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Abstract

This paper analyses a periodic review inventory system with a main and an emergency supply mode, where policies of
the base-stock type are used at both supply channels. Contrary to previously published models, the capacity of the
emergency channel is taken into account. We examine two alternative ordering policies for that channel: an `early-
orderinga policy that almost eliminates early stockouts in a replenishment cycle and a `late-orderinga policy that delays
the emergency order decision until more demand information has been accumulated. Approximate cost models are
developed and properties of their optimal solutions are derived. Simulation results indicate that these solutions are near
optimal. Conclusions are drawn about the relative e!ectiveness of the two emergency ordering policies. � 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Inventory systems with two supply modes be-
come increasingly common in practice. One obvi-
ous case is when multiple suppliers are used on
a regular basis and the total order quantity is
divided into smaller orders to these suppliers. An-
other case is when there exists a main supply mode,
used regularly for stock replenishment, as well as
a secondary supply mode, used on exceptional oc-
casions to supplement the stock supply. Inventory
replenishment through the latter supply mode is
often called emergency replenishment and this
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option is typically utilised when a stockout is very
likely to occur at the receiving location. Emergency
replenishments are characterised by low volumes,
shorter lead times and higher acquisition costs per
unit. The higher cost is usually a consequence of the
increased transportation cost, due to the faster but
more expensive means of transportation employed
for emergency replenishments. This paper focuses
on exactly this case of periodic review inventory
systems with a primary supply channel used for
regular orders and a secondary supply channel
used for more expensive but faster emergency or-
ders.

Previous research on inventory systems with
regular and emergency replenishments includes the
early papers of Barankin [1], Daniel [2] and Neuts
[3], who study periodic review inventory systems
with regular order lead time of one period and
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instantaneous emergency replenishments. Bulin-
skaya [4], Fukuda [5] and Veinott [6] allow for
longer lead times but always di!ering by one peri-
od. Whittemore and Saunders [7] derive the opti-
mal policy for regular and emergency lead times
that can be any multiple of the review period.
Rosenshine and Obee [8] examine a standing order
inventory system where a regular order of constant
size is received every period and an emergency
order of "xed size may be placed once per period
and arrives immediately. Gross and Soriano [9]
and Chiang and Gutierrez [10] analyse a di!erent
periodic review inventory system with two supply
modes, where at each review epoch a decision is
made about which of the two supply modes to use.
The work of Chiang and Gutierrez [10] is the "rst
one that considers lead times that can be shorter
than the review period. In a sequel paper, Chiang
and Gutierrez [11] allow multiple emergency or-
ders to be placed at any (discrete) time within
a review period, including the time of the regular
order. Tagaras and Vlachos [12] also study a dual
supply mode periodic review system where lead
times can be shorter than the review period, but
they allow at most one emergency order per cycle.
Continuous review inventory models with emerg-
ency orders have been studied by Moinzadeh and
Nahmias [13], Moinzadeh and Schmidt [14] and
recently by Johansen and Thorstenson [15].

The motivation behind this paper, which consti-
tutes a further examination of periodic review in-
ventory systems with two supply modes, is twofold.
Firstly, in all the previous models the capacity of
both replenishment channels has been implicitly or
explicitly assumed to be practically in"nite, al-
though this may not necessarily be always true in
practice, especially for the emergency replenish-
ment channel that must respond with short notice.
Secondly, the practical relevance of models for in-
ventory systems with two supply modes has been
enhanced lately by the increasing role and import-
ance of reverse logistics networks (see [16] for an
overview). Speci"cally, consider a market for re-
manufactured items (automotive engines, gear-
boxes, tyres) where the demand for such items is
realised and satis"ed at a stocking location that is
periodically supplied by the remanufacturing unit.
When a costly stockout is very likely to occur, the

stocking location may decide to satisfy its cus-
tomers by replenishing its inventory with new and
more expensive items, which are readily available
and will arrive faster than the next regular order or
even an emergency order from the possibly distant
remanufacturer. Dekker et al. [16] report such
a situation at Volkswagen, where newly manufac-
tured parts are sold at the price of a remanufac-
tured part. In the case of tyres, the shorter lead time
of the emergency order for new tyres may be a con-
sequence of the proximity of a retailer or a local
warehouse. At the same time, the available stock
(capacity) of that retailer or warehouse may not be
su$ciently large to completely satisfy the emerg-
ency order.

With the above points in mind we set out to
study a periodic review inventory system with regu-
lar and emergency replenishments, with a capacity
constraint on the size of emergency replenishments.
Our intention is to propose operating policies that
are cost-e!ective, yet simple enough to be widely
applicable both in conventional and reverse logis-
tics networks. Section 2 presents a detailed descrip-
tion of the system under consideration. Section
3 contains the formulation of approximate ex-
pected cost models for the systems under consid-
eration. Optimisation procedures for those models
and properties of their optimal solutions are de-
rived and presented in Section 4. Numerical results
and comparisons are provided in Section 5, along
with validation of the approximate models by
simulation. The "nal section presents a summary
and the main conclusions of this paper.

