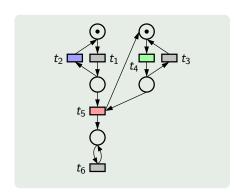




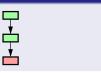


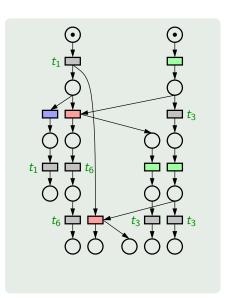


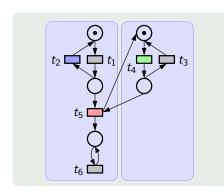




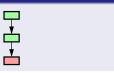
1. Sequential Observations

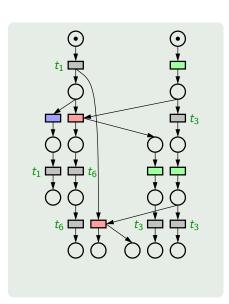


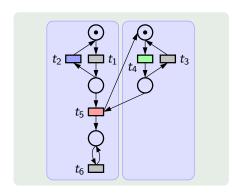




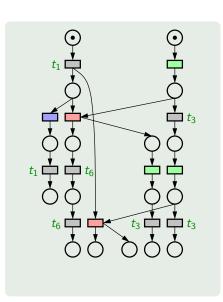
1. Sequential Observations



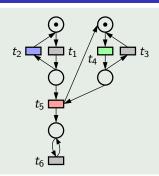




2. Ordered Observations



Explaining Observations

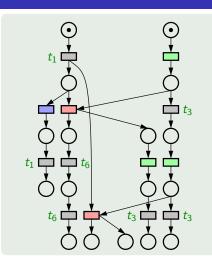


Given observation α ,

$$expl(\alpha)$$

are the configurations that explain α :

- Same visible projection
- No order contradiction



Weak Diagnosis

Definition

Observation α weakly diagnoses a fault ϕ iff for all $\mathcal{C} \in expl(\alpha)$, $\mathcal{C} \to \mathcal{E}_{\phi}$,

i.e., any maximal configuration that contains an explanation $\mathcal{C} \in expl(\alpha)$, also contains a fault.

Violating Execution

Given α , find $\mathcal{C} \in \underline{expl}(\alpha)$ and $\omega \in \Omega$ such that:

- ω is fault-free

Two Problems

- $expl(\alpha)$ may be infinite due to unobservable loops
- ullet Need finite representation of Ω that allows for checking set inclusion

Verbose Configurations

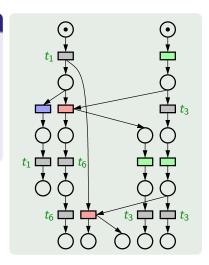
Definition

Configuration C is verbose if it contains events e, e' such that:

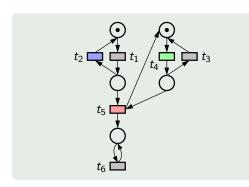
- $\bullet e < e'$
- **3** obs([e]) = obs([e'])

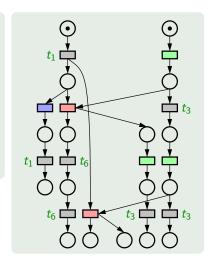
i.e., it contains an unobservable loop

If C not verbose, it is succinct



Verbose Configurations





Finitely Many Succinct Explanations

Proposition

Any observation has finitely many succinct explanations

So they fit in a finite unfolding prefix!

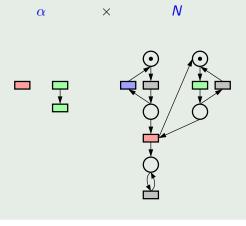
- **1** Synchronize observation and net: $\alpha \times N$
- **2** Construct unfolding prefix $\mathcal{P}_{\alpha \times N}$ prunning with:

Definition

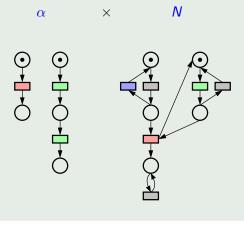
Event e cutoff iff there is e' such that

- \bullet e' < e
- mark([e']) = mark([e])
- **3** \mathcal{C} explanation iff $mark(\mathcal{C})$ covers maximal places of α

Synchronization Example



Synchronization Example



Characterizing Maximal Configurations

Violating Execution

Given α , find $\mathcal{C} \in expl(\alpha)$ and $\omega \in \Omega$ such that:

