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Abstract 

Lworld is a computer graphics animation system based on 
L-systems, a parallel rewriting technique used primarily in 
computer graphics for plant modeling. Because rule-based 
programming is a powerful technique, we use it as a basis 
for a general-purpose animation system called Lworld (L-
System world). We describe the architecture, the features, 
and the programming language of the animation system. 
Examples of fractal curves, plants, fractal landscapes, 
group animation, visualization, and evolutionary 
optimizations illustrate its capabilities. Lworld allows users 
to create real-time animations as well as raytraced image 
sequences for further movie production. It is freely 
available, and runs on PCs. 
 

1    Introduction 

There are many excellent modeling, animation, and 
rendering software such as Maya [1], 3D Studio Max [2], 
Bryce [3], or the free raytracers POV Ray [4] and Rayshade 
[5]. Most of them are based upon traditional modeling 
techniques where designers model the objects interactively 
by composing them directly piece by piece. Many 
animations are added by hand or by extensions supporting 
particle systems or physical modeling. 

L-systems, Lindenmayer-systems, L-grammars, or so-
called production systems [6] belong to the family of 
parallel rewriting systems and correspond to another 
modeling paradigm, the rule-based or rewriting-based 
modeling. Rewriting is a technique for building complex 
objects by successively replacing parts of a simple initial 
object according to a set of rewriting rules or productions. 

Traditionally, L-systems [6, 7, 8] model formally plants 
and fractals. In [9] the authors describe a behavioral 
animation system running on SGI workstations where 
production rules define not only growth and topology of 
objects but also their real-time behavior. In [10] they 
proposed an extension for modeling distributed virtual 
reality environments by rules.  

Modeling and animation by rules is not wide spread. L-
system based software are mostly research tools with a 
cryptic modeling language, or educational software serving 
to demonstrate the mechanism of production rules. The 
work of Prusinkiewicz [6] or Parish [11] shows the inherent 
potential of rule-based programming by modeling with few 
rules complex plants and huge cities. Therefore, we 
developed a general-purpose animation system based on 
rewriting that should enable a larger public to experience 
rule-based programming. The software is freely available, 
small, easily installable, running on most PCs, and contains 
many features that make it suitable for many tasks in 
visualization, interactive animation, research, education, 
and raytraced movie generation. 

2    Concept of the animation system 

As rewriting is a very powerful concept for modeling 
complex objects, we decided to use this technique not only 
for modeling plants, but also as the basic principle for a 
general-purpose animation system. Parallel rules can model 
not only hierarchical objects, but also their animation, 
complex behaviors, and interaction. Timed and parametric 
rules combine in one language the modeling of complete 
virtual worlds including structured objects, their piecewise-
continuous development, their animation, and user 
interaction. 



2.1    Modeling and animation by rewriting 

In computer graphics, an L-system describes a 3D object by 
an axiom and a set of production rules, also called its 
grammar. The axiom and the rules are composed of 
symbols of the L-system’s alphabet. From such an L-
system, the computer can derive formal symbol sequences 
from the axiom by a series of parallel rewriting steps where 
symbols are replaced according to the rules. Furthermore, 
the computer can visualize the derived symbolic objects by 
interpreting them as a kind of turtle-graphics language. This 
modeling principle is particularly advantageous for 
complex, structured objects for which we can find its 
grammar, i.e. the rules for its construction. Such a 
description is very compact and can provide immense data 
amplification factors. 

Symbols, rules, iteration, and interpretation are key-
notions of rewriting techniques. In our system a, parametric 
symbol of the axiom and the rules is given by a symbol 
name, a parameter block, and an attribute block containing 
specific statements like assignments and procedure calls.  

Symbol (x0=...; ...;  xn=...;) {f0=...; ...; fm=...;} 
 
Parameter blocks define formal parameters, named xi or 

pxi if they indicate parameters of parent symbols, needed to 
pass information from left sides to right sides of rules at 
iteration. They are only evaluated once when a rule is 
applied and the symbols are written to the symbolic object. 
Attribute blocks, however, are evaluated each time the 
interpreter interprets the symbols. They describe the 
semantics of the symbols’ attributes that are named fi, and 
can depend on the formal parameters and the age of 
symbols represented by the parameter t. 

