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Time Petri Nets

Introduced by Merlin and Farber in 1976
Specification of real-time concurrent systems
Time constraints: intervals of possible firing delays
Strong time semantics

We consider safe time Petri nets
» Several undecidable results in the general case. ..
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Safe Time Petri Nets: Definition

(P, T, pre, post, efd, Ifd)
*t = pre(t) C P
t* < post(t) C P

earliest firing delay:
efd: T — Q

latest firing delay:
Ifd: T — QU {o0}

State (M, dob, 6)
M C P marking
0 date

date of birth:
Vpe M dob(p) <0

date: 0.0
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Safe Time Petri Nets: Semantics

Transition t can fire at time 6’ > 0 from state (M, dob, 9) if:
t is enabled: *t C M;

the minimum delay is reached:
0" > doe(t) + efd(t);

the enabled transitions do not overtake the maximum delays:

VireT °*t/CM = ¢ <doe(t')+ Ifd(t).

where doe(t) = max dob(p).
pe*t
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Example of Time Petri Net

date: 0.0
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Example of Time Petri Net

(tl, 05)

date: 0.5
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Example of Time Petri Net

(t1,0.5), (t2, 1)

date: 1.0
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Example of Time Petri Net

(tl, 05), (t2, 1), (t07 1)

date: 1.0
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Executions in Interleaving Semantics

(t2,¥)

+ time constraints
(t27 I‘)

in each state

B. Berthomieu and M. Diaz, Modeling and verification of time dependent systems
using time Petri nets, IEEE Transactions on Software Engineering, 17(3):259-273,
1991
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Processes of Untimed Petri Nets

Plo on
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Processes of Untimed Petri Nets

P1 P2 O

51

P3
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Processes of Untimed Petri Nets

P1 P2

t to

O——0O

P3 Pa
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Processes of Untimed Petri Nets

P1 P2
t to

P3 Pa
to

P1 p2

t1 to
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Processes of Untimed Petri Nets

P1 P2

t to
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Unfoldings of Untimed Petri Nets

p3 Pa

t3 to
Ps CZ{Z P2
t1 to
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Unfoldings of Untimed Petri Nets

All the processes have been superimposed.

Given a set E of events, is it a process? P3 P4

Given a set E of events, does there exist
a process F such that E C F?

Given a set C of conditions, does there
exist a process E such that C are final Ps P1 P2
conditions of E? (useful for
construction)
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Processes of Time Petri Nets

(t1,0.5),(t2,1)7(t031) :

Other dates are possible with the same structure — parameters

17/1



Process of Time Petri Nets — Finding the Possible Dates

Symbolic representation of the dates as

parameters.

. . . . P p:
Question: given a process of the underlying Petri ' ’
net, what are the possible dates for the events? t t

Tuomas Aura and Johan Lilius. A causal H(el)_l_ 0(e)
semantics for time Petri nets. Theoretical

Computer Science, 243(2):409-447, (2000) P PO
System of inequalities on the dates of the ts to

events. 0(es)

Some events that are not in the process
must be taken into account. Ps P P2
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Process of Time Petri Nets — Finding the Possible Dates

t
[0. %)

Firing delays respected
> 0 < 9(81)
> 1<0(e) <2
> 9(63) = 9(61) +2
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Process of Time Petri Nets — Finding the Possible Dates

Firing delays respected
> 0 < 9(81)
> 1<0(e) <2 bles)
> 9(63) = 9(61) +2

Disabled events have not overtaken their

latest firing delay

> O(e3) < max{f(e1),0(e2)} +0
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Process of Time Petri Nets — Finding the Possible Dates

9(61)T 0(e2)
Firing delays respected
O

> Oge(el)
» 1<f(ex) <2

Disabled events have not overtaken their
latest firing delay

» None here
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Process of Time Petri Nets — Finding the Possible Dates

9(61)T 0(e2)
Firing delays respected
O

> 0 < 9(61)

» 1<f(ex) <2
Disabled events have not overtaken their
latest firing delay

t3 to

» None here Ps P1 p2

Events enabled in the final configurations
have not fired yet
> max{f(e1),0(e)} <O(er) +2 forts
> max{f(e1),0(e2)} < max{f(e1),0(e2)} +0 for to
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Exercise — Finding the possible dates

Firing delays respected
> ?

Disabled events have not overtaken their
latest firing delay
> 7 ps

Events enabled in the final configurations
have not fired yet
> 7
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Superimposition of the Processes of a Time Petri Net

Superimposition of all the processes of a time
Petri net — prefix of the unfolding of the
underlying untimed Petri net.
Given a set E of events, is it a process?
— answered
Given a set E of events, does there exist a P PO
process F such that E C F? t
Given a set C of conditions, does there exist
a process E such that C are final conditions

of E? (useful for construction) P3 Pa
. t3 to
Look at what can happen in other parts of the
net.
The information that allows a transition to fire is Ps P1 P

not entirely coded in the corresponding event.
— add enough information in the events, but not
the global state.
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Simple Unfoldings for Time Petri Nets (and Other Models)

Simple cases
models without urgency
models where the choices are local: e.g. extended free choice Time Petri nets

The superimposition of the processes is sufficient for these cases.
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Concurrent Operational Semantics for Time Petri Nets

How to simulate a time Petri net without using clocks,
but with as much concurrency as possible?

