The Zoology of Petri Nets with Time

Béatrice Bérard and Serge Haddad

LIP6, Université Pierre et Marie Curie & CNRS LSV, ENS Cachan & CNRS & INRIA

Kosmos 2013, November 28th 2013

◆□ → ◆□ → ◆ 三 → ◆ 三 · ⑦ Q ⑦ 1/21

Where to add time?

From an untimed model given as a safe, ordinary, colored Petri net, etc.,

Syntax

Time intervals can be associated with transitions, or places, or (the various kinds of) arcs.

How to add time?

Time elapsing can be associated with

- Firing duration
- Firing delay

Choice policy

- Firing a transition with earliest delay
- Non deterministic choice
- Server policy
 - One delay per instance of firing (w.r.t. firing degree)
 - A single delay per enabled transition

Memory policy

- Resetting the delay of all transitions
- Memorizing the remaining delay of still enabled transitions
- Memorizing the remaining delay of all transitions

In addition, time may be discrete or dense.

Timed semantics

as Timed Transition System

Act alphabet of actions, \mathbb{T} time domain contained in $\mathbb{R}_{\geq 0}$,

- $\mathcal{T} = (S, s_0, E)$ timed transition system
 - S set of configurations, s_0 initial configuration,
 - $E \subseteq S \times (Act \cup \{\varepsilon\} \cup \mathbb{T}) \times S$ contains

action transitions: $s \xrightarrow{a} s'$, execution of a delay transitions: $s \xrightarrow{d} s'$, time elapsing for d time units.

Variant: labels in $(Act \cup \{\varepsilon\}) \times \mathbb{T}$, with combined steps of the form $s \xrightarrow{(d,a)} s'$.

Timed observations

are sequences of the form: $d_1a_1d_2a_2...$ or (a_1, τ_1) $(a_2, \tau_2)...$ where $\tau_i = \sum_{j \leq i} d_j$ is the "date" of a_i . According to duration or delay semantics, d_i can be seen as

- waiting time followed by instantaneous action a_i
- duration of action *a_i*.

Time intervals on transitions

Configuration specification

A configuration is a pair s = (M, v) like $s = (3p_1 + p_2, (2.5, \bot))$ $M \in Bag(P)$: marking, $v \in (\mathbb{R}_{\geq 0} \cup \{\bot\})^T$: valuation of transition clocks.

Time elapsing

v(t) represents the time elapsed since last time t was enabled.

$$(M, v) \xrightarrow{d} (M, v+d)$$

with (v + d)(t) = v(t) + d if t is enabled. Strong semantics: transitions cannot become dead (when v(t) exceeds the upper bound of I(t)).

Transition firing

Transition t can be fired if v(t) belongs to I(t) and this firing causes some transitions to be newly enabled (several possible definitions).

 $(2p_1 + p_2, (0, \bot)) \xrightarrow{2.5} (2p_1 + p_2, (2.5, \bot))$

 $(2p_1 + p_2, (0, \bot)) \xrightarrow{2.5} (2p_1 + p_2, (2.5, \bot)) \xrightarrow{t_1} (p_1 + p_3, (\bot, 0)) \xrightarrow{1.5} (p_1 + p_3, (\bot, 1.5))$

Time intervals on places or arcs

Configuration specification

A configuration is a timed marking $s \in Bag(P \times \mathbb{R}_{\geq 0})$ like $s = 2(p_1, 0) + (p_1, 0.3) + (p_2, 0.7)$.

Time elapsing

The age of tokens increases at the rate of time:

$$(p,\tau) \xrightarrow{d} (p,\tau+d)$$

Strong semantics: tokens cannot become dead (when age exceeds the upper bound of interval associated with place or input arc).

Transition firing

A token can be used in a transition firing if its age belongs to the interval of the place or input arc.

