
Simultaneous lotsizing and scheduling by combining local search
with dual reoptimization

H. Meyr *

Lehrstuhl f�ur Produktion und Logistik, Universit�at Augsburg, Universit�atsstr. 16, 86 135 Augsburg, Germany

Received 1 October 1997; accepted 1 October 1998

Abstract

The contribution of this paper is twofold. On the one hand, the particular problem of integrating lotsizing and

scheduling of several products on a single, capacitated production line is modelled and solved, taking into account

sequence-dependent setup times. Thereby, continuous lotsizes, meeting deterministic dynamic demands, are to be de-

termined and scheduled with the objective of minimizing inventory holding costs and sequence-dependent setup costs.

On the other hand, a new general algorithmic approach is presented: A dual reoptimization algorithm is combined with

a local search heuristic for solving a mixed integer programming problem. This idea is applied to the above lotsizing and

scheduling problem by embedding a dual network ¯ow algorithm into threshold accepting and simulated annealing,

respectively. Computational tests show the e�ectiveness of the new solution method. Ó 2000 Elsevier Science B.V. All

rights reserved.

Keywords: Lotsizing; Scheduling; Integer programming; Heuristics; Simulated annealing

1. Introduction

In a ¯ow shop environment ± which is e.g.
typical for the food or (semi-)process industry ± a
large number of products have to be scheduled on
one (or a few parallel) highly utilized production
line(s). In contrast to a job shop production design
all items take the same route. Therefore, each line
may be planned as a single unit.

Changeovers between items sharing the same
line often cause signi®cant, sequence-dependent

setup times and setup costs. In order to avoid
unnecessary changeovers, customer demand has to
be pooled in production orders (lots). When se-
quence-dependent setup times are predominant,
the capacity available for production depends on
both the sequence and the size of the lots. In such a
situation, lotsizing and scheduling have to be ap-
plied simultaneously in a single step of planning
[11].

The problem discussed here is of this type:
Continuous lotsizes of several products are deter-
mined and scheduled on a single machine (pro-
duction line) with the objective of minimizing
holding and sequence-dependent setup costs.

European Journal of Operational Research 120 (2000) 311±326
www.elsevier.com/locate/orms

* E-mail: Herbert.Meyr@Wiso.Uni-Augsburg.DE

0377-2217/00/$ ± see front matter Ó 2000 Elsevier Science B.V. All rights reserved.

PII: S 0 3 7 7 - 2 2 1 7 (9 9) 0 0 1 5 9 - 9

Deterministic, dynamic demand, given over a ®nite
planning horizon, is to be met without back-log-
ging. The limited availability of the machine may
be further reduced by changeovers causing se-
quence-dependent setup times.

Reviews of lotsizing models in general are given
in Refs. [3,27,13] of scheduling models that deal
with batching and lotsizing issues in Ref. [30]. In
the recent past, more and more attention has been
paid to simultaneous lotsizing and scheduling with
setup times, but solution methods are still not
satisfying.

In Refs. [8,9] and [31,10], respectively, models
with sequence-independent and sequence-depen-
dent setup times are formulated sharing the
common property that a product is either pro-
duced over a full (but rather short) micro-period
or not at all (all-or-nothing assumption). The
models presented in Refs. [9,31] are based on the
Discrete Lotsizing and Scheduling Problem
(DLSP) originally formulated by Fleischmann
[17,18]. Jordan [24] formulates the Batch Se-
quencing Problem, a class of scheduling problems
minimizing holding and setup costs, and shows
that some speci®cations of them are equivalent to
the problems in Refs. [18,9,31]. Drexl and Haase
[22,12] extend the Proportional Lotsizing and
Scheduling Problem (PLSP) ± a model that
weakens the all-or-nothing assumption by ad-
mitting at most two products per micro-period ±
to sequence-independent setup times and outline
a solution procedure. However, no computational
results are given.

The papers [32,35] present some special for-
mulations that are designed to solve small problem
instances to optimality. In Refs. [25,21] models
and solution procedures are proposed that are
motivated by practical problems. The so-called
CHES problems, a collection of practical problems
gathered by Chesapeake Decision Sciences (no
setup times, [4]), are dealt with in Ref. [25]. Go-
palakrishnan et al. [21] tackle a lotsizing problem
in the napkin production, where it is su�cient to
determine the sequence only for the ®rst and last
product of each (rather long) macro-period.

In Section 2, we extend the General Lotsizing
and Scheduling Problem (GLSP) of Fleischmann
and Meyr [19] to deal with sequence-dependent

setup times (GLSPST). The GLSP is more general
than the DLSP and PLSP, because the number of
products per (macro-)period is not restrictive any
more.

In Section 3, two solution procedures to the
GLSPST are presented which are based on the
local search heuristics threshold accepting (TA)
and simulated annealing (SA). In each candidate
test a new setup sequence is generated. After ®xing
the setup sequence a minimum cost network ¯ow
problem (MCFP) has to be solved in order to
determine the lotsizes and holding costs of the
candidate.

This technique of tackling a mixed integer
programming problem (MIP) is not new. Kuik
et al. [28] consider the Multi-Level Capacitated
Lotsizing Problem. They ®x the setup state (not
the sequence as it has to be done in simultaneous
lotsizing and scheduling) using SA and solve
the remaining linear problem (LP) heuristically
by modifying the greedy algorithm of McClain
et al. [29]. The exact solution of the LP is disre-
garded because of computation time limitations.
Fleischmann and Meyr [19] use a similar approach
for the GLSP without setup times. Teghem et al.
[34] deal with the grouping of book covers on
o�set plates. They ®x the binary variables of their
model with SA and solve the remaining LP to
optimality. However, they complain about ex-
haustive computation times, too, since each can-
didate LP is solved from scratch using a standard
(external) LP solver.

These ways of tackling the LP subproblems ±
heuristically or optimally from scratch ± both
su�er from the trade-o� between computation
time and solution quality: Heuristic solution of the
LP may be done quite fast, but the quality of so-
lution is expected to be superior in case of opti-
mally solved LP subproblems. However, if that
has to be done from scratch, computation time
tends to become restrictive soon.

We present a new approach to obtain the
quality of optimally solved subproblems sub-
stantially faster than starting from scratch. Here,
reoptimization pro®ts from information which is
provided by already tested candidates. Further-
more, we utilize a dual algorithm for reoptimiza-
tion. So, a sequence of increasing lower bounds to

312 H. Meyr / European Journal of Operational Research 120 (2000) 311±326

the minimum cost of every LP subprob-
lem is computed. These lower bounds can be
used to refuse an unacceptable candidate very
early ± without having to solve the LP subprob-
lem at all.

This principle is applied to the GLSPST by
embedding a dual network ¯ow algorithm into TA
and SA, respectively.

The computational tests of Section 4 demon-
strate both the usefulness of the dual reoptimiza-
tion approach and the availability of an e�ective,
``high-quality'' solution procedure for the GLS-
PST.

2. Model formulation

Products j � 1; . . . ; J are scheduled over a ®nite
planning horizon consisting of macro-periods t �
1; . . . ; T with given length. A macro-period t is
divided into a ®xed number of non-overlapping
micro-periods with variable length. St denotes the
set of micro-periods s assigned to macro-period t.
All micro-periods are sequenced in the order
s � 1; . . . ; S. The number of micro-periods jStj
within a macro-period t has to be ®xed in advance
to allow MIP-modeling.