- ω is fault-free

Characterizing Maximal Configurations

Violating Execution

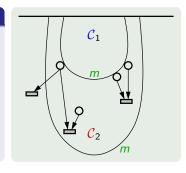
Given α , find $\mathcal{C} \in \underline{expl}(\alpha)$ and $\omega \in \Omega$ such that:

- \bullet $\mathcal{C} \subseteq \omega$
- ω is fault-free

Lemma

There is ω weakly-fair and fault-free iff there are configurations $\mathcal{C}_1, \mathcal{C}_2$ such that:

- $\mathbf{0}$ $\mathcal{C}_1 \subseteq \mathcal{C}_2$
- **3** C_1 enables $e \Rightarrow spoilers(e) \cap C_2 \neq \emptyset$
- \circ \mathcal{C}_2 is fault-free



Problem: not quite yet a solution: C_2 can be unboundedly large!

Finite Characterization of Maximal Configurations

Solution: define unfolding prefixes $\mathcal{P}^1, \mathcal{P}^2$ such that

- \circ $\mathcal{C}_1, \mathcal{C}_2$ exist iff $\mathcal{P}^1, \mathcal{P}^2$ contain small copies $\widehat{\mathcal{C}}_1, \widehat{\mathcal{C}}_2$

Finite Characterization of Maximal Configurations

Solution: define unfolding prefixes $\mathcal{P}^1, \mathcal{P}^2$ such that

- $\circled{\mathcal{C}}_1, \mathcal{C}_2$ exist iff $\mathcal{P}^1, \mathcal{P}^2$ contain small copies $\widehat{\mathcal{C}}_1, \widehat{\mathcal{C}}_2$

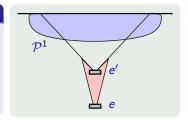
Definition

- ullet \mathcal{P}^1 : any marking-complete unfolding prefix (McMillan's algorithm)
- \mathcal{P}^2 : largest unfolding prefix free of sp-cutoffs:

Definition

Event e sp-cutoff iff there is e' such that:

- **1** e' < e



Putting All Together

Theorem

 α does not diagnose ϕ iff there is configurations

$$\mathcal{C} \in \mathcal{P}_{\alpha \times N}$$
,

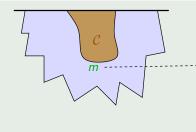
 $\mathcal{C}_1 \in \mathcal{P}^1$, $\mathcal{C}_2 \in \mathcal{P}^2$

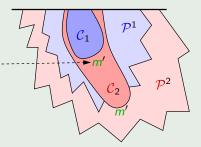
$$\mathcal{C}_2 \in \mathcal{P}^2$$

such that

- ① C marks maximal places
- \circ $\mathcal{C}_1 \subset \mathcal{C}_2$

- \bigcirc \mathcal{C}_2 is fault-free
- \circ \mathcal{C}_1 enables $e \Rightarrow spoilers(e) \cap \mathcal{C}_2 \neq \emptyset$





Summary

- Weak diagnosis: diagnosis + weak fairness
- Unfolding-based method for solving weak diagnosis
- SAT-based algorithms (in the paper)

Future work

- Bounds on necessary unfolding prefixes
- Review decision procedures for weak diagnosability
- Implementation

Summary

- Weak diagnosis: diagnosis + weak fairness
- Unfolding-based method for solving weak diagnosis
- SAT-based algorithms (in the paper)

Future work

- Bounds on necessary unfolding prefixes
- Review decision procedures for weak diagnosability
- Implementation

Thank you for your attention

References I

Sandie Balaguer, Thomas Chatain, and Stefan Haar.

Building tight occurrence nets from reveals relations.

In Proc. ACSD, pages 44-53. IEEE, 2011.

Albert Benveniste, Éric Fabre, Stefan Haar, and Claude Jard.

Diagnosis of asynchronous discrete event systems: A net unfolding approach.

IEEE Transactions on Automatic Control, 48(5):714–727, May 2003.

Javier Esparza and Christian Kern.

Reactive and proactive diagnosis of distributed systems using net unfoldings.

In Proc. ACSD, pages 154-163, 2012.

Stefan Haar.

Types of asynchronous diagnosability and the Reveals-relation in occurrence nets.

IEEE Transactions on Automatic Control, 55(10):2310-2320, October 2010.

References II

Meera Sampath, Raja Sengupata, Stéphane Lafortune, Kasim Sinnamohideen, and Demosthenis Teneketzis.

Diagnosability of discrete-event systems.

IEEE Transactions on Automatic Control, 40(9):1555-1575, 1995.