2. System description and assumptions

We consider a stocking location using an inven-
tory system with two supply modes for managing
the inventory of a single item. Regular replenish-
ment orders are placed periodically through the
primary supply channel, following a base stock
policy; at each review instance, the size of the regu-
lar order is such that the inventory position is
raised up to S (a decision variable). The review
period, P, is "xed and it is assumed to be deter-
mined by considerations exogenous to our model,
such as the need for co-ordinating the regular

42 D. Vlachos, G. Tagaras / Int. J. Production Economics 72 (2001) 41}58



replenishments with those of other items. The or-
ders arrive after a constant regular replenishment
lead time, denoted by ¸. Both P and ¸ are ex-
pressed as integer multiples of a suitably chosen
time unit. The times of arrival of two consecutive
regular orders de"ne a replenishment cycle of
length P time units.

At some point in the replenishment cycle, which
depends on the emergency ordering policy and will
be speci"ed accordingly below, the stocking loca-
tion may place an emergency order through the
secondary supply channel. This order arrives after
the emergency replenishment lead time ¸

�
, which is

also assumed to be constant and an integer mul-
tiple of the time unit, but shorter than the regular
lead time and the review period.

The demand in a time unit is assumed to be
a continuous non-negative random variable, with
density function g(y) and distribution function G(y).
The mean and the standard deviation of the de-
mand per time unit are denoted by � and �, respec-
tively. It is also assumed that demand is
independently distributed in disjoint time intervals.
Any demand that is not immediately satis"ed is
backordered and "lled when a new regular or
emergency order arrives at the stocking location.
More speci"cally, the sequence of events at the
beginning of each time unit is as follows: possible
arrival of an order (regular or emergency), then
materialisation of new demand and after that pos-
sible placement of a new order (regular or emerg-
ency).

To completely specify the operation of the entire
system, the exact form of the ordering policy for the
emergency supply channel needs to be determined.
As in a typical inventory system, there are two
issues to be addressed: when to place the order
(timing) and how much to order (size). There are
obviously many ways to answer these questions,
leading to a large variety of ordering policies. How-
ever, the purpose of this research is to propose and
study policies that are intuitively appealing and
easy to implement in practice. Therefore, we restrict
our attention to two such policies that di!er in the
timing of orders but both of which are of the famil-
iar base stock type.

Before proceeding with the description and anal-
ysis of the two emergency ordering policies, it is

helpful to closely examine a typical replenishment
cycle. Let the P time units of this time interval be
numbered 1}P, where time unit 1 represents the
time unit at the beginning of which a regular order
arrives and can be used to satisfy the accumulated
backorders (if they exist) and new demand of the
time unit. Then, time unit P stands for the last time
unit before the arrival of the next regular order. The
likelihood of a stockout obviously increases as the
end of the replenishment cycle approaches and it is
highest at time unit P. When emergency replenish-
ment is possible, the reason for placing an emerg-
ency order is to reduce the risk or the size of
a stockout exactly at that high-risk part of the
cycle. Given that only one emergency order may be
placed per cycle, its timing has to be decided taking
into account, in addition to its lead time and
cost, the following trade-o!: the advantage of plac-
ing the order early in the cycle (e.g., at time
t(P!¸

�
) is that `earlya stockouts (e.g., in time

unit t#¸
�
) are almost eliminated; on the other

hand, the advantage of placing the order later in the
cycle (but not later than time t"P!¸

�
) is that the

size of this order is speci"ed with more information
about the stock level close to the high-risk end of
the cycle.

With the above in mind, the two emergency
ordering policies that we propose and examine in
this paper will be called `early-orderinga and
`late-orderinga policy, respectively. To simplify the
analysis we assume that stockouts are non-negli-
gible only in the last two time units of the replenish-
ment cycle (Tagaras and Vlachos [12] show that
this assumption provides a satisfactory approxima-
tion in systems with low to moderate demand
variability, not too long review periods and lead
times and large service levels). Therefore, we di!er-
entiate between the two policies as follows: in the
late-ordering policy the emergency order is placed
as late as possible in the cycle, i.e., at time P!¸

�
,

so that it arrives at the beginning of the last, critical
time unit P; in the early-ordering policy the emerg-
ency order is placed at time P!¸

�
!1, so that it

arrives at the beginning of time unit P!1. Figs.
1 and 2 illustrate the sequence of events (placements
and arrivals of regular and emergency orders)
under the late-ordering and early-ordering policy,
respectively.
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Fig. 1. Sequence of events in a typical time interval under the late-ordering policy.

Fig. 2. Sequence of events in a typical time interval under the early-ordering policy.

Having determined the timing of an emergency
order, the next and "nal step is to determine the size
of that order, if such an order is needed at all. The
proposed rule is similar in two cases (late-ordering
and early-ordering) and is characterised by a single
nonnegative parameter r (a decision variable),
which represents the desired level of net stock at the
time that the emergency ordering decision is made.
The emergency order quantity, Q

�
, is determined at

time P!¸
�

(late-ordering) or P!¸
�
!1 (early-

ordering) by comparing the net stock at that time
(NS

�}��
or NS

������
, respectively) with the desired

net stock, r, under the constraint that Q
�

cannot
exceed the capacity K of the emergency channel.
The speci"c operating rule takes the following form
in the two cases:

late-ordering policy:

Q
�
"min�(r!NS

����
)�, K�;

early-ordering policy:

Q
�
"min�(r!NS

������
)�, K�,

where (x)�"max�0, x�.
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There are two reasons for proposing the above
rule. The "rst one is its simplicity and its a$nity
with the widely applicable in practice base stock
policy. The second reason is that its form, barring
the e!ect of the capacity constraint, is analogous to
that of the rule that Chiang and Gutierrez [11]
proved to be optimal in a similar context with
multiple emergency orders per cycle.

