

Lworld – An Animation System Based on Rewriting

Noser Hansrudi

Multimedia Laboratory
Institute of Computer Technology

Winterthurerstrasse 190
CH-8057 Zurich

Switzerland
noser@ifi.unizh.ch

Abstract

Lworld is a computer graphics animation system based on
L-systems, a parallel rewriting technique used primarily in
computer graphics for plant modeling. Because rule-based
programming is a powerful technique, we use it as a basis
for a general-purpose animation system called Lworld (L-
System world). We describe the architecture, the features,
and the programming language of the animation system.
Examples of fractal curves, plants, fractal landscapes,
group animation, visualization, and evolutionary
optimizations illustrate its capabilities. Lworld allows users
to create real-time animations as well as raytraced image
sequences for further movie production. It is freely
available, and runs on PCs.

1 Introduction

There are many excellent modeling, animation, and
rendering software such as Maya [1], 3D Studio Max [2],
Bryce [3], or the free raytracers POV Ray [4] and Rayshade
[5]. Most of them are based upon traditional modeling
techniques where designers model the objects interactively
by composing them directly piece by piece. Many
animations are added by hand or by extensions supporting
particle systems or physical modeling.

L-systems, Lindenmayer-systems, L-grammars, or so-
called production systems [6] belong to the family of
parallel rewriting systems and correspond to another
modeling paradigm, the rule-based or rewriting-based
modeling. Rewriting is a technique for building complex
objects by successively replacing parts of a simple initial
object according to a set of rewriting rules or productions.

Traditionally, L-systems [6, 7, 8] model formally plants
and fractals. In [9] the authors describe a behavioral
animation system running on SGI workstations where
production rules define not only growth and topology of
objects but also their real-time behavior. In [10] they
proposed an extension for modeling distributed virtual
reality environments by rules.

Modeling and animation by rules is not wide spread. L-
system based software are mostly research tools with a
cryptic modeling language, or educational software serving
to demonstrate the mechanism of production rules. The
work of Prusinkiewicz [6] or Parish [11] shows the inherent
potential of rule-based programming by modeling with few
rules complex plants and huge cities. Therefore, we
developed a general-purpose animation system based on
rewriting that should enable a larger public to experience
rule-based programming. The software is freely available,
small, easily installable, running on most PCs, and contains
many features that make it suitable for many tasks in
visualization, interactive animation, research, education,
and raytraced movie generation.

2 Concept of the animation system

As rewriting is a very powerful concept for modeling
complex objects, we decided to use this technique not only
for modeling plants, but also as the basic principle for a
general-purpose animation system. Parallel rules can model
not only hierarchical objects, but also their animation,
complex behaviors, and interaction. Timed and parametric
rules combine in one language the modeling of complete
virtual worlds including structured objects, their piecewise-
continuous development, their animation, and user
interaction.

2.1 Modeling and animation by rewriting

In computer graphics, an L-system describes a 3D object by
an axiom and a set of production rules, also called its
grammar. The axiom and the rules are composed of
symbols of the L-system’s alphabet. From such an L-
system, the computer can derive formal symbol sequences
from the axiom by a series of parallel rewriting steps where
symbols are replaced according to the rules. Furthermore,
the computer can visualize the derived symbolic objects by
interpreting them as a kind of turtle-graphics language. This
modeling principle is particularly advantageous for
complex, structured objects for which we can find its
grammar, i.e. the rules for its construction. Such a
description is very compact and can provide immense data
amplification factors.

Symbols, rules, iteration, and interpretation are key-
notions of rewriting techniques. In our system a, parametric
symbol of the axiom and the rules is given by a symbol
name, a parameter block, and an attribute block containing
specific statements like assignments and procedure calls.

Symbol (x0=...; ...; xn=...;) {f0=...; ...; fm=...;}

Parameter blocks define formal parameters, named xi or

pxi if they indicate parameters of parent symbols, needed to
pass information from left sides to right sides of rules at
iteration. They are only evaluated once when a rule is
applied and the symbols are written to the symbolic object.
Attribute blocks, however, are evaluated each time the
interpreter interprets the symbols. They describe the
semantics of the symbols’ attributes that are named fi, and
can depend on the formal parameters and the age of
symbols represented by the parameter t.