The length of a micro-period is a decision
variable, expressed by the quantity produced in the
micro-period. A sequence of consecutive micro-
periods where the same item is produced de®nes a
lot and the quantity produced during these micro-
periods de®nes the size of the lot. Therefore, a lot
may continue over several micro- and macro-pe-
riods and is independent of the discrete time
structure of the macro-periods. Note that micro-
periods constitute both the product sequence and
the lotsizes.

As a consequence of the ®xed number jStj, a lot
may contain idle micro-periods with production
quantity zero. If ± after an idle micro-period ± the
same item is produced again, the setup state is
conserved, i.e. no further setup is necessary.
However, the solution procedures presented in this
paper are able to work with a variable number of
micro-periods per macro-period and to avoid idle
micro-periods.

The following data and variables are used:

We formulate the GLSPST which is a
straightforward extension of the GLSP without
setup times [19]:

minimize
X

j;t

hjIjt �
X
i;j;s

sijzijs �1�

subject to

Ijt � Ij;tÿ1 �
X
s2St

xjs ÿ djt 8t; j; �2�

X
j;s2St

ajxjs �
X

i;j;s2St

stijzijs6Kt 8t; �3�

Data:
St set of micro-periods s belonging to macro-

period t
Kt capacity (time) available in macro-period t
aj capacity consumption (time) needed to

produce one unit of product j
mj minimum lotsize of product j (units)
hj holding costs of product j (per unit and per

macro-period)
sij setup costs of a changeover from product i

to product j
stij setup time of a changeover from product i to

product j (time)
djt demand of product j in macro-period t

(units)
Ij0 initial inventory of product j at the begin-

ning of the planning horizon (units)
yj0 equals 1, if the machine is set up for product

j at the beginning of the planning horizon (0
otherwise)

Variables:
Ijt P 0 inventory of product j at the end of

macro-period t (units)
xjs P 0 quantity of item j produced in mic-

ro-period s (units)
yjs 2 f0; 1g setup state: yjs � 1, if the machine is

set up for product j in micro-period s
(0 otherwise)

zijs P 0 takes on 1, if a changeover from
product i to product j takes place at
the beginning of micro-period s (0
otherwise)

H. Meyr / European Journal of Operational Research 120 (2000) 311±326 313

xjs6
Kt

aj
yjs 8s; j; �4�

xjs P mj yjs

ÿ ÿ yj;sÿ1

� 8s; j; �5�X
j

yjs � 1 8s; �6�

zijs P yi;sÿ1 � yjs ÿ 1 8s; i; j: �7�

Inventory holding and sequence-dependent
setup costs are minimized (Eq. (1)). The inventory
balancing constraints (Eq. (2)) together with
Ijt P 0 ensure that demand is met without back-
logging. Limited capacity is further reduced by
setup times (Eq. (3)). Because of Eqs. (4) and (6)
production can only take place if the machine is set
up for the respective product and one and only one
setup state is de®ned in each micro-period. In or-
der to change the setup state from product i to
another product j a changeover has to be executed
entailing a setup time stij and setup costs sij. Such a
changeover has to be started and ®nished within
the same macro-period. Since macro-periods are
large-time buckets (weeks or months, for example)
and the setup state is conserved after idle periods,
this assumption does not seem to be crucial.

Minimum lotsizes (Eq. (5)) are introduced in
order to avoid setup changes without product
changes, which could lead to a wrong evaluation
of the setup costs (and setup time, respectively) in
an optimal solution if the setup cost matrix does
not satisfy the triangle inequality (8):

sik � skj P sij 8i; j; k � 1; . . . ; J : �8�
This situation occurs e.g. in chemical industries

where certain product sequences i; j require
cleaning at the changeover in order to avoid con-
tamination. If the cleaning can be replaced by the
insertion of a ``rinsing'' product k, then Eq. (8) is
violated. The minimum lotsize is based on tech-
nical requirements. For example, in continuous
chemical production sometimes the ``low quality
material'' of the starting phase of a lot is mixed
with the ``high quality material'' of latter phases.
In such a situation the lotsize is bounded by the
amount which is necessary to ensure the desired
minimum quality level of the mix as a whole.

However, if the triangle inequality (8) holds, in
many practical applications the minimum lotsizes
may be set to zero and, thus, do not have any
impact on economical lotsizes.

The connection between setup state indicators
and changeover indicators is established by
Eq. (7).

3. Solution procedures

3.1. Threshold accepting

Fixing the setup pattern: In the following, we
brie¯y outline the TA framework for solving the
GLSPST. A solution to GLSPST is characterized
by the setup pattern yjs (implying zijs) and the
production quantities xjs that are assigned to this
setup pattern. A lot consists of a sequence of
production quantities of the same product. The
cost of a solution is the sum of setup costs caused
by the setup pattern and holding costs caused by
the respective lots. If the setup pattern is ®xed, the
problem of determining lotsizes that ®t to the
setup pattern and cause minimal holding costs is
an MCFP.

A neighbor of a current solution of the GLSPST
is another solution whose setup pattern is slightly
changed and whose lotsizes are determined by a
speci®c procedure that solves the new MCFP ±
either heuristically or to optimality. These changes
in the setup pattern may result from insertion of a
new lot between two lots of the current solution,
deletion of a lot of the current solution or an ex-
change of two lots of the current solution. These
operations are called neighborhood operations.

Starting from an initial (current) solution a
candidate for a new neighbored solution is selected
by applying one of these neighborhood operations.
The neighborhood operation may be chosen ran-
domly or in a deterministic way as described in
Ref. [19], for example. The respective product(s)
for insertion, deletion or exchange and the re-
spective micro-period(s) are drawn at random. A
candidate is accepted as a new current solution if
its costs are lower than the costs of the current
solution. One way to overcome local optima is to
accept a candidate solution even if its cost does not

314 H. Meyr / European Journal of Operational Research 120 (2000) 311±326

exceed the cost of the current solution by a speci®c
threshold. That is the reason why such a procedure
is called threshold accepting [15]. Successive re-
duction of the threshold leads to convergence of
the algorithm. In order to be independent of the
objective function level of a speci®c problem in-
stance, we determine the threshold as a (decreas-
ing) percentage value Th of the current solution.

Since GLSP is NP-complete [19] and GLSP is
a specialization of GLSPST, the General Lotsiz-
ing and Scheduling Problem with Setup Times is
NP-complete, too. Therefore, ®nding a feasible
initial solution to start the neighborhood search is
a very di�cult task. To bypass this problem we
start from an infeasible initial solution and let TA
®nd the ®rst feasible solution. For that purpose,
the MCFP is slightly modi®ed, so that actually
infeasible candidates can also be accepted: A ®c-
titious macro-period 0 ± without capacity con-
straints ± is introduced. Production of a quantity
x0

j of item j within this period is punished with a
penalty cost h0

j x0
j which expresses the degree of

infeasibility and has to be high enough to prefer
feasible solutions to infeasible ones. (As proposed
in Ref. [19], we implement penalty costs h0

j �
hj maxifsijg for all j.) An initial (infeasible) setup
pattern is then de®ned by assigning the complete
production for all products to the ®ctitious period
0 thus suppressing production in all real macro-
periods t � 1; . . . ; T .