The objective, which should eventually deter-
mine the preferable form of the emergency ordering
policy, is to minimise the total relevant costs of the
system, namely the regular and emergency acquisi-
tion costs, holding and backorder (penalty) costs.
A regular order is placed at every review instance
and consequently its "xed cost is not relevant in
our context. Since all demand is eventually satis-
"ed, the variable cost of a regular order is also
irrelevant. The "xed cost of an emergency order is
assumed to be negligible. The incremental variable
cost of an emergency order (over that of a regular
order) is denoted by c

�
per unit. Holding cost is

charged at a rate of c
�

per unit and time unit, while
penalty cost is charged at a rate of c

�
per unit

backordered and time unit. Thus, the general form
of the expected cost per replenishment cycle of
P time units for a given regular and emergency
ordering policy with parameters S and r, is

C
�
"c

�

�
�
���

E(OH
�
)#c

�

�
�
���

E(BO
�
)#c

�
E(Q

�
), (1)

where OH
�
"(NS

�
)� and BO

�
"(!NS

�
)� denote

the ending on hand inventory and backorder level,
respectively, at time unit i of the cycle and E(X)
stands for the expected value of X.

3. Approximate cost models

In order to select the appropriate values of the
decision variables S and r and to compare the two
emergency ordering policies on economic grounds,
suitable cost models have to be developed. Unfor-
tunately, it is practically impossible to obtain an
exact analytical expression for C

�
due to the com-

plex interrelationships among demand, regular and
emergency orders in consecutive replenishment
cycles. Therefore, we decided to derive approximate

expressions for E(Q
�
), E(OH

�
) and E(BO

�
),

i"1, 2,2, P, ignoring the emergency order quant-
ities received in the time interval of length ¸ just
preceding the replenishment cycle under considera-
tion. This simplifying assumption, suggested and
used by Tagaras and Vlachos [12] in a similar
model, is innocuous when the emergency orders are
infrequent and small, as is usually the case. Espe-
cially, when the regular lead time ¸ does not exceed
the review period P, only one emergency order is
ignored, that of the immediately previous cycle. To
further simplify the notation and the presentation
of the approximate cost models, we also assume
¸
�
"1, implying that the emergency order (if any)

will be placed at time P!1 (late-ordering) or P!2
(early ordering) and will arrive in time unit P or
P!1, respectively. The analysis for larger values of
¸
�

is similar, only more tedious in terms of math-
ematical manipulations.

3.1. Late-ordering policy

To evaluate C
�

from (1), one needs to compute
E(Q

�
), E(OH

�
) for i"1, 2,2, P and E(BO

���
),

E(BO
�
), since by assumption E(BO

�
)"0 for

i"1, 2, 2, P!2. To this end, we examine the
time interval of length ¸#P time units, which
starts at the time (review instance) of placement of
the regular order that is received at the beginning of
the replenishment cycle under consideration and
ends just before the arrival of the next regular
order. In other words, this time interval includes
and ends with the replenishment cycle. It is conve-
nient to divide the total demand in the time interval
of length ¸#P in two parts, namely the demand of
the "rst ¸#P!1 time units, denoted by y�, and
the demand of the last time unit, denoted by y.
Fig. 1 explains the structure of an interval of length
¸#P de"ned as above. The emergency order of
the current replenishment cycle is marked EO2,
while the emergency order of the previous replen-
ishment cycle is marked EO1.

Let f (y�) and F(y�) denote the density and distri-
bution function respectively of y�. By the indepen-
dence assumption for demand in disjoint time
intervals it follows that f (y�) is the (¸#P!1)-fold
convolution of the time unit demand density func-
tion g(y). In the ensuing analysis it is assumed that

D. Vlachos, G. Tagaras / Int. J. Production Economics 72 (2001) 41}58 45



all density and distribution functions of demand
are continuous with in"nite support and the distri-
bution functions are also di!erentiable.

Since the stocking location follows an order-up-
to-S policy for regular orders and the previous
emergency order (EO1 in Fig. 1) is negligible by
assumption, the determination of E(OH

���
) and

E(BO
���

) is straightforward following classical in-
ventory theory arguments:

E(OH
���

)"�
�

����

(S!y�) f (y�) dy�

"�
�

����

F(y�) dy�, (2)

E(BO
���

)"�
�

����

(y�!S) f (y�) dy�

"�(¸#P!1)!S#E(OH
���

). (3)

By the de"nition of the late-ordering policy, an
emergency order will be placed at time P!1 of the
cycle only if NS

���
(r. Since NS

���
"S!y�, the

emergency order will be placed only if y�'S!r
and its size will then be Q

�
"min�y�#r!S, K�.