A rule is composed of a left side, a condition, and a
right side:

REPLACE leftSide IF conditon BY

< probability rightSide>*

The left side of the rule is a symbol that is replaced at an

iteration step by the rule’s right side in the symbolic object
if the condition is true. In stochastic L-systems there exists
a probability distribution that maps the set of productions
for a left side into the set of production probabilities whose
sum has to yield one. The right side is a sequence of timed
parametric symbols. Iteration, which builds the symbolic
objects, and interpretation, which interprets the symbols of
the symbolic objects and draws a frame of the animation,
can be separated clearly. At each instant of the animation,
the whole virtual scene exists only as a symbolic object,
and not as scene-graph containing vertices and triangles.

Rules are not limited for modeling the shape and
structure of objects. Parametric and timed rules are also
particularly suited for defining the growth and development
of objects and their behavior. Therefore, a timed parametric
L-system can define a complete animation with user
interaction. As it is based on a parallel rewriting technique,
synchronized parallelism is inherently supported in an
animation.

2.2 Features

The system we propose supports most features of advanced
parallel rewriting techniques, such as timed, parametric,
stochastic, bracketed, environmentally sensitive,
networked, and behavioral L-systems. At a higher level, we
integrated fractal mountains, sound playback, networking,
optimization and evolution by genetic algorithms, tropism
forces, a particle system, synthetic vision for autonomous
actors, as well as a design model for modeling physically
correct static trees that visualizes the forces and moments at
the tree joints.

We can look from different perspectives to the
animation system. From the system’s point of view, the
application Lworld is a virtual machine capable to interpret
animation files. At runtime, it reads an animation file,
parses it, compiles it into an internal representation of the
axiom and the rules, and starts the animation. No separate
compilation of an animation file is necessary.

A designer or programmer sees a programming
language with a specific syntax in which he can write the
rules that model his virtual, animated world. He can model
real-time virtual worlds for interactive users, or scenes for
raytraced movie generation.

The user or consumer of interactive virtual worlds starts
the application by simply clicking on an animation file
created by a designer. He interacts with the animation
through mouse, keyboard, and screen. Ball games, virtual
parks, or visualizations in many domains are typical
interactive examples.

2.3 Architecture of the animation system

Figure 1 illustrates the architecture of the animation system.
At runtime the application parses user defined L-systems
and compiles them into an internal representation of the
axiom and the rules.

The iterator and interpreter modules are essential parts
of the real-time animation loop representing the heart of the
animation system given in more detail as pseudo code in
Figure 2. At each frame the loop executes first code for
frame initialization. Then, the iterator applies all triggering
rules to the symbolic object by rewriting the corresponding
symbols. The interpreter module then executes the
resulting symbolic objects that can be considered as a turtle
program, and visualizes the frame on the screen. If
autonomous actors with synthetic vision have been declared
in an animation, the frame is rendered for each actor into
their vision window. Finally, the frame is terminated and
the global animation time is incremented by the time step.

Optionally, the scene of each frame can be written as a
numbered text file in Rayshade format for further
raytracing. The calculator module interprets at runtime all
numeric expressions of the parameter and attribute blocks
of the symbols. The procedure-module contains the high-
level procedures that implement the semantics of the
language’s symbols.

The software, written in C/C++ and including the
OpenGL/GLUT API, is implemented for PCs and runs on
Windows98/NT/2000/XP. It is freely available on the
Internet [12].

Figure 1. The architecture of the parallel rewriting-based
animation system.

T=0
loop {
 /* frame initialization */
 startTime = clock()
 if (Networking) then read, parse, reset NetBuffer
 integration step for differential equations
 if (Rayshade) then open rayshade file for raytracer

 /* iteration of L-systems */
 for i=0 to NumberOfLsystems do { iterate(i) }

 /* display for user window */
 Place camera (i)
 Place headlight

 for j=0 to NumberOfLsystems do { interprete(j) }

 /* display for autonomous actors */
 for i=0 to NumberOfActors do {
 Place camera of Actor(i)
 for j=0 to NumberOfLsystems do { interprete(j) }
 treat visual input
 }

 /* frame termination */

 if (Rayshade) then close rayshade file and render it
 if (Networking) then send NetBuffer
 T = T + timeStep
 if T > tFinal then terminate program
 workTime = clock() - startTime
 if (workTime < frameTime) then
 wait(frameTime – workTime)
}

Figure 2. Pseudo code of the animation loop.

3 Programming language

Most existing languages for defining L-system rules are
somewhat cryptic and difficult to read for new
programmers of rules. Therefore, we developed a new rule-
language similar to C, which is syntactically familiar to
most programmers. The execution model, however, is not
sequential and must be carefully studied by designers.

