
Symbolic Unfoldings of Time Petri Nets

Thomas Chatain
joint work with Claude Jard

LSV/ENS Cachan

Petri Nets Course on Unfoldings, Milano, June 25, 2013

1/1



Time Petri Nets

◮ Introduced by Merlin and Farber in 1976

◮ Specification of real-time concurrent systems

◮ Time constraints: intervals of possible firing delays

◮ Strong time semantics

◮ We consider safe time Petri nets
◮ Several undecidable results in the general case. . .

2/1



Safe Time Petri Nets: Definition

〈P ,T , pre, post, efd , lfd〉

◮
•t

def
= pre(t) ⊆ P

◮ t•
def
= post(t) ⊆ P

◮ earliest firing delay:
efd : T −→ Q

◮ latest firing delay:
lfd : T −→ Q ∪ {∞}

State 〈M, dob, θ〉

◮ M ⊆ P marking

◮ θ date

◮ date of birth:
∀p ∈ M dob(p) ≤ θ

p1 (0) (0) p2

p3 p4

p5

t0
[0, 0]

t1
[0,∞)

t2
[1, 2]

t3
[2, 2]

date: 0.0

3/1



Safe Time Petri Nets: Semantics

Transition t can fire at time θ′ ≥ θ from state 〈M, dob, θ〉 if:

◮ t is enabled: •t ⊆ M;

◮ the minimum delay is reached:
θ′ ≥ doe(t) + efd(t);

◮ the enabled transitions do not overtake the maximum delays:
∀t ′ ∈ T •t ′ ⊆ M =⇒ θ′ ≤ doe(t ′) + lfd(t ′).

where doe(t)
def
= max

p∈•t
dob(p).

4/1



Example of Time Petri Net

(t1, 0.5) date: 0.0

p1 (0) (0) p2

p3 p4

p5

t0
[0, 0]

(0) t1
[0,∞)

t2 (0)
[1, 2]

t3
[2, 2]

5/1



Example of Time Petri Net

(t1, 0.5) date: 0.5

p1 (0) p2

p3 (0.5) p4

p5

t0
[0, 0]

t1
[0,∞)

t2 (0)
[1, 2]

t3 (0.5)
[2, 2]

6/1



Example of Time Petri Net

(t1, 0.5), (t2, 1) date: 1.0

p1 p2

p3 (0.5) (1) p4

p5

(1) t0
[0, 0]

t1
[0,∞)

t2
[1, 2]

t3 (0.5)
[2, 2]

7/1



Example of Time Petri Net

(t1, 0.5), (t2, 1), (t0, 1) date: 1.0

p1 (1) (1) p2

p3 p4

p5

t0
[0, 0]

(1) t1
[0,∞)

t2 (1)
[1, 2]

t3
[2, 2]

8/1



Executions in Interleaving Semantics

p1p2 p1p4

p3p4 p2p3 p3p4

p5p4 p5p2

(t2, y)

(t1, v)
(t4,w)

(t1, x)

(t2, u)

(t4, t)

(t3, s) (t3, z)

(t2, r)
+ time constraints

in each state

B. Berthomieu and M. Diaz, Modeling and verification of time dependent systems
using time Petri nets, IEEE Transactions on Software Engineering, 17(3):259–273,
1991

9/1



Processes of Untimed Petri Nets

p1 p2

p3 p4

p5

t0t1 t2

t3

p1 p2

10/1



Processes of Untimed Petri Nets

p1 p2

p3 p4

p5

t0t1 t2

t3

p1 p2

p3

t1

11/1



Processes of Untimed Petri Nets

p1 p2

p3 p4

p5

t0t1 t2

t3

p1 p2

p3 p4

t1 t2

12/1



Processes of Untimed Petri Nets

p1 p2

p3 p4

p5

t0t1 t2

t3

p1 p2

p3 p4

p1 p2

p3 p4

t1 t2

t0

t1 t2

13/1



Processes of Untimed Petri Nets

p1 p2

p3 p4

p5

t0t1 t2

t3

p1 p2

p3 p4

p5

t1 t2

t3

14/1



Unfoldings of Untimed Petri Nets

p1 p2

p3 p4

p5

t0t1 t2

t3

p1 p2

p3 p4

p1 p2

p3 p4

p5

t1 t2

t0t3

t1 t2

15/1



Unfoldings of Untimed Petri Nets

All the processes have been superimposed.

