Essential States in Time Petri Nets

Louchka Popova-Zeugmann

Humboldt-Universität zu Berlin Department of Computer Science

November 27, 2013

< ロ > < 同 > < 回 > < 回 >

Outline

Time Petri Nets

- Rounding of Runs
- Essential States
- Reachable Graph

æ

ヘロン 人間 とくほど 人ほど

æ

ヘロン 人間 とくほど 人ほど

3 / 44

æ

æ

æ

3 / 44

æ

3 / 44

æ

The local time of t is reset to zero!

э

イロト イポト イヨト イヨト

The local time of *t* is reset to zero! \leftarrow static conflict

э

イロト イポト イヨト イヨト

Э

Statics:

Petri Net (Skeleton)

э

(日)

• $m_0 = (2, 0, 1)$

Э

<ロ> <同> <同> < 回> < 回>

• $m_0 = (2, 0, 1)$ *p*-marking

Э

<ロ> <同> <同> < 同> < 同>

• $m_0 = (2, 0, 1)$ *p*-marking • $h_0 = (\sharp, 0, 0, 0)$ *t*-marking

<ロ> <同> <同> < 同> < 三> < 三>

• $m_0 = (2, 0, 1)$ *p*-marking • $h_0 = (\sharp, 0, 0, 0)$ *t*-marking

h(t) is the time shown by the clock of t since the last enabling of t

4 / 44

< D > < P > < P >

State

The pair z = (m, h) is called a **state** in a TPN \mathcal{Z} , iff:

- m is a p-marking in \mathcal{Z} .
- *h* is a *t*-marking in \mathcal{Z} .

< ロ > < 同 > < 回 > < 回 >

Dynamics:

Let \mathcal{Z} be a TPN and let z = (m, h), z' = (m', h') be two states. \mathcal{Z} changes from state z = (m, h) into the state z' = (m', h') by:

Notation:
$$z \xrightarrow{t} z'$$
 $z \xrightarrow{\tau} z$

イロト イポト イヨト イヨト

E

(ロ) (部) (目) (日)

E

ヘロト ヘ部ト ヘヨト ヘヨト

э

イロト イポト イヨト イヨト

E

ヘロン ヘロン ヘヨン ヘヨン

э

イロト イポト イヨト イヨト

(日)

Definitions:

- transition sequence: $\sigma = t_1 \cdots t_n$
- run: $\sigma(\tau) = \tau_0 t_1 \tau_1 \cdots \tau_{n-1} t_n \tau_n, \qquad \tau_i \in \mathbb{R}^+_0$
- feasible run: $z_0 \xrightarrow{\tau_0} z_0^* \xrightarrow{t_1} z_1 \xrightarrow{\tau_1} z_1^* \cdots \xrightarrow{t_n} z_n \xrightarrow{\tau_n} z_n^*$
- feasible transition sequence : σ is feasible if there ex. a feasible run $\sigma(\tau)$

・ロット (雪) (日) (日)

Reachable state, Reachable marking, State space

Definitions:

- *z* is a **reachable state** in \mathcal{Z} if there ex. a feasible run $\sigma(\tau)$ and $z_0 \xrightarrow{\sigma(\tau)} z$
- *m* is a reachable *p*-marking in Z if there ex. a reachable state z in Z with z = (m, h)
- The set of all reachable states in Z is the state space of Z (denoted: StSp(Z)).

Some Problems: The State Space

The set of all reachable states is dense.

イロト イポト イヨト イヨト

Some Further Problems: Reachability of *p*-markings

 $\mathcal{R}_{\mathcal{Z}}$ is the set if all reachable *p*-markings in Z.

 $\mathcal{R}_{\mathcal{S}(\mathcal{Z})}$ is the set of all reachable markings in the skeleton of Z (the state space of the skeleton of Z).

・ コ ト ・ 雪 ト ・ 日 ト ・

Some Further Problems: Reachability of *p*-markings

 $\mathcal{R}_{\mathcal{Z}}$ is the set if all reachable *p*-markings in Z.

 $\mathcal{R}_{\mathcal{S}(\mathcal{Z})}$ is the set of all reachable markings in the skeleton of Z (the state space of the skeleton of Z).

Some Further Problems: Reachability of *p*-markings

 $\mathcal{R}_{\mathcal{Z}}$ is the set if all reachable *p*-markings in Z.

 $\mathcal{R}_{\mathcal{S}(\mathcal{Z})}$ is the set of all reachable markings in the skeleton of Z (the state space of the skeleton of Z).

A B A B A
A
B
A
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Some Further Problems: Reachability of *p*-markings

 $\mathcal{R}_{\mathcal{Z}}$ is the set if all reachable *p*-markings in Z.

 $\mathcal{R}_{\mathcal{S}(\mathcal{Z})}$ is the set of all reachable markings in the skeleton of Z (the state space of the skeleton of Z).

A B A B A
A
B
A
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Some Further Problems: Reachability of *p*-markings

 $\mathcal{R}_{\mathcal{Z}}$ is the set if all reachable *p*-markings in Z.

 $\mathcal{R}_{\mathcal{S}(\mathcal{Z})}$ is the set of all reachable markings in the skeleton of Z (the state space of the skeleton of Z).

A B A B A
A
B
A
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Parametric Run, Parametric State

Let $\mathcal{Z} = (P, T, F, V, m_0, I)$ be a TPN and $\sigma = t_1 \cdots t_n$ be a transition sequence in \mathcal{Z} .

 $(\sigma(x), B_{\sigma})$ is a **parametric run** of σ and (z_{σ}, B_{σ}) is a **parametric state** in \mathcal{Z} with $z_{\sigma} = (m_{\sigma}, h_{\sigma})$, if

- $m_0 \xrightarrow{\sigma} m_\sigma$
- $h_{\sigma}(t)$ is a sum of variables, (h_{σ} is a parametric *t*-marking)
- B_{σ} is a set of conditions (a system of inequalities)

・ロト ・ 同ト ・ ヨト ・ ヨト

Parametric Run, Parametric State

Let $\mathcal{Z} = (P, T, F, V, m_0, I)$ be a TPN and $\sigma = t_1 \cdots t_n$ be a transition sequence in \mathcal{Z} .

 $(\sigma(x), B_{\sigma})$ is a **parametric run** of σ and (z_{σ}, B_{σ}) is a **parametric state** in \mathcal{Z} with $z_{\sigma} = (m_{\sigma}, h_{\sigma})$, if

- $m_0 \xrightarrow{\sigma} m_\sigma$
- $h_{\sigma}(t)$ is a sum of variables, (h_{σ} is a parametric *t*-marking)
- B_{σ} is a set of conditions (a system of inequalities)

 $h_{\sigma}(t)$ is a **term** and B_{σ} is a set of **formulas** in a predicate logic (Presburger Arithmetic - decidable !)

・ロット (雪) (日) (日)
Parametric Run, Parametric State

Let $\mathcal{Z} = (P, T, F, V, m_0, I)$ be a TPN and $\sigma = t_1 \cdots t_n$ be a transition sequence in \mathcal{Z} .

 $(\sigma(x), B_{\sigma})$ is a **parametric run** of σ and (z_{σ}, B_{σ}) is a **parametric state** in \mathcal{Z} with $z_{\sigma} = (m_{\sigma}, h_{\sigma})$, if

- $m_0 \xrightarrow{\sigma} m_\sigma$
- $h_{\sigma}(t)$ is a sum of variables, (h_{σ} is a parametric *t*-marking)
- B_{σ} is a set of conditions (a system of inequalities)

Obviously

•
$$z_0 \xrightarrow{\sigma(x)} (z_\sigma, B_\sigma),$$

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Parametric Run, Parametric State

Let $\mathcal{Z} = (P, T, F, V, m_0, I)$ be a TPN and $\sigma = t_1 \cdots t_n$ be a transition sequence in \mathcal{Z} .