The animation system can be viewed as a virtual
machine, defined by some status variables be set by
assignments or procedure calls within parameter and
attribute blocks of symbols. They define partially the
viewing parameters, rendering features, animation control,
and physical models. Actually, we implemented more than
80 symbols representing the alphabet of the L-systems.
They can be grouped according to their semantic. Some of
them manipulate the turtle state or the rendering mode.
Others correspond to geometric primitives, sounds, or
particular design models such as tropism forces or particles.
Others control user interaction, networking, or the
interpretation of the symbolic object. The actual set of
implemented symbols allows programmers to design a vast
variety of virtual scenes such as presented in the example
section.

3.1 Example code

In this section we present the syntax of the language for
defining animations with L-systems by discussing the code
that produces the raytraced scene of Figure 4 containing
some geometric primitives and binary trees. The general
syntax of animation code is partially given by the Extended
Backus Naur Form (EBNF) in Figure 3. An animtion is
given by the definition of some animation parameters, the
declaration of global parameters, and one or several L-
systems that are each given by some local variables and a
set of rules including the axiom.

Animation ::= AnimationParameters Globals Lsystem+
AnimationParameters ::= “ANIMATIONPARAMETERS”

statement+
Globals ::= “GLOBALS” statement*
Lsystem ::= “DECLARE” statement+ “RULES” Rule+
Rule ::= “REPLACE” LeftSide “IF” Assignment “BY”

RightSide+
LeftSide ::= SymbolName
SymbolName ::= “Cube” | “Sphere” | “Plane” ...
RightSide ::= < Probability Symbol* >
Probability ::= NumericExpression

Symbol ::= SymbolName | SymbolName ParameterBlock |
SymbolName AttributeBlock | SymbolName ParameterBlock
AttributeBlock

ParameterBlock ::= “(“ statement+ “)”
AttributeBlock ::= “{“ statement+ “}”
statement ::= Assignment “;” | Function “;”
Function ::= FunctionName”(“ Arguments ”)”
Arguments ::=(NumericExpression “,”)* NumericExpression
Assignment ::= VariableName “=” NumericExpression | String

Figure 3. The syntax of the language.

The first two sections of the code in Figure 5, starting

with the keywords ANIMATIONPARAMETERS and
GLOBALS, serve to define some animation parameters and
user defined global variables that are visible to all
subsequent L-system definitions.

Figure 4. The raytraced scene of some geometric
primitives and binary trees described by the example

code.

ANIMATIONPARAMETERS

timestep=0.01; /* The time step of the animation */
timefinal=10; /* The end time of the animation */
...

GLOBALS

d=60; /* branching angle */

Figure 5. The first two sections of an animation file
declare and define some viewing and animation
parameters, and user-defined global variables.

An animation file can contain several L-system

declarations. Each L-system starts with the DECLARE
keyword followed by user defined local variables visible
only within the L-system. In the RULES section the
programmer can place the rewriting rules.

Figure 6 illustrates the code of the first L-system
containing the symbols of some geometric primitives and
the call of the second L-system given in Figure 7. Note that
the Do and While symbols represent a loop that is four
times iterated during an interpretation step drawing four
times the binary tree represented by the second L-system.

DECLARE

step=2;
a=45;
b=0.8;
i=0;

RULES /* Section for rules */

/* first rule of that replaces the implicit symbol "Axiom" */
REPLACE Axiom IF condition = 1 ; BY

< 1 /* probability of this right side of the rule */
CamMouse /* The mouse controls the camera */

TurtPush

/* Initial, absolute placement of the turtle at (f0, f1, f2) */
TurtMoveAbs {f0=-4; f1=0; f2=0;}
Line {lighting(0); f0=3;}
TurtForward {f0=step;}
/* Material f0 is activated */
Material {lighting(1); f0=5;}
Pyramid {f0=4; f1=1; f2=1;}
TurtForward {f0=step;}
Sphere {f0=1; f1=1; f2=1;}
TurtForward {f0=step;}
Trunk {f0=3; f1=1; f2=0.5;}
TurtForward {f0=step;}
Cylinder {f0=3; f1=1; f2=1;}
TurtForward {f0=step;}
Cube {f0=1; f1=1; f2=1;}
TurtForward {f0=step;}

/* A triangle */

PolyPush
PolyVertex
TurtMoveRel {f0=3; f1= 0; f2=0;}
PolyVertex
TurtMoveRel {f0=-1; f1= 3; f2=0;}
PolyVertex
PolyPop

TurtPop

/* Places and draws 4 times L-system number 1 (this code is L-
system number 0) */

Do {i=4;}
 Material {f0=i;d=80-i*10;}
 TurtMoveAbs {f0=(i-1)*15; f1=2; f2=-2;}
 RunLsys {f0=1;}
While {i=i-1; f0=i;}

/* Places the turtle for drawing the following L-system. */
TurtMoveAbs {f0=0; f1=0; f2=10;}
>

Figure 6. The first L-system containing some basic
symbols.