◮ Given a set E of events, is it a process?

◮ Given a set E of events, does there exist
a process F such that E ⊆ F?

◮ Given a set C of conditions, does there
exist a process E such that C are final
conditions of E? (useful for
construction)

p1 p2

p3 p4

p1 p2

p3 p4

p5

t1 t2

t0t3

t1 t2

16/1



Processes of Time Petri Nets

(t1, 0.5), (t2, 1), (t0, 1)

p1 (0) (0) p2

p3 p4

p5

t0
[0, 0]

t1
[0,∞)

t2
[1, 2]

t3
[2, 2]

p1 p2

p3 p4

p1 p2

t1
(0.5)

t2
(1)

t0
(1)

Other dates are possible with the same structure → parameters

17/1



Process of Time Petri Nets – Finding the Possible Dates

Symbolic representation of the dates as
parameters.

Question: given a process of the underlying Petri
net, what are the possible dates for the events?

Tuomas Aura and Johan Lilius. A causal
semantics for time Petri nets. Theoretical
Computer Science, 243(2):409-447, (2000)

◮ System of inequalities on the dates of the
events.

◮ Some events that are not in the process
must be taken into account.

p1 p2

p3 p4

p1 p2p5

t1
θ(e1)

t2
θ(e2)

t0t3
θ(e3)

18/1



Process of Time Petri Nets – Finding the Possible Dates

p1 (0) (0) p2

p3 p4

p5

t0
[0, 0]

t1
[0,∞)

t2
[1, 2]

t3
[2, 2]

◮ Firing delays respected
◮ 0 ≤ θ(e1)
◮ 1 ≤ θ(e2) ≤ 2
◮ θ(e3) = θ(e1) + 2

p1 p2

p3 p4

p1 p2p5

t1
θ(e1)

t2
θ(e2)

t0t3
θ(e3)

19/1



Process of Time Petri Nets – Finding the Possible Dates

p1 (0) (0) p2

p3 p4

p5

t0
[0, 0]

t1
[0,∞)

t2
[1, 2]

t3
[2, 2]

◮ Firing delays respected
◮ 0 ≤ θ(e1)
◮ 1 ≤ θ(e2) ≤ 2
◮ θ(e3) = θ(e1) + 2

◮ Disabled events have not overtaken their
latest firing delay

◮ θ(e3) ≤ max{θ(e1), θ(e2)}+ 0

p1 p2

p3 p4

p1 p2p5

t1
θ(e1)

t2
θ(e2)

t0t3
θ(e3)

19/1



Process of Time Petri Nets – Finding the Possible Dates

p1 (0) (0) p2

p3 p4

p5

t0
[0, 0]

t1
[0,∞)

t2
[1, 2]

t3
[2, 2]

◮ Firing delays respected
◮ 0 ≤ θ(e1)
◮ 1 ≤ θ(e2) ≤ 2

◮ Disabled events have not overtaken their
latest firing delay

◮ None here

p1 p2

p3 p4

t1
θ(e1)

t2
θ(e2)

20/1



Process of Time Petri Nets – Finding the Possible Dates

p1 (0) (0) p2

p3 p4

p5

t0
[0, 0]

t1
[0,∞)

t2
[1, 2]

t3
[2, 2]

◮ Firing delays respected
◮ 0 ≤ θ(e1)
◮ 1 ≤ θ(e2) ≤ 2

◮ Disabled events have not overtaken their
latest firing delay

◮ None here

◮ Events enabled in the final configurations
have not fired yet

◮ max{θ(e1), θ(e2)} ≤ θ(e1) + 2 for t3
◮ max{θ(e1), θ(e2)} ≤ max{θ(e1), θ(e2)}+ 0 for t0

p1 p2

p3 p4

t1
θ(e1)

t2
θ(e2)

p1 p2p5

t0t3

20/1



Exercise – Finding the possible dates

p1 (0) (0) p2

p3 p4

p5

t0
[0, 0]

t1
[0,∞)

t2
[1, 2]

t3
[2, 2]

◮ Firing delays respected
◮ ?

◮ Disabled events have not overtaken their
latest firing delay

◮ ?

