KOSMOS workshop

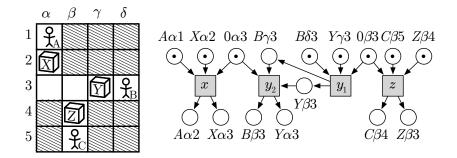
Concurrency Issues

MExICo Team

INRIA and LSV, CNRS and ENS Cachan

November 27, 2013

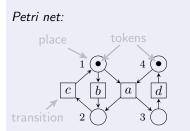
Some actions reveal one another

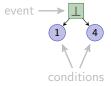


z prevents y_1 ... and therefore makes x inevitable:

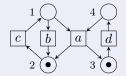
z reveals $x : z \triangleright x$

Petri nets, Processes, Branching Processes and Unfoldings

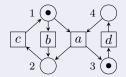


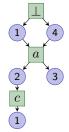


Petri net:

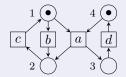


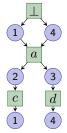
Petri net:



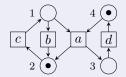


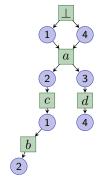
Petri net:



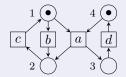


Petri net:





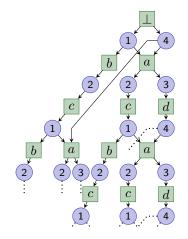
Petri net:



Process: representation of a non-sequential run as a partial order.

Branching process: representation of several runs.

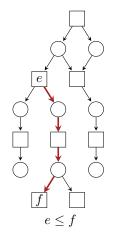
Unfolding: maximal branching process.



Nets and Structural Relations

The structure of a net induces three relations over its nodes:

Causality $\leq e \leq f \quad \stackrel{\text{def}}{\leftarrow} e F^* f \text{ (directed path from } e \text{ to } f \text{)}$

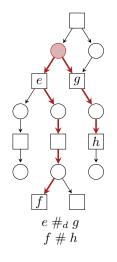


PO logics

Nets and Structural Relations

The structure of a net induces three relations over its nodes:

	Causality \leq				
	$e \leq f$	$\stackrel{\mathit{def}}{\Leftrightarrow}$	$e \ F^* \ f$ (directed path from e to f)		
Conflict #					
	$e \ \#_d g$	$\stackrel{\mathit{def}}{\Longleftrightarrow}$	$e\neq g\wedge {}^\bullet e\cap {}^\bullet g\neq \emptyset$		
	$f \ \# h$	$\stackrel{def}{\Leftrightarrow}$	$\exists e \le f, g \le h : e \ \#_d \ g$		



PO logics

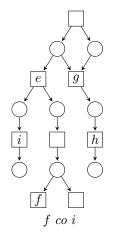
Nets and Structural Relations

The structure of a net induces three relations over its nodes:

Causality \leq					
$e \leq f$	$\stackrel{\mathit{def}}{\Longleftrightarrow}$	$e \ F^* \ f$ (directed path from e to f)			
Conflict #					
$e \ \#_d \ g$	$\stackrel{def}{\Leftrightarrow}_{def}$	$e \neq g \wedge {}^{\bullet}e \cap {}^{\bullet}g \neq \emptyset$			
f # h	÷	$\exists e \leq f, g \leq h : e \ \#_d \ g$			

Concurrency co

$$\begin{array}{ccc} f \ co \ i \ \Leftrightarrow & \neg(i \ \# \ f) \land \neg(i \le f) \land \neg(f \le i) \end{array}$$

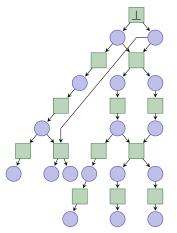


Occurrence Nets [Nielsen, Plotkin, Winskel, 1980]

Definition (Occurrence net)

An occurrence net (ON) is a net (B, E, F) where B and E are the sets of conditions and events, and which satisfies:

- no self-conflict,
- 2 acyclicity
- **③** finite causal pasts: $\forall e \in E$, $[e] \stackrel{def}{=} \{e': e' \le e\}$ is finite.
- Ino backward branching for conditions,
- ⊥ ∈ E is the only ≤-minimal node (event ⊥ creates the initial conditions).