The MCFP with ®xed setup pattern: In order to
evaluate the minimal holding costs attainable for
the already ®xed setup pattern of a new candidate
r, a min cost ¯ow problem P r of the following form
has to be solved to optimality on the network
Gr � �N;Ar�:

minimize
X
�k;l�2Ar

cklX r
kl

subject toX
�k;l�2Ar

X r
kl ÿ

X
�l;k�2Ar

X r
kl � br

k 8k 2N;

lr
kl6X r

kl6 ur
kl 8�k; l� 2Ar:

The set of nodes N consists of the following
(cf. Fig. 1):

· T capacity nodes nC
t with supply br

nC
t

:� Kt ÿP
i;j;s2St

stijzr
ijs representing the capacity of mac-

ro-period t; thereby, the totally available capac-
ity Kt is reduced by the already known setup
times of candidate r.

· JT demand nodes nD
jt with demand br

nD
jt

:�
ÿ�ajdjt� representing demand of product j in
macro-period t.

· 1 dummy supply node nS with supply br
nS :�P

j;t ajdjt representing the additional (actually
unlimited) capacity of the ®ctitious period 0.

· 1 dummy demand node nD with demand
br

nD :� ÿPt�Kt ÿ
P

i;j;s2St
stijzr

ijs�; this node is
needed to balance supply and demand in the
network so that

P
k2N br

k � 0 holds.
A directed arc �k; l� from tail k to head l connects

node k 2N with node l 2N. Ar, the set of all arcs
of a new candidate r, consists of the following:
· T capacity arcs �nC

t ; n
D� representing unused ca-

pacity in macro-period t.
· At most JT production arcs �nC

t ; n
D
jt� represent-

ing production of product j in macro-period t;
�nC

t ; n
D
jt� 62Ar if the setup pattern of candidate

r forbids production of product j in macro-peri-
od t, i.e.

P
i;s2St

zr
ijs � 0 (dashed arcs in Fig. 1).

· J�T ÿ 1� inventory arcs �nD
jt ; n

D
j;t�1�

�t � 1; . . . ; T ÿ 1�.
· J ending inventory arcs �nD

jT ; n
D�.

· J ®ctitious arcs �nS ; nD
j;1� representing production

in the ®ctitious period 0.
· 1 ®ctitious arc �nS ; nD� representing unused ®cti-

tious supply in period 0.
The variable X r

kl denotes the ¯ow on arc
�k; l� 2Ar, measured in units of time. The ¯ow on

Fig. 1. Example for a graph G with J � 3 and T � 3.

H. Meyr / European Journal of Operational Research 120 (2000) 311±326 315

arc �k; l� is rated by the cost ckl and bounded by a
lower bound lr

kl and an upper bound ur
kl where

ckl :�

1

aj
�

h0
j if �k; l� � �nS ; nD

j;1� �penalty costs�;
hj if �k; l� � �nD

jt ; n
D
j;t�1� �t � 1; . . . ; T ÿ 1�;

hj if �k; l� � �nD
jT ; n

D�;
0 otherwise;

8>>>>><>>>>>:

lr
kl :�

ajmj
P

i6�j;s2St

zr
ijs if �k; l� � �nC

t ; n
D
jt� 2Ar

�minimum lotsize�;
0 otherwise;

8>>><>>>:
ur

kl :� maximal possible flow on arc�k; l�
�e:g: ur

kl :� Kt if �k; l� � �nC
t ; n

D�:
If no production takes place in the ®ctitious

period (
P

j X r
�nS ;nD

j;1�
� 0), candidate r is a feasible

solution to the GLSPST.

The general idea: As already mentioned the idea
of ®xing the binary variables of an MIP by local
search and solving the remaining LP subproblem
is quite common in the literature. Because of the
large number of candidates to be tested Kuik et al.
[28] and Fleischmann and Meyr [19] suppose to
solve the subproblem heuristically employing fast
specialized algorithms. A slight improvement of
solution quality seems achievable if at least the
best accepted candidate is solved to optimality ex
post. Without doubt still better results would be
possible if the LP subproblems of all (acceptable)
candidates were optimally solved. However, Teg-
hem et al. [34] demonstrate that computation times
become prohibitive soon, if each LP subproblem is
solved individually, by starting from scratch.

In the following a new way is presented to obtain
the solution quality of optimally solved subprob-
lems substantially faster than starting from scratch.

The GLSPST and the threshold accepting
framework introduced above will serve as an ex-
ample to illustrate the features and proceedings of
this new approach. Applying this method to the
GLSPST we are able to
· evaluate the correct (and optimal) holding costs

for each accepted solution:

For each candidate to be tested a lot of informa-
tion is available in advance since it di�ers from
the current solution only by slight changes of
the problem data. Therefore, a reoptimization al-
gorithm is used to solve the MCFP.

· recognize and refuse too expensive candidates at
an early stage:
Threshold accepting refuses a candidate if its
objective function value exceeds the objective
function value of the current solution by a cer-
tain threshold. But this is also true if the cost
of the candidate is replaced by a lower bound.
Since the objective function value of a feasible
solution of the dual problem is a lower bound
to the optimal solution of the corresponding pri-
mal problem, a dual network ¯ow algorithm is
used to solve the MCFP. Thereby, an increasing
sequence of lower bounds to the MCFP is gen-
erated and a candidate is refused as soon as
the ®rst of these lower bounds exceeds the
threshold.
This new way of combining local search with

dual reoptimization aims to achieve a better solu-
tion quality than solving the MCFP heuristically.
On the other hand, moderate computation times
can be expected since too expensive candidates are
rejected early.

Embedding dual reoptimization into threshold
accepting: Assume a current (feasible or infeasible)
solution h to the GLSPST is given and the problem
Ph is solved to optimality. A new candidate r is
accepted as new solution h� 1 if its holding costs
hcr �Pj;t hjIr

jt �
P
�k;l�2Ar cklX r

kl plus setup costs
scr �Pi;j;s sijzr

ijs are lower than hch � sch, the costs
of the current solution, plus the current threshold
value Th�hch � sch�. Thus, we refuse the candidate
if

hcr P k with k :� �hch � sch��1� Th� ÿ scr:

�9�
In order to refuse the new candidate r, it is not

necessary to know hcr exactly, if there is a lower
bound j to hcr that is greater or equal to k because
of

hcr P j P k: �10�
We use Eq. (10) to improve the threshold ac-

cepting implementation presented so far.

