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LIP6, Université Pierre et Marie Curie & CNRS

LSV, ENS Cachan & CNRS & INRIA

Kosmos 2013, November 28th 2013



2/21

Where to add time?
From an untimed model given as a safe, ordinary, colored Petri net, etc.,

Syntax

Time intervals can be associated with transitions, or places,
or (the various kinds of) arcs.

t1, ]2, 3]

t2, ]1,+∞[

p1 p2

p3

[3, 3] ]2, 4]

[0,+∞[

t1

t2

t1

t2

[3, 5] [4,+∞[

[0, 1]

[2, 4[
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How to add time?
Time elapsing can be associated with

◮ Firing duration

◮ Firing delay

Choice policy

◮ Firing a transition with earliest delay

◮ Non deterministic choice

Server policy

◮ One delay per instance of firing (w.r.t. firing degree)

◮ A single delay per enabled transition

Memory policy

◮ Resetting the delay of all transitions

◮ Memorizing the remaining delay of still enabled transitions

◮ Memorizing the remaining delay of all transitions

In addition, time may be discrete or dense.
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Timed semantics
as Timed Transition System

Act alphabet of actions, T time domain contained in R≥0,

T = (S, s0, E) timed transition system

◮ S set of configurations, s0 initial configuration,

◮ E ⊆ S × (Act ∪ {ε} ∪ T)× S contains

action transitions: s
a
−→ s′, execution of a

delay transitions: s
d
−→ s′, time elapsing for d time units.

Variant: labels in (Act ∪ {ε})× T, with combined steps of the form s
(d,a)
===⇒ s′.

Timed observations

are sequences of the form: d1a1d2a2 . . . or (a1, τ1) (a2, τ2) . . .
where τi =

∑
j≤i dj is the “date” of ai.

According to duration or delay semantics, di can be seen as

◮ waiting time followed by instantaneous action ai,

◮ duration of action ai.
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Time intervals on transitions

Configuration specification

A configuration is a pair s = (M, v) like s = (3p1 + p2, (2.5,⊥))
M ∈ Bag(P ): marking, v ∈ (R≥0 ∪ {⊥})T : valuation of transition clocks.

Time elapsing

v(t) represents the time elapsed since last time t was enabled.

(M, v)
d
−→ (M, v + d)

with (v + d)(t) = v(t) + d if t is enabled.
Strong semantics: transitions cannot become dead
(when v(t) exceeds the upper bound of I(t)).

Transition firing

Transition t can be fired if v(t) belongs to I(t) and this firing causes some transitions
to be newly enabled (several possible definitions).
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Example

• • •

t1, ]2, 3]

t2, [1,+∞[

p1 p2

p3

(2p1 + p2, (0,⊥))
2.5
−−→ (2p1 + p2, (2.5,⊥))
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Example

•

•

t1, ]2, 3]

t2, [1,+∞[

p1 p2

p3

(2p1+p2, (0,⊥))
2.5
−−→ (2p1+p2, (2.5,⊥))

t1−→ (p1+p3, (⊥, 0))
1.5
−−→ (p1+p3, (⊥, 1.5))
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Time intervals on places or arcs

Configuration specification

A configuration is a timed marking s ∈ Bag(P × R≥0)
like s = 2(p1, 0) + (p1, 0.3) + (p2, 0.7).

Time elapsing

The age of tokens increases at the rate of time:

(p, τ)
d
−→ (p, τ + d)

Strong semantics: tokens cannot become dead (when age exceeds the upper bound
of interval associated with place or input arc).

Transition firing

A token can be used in a transition firing if its age belongs to the interval of the
place or input arc.
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Examples

0, 0 0

[3, 3] ]2, 4]

[0,+∞[

t1

t2

2(p1, 0) + (p2, 0)
3
−→ 2(p1, 3) + (p2, 3)

t1−→ (p1, 3) + (p3, 0)
2.5
−−→ (p1, 5.5) + (p3, 2.5)
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Examples

3, 3 3

[3, 3] ]2, 4]

[0,+∞[

t1

t2

2(p1, 0) + (p2, 0)
3
−→ 2(p1, 3) + (p2, 3)

t1−→ (p1, 3) + (p3, 0)
2.5
−−→ (p1, 5.5) + (p3, 2.5)
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Examples

3

0

[3, 3] ]2, 4]