A rule is composed of a left side, a condition, and a 
right side:  

REPLACE leftSide IF conditon BY  

< probability rightSide>* 
 
The left side of the rule is a symbol that is replaced at an 

iteration step by the rule’s right side in the symbolic object 
if the condition is true. In stochastic L-systems there exists 
a probability distribution that maps the set of productions 
for a left side into the set of production probabilities whose 
sum has to yield one. The right side is a sequence of timed 
parametric symbols. Iteration, which builds the symbolic 
objects, and interpretation, which interprets the symbols of 
the symbolic objects and draws a frame of the animation, 
can be separated clearly. At each instant of the animation, 
the whole virtual scene exists only as a symbolic object, 
and not as scene-graph containing vertices and triangles. 

Rules are not limited for modeling the shape and 
structure of objects. Parametric and timed rules are also 
particularly suited for defining the growth and development 
of objects and their behavior. Therefore, a timed parametric 
L-system can define a complete animation with user 
interaction. As it is based on a parallel rewriting technique, 
synchronized parallelism is inherently supported in an 
animation. 

2.2    Features 

The system we propose supports most features of advanced 
parallel rewriting techniques, such as timed, parametric, 
stochastic, bracketed, environmentally sensitive, 
networked, and behavioral L-systems. At a higher level, we 
integrated fractal mountains, sound playback, networking, 
optimization and evolution by genetic algorithms, tropism 
forces, a particle system, synthetic vision for autonomous 
actors, as well as a design model for modeling physically 
correct static trees that visualizes the forces and moments at 
the tree joints. 

We can look from different perspectives to the 
animation system. From the system’s point of view, the 
application Lworld is a virtual machine capable to interpret 
animation files. At runtime, it reads an animation file, 
parses it, compiles it into an internal representation of the 
axiom and the rules, and starts the animation. No separate 
compilation of an animation file is necessary. 

A designer or programmer sees a programming 
language with a specific syntax in which he can write the 
rules that model his virtual, animated world. He can model 
real-time virtual worlds for interactive users, or scenes for 
raytraced movie generation.  

The user or consumer of interactive virtual worlds starts 
the application by simply clicking on an animation file 
created by a designer. He interacts with the animation 
through mouse, keyboard, and screen. Ball games, virtual 
parks, or visualizations in many domains are typical 
interactive examples. 

2.3    Architecture of the animation system 

 
Figure 1 illustrates the architecture of the animation system. 
At runtime the application parses user defined L-systems 
and compiles them into an internal representation of the 
axiom and the rules. 

The iterator and interpreter modules are essential parts 
of the real-time animation loop representing the heart of the 
animation system given in more detail as pseudo code in 
Figure 2. At each frame the loop executes first code for 
frame initialization. Then, the iterator applies all triggering 
rules to the symbolic object by rewriting the corresponding 
symbols. The interpreter module then executes the 
resulting symbolic objects that can be considered as a turtle 
program, and visualizes the frame on the screen. If 
autonomous actors with synthetic vision have been declared 
in an animation, the frame is rendered for each actor into 
their vision window. Finally, the frame is terminated and 
the global animation time is incremented by the time step. 

Optionally, the scene of each frame can be written as a 
numbered text file in Rayshade format for further 
raytracing. The calculator module interprets at runtime all 
numeric expressions of the parameter and attribute blocks 
of the symbols. The procedure-module contains the high-
level procedures that implement the semantics of the 
language’s symbols. 

The software, written in C/C++ and including the 
OpenGL/GLUT API, is implemented for PCs and runs on 
Windows98/NT/2000/XP. It is freely available on the 
Internet [12]. 

 



 
 

Figure 1. The architecture of the parallel rewriting-based 
animation system. 

 

 
T=0 
loop { 
 /* frame initialization */ 
  startTime = clock() 
  if (Networking) then read, parse, reset NetBuffer 
  integration step for differential equations 
  if (Rayshade) then open rayshade file for raytracer 
 
 /* iteration of L-systems */ 
  for i=0 to NumberOfLsystems do { iterate(i) } 
 
 /* display for user window */ 
  Place camera (i) 
  Place headlight 
 
  for j=0 to NumberOfLsystems do { interprete(j) } 
 
 /* display for autonomous actors */ 
  for i=0 to NumberOfActors do { 
   Place camera of Actor(i) 
   for j=0 to NumberOfLsystems do { interprete(j) } 
   treat visual input 
  } 
 
 /* frame termination */ 

  if (Rayshade) then close rayshade file and render it 
  if (Networking) then send NetBuffer 
  T = T + timeStep 
  if T > tFinal then terminate program 
  workTime = clock() - startTime 
  if (workTime < frameTime) then  
  wait(frameTime – workTime) 
} 

 
Figure 2. Pseudo code of the animation loop. 