 $2(p_1,0) + (p_2,0) \xrightarrow{3} 2(p_1,3) + (p_2,3) \xrightarrow{t_1} (p_1,3) + (p_3,0) \xrightarrow{2.5} (p_1,5.5) + (p_3,2.5)$

 $2(p_1,0) + (p_2,0) \xrightarrow{3} 2(p_1,3) + (p_2,3) \xrightarrow{t_1} (p_1,3) + (p_3,0) \xrightarrow{2.5} (p_1,5.5) + (p_3,2.5)$

 $2(p_1,0) + (p_2,0) \xrightarrow{3} 2(p_1,3) + (p_2,3) \xrightarrow{t_1} (p_1,3) + (p_3,0) \xrightarrow{2.5} (p_1,5.5) + (p_3,2.5)$

<□ ▶ < @ ▶ < 差 ▶ < 差 ▶ 差 の Q @ 8/21

 $2(p_1,0) + (p_2,0) \xrightarrow{4} 2(p_1,4) + (p_2,4) \xrightarrow{t_1} (p_1,4) + (p_3,0.9) \xrightarrow{1.1} (p_1,5.1) + (p_3,2)$

 $2(p_1,0) + (p_2,0) \xrightarrow{4} 2(p_1,4) + (p_2,4) \xrightarrow{t_1} (p_1,4) + (p_3,0.9) \xrightarrow{1.1} (p_1,5.1) + (p_3,2)$

<□ ▶ < @ ▶ < 差 ▶ < 差 ▶ 差 の Q @ 8/21

 $2(p_1,0) + (p_2,0) \xrightarrow{4} 2(p_1,4) + (p_2,4) \xrightarrow{t_1} (p_1,4) + (p_3,0.9) \xrightarrow{1.1} (p_1,5.1) + (p_3,2)$

<□ ▶ < @ ▶ < 差 ▶ < 差 ▶ 差 の Q @ 8/21

How to compare models?

Expressiveness

- equality of accepted languages (for some suitable acceptance condition),
- weak timed bisimilarity,

►

associating labels with transitions, including ε to represent an internal action.

Computational complexity

for decidability of verification or comparison problems

Example: The covering problem is

undecidable for strong Time-Transition Petri nets,

decidable and $F_{\omega^{\omega\omega}}\text{-complete}$ [Haddad-Schmitz-Schnoebelen-LICS-12] for weak Timed-Arc Petri nets,

EXPSPACE-complete for standard PN and weak Time-Transition Petri nets.

[Sangnier-Reynier-Concur-09]

An example for language equivalence

Question:

For weak Timed-Arc PN accepting infinite words, what is the power of general reset compared to $0\mathchar`-reset?$

- Considering or not Zeno words
- Considering bounds in $\mathbb{Q}_{\geq 0}$ or in \mathbb{N}
- Considering or not read arcs.

With integer bounds and read arcs, general reset is strictly more powerful than 0-reset [Bouyer-Haddad-Reynier-IC-08]

The language of infinite words $L = \{(a, 0)(b, \tau_1) \dots (b, \tau_n) \dots | \exists \tau < 1, 0 \leq \tau_1 \leq \dots \leq \tau_n \leq \dots < \tau\}$ cannot be accepted by any Timed-Arc PN with integral bounds producing only tokens with age 0.

A Timed-Arc PN with read arcs and general reset for L with $Acc = \{q \ge 1\}$:

$$\underbrace{\bullet}^{p} \quad [0,0] \quad \bullet \quad]0,1[\quad \bullet \quad]0,1[\quad \bullet \quad]$$

Assume \mathcal{N} as above accepts L and consider a firing sequence σ with label $w = (a, 0)(b, \tau_1) \dots (b, \tau_n)$ for some $0 < \tau < 1$ such that $(\tau_n)_n$ is strictly increasing and converges to τ .

In σ , let (t_0, d) be the first transition fired at some non nul time d > 0, hence $\sigma = \sigma_1 \sigma_2$ with (t_0, d) the first transition in σ_2 .

Assume \mathcal{N} as above accepts L and consider a firing sequence σ with label $w = (a, 0)(b, \tau_1) \dots (b, \tau_n)$ for some $0 < \tau < 1$ such that $(\tau_n)_n$ is strictly increasing and converges to τ .

In σ , let (t_0, d) be the first transition fired at some non nul time d > 0, hence $\sigma = \sigma_1 \sigma_2$ with (t_0, d) the first transition in σ_2 .