PO logics

Conclusion

Configurations and Runs

Definitions (Configurations and Runs of an ON)

A configuration is a set $\boldsymbol{\omega}$ of events which is

- causally closed: $\forall e \in \omega, \lceil e \rceil \subseteq \omega$,
- conflict free: $\forall e \in \omega, \#[e] \cap \omega = \emptyset$.

A run is *maximal* iff it is maximal w.r.t. \subseteq .

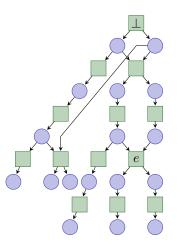
Notation

 Ω denotes the set of maximal runs.

Interpretation

 Ω gives exactly the weakly fair (nonsequential) executions:

• No transition remains enabled for ever (i.e. without firing, or being disabled by a conflicting transition): *progress assumption*



PO logics

Conclusion

Configurations and Runs

Definitions (Configurations and Runs of an ON)

A configuration is a set $\boldsymbol{\omega}$ of events which is

- causally closed: $\forall e \in \omega, \lceil e \rceil \subseteq \omega$,
- conflict free: $\forall e \in \omega, \#[e] \cap \omega = \emptyset$.

A run is *maximal* iff it is maximal w.r.t. \subseteq .

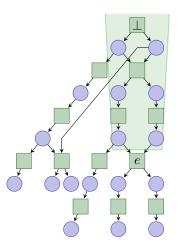
Notation

 Ω denotes the set of maximal runs.

Interpretation

 Ω gives exactly the weakly fair (nonsequential) executions:

• No transition remains enabled for ever (i.e. without firing, or being disabled by a conflicting transition): *progress assumption*



PO logics

Conclusion

Configurations and Runs

Definitions (Configurations and Runs of an ON)

A configuration is a set $\boldsymbol{\omega}$ of events which is

- causally closed: $\forall e \in \omega, \lceil e \rceil \subseteq \omega$,
- conflict free: $\forall e \in \omega, \#[e] \cap \omega = \emptyset$.

A run is *maximal* iff it is maximal w.r.t. \subseteq .

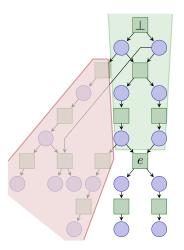
Notation

 Ω denotes the set of maximal runs.

Interpretation

 Ω gives exactly the weakly fair (nonsequential) executions:

• No transition remains enabled for ever (i.e. without firing, or being disabled by a conflicting transition): *progress assumption*



Structural relations vs logical relations

• The structural relations imply *logical dependencies* between event occurrences:

•
$$a \leq b \Rightarrow (\forall \omega \in \Omega, b \in \omega \Rightarrow a \in \omega),$$

- $a \ \# b \Leftrightarrow \forall \omega \in \Omega, \{a, b\} \not\subseteq \omega$,
- Some logical dependencies ("if a then b") implied by weak fairness cannot be expressed by the structural relations.

Structural relations vs logical relations

• The structural relations imply *logical dependencies* between event occurrences:

•
$$a \leq b \Rightarrow (\forall \omega \in \Omega, b \in \omega \Rightarrow a \in \omega),$$

- $a \ \# b \Leftrightarrow \forall \omega \in \Omega, \{a, b\} \not\subseteq \omega$,
- Some logical dependencies ("if a then b") implied by weak fairness cannot be expressed by the structural relations.

Here

- Formalization of these logical dependencies in a *relational framework* with *reveals* relations ▷ and →
- Reduction of Occurrence nets by contracting facets
- Concurrency vs Independence : tight nets

Reveals Relation [Haar, 2010]

Definition (Reveals relation ▷)

Event e reveals event f, written $e \triangleright f$, iff $\forall \omega \in \Omega, (e \in \omega \Rightarrow f \in \omega)$.