Consequently,

E(Q
�
)"�

����	

������

(y�#r!S) f (y�) dy�

#K�
�

�������	

f (y�) dy�

"K!�
����	

������

F(y�) dy�. (4)

From (4) it is clear that E(Q
�
) is an increasing

function of the emergency channel capacity K, as
expected, stabilising at a certain maximum value
when K becomes so large that it is practically
irrelevant (unconstrained Q

�
).

To evaluate E(OH
�
) and E(BO

�
) one needs to

take into account the emergency order Q
�
, which

arrives in time unit P and can be used to satisfy part
of the demand y of that time unit and/or existing
backorders from time unit P!1. It is therefore
necessary to consider the following possible realisa-
tions of y� and y:

� if y�)S!r, then Q
�
"0 and NS



"S!y!y�,

i.e.,

� � if y#y�)S, then OH
�
"S!y!y� and

BO
�
"0,

� � if y#y�'S, then OH
�
"0 and BO

�
"

y#y�!S;
� if S!r(y�(S!r#K, then Q

�
"y�!(S!r)

and NS


"r!y, i.e.,

� � if y)r, then OH
�
"r!y and BO

�
"0,

� � if y'r, then OH
�
"0 and BO

�
"y!r;

� if y�'S!r#K, then Q
�
"K and NS



"S#K

!y!y�, i.e.,
� � if y#y�)S#K, then OH

�
"S#K

!y!y� and BO
�
"0,

� � if y#y�'S#K, then OH
�
"0 and

BO
�
"y#y�!S!K.

Consequently, the expressions for E(OH
�
) and

E(BO
�
) at the end of the cycle are

E(OH
�
)"�

���

����
��

����

���

(S!y!y�)g(y) dy� f (y�) dy�

#�
����	

������
��

�

���

(r!y)g(y) dy� f (y�) dy�

#�
�

�������	
��

��	���

���

�(S#K!y!y�)g(y) dy� f (y�) dy�,

E(BO
�
)"�

���

����
��

�

������

(y#y�!S)g(y) dy� f (y�) dy�

#�
����	

������
��

�

���

(y!r)g(y) dy� f (y�) dy�

#�
�

�������	
��

�

����	���

�(y#y�!S!K)g(y) dy� f (y�) dy�

which, after long manipulations, simplify to the
following:

E(OH
�
)"�

�

���

G(y)F(S#K!y) dy

#�
�

���

G(y)F(S!y) dy, (5)
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E(BO
�
)"�

�

���

G(y)F(S#K!y) dy

#�
�

���

G(y)F(S!y) dy#(¸#P)�

!S!K#�
����	

������

F(y�) dy�

"E(OH
�
)#(¸#P)�!S!K

#�
����	

������

F(y�) dy�. (6)

The determination of the terms of the expected
cost function, C

�
, can now be completed by deriv-

ing expressions for E(OH
�
),2, E(OH

���
), or,

equivalently, for E(NS
�
),2, E(NS

���
) because by

assumption E(BO
�
)"E(BO

�
)"2"E(BO

���
)

"0. Since no demand is lost, it is clear from Fig. 1
that the expected net stock immediately after the
arrival of the regular order at time unit 1 of the
replenishment cycle and before the demand of that
time unit is materialised is S!¸� (recall that EO1
is ignored). Consequently, E(NS

�
)"S!¸�!�

and more generally

E(OH
�
)"E(NS

�
)"S!(¸#i)�,

i"1, 2,2, P!2, (7)

and

���
�
���

E(OH
�
)"(P!2)[S!(¸#P)�]

#��
P(P!1)

2
!1�. (8)

Combining all the expressions above, the ap-
proximate expected cost function takes the follow-
ing form:

C
�
"c

� �
���
�
���

E(OH
�
)#E(OH

���
)#E(OH

�
)�

#c
�
[E(BO

���
)#E(BO

�
)]#c

�
E(Q

�
)

"c
�
� �

P(P!1)

2
!1�

#c
�
(P!2)[S!�(¸#P)]

#c
�
[�(2¸#2P!1)!2S]

#(c
�
#c

�
) ��

�

����

F(y�) dy�

#�
�

���

G(y)F(S#K!y) dy

#�
�

���

G(y)F(S!y) dy�
#(c

�
!c

�
) �K!�

����	

������

F(y�) dy��. (9)

3.2. Early-ordering policy

The derivation of E(Q
�
), E(OH

�
) for i"1, 2,2,

P and E(BO
���

), E(BO
�
) for the early-ordering

policy follows a similar path and it will be present-
ed much more succinctly in this section. The main
di!erence from the analysis of the late-ordering
policy is that now the demand in the time interval
of length ¸#P is divided into the demand of the
"rst ¸#P!2 time units, denoted by y�, and the
demand of the last two time units, denoted by y

�
(see Fig. 2). Furthermore, the demand in time unit
P!1, denoted by y, also needs to be taken into
account separately in the derivation of expressions
for E(OH

���
) and E(BO

���
).