Then $\sigma' = \sigma_1 \sigma'_2$ where σ'_2 is obtained by delaying σ_2 by $1 - \tau$ can still be fired:

- A token produced in σ₂ has the same age in σ₂ and σ'₂ when tested or consumed;
- A token initially present or produced by σ_1 with age 0 is tested or consumed by some transition t in σ_2 at some age y such that $0 < d \le y < \tau < 1$, hence any incoming arc of t contains]0,1[. In σ'_2 , the age of this token is $y' = y + 1 - \tau$, with $d + 1 - \tau \le y' < 1$, hence t can also be fired.

But since $(\tau_n + 1 - \tau)_n$ converges to 1, the label w' of σ' does not belong to L.

Observations

Expressiveness remains the same:

- without read arcs,
- or if the integral bounds hypothesis is removed,
- or if Zeno words are excluded.

A Timed-Arc PN with read arcs, rational bounds and 0-reset for L with Acc = $\{q \ge 1 \text{ or } r \ge 1\}$:

Hierarchies for Timed-Arc PN

with read arcs and language equivalence [Bouyer-Haddad-Reynier-IC08] For infinite words:

For finite words or infinite non Zeno words, the hierarchy collapses:

$$\mathsf{RA-TdPN} \ \equiv_{*,\omega_{nz}} \ \mathsf{TdPN} \ \equiv_{*,\omega_{nz}} \ 0\text{-}\mathrm{resetTdPN}$$

Given two timed transition systems $\mathcal{T}_1=(S_1,s_1^0,E_1)$ and $\mathcal{T}_2=(S_2,s_2^0,E_2)$

\mathcal{T}_1 and \mathcal{T}_2 are weaky timed bisimilar

if there is an equivalence relation \approx on $S_1\times S_2$ such that s_1^0 and s_2^0 are equivalent and:

Given two timed transition systems $\mathcal{T}_1=(S_1,s_1^0,E_1)$ and $\mathcal{T}_2=(S_2,s_2^0,E_2)$

\mathcal{T}_1 and \mathcal{T}_2 are weaky timed bisimilar

if there is an equivalence relation \approx on $S_1\times S_2$ such that s_1^0 and s_2^0 are equivalent and:

Given two timed transition systems $\mathcal{T}_1=(S_1,s_1^0,E_1)$ and $\mathcal{T}_2=(S_2,s_2^0,E_2)$

\mathcal{T}_1 and \mathcal{T}_2 are weaky timed bisimilar

if there is an equivalence relation \approx on $S_1 \times S_2$ such that s_1^0 and s_2^0 are equivalent and:

Given two timed transition systems $\mathcal{T}_1=(S_1,s_1^0,E_1)$ and $\mathcal{T}_2=(S_2,s_2^0,E_2)$

Given two timed transition systems $\mathcal{T}_1=(S_1,s_1^0,E_1)$ and $\mathcal{T}_2=(S_2,s_2^0,E_2)$

An example for weak timed bisimilarity

Question :

In the context of strong Time Transition PN, what is the impact of memory policies?

Different reset policies

For the clock value of a transition enabled after a firing:

- Intermediate (classical) semantics (I): the transition is newly enabled if it was disabled after the consuming step or if it is the fired transition.
- Atomic semantics (A): the transition is newly enabled if it was disabled before the firing or if it is the fired transition.
- Persistent atomic semantics (PA): the transition is newly enabled if it was disabled before the firing.

 $(2p_1+p_2,[0,0]) \xrightarrow{1.3} (2p_1+p_2,[1.3,1.3]) \xrightarrow{a} \cdots$

 $(2p_1+p_2,[0,0]) \xrightarrow{1.3} (2p_1+p_2,[1.3,1.3]) \xrightarrow{a} \cdots$

(I):
$$(p_1 + p_2, [0, 0]) \xrightarrow{2} (p_1 + p_2, [2, 2])$$

(A): $(p_1 + p_2, [0, 1.3]) \xrightarrow{0.7} (p_1 + p_2, [0.7, 2]) \xrightarrow{b} (p_1, [\bot, \bot])$
(PA): $(p_1 + p_2, [1.3, 1.3]) \xrightarrow{a} (p_2, [\bot, 1.3])$

Motivation

Why alternative semantics ?