316 H. Meyr / European Journal of Operational Research 120 (2000) 311±326

Further assume that ± along with the primal
problem P h ± the corresponding dual problem Dh

is solved to optimality. Dh is given by

maximize
X
�k;l�2Ah

�lh
klv

h
kl ÿ uh

klw
h
kl� �

X
k2N

bh
kph

k

subject to

vh
kl ÿ wh

kl6 ~ch
kl 8�k; l� 2Ah;

vh
kl;w

h
kl P 0 8�k; l� 2Ah;

with dual (arc-)variables vh
kl;w

h
kl for each arc

�k; l� 2Ah, dual (node-)variables ph
k (dual prices,

node potentials) for each node k 2N and dual
costs ~ch

kl :� ckl ÿ ph
k � ph

l for each �k; l� 2Ah.
The neighborhood operations determining the

new candidate r cause changes in the input data of
only a few arcs DAr and nodes DNr, i.e. in lr

kl or
ur

kl for arcs �k; l� 2 DAr and in br
k for nodes

k 2 DNr. The other input data of the current so-
lution h are still valid for all arcs �k; l� 2Ah n DAr

and nodes k 2N n DNr.
We can easily construct a dual feasible solution

to Dr by setting:

vr
kl :� ~ch

kl; wr
kl :� 0 8�k; l� 2 DAr if ~ch

kl P 0;

vr
kl :� 0; wr

kl :� ÿ~ch
kl 8�k; l� 2 DAr otherwise:

All other variables remain unchanged.
Since DAr and DNr are small, the change in

holding costs Dhcr is computed very fast by

Dhcr :�
X

�k;l�2DAr

��lr
klv

r
kl ÿ ur

klw
r
kl� ÿ �lh

klv
h
kl ÿ uh

klw
h
kl��

�
X

k2DNr

�br
k ÿ bh

k�ph
k : �11�

With j :� hch � Dhcr, there is a lower bound to
hcr since the cost of a feasible solution of the dual
maximization problem Dr is a lower bound to the
optimal solution of the corresponding primal
problem P r (note that both problems are feasible ifP

i;j 6�i;s2St
ajmjzr

ijs6Kt ÿ
P

i;j;s2St
stijzr

ijs for all t).
If j P k, the candidate r is to be refused. If

j < k, the candidate has to be scanned as shown in
Fig. 2. We initialize the primal and dual basis so-
lutions that correspond to j. Then, a dual network

¯ow algorithm is used to execute a basis change
that leads to a new jnew P j (see Appendix A). If
jnew P k, the candidate is refused. Otherwise, the
new basis is checked for optimality. If optimality is
proven, the candidate r is accepted as the new
current solution h� 1 since jnew � hcr �hch�1 < k.
If the new basis is not optimal, this procedure is
repeated until the candidate is refused (since
jnew P k) or accepted (because optimality is
proven).

The main characteristics of this new algorithm
are the following:
· Dual prices of the current solution h are used to

sort out expensive candidates very fast
(Eq. (11)).

· An unacceptable candidate r is refused early be-
cause the dual maximization problem Dr needs
not to be solved to optimality.

· Each acceptable candidate is evaluated with its
minimal holding cost and the respective lotsizes
by use of a very e�cient network ¯ow algo-
rithm.

Fig. 2. Combination of threshold accepting with a dual reop-

timization procedure for a current solution h and a new can-

didate r.

H. Meyr / European Journal of Operational Research 120 (2000) 311±326 317

Initialization of a starting basis for reoptimiza-
tion: Several dual or primal±dual algorithms can
be used for the basis changes. We employ the dual
algorithm of Ali et al. [2] because it works in re-
verse analogy to the generally accepted primal al-
gorithms (cf. Refs. [7,1], for example) so that very
e�cient data structures of the primal algorithms
can be used for implementation. For future work it
would be worthwhile to compare this implemen-
tation with other dual algorithms like the RE-
LAX-code of Bertsekas [5,6], for example.

We use the following notation:

Lr :� f�k; l� 2Ar: X r
kl � lr

klg
the set of arcs at the lower bound;

Ur :� f�k; l� 2Ar: X r
kl � ur

klg
the set of arcs at the upper bound;

Ir :� f�k; l� 2Ar: X r
kl < lr

kl _ X r
kl > ur

klg
the set of arcs with an �primal�
infeasible flow:

The dual algorithm of Ali et al. [2] needs a
(dual) starting basis that satis®es the following
properties:

(i) There is a set of basis arcs (basis variables)
Br �Ar that spans a tree in the graph Gr and
~cr

kl � 0 for all �k; l� 2 Br. The basis arcs are either
primal feasible (lr

kl6X r
kl6 ur

kl; �k; l� 2 Br) or pri-
mal infeasible (�k; l� 2 Ir \Br).

(ii) All non-basis arcs NBr �Ar nBr are pri-
mal feasible and either at their lower bound or at
their upper bound (�k; l� 2Lr [Ur for all
�k; l� 2NBr).

(iii) The optimality criterion is satis®ed:

~cr
kl P 0 8�k; l� 2Lr;

~cr
kl6 0 8�k; l� 2 Ur:

Assume, there is a current solution h and P h

and Dh are solved to optimality. So Bh and NBh

are given that ful®ll (i±iii) and Ih � ;. A starting
basis (in general non-optimal) for the problems
P r;Dr that satis®es (i±iii) is constructed by the
following procedure:
Set Ir :� ;.
1. If �nC

t ; n
D
jt� 2 DAr, since the number of lots of

product j changes in a macro-period t:

� If �nC
t ; n

D
jt� 2 Bh and X h

nC
t ;n

D
jt
< lr

nC
t ;n

D
jt

or

X h
nC

t ;n
D
jt
> ur

nC
t ;n

D
jt
, set Ir :� �nC

t ; n
D
jt�

n o
.

� If �nC
t ; n

D
jt� 2NBh, there is a unique path

(simple path, cf. Ref. [1]) in Bh between node
nC

t and node nD
jt . This path and the arc �nC

t ; n
D
jt�

de®ne a cycle. Set

X r
nC

t ;n
D
jt

:�
lr

nC
t ;n

D
jt

if ~ch
kl P 0;

ur
nC

t ;n
D
jt

if ~ch
kl < 0;

8<:
and

D :� X r
nC

t ;n
D
jt
ÿ X h

nC
t ;n

D
jt
:

Set

X r
kl :�
X h

kl � D 8�k; l� in the cycle with

the same direction as �nC
t ;n

D
jt�;

X h
kl ÿ D 8�k; l� in the cycle with

the opposite direction as �nC
t ; n

D
jt�:

8>>>><>>>>:
If some arcs in the cycle violate their bounds,
update Ir.

2. If nC
t ; n

D 2 DNr, since the new setup pattern
changes setup time consumption in some mac-
ro-period t:
Increase/decrease the ¯ow X h

kl (or the new ¯ow
if X r

kl was updated in step 1) for all arcs �k; l� 2 Bh

along the path between nC
t and nD respective to the

change in capacity. If some arc �k; l� on this path
now violates its upper or lower bounds, update Ir.

Basis change: X r
:: and Ir are updated as ex-

plained before, lr
::; u

r
::; b

r
: ;A

r;DAr and DNr are
updated by the data changes caused by the
neighborhood operation. The other variables
(pr
: ; ~c

r
::;B

r;NBr) are initialized with the values of
the current solution h. As shown, there is a starting
basis that satis®es (i±iii).

A basis change is made by determining one arc
�m; n� leaving the basis and a second arc �o; p�
entering the basis so that the new basis is a span-
ning tree, again satisfying (i±iii). The basis changes
to determine the optimal solutions of P r and Dr are
done with the algorithm of Ali et al. [2]. A tech-
nical description of the basis change and hints for
implementation are given in Appendix A.