The analysis now starts with the determination
of the emergency order quantity at time P!2.
According to the early-ordering policy, an emerg-
ency order will be placed at that time only if
NS

���
(r. Since NS

���
"S!y�, such an order

will be placed only if y�'S!r and its size will
then be Q

�
"min�y�#r!S, K�. Thus,

E(Q
�
)"�

����	

������

(y�#r!S)h(y�) dy�

#K�
�

�������	

h(y�) dy�

"K!�
����	

������

H(y�) dy�. (10)

The derivation of expressions for E(OH
���

) and
E(BO

���
) is almost identical to the analogous deri-

vation of E(OH
�
) and E(BO

�
) in the late-ordering
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policy, with the modi"cation that y� replaces y�.
For brevity, we provide below the "nal results:

E(OH
���

)"�
�

���

G(y)H(S#K!y) dy

#�
�

���

G(y)H(S!y) dy, (11)

E(BO
���

)"E(OH
���

)#(¸#P!1)�!S!K

#�
����	

������

H(y�) dy�. (12)

E(OH
�
) and E(BO

�
) are obtained in a similar

fashion, but now y
�

replaces y. The "nal expres-
sions are

E(OH
�
)"�

�

����

G
�
(y

�
)H(S#K!y

�
) dy

�

#�
�

����

G
�
(y

�
)H(S!y

�
) dy

�
, (13)

E(BO
�
)"E(OH

�
)#(¸#P)�!S!K

#�
����	

������

H(y�) dy�. (14)

Finally, the expressions for E(OH
�
),2,

E(OH
���

) remain the same as in (7). The approx-
imate total expected cost per replenishment
cycle, C

�
, under the early-ordering policy is given

by

C
�
"c

�
� �

P(P!1)

2
!1�

#c
�

(P!2) [S!�(¸#P)]

#c
�

[�(2¸#2P!1)!2S]

#(c
�
#c

�
) ��

�

���

[G(y)#G
�
(y)]H(S#K!y)dy

#�
�

���

[G(y)#G
�
(y)] H(S!y) dy�

#(c
�
!2c

�
) �K!�

����	

������

H(y�) dy��. (15)

4. Optimization and properties

The parameters S and r that minimise C
�

of the
corresponding inventory system must necessarily
satisfy the "rst-order conditions

�C
�

�S
"0,

�C
�

�r
"0. (16)

The analytical expressions of the "rst-order con-
ditions are obviously di!erent for the two systems.
In the two subsections below, we derive expressions
for determining the optimal S, r with regard to
C

�
and properties of the optimal solutions, under

the late-ordering and early-ordering policies for
emergency replenishments.

4.1. Late-ordering policy

Using (9), the "rst-order conditions (16) are re-
written as

c
�
(P!2)!2c

�
#(c

�
#c

�
) �F(S)

#�
�

���

G(y) f (S#K!y) dy

#�
�

���

G(y) f (S!y) dy�
#(c

�
!c

�
) [F(S!r)!F(S!r#K)]"0, (17)

[F(S!r#K)!F(S!r)]

�[c
�
!c

�
#(c

�
#c

�
) G(r)]"0. (18)

Proposition 1 speci"es how to determine the opti-
mal S and r under certain conditions. The proofs of
Propositions 1 and 2 that follow are given in the
appendix.

Proposition 1. If (a) G(y) is strictly increasing in y,
(b) the decision parameters must satisfy the relation-
ship 0(r(S and (c)

2c
�
!c

�
(P!2)

'(c
�
#c

�
) �F(r�)#�

�
�

���

F(r�#K!y)g(y) dy�,
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where r� is such that

G(r�)"
c
�
!c

�
c
�
#c

�

, (19)

then the optimal r is r� and the optimal S satisxes the
equation

F(S)#�
�
�

���

F(S#K!x)g(x) dx

#�
�

���
�

F(S!x)g(x) dx"

2c
�
!c

�
(P!2)

c
�
#c

�

. (20)

The conditions of Proposition 1 hold in all the
numerical examples of the following section. Con-
sequently, Proposition 1 means that in many prac-
tical situations C

�
has a unique global minimum

that is obtained as the unique solution to the sys-
tem of equations (19) and (20). This solution, which
hereunder will be denoted S�, r�, is the exact opti-
mum of the approximate cost function C

�
but it is

generally a sub-optimal solution of the exact cost
function. Its quality will be evaluated numerically
in the next section.

The following proposition shows the e!ect of the
emergency channel capacity K on the optimal
S� and r� of C



.

Proposition 2. S� is a monotonically decreasing
function of the capacity of the emergency channel K,
while r� is independent of K.

The dependence of S� on K is intuitively appeal-
ing; the lower the capacity of the emergency
channel, the more the inventory system has to
rely on regular replenishments and this can be
achieved by increasing the base stock S. On the
other hand, the independence between r� and K
is puzzling. Note, in addition, that by expression
(19) the optimal r� is also independent of S and
¸. The explanation for this remarkable stability
of r� is that the determination of the optimal r
in the context of the approximate cost model
follows essentially a Newsboy-type analysis for
time unit P with initial net stock NS

���
indepen-

dent of r and K.

