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Observe and Derive PO logics Conclusion

Some actions reveal one another
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Observe and Derive PO logics Conclusion

Petri nets, Processes, Branching Processes and Unfoldings

Petri net:

•1

bc a

•

2

•4

d
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3

place tokens

transition

Process: representation of a
non-sequential run as a partial order.

Branching process: representation of
several runs.

Unfolding: maximal branching process.
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Observe and Derive PO logics Conclusion

Nets and Structural Relations

The structure of a net induces three relations
over its nodes:

Causality ≤
e ≤ f def⇔ e F ∗ f (directed path from e to f)

Conflict #

e #d g
def⇔ e 6= g ∧ •e ∩ •g 6= ∅

f # h
def⇔ ∃e ≤ f, g ≤ h : e #d g

Concurrency co

f co i
def⇔ ¬(i # f) ∧ ¬(i ≤ f) ∧ ¬(f ≤ i)

f

e

e ≤ f

f # h

4/34



Observe and Derive PO logics Conclusion

Nets and Structural Relations

The structure of a net induces three relations
over its nodes:

Causality ≤
e ≤ f def⇔ e F ∗ f (directed path from e to f)

Conflict #

e #d g
def⇔ e 6= g ∧ •e ∩ •g 6= ∅

f # h
def⇔ ∃e ≤ f, g ≤ h : e #d g

Concurrency co

f co i
def⇔ ¬(i # f) ∧ ¬(i ≤ f) ∧ ¬(f ≤ i)

f

h

e g

e #d g
f # h

4/34



Observe and Derive PO logics Conclusion

Nets and Structural Relations

The structure of a net induces three relations
over its nodes:

Causality ≤
e ≤ f def⇔ e F ∗ f (directed path from e to f)

Conflict #

e #d g
def⇔ e 6= g ∧ •e ∩ •g 6= ∅

f # h
def⇔ ∃e ≤ f, g ≤ h : e #d g

Concurrency co

f co i
def⇔ ¬(i # f) ∧ ¬(i ≤ f) ∧ ¬(f ≤ i)

f

i h

e g

f co i

f # h

4/34



Observe and Derive PO logics Conclusion

Occurrence Nets [Nielsen, Plotkin, Winskel, 1980]

Definition (Occurrence net)

An occurrence net (ON) is a net (B,E, F ) where
B and E are the sets of conditions and events,
and which satisfies:

1 no self-conflict,

2 acyclicity

3 finite causal pasts: ∀e ∈ E,

dee def
= {e′ : e′ ≤ e} is finite.

4 no backward branching for conditions,

5 ⊥ ∈ E is the only ≤-minimal node
(event ⊥ creates the initial conditions).

⊥

5/34



Observe and Derive PO logics Conclusion

Configurations and Runs

Definitions (Configurations and Runs of an ON)

A configuration is a set ω of events which is

causally closed: ∀e ∈ ω, dee ⊆ ω,

conflict free: ∀e ∈ ω,#[e] ∩ ω = ∅.
A run is maximal iff it is maximal w.r.t. ⊆.

Notation

Ω denotes the set of maximal runs.

Interpretation

Ω gives exactly the weakly fair (nonsequential)
executions:

No transition remains enabled for ever (i.e.
without firing, or being disabled by a
conflicting transition): progress assumption

⊥

e
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Structural relations vs logical relations

The structural relations imply logical dependencies between event
occurrences:

a ≤ b⇒ (∀ω ∈ Ω, b ∈ ω ⇒ a ∈ ω),
a # b⇔ ∀ω ∈ Ω, {a, b} 6⊆ ω,

Some logical dependencies (“if a then b”) implied by weak fairness cannot be
expressed by the structural relations.

Here

Formalization of these logical dependencies in a relational framework with
reveals relations . and _
Reduction of Occurrence nets by contracting facets

Concurrency vs Independence : tight nets
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Reveals Relation [Haar, 2010]

Definition (Reveals relation .)

Event e reveals event f , written e . f , iff ∀ω ∈ Ω, (e ∈ ω ⇒ f ∈ ω).

Causal closure

∀x, y ∈ E, x ≤ y ⇒ y . x

d . a,
h . ⊥,
a . d

because of the progress assumption,
a . c

because for any maximal run ω,
a ∈ ω ⇒ b /∈ ω

⇒ c ∈ ω (progress assumption)

⊥
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Reveals Relation [Haar, 2010]

Definition (Reveals relation .)