[0,+∞[

t1

t2

2(p1, 0) + (p2, 0)
3
−→ 2(p1, 3) + (p2, 3)

t1−→ (p1, 3) + (p3, 0)
2.5
−−→ (p1, 5.5) + (p3, 2.5)
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Examples

0,0 0

t1

t2

[3, 5] [4,+∞[

[0, 1]

[2, 4[

2(p1, 0) + (p2, 0)
4
−→ 2(p1, 4) + (p2, 4)

t1−→ (p1, 4) + (p3, 0.9)
1.1
−−→ (p1, 5.1) + (p3, 2)
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Examples

4,4 4

t1

t2

[3, 5] [4,+∞[

[0, 1]

[2, 4[

2(p1, 0) + (p2, 0)
4
−→ 2(p1, 4) + (p2, 4)

t1−→ (p1, 4) + (p3, 0.9)
1.1
−−→ (p1, 5.1) + (p3, 2)
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Examples

4

0.9

t1

t2

[3, 5] [4,+∞[

[0, 1]

[2, 4[

2(p1, 0) + (p2, 0)
4
−→ 2(p1, 4) + (p2, 4)

t1−→ (p1, 4) + (p3, 0.9)
1.1
−−→ (p1, 5.1) + (p3, 2)
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How to compare models?

Expressiveness
◮ equality of accepted languages (for some suitable acceptance condition),

◮ weak timed bisimilarity,

◮ ...

associating labels with transitions, including ε to represent an internal action.

Computational complexity

for decidability of verification or comparison problems

Example: The covering problem is
◮ undecidable for strong Time-Transition Petri nets,

◮ decidable and Fωω
ω -complete [Haddad-Schmitz-Schnoebelen-LICS-12] for weak

Timed-Arc Petri nets,

◮ EXPSPACE-complete for standard PN and weak Time-Transition Petri nets.
[Sangnier-Reynier-Concur-09]
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An example for language equivalence
Question:
For weak Timed-Arc PN accepting infinite words, what is the power of general reset
compared to 0-reset?

◮ Considering or not Zeno words

◮ Considering bounds in Q≥0 or in N

◮ Considering or not read arcs.

With integer bounds and read arcs, general reset is strictly more
powerful than 0-reset [Bouyer-Haddad-Reynier-IC-08]

The language of infinite words
L = {(a, 0)(b, τ1) . . . (b, τn) . . . | ∃τ < 1, 0 ≤ τ1 ≤ . . . ≤ τn ≤ . . . < τ}
cannot be accepted by any Timed-Arc PN with integral bounds producing only
tokens with age 0.

A Timed-Arc PN with read arcs and general reset for L with Acc = {q ≥ 1}:

•

p qa b
[0, 0] ]0, 1[ ]0, 1[
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Proof

Assume N as above accepts L and consider a firing sequence σ with label
w = (a, 0)(b, τ1) . . . (b, τn) for some 0 < τ < 1 such that (τn)n is strictly
increasing and converges to τ .

σ
σ1 σ2

(t0, d) (t, x)

time=0

In σ, let (t0, d) be the first transition fired at some non nul time d > 0, hence
σ = σ1σ2 with (t0, d) the first transition in σ2.
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Proof
Assume N as above accepts L and consider a firing sequence σ with label
w = (a, 0)(b, τ1) . . . (b, τn) for some 0 < τ < 1 such that (τn)n is strictly
increasing and converges to τ .

σ
σ1 σ2

(t0, d) (t, x)

time=0

σ′
σ′
2

(t0, d+ 1− τ) (t, x+ 1− τ)σ1

In σ, let (t0, d) be the first transition fired at some non nul time d > 0, hence
σ = σ1σ2 with (t0, d) the first transition in σ2.

Then σ′ = σ1σ
′
2 where σ′

2 is obtained by delaying σ2 by 1− τ can still be fired:

◮ A token produced in σ2 has the same age in σ2 and σ′
2 when tested or

consumed;

◮ A token initially present or produced by σ1 with age 0 is tested or consumed
by some transition t in σ2 at some age y such that 0 < d ≤ y < τ < 1, hence
any incoming arc of t contains ]0, 1[. In σ′

2, the age of this token is
y′ = y + 1− τ , with d+ 1− τ ≤ y′ < 1, hence t can also be fired.

But since (τn + 1− τ)n converges to 1, the label w′ of σ′ does not belong to L.



