
Testing Concurrent Conformance

Hernán Ponce de León

INRIA and LSV, École Normale Supérieure de Cachan and CNRS, France

KOSMOS Workshop - November 2013



Motivation Example

Testing concurrent systems

Some actions are naturally concurrent (distributed systems)

Interleaving may be artificial

Hernán Ponce de León 2 / 30



Testing Concurrent Systems

i ioco s ⇔ ∀σ ∈ traces(s) : out(i after σ) ⊆ out(s after σ)

Ins Train

?seli

!pricei

τ

?selt

!pricet

Imp

ioco

Ins Train

?seli

!pricei

?selt

!pricet

Spe

Concurrency is interpreted as interleavings

Hernán Ponce de León 3 / 30



Formal Black Box Testing

Hernán Ponce de León 4 / 30



Formal Black Box Testing

Hernán Ponce de León 4 / 30



Content

1 Model of the systems
Petri nets
Occurrence nets - Unfolding
Event Stuctures

2 Testing Framework
The conformance relation
Test suite
Test generation

3 Unsolved questions
Can we observe concurrency?
What is the meaning of concurrency?
Test execution
IICS sets

Hernán Ponce de León 5 / 30



Petri nets

?login

!us data

?train

!tr price 1

!tr price 2

?plane !pl price

?insurance

!ins price

!ins data

transitions

marking

Hernán Ponce de León 6 / 30



Petri nets

?login

!us data

?train

!tr price 1

!tr price 2

?plane !pl price

?insurance

!ins price

!ins data

places

transitions

marking

Hernán Ponce de León 6 / 30



Petri nets

?login

!us data

?train

!tr price 1

!tr price 2

?plane !pl price

?insurance

!ins price

!ins data

places

transitions

marking

Hernán Ponce de León 6 / 30



Petri nets

?login

!us data

?train

!tr price 1

!tr price 2

?plane !pl price

?insurance

!ins price

!ins data

places

transitions

marking

Hernán Ponce de León 6 / 30



Occurrence net - (Partial Order) Unfolding

Acyclic (possible infinite) Petri net that highlights conflict

places → conditions
transitions → events

only one arrow entering to conditions

no self conflict

?login

!us data

?train

!tr price 1

!tr price 2

?plane !pl price

?insurance

!ins price

!ins data. . .

. . .

...

. . .

. . .

. . .

Hernán Ponce de León 7 / 30



Event Structures

Set of events E equipped with

causality: ≤

conflict: # (inherited w.r.t ≤)

concurrency: co (events not related by ≤ or #)