Event e reveals event f , written e . f , iff ∀ω ∈ Ω, (e ∈ ω ⇒ f ∈ ω).

Lemma

Lemma: Characterization of Ω by # A set of
events ω is a maximal run iff

∀a ∈ E, a /∈ ω ⇔ #[a] ∩ ω 6= ∅

where #[e]
def
= {f ∈ E | f # e}.

Characterization of . by #

∀e, f ∈ E, e . f ⇔ #[f ] ⊆ #[e]
i.e. any event that could prevent the occurrence
of f is prevented by the occurrence of e.
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because of the progress assumption,
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a ∈ ω ⇒ b /∈ ω

⇒ c ∈ ω (progress assumption)

⊥

1 2

a

3

d

7

b

4 5

e

8

f

9

c

6

g

10

h k

11 12

8/34



Observe and Derive PO logics Conclusion

Reveals Relation

Definition (Reveals relation .)

Event e reveals event f , written e . f , iff ∀ω ∈ Ω, (e ∈ ω ⇒ f ∈ ω).

Properties

. is reflexive and transitive, but it is not
antisymmetric in general.

The conflict relation (#) is inherited under
.−1: g . a ∧ a # b⇒ g # b.

⊥
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Computing .: Finding witnesses [HKS 2011]

Definition

Let UM be the first complete
finite prefix of (N,M), and KM

the height of UM ; then set

K := max
M∈R(M0)

KM .

Theorem [HKS 2011]

For any two events x, y such that
¬(x . y), there exists an event z
such that

z # y

¬(z # x)

h(z) ≤ K + max(h(x),h(y))
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Facets Abstraction [H2010,BCH2011]

Definition (Facets)

A facet of an ON is an equivalence
class of ∼ = . ∩ .−1.

Definition (Reduced ON)

A reduced ON is an ON (B,Ψ, F ) such
that ∀ψ1, ψ2 ∈ Ψ, ψ1 ∼ ψ2 ⇔ ψ1 = ψ2.

⊥
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Binary Relations on Ψ and Reduced Nets [H2010,BCH2011]

The causality (≤), conflict (#), concurrency (co) and reveals (.) relations
naturally extend to Ψ.

Lemma

Lemma 1 . is a partial order on Ψ (. is antisymmetric by definition of a reduced
ON).

(Ψ, .−1,#) is an event structure

.−1 is a partial order, !

The set {ψ′ | ψ . ψ′} is not always finite, %

# is inherited under .−1. !

12/34
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Infinite Revealed Set [BCH2011]

For a facet ψ, the set {ψ′ | ψ . ψ′} may not be finite.

t2

• •

t1 t3

ψ⊥

ψ2,1ψ1,1 ψ3

ψ1,2

ψ1,3

ψ2,2

ψ2,3

ψ3 . ψ1,i, ∀i ∈ N∗
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Binary Relations on Ψ [BCH2011]

The causality (≤), conflict (#), concurrency (co) and reveals (.) relations
naturally extend to Ψ.

Lemma

Lemma 1 . is a partial order on Ψ (. is antisymmetric by definition of a reduced
ON).

Lemma

Lemma 2 For any finite reduced ON (B,Ψ, F ), (Ψ, .−1,#) is a prime event
structure since:

.−1 is a partial order,

∀ψ ∈ Ψ, the set {ψ′ | ψ . ψ′} is finite,

# is inherited under .−1.
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Concurrency vs Logical Independency [BCH2011]

#, ≤ and co are mutually exclusive.

Structural relations and logical dependencies

a # b⇔ for any run ω, {a, b} 6⊆ ω.

a ≤ b⇒ for any run ω, b ∈ ω ⇒ a ∈ ω (b . a),

Does a co b mean a and b are logically
independent ?

No, they can be related by ..

a a′ c b′ b

ψ⊥

c co a and c . a
a co b and a ind b.