318 H. Meyr / European Journal of Operational Research 120 (2000) 311±326

As discussed earlier, the TA algorithm starts
with an initial infeasible solution where no pro-
duction is allowed and demand is satis®ed by the
®ctitious period (dummy supply node nS), exclu-
sively. Note that an optimal starting basis for the
respective network ¯ow problems P 0 and D0 may
be easily constructed. No production arcs are in
the arc set A0 and all other arcs except for the
ending inventory arcs are in the basis B0.

In the following, this solution procedure em-
bedding dual reoptimization into threshold ac-
cepting is called TADR.

3.2. A simulated annealing approach

TADR is generally applicable to MIP-models
where an MCFP is left after ®xing the integer
variables. Furthermore, this approach could be
extended to MIP-models where the embedded
subproblems are (non-network ¯ow) linear prob-
lems by reoptimization with a dual simplex algo-
rithm. However, this may lead to unacceptable
running times if the subproblems grow too large.

On the other hand, local search methods other
than TA may pro®t from a combination with dual
reoptimization procedures if an early refusing of
candidates is possible without solving the remain-
ing MCFP (LP-problem) to optimality for all
candidates. The great deluge algorithm and record-
to-record travel of Dueck [14] suit very well.

The embedding of dual reoptimization into
simulated annealing (cf. Ref. [16], for example) is
not obvious. Like threshold accepting, SA accepts
a candidate r as a new solution h� 1 if the ob-
jective function value or of the candidate is better
than the objective function value oh of the current
solution h. To overcome local optima, a candidate
r resulting in a worse objective function value is
accepted with a certain acceptance probability Pr,
too. For demonstration purposes we use the ac-
ceptance probability Pr :� exp��oh ÿ or�=T r�,
suggested in Ref. [26], which depends on the
change in the objective function value and
the number of candidates tested so far, because the
temperature T r (and also the acceptance probabil-
ity) decreases with the number of candidates in-
creasing.

Therefore, candidate r has to be refused if it is
worse than the current solution and if a certain
value q 2 �0; 1�, drawn at random from a uniform
distribution, exceeds the acceptance probability,
i.e. if q P Pr is ful®lled. In other words, candidate
r can be refused if

or P oh ÿ T r log�q�
holds. Again, this is also true if the objective
function value or of candidate r is replaced by a
lower bound.

We can easily apply this principle to the GLS-
PST by simply substituting k in Eqs. (9) and (10)
and Fig. 2 with

kSA :� hch � sch ÿ scr ÿ T r log�q�:
The solution procedure resulting from this

combination of simulated annealing with dual re-
optimization will be called SADR.

4. Computational results

Computational tests are executed using the
operating system Linux and the gcc-compiler on a
personal computer with a Pentium Pro 200 central
processing unit (CPU).

The (percentage) threshold values Th of TADR
are taken from the decreasing sequence 0.15, 0.03,
0.025, 0.02, 0.015, 0.014, 0.013, . . . ; 0.002, 0.001, 0.
The maximum number of candidate tests before
changing the threshold value is set to 1000. The
threshold is also lowered when 250 tests have not
improved the current objective value. If the current
solution has not changed within 3000 steps, a run
of TADR is stopped.

When testing SADR, the annealing schedule
T r :� 1000 � �0:8�q for 1000�qÿ 1� < r6 1000q
and q � 1; . . . ;Q � 18 performed best. Thereby,
the acceptance probability Pr and the temperature
T r are kept constant for di�erent stages (plateaus)
q of the search. Each run of SADR ends after
18 000 candidate tests.

Various numerical tests proved that the best
ratio between solution quality and computation
time is achieved if not only a single run of TADR
or SADR is executed, but if the best solution of

H. Meyr / European Journal of Operational Research 120 (2000) 311±326 319

ITER independent runs is chosen. Thereby, ITER
is set to 25 for TADR and to 17 for SADR.

Thus, for a single problem instance p the per-
centage deviation of the best objective function
value of ITER independent runs from the objective
function value of the best known solution obest

p is
measured. For a set of test problems P given, the
percentage deviation is then averaged over all
problem instances p 2 P . To overcome statistical
interference, a random sample (containing all prob-
lem instances of P) of length ten is used to estimate
the percentage deviation pd and to give an insight
into the solution quality of the algorithm heur:

pd :� 1

10

X10

e�1

1

jP j
X
p2P

min
ITER

f�1
oheur

efp

n o
ÿ obest

p

obest
p

� 100

2664
3775;

where oheur
efp is the objective function value of

problem instance p resulting from run f in random
sample e.

4.1. Problems without setup times

To evaluate the performance of the dual reop-
timization procedure, we ®rst deal with problems

without setup times. The test problems of
Fleischmann and Meyr [19] are used to compare
TADR and SADR with MOD, the local search
procedure for the GLSP without setup times which
provides the highest quality. MOD employs
threshold accepting for ®xing the setup pattern
and solves the remaining network ¯ow subprob-
lems, heuristically [19]. Furthermore, results of
BACLSD, a deterministic heuristic designed by
Haase [23] that is also able to solve these instances,
are presented.

For a comprehensive description of the prob-
lem data, we refer to Ref. [19]. Table 1 shows re-
sults of four problem classes established by Haase
[23], each containing ten optimally solvable prob-
lem instances with the same number of products
(J), number of macro-periods (T) and capacity
utilization (U). Results are averaged over all in-
stances of a class where pd denotes the percentage
deviation from the optimal solution. The average
number of optimally solved instances (out of 40) is
given, together with the respective minimum and
maximum number within all ten random samples.
Note that BACLSD is a deterministic algorithm.
Hence, only one run is executed.

Further, the percentage deviations from the
best known solutions are shown as the average

Table 1

Problems without setup times

J=T=U # BACLSD MOD TADR SADR

(1 s., 1 r.) (10 samples, best of 25/25/17 runs)

Haase 4/6/80 pdH 10 2.70 0.26 0.05 0.00

4/6/90 pdH 10 5.13 0.76 0.24 0.07

4/5/90 pdH 10 7.89 0.72 0.15 0.00

5/5/90 pdH 10 6.68 0.97 0.28 0.11

All pdH 40 5.60 0.68 0.18 0.05

Aver. optimal 40 3.0 22.0 33.9 38.3

(min,max) opt. ± ± (22,25) (32,37) (36,39)

PR pd} 4 10.00 2.70 1.86 1.32

TV pd} 32 13.55 4.95 3.89 3.77

CPU-seconds 76 ± 33.65 13.53 35.88

Percentage deviation from optimal (pdH) or best known (pd}) solution.

Aver. optimal: Average number of optimal solutions found.

(min,max) opt.: Minimal/maximal numbers of optimal solutions found.

Average values of # problem instances.

320 H. Meyr / European Journal of Operational Research 120 (2000) 311±326

over four practical problems of the food industry,
the so-called PR-problems (J � 9; T � 8 and
J � 3=4; T � 26, respectively), and over 32 TV-
problems as discussed in Ref. [19] (J � 8; T � 8;U
varies between 61% and 93%).

Finally, CPU-seconds are averaged over all 76
problem instances to give a quick insight into
computation time performance of the new heuris-
tics. BACLSD is left open since it is coded with
Turbo Pascal 6.0 (Borland). However, the average
running time may be estimated to be about less
than one second.