 $(\sigma(x), B_{\sigma})$ is a **parametric run** of σ and (z_{σ}, B_{σ}) is a **parametric state** in \mathcal{Z} with $z_{\sigma} = (m_{\sigma}, h_{\sigma})$, if

- $m_0 \xrightarrow{\sigma} m_\sigma$
- $h_{\sigma}(t)$ is a sum of variables, (h_{σ} is a parametric *t*-marking)
- B_{σ} is a set of conditions (a system of inequalities)

Obviously

•
$$z_0 \xrightarrow{\sigma(x)} (z_{\sigma}, B_{\sigma}),$$

• $StSp(\mathcal{Z}) = \bigcup_{\sigma, \beta} \{ z_{\sigma(\beta(x))} \mid \beta : X \to \mathbb{R}^+_0, \beta(x) \text{ satisfies } B_{\sigma} \}.$

ヘロト 人間 とくほ とくほ と

 $\sigma = t_4 t_3$

 $\sigma = t_4 t_3 \qquad : \qquad x_0$

 $\sigma = t_4 t_3 \qquad : \qquad x_0 t_4$

 $\sigma = t_4 \ t_3 \qquad : \qquad x_0 \ t_4 \ x_1$

 $\sigma = t_4 \ t_3 \qquad : \qquad x_0 \ t_4 \ x_1 \ t_3$

÷.

ヘロト ヘ団ト ヘヨト ヘヨト

 $\sigma = t_4 t_3 \qquad : \qquad x_0 t_4 x_1 t_3 x_2$

$$(z_{t_4t_3}, B_{t_4t_3}) = \left(\left(\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} x_0 + x_1 + x_2 \\ \sharp \\ x_2 \end{pmatrix} \right), \begin{cases} 2 \le x_0 \le 3, \ x_0 + x_1 \le 5, \\ 2 \le x_1 \le 4, \\ 0 \le x_2 \le 3, \\ x_0 + x_1 + x_2 \le 5 \end{cases} \right).$$

$$(\underbrace{\begin{pmatrix} 0\\1\\1 \end{pmatrix}, \begin{pmatrix} x_0 + x_1 + x_2\\ \sharp\\ x_2 \end{pmatrix}}_{z_{\sigma}}), \underbrace{\begin{pmatrix} z_{\sigma}, B_{\sigma} \end{pmatrix} = (z_{t_4 t_3}, B_{t_4 t_3}) = \\ \underbrace{\{ 2 \le x_0 \le 3, \\ \{ 2 \le x_1 \le 4, \quad x_0 + x_1 + x_2 \le 5 \} \\ 0 \le x_2 \le 3 \\ B_{\sigma} \end{bmatrix}}_{B_{\sigma}}$$

Bounds for the number of equalities in B_{σ} :

Let $\mathcal{Z} = (P, T, F, V, m_0, I)$ be a Petri net. Furthermore let (z_{σ}, B_{σ}) be a parametric state and $\sigma = t_1 \cdots t_n$ a transition sequence in \mathcal{Z} .

- The number of variables appearing in B_{σ} is at most n + 1.
- The number of non-redundant inequalities in B_{σ} is at most

$$\min\{2 \cdot (n \cdot |T| + 1), (n + 1) \cdot (\frac{n}{2} + 2)\}\$$

 $\sigma = t_1 t_3 t_4 t_2 t_3$

÷.

 $\sigma = t_1 t_3 t_4 t_2 t_3$

 $z_0 \xrightarrow{0.7}$

÷.

 $\sigma = t_1 t_3 t_4 t_2 t_3$

 $z_0 \xrightarrow{0.7}$

÷.

 $\sigma = t_1 t_3 t_4 t_2 t_3$

 $Z_0 \xrightarrow{0.7} \xrightarrow{t_1}$

÷.

ヘロト ヘ団ト ヘヨト ヘヨト

 $\sigma = t_1 t_3 t_4 t_2 t_3$

$$Z_0 \xrightarrow{0.7} \xrightarrow{t_1} \xrightarrow{0.0}$$

÷.

 $\sigma = t_1 t_3 t_4 t_2 t_3$

$$z_0 \xrightarrow{0.7} \xrightarrow{t_1} \xrightarrow{0.0}$$

÷.

 $\sigma = t_1 t_3 t_4 t_2 t_3$

 $z_0 \xrightarrow{0.7} \xrightarrow{t_1} \xrightarrow{0.0} \xrightarrow{t_3}$

÷.

ヘロト ヘヨト ヘヨト ヘヨト

 $\sigma = t_1 t_3 t_4 t_2 t_3$

 $Z_0 \xrightarrow{0.7} \xrightarrow{t_1} \xrightarrow{0.0} \xrightarrow{t_3} \xrightarrow{0.4}$

÷.

ヘロト ヘヨト ヘヨト ヘヨト

 $\sigma = t_1 t_3 t_4 t_2 t_3$

 $Z_0 \xrightarrow{0.7} \xrightarrow{t_1} \xrightarrow{0.0} \xrightarrow{t_3} \xrightarrow{0.4}$

÷.

ヘロト ヘヨト ヘヨト ヘヨト

 $\sigma = t_1 t_3 t_4 t_2 t_3$

 $Z_0 \xrightarrow{0.7} \stackrel{t_1}{\longrightarrow} \stackrel{0.0}{\longrightarrow} \stackrel{t_3}{\longrightarrow} \stackrel{0.4}{\longrightarrow} \stackrel{t_4}{\longrightarrow}$

æ

ヘロト ヘロト ヘビト ヘビト

 $\sigma = t_1 t_3 t_4 t_2 t_3$

 $Z_0 \xrightarrow{0.7} \xrightarrow{t_1} \xrightarrow{0.0} \xrightarrow{t_3} \xrightarrow{0.4} \xrightarrow{t_4} \xrightarrow{1.2}$

æ

ヘロト 人間 とくほ とくほ とう

 $\sigma = t_1 t_3 t_4 t_2 t_3$

 $Z_0 \xrightarrow{0.7} \xrightarrow{t_1} \xrightarrow{0.0} \xrightarrow{t_3} \xrightarrow{0.4} \xrightarrow{t_4} \xrightarrow{1.2}$

æ

ヘロト 人間 とくほ とくほ とう

 $\sigma = t_1 t_3 t_4 t_2 t_3$

 $Z_0 \xrightarrow{0.7} \xrightarrow{t_1} \xrightarrow{0.0} \xrightarrow{t_3} \xrightarrow{0.4} \xrightarrow{t_4} \xrightarrow{1.2} \xrightarrow{t_2} \rightarrow$

æ

ヘロト ヘロト ヘヨト ヘヨト

 $\sigma = t_1 t_3 t_4 t_2 t_3$

 $Z_0 \xrightarrow{0.7} \xrightarrow{t_1} \xrightarrow{0.0} \xrightarrow{t_3} \xrightarrow{0.4} \xrightarrow{t_4} \xrightarrow{1.2} \xrightarrow{t_2} \xrightarrow{0.5}$

2

ヘロト ヘロト ヘヨト ヘヨト

 $\sigma = t_1 t_3 t_4 t_2 t_3$

 $Z_0 \xrightarrow{0.7} \xrightarrow{t_1} \xrightarrow{0.0} \xrightarrow{t_3} \xrightarrow{0.4} \xrightarrow{t_4} \xrightarrow{1.2} \xrightarrow{t_2} \xrightarrow{0.5}$

2

ヘロト ヘロト ヘヨト ヘヨト

 $\sigma = t_1 t_3 t_4 t_2 t_3$

 $Z_0 \xrightarrow{0.7} \xrightarrow{t_1} \xrightarrow{0.0} \xrightarrow{t_3} \xrightarrow{0.4} \xrightarrow{t_4} \xrightarrow{1.2} \xrightarrow{t_2} \xrightarrow{0.5} \xrightarrow{t_3}$