Causal closure

 $\forall x,y \in E, \, x \leq y \Rightarrow y \triangleright x$

```
d \triangleright a,
```

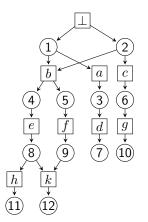
 $h \triangleright \bot$,

$a \triangleright d$

because of the progress assumption,

$a \triangleright c$

because for any maximal run ω , $a \in \omega \Rightarrow b \notin \omega$ $\Rightarrow c \in \omega$ (progress assumption)



Reveals Relation [Haar, 2010]

Definition (Reveals relation ▷)

Event e reveals event f, written $e \triangleright f$, iff $\forall \omega \in \Omega, (e \in \omega \Rightarrow f \in \omega)$.

Causal closure

 $\forall x,y \in E, \, x \leq y \Rightarrow y \triangleright x$

$d \triangleright a$,

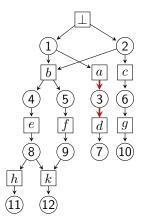
 $h \triangleright \bot$,

$a \triangleright d$

because of the progress assumption,

$a \triangleright c$

because for any maximal run ω , $a \in \omega \Rightarrow b \notin \omega$ $\Rightarrow c \in \omega$ (progress assumption)



Reveals Relation [Haar, 2010]

Definition (Reveals relation ▷)

Event e reveals event f, written $e \triangleright f$, iff $\forall \omega \in \Omega, (e \in \omega \Rightarrow f \in \omega)$.

Causal closure

 $\forall x,y\in E,\,x\leq y\Rightarrow y\triangleright x$

```
d \triangleright a,
```

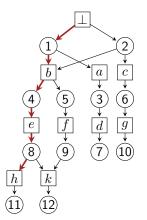
```
h \triangleright \bot,
```

```
a \triangleright d
```

because of the progress assumption,

$a \triangleright c$

 $\begin{array}{lll} \mbox{because for any maximal run } \omega, \\ a \in \omega & \Rightarrow & b \notin \omega \\ & \Rightarrow & c \in \omega \mbox{ (progress assumption)} \end{array}$



Reveals Relation [Haar, 2010]

Definition (Reveals relation ▷)

Event e reveals event f, written $e \triangleright f$, iff $\forall \omega \in \Omega, (e \in \omega \Rightarrow f \in \omega)$.

Causal closure

 $\forall x,y \in E, \, x \leq y \Rightarrow y \triangleright x$

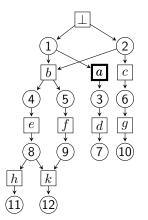
```
\begin{array}{l} d \triangleright a, \\ h \triangleright \bot, \end{array}
```

 $a \triangleright d$

```
because of the progress assumption,
```

 $a \triangleright c$

 $\begin{array}{lll} \mbox{because for any maximal run } \omega, \\ a \in \omega & \Rightarrow & b \notin \omega \\ & \Rightarrow & c \in \omega \mbox{ (progress assumption)} \end{array}$



Reveals Relation [Haar, 2010]

Definition (Reveals relation ▷)

Event e reveals event f, written $e \triangleright f$, iff $\forall \omega \in \Omega, (e \in \omega \Rightarrow f \in \omega)$.

Causal closure

 $\forall x,y \in E, \, x \leq y \Rightarrow y \triangleright x$

```
d \triangleright a,
```

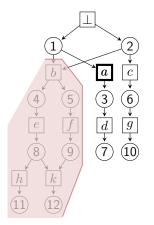
```
h \triangleright \bot,
```

$a \triangleright d$

because of the progress assumption,

$a \triangleright c$

because for any maximal run ω , $a \in \omega \implies b \notin \omega$ $\Rightarrow c \in \omega$ (progress assumption)



Reveals Relation [Haar, 2010]

Definition (Reveals relation ▷)

Event e reveals event f, written $e \triangleright f$, iff $\forall \omega \in \Omega, (e \in \omega \Rightarrow f \in \omega)$.

Lemma

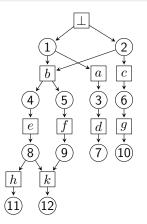
Lemma: Characterization of Ω by # A set of events ω is a maximal run iff

 $\forall a \in E, a \notin \omega \Leftrightarrow \#[a] \cap \omega \neq \emptyset$

where $\#[e] \stackrel{\text{\tiny def}}{=} \{f \in E \mid f \# e\}.$

Characterization of \triangleright by

 $\forall e, f \in E, e \triangleright f \Leftrightarrow \#[f] \subseteq \#[e]$ i.e. any event that could prevent the occurrence of f is prevented by the occurrence of e.