Comparison of TADR with MOD proves the
e�ectiveness of the dual reoptimization procedure
when applied to threshold accepting. The solution
quality is clearly improved due to the optimal so-
lution of the MCFP. Surprisingly, optimal instead
of heuristic solution of the network ¯ow sub-
problems does not lead to an increase of running
time. On the contrary, the dual procedure with
early refusing of unacceptable candidates enables a
substantial reduction of computation time.

Combining dual reoptimization with simulated
annealing is very promising, too. Fixing the setup
pattern by simulated annealing (using SADR) in-
stead of threshold accepting (TADR) the quality
of solution can be improved, again, at the cost of
higher computation times. On the average more
than 95% of the Haase problems are solved to
optimality by SADR.

4.2. Optimally solvable problems with setup times

Smith-Daniels and Smith-Daniels [32] describe
lotsizing and sequencing problems from the pro-
cess industries with J � 4 and T � 5. Thereby, two
items are produced and packaged in two di�erent
package sizes. We modify the modeling assump-
tions of Smith-Daniels and Smith-Daniels,
slightly, so that they ®t to GLSPST and use the
MIP-solver MOPS [33] to solve these problems to
optimality. So we get an impression of the solution
quality of the new heuristics when applied to
(small) problems with sequence-dependent setup
times.

Thus, ± in contrast to Ref. [32] ± no back-
logging is allowed and the setup state is conserved

after idle periods. Setup times only occur between
di�erent items. Changeovers between di�erent
items are twice as expensive as changeovers be-
tween the same items in di�erent package sizes.
The magnitude of the input data is taken from
the problems of Smith-Daniels and Smith-Dan-
iels.

Twelve problem instances are constructed (cf.
Ref. [32]) di�ering in
1. the load factor between families, which is either

balanced (b) (50:50) or unbalanced (u) (20:80),
2. the coe�cient of variation of demand of each

single product, which is either low (l) (0.05) or
high (h) (0.5),

3. the coe�cient of variation of the total demand
of all products (load variability), which is either
low (0.05) or high (0.5),

4. the level of changeover costs and changeover
times, which is either low (400±800, 15 min)
or high (4000±8000, 30 min).

Note that utilization is at the high level of 97%,
even if setup times are ignored.

We compare the dual reoptimization proce-
dures with MODST which is a straightforward
extension of MOD in order to respect sequence-
dependent setup times. For that purpose, capacity
Kt has to be reduced by setup times

P
i;j;s2St

stijzijs

before solving the network ¯ow subproblems
heuristically. This is not problematic since setup
times are known after ®xing the setup pattern by
threshold accepting.

Table 2 shows the percentage deviation from
the optimal objective function value for each of
these problem instances and the average number
of problems (out of 12) solved to optimality.
Computation times are presented the same way as
in Section 4.1.

The solution quality of the dual reoptimization
procedures is very high. TADR and SADR solve
almost all problems to optimality. MODST per-
forms by far worse since the MCFP is solved
heuristically, only. Obviously, six of the twelve
problems cannot be solved to optimality by
MODST. Again, TADR shows the best compu-
tation time performance.

Generally, the problems with a balanced load
factor and low load variability (b�l�) seem to be of
an easily solvable structure.

H. Meyr / European Journal of Operational Research 120 (2000) 311±326 321

4.3. Practical problems with setup times

We use some practical problems of the con-
sumer goods industries to test the behavior of
MODST, TADR and SADR when the number of
products or macro-periods is increased and se-
quence-dependent setup costs and sequence-inde-
pendent setup times are present.

There are 44 test problems with T � 4 and 2±16
products. The problem instances are pooled in
four problem classes as shown in Table 3. The
average number of products per problem instance
is 9.3 products. The utilization without setup times
(net utilization) varies between 69% and 94%.
Utilization including setup times (gross utilization)
varies between 70% and 97% if some typical fea-
sible solutions are taken as a basis. So setup times
cover about 1±3% of total capacity available.

Furthermore, 42 problem instances with T � 8
are tested (cf. Table 4). The number of products
varies between 5 and 18 with an average of 11.8
products per instance. Net utilization is in the
range of 79±91% while gross utilization of typical
solutions varies between 80% and 94%. All prob-
lem data are available from the author.

Again, the percentage deviation from the best
known solution is measured. With a whole of ten
random samples the average, minimum and max-
imum numbers of problems (out of jP j � 44 and
jP j � 42, respectively) are shown where the best
known solution obest

p of a problem instance p 2 P is
achieved. Average computation times (CPU-sec-
onds) are now presented for each problem class,
individually.

Looking at both, the problems with four and
eight macro-periods, dual reoptimization performs
clearly better than the heuristic solution of the
network ¯ow subproblem which is done by
MODST. Again, SADR provides the best solution
quality. This behavior becomes more and more

Table 3

Practical problems with setup times and T � 4 macro-periods

J # MODST (CPU) TADR (CPU) SADR (CPU)

2±5 pd} 9 0.09 (14.4) 0.05 (7.3) 0.05 (15.9)

6±10 pd} 19 0.45 (31.4) 0.11 (11.6) 0.07 (19.0)

11±15 pd} 15 0.48 (41.8) 0.27 (14.2) 0.19 (20.2)

16 pd} 1 0.38 (55.0) 0.17 (17.8) 0.09 (23.4)

All pd} 44 0.38 (32.0) 0.15 (11.7) 0.11 (18.9)

Aver. best 44 12.4 19.3 24.6

(min,max) best (10,14) (16,23) (21,27)

pd}: Percentage deviation from best known solution.

Aver. best: Average number of best known solutions found.

(min/max) best: Minimal/maximal number of best known solutions found.

Average values of # problem instances; 10 samples, best of 25/25/17 runs.

Table 2

Small problems with setup times

1±4 # MODST TADR SADR

blll pdH 1 0.00 0.00 0.00

bhll pdH 1 0.00 0.00 0.00

bhhl pdH 1 0.58 0.27 0.00

ulll pdH 1 4.91 0.00 0.00

uhll pdH 1 0.64 0.00 0.00

uhhl pdH 1 0.02 0.06 0.00

bllh pdH 1 0.00 0.00 0.00

bhlh pdH 1 0.00 0.00 0.00

bhhh pdH 1 1.86 0.01 0.04

ullh pdH 1 4.98 0.00 0.00

uhlh pdH 1 5.22 0.00 0.00

uhhh pdH 1 0.00 0.00 0.00

All pdH 12 1.52 0.03 0.00

Aver. optimal 12 5.9 11.5 11.6

(min,max) opt. (5,6) (10,12) (11,12)

CPU±seconds 12 25.5 17.5 30.5

pdH: Percentage deviation from optimal solution.

Aver. optimal: Average number of optimal solutions found.

(min,max) opt.: Minimal/maximal numbers of optimal solu-

tions found.

Average values of # problem instances; 10 samples, best of 25/

25/17 runs.

322 H. Meyr / European Journal of Operational Research 120 (2000) 311±326

obvious the ``larger'' the problems are, i.e. the
more products and/or macro-periods are involved.

Amazingly, TADR seems to be more sensitive
to an increasing number of products and periods
than SADR. This is true for the quality of solution
and the computation time as well. Considering the
largest problems with 8 macro-periods and 11±18
products SADR performs best with respect to both
criteria. This is probably due to the ¯exible stop-
ping rule that is applied in the threshold accepting
implementation. SADR, however, terminates al-
ways after 306 000 candidate tests.