2

ヘロト 人間 とくほ とくほ とう

 $\sigma = t_1 t_3 t_4 t_2 t_3$

 $Z_0 \xrightarrow{0.7} \xrightarrow{t_1} \xrightarrow{0.0} \xrightarrow{t_3} \xrightarrow{0.4} \xrightarrow{t_4} \xrightarrow{1.2} \xrightarrow{t_2} \xrightarrow{0.5} \xrightarrow{t_3} \xrightarrow{1.4} Z$

au = 0.7 0.0 0.4 1.2 0.5 1.4

Э

イロト イポト イヨト イヨト

 $\sigma = t_1 t_3 t_4 t_2 t_3$

 $\sigma(\tau) := \mathbf{Z}_0 \xrightarrow{\mathbf{0.7}} \xrightarrow{t_1} \xrightarrow{\mathbf{0.0}} \xrightarrow{t_3} \xrightarrow{\mathbf{0.4}} \xrightarrow{t_4} \xrightarrow{\mathbf{1.2}} \xrightarrow{t_2} \xrightarrow{\mathbf{0.5}} \xrightarrow{t_3} \xrightarrow{\mathbf{1.4}} \mathbf{Z}$

au = 0.7 0.0 0.4 1.2 0.5 1.4

イロト イポト イヨト イヨト 二日

$\sigma = t_1 t_3 t_4 t_2 t_3$

 $\sigma(\tau) := z_0 \xrightarrow{\mathbf{0.7}} \xrightarrow{t_1} \underbrace{\mathbf{0.0}}_{\tau} \xrightarrow{t_3} \underbrace{\mathbf{0.4}}_{\tau} \xrightarrow{t_4} \xrightarrow{\mathbf{1.2}} \xrightarrow{t_2} \underbrace{\mathbf{0.5}}_{\tau} \xrightarrow{t_3} \xrightarrow{\mathbf{1.4}} z$ $\tau = 0.7 \ 0.0 \ 0.4 \ 1.2 \ 0.5 \ 1.4$

э

イロト イポト イヨト イヨト

 $\sigma = t_1 t_3 t_4 t_2 t_3$

$$m_{\sigma} = (1, 2, 2, 1, 1)$$

æ

ヘロン 人間 とくほど 人間と

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

< ∃ >

$$B_{\sigma} = \left\{ \begin{array}{ll} 0 \leq x_{0}, & x_{0} \leq 2, \\ 0 \leq x_{1}, & x_{2} \leq 2, \\ 0 \leq x_{2}, & x_{3} \leq 2, \\ 1 \leq x_{3}, & x_{0} + x_{1} + x_{2} + x_{3} + x_{4} + x_{5} \leq 5, \\ 0 \leq x_{4}, & x_{4} + x_{5} \leq 2, \\ 0 \leq x_{5} \end{array} \right\}$$

19/44

E

<ロ> <同> <同> < 同> < 同>

The run $\sigma(\tau)$ with

is feasible.

20 / 44

<ロ> < 回 > < 回 > < 回 > < 回 > .

$$(m_{\sigma},\begin{pmatrix}1.9\\1.4\\1.4\\1.4\\4.2\\\ddagger\\z_{0}\overset{\sigma(\tau)}{\not\equiv}z$$

21 / 44

æ

ヘロア 人間 アメヨア・

E

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

E

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト
Example - Continuation

The runs

$$\sigma(\tau_1^*) := \mathbf{Z}_0 \xrightarrow{\mathbf{1}} \xrightarrow{t_1} \underbrace{\mathbf{0}} \xrightarrow{\mathbf{t}_3} \xrightarrow{\mathbf{1}} \xrightarrow{\mathbf{t}_4} \xrightarrow{\mathbf{1}} \xrightarrow{\mathbf{t}_2} \underbrace{\mathbf{0}} \xrightarrow{\mathbf{t}_3} \xrightarrow{\mathbf{1}} \left\lfloor \mathbf{Z} \right\rfloor$$

and

$$\sigma(\tau_2^*) := z_0 \xrightarrow{\mathbf{1}} \xrightarrow{t_1} \underbrace{\mathbf{0}} \xrightarrow{t_3} \underbrace{\mathbf{0}} \xrightarrow{t_4} \underbrace{\mathbf{2}} \xrightarrow{t_2} \underbrace{\mathbf{0}} \xrightarrow{t_3} \underbrace{\mathbf{2}} \xrightarrow{\mathbf{2}} \left[z \right]$$

are also feasible in \mathcal{Z} .

Э

・ロト ・ 同ト ・ ヨト ・ ヨト

Example - Continuation

The runs

$$\sigma(\tau_1^*) := Z_0 \xrightarrow{\mathbf{1}} \xrightarrow{t_1} \underbrace{\mathbf{0}} \xrightarrow{t_3} \xrightarrow{\mathbf{1}} \xrightarrow{t_4} \underbrace{\mathbf{1}} \xrightarrow{t_2} \underbrace{\mathbf{0}} \xrightarrow{t_3} \xrightarrow{\mathbf{1}} \left[Z \right]$$
$$\sigma(\tau) = Z_0 \xrightarrow{\mathbf{0}} \xrightarrow{t_1} \underbrace{\mathbf{0}} \xrightarrow{\mathbf{0}} \xrightarrow{t_3} \underbrace{\mathbf{0}} \xrightarrow{\mathbf{0}} \xrightarrow{t_4} \underbrace{\mathbf{1}} \xrightarrow{\mathbf{2}} \xrightarrow{t_2} \underbrace{\mathbf{0}} \xrightarrow{\mathbf{0}} \xrightarrow{t_3} \underbrace{\mathbf{1}} \xrightarrow{\mathbf{4}} Z$$
$$\sigma(\tau_2^*) := Z_0 \xrightarrow{\mathbf{1}} \xrightarrow{t_1} \underbrace{\mathbf{0}} \xrightarrow{\mathbf{1}} \xrightarrow{\mathbf{1}} \xrightarrow{\mathbf{0}} \xrightarrow{\mathbf{1}} \xrightarrow{\mathbf{0}} \xrightarrow{\mathbf{1}} \xrightarrow{\mathbf{1}} \xrightarrow{\mathbf{2}} \xrightarrow{\mathbf{0}} \xrightarrow{\mathbf{1}} \xrightarrow{\mathbf{1}} \xrightarrow{\mathbf{2}} \left[Z \right]$$

are also feasible in \mathcal{Z} .

E

Theorem 1:

Let \mathcal{Z} be a TPN and $\sigma = t_1 \cdots t_n$ be a feasible transition sequence in \mathcal{Z} with a feasable run $\sigma(\tau)$ of σ ($\tau = \tau_0 \dots \tau_n$) i.e.

$$z_0 \xrightarrow{\tau_0} \xrightarrow{t_1} \cdots \xrightarrow{t_n} \xrightarrow{\tau_n} z_n = (m_n, h_n),$$

and all $\tau_i \in \mathbb{R}_0^+$. Then, there exists a further feasible run $\sigma(\tau^*)$, $\tau^* = \tau_0^* \dots \tau_n^*$ of σ with

$$z_0 \xrightarrow{\tau_0^*} \xrightarrow{t_1} \cdots \xrightarrow{t_n} \xrightarrow{\tau_n^*} z_n^* = (m_n^*, h_n^*).$$

such that

23 / 44

ヘロト ヘポト ヘヨト ヘヨト

Theorem 1 – Continuation:

$$egin{aligned} & z_0 & \stackrel{ au_0}{\longrightarrow} \stackrel{t_1}{\longrightarrow} \cdots \stackrel{t_n}{\longrightarrow} \stackrel{ au_n}{\longrightarrow} z_n = (m_n, h_n), \ au_i \in \mathbb{R}^+_0, \ & z_0 & \stackrel{ au_0^*}{\longrightarrow} \stackrel{ au_1^*}{\longrightarrow} \cdots \stackrel{ au_n}{\longrightarrow} \stackrel{ au_n^*}{\longrightarrow} z_n^* = (m_n^*, h_n^*) \end{aligned}$$

• For each $i, 0 \le i \le n$ the time τ_i^* is a natural number.

2 For each enabled transition *t* at marking $m_n(=m_n^*)$ it holds:

$$\bullet h_n^*(t) = \lfloor h_n(t) \rfloor$$

$$\mathbf{2} \quad \sum_{i=1}^{n} \tau_i^* = \lfloor \sum_{i=1}^{n} \tau_i \rfloor$$

For each transition t ∈ T it holds:
 t is ready to fire in z_n iff t is also ready to fire in [z_n].