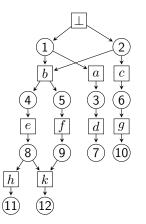
Reveals Relation

Definition (Reveals relation ▷)

Event e reveals event f, written $e \triangleright f$, iff $\forall \omega \in \Omega, (e \in \omega \Rightarrow f \in \omega)$.

Properties

- ▷ is reflexive and transitive, but it is not antisymmetric in general.
- The conflict relation (#) is inherited under \triangleright^{-1} : $g \triangleright a \land a \# b \Rightarrow g \# b$.



Computing ▷: Finding witnesses [HKS 2011]

Definition

Let U_M be the first complete finite prefix of (N, M), and K_M the height of U_M ; then set

$$K := \max_{M \in \mathcal{R}(M_0)} K_M.$$

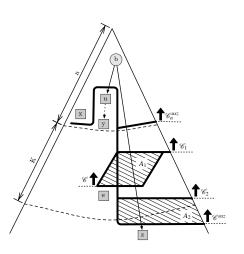
Theorem [HKS 2011]

For any two events x, y such that $\neg(x \triangleright y)$, there exists an event z such that

$$z \# y$$

$$\neg(z \# x)$$

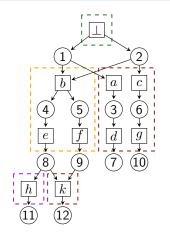
 $\mathbf{h}(z) \leq K + \max(\mathbf{h}(x), \mathbf{h}(y))$



Facets Abstraction [H2010, BCH2011]

Definition (Facets)

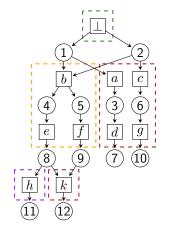
A facet of an ON is an equivalence class of $\sim = \triangleright \cap \triangleright^{-1}$.



Facets Abstraction [H2010,BCH2011]

Definition (Facets)

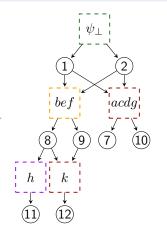
A facet of an ON is an equivalence class of $\sim = \triangleright \cap \triangleright^{-1}$.



facets can be contracted into events

Definition (Reduced ON)

A reduced ON is an ON (B, Ψ, F) such that $\forall \psi_1, \psi_2 \in \Psi$, $\psi_1 \sim \psi_2 \Leftrightarrow \psi_1 = \psi_2$.



Binary Relations on Ψ and Reduced Nets [H2010,BCH2011]

The causality (\leq), conflict (#), concurrency (*co*) and reveals (\triangleright) relations naturally extend to Ψ .

Lemma

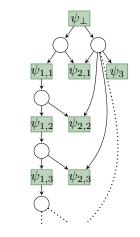
Lemma $1 \triangleright$ is a partial order on Ψ (\triangleright is antisymmetric by definition of a reduced ON).

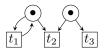
$(\Psi, \triangleright^{-1}, \#)$ is an event structure

- \triangleright^{-1} is a partial order, \checkmark
- The set $\{\psi' \mid \psi \triangleright \psi'\}$ is not always finite, X
- # is inherited under \triangleright^{-1} .

Infinite Revealed Set [BCH2011]

For a facet ψ , the set $\{\psi' \mid \psi \triangleright \psi'\}$ may not be finite.





 $\psi_3 \triangleright \psi_{1,i}, \, \forall i \in \mathbb{N}^*$

Binary Relations on Ψ [BCH2011]

The causality (\leq), conflict (#), concurrency (*co*) and reveals (\triangleright) relations naturally extend to Ψ .

Lemma

Lemma 1 \triangleright is a partial order on Ψ (\triangleright is antisymmetric by definition of a reduced ON).