5. Summary

We introduced the GLSPST, a model for si-
multaneous lotsizing and scheduling of several
products on a single, capacitated production line
when sequence-dependent setup times are present.
Deterministic, dynamic demand is to be met
without back-logging with the objective of mini-
mizing inventory holding and sequence-dependent
setup costs.

This problem is tackled by ®xing the setup se-
quence, i.e. the binary variables of the model, ap-
plying local search. For each candidate setup
sequence to be tested a network ¯ow problem has
to be solved in order to compute the holding costs
of the candidate.

Greedy heuristics are known to provide an easy
and fast way for solving those network ¯ow sub-
problems, but the solutions are of minor quality.

Solving each network ¯ow problem to optimality
consumes too much computation time, if it has to
be done for each candidate individually and from
scratch.

We presented a new mathematical solution
method that improves these two possible ap-
proaches by using dual network ¯ow reoptimiza-
tion. In doing this, the network ¯ow subproblems
can be solved to optimality in a very e�ective and
fast way. Already available information of the
current solution is used to evaluate a new candi-
date by means of reoptimization. This proved to be
very e�cient since the current solution and the
new candidate only di�er by slight changes in the
underlying data. Dual prices enable an early re-
fusing of unacceptable candidates. This is espe-
cially the case before the reoptimization procedure
itself starts. Thereby, new candidates are drawn at
random (actually, a rather unsophisticated and
ine�cient way, but useful to overcome local op-
tima); ``unserious'' candidates, however, may be
identi®ed quickly by the dual procedure.

Computational tests have shown that the new
procedure is an e�ective tool to solve lotsizing and
scheduling problems with sequence-dependent
setup costs and setup times heuristically. Dual re-
optimization in combination with threshold ac-
cepting or simulated annealing improves the
heuristic solution of the network ¯ow subproblems
clearly with respect to solution quality and com-
putation time. Thereby, simulated annealing is
superior to threshold accepting if large-scale
problems are considered.

Table 4

Practical problems with setup times and T � 8 macro-periods

J # MODST (CPU) TADR (CPU) SADR (CPU)

5 pd} 2 1.53 (36.6) 0.26 (15.1) 0.17 (26.4)

6±10 pd} 10 1.66 (66.8) 0.64 (21.3) 0.50 (26.9)

11±15 pd} 26 1.62 (95.4) 0.94 (30.5) 0.51 (29.0)

16±18 pd} 4 2.75 (131.3) 2.02 (41.1) 1.44 (32.6)

All pd} 42 1.73 (89.2) 0.94 (28.6) 0.58 (28.7)

Aver. best 42 0.3 3.1 7.3

(min,max) best (0,1) (1,5) (5,10)

pd}: Percentage deviation from best known solution.

Aver. best: Average number of best known solutions found.

(min/max) best: Minimal/maximal number of best known solutions found.

Average values of # problem instances; 10 samples, best of 25/25/17 runs.

H. Meyr / European Journal of Operational Research 120 (2000) 311±326 323

Dual reoptimization seems to be generally ap-
plicable to MIP-models where a linear planning
problem is left after ®xing the binary variables by
local search methods like threshold accepting and
simulated annealing. Therefore, it is a challenge
for future work to apply dual reoptimization to
further problems with an appropriate structure.
Because of the practical relevance one of these
problems should incorporate the extension of the
GLSPST to parallel production lines.

Acknowledgements

The author is grateful to Prof. Dr. Bernhard
Fleischmann and the three unknown referees for
their helpful support.

Appendix A. Basis change

For the sake of clarity, we describe a change
from an old basis of candidate r to a new basis of
candidate r by omitting the index r in all data and
variables concerned. A basis change is made by
determining one arc �m; n� leaving the basis and a
second arc �o; p� entering the basis so that the new
basis is a spanning tree, again satisfying (i±iii):
1. Choose an arc �m; n� 2 I that leaves the basis

B. The basis splits up into two subtrees Tm

and Tn where Tm (Tn) denotes the subtree
with node m�n� (see Fig. 3). Set

C�mn :� f�k; l� 2NB: k 2Tm; l 2Tng
Cÿmn :� f�k; l� 2NB: l 2Tm; k 2Tng:
Thereby, �m; n� is an arc in I where the number
of nodes in the smaller subtree is minimal:

�m; n� 2 �k; l� 2 I: min jTkj; jTlj
� 	�

� min
�k;l�2I

jTkj; jTljf g
�
;

where jTkj � cardinality of subtree Tk �
number of nodes in subtree Tk.

2. Compute Dmn, the change of the primal ¯ow:

Dmn :� umn ÿ Xmn; if Xmn > umn;
lmn ÿ Xmn if lmn > Xmn:

�
3. Determine the arc �o; p� 2NB that enters the

new basis so that all non-basis arcs remain dual
feasible:

If Xmn > umn: choose arc �o; p� with

j~copj � min min
�k;l�2C�mn

~ckl: �k; l� 2L
n o

;

�
min
�k;l�2Cÿmn

n
ÿ ~ckl: �k; l� 2 U

o�
and set D~cop :� ÿj~copj:

If Xmn < lmn: choose arc �o; p� with

j~copj � min min
�k;l�2C�mn

n�
ÿ ~ckl: �k; l� 2 U

o
;

min
�k;l�2Cÿmn

~ckl: �k; l� 2L
n o�

and set D~cop :� �j~copj:
If D~cop � 0, the problem P is infeasible; this may
not occur if the setup pattern is set correctly (cf.
Section 3.1).

4. Determine Dhc, the change of the objective
function value:

Dhc :�
X

�k;l�2L\C�mn

lkl

0@24 �
X

�k;l�2U\C�mn

ukl

1A
ÿ

X
�l;k�2L\Cÿmn

llk

0@ �
X

�l;k�2U\Cÿmn

ulk

1A� F

35
� D~cop;Fig. 3. Example for a basis change with a leaving arc �m; n�.

324 H. Meyr / European Journal of Operational Research 120 (2000) 311±326

where

F :�
ÿ P

k2Tm

bk if jTmj6 jTnj;

�P
l2Tn

bl otherwise:

8><>:
If Dhc is high enough (cf. Section 3.1), termi-
nate and refuse candidate r.

5. Update the dual prices:

pnew
k :� pk � H 8k 2K

where

H :� ÿD~cop

�D~cop

�
and

K :� Tm if jTmj6 jTnj;
Tn otherwise:

�
6. Update the primal ¯ow:

X new
kl :�

Xkl

�Dmn 8�k; l� in the basis cycle with

the same direction as �m; n�;
ÿDmn 8�k; l� in the basis cycle with

the opposite direction as �m; n�:

8>>><>>>:
If bounds are violated, update I.

7. Basis update and update of all information; if
I � ;, optimality is proven; then terminate
and accept candidate r as new solution h� 1.
Very e�cient data structures, originally de-

signed for the primal simplex algorithm, are
available for storage and update of the basis. Ali et
al. [1] give a comprehensive survey of these meth-
ods which mainly originate from the work of
Glover and Klingman [20].