< ロ > < 同 > < 回 > < 回 > <

Theorem 1 – Continuation:

$$\begin{array}{cccc} z_0 & \xrightarrow{\tau_0} & \xrightarrow{t_1} & \cdots & \xrightarrow{t_n} & \xrightarrow{\tau_n} & z_n = (m_n, h_n), \ \tau_i \in \mathbb{R}_0^+. \\ z_0 & \xrightarrow{\tau_0^*} & \xrightarrow{t_1} & \cdots & \xrightarrow{t_n} & \xrightarrow{\tau_n^*} & z_n^* = (m_n^*, h_n^*), \ \tau_i^* \in \mathbb{N}. \end{array}$$

• For each $i, 0 \le i \le n$ the time τ_i^* is a natural number.

2 For each enabled transition *t* at marking $m_n(=m_n^*)$ it holds:

$$\bullet h_n^*(t) = \lfloor h_n(t) \rfloor$$

$$\mathbf{2} \quad \sum_{i=1}^{n} \tau_i^* = \lfloor \sum_{i=1}^{n} \tau_i \rfloor$$

For each transition t ∈ T it holds:
 t is ready to fire in z_n iff t is also ready to fire in [z_n].

< ロ > < 同 > < 回 > < 回 > <

Let $X_{\sigma} := \{x_0, x_1, \dots, x_n\}$ and $\beta_0 : X_{\sigma} \longrightarrow \mathbb{R}_0^+$ with $\beta_0(x_i) := \tau_i$ for each $i \in \{0, \dots, n\}$.

The successive construction of the assignment β^* from β_0 .

< ロ > < 同 > < 回 > < 回 >

Let $X_{\sigma} := \{x_0, x_1, \dots, x_n\}$ and $\beta_0 : X_{\sigma} \longrightarrow \mathbb{R}_0^+$ with $\beta_0(x_i) := \tau_i$ for each $i \in \{0, \dots, n\}$.

β	$\beta(x_0)$	$\beta(x_1)$	• • •	$\beta(\mathbf{x}_{n-i})$	$\beta(x_{n-(i-1)})$	• • •	$\beta(x_{n-1})$	$\beta(\mathbf{x}_n)$
β_0	r	r	• • •	r	r	• • •	r	r
β_1	r	r	• • •	r	r	•••	r	k

The successive construction of the assignment β^* from β_0 .

Let $X_{\sigma} := \{x_0, x_1, \dots, x_n\}$ and $\beta_0 : X_{\sigma} \longrightarrow \mathbb{R}_0^+$ with $\beta_0(x_i) := \tau_i$ for each $i \in \{0, \dots, n\}$.

β	$\beta(x_0)$	$\beta(x_1)$	•••	$\beta(x_{n-i})$	$\beta(x_{n-(i-1)})$	•••	$\beta(x_{n-1})$	$\beta(x_n)$
β_0	r	r	•••	r	r	• • •	r	r
β_1	r	r	•••	r	r	• • •	r	k
β_2	r	r		r	r		k	k

The successive construction of the assignment β^* from β_0 .

Let $X_{\sigma} := \{x_0, x_1, \dots, x_n\}$ and $\beta_0 : X_{\sigma} \longrightarrow \mathbb{R}^+_0$ with $\beta_0(x_i) := \tau_i$ for each $i \in \{0, \dots, n\}$.

β	$\beta(x_0)$	$\beta(x_1)$	•••	$\beta(x_{n-i})$	$\beta(x_{n-(i-1)})$	•••	$\beta(x_{n-1})$	$\beta(x_n)$
β_0	r	r	•••	r	r	•••	r	r
β_1	r	r	• • •	r	r	• • •	r	k
β_2	r	r		r	r	• • •	k	k
•			•			•		

The successive construction of the assignment β^* from β_0 .

Let $X_{\sigma} := \{x_0, x_1, \dots, x_n\}$ and $\beta_0 : X_{\sigma} \longrightarrow \mathbb{R}^+_0$ with $\beta_0(x_i) := \tau_i$ for each $i \in \{0, \dots, n\}$.

β	$\beta(x_0)$	$\beta(x_1)$	• • •	$\beta(x_{n-i})$	$\beta(x_{n-(i-1)})$	•••	$\beta(x_{n-1})$	$\beta(x_n)$
β_0	r	r	• • •	r	r	• • •	r	r
β_1	r	r	• • •	r	r	• • •	r	k
β_2	r	r		r	r		k	k
:			•			•		
•			-			-		
β_i	r	r	•••	r	k	•••	k	k

The successive construction of the assignment β^* from β_0 .

Let $X_{\sigma} := \{x_0, x_1, \dots, x_n\}$ and $\beta_0 : X_{\sigma} \longrightarrow \mathbb{R}^+_0$ with $\beta_0(x_i) := \tau_i$ for each $i \in \{0, \dots, n\}$.

β	$\beta(x_0)$	$\beta(x_1)$	• • •	$\beta(x_{n-i})$	$\beta(x_{n-(i-1)})$	• • •	$\beta(x_{n-1})$	$\beta(x_n)$
β_0	r	r	•••	r	r	•••	r	r
β_1	r	r	• • •	r	r	• • •	r	k
β_2	r	r	• • •	r	r	• • •	k	k
÷			:			-		
β_i	r	r		r	k		k	k
÷			÷			÷		

The successive construction of the assignment β^* from β_0 .

Let $X_{\sigma} := \{x_0, x_1, \dots, x_n\}$ and $\beta_0 : X_{\sigma} \longrightarrow \mathbb{R}^+_0$ with $\beta_0(x_i) := \tau_i$ for each $i \in \{0, \dots, n\}$.

β	$\beta(x_0)$	$\beta(x_1)$	• • •	$\beta(\mathbf{x}_{n-i})$	$\beta(x_{n-(i-1)})$	• • •	$\beta(x_{n-1})$	$\beta(x_n)$
β_0	r	r	• • •	r	r	• • •	r	r
β_1	r	r	• • •	r	r	•••	r	k
β_2	r	r	• • •	r	r	• • •	k	k
÷			÷			÷		
β_i	r	r		r	k		k	k
÷			÷			÷		
Bn	r	k		k	k		k	k

The successive construction of the assignment β^* from β_0 .

Let $X_{\sigma} := \{x_0, x_1, \dots, x_n\}$ and $\beta_0 : X_{\sigma} \longrightarrow \mathbb{R}^+_0$ with $\beta_0(x_i) := \tau_i$ for each $i \in \{0, \dots, n\}$.

β	$\beta(x_0)$	$\beta(x_1)$	• • •	$\beta(x_{n-i})$	$\beta(x_{n-(i-1)})$	• • •	$\beta(x_{n-1})$	$\beta(\mathbf{x}_n)$
β_0	r	r	• • •	r	r	• • •	r	r
eta_1	r	r	• • •	r	r	• • •	r	k
β_2	r	r	• • •	r	r	• • •	k	k
÷			:			÷		
•			•			•	1.	1.
β_i	r	r	•••	r	ĸ	•••	ĸ	K
:			:			:		
B	r	k	•	k	k		k	k
ρ_n	/	~	•••	n	n	•••	n	n
$\beta^* := \beta_{n+1}$	k	k		k	k		k	k

The successive construction of the assignment β^* from β_0 .

25 / 44

For each inequality $c \in B_{\sigma}$ let s(c) be the sum of variables.

Position of the real number $[\![s(c)]\!]_{\beta_0}$ and the integers $\lfloor [\![s(c)]\!]_{\beta_0} \rfloor - 1$, $\lfloor [\![s(c)]\!]_{\beta_0} \rfloor$, $\lceil [\![s(c)]\!]_{\beta_0} \rceil$ and $\lceil [\![s(c)]\!]_{\beta_0} \rceil + 1$.