Lemma

Lemma 2 For any finite reduced ON (B, Ψ, F) , $(\Psi, \triangleright^{-1}, \#)$ is a prime event structure since:

- \triangleright^{-1} is a partial order,
- $\forall \psi \in \Psi$, the set $\{\psi' \mid \psi \triangleright \psi'\}$ is finite,
- # is inherited under \triangleright^{-1} .

PO logics

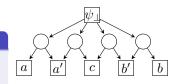
Concurrency vs Logical Independency [BCH2011]

• #, \leq and co are mutually exclusive.

Structural relations and logical dependencies

- $a \ \# \ b \Leftrightarrow$ for any run ω , $\{a, b\} \not\subseteq \omega$.
- $a \leq b \Rightarrow$ for any run ω , $b \in \omega \Rightarrow a \in \omega$ $(b \triangleright a)$,
- Does *a co b* mean *a* and *b* are logically independent ?

No, they can be related by \triangleright .



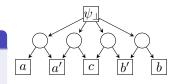
 $c \ co \ a \ and \ c \triangleright a$ $a \ co \ b \ and \ a \ ind \ b.$

Concurrency vs Logical Independency [BCH2011]

• #, \leq and co are mutually exclusive.

Structural relations and logical dependencies

- $a \ \# \ b \Leftrightarrow$ for any run ω , $\{a, b\} \not\subseteq \omega$.
- $a \leq b \Rightarrow$ for any run ω , $b \in \omega \Rightarrow a \in \omega$ $(b \triangleright a)$,
- Does a co b mean a and b are logically independent ?
 No, they can be related by ▷.



 $c \ co \ a \ and \ c \triangleright a$ $a \ co \ b \ and \ a \ ind \ b.$

Independency relation *ind*

$$\begin{array}{ll} \forall a,b \in \Psi, \ a \ ind \ b \\ \Leftrightarrow \\ a \ co \ b \land \neg(b \triangleright a) \land \neg(a \triangleright b) \\ \Leftrightarrow \\ a \ co \ b \land \neg(b \triangleright a) \land \neg(a \triangleright b) \end{array}$$

• #, \triangleright and ind are also mutually exclusive.

Minimal ▷ and # [BCH2011]

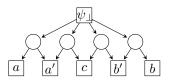
Immediate conflict relation $\#_i$

$$\begin{array}{c} a \ \#_i \ b \ \stackrel{\text{\tiny def}}{\Longrightarrow} \ a \ \# \ b \land \nexists \ c : \\ (c \neq a \land a \triangleright c \land c \ \# \ b) \lor \\ (c \neq b \land b \triangleright c \land c \ \# \ a) \end{array}$$

Immediate reveals relation \triangleright_i

Transitive reduction of \triangleright : let $a \triangleright_i b \stackrel{\text{def}}{\Leftrightarrow}$ iff

- $a \triangleright b$ and $a \neq b$
- for all $c: a \triangleright c \triangleright b \Rightarrow c \in \{a, b\}$



$$\begin{split} \Omega &= \left\{\{\psi_{\perp}, a, b, c\}, \{\psi_{\perp}, a, b'\}, \\ \{\psi_{\perp}, a', b\}, \{\psi_{\perp}, a', b'\}\right\} \end{split}$$

 $\neg (c \ \#_i \ a') \text{ since } c \triangleright a \text{ and } a \ \# \ a' \\ \neg (c \triangleright_i \ \psi_{\perp}) \text{ since } c \triangleright a \text{ and } a \triangleright \psi_{\perp}$

Remarks

- $\triangleright = \triangleright_i^*$,
- $\# = (\triangleright_i^{-1})^* \circ \#_i \circ \triangleright_i^*$ (>-inheritance of #),
- Therefore \triangleright_i and $\#_i$ define Ω (characterization of Ω by #).

"Tightening" a Reduced ON [BCH2011]

Tight n<u>et</u>

A tight net is a reduced ON (B, Ψ, F) such that $\forall a, b \in \Psi$, $a \triangleright b \Leftrightarrow b \leq a$.