4.2. Early-ordering policy

Using (15), the "rst-order conditions (16) become
in this case

c
�
(P!2)!2c

�
#(c

�
#c

�
)

��
�

���

G(y)h(S#K!y) dy#�
�

���

G(y)h(S!y) dy�
#(c

�
#c

�
) ��

�

���

G
�
(y)h(S#K!y) dy

#�
�

���

G
�
(y)h(S!y) dy�

#(c
�
!2c

�
) [H(S!r)!H(S!r#K)]"0,

(21)

[H(S!r#K)!H(S!r)]

�[c
�
!2c

�
#(c

�
#c

�
) (G(r)#G

�
(r))]"0. (22)

Propositions 3 and 4 (and their proofs) are ana-
logous to Propositions 1 and 2 of the early-ordering
policy and are presented below without discussion,
because their interpretation and the relevant com-
ments are also similar.

Proposition 3. If (a) G(y) is strictly increasing in y,
(b) the decision parameters must satisfy the relation-
ship 0(r(S and (c)

2c
�
!c

�
(P!2)'(c

�
#c

�
)

��
�
�

���

[g(y)#g
�
(y)]H(r�#K!y) dy�,

where r� is such that

G(r�)#G
�
(r�)"

2c
�
!c

�
c
�
#c

�

, (23)

then the optimal r is r� and the optimal S satisxes the
equation

�
�
�

���

H(S#K!x) [g(x)#g
�
(x)] dx

#�
���

�

���

H(x) [g(S!x)#g
�
(S!x)] dx

"

2c
�
!c

�
(P!2)

c
�
#c

�

. (24)
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Table 1
Combination of problem parameters used in the numerical
investigation

Combination P ¸ �/� c
�

c
�

1 7 4 0.2 50 20
2 7 4 0.2 100 20
3 7 4 0.2 50 40
4 7 4 0.2 100 40
5 7 4 0.4 50 20
6 7 4 0.4 100 20
7 7 4 0.4 50 40
8 7 4 0.4 100 40
9 7 7 0.2 50 20

10 7 7 0.2 100 20
11 7 7 0.2 50 40
12 7 7 0.2 100 40
13 7 7 0.4 50 20
14 7 7 0.4 100 20
15 7 7 0.4 50 40
16 7 7 0.4 100 40
17 14 7 0.2 50 20
18 14 7 0.2 100 20
19 14 7 0.2 50 40
20 14 7 0.2 100 40
21 14 7 0.4 50 20
22 14 7 0.4 100 20
23 14 7 0.4 50 40
24 14 7 0.4 100 40

Proposition 4. S� is a monotonically decreasing
function of the capacity of the emergency channel K,
while r� is independent of K.

5. Numerical results

The numerical investigation we undertook and
report in this section had three objectives:

� Evaluate the accuracy of the approximate mod-
els and the quality of the resulting solutions.

� Examine the e!ect of the limited emergency
channel capacity on the performance of the in-
ventory systems under consideration.

� Compare the relative cost e!ectiveness of the two
emergency ordering policies under di!erent con-
ditions.

To meet these objectives we solved a total of 144
problems, 72 under the late-ordering policy for
emergency replenishments and 72 under the early-
ordering policy. These problems were generated by
combining a common set of 24 combinations of
review period (P), regular order lead time (¸), coef-
"cient of variation of demand (�/�), backorder pen-
alty cost (c

�
) and emergency order cost (c

�
) with

three levels of emergency channel capacity (K). Spe-
ci"cally, three combinations of P and ¸ were exam-
ined and two values were used for each of �/�,
c
�

and c
�
. The resulting 24 combinations of these

parameters are shown in Table 1. In all cases the
holding cost rate was used as the cost unit (c

�
"1)

and the emergency replenishment lead time was
used as the time unit (¸

�
"1). The demand per time

unit was assumed to follow a normal distribution
left-truncated at 0, i.e., with the negative part of the
normal distribution redistributed proportionally to
its positive part [17,18], with a mean (�) of 100
units. The three levels of K were set equal to 20, 100
and 200 units. The case K"20 represents low
capacity and the system approaches a classical in-
ventory system with a single replenishment mode.
K"100 represents medium capacity, equal to the
average demand in a time unit (K"�). K"200
represents high emergency channel capacity, equal
to the average demand of two time units (K"2�).
This case approaches a system without constraint
on the size of emergency orders.

For each of the 144 problems, S� and r� were "rst
obtained by numerically solving the systems of
equations (19) and (20) of Proposition 1, and (23)
and (24) of Proposition 3 (where necessary, the
convolutions of demand per time unit distributions
were approximated by normal distributions with
the same mean and variance). Then, a combination
of simulation and search led to the determination of
the `exact optimala solutions, denoted SH, rH, which
yield the minimum simulated cost, CH

�
. Speci"cally,

under each combination of S, r that was examined,
the system was simulated 3000 times for 500 replen-
ishment cycles. The programme simulated the op-
eration of the system exactly as it was described in
Section 2 and derived estimates for all the terms
appearing in the cost function (1). The two-sided
95% con"dence intervals for the operational char-
acteristics were in all cases tighter than 0.1% of the
respective point estimates. The optimal combina-
tion SH, rH was identi"ed through a grid search over
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integer only values of S, r, "rst to keep the com-
putational time reasonable and second because the
expected cost function is very #at in the vicinity of
the optimum.