	Time Petri Nets	Rounding of Runs
$Z_0 \xrightarrow{0.7} \xrightarrow{t_1} \xrightarrow{0.0} \xrightarrow{t_3} \xrightarrow{0.4}$	$\xrightarrow{t_4} \xrightarrow{1.2} \xrightarrow{t_2}$	$\xrightarrow{0.5} \xrightarrow{t_3} \xrightarrow{1.4} (m_{\sigma}, (1.9, 1.4, 1.4, 1.4, 4.2, \sharp))$

	Time Petri Nets	Rounding of Runs
$Z_0 \xrightarrow{0.7} \xrightarrow{t_1} \xrightarrow{0.0} \xrightarrow{t_3} \xrightarrow{0.4}$	$\xrightarrow{t_4} \xrightarrow{1.2} \xrightarrow{t_2}$	$\xrightarrow{0.5} \xrightarrow{t_3} \xrightarrow{1.4} (m_{\sigma}, (1.9, 1.4, 1.4, 1.4, 4.2, \sharp))$

<ロ> < 回> < 回> < 三> < 三> < 三</p>

Care Care

Time Petri Nets	Rounding of Runs
$Z_0 \xrightarrow{0.7} \xrightarrow{t_1} \xrightarrow{0.0} \xrightarrow{t_3} \xrightarrow{0.4} \xrightarrow{t_4} \xrightarrow{1.2} \xrightarrow{t_2}$	$\xrightarrow{0.5} \xrightarrow{t_3} \xrightarrow{1} (m_{\sigma}, (1.9, 1.4, 1.4, 1.4, 4.2, \sharp))$

<ロ> < 回> < 回> < 三> < 三> < 三</p>

Care Care

Time Petri Nets	Rounding of Runs
$Z_0 \xrightarrow{0.7} \xrightarrow{t_1} \xrightarrow{0.0} \xrightarrow{t_3} \xrightarrow{0.4} \xrightarrow{t_4} \xrightarrow{1.2} \xrightarrow{t_2} \xrightarrow{t_3} \xrightarrow{t_4} t$	$\xrightarrow{0.5} \xrightarrow{t_3} \xrightarrow{1} (m_{\sigma}, (1.5, 1.0, 1.0, 1.0, 3.8, \sharp))$

<ロ> < 回> < 回> < 三> < 三> < 三</p>

Care Care

Time Petri Nets	Rounding of Runs
$Z_0 \xrightarrow{0.7} \xrightarrow{t_1} \xrightarrow{0.0} \xrightarrow{t_3} \xrightarrow{0.4} \xrightarrow{t_4} \xrightarrow{1.2} \xrightarrow{t_2} \xrightarrow{t_2}$	$\xrightarrow{0.5} \xrightarrow{t_3} \xrightarrow{1} (m_{\sigma}, (1.5, 1.0, 1.0, 1.0, 3.8, \sharp))$

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへで

	Time Petri Nets	Rounding of Runs
$Z_0 \xrightarrow{0.7} \xrightarrow{t_1} \xrightarrow{0.0} \xrightarrow{t_3} \xrightarrow{0.4}$	$\xrightarrow{t_4} \xrightarrow{1.2} \xrightarrow{t_2}$	$\xrightarrow{0} \xrightarrow{t_3} \xrightarrow{1} (m_{\sigma}, (1.5, 1.0, 1.0, 1.0, 3.8, \sharp))$

	Time Petri Nets	Rounding of Runs
$Z_0 \xrightarrow{0.7} \xrightarrow{t_1} \xrightarrow{0.0} \xrightarrow{t_3} \xrightarrow{0.4}$	$\xrightarrow{t_4} \xrightarrow{1.2} \xrightarrow{t_2}$	$\xrightarrow{0} \xrightarrow{t_3} \xrightarrow{1} (m_{\pi}, (1.0, 1.0, 1.0, 1.0, 3.3, \sharp))$

 $h_{\sigma}(t_1) = x_4 + x_5,$ $h_{\sigma}(t_5) = x_1 + x_2 + x_3 + x_4 + x_5$ $h_{\sigma}(t_2) = h_{\sigma}(t_3) = h_{\sigma}(t_4) = x_5$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣

Tim	e Petri Nets Ro	Rounding of Runs			
$Z_0 \xrightarrow{0.7} \xrightarrow{t_1} \xrightarrow{0.0} \xrightarrow{t_3} \xrightarrow{0.4} \xrightarrow{t_4}$	$\xrightarrow{1.2} \xrightarrow{t_2} \xrightarrow{0}$	$\xrightarrow{t_3} \xrightarrow{1} (m_{\sigma}, (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, $	0,1.0,3.3,♯))		

$$h_{\sigma}(t_1) = x_4 + x_5, h_{\sigma}(t_5) = x_1 + x_2 + x_3 + x_4 + x_5$$

$$h_{\sigma}(t_2) = h_{\sigma}(t_3) = h_{\sigma}(t_4) = x_5$$

	Time Petri Nets	Rounding of Runs
$Z_0 \xrightarrow{0.7} \xrightarrow{t_1} \xrightarrow{0.0} \xrightarrow{t_3} \xrightarrow{0.4}$	$\xrightarrow{t_4} \xrightarrow{1} \xrightarrow{t_2}$	$\stackrel{0}{\longrightarrow} \stackrel{t_3}{\longrightarrow} \stackrel{1}{\longrightarrow} (m_{\sigma}, (1.0, 1.0, 1.0, 1.0, 3.3, \sharp))$

$$\begin{aligned} h_{\sigma}(t_1) &= x_4 + x_5, \\ h_{\sigma}(t_5) &= x_1 + x_2 + x_3 + x_4 + x_5 \end{aligned}$$

$$h_{\sigma}(t_2) = h_{\sigma}(t_3) = h_{\sigma}(t_4) = x_5$$

▲□▶▲□▶▲□▶▲□▶ ■ うへで

27 / 44

	Time Petri Nets	Rounding of Runs
$Z_0 \xrightarrow{0.7} \xrightarrow{t_1} \xrightarrow{0.0} \xrightarrow{t_3} \xrightarrow{0.4}$	$\xrightarrow{t_4} \xrightarrow{1} \xrightarrow{t_2}$	$\xrightarrow{0} \xrightarrow{t_3} \xrightarrow{1} (m_{\pi}, (1.0, 1.0, 1.0, 1.0, 3.1, \sharp))$

	I		<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	<i>x</i> 5	$h_{\sigma}(t_1)$	$h_{\sigma}(t_2)$	$h_{\sigma}(t_5)$
$\hat{\beta}$	=	β_0	0.7	0.0	0.4	1.2	0.5	1.4	1.9	1.4	4.2
		β_1	0.7	0.0	0.4	1.2	0.5	1	1.5	1.0	3.8
		β_2	0.7	0.0	0.4	1.2	0	1	1.0		3.3
		β_3	0.7	0.0	0.4	1	0	1			3.1

$$\begin{aligned} h_{\sigma}(t_1) &= x_4 + x_5, \\ h_{\sigma}(t_5) &= x_1 + x_2 + x_3 + x_4 + x_5 \end{aligned}$$