◮ Events enabled in the final configurations
have not fired yet

◮ ?

p1 p2

p3 p4

p1 p2p5

t1
θ(e1)

t2
θ(e2)

t0
θ(e0)

t3

21/1



Superimposition of the Processes of a Time Petri Net
Superimposition of all the processes of a time
Petri net → prefix of the unfolding of the
underlying untimed Petri net.

◮ Given a set E of events, is it a process?
→ answered

◮ Given a set E of events, does there exist a
process F such that E ⊆ F?

◮ Given a set C of conditions, does there exist
a process E such that C are final conditions
of E? (useful for construction)

Look at what can happen in other parts of the
net.
The information that allows a transition to fire is
not entirely coded in the corresponding event.
→ add enough information in the events, but not
the global state.

p1 p2

p3 p4

p1 p2p5

t1 t2

t0t3

22/1



Simple Unfoldings for Time Petri Nets (and Other Models)

Simple cases

◮ models without urgency

◮ models where the choices are local: e.g. extended free choice Time Petri nets

The superimposition of the processes is sufficient for these cases.

23/1



Concurrent Operational Semantics for Time Petri Nets

How to simulate a time Petri net without using clocks,
but with as much concurrency as possible?

◮ Look for local conditions to fire a
transition

◮ Notion of partial state 〈L, dob, lrd〉

◮ Partition of P into sets of mutually
exclusive places (here {p1, p3, p5}
and {p2, p4})
→ test the absence of a token

◮ Executions must map into prefixes
of processes

(0) p1 p2 (0)

p3 p4

p5

t0
[0, 0]

(0) t1
[0,∞)

t2 (0)
[1, 2]

t3
[2, 2]

24/1



Local Conditions to Fire Transitions

To fire t at θ′ from 〈L, dob, lrd〉, we want (intuitively):

for any global state S that extends 〈L, dob, lrd〉,
t can fire at θ′ from S .

We have:

t can fire at θ′ from S

iff

◮ t is enabled: •t ⊆ M;

◮ the minimum delay is reached:
θ′ ≥ doe(t) + efd(t);

◮ all the enabled transitions in S do not overtake the maximum delays:
∀t ′ ∈ T •t ′ ⊆ M =⇒ θ′ ≤ doe(t ′) + lfd(t ′).

where doe(t)
def
= max

p∈•t
dob(p).

25/1



Local Firing Condition

Transition t can fire at date θ from the partial state 〈L, dob, lrd〉 if

◮ t is enabled: •t ⊆ L;

◮ the minimum delay is reached: θ ≥ doe(t) + efd(t);

◮ the partial state 〈L, dob, lrd〉 can remain until θ (whatever happens in other
parts of the net)

local stability condition
LSC (〈L, dob, lrd〉, θ)

Local Stability Condition

Intuition:

LSC (〈L, dob, lrd〉, θ)
iff

for all context S of 〈L, dob, lrd〉, 〈L, dob, lrd〉 is stable in S until θ.

26/1



Local Stability Condition

Several choices to define LSC (〈L, dob, lrd〉, θ):

◮ trivial choice: 〈L, dob, lrd〉 is a global state:
stable until one of the enabled transitions reaches its latest firing delay;

◮ 〈L, dob, lrd〉 contains enough information to check that all the transitions
that consume tokens in L can wait until θ.

∀t ′ ∈ T •t ′ ∩ L 6= ∅ =⇒

{

∃p ∈ •t ′ p̄ ∩ L 6= ∅
∨ θ ≤ max

p∈•t′∩L
dob(p) + lfd(t ′)

where p̄ denotes the set of places mutually exclusive with p. E.g. p̄1 = {p3, p5}.

p1 (0) p2

p3 p4

p5

t0
[0, 0]

(0) t1
[0,∞)

t2
[1, 2]

t3
[2, 2]

{(p1, 0)} is stable forever

27/1



Local Stability Condition

Several choices to define LSC (〈L, dob, lrd〉, θ):

◮ trivial choice: 〈L, dob, lrd〉 is a global state:
stable until one of the enabled transitions reaches its latest firing delay;

◮ 〈L, dob, lrd〉 contains enough information to check that all the transitions
that consume tokens in L can wait until θ.

