Testing Concurrent Conformance

Hernán Ponce de León

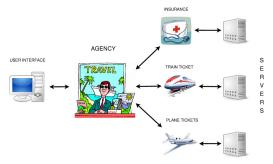
INRIA and LSV, École Normale Supérieure de Cachan and CNRS, France

KOSMOS Workshop - November 2013

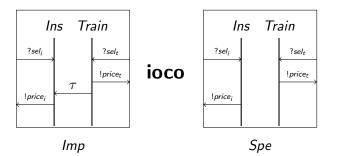
Motivation Example

Testing concurrent systems

- Some actions are naturally concurrent (distributed systems)
- Interleaving may be artificial

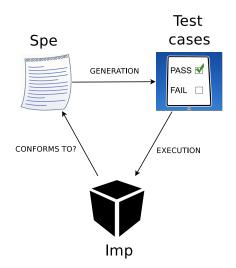


i ioco $s \Leftrightarrow \forall \sigma \in \text{traces}(s) : \text{out}(i \text{ after } \sigma) \subseteq \text{out}(s \text{ after } \sigma)$

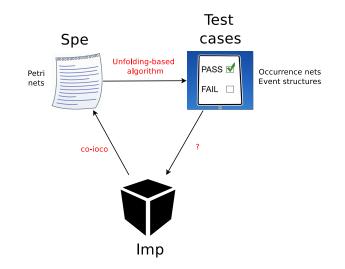


Concurrency is interpreted as interleavings

Formal Black Box Testing



Formal Black Box Testing



Content

Model of the systems

- Petri nets
- Occurrence nets Unfolding
- Event Stuctures

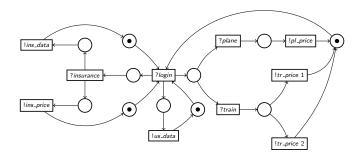
2 Testing Framework

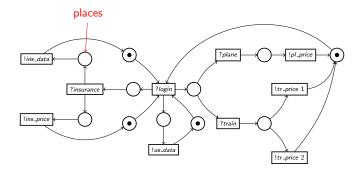
- The conformance relation
- Test suite
- Test generation

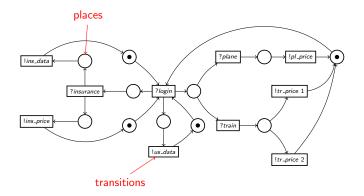
3 Unsolved questions

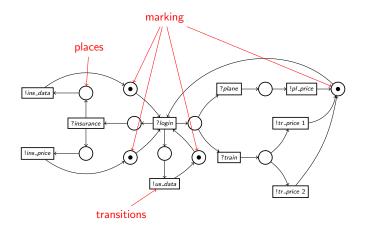
- Can we observe concurrency?
- What is the meaning of concurrency?
- Test execution

IICS sets







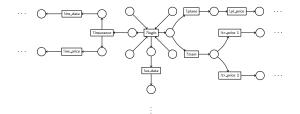


Occurrence net - (Partial Order) Unfolding

Acyclic (possible infinite) Petri net that highlights conflict

 $\begin{array}{l} \mathsf{places} \to \mathsf{conditions} \\ \mathsf{transitions} \to \mathsf{events} \end{array}$

- only one arrow entering to conditions
- no self conflict

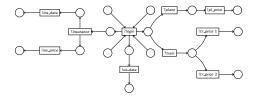


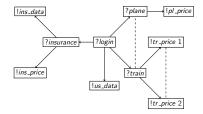
Set of events E equipped with

- causality: \leq
- conflict: # (inherited w.r.t ≤)
- concurrency: co (events not related by \leq or #)

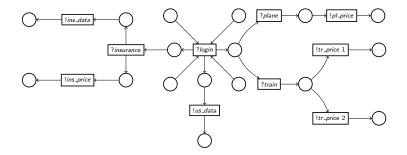
• labeling:
$$\lambda : E \to \mathcal{I} \uplus \mathcal{O}$$

Occurrence nets and Event Structures

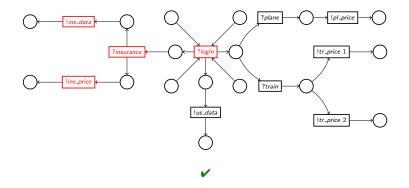




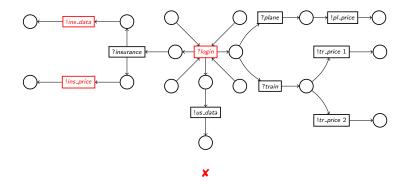
- Causally closed and conflict free set of events
- Represents executions



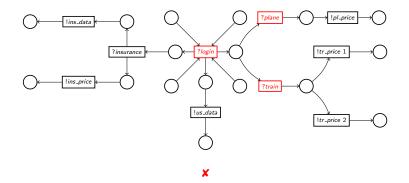
- Causally closed and conflict free set of events
- Represents executions