 $h_{\sigma}(t_2) = h_{\sigma}(t_3) = h_{\sigma}(t_4) = x_5$

◆□→ ◆□→ ◆注→ ◆注→ □注

	Time Petri Nets	Rounding of Runs
$Z_0 \xrightarrow{0.7} \xrightarrow{t_1} \xrightarrow{0.0} \xrightarrow{t_3} \xrightarrow{0.4}$	$\xrightarrow{t_4} \xrightarrow{1} \xrightarrow{t_2}$	$\xrightarrow{0} \xrightarrow{t_3} \xrightarrow{1} (m_{\sigma}, (1.0, 1.0, 1.0, 1.0, 3.1, \sharp))$

$$h_{\sigma}(t_1) = x_4 + x_5, h_{\sigma}(t_5) = x_1 + x_2 + x_3 + x_4 + x_5$$

$$h_{\sigma}(t_2) = h_{\sigma}(t_3) = h_{\sigma}(t_4) = x_5$$

	Time Petri Nets	Rounding of Runs
$Z_0 \xrightarrow{0.7} \xrightarrow{t_1} \xrightarrow{0.0} \xrightarrow{t_3} \xrightarrow{1}$	$\xrightarrow{t_4} \xrightarrow{1} \xrightarrow{t_2}$	$\xrightarrow{0} \xrightarrow{t_3} \xrightarrow{1} (m_{\sigma}, (1.0, 1.0, 1.0, 1.0, 3.1, \sharp))$

$$h_{\sigma}(t_1) = x_4 + x_5, h_{\sigma}(t_5) = x_1 + x_2 + x_3 + x_4 + x_5$$

$$h_{\sigma}(t_2) = h_{\sigma}(t_3) = h_{\sigma}(t_4) = x_5$$

	Time Petri Nets	Rounding of Runs
$Z_0 \xrightarrow{0.7} \xrightarrow{t_1} \xrightarrow{0.0} \xrightarrow{t_3} \xrightarrow{1}$	$\xrightarrow{t_4} \xrightarrow{1} \xrightarrow{t_2}$	$\xrightarrow{0} \xrightarrow{t_3} \xrightarrow{1} (m_{\sigma}, (1.0, 1.0, 1.0, 1.0, 3.7, \sharp))$

$$h_{\sigma}(t_1) = x_4 + x_5,$$

$$h_{\sigma}(t_5) = x_1 + x_2 + x_3 + x_4 + x_5$$

$$h_{\sigma}(t_2) = h_{\sigma}(t_3) = h_{\sigma}(t_4) = x_5$$

▲□▶▲□▶▲□▶▲□▶ ■ うへで

27 / 44

	Time Petri Nets	Rounding of Runs
$Z_0 \xrightarrow{0.7} \xrightarrow{t_1} \xrightarrow{0.0} \xrightarrow{t_3} \xrightarrow{1}$	$\xrightarrow{t_4} \xrightarrow{1} \xrightarrow{t_2}$	$\xrightarrow{0} \xrightarrow{t_3} \xrightarrow{1} (m_{\sigma}, (1.0, 1.0, 1.0, 1.0, 3.7, \sharp))$

I		<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	<i>x</i> 5	$ h_{\sigma}(t_1)$	$h_{\sigma}(t_2)$	$h_{\sigma}(t_5)$
$\hat{\beta} =$	β_0	0.7	0.0	0.4	1.2	0.5	1.4	1.9	1.4	4.2
	β_1	0.7	0.0	0.4	1.2	0.5	1	1.5	1.0	3.8
	β_2	0.7	0.0	0.4	1.2	0	1	1.0		3.3
	β_3	0.7	0.0	0.4	1	0	1			3.1
	β_4	0.7	0.0	1	1	0	1			3.7
	β_5	0.7		1	1	0	1			
	1							1		
L (L)						6	(1)	L (L)	I. (

$$m_{\sigma}(t_1) = x_4 + x_5,$$

 $h_{\sigma}(t_5) = x_1 + x_2 + x_3 + x_4 + x_5$

$$h_{\sigma}(t_2) = h_{\sigma}(t_3) = h_{\sigma}(t_4) = x_5$$

▲□▶▲□▶▲□▶▲□▶ ■ うへで

27 / 44

	Time Petri Nets	Rounding of Runs
$Z_0 \xrightarrow{0.7} \xrightarrow{t_1} \xrightarrow{0} \xrightarrow{t_3} \xrightarrow{1}$	$\xrightarrow{t_4} \xrightarrow{1} \xrightarrow{t_2}$	$\xrightarrow{0} \xrightarrow{t_3} \xrightarrow{1} (m_{\sigma}, (1.0, 1.0, 1.0, 1.0, 3.7, \sharp))$

I		<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	<i>x</i> 5	$h_{\sigma}(t_1) h_{\sigma}(t_2) h_{\sigma}(t_5)$			
$\hat{\beta} =$	β_0	0.7	0.0	0.4	1.2	0.5	1.4	1.9	1.4	4.2	
	β_1	0.7	0.0	0.4	1.2	0.5	1	1.5	1.0	3.8	
	β_2	0.7	0.0	0.4	1.2	0	1	1.0		3.3	
	β_3	0.7	0.0	0.4	1	0	1			3.1	
	β_4	0.7	0.0	1	1	0	1			3.7	
	β_5	0.7	0	1	1	0	1				
$h_{\sigma}(t_1) = d$	x 4 +	- X 5,				h_c	$(t_2) =$	$= h_{\sigma}(t_3)$	$=h_{\sigma}($	$(t_4) = x_5$	

 $h_{\sigma}(t_5) = x_1 + x_2 + x_3 + x_4 + x_5$

<□>
<□>
<□>
□>

	Time Petri Nets	Rounding of Runs
$Z_0 \xrightarrow{0.7} \xrightarrow{t_1} \xrightarrow{0} \xrightarrow{t_3} \xrightarrow{1}$	$\xrightarrow{t_4} \xrightarrow{1} \xrightarrow{t_2}$	$\xrightarrow{0} \xrightarrow{t_3} \xrightarrow{1} (m_{\sigma}, (1.0, 1.0, 1.0, 1.0, 3.7, \sharp))$

I		<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> 5	$h_{\sigma}(t_1) h_{\sigma}(t_2) h_{\sigma}(t_5)$		
$\hat{\beta} =$	β_0	0.7	0.0	0.4	1.2	0.5	1.4	1.9	1.4	4.2
	β_1	0.7	0.0	0.4	1.2	0.5	1	1.5	1.0	3.8
	β_2	0.7	0.0	0.4	1.2	0	1	1.0		3.3
	β_3	0.7	0.0	0.4	1	0	1			3.1
	β_4	0.7	0.0	1	1	0	1			3.7
	β_5	0.7	0	1	1	0	1			3.7
								•		

$$\begin{aligned} h_{\sigma}(t_1) &= x_4 + x_5, \\ h_{\sigma}(t_5) &= x_1 + x_2 + x_3 + x_4 + x_5 \end{aligned} \qquad h_{\sigma}(t_2) &= h_{\sigma}(t_3) = h_{\sigma}(t_4) = x_5 \end{aligned}$$

	Time Petri Nets	Rounding of Runs
$Z_0 \xrightarrow{0.7} \xrightarrow{t_1} \xrightarrow{0} \xrightarrow{t_3} \xrightarrow{1} \xrightarrow{-}$	$\xrightarrow{t_4} \xrightarrow{1} \xrightarrow{t_2} \xrightarrow{-}$	$\xrightarrow{0} \xrightarrow{t_3} \xrightarrow{1} (m_{\sigma}, (1.0, 1.0, 1.0, 1.0, 3.7, \sharp))$

	I		<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	<i>x</i> 5	$h_{\sigma}(t_1) h_{\sigma}(t_2) h_{\sigma}(t_5)$		
$\hat{\beta}$	=	β_0	0.7	0.0	0.4	1.2	0.5	1.4	1.9	1.4	4.2
		β_1	0.7	0.0	0.4	1.2	0.5	1	1.5	1.0	3.8
		β_2	0.7	0.0	0.4	1.2	0	1	1.0		3.3
		β_3	0.7	0.0	0.4	1	0	1			3.1
		β_4	0.7	0.0	1	1	0	1			3.7
		β_5	0.7	0	1	1	0	1			3.7
β^*	=	β_{6}		0	1	1	0	1			

 $\begin{aligned} h_{\sigma}(t_1) &= x_4 + x_5, \\ h_{\sigma}(t_5) &= x_1 + x_2 + x_3 + x_4 + x_5 \end{aligned}$

$$h_{\sigma}(t_2) = h_{\sigma}(t_3) = h_{\sigma}(t_4) = x_5$$

< □ > < □ > < □ > < □ > < □ > = □

	Time Petri Nets	Rounding of Runs
$Z_0 \xrightarrow{1} \xrightarrow{t_1} \xrightarrow{0} \xrightarrow{t_3} \xrightarrow{1}$	$\xrightarrow{t_4} \xrightarrow{1} \xrightarrow{t_2}$	$\xrightarrow{0} \xrightarrow{t_3} \xrightarrow{1} (m_{\sigma}, (1.0, 1.0, 1.0, 1.0, 3.7, \sharp))$