∀t ′ ∈ T •t ′ ∩ L 6= ∅ =⇒

{

∃p ∈ •t ′ p̄ ∩ L 6= ∅
∨ θ ≤ max

p∈•t′∩L
dob(p) + lfd(t ′)

where p̄ denotes the set of places mutually exclusive with p. E.g. p̄1 = {p3, p5}.

p1 (0) (0) p2

p3 p4

p5

t0
[0, 0]

(0) t1
[0,∞)

t2 (0)
[1, 2]

t3
[2, 2]

{(p1, 0), (p2, 0)} is stable until θ = 2

27/1



Local Stability Condition

Several choices to define LSC (〈L, dob, lrd〉, θ):

◮ trivial choice: 〈L, dob, lrd〉 is a global state:
stable until one of the enabled transitions reaches its latest firing delay;

◮ 〈L, dob, lrd〉 contains enough information to check that all the transitions
that consume tokens in L can wait until θ.

∀t ′ ∈ T •t ′ ∩ L 6= ∅ =⇒

{

∃p ∈ •t ′ p̄ ∩ L 6= ∅
∨ θ ≤ max

p∈•t′∩L
dob(p) + lfd(t ′)

where p̄ denotes the set of places mutually exclusive with p. E.g. p̄1 = {p3, p5}.

p1 p2

p3 (1) p4

p5

(1) t0
[0, 0]

t1
[0,∞)

t2
[1, 2]

t3 (1)
[2, 2]

{(p3, 1)} is stable until θ = 1

27/1



Local Stability Condition

Several choices to define LSC (〈L, dob, lrd〉, θ):

◮ trivial choice: 〈L, dob, lrd〉 is a global state:
stable until one of the enabled transitions reaches its latest firing delay;

◮ 〈L, dob, lrd〉 contains enough information to check that all the transitions
that consume tokens in L can wait until θ.

∀t ′ ∈ T •t ′ ∩ L 6= ∅ =⇒

{

∃p ∈ •t ′ p̄ ∩ L 6= ∅
∨ θ ≤ max

p∈•t′∩L
dob(p) + lfd(t ′)

where p̄ denotes the set of places mutually exclusive with p. E.g. p̄1 = {p3, p5}.

p1 (0) p2p2

p3 (1) p4

p5

t0
[0, 0]

t1
[0,∞)

t2 (0)
[1, 2]

t3 (1)
[2, 2]

{(p3, 1), (p2, 0)} is stable until θ = 2

27/1



Local Stability Condition

Several choices to define LSC (〈L, dob, lrd〉, θ):

◮ trivial choice: 〈L, dob, lrd〉 is a global state:
stable until one of the enabled transitions reaches its latest firing delay;

◮ 〈L, dob, lrd〉 contains enough information to check that all the transitions
that consume tokens in L can wait until θ.

∀t ′ ∈ T •t ′ ∩ L 6= ∅ =⇒

{

∃p ∈ •t ′ p̄ ∩ L 6= ∅
∨ θ ≤ max

p∈•t′∩L
dob(p) + lfd(t ′)

where p̄ denotes the set of places mutually exclusive with p. E.g. p̄1 = {p3, p5}.

p1 (0) p2p2

p3 (1) p4

p5

t0
[0, 0]

t1
[0,∞)

t2 (0)
[1, 2]

t3 (1)
[2, 2]

Exercise

Play with local stability conditions!

27/1



Symbolic Unfolding

p1 p2

p3 p4

p5

t0
[0, 0]

t1
[0,∞)

t2
[1, 2]

t3
[2, 2]

p1 p2

p3 p4

p1 p2p5 p5

t1
θ(e1) ≥ 0

t2
1 ≤ θ(e2) ≤ 2

t0
t3

{

θ(e3) = θ(e1) + 2
θ(e3) ≤ 2

t3
{

θ(e3) = θ(e1) + 2
θ(e3) ≤ max{θ(e1), θ(e2)}

◮ In symbolic unfoldings: keep track of all the places in L (not only those that
are consumed) → use read arcs (or consume and rewrite).

◮ Use only minimal sets L to increase concurrency.

◮ Redundancy

◮ Solve constraints on the dates of the events

28/1



Conclusion

◮ Concurrent operational semantics for TPN

◮ (Parameterized) local stability condition

◮ Solve constraints on the dates of the events

◮ Study of the form of the constraints
→ finite complete prefix of the unfolding

◮ If there is no urgency or the choices are local (extended free choice Petri
net), the unfolding is simply the superimposition of the processes

29/1