Violations of tightness

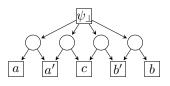
 $a,b\in \Psi$ such that

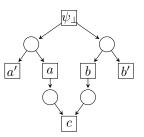
- \bullet a co b
- $a \triangleright b$

Net Surgery

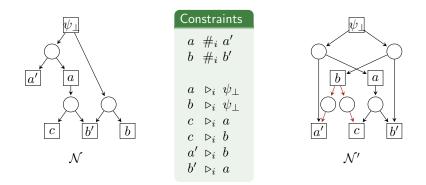
Add a condition from b to a for all a,b such that

- \bullet a co b
- $a \triangleright_i b$





Another Example for Tightening [BCH2011]



$$\Omega = \{\{\psi_{\perp}, a, b, c\}, \{\psi_{\perp}, a, b'\}, \{\psi_{\perp}, a', b\}\}$$

Another Example for Tightening [BCH2011]



$$\Omega = \left\{\{\psi_{\perp}, a, b, c\}, \{\psi_{\perp}, a, b'\}, \{\psi_{\perp}, a', b\}\right\}$$

Definition (Tight net)

A tight net is a reduced ON (B, Ψ, F) such that $\forall a, b \in \Psi$, $a \triangleright b \Leftrightarrow b \leq a$.

Reveal Your Faults: Partially observation and Diagnosis

Assumptions

- Possible behaviours well-known
- Current execution only partially visible

Goal:

 Determine, from partial observations, whether a certain event (fault) has happened in the past.

Note on Active Diagnosis

- A system with an *ambiguous* pair of runs is not diagnosable
- In that case: Compute control
 - based on past observations
 - so that faults manifest themselves through observations

Our Results

- \bullet Memory Consumption down from $2^{2^{O(n)}}$ to
 - $2^{O(n^2)}$ with minimal diagnosis delay
 - $2^{O(n)}$ with twice the minimal delay
- Computational complexity shown optimal

Sequential Semantics Misses a Point

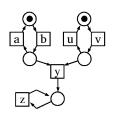
Suppose that

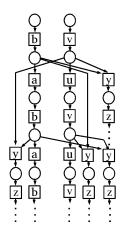
• $T_O = \{b, y\}$ • $\Phi = \{v\}$

v will be correctly diagnosed if y occurs. What if not ? If

 $bbbbbb \dots$

is observed, what do we infer about \boldsymbol{v} ?



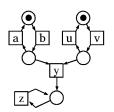


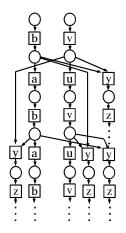
It's about weak fairness !

Still with

- $T_O = \{b, y\}$
- $\Phi = \{v\}$

the only way for the system to do b^{ω} is to be *unfair* to v: always enabled, never fired *HERE: diagnosis under weak fairness*





Extended Reveals+Diagnosis

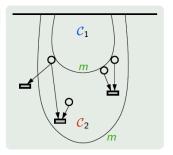
Application

- $A \rightarrow B$ iff ρ 's containing A must hit B
- Used for weak diagnosis: Given an observation pattern α , are all weakly fair extensions of explanations of α faulty ?

Lemma

There is ω weakly-fair and fault-free iff there are configurations C_1, C_2 such that:

- 2 $mark(\mathcal{C}_1) = mark(\mathcal{C}_2)$
- C_2 is fault-free



Observe and Derive: perspectives

Temporal vs. logical view of event structures

- Causality (\leq), conflict (#), concurrency (*co*) vs
- reveals (>) , # and ind

Extended reveals relation \rightarrow

$$A \twoheadrightarrow B \stackrel{{}_{def}}{\Leftrightarrow} \forall \omega \in \Omega : \ [A \subseteq \omega \ \Rightarrow \ B \cap \omega \neq \emptyset]$$

- Allows to express all boolean properties of $\Omega \rightarrow \text{Logic ERL} [\text{BCH2011}]$
- Exploit in diagnosis (ACSD 2013)

To Do

- Improve Diagnosis; exploit in verification, e.g. diagnosability
- Probabilities
- develop a measure of "freedom of choice"
- Extend to contextual, timed, probabilistic models ...
- Connect with $logics \rightarrow$ coming up