- (PA) is closer to the semantics of TA
- ▶ (A) or (PA) are sometimes more convenient than (I):

Component p t, c, I Observer t_1, a, I_1 t_2, b, I_2

▶ For e.g. instantaneous multicast, (PA) is more convenient than (A) or (I):

Expressivity result

(PA) is strictly more expressive than (A) [BCHLR-ATVA05]

For the following TPN $\mathcal{N}_{[0,1[}$ with (PA) semantics, there is no TPN with (A) semantics bisimilar to $\mathcal{N}.$

$$\blacksquare$$
 t, ε , $[0,1[$

This TPN lets time elapse without reaching 1 t.u.

The result does not hold for [0, 1]

In this case, the following net with (A) or (I) semantics is bisimilar to $\mathcal{N}_{[0,1]}$:

For safe TPNs with upper-closed intervals, the three semantics are equivalent.

Assume some net \mathcal{N} with atomic semantics is bisimilar to $\mathcal{N}_{[0,1[.]}$. Define $d_{min} < 1$, with $d_{min} < \min(\text{non null upper bounds in } \mathcal{N})$.

Assume some net \mathcal{N} with atomic semantics is bisimilar to $\mathcal{N}_{[0,1[}$. Define $d_{min} < 1$, with $d_{min} < \min(\text{non null upper bounds in } \mathcal{N})$.

From (M_1, v_1) , sequence σ_2 is built so that all transitions enabled in (M_1, v_1) are fired or disabled. Hence for all $t \in En(M_2)$, $v_2(t) \leq d_{min} - d$, with $0 < d \leq d_{min}$.

Assume some net \mathcal{N} with atomic semantics is bisimilar to $\mathcal{N}_{[0,1[}$. Define $d_{min} < 1$, with $d_{min} < \min(\text{non null upper bounds in } \mathcal{N})$.

From (M_1, v_1) , sequence σ_2 is built so that all transitions enabled in (M_1, v_1) are fired or disabled. Hence for all $t \in En(M_2)$, $v_2(t) \leq d_{min} - d$, with $0 < d \leq d_{min}$.

Since time can still elapse in $\mathcal{N}_{[0,1[}$, with 0 < d' < d, there is a sequence $\sigma_3 \sigma_4$ from (M_2, v_2) , such that σ_3 is maximal in null time, leading to (M_3, v_3) . Hence, time can elapse in (M_3, v_3) , and each enabled transition has an interval with non null upper bound $b > d_{min}$.

Assume some net \mathcal{N} with atomic semantics is bisimilar to $\mathcal{N}_{[0,1[}$. Define $d_{min} < 1$, with $d_{min} < \min(\text{non null upper bounds in } \mathcal{N})$.

From (M_1, v_1) , sequence σ_2 is built so that all transitions enabled in (M_1, v_1) are fired or disabled. Hence for all $t \in En(M_2)$, $v_2(t) \leq d_{min} - d$, with $0 < d \leq d_{min}$.

Since time can still elapse in $\mathcal{N}_{[0,1[}$, with 0 < d' < d, there is a sequence $\sigma_3 \sigma_4$ from (M_2, v_2) , such that σ_3 is maximal in null time, leading to (M_3, v_3) . Hence, time can elapse in (M_3, v_3) , and each enabled transition has an interval with non null upper bound $b > d_{min}$.

Then $(M_3, v_3) \xrightarrow{d}$, a contradiction to bisimilarity with $(\emptyset, 1 - d)$

Hierarchy for safe Time Petri nets

with intermediate semantics, for weak timed bisimulation [Boyer-Roux-FI-08]

- With both weak and strong semantics, A-TPN are strictly more expressive than P-TPN and T-TPN, which in turn are incomparable;
- ► T-TPN with strong semantics and T-TPN with weak semantics are incomparable. Otherwise there is a strict inclusion.

Conclusion

A lot of open issues remain to be studied

- between the various classes of PN with time and
- between these classes and other important timed models like Timed Automata (or networks of TA).

Thank you

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ○ Q ○ 21/21