 

3    Programming language 

Most existing languages for defining L-system rules are 
somewhat cryptic and difficult to read for new 
programmers of rules. Therefore, we developed a new rule-
language similar to C, which is syntactically familiar to 
most programmers. The execution model, however, is not 
sequential and must be carefully studied by designers. 

The animation system can be viewed as a virtual 
machine, defined by some status variables be set by 
assignments or procedure calls within parameter and 
attribute blocks of symbols. They define partially the 
viewing parameters, rendering features, animation control, 
and physical models. Actually, we implemented more than 
80 symbols representing the alphabet of the L-systems. 
They can be grouped according to their semantic. Some of 
them manipulate the turtle state or the rendering mode. 
Others correspond to geometric primitives, sounds, or 
particular design models such as tropism forces or particles. 
Others control user interaction, networking, or the 
interpretation of the symbolic object. The actual set of 
implemented symbols allows programmers to design a vast 
variety of virtual scenes such as presented in the example 
section. 

3.1    Example code 

In this section we present the syntax of the language for 
defining animations with L-systems by discussing the code 
that produces the raytraced scene of Figure 4 containing 
some geometric primitives and binary trees. The general 
syntax of animation code is partially given by the Extended 
Backus Naur Form (EBNF) in Figure 3. An animtion is 
given by the definition of some animation parameters, the 
declaration of global parameters, and one or several L-
systems that are each given by some local variables and a 
set of rules including the axiom. 

 
Animation ::= AnimationParameters Globals Lsystem+ 
AnimationParameters ::= “ANIMATIONPARAMETERS” 

statement+ 
Globals ::= “GLOBALS” statement* 
Lsystem ::= “DECLARE” statement+ “RULES” Rule+ 
Rule ::= “REPLACE” LeftSide “IF” Assignment “BY” 

RightSide+ 
LeftSide ::= SymbolName 
SymbolName ::= “Cube” | “Sphere” | “Plane” ... 
RightSide ::= < Probability Symbol* > 
Probability ::= NumericExpression 



Symbol ::= SymbolName | SymbolName ParameterBlock | 
SymbolName AttributeBlock | SymbolName ParameterBlock 
AttributeBlock 

ParameterBlock ::= “(“ statement+ “)” 
AttributeBlock ::= “{“ statement+ “}” 
statement ::= Assignment “;” | Function “;” 
Function ::= FunctionName”(“ Arguments ”)” 
Arguments ::=(NumericExpression “,”)* NumericExpression 
Assignment  ::= VariableName “=” NumericExpression | String 

 
Figure 3. The syntax of the language. 

 
The first two sections of the code in Figure 5, starting 

with the keywords ANIMATIONPARAMETERS and 
GLOBALS, serve to define some animation parameters and 
user defined global variables that are visible to all 
subsequent L-system definitions. 

 

 
 

Figure 4. The raytraced scene of  some geometric 
primitives and binary trees described by the example 

code. 
 

ANIMATIONPARAMETERS  
 
timestep=0.01;  /* The time step of the animation */ 
timefinal=10; /* The end time of the animation */ 
... 
 
GLOBALS 
  
d=60;   /* branching angle */ 

 
Figure 5. The first two sections of an animation file 
declare and define some viewing and animation 
parameters, and user-defined global variables. 

 
An animation file can contain several L-system 

declarations. Each L-system starts with the DECLARE 
keyword followed by user defined local variables visible 
only within the L-system. In the RULES section the 
programmer can place the rewriting rules.  

Figure 6 illustrates the code of the first L-system 
containing the symbols of some geometric primitives and 
the call of the second L-system given in Figure 7. Note that 
the Do and While symbols represent a loop that is four 
times iterated during an interpretation step drawing four 
times the binary tree represented by the second L-system. 
 
DECLARE 

 
step=2; 
a=45; 
b=0.8; 
i=0; 
 
RULES  /* Section for rules */ 

/* first rule of that replaces the implicit symbol "Axiom" */ 
REPLACE Axiom IF condition = 1 ; BY 
 
< 1 /* probability of this right side of the rule */ 
CamMouse /* The mouse controls the camera */ 
 
TurtPush 

/* Initial, absolute placement of the turtle at (f0, f1, f2) */ 
TurtMoveAbs {f0=-4; f1=0; f2=0;}  
Line {lighting(0