12/21

Observations

Expressiveness remains the same:
◮ without read arcs,

◮ or if the integral bounds hypothesis is removed,

◮ or if Zeno words are excluded.

A Timed-Arc PN with read arcs, rational bounds and 0-reset for L
with Acc = {q ≥ 1 or r ≥ 1}:

•

p q ra ε

b b

[0, 0] [0, 0]

[0, 1
2 [

[0, 1
2 [ [0, 0]

[0, 12 [
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Hierarchies for Timed-Arc PN
with read arcs and language equivalence [Bouyer-Haddad-Reynier-IC08]

For infinite words:

RA-TdPN ≡ω 0-reset RA-TdPN

integral RA-TdPN

0-reset integral RA-TdPN

TdPN ≡ω 0-reset TdPN

integral TdPN ≡ω 0-reset integral TdPN

&ω

integral
&

ω
'
ω

'
ω

&ω

integral

For finite words or infinite non Zeno words, the hierarchy collapses:

RA-TdPN ≡∗,ωnz
TdPN ≡∗,ωnz

0-resetTdPN
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Weak time bisimilarity

Given two timed transition systems T1 = (S1, s
0
1, E1) and T2 = (S2, s

0
2, E2)

T1 and T2 are weaky timed bisimilar

if there is an equivalence relation ≈ on S1 × S2 such that s01 and s02 are equivalent
and:
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Weak time bisimilarity

Given two timed transition systems T1 = (S1, s
0
1, E1) and T2 = (S2, s

0
2, E2)

T1 and T2 are weaky timed bisimilar

if there is an equivalence relation ≈ on S1 × S2 such that s01 and s02 are equivalent
and:

if s1 s′1
a

≈

s2
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Weak time bisimilarity

Given two timed transition systems T1 = (S1, s
0
1, E1) and T2 = (S2, s

0
2, E2)

T1 and T2 are weaky timed bisimilar

if there is an equivalence relation ≈ on S1 × S2 such that s01 and s02 are equivalent
and:

if s1 s′1
a

≈

s2then

... ...

s′2ε

ε
a

ε

ε

≈
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Weak time bisimilarity

Given two timed transition systems T1 = (S1, s
0
1, E1) and T2 = (S2, s

0
2, E2)

T1 and T2 are weaky timed bisimilar

if there is an equivalence relation ≈ on S1 × S2 such that s01 and s02 are equivalent
and:

if s1 s′1
a

≈

s2then

... ...

s′2ε

ε
a

ε

ε

≈

if s1 s′1
d

≈

s2
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Weak time bisimilarity

Given two timed transition systems T1 = (S1, s
0
1, E1) and T2 = (S2, s

0
2, E2)

T1 and T2 are weaky timed bisimilar

if there is an equivalence relation ≈ on S1 × S2 such that s01 and s02 are equivalent
and:

if s1 s′1
a

≈

s2then

... ...

s′2ε

ε
a

ε

ε

≈

if s1 s′1
d

≈

s2then

... ...

s′2d1

ε
d2

ε

dk

≈

with Σdi = d

and vice versa.
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An example for weak timed bisimilarity

Question :
In the context of strong Time Transition PN, what is the impact of memory policies?

Different reset policies

For the clock value of a transition enabled after a firing:

◮ Intermediate (classical) semantics (I): the transition is newly enabled if it was
disabled after the consuming step or if it is the fired transition.

◮ Atomic semantics (A): the transition is newly enabled if it was disabled before
the firing or if it is the fired transition.

◮ Persistent atomic semantics (PA): the transition is newly enabled if it was
disabled before the firing.
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Example

• •

•

p1

p2

t1, a, [1,+∞[

t2, b, [2, 2]

(2p1 + p2, [0, 0])
1.3

−−→ (2p1 + p2, [1.3, 1.3])
a

−→ · · ·
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Example

• •

•

p1

p2

t1, a, [1,+∞[

t2, b, [2, 2]

(2p1 + p2, [0, 0])
1.3

−−→ (2p1 + p2, [1.3, 1.3])
a

−→ · · ·

(I): (p1 + p2, [0, 0])
2

−→ (p1 + p2, [2, 2])

(A): (p1 + p2, [0, 1.3])
0.7

−−→ (p1 + p2, [0.7, 2])
b

−→ (p1, [⊥,⊥])

(PA): (p1 + p2, [1.3, 1.3])
a

−→ (p2, [⊥, 1.3])
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Motivation
Why alternative semantics ?