Tables 2 and 3 contain a representative sample of
the detailed results. Speci"cally, Table 2 presents
the solutions S�, r� of the approximate cost model
(rounded to the closest integers) for the 24 problems
under the late-ordering policy with K"20, along
with operational characteristics and expected costs,
C

�
, as they are computed from the respective ex-

pressions of Section 3. Similarly, Table 3 contains
the solutions of the approximate cost model under
the early-ordering policy with K"100. The right-
most columns of Tables 2 and 3 summarise the
simulation results at the solutions S�, r�. In all 144
problems, the conditions of Propositions 1 and
3 for unique global minima were satis"ed.

The accuracy in estimating the quantities of in-
terest with the approximate model of the late-order-
ing policy can be inferred by comparing the
corresponding columns of Table 2. This compari-
son shows that the di!erences are generally small.
Moreover, the simulated values of E(BO

�
),

i"1, 2,2, P!2 are indeed very close to 0, except
for the cases with P"14 and high demand varia-
bility where E(BO

���
) is not negligible. Similar

conclusions are drawn for the early-ordering policy
from Table 3. It is fair to say, though, that the
satisfactory accuracy of the approximate models is
partly due to the fact that in all numerical examples
the regular replenishment lead time is not longer
than the review period: ¸)P. Although the mod-
els in Section 3 may also be used for ¸'P, their
accuracy will deteriorate in those situations
because more than one previous emergency replen-
ishments are ignored. This case is addressed by
Tagaras and Vlachos [12] in the unconstrained
version of the late-ordering policy by means of
a heuristic procedure.

An even more important issue is the quality of
the solutions S�, r�, i.e., their proximity to SH,
rH and the cost penalty for using the former rather
than the latter. Tables 4 and 5 contain SH and rH for
the 24 problems under late and early emergency
ordering with K"20, 100 and 200 and the ex-
pected costs CH

�
of these solutions, along with the

respective solutions S�, r� and their simulated costs.

�C
�

is the percentage cost penalty of the solution
S�, r� with respect to the optimum measured in
terms of CH

�
.

The main conclusion from Tables 4 and 5 is that
the cost penalties are uniformly very low. For the
72 problems with late emergency ordering (Table
4), the average cost penalty �C

�
is 0.17%; in the

worst case, �C
�
"0.78%. For the 72 problems

with early emergency ordering (Table 5), the aver-
age cost penalty �C

�
is 0.08%; in the worst case,

�C
�
"0.39%. The cost penalties are lowest in the

low-capacity problems (K"20), because in those
cases the simplifying assumption of the approxim-
ate model (ignoring the previous emergency order)
is harmless. Another important observation is that
SH is non-increasing in K, exactly like S� by Prop-
ositions 2 and 4. In addition, S� is in most cases
higher than SH, but the di!erences are generally not
very large, hence the low-cost penalties. At the
same time, r� is usually but not always lower than
rH. In particular, the optimal r (rH) is decreasing in
K and increasing in ¸ for "xed P (while according
to the approximate model r� is independent of
K and ¸), but the relationship is not so strong as to
lead to very unsatisfactory solutions S�, r�. Overall,
it can be argued that the approximate models of
Section 4 are quite accurate and their solutions are
near-optimal resulting in low-cost penalties with
respect to the exact optimal solutions.

We can now pursue the second objective of the
numerical investigation, that is to examine the ef-
fect of the limited emergency channel capacity on
the performance of the inventory systems. The rela-
tionship between K and the optimal S and r has
already been discussed. The exact e!ect of K on the
total expected cost can be determined by compar-
ing the simulated costs of S�, r� or SH, rH between
problems di!ering only in K. Without going into
details, it su$ces to say that when the capacity
increases from its low level (K"20) to its high level
(K"200) in the late-ordering system, the cost re-
duction in terms of CH

�
averages 3.17% over the 24

parameter combinations, with a maximum of
8.03%. The analogous cost reduction in the early-
ordering system averages 3.32%, with a maximum
of 8.57%. The cost di!erences increase as the re-
view period and the regular replenishment leadtime
become longer.
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The third and "nal objective of the numerical
investigation was to compare the relative cost e!ec-
tiveness of the two emergency ordering policies
under di!erent conditions. This comparison is per-
formed by examining the corresponding costs in
Tables 4 and 5 side by side. The interesting obser-
vation here is that the results are mixed. The early-
ordering policy outperforms the late-ordering pol-
icy in 38 of the 72 cases and the reverse happens in
the remaining 34 cases. Speci"cally, the cost perfor-
mance of the early-ordering policy, relative to that
of the late-ordering policy, improves as the varia-
bility of demand increases, the shortage cost de-
creases and the regular leadtime and the review
period become longer. The cost di!erences between
the two policies, in either direction, are not large
but they become more pronounced as the capacity
of the emergency channel increases. The maximum
cost advantage of the early-ordering policy is
about 3% of CH

�
in problem 22 with K"200,

whereas the maximum cost advantage of the late-
ordering policy approaches 2.4% in problem 2 with
K"200.