	Т		<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	<i>x</i> 5	$h_{\sigma}(t_1)$	$h_{\sigma}(t_2)$	$h_{\sigma}(t_5)$
$\hat{\beta}$	=	β_0	0.7	0.0	0.4	1.2	0.5	1.4	1.9	1.4	4.2
		β_1	0.7	0.0	0.4	1.2	0.5	1	1.5	1.0	3.8
		β_2	0.7	0.0	0.4	1.2	0	1	1.0		3.3
		β_3	0.7	0.0	0.4	1	0	1			3.1
		β_4	0.7	0.0	1	1	0	1			3.7
		β_5	0.7	0	1	1	0	1			3.7
β^*	=	β_{6}	1	0	1	1	0	1			

 $\begin{aligned} h_{\sigma}(t_1) &= x_4 + x_5, \\ h_{\sigma}(t_5) &= x_1 + x_2 + x_3 + x_4 + x_5 \end{aligned}$

$$h_{\sigma}(t_2) = h_{\sigma}(t_3) = h_{\sigma}(t_4) = x_5$$

< □ > < □ > < □ > < □ > < □ > = □

	Time Petri Nets	Rounding of Runs
$Z_0 \xrightarrow{1} \xrightarrow{t_1} \xrightarrow{0} \xrightarrow{t_3} \xrightarrow{1} \xrightarrow{t_4}$	$t_4 \rightarrow \frac{1}{\longrightarrow} \xrightarrow{t_2} -$	$\xrightarrow{0} \xrightarrow{t_3} \xrightarrow{1} (m_{\sigma}, (1.0, 1.0, 1.0, 1.0, 4.0, \sharp))$

	I		<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	<i>x</i> 5	$h_{\sigma}(t_1)$	$h_{\sigma}(t_2)$	$h_{\sigma}(t_5)$
$\hat{\beta}$	=	β_0	0.7	0.0	0.4	1.2	0.5	1.4	1.9	1.4	4.2
		β_1	0.7	0.0	0.4	1.2	0.5	1	1.5	1.0	3.8
		β_2	0.7	0.0	0.4	1.2	0	1	1.0		3.3
		β_3	0.7	0.0	0.4	1	0	1			3.1
		β_4	0.7	0.0	1	1	0	1			3.7
		β_5	0.7	0	1	1	0	1			3.7
β^*	=	β_{6}	1	0	1	1	0	1			4.0

 $h_{\sigma}(t_1) = x_4 + x_5,$ $h_{\sigma}(t_5) = x_1 + x_2 + x_3 + x_4 + x_5$ $h_{\sigma}(t_2) = h_{\sigma}(t_3) = h_{\sigma}(t_4) = x_5$

(ロ) (部) (E) (E) (E)

Theorem 2:

Let \mathcal{Z} be a TPN and $\sigma = t_1 \cdots t_n$) be a feasible transition sequence in \mathcal{Z} , with feasable run $\sigma(\tau)$ of σ ($\tau = \tau_0 \dots \tau_n$) i.e.

$$z_0 \xrightarrow{\tau_0} \xrightarrow{t_1} \cdots \xrightarrow{t_n} \xrightarrow{\tau_n} z_n = (m_n, h_n),$$

and all $\tau_i \in \mathbb{R}^+_0$. Then, there exists a further feasible run $\sigma(\tau^*)$ of σ with

$$z_0 \xrightarrow{\tau_0^*} \xrightarrow{t_1} \cdots \xrightarrow{t_n} \xrightarrow{\tau_n^*} z_n^* = (m_n^*, h_n^*).$$

such that

Theorem 2 – Continuation:

- For each $i, 0 \le i \le n$ the time τ_i^* is a natural number.
- **2** For each enabled transition *t* at marking $m_n(=m_n^*)$ it holds:

$$h_n(t)^* = \lceil h_n(t) \rceil.$$

$$2 \quad \sum_{i=1}^{n} \tau_i^* = \left\lceil \sum_{i=1}^{n} \tau_i \right\rceil$$

For each transition t ∈ T holds:
 t is ready to fire in z_n iff t is also ready to fire in [z_n].

< ロ > < 同 > < 回 > < 回 >

	Time Petri Nets	Rounding of Runs
$Z_0 \xrightarrow{0.7} \xrightarrow{t_1} \xrightarrow{0.0} \xrightarrow{t_3} \xrightarrow{0.4}$	$\xrightarrow{t_4} \xrightarrow{1.2} \xrightarrow{t_2}$	$\xrightarrow{0.5} \xrightarrow{t_3} \xrightarrow{1.4} (m_{\sigma}, (1.9, 1.4, 1.4, 1.4, 4.2, \sharp))$

	Ш		x ₀	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	<i>x</i> 5	$h_{\sigma}(t_1)$	$h_{\sigma}(t_2)$	$h_{\sigma}(t_5)$
$\hat{\beta}$	=	β_0	0.7	0.0	0.4	1.2	0.5	1.4	1.9	1.4	4.2
		β_1	0.7	0.0	0.4	1.2	0.5	2	2.5	2.0	4.8
		β_2	0.7	0.0	0.4	1.2	0	2	2.0		4.3
		β_3	0.7	0.0	0.4	2	0	2			5.1
		β_4	0.7	0.0	0	2	0	2			4.7
		β_5	0.7	0	0	2	0	2			4.7
		β_{6}	1	0	0	2	0	2			5.0

 $z_{0} \xrightarrow{1} \xrightarrow{t_{1}} \xrightarrow{0} \xrightarrow{t_{3}} \xrightarrow{0} \xrightarrow{t_{4}} \xrightarrow{2} \xrightarrow{t_{2}} \xrightarrow{0} \xrightarrow{t_{3}} \xrightarrow{2} (m_{\sigma}, (2, 2, 2, 2, 5, \sharp))$

< □ > < □ > < □ > < □ > < □ > = □
	Time Petri Nets	Rounding of Runs
$Z_0 \xrightarrow{0.7} \xrightarrow{t_1} \xrightarrow{0.0} \xrightarrow{t_3} \xrightarrow{0.4}$	$\xrightarrow{t_4} \xrightarrow{1.2} \xrightarrow{t_2}$	$\xrightarrow{0.5} \xrightarrow{t_3} \xrightarrow{1.4} (m_{\pi}, (1.9, 1.4, 1.4, 1.4, 4.2, \sharp))$

The time length of the run $\sigma(\tau)$ is $\hat{\beta}(x_0) + \hat{\beta}(x_1) + \hat{\beta}(x_2) + \hat{\beta}(x_3) + \hat{\beta}(x_4) + \hat{\beta}(x_5) = 4.2$

Time Petri No	Nets Rounding of Runs	
$Z_0 \xrightarrow{0.7} \xrightarrow{t_1} \xrightarrow{0.0} \xrightarrow{t_3} \xrightarrow{0.4} \xrightarrow{t_4} \xrightarrow{1.2} \xrightarrow{-1}$	$\xrightarrow{t_2} \xrightarrow{0.5} \xrightarrow{t_3} \xrightarrow{1.4} (m_{\sigma}, (1.9, 1.4, 1.4, 1.4, 4.1)$	2, ♯))

The time length of the run $\sigma(\tau)$ is $\hat{\beta}(x_0) + \hat{\beta}(x_1) + \hat{\beta}(x_2) + \hat{\beta}(x_3) + \hat{\beta}(x_4) + \hat{\beta}(x_5) = 4.2$ In tableau I: The time length of the run $\sigma(\tau_1^*)$ is 4

	Time Petri Nets	Rounding of Runs
$Z_0 \xrightarrow{0.7} \xrightarrow{t_1} \xrightarrow{0.0} \xrightarrow{t_3} \xrightarrow{0.4}$	$\xrightarrow{t_4} \xrightarrow{1.2} \xrightarrow{t_2}$	$\xrightarrow{0.5} \xrightarrow{t_3} \xrightarrow{1.4} (m_{\sigma}, (1.9, 1.4, 1.4, 1.4, 4.2, \sharp))$

The time length of the run $\sigma(\tau)$ is $\hat{\beta}(x_0) + \hat{\beta}(x_1) + \hat{\beta}(x_2) + \hat{\beta}(x_3) + \hat{\beta}(x_4) + \hat{\beta}(x_5) = 4.2$ In tableau I: The time length of the run $\sigma(\tau_1^*)$ is 4 In tableau II: The time length of the run $\sigma(\tau_2^*)$ is 5

イロト イポト イヨト イヨト

Some Conclusions

- Each feasible transitions sequence σ in Z can be realized with an integer run.
- Each reachable *p*-marking in \mathcal{Z} can be reached using **integer** runs only.
- If z is reachable in \mathcal{Z} , then $\lfloor z \rfloor$ and $\lceil z \rceil$ are reachable in \mathcal{Z} as well.
- The length of the shortest and longest time path (if this is finite) between two arbitrary *p*-markings are natural numbers.