◮ (PA) is closer to the semantics of TA

◮ (A) or (PA) are sometimes more convenient than (I):

Component Observer

p

t1, a, I1 t2, b, I2

t, c, I

◮ For e.g. instantaneous multicast, (PA) is more convenient than (A) or (I):

• •

•

clients

diffusion source

t, d, [1, 1]
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Expressivity result

(PA) is strictly more expressive than (A) [BCHLR-ATVA05]

For the following TPN N[0,1[ with (PA) semantics, there is no TPN with (A) se-
mantics bisimilar to N .

t, ε, [0, 1[

This TPN lets time elapse without reaching 1 t.u.

The result does not hold for [0, 1]

In this case, the following net with (A) or (I) semantics is bisimilar to N[0,1]:

•

p q[1, 1] [0, 0]

For safe TPNs with upper-closed intervals, the three semantics are equivalent.
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Proof

Assume some net N with atomic semantics is bisimilar to N[0,1[.
Define dmin < 1, with dmin < min(non null upper bounds in N ).

N[0,1[:

N :

(∅, 0) 1(∅, 1 − dmin)

(M0, v0)

σ1

(M1, v1)
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Proof

Assume some net N with atomic semantics is bisimilar to N[0,1[.
Define dmin < 1, with dmin < min(non null upper bounds in N ).

N[0,1[:

N :

(∅, 0) 1(∅, 1 − dmin)

(M0, v0)

σ1

(M1, v1) (M2, v2)

(∅, 1 − d)

σ2

From (M1, v1), sequence σ2 is built so that all transitions enabled in (M1, v1) are
fired or disabled. Hence for all t ∈ En(M2), v2(t) ≤ dmin − d, with 0 < d ≤ dmin.
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Proof

Assume some net N with atomic semantics is bisimilar to N[0,1[.
Define dmin < 1, with dmin < min(non null upper bounds in N ).

N[0,1[:

N :

(∅, 0) 1(∅, 1 − dmin)

(M0, v0)

σ1

(M1, v1) (M2, v2)

(∅, 1 − d)

σ2

(∅, 1 − d′)

(M3, v3)

σ3σ4

From (M1, v1), sequence σ2 is built so that all transitions enabled in (M1, v1) are
fired or disabled. Hence for all t ∈ En(M2), v2(t) ≤ dmin − d, with 0 < d ≤ dmin.

Since time can still elapse in N[0,1[, with 0 < d′ < d, there is a sequence σ3σ4

from (M2, v2), such that σ3 is maximal in null time, leading to (M3, v3). Hence,
time can elapse in (M3, v3), and each enabled transition has an interval with non
null upper bound b > dmin.
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Proof

Assume some net N with atomic semantics is bisimilar to N[0,1[.
Define dmin < 1, with dmin < min(non null upper bounds in N ).

N[0,1[:

N :

(∅, 0) 1(∅, 1 − dmin)

(M0, v0)

σ1

(M1, v1) (M2, v2)

(∅, 1 − d)

σ2

(∅, 1 − d′)

(M3, v3)

σ3σ4
X

From (M1, v1), sequence σ2 is built so that all transitions enabled in (M1, v1) are
fired or disabled. Hence for all t ∈ En(M2), v2(t) ≤ dmin − d, with 0 < d ≤ dmin.

Since time can still elapse in N[0,1[, with 0 < d′ < d, there is a sequence σ3σ4

from (M2, v2), such that σ3 is maximal in null time, leading to (M3, v3). Hence,
time can elapse in (M3, v3), and each enabled transition has an interval with non
null upper bound b > dmin.

Then (M3, v3)
d
−→, a contradiction to bisimilarity with (∅, 1 − d)
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Hierarchy for safe Time Petri nets
with intermediate semantics, for weak timed bisimulation
[Boyer-Roux-FI-08]

T-TPN

P-TPN

A-TPN

T-TPN

P-TPN

A-TPN

&≈

&≈

&≈

&≈

&≈

'≈

◮ With both weak and strong semantics, A-TPN are strictly more expressive
than P-TPN and T-TPN, which in turn are incomparable;

◮ T-TPN with strong semantics and T-TPN with weak semantics are
incomparable. Otherwise there is a strict inclusion.
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Conclusion

A lot of open issues remain to be studied

◮ between the various classes of PN with time and

◮ between these classes and other important timed models like Timed Automata
(or networks of TA).

Thank you