As supposed in Ref. [2], a threaded index is
used to store a basis with the dummy demand nD

as the (®xed) root of the tree. Besides the prede-
cessor information, the number of nodes in the
maximal subtree rooted at node k has to be stored
for each node k (cardinality of a subtree with root
k). Thereby, a fast selection of the leaving arc
�m; n� is possible. Additional storage of the last
node in the maximal subtree rooted at node k en-
ables an e�cient identi®cation of all nodes in this
subtree. The preorder distance of each node in the

thread together with information about the
respective incoming/outgoing arcs is used to de-
termine the cutsets C�mn and Cÿmn by visiting all
nodes of the smaller subtree.

The update of the thread is done as supposed in
Ref. [20]. For further implementation issues the
reader is referred to Bradley et al. [7].

References

[1] A.I. Ali, R.V. Helgason, J.L. Kennington, H.S. Lall,

Primal simplex network codes: State-of-the-art implemen-

tation technology, Networks 8 (1978) 315±339.

[2] A.I. Ali, R. Padman, H. Thiagarajan, Dual algorithms for

pure network problems, Operations Research 37 (1) (1989)

159±171.

[3] H.C. Bahl, L.P. Ritzman, J.N.D. Gupta, Determinig lot

sizes and resource requirements: A review, Operations

Research 35 (3) (1987) 329±345.

[4] T. Baker, J.A. Muckstadt Jr, The CHES problems,

Technical Paper, Chesapeake Decision Sciences, Inc.,

Providence, NJ, 1989.

[5] D.P. Bertsekas, Linear Network Optimization, 2nd ed.,

MIT Press, Cambridge, MA, 1992.

[6] D.P. Bertsekas, P. Tseng, RELAX±IV: A faster version of

the relax code for solving minimum cost ¯ow problems,

Technical Paper, Department of Electrical Engineering

and Computer Science, M.I.T., Cambridge, MA, 1994.

[7] G.H. Bradley, G.G. Brown, G.W. Graves, Design and

implementation of large scale primal transshipment algo-

rithms, Management Science 24 (1) (1977) 1±34.

[8] G.M. Campbell, Using short-term dedication for schedul-

ing multiple products on parallel machines, Production

and Operations Management 1 (3) (1992) 295±307.

[9] D. Cattrysse, M. Salomon, R. Kuik, L.N. Van Wassen-

hove, A dual ascent and column generation heuristic for

the discrete lotsizing and scheduling problem with setup

times, Management Science 39 (4) (1993) 477±486.

[10] R.D. Matta, M. Guignard, Studying the e�ects of produc-

tion loss due to setup in dynamic production scheduling,

European Journal of Operational Research 72 (1994) 62±

73.

[11] A. Drexl, B. Fleischmann, H.O. G�unther, H. Stadtler, H.

Tempelmeier, Konzeptionelle Grundlagen kapazit�atsorien-

tierter PPS-systeme, Zeitschrift f�ur betriebswirtschaftliche

Forschung 46 (12) (1994) 1022±1045.

[12] A. Drexl, K. Haase, Proportional lotsizing and scheduling,

International Journal of Production Economics 40 (1995)

73±87.

[13] A. Drexl, A. Kimms, Lot sizing and scheduling ± survey

and extensions, European Journal of Operational Research

99 (1997) 221±235.

[14] G. Dueck, New optimization heuristics, Journal of Com-

putational Physics 104 (1993) 86±92.

H. Meyr / European Journal of Operational Research 120 (2000) 311±326 325

[15] G. Dueck, T. Scheuer, Threshold accepting: A general

purpose optimization algorithm appearing superior to

simulated annealing, Journal of Computational Physics

90 (1990) 161±175.

[16] R.W. Eglese, Simulated annealing: A tool for operational

research, European Journal of Operational Research 46

(1990) 271±281.

[17] B. Fleischmann, The discrete lot-sizing and scheduling

problem, European Journal of Operational Research 44

(1990) 337±348.

[18] B. Fleischmann, The discrete lot-sizing and scheduling

problem with sequence-dependent setup costs, European

Journal of Operational Research 75 (1994) 395±404.

[19] B. Fleischmann, H. Meyr, The general lotsizing and

scheduling problem, OR Spektrum 19 (1) (1997) 11±21.

[20] F. Glover, D. Klingman, J. Stutz, Augmented threaded

index method for network optimization, INFOR 12 (3)

(1974) 293±298.

[21] M. Gopalakrishnan, D.M. Miller, C.P. Schmidt, A

framework for modelling setup carryover in the capacitat-

ed lot sizing problem, International Journal of Production

Research 33 (7) (1995) 1973±1988.

[22] K. Haase, Lotsizing and Scheduling for Production Plan-

ning, vol. 408, Lecture Notes in Economics and Mathe-

matical Systems, Springer, Berlin, 1994.

[23] K. Haase, Capacitated lot-sizing with sequence dependent

setup costs, OR Spektrum 18 (1996) 51±59.

[24] C. Jordan, Batching and Scheduling, vol. 437, Lecture

Notes in Economics and Mathematical Systems, Springer,

Berlin, 1996.

[25] S. Kang, K. Malik, L. Thomas, Lotsizing and scheduling

on parallel machines with sequence-dependent setup costs,

Technical Paper, Department of Business Administration,

The Catholic University of Korea, Seoul, 1997, pp. 422±

743.

[26] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by

simulated annealing, Science 220 (1983) 671±680.

[27] R. Kuik, M. Salomon, L.N. Van Wassenhove, Batching

decisions: Structure and models, European Journal of

Operational Research 75 (1994) 243±263.

[28] R. Kuik, M. Salomon, L.N. Van Wassenhove, J. Maes,

Linear programming, simulated annealing and tabu search

heuristics for lotsizing in bottleneck assembly systems, IIE

Transactions 25 (1) (1993) 62±72.

[29] J.O. McClain, L.J. Thomas, E.N. Weiss, E�cient solutions

to a linear programming model for production scheduling

with capacity constraints and no initial stock, IIE Trans-

actions 21 (2) (1989) 144±152.

[30] C.N. Potts, L.N. Van Wassenhove, Integrating scheduling

with batching and lot-sizing: A review of algorithms and

complexity, Journal of the Operational Research Society

43 (5) (1992) 395±406.

[31] M. Salomon, L. Solomon, L.N. Van Wassenhove, J.

Dumas, S. Dauz�ere-P�er�es, Solving the discrete lotsizing

and scheduling problem with sequence dependent set-up

costs and set-up times using the Traveling Salesman

Problem with time windows, European Journal of Oper-

ational Research 100 (1997) 494±513.

[32] V.L. Smith-Daniels, D.E. Smith-Daniels, A mixed integer

programming model for lot sizing and sequencing pack-

aging lines in the process industries, IIE Transactions 18

(1986) 278±285.

[33] U.H. Suhl, MOPS ± mathematical optimization system,

European Journal of Operational Research 72 (1994) 312±

322.

[34] J. Teghem, M. Pirlot, C. Antoniadis, Embedding of linear

programming in a simulated annealing algorithm for

solving a mixed integer production planning problem,

Journal of Computational and Applied Mathematics 64

(1995) 91±102.

[35] L.A. Wolsey, MIP modelling of changeovers in production

planning and scheduling problems, European Journal of

Operational Research 99 (1997) 154±165.

326 H. Meyr / European Journal of Operational Research 120 (2000) 311±326