- Causally closed and conflict free set of events
- Represents executions



- Causally closed and conflict free set of events
- Represents executions



Content

Model of the systems

- Petri nets
- Occurrence nets Unfolding
- Event Stuctures

2 Testing Framework

- The conformance relation
- Test suite
- Test generation

3 Unsolved questions

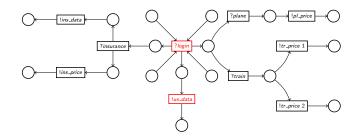
- Can we observe concurrency?
- What is the meaning of concurrency?
- Test execution

IICS sets

- States \rightarrow Configurations
- Traces
 - labeled partial order (LPO) \rightarrow concurrency is preserved
- Outputs / Quiescence
 - Also LPOs

A configuration is quiescent iff only enabled input events

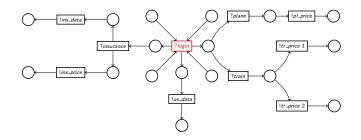
 $\mathsf{Outputs}(\mathsf{C}):$ LPOs of outputs leading to a quiescent configuration, δ if quiescent



 $\operatorname{out}(\{\operatorname{?login}, \operatorname{!us_data}\}) = \{\delta\}$

A configuration is quiescent iff only enabled input events

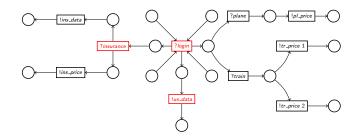
 $\mathsf{Outputs}(\mathsf{C}):$ LPOs of outputs leading to a quiescent configuration, δ if quiescent



$$\operatorname{out}(\{? \operatorname{login}\}) = \{! us_data\}$$

A configuration is quiescent iff only enabled input events

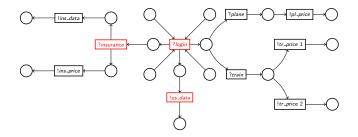
Outputs(C): LPOs of outputs leading to a quiescent configuration, δ if quiescent



!*ins_price* ∉ out({?*login*, !*us_data*, ?*insurance*})

A configuration is quiescent iff only enabled input events

Outputs(C): LPOs of outputs leading to a quiescent configuration, δ if quiescent

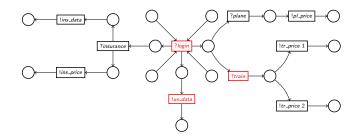


out({?login, !us_data, ?insurance}) = {!ins_price co !ins_data}

Concurrency is preserved

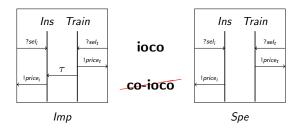
A configuration is quiescent iff only enabled input events

Outputs(C): LPOs of outputs leading to a quiescent configuration, δ if quiescent



 $out(\{?login, !us_data, ?train\}) = \{!tr_price 1, !tr_price 2\}$

$\mathcal{E}_i \text{ co-ioco } \mathcal{E}_s \Leftrightarrow \forall \omega \in \operatorname{traces}(\mathcal{E}_s) : \operatorname{out}(\mathcal{E}_i \text{ after } \omega) \subseteq \operatorname{out}(\mathcal{E}_s \text{ after } \omega)$



no concurrency = **ioco**

Test case: finite deterministic Occurrence net with no immediate conflict between inputs

Sufficient conditions for soundness

$$\forall \mathcal{E}_t \in \mathcal{T} : traces(\mathcal{E}_t) \subseteq traces(\mathcal{E}_s)$$

$$\forall \mathcal{E}_t \in \mathcal{T}, \omega \in traces(\mathcal{E}_t) : out_t(\perp \text{ after } \omega) = out_s(\perp \text{ after } \omega)$$

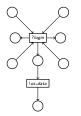
Sufficient conditions for exhautiveness

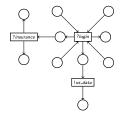
$$\forall \omega \in traces(\mathcal{E}_s), \exists \mathcal{E}_t \in \mathcal{T} : \omega \in traces(\mathcal{E}_t);$$

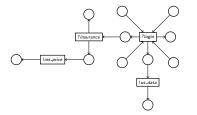
2
$$\forall \mathcal{E}_t \in T, \omega \in traces(\mathcal{E}_t) : (⊥_t \text{ after } ω) is quiescent implies (⊥_s after ω) is quiescent;$$

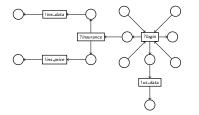
 \bigcirc

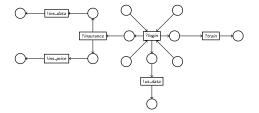
 \bigcirc

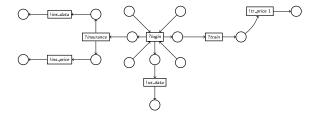


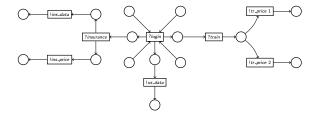


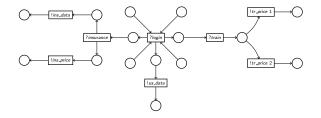






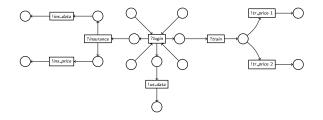






?plane (and its future) can not be added: they introduce immediate input conflict

From a finite deterministic occurrence net, resolve immediate conflict between inputs:



Completeness: we need another test case containing ?plane

The set of linearization should consider every resolution of immediate conflict inputs.