A run $\sigma(\tau) = \tau_0 \ t_1 \ \tau_1 \dots t_n \ \tau_n$ is an **integer** one, if $\tau_i \in \mathbb{N}$ for each $i = 0 \dots n$.

Integer States

A state z = (m, h) is an **integer** one, if $h(t) \in \mathbb{N}$ for each in *m* enabled transition *t*.

Theorem 3:

Let \mathcal{Z} be a finite TPN, i.e. $lft(t) \neq \infty$ for all $t \in T$. The set of all reachable integer states in \mathcal{Z} is finite if and only if the set of all reachable *p*-markings in \mathcal{Z} is finite.

Integer States

A state z = (m, h) is an **integer** one, if $h(t) \in \mathbb{N}$ for each in *m* enabled transition *t*.

Theorem 3:

Let \mathcal{Z} be a finite TPN, i.e. $lft(t) \neq \infty$ for all $t \in T$. The set of all reachable integer states in \mathcal{Z} is finite if and only if the set of all reachable *p*-markings in \mathcal{Z} is finite.

Remark:

Theorem 3 can be generalized for all TPNs (applying a further reduction of the state space).

イロト イポト イヨト イヨト

Modified Rule

Let \mathcal{Z} be an arbitrary TPN. The state change **by time elapsing** can be slightly **modified** for each transition *t* with $lft(t) = \infty$, because in order to fire such a transition *t*

- it is important to know whether t is old enough or not, i.e. whether t has been enabled last for eft(t) (or more) time units or t is younger.
- Thus, the time h(t) increases until eft(t). After that,
 the clock of t remains in this position (although the time is elapsing), unless t becomes disabled.

Theorem 4:

In an arbitrary TPN a *p*-marking is reachable using the nonmodified definition iff it is reachable using the modified one.

Theorem 4:

In an arbitrary TPN a *p*-marking is reachable using the nonmodified definition iff it is reachable using the modified one.

All **integer states** in an arbitrary TPN, obtained by using the **modified definition**, are called the **essential states** of this net.

くロト く伺 とくき とくきつ

Theorem 4:

In an arbitrary TPN a *p*-marking is reachable using the nonmodified definition iff it is reachable using the modified one.

All **integer states** in an arbitrary TPN, obtained by using the **modified definition**, are called the **essential states** of this net.

Theorem 5:

An arbitrary TPN is bounded iff the set of its reachable essential states is finite.

< ロ > < 同 > < 回 > < 国

Standard Rule vs. Modified Rule

It holds that:

$$RIS_{\mathcal{Z}} := \{ (1, \begin{pmatrix} 0\\0 \end{pmatrix}), (1, \begin{pmatrix} 1\\1 \end{pmatrix}), (1, \begin{pmatrix} 2\\2 \end{pmatrix}), (1, \begin{pmatrix} 3\\3 \end{pmatrix}), (1, \begin{pmatrix} 4\\4 \end{pmatrix}), (1, \begin{pmatrix} 5\\5 \end{pmatrix}), (0, \begin{pmatrix} \sharp\\ \sharp \end{pmatrix}) \}$$

and
$$REIS_{\mathcal{Z}} := \{ (1, \begin{pmatrix} 0\\0 \end{pmatrix}), (1, \begin{pmatrix} 1\\1 \end{pmatrix}), (1, \begin{pmatrix} 2\\2 \end{pmatrix}), (1, \begin{pmatrix} 3\\2 \end{pmatrix}), (1, \begin{pmatrix} 4\\2 \end{pmatrix}), (1, \begin{pmatrix} 5\\2 \end{pmatrix}), (0, \begin{pmatrix} \sharp\\ \sharp \end{pmatrix}) \}.$$

Clearly, neither $REIS_{\mathcal{Z}} \subseteq RIS_{\mathcal{Z}}$ nor $REIS_{\mathcal{Z}} \supseteq RIS_{\mathcal{Z}}$.

・ コ ト ・ 雪 ト ・ 日 ト ・

Discrete Reduction of the State Space

The set of all reachable states

Discrete Reduction of the State Space

The set of all reachable states

The set of all essential states

 $\bullet \equiv \bullet$

E

・ロン ・回 と ・ 回 と ・ 回 と

The reachability graph is a weighted directed graph, including the time explicit.

<ロト < 同ト < 回ト <

The reachability graph is a weighted directed graph, including the time explicit.

<ロト < 同ト < 回ト <

The reachability graph is a weighted directed graph, including the time explicit.

< ロ > < 同 > < 三 >

The reachability graph is a weighted directed graph, including the time explicit.

< ロ > < 同 > < 回 > < 国

The reachability graph is a weighted directed graph, including the time explicit.

<ロト < 同ト < 回ト <

The reachability graph is a weighted directed graph, including the time explicit.

The reachability graph is a weighted directed graph, including the time explicit.

Reachable Graph

Example: A finite TPN and its reachability graph

Example: A finite TPN and its reachability graph

Image: A math a math

Example: A finite TPN and its reachability graph

э

イロト イポト イヨト イヨト

Reachable Graph

Example: A finite TPN and its reachability graph

э

イロト イポト イヨト イヨト

Time Petri Nets

Reachable Graph

Example: A non-finite TPN and its reachability graph

э

< D > < P > < P > < P >

-∢ ≣ →

State Classes Reachability Graphs vs. Essential States Reachability Graphs

ъ

< A >

Time Petri Nets

Reachable Graph

number of	essenti	essential-states algorithm			state class algorithm		
tokens	number of	number of	total	number of	number of	total	
in <i>p</i> 0	vertices	edges	number	vertices	edges	number	
0	1	0	1	1	0	1	
1	4	21	25	4	5	9	
2	63	310	373	81	157	238	
3	250	1252	1502	258	574	832	
4	692	3920	4612	1053	2979	4032	
5	1367	8115	9482	2653	8119	10772	
6	2265	13769	16034	5000	15884	20884	
7	3386	20882	24268	8089	26315	34404	
8	4730	29454	34184	11909	39371	51280	
9	6297	39485	45782	16454	55023	71477	
10	8087	50975	59062	21708	73210	94918	

The firing rule is defined based on static conflict.

Э

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Time Petri Nets

Reachable Graph

number of	essential-states algorithm			state class algorithm		
tokens	number of	number of	total	number of	number of	total
in <i>p</i> 0	vertices	edges	number	vertices	edges	number
0	1	0	1	1	0	1
1	4	21	25	4	5	9
2	86	441	527	94	186	280
3	550	2740	3290	570	1354	1924
4	1916	9975	11891	2181	5907	8088
5	9167	50618	59785	16588	53781	70369
7	15152	84449	99601	34118	114249	148367
8	22862	127989	150851	61123	208195	269318
9	32165	180510	212675	97479	335218	432697
10	42989	241713	284702	142712	493602	636314

The firing rule is defined based on dynamic conflict.

43/44

Э

ヘロア 人間 アメヨア 人口 ア

Questions, Discussions ?