6. Conclusion

We examined periodic review inventory sys-
tems with regular and emergency supply modes
with capacity limitations on the emergency channel
and two alternative options for the timing of order-
ing and receiving emergency replenishments. The
approximate cost models that we developed were
shown to provide near optimal solutions that can
be derived very e$ciently. The main conclusions of
the extensive numerical investigation regarding the
e!ect of the limited emergency channel capacity
and the relative cost e!ectiveness of the two emerg-
ency ordering options can be summarised as fol-
lows:

� The constraint on the capacity of the emergency
channel has a signi"cant e!ect on the system
performance under both emergency ordering
policies, especially when the review period and
the regular replenishment leadtime are long, or
equivalently if the emergency leadtime is short

and consequently emergency replenishments are
more e!ective. This result is certainly intuitive
and expected, but the proposed cost models per-
mit the quanti"cation of this e!ect.

� Placing the emergency order early in the replen-
ishment cycle becomes relatively more advant-
ageous than placing the order later in the cycle as
the demand becomes more variable, the shortage
cost decreases and the regular leadtime and re-
view period become longer. The di!erences in the
economic performance of the two emergency
ordering policies are small, but they become rela-
tively more substantial when the emergency
channel capacity is large.

The emergency ordering policies that have been
examined in this paper do not exhaust the class of
possible policies for inventory systems with two
supply modes. It is clear that more complex pol-
icies, such as deciding about the (variable) timing of
a single emergency order using current inventory
information or allowing multiple emergency orders
per cycle will generally be more e!ective in terms of
holding, stockout and emergency order cost. How-
ever, the proposed policies have the advantage of
operational simplicity, which is a decisive factor for
practical implementation. In addition, they are well
suited for an environment where orderly manage-
ment of inventory is especially desirable, since even
the emergency ordering decisions are taken period-
ically at well-speci"ed times. Despite these advant-
ages, future research is needed to evaluate the
savings that may be expected to result from the use
of more #exible policies.
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Appendix A. Proofs of propositions

Proof of Proposition 1. The "rst partial derivatives
of C

�
with respect to S and r are

�C
�

�S
"c

�
(P!2)!2c

�
#(c

�
#c

�
) �F(S)

#�
�

���

G(y) f (S#K!y) dy

#�
�

���

G(y) f (S!y) dy�
#(c

�
!c

�
) [F(S!r)!F(S!r#K)]

"c
�
(P!2)!2c

�
#(c

�
#c

�
) �F(S)

#�
�

���

F(S#K!y)g(y) dy

#�
�

���

F(S!y)g(y) dy�
#[(c

�
!c

�
)#G(r)(c

�
#c

�
)]

�[F(S!r)!F(S!r#K)], (A.1)

�C
�

�r
"[F(S!r#K)!F(S!r)]

�[c
�
!c

�
#(c

�
#c

�
)G(r)]. (A.2)

Since F(S!r)(F(S!r#K) for all "nite S, r and
K'0, the "rst derivative of C

�
with respect to

r vanishes only for r such that (19) holds. By condi-
tion (a) there is a unique r that satis"es (19). Substi-
tuting (19) into (A.1), �C

�
/�S"0 yields (20). For

0(r(S, per condition (b), the left-hand side of
(20) is a positive increasing function of S with
lowest value F(r)#	�

���
F(r#K!y)g(y) dy (at

S"r). By condition (c), the right-hand side of (20)
exceeds the lowest value and consequently there is
a unique S that satis"es (20). Therefore, there is
a unique combination of S and r that satis"es the
"rst-order necessary conditions for optimality.

The second derivatives are

��C
�

�S�r
"

��C
�

�r�S
"[ f (S!r#K)!f (S!r)]

�[c
�
!c

�
#(c

�
#c

�
)G(r)]"A, (A.3)

��C
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�
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�
) g(r)

"!A#[F(S!r#K)!F(S!r)]

�(c
�
#c

�
) g(r)"B!A, (A.4)

where B'0 since g(r)'0 by condition (a) and
F(S!r#K)'F(S!r) for K'0.

��C
�
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�
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�
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#

�
�S�
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���
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���
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�
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�
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�
)G(r)]
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�

���

f (S#K!y)g(y) dy

#�
�

���

f (S!y)g(y) dy�!A"C!A

with C'0.
Evaluation of the second derivatives at the com-

bination of S and r that satis"es the "rst-order
conditions con"rms that these S and r also satisfy
the second-order su$cient conditions for a min-
imum. Thus, this combination of S and r is the
global minimum of C

�
.

Proof of Proposition 2. Di!erentiating (20) that
characterises the optimal S, with respect to K gives

�A(S)

�S

�S

�K
#

�A(S)

�K
"0, (A.5)

where A(S) is the left-hand side of (20).
The partial derivative of A(S) with respect to S is

�A(S)

�S
"

�
�S �F(S)#�

�

���

F(S#K!x)g(x) dx

#�
�

���

F(S!x)g(x) dx�
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"f (S)#�
�

���

f (S#K!x)g(x) dx

#�
�

���

f (S!x)g(x) dx'0. (A.6)

The partial derivative of A(S) with respect to K is

�A(S)

�K
"

�
�K �F(S)#�

�

���

F(S#K!x)g(x) dx

#�
�

���

F(S!x)g(x) dx�
"�

�

���

f (S#K!x)g(x) dx'0. (A.7)

Finally, since �A(S)/�S'0 and �A(S)/�K'0, (A.5)
yields �S/�K(0, which proves that the optimal
S is decreasing in K. The independence between the
optimal r and K is obvious from (20).
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