DECLARE

a=3; /* initial segment length */
b=0.7; /* segment reduction factor */

RULES

REPLACE Axiom IF condition = 1; BY
< 1
TurtPush
 TurtPitch {f0=90;} /* The turtle points upwards now */
 S0 (x0=a;) /* the Symbol for a tree */
TurtPop
>

/* All 0.3 time units the production is applied as long as the
parameter of the parent symbol is bigger than 0.5; in other words:
the tree iteration is stopped when the branch lenght is smaller than

0.5 */

REPLACE S0 IF condition = (px0>0.5) and (t>0.3); BY
< 1

/* The trunk of the binary tree. It grows smoothly according to the

hermite function. The parameter x0 determines its length and
radius */

Cylinder (x0=px0;) {f0=x0*hermite(t); f1=f0/9; f2=f0/9;}

/* The first branch of the binary tree */

TurtPush
 TurtPitch {f0=d;}
 S0 (x0=px0*b;)

/* Recursive placement of the symbol S0 representing the tree.
The parameter x0 is reduced by the factor b */

TurtPop

/* The second branch of the binary tree */
TurtPush
 TurtPitch {f0=-d;}
 S0 (x0=px0*b;)
TurtPop
>

Figure 7. The second L-system defining a piecewise
continously growing binary tree.

4 Examples

In this section we present some typical applications that one
may realize with our rewriting-based animation system.
Some of the figures illustrate interactive real-time examples
rendered by OpenGL, others are raytraced pictures rendered
with the freeware raytracer Rayshade from C. E Kolb,
which has been adapted to our needs.

The first example is given in Figure 1. The 3D diagram
showing the architecture of the animation system is a
raytraced picture of an L-system that uses extensively 3D
text and arrow symbols. However, the animation system
serves not only to make static diagrams, but also to
visualize and animate processes, procedures, and physical
behaviors. Figure 8, for instance, is a picture of an
animation that illustrates some turtle operations represented
by some symbols of the L-system alphabet.

Figure 8. Animation that illustrates some turtle
commands.

Another type of applications is 3D visualization of

functions and physical effects. Figure 9 illustrates the
physics of the differential equation of a damped particle
fixed by a spring at the origin. This example shows four
different types of visualization that can be easily realized by
some rules – the visualization of the particles speed by a
vector, the visualization of the x-position of the particle by
a curve, the real-time animation of the particle in 3D, and
finally the textual display of some values. Note that the
animation is very dynamic, as all these visualized values
are time dependent. Figure 10 shows the forces and
moments of the spiral-like static structure. The built in
design model of static tree structures visualizes the forces
and moments at the joints of any tree structure with a fixed
root that is modeled by an L-system.

Figure 9. Visualization of a damped particle movement.

Figure 10. Visualization of the forces and moments of a
static 3D spiral-like structure by vectors.

Figure 11 illustrates lworld’s features in creating

complex raytraced landscapes including fractal mountains
with thousands of automatically placed growing plants and
group animation realized with a force field based particle
system. In the example, the butterflies fly around a flower.
Differential equations that are defined by the designer in the
corresponding animation file determine their individual
behavior and are responsible for collision treatment.

Figure 11. Complex raytraced landscapes with fractal
mountains, many automatically placed plants, and a
group of butterflies animated by the built-in particle
system.

Figure 12. 3D Hilbert curve in a virtual park (modeled by
W. Wellauer [13]).

An example of an interactive application is a virtual

park that can be visited by a user. The visitor can freely
navigate around. As soon as he approaches a labeled
pedestal the corresponding object, defined by an L-system,
starts to grow and its behavior can be watched. When the
visitor turns to another object the old one is eliminated from
the scene. The rules responsible for this proximity effect are
described in [10]. Figure 12 shows a typical fractal object in
a virtual park.

Built-in optimization by genetic algorithms (GA) is
another feature that enriches the animation system. It
supports interactive and automatic evolution of populations
producing fit individuals. The first picture of Figure 13
illustrates an interactive example of GA supported design,
where the computer proposes a population of flowers to the
user. He can assess the flowers by giving fitness values to
them. In a subsequent evolution step a new, fitter
population is generated. By repeating these steps the flower
shapes evolve according to the taste of the user. The second
picture illustrates an automatic 2D function optimization.
The function value corresponds to the fitness value, and the
2 arguments of the function represent the individual’s
genes. Users can observe the optimization process
embedded in a 3D environment.