labeling: λ : E → I ]O

Hernán Ponce de León 8 / 30



Occurrence nets and Event Structures

?login

!us data

?train

!tr price 1

!tr price 2

?plane !pl price

?insurance

!ins price

!ins data

?login

?plane !pl price

?train

!tr price 1

!tr price 2

?insurance

!ins data

!ins price

!us data

Hernán Ponce de León 9 / 30



Configuration

Causally closed and conflict free set of events

Represents executions

?login

!us data

?train

!tr price 1

!tr price 2

?plane !pl price

?insurance

!ins price

!ins data

4

Hernán Ponce de León 10 / 30



Configuration

Causally closed and conflict free set of events

Represents executions

?login

!us data

?train

!tr price 1

!tr price 2

?plane !pl price

?insurance

!ins price

!ins data

4

Hernán Ponce de León 10 / 30



Configuration

Causally closed and conflict free set of events

Represents executions

?login

!us data

?train

!tr price 1

!tr price 2

?plane !pl price

?insurance

!ins price

!ins data

8

Hernán Ponce de León 10 / 30



Configuration

Causally closed and conflict free set of events

Represents executions

?login

!us data

?train

!tr price 1

!tr price 2

?plane !pl price

?insurance

!ins price

!ins data

8

Hernán Ponce de León 10 / 30



Content

1 Model of the systems
Petri nets
Occurrence nets - Unfolding
Event Stuctures

2 Testing Framework
The conformance relation
Test suite
Test generation

3 Unsolved questions
Can we observe concurrency?
What is the meaning of concurrency?
Test execution
IICS sets

Hernán Ponce de León 11 / 30



LTS vs LES

States → Configurations

Traces

- labeled partial order (LPO) → concurrency is preserved

Outputs / Quiescence

Also LPOs

Hernán Ponce de León 12 / 30



Produced outputs

A configuration is quiescent iff only enabled input events

Outputs(C): LPOs of outputs leading to a quiescent configuration,
δ if quiescent

?login

!us data

?train

!tr price 1

!tr price 2

?plane !pl price

?insurance

!ins price

!ins data

out({?login, !us data}) = {δ}

Hernán Ponce de León 13 / 30



Produced outputs

A configuration is quiescent iff only enabled input events

Outputs(C): LPOs of outputs leading to a quiescent configuration,
δ if quiescent

?login

!us data

?train

!tr price 1

!tr price 2

?plane !pl price

?insurance

!ins price

!ins data

out({?login}) = {!us data}

Hernán Ponce de León 13 / 30



Produced outputs

A configuration is quiescent iff only enabled input events

Outputs(C): LPOs of outputs leading to a quiescent configuration,
δ if quiescent

?login

!us data

?train

!tr price 1

!tr price 2

?plane !pl price

?insurance

!ins price

!ins data

!ins price 6∈ out({?login, !us data, ?insurance})

Hernán Ponce de León 13 / 30



Produced outputs

A configuration is quiescent iff only enabled input events

Outputs(C): LPOs of outputs leading to a quiescent configuration,
δ if quiescent

?login

!us data

?train

!tr price 1

!tr price 2

?plane !pl price

?insurance

!ins price

!ins data

out({?login, !us data, ?insurance}) = {!ins price co !ins data}

Concurrency is preserved

Hernán Ponce de León 13 / 30



Produced outputs

A configuration is quiescent iff only enabled input events

Outputs(C): LPOs of outputs leading to a quiescent configuration,
δ if quiescent

?login

!us data

?train

!tr price 1

!tr price 2

?plane !pl price

?insurance

!ins price

!ins data

out({?login, !us data, ?train}) = {!tr price 1, !tr price 2}

Hernán Ponce de León 13 / 30



co-ioco

Ei co-ioco Es ⇔ ∀ω ∈ traces(Es) : out(Ei after ω) ⊆ out(Es after ω)

Ins Train

?seli

!pricei

τ

?selt

!pricet

Imp

(((((co-ioco

ioco

Ins Train

?seli

!pricei

?selt

!pricet

Spe

no concurrency = ioco

Hernán Ponce de León 14 / 30



Complete test suite

Test case: finite deterministic Occurrence net with no immediate
conflict between inputs

Sufficient conditions for soundness

1 ∀Et ∈ T : traces(Et) ⊆ traces(Es)

2 ∀Et ∈ T , ω ∈ traces(Et) : outt(⊥ after ω) = outs(⊥ after ω)

Sufficient conditions for exhautiveness

1 ∀ω ∈ traces(Es),∃Et ∈ T : ω ∈ traces(Et);

2 ∀Et ∈ T , ω ∈ traces(Et) : (⊥t after ω) is quiescent implies
(⊥s after ω) is quiescent;

Hernán Ponce de León 15 / 30



Building test cases

From a finite deterministic occurrence net, resolve immediate
conflict between inputs:

Hernán Ponce de León 16 / 30



Building test cases

From a finite deterministic occurrence net, resolve immediate
conflict between inputs:

?login

Hernán Ponce de León 16 / 30



Building test cases

From a finite deterministic occurrence net, resolve immediate
conflict between inputs:

?login

!us data

Hernán Ponce de León 16 / 30



Building test cases

From a finite deterministic occurrence net, resolve immediate
conflict between inputs:

?login

!us data

?insurance

Hernán Ponce de León 16 / 30



Building test cases

From a finite deterministic occurrence net, resolve immediate
conflict between inputs:

?login

!us data

?insurance

!ins price

Hernán Ponce de León 16 / 30



Building test cases

From a finite deterministic occurrence net, resolve immediate
conflict between inputs:

?login

!us data

?insurance

!ins price

!ins data

Hernán Ponce de León 16 / 30



Building test cases

From a finite deterministic occurrence net, resolve immediate
conflict between inputs:

?login

!us data

?train?insurance

!ins price

!ins data

Hernán Ponce de León 16 / 30



Building test cases

From a finite deterministic occurrence net, resolve immediate
conflict between inputs:

?login

!us data

?train

!tr price 1

?insurance

!ins price

!ins data

Hernán Ponce de León 16 / 30



Building test cases

From a finite deterministic occurrence net, resolve immediate
conflict between inputs:

?login

!us data

?train

!tr price 1

!tr price 2

?insurance

!ins price

!ins data

Hernán Ponce de León 16 / 30



Building test cases

From a finite deterministic occurrence net, resolve immediate
conflict between inputs:

?login

!us data

?train

!tr price 1

!tr price 2

?insurance

!ins price

!ins data

?plane (and its future) can not be added: they introduce
immediate input conflict

Hernán Ponce de León 16 / 30



Building test cases

From a finite deterministic occurrence net, resolve immediate
conflict between inputs:

?login

!us data

?train

!tr price 1

!tr price 2

?insurance

!ins price

!ins data

Completeness: we need another test case containing ?plane

Hernán Ponce de León 16 / 30



iics Set

The set of linearization should consider every resolution of
immediate conflict inputs.