Look for local conditions to fire a
transition

Notion of partial state (L, dob, Ird)
Partition of P into sets of mutually
exclusive places (here {p;, p3, Ps}

and {p,; ps})
— test the absence of a token

Executions must map into prefixes
of processes
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Local Conditions to Fire Transitions

To fire t at 6 from (L, dob, Ird), we want (intuitively):

for any global state S that extends (L, dob, Ird),
t can fire at 6 from S.

We have:

t can fire at 6’ from S
iff
t is enabled: *t C M;
the minimum delay is reached:
0" > doe(t) + efd(t);
all the enabled transitions in S do not overtake the maximum delays:
Ve T *t'CM = ¢ < doe(t')+ Ifd(t).

where doe(t) < max dob(p).
pe*
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Local Firing Condition

Transition t can fire at date 6 from the partial state (L, dob, Ird) if
t is enabled: *t C L;
the minimum delay is reached: 6 > doe(t) + efd(t);
the partial state (L, dob, Ird) can remain until 8 (whatever happens in other

parts of the net)
local stability condition
LSC({L, dob, Ird), 0)

Local Stability Condition
Intuition:

LSC((L, dob, Ird), §)
iff
for all context S of (L, dob, Ird), (L, dob, Ird) is stable in S until 6.
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Local Stability Condition

Several choices to define LSC((L, dob, Ird), 6):

trivial choice: (L, dob, Ird) is a global state:
stable until one of the enabled transitions reaches its latest firing delay;

(L, dob, Ird) contains enough information to check that all the transitions
that consume tokens in L can wait until 6.

/ y dpect pnL#D
Ve T *UNl#0 = 3y g< ma)r%Ldob(P)-i—/fd(t/)
pe*t!

where p denotes the set of places mutually exclusive with p. E.g. p1 = {ps, ps}.

{(p1,0)} is stable forever
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Local Stability Condition

Several choices to define LSC((L, dob, Ird), 6):

trivial choice: (L, dob, Ird) is a global state:
stable until one of the enabled transitions reaches its latest firing delay;

(L, dob, Ird) contains enough information to check that all the transitions
that consume tokens in L can wait until 6.

/ y dpect pnL#D
Ve T *UNl#0 = 3y g< ma)r%Ldob(P)-i—/fd(t/)
pe*t!

where p denotes the set of places mutually exclusive with p. E.g. p1 = {ps, ps}.

t2 (0)
[1,2]

{(p1,0), (p2,0)} is stable until § =2
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Local Stability Condition

Several choices to define LSC((L, dob, Ird), 6):

trivial choice: (L, dob, Ird) is a global state:
stable until one of the enabled transitions reaches its latest firing delay;

(L, dob, Ird) contains enough information to check that all the transitions
that consume tokens in L can wait until 6.

/ y dpect pnL#D
Ve T *UNl#0 = 3y g< ma)r%Ldob(P)-i—/fd(t/)
pe*t!

where p denotes the set of places mutually exclusive with p. E.g. p1 = {ps, ps}.

{(ps,1)} is stable until § =1
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Local Stability Condition

Several choices to define LSC((L, dob, Ird), 6):

trivial choice: (L, dob, Ird) is a global state:
stable until one of the enabled transitions reaches its latest firing delay;

(L, dob, Ird) contains enough information to check that all the transitions
that consume tokens in L can wait until 6.

/ y dpect pnL#D
Ve T *UNl#0 = 3y g< ma)r%Ldob(P)-i—/fd(t/)
pe*t!

where p denotes the set of places mutually exclusive with p. E.g. p1 = {ps, ps}.

{(p3;1), (p2,0)} is stable until § =2
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Local Stability Condition

Several choices to define LSC((L, dob, Ird), 6):

trivial choice: (L, dob, Ird) is a global state:
stable until one of the enabled transitions reaches its latest firing delay;

(L, dob, Ird) contains enough information to check that all the transitions
that consume tokens in L can wait until 6.

/ y dpect pnL#D
Ve T *UNl#0 = 3y g< ma)r%Ldob(P)-i—/fd(t/)
pe*t!

where p denotes the set of places mutually exclusive with p. E.g. p1 = {ps, ps}.

Exercise

Play with local stability conditions!
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Symbolic Unfolding

P1 p2
/
/
t1 / tQ
f(er) >0 / 1<6(e) <2
//
/
p3
T[z.z] t3 t3
{0(33):0(e1)+2 0(es) = (e1) +2
s O 0(es) <2 0(es) < max{6(e1), 0(e2)}

Ps

In symbolic unfoldings: keep track of all the places in L (not only those that
are consumed) — use read arcs (or consume and rewrite).

Use only minimal sets L to increase concurrency.
Redundancy
Solve constraints on the dates of the events
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Conclusion

Concurrent operational semantics for TPN
(Parameterized) local stability condition
Solve constraints on the dates of the events

Study of the form of the constraints
— finite complete prefix of the unfolding

If there is no urgency or the choices are local (extended free choice Petri
net), the unfolding is simply the superimposition of the processes
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