Figure 13. Built-in optimization by using genetic
algorithms. The upper picture shows an interactive, GA
supported design of flowers. The lower picture
illustrates an automatic function optimization (modeled
by W. Wellauer [13]).

Lworld offers also features for experimenting with

autonomous synthetic vision-based actors [14]. Figure 14,
for instance, shows a picture from an animation where an
actor with synthetic vision looks for the exit of a maze
containing impasses and circuits. The behavior and the
maze are completely modeled with rules according to [15].
The window of the synthetic vision of the actor is in the
lower left corner of the user’s window. From this image,
rendered from the actor’s point of view, it can extract
information about obstacles in front of it by using color and
z-buffer values of pixels. Lworld supports this kind of test-
bed for autonomous actors. The rule-language includes
some procedure calls for declaring actors with synthetic
vision and for querying color and distance values of pixels.

Figure 14. An autonomous actor with synthetic vision
escaping from a maze.

5 Conclusions and future work

We present an animation system based on a parallel
rewriting technique. It includes a language for defining and
animating virtual worlds. The rule-based paradigm has a
large potential for high data amplification resulting in
compact code for complex scenes. Additionally, the
concept of the language integrates modeling of objects as
well as animations and behaviors through parametric and
timed symbols with time-dependent attributes. The
animation system supports the design of real-time
interactive worlds as well as raytraced image sequence
generation for high-quality movie productions. As rewriting
is not a widespread technique in spite of its unexploited
potential, we put a PC demonstration version to
everybody’s disposal. From our WWW site it can be freely
downloaded.

Future work will focus on integration of more physical
modeling and Artificial Life (AL) elements, in order to
create mutable, interactive, and realistic looking virtual
environments for virtual reality applications and synthetic
image by image movie generation. We think that there is
still a large unexplored potential for virtual worlds
modeled, animated, and controlled by rules.

References

[1] Alias / Wavefront, Maya, http://www.aliaswavefront.com,
2002.

[2] Discreet,3ds max, http://www.discreet.com/products/3dsmax/,

2001.

[3] Corel, Bryce, http://www.corel.com, 2002.

[4] Persistence of Vision, POV-Ray, a free raytracer,

http://www.povray.org, 2002.

[5] Craig Kolb, Rayhshade homepage, Stanford Computer

Graphics Laboratory, Stanford University, Stanford, CA
http://graphics.stanford.edu/~cek/rayshade.

[6] P. Prusinkiewicz, A. Lindenmayer, The Algorithmic Beauty of

Plants, Springer Verlag, 1990.

[7] P. Prusinkiewicz, M.S. Hammel, E. Mjolsness, Animation of

Plant Development, Computer Graphics Proceedings,
SIGGRAPH '93, Annual Conference Series, ACM Press, pp.
351, 1993.

[8] P. Prusinkiewicz, M. James, R. Mech, Synthetic Topiary ,

SIGGRAPH 94, Computer Graphics Proceedings, Annual
Conference Series, pp. 351-358, 1994.

[9] H. Noser, D.Thalmann, A Rule-Based Interactive Behavioral

Animation System for Humanoids, IEEE Transactions on
Visualization and Computer Graphics, Vol. 5, No. 4, October-
December 1999.

[10] H. Noser, Ch. Stern, P. Stucki, Distributed Virtual Reality

Environments Based on Rewriting Systems, to be published in
IEEE Transcations on Visualization and Computer Graphics,
2002.

[11] Y.I.H. Parish, P.Müller, Procedural Modeling of Cities,

SIGGRAPH 2001, Conference Proceedings, August 12-17,
2001, pp. 301-308.

[12] H. Noser, Lworld, April 2002,

http://www.ifi.unizh.ch/~noser/Lworld/lworld.html,

[13] W. Wellauer, Anwendung genetischer Algorithmen in

regelbasierten virtuellen Welten, Master Thesis, Institut für
Informatik der Universität Zürich, 2002.

[14] O. Renault, N.M. Thalmann, D. Thalmann, A Vision-based

Approach to Behavioral Animation, The Journal of
Visualization and Computer Animation, Vol 1, No 1, pp 18-21.

[15] H. Noser, D. Thalmann, The Animation of Autonomous

Actors Based on Production Rules, Proceedings Computer
Animation ’96, June 3-4, 1996, Geneva Switzerland, IEEE
Computer Society Press, Los Alamitos, California, pp 47-57.