Definition

Let \mathcal{L} be a set of linearizations of \leq . Then \mathcal{L} is an *immediate input conflict saturated* set, or *iics* set, for \mathcal{E} iff for all $e_1, e_2 \in E^{\mathcal{I}}$ such that $e_1 \#^{\mu} e_2$, there exist $\mathcal{R}_1, \mathcal{R}_2 \in \mathcal{L}$ with $\forall e \in [e_1] : e\mathcal{R}_1 e_2$ and $\forall e \in [e_2] : e\mathcal{R}_2 e_1$.

Proposition

Every event is represented by at least one test case if we use the algorithm to resolve immediate conflict and an iics set.

Theorem

From the set of all finite prefixes of the specification, the algorithm to resolve immediate conflict and an iics set yield a complete test suite.

- Exhaustive test suites are usually infinite:
 - we need a finite prefix of the unfolding
- How to choose it?
 - basic behaviors are cycles
 - unfold each cycle once (adding outputs if necessary)

\downarrow

output closure of a (cycling) complete prefix

Proposition

The output closure of a complete prefix preserves traces and outputs.

Theorem

The resolving immediate conflict algorithm applied to the output closure of a complete prefix yields a sound test suite.

Result: sound test suite that covers all the basic behaviors

Content

1 Model of the systems

- Petri nets
- Occurrence nets Unfolding
- Event Stuctures

2 Testing Framework

- The conformance relation
- Test suite
- Test generation

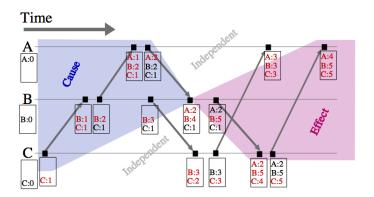
Onsolved questions

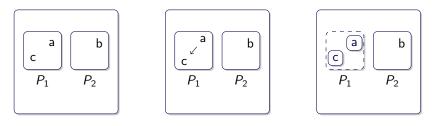
- Can we observe concurrency?
- What is the meaning of concurrency?
- Test execution
- IICS sets

Observable concurrency

Non observable concurrency

Update clocks over synchronization: vector clocks



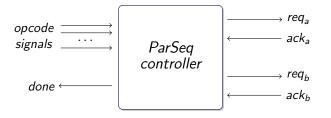


Spe

 Impl_1

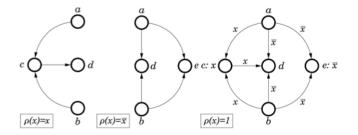
 Impl_2

weak concurrency: further refinement
strong concurrency: distribution



weak concurrency: external choice

Conditional Partial Order Graphs [Mokhov, Yakovlev]



Test execution: product of LTS

Product of nets do not preserve concurrency!

Let Σ be an alphabet and $I \subseteq \Sigma \times \Sigma$ a symmetric and irreflexive relation called the independence relation.

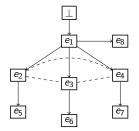
For $x, y \in \Sigma^*$ we have $x \equiv_I y$ if we can obtain y from x by successive commutation of neighboring independent letters.

$$[x]_I \triangleq \{y \in \Sigma^* \mid x \equiv_I y\}$$

Example If $I = \{(a, d)(d, a)(b, c)(c, d)\}$, we have: $[baadcb]_{I} = \{baadcb, baadbc, badacb, badabc, bdaacb, bdaabc\}$

Constructing an iics set

$$I \triangleq (E \times E) \backslash (\leq \cup (\# \cap E^{\mathcal{I}} \times E^{\mathcal{I}}))$$



Normal form of any linearization:

$$\begin{aligned} \mathcal{R}_1 &= (\bot)(e_1)(e_2)(e_3)(e_4)(e_5e_6e_7e_8) & \mathcal{R}_2 &= (\bot)(e_1)(e_2)(e_4)(e_3)(e_5e_6e_7e_8) \\ \mathcal{R}_3 &= (\bot)(e_1)(e_3)(e_2)(e_4)(e_5e_6e_7e_8) & \mathcal{R}_4 &= (\bot)(e_1)(e_3)(e_4)(e_2)(e_5e_6e_7e_8) \\ \mathcal{R}_5 &= (\bot)(e_1)(e_4)(e_2)(e_3)(e_5e_6e_7e_8) & \mathcal{R}_6 &= (\bot)(e_1)(e_4)(e_3)(e_2)(e_5e_6e_7e_8) \end{aligned}$$

Thank you!