Definition

Let L be a set of linearizations of ≤. Then L is an immediate
input conflict saturated set, or iics set, for E iff for all e1, e2 ∈ EI

such that e1#µe2, there exist R1,R2 ∈ L with ∀e ∈ [e1] : eR1e2

and ∀e ∈ [e2] : eR2e1.

Hernán Ponce de León 17 / 30



A complete test suite

Proposition

Every event is represented by at least one test case if we use the
algorithm to resolve immediate conflict and an iics set.

Theorem

From the set of all finite prefixes of the specification, the algorithm
to resolve immediate conflict and an iics set yield a complete test
suite.

Hernán Ponce de León 18 / 30



Test selection

Exhaustive test suites are usually infinite:

- we need a finite prefix of the unfolding

How to choose it?

- basic behaviors are cycles

- unfold each cycle once (adding outputs if necessary)

↓

output closure of a (cycling) complete prefix

Hernán Ponce de León 19 / 30



Cycling criterion: sound test suite

Proposition

The output closure of a complete prefix preserves traces and
outputs.

Theorem

The resolving immediate conflict algorithm applied to the output
closure of a complete prefix yields a sound test suite.

Result: sound test suite that covers all the basic behaviors

Hernán Ponce de León 20 / 30



Content

1 Model of the systems
Petri nets
Occurrence nets - Unfolding
Event Stuctures

2 Testing Framework
The conformance relation
Test suite
Test generation

3 Unsolved questions
Can we observe concurrency?
What is the meaning of concurrency?
Test execution
IICS sets

Hernán Ponce de León 21 / 30



How to observe concurrency?

Observable concurrency

Non observable concurrency

Hernán Ponce de León 22 / 30



How to observe concurrency? (2)

Update clocks over synchronization: vector clocks

Hernán Ponce de León 23 / 30



How to interpret concurrency?

Spe

P1

a
c

P2

b

Impl1

P1

a

c

P2

b

Impl2

P1

a
c

P2

b

weak concurrency: further refinement
strong concurrency: distribution

Hernán Ponce de León 24 / 30



How to interpret concurrency? (2)

ParSeq
controller

reqa

acka

reqb

ackb

opcode
signals

done

. . .

weak concurrency: external choice

Hernán Ponce de León 25 / 30



How to model w/s concurrency?

Conditional Partial Order Graphs [Mokhov,Yakovlev]

Hernán Ponce de León 26 / 30



Test execution

Test execution: product of LTS

s1

?insurance

s2

!ins price

s3

?plane

s4

!pl price

p1

?insurance

p2

!ins price

p3

?plane

p4

!pl price

p5

p1s1

?insurance

s2 p2

!ins price

p3s3

?plane

p4s4

!pl price

p5

Product of nets do not preserve concurrency!

Hernán Ponce de León 27 / 30



Partial order commutation

Let Σ be an alphabet and I ⊆ Σ× Σ a symmetric and irreflexive
relation called the independence relation.

For x , y ∈ Σ∗ we have x ≡I y if we can obtain y from x by
successive commutation of neighboring independent letters.

[x ]I , {y ∈ Σ∗ | x ≡I y}

Example

If I = {(a, d)(d , a)(b, c)(c , d)}, we have:

[baadcb]I = {baadcb, baadbc, badacb, badabc, bdaacb, bdaabc}

Hernán Ponce de León 28 / 30



Constructing an iics set

I , (E × E )\(≤ ∪(# ∩ EI × EI))

e1

⊥

e3

e2 e4

e5
e6

e7

e8

Normal form of any linearization:

R1 = (⊥)(e1)(e2)(e3)(e4)(e5e6e7e8) R2 = (⊥)(e1)(e2)(e4)(e3)(e5e6e7e8)

R3 = (⊥)(e1)(e3)(e2)(e4)(e5e6e7e8) R4 = (⊥)(e1)(e3)(e4)(e2)(e5e6e7e8)

R5 = (⊥)(e1)(e4)(e2)(e3)(e5e6e7e8) R6 = (⊥)(e1)(e4)(e3)(e2)(e5e6e7e8)

Hernán Ponce de León 29 / 30



Thank you!

Hernán Ponce de León 30 / 30


	Model of the systems
	Petri nets
	Occurrence nets - Unfolding
	Event Stuctures

	Testing Framework
	The conformance relation
	Test suite
	Test generation

	Unsolved questions
	Can we observe concurrency?
	What is the meaning of concurrency?
	Test execution
	IICS sets