Independency relation ind

∀a, b ∈ Ψ, a ind b
def⇔ ¬(a # b) ∧ ¬(b . a) ∧ ¬(a . b)
⇔ a co b ∧ ¬(b . a) ∧ ¬(a . b)

#, . and ind are also mutually exclusive.
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Minimal . and # [BCH2011]

Immediate conflict relation #i

a #i b
def⇔ a # b ∧ @c :

(c 6= a ∧ a . c ∧ c # b)∨
(c 6= b ∧ b . c ∧ c # a)

Immediate reveals relation .i

Transitive reduction of .: let a .i b
def⇔ iff

a . b and a 6= b

for all c: a . c . b⇒ c ∈ {a, b}

a a′ c b′ b

ψ⊥

Ω =
{
{ψ⊥, a, b, c}, {ψ⊥, a, b

′},
{ψ⊥, a

′, b}, {ψ⊥, a
′, b′}

}
¬(c #i a

′) since c . a and a # a′

¬(c .i ψ⊥) since c . a and a . ψ⊥

Remarks

. = .∗i ,

# = (.−1i )∗◦ #i ◦ .∗i (.-inheritance of #),

Therefore .i and #i define Ω (characterization of Ω by #).

16/34
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”Tightening” a Reduced ON [BCH2011]

Tight net

A tight net is a reduced ON
(B,Ψ, F ) such that ∀a, b ∈ Ψ,
a . b⇔ b ≤ a.

Violations of tightness

a, b ∈ Ψ such that

a co b

a . b

Net Surgery

Add a condition from b to a for all
a, b such that

a co b

a .i b

a a′ c b′ b

ψ⊥

c

aa′ b b′

ψ⊥

17/34
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Another Example for Tightening [BCH2011]

a′ a

bb′

ψ⊥

c

N

Constraints

a #i a
′

b #i b
′

a .i ψ⊥
b .i ψ⊥
c .i a
c .i b
a′ .i b
b′ .i a

c

b

a′

a

b′

ψ⊥

N ′

Ω =
{
{ψ⊥, a, b, c}, {ψ⊥, a, b′}, {ψ⊥, a′, b}

}

Definition (Tight net)

A tight net is a reduced ON (B,Ψ, F ) such that ∀a, b ∈ Ψ, a . b⇔ b ≤ a.

18/34



Observe and Derive PO logics Conclusion

Another Example for Tightening [BCH2011]

a′ a

bb′

ψ⊥

c

N

Constraints

a #i a
′

b #i b
′

a .i ψ⊥
b .i ψ⊥
c .i a
c .i b
a′ .i b
b′ .i a

c

b

a′

a

b′

ψ⊥

N ′

Ω =
{
{ψ⊥, a, b, c}, {ψ⊥, a, b′}, {ψ⊥, a′, b}

}
Definition (Tight net)

A tight net is a reduced ON (B,Ψ, F ) such that ∀a, b ∈ Ψ, a . b⇔ b ≤ a.

18/34



Observe and Derive PO logics Conclusion

Reveal Your Faults: Partially observation and Diagnosis

Assumptions

Possible behaviours well-known

Current execution only partially visible

Goal:

Determine, from partial observations,
whether a certain event (fault) has happened in the past.

19/34
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Note on Active Diagnosis

A system with an ambiguous pair of runs is not diagnosable

In that case: Compute control

based on past observations
so that faults manifest themselves through observations

Our Results

Memory Consumption down from 22
O(n)

to

2O(n2) with minimal diagnosis delay
2O(n) with twice the minimal delay

Computational complexity shown optimal

Next steps

Safe active diagnosis

Probabilistic a.d. (submitted)

Extend to concurrency, context, time, ...

20/34
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Sequential Semantics Misses a Point

Suppose that
TO = {b, y}
Φ = {v}

v will be correctly
diagnosed if y occurs.
What if not ? If

bbbbbb . . .

is observed, what do we
infer about v ?

21/34
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It’s about weak fairness !

Still with
TO = {b, y}
Φ = {v}

the only way for the
system to do bω is to be
unfair to v: always
enabled, never fired
HERE: diagnosis under
weak fairness

22/34
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Extended Reveals+Diagnosis

Application

A−−. B iff ρ′s containing A must hit B

Used for weak diagnosis:
Given an observation pattern α, are all weakly fair extensions of explanations
of α faulty ?

23/34
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Observe and Derive: perspectives

Temporal vs. logical view of event structures

Causality (≤), conflict (#), concurrency (co) vs

reveals (.) , # and ind

Extended reveals relation _

A _ B
def⇔ ∀ω ∈ Ω : [A ⊆ ω ⇒ B ∩ ω 6= ∅]

Allows to express all boolean properties of Ω → Logic ERL [BCH2011]

Exploit in diagnosis (ACSD 2013)

To Do

Improve Diagnosis; exploit in verification, e.g. diagnosability

Probabilities

develop a measure of ”freedom of choice”

Extend to contextual, timed, probabilistic models . . .

Connect with logics → coming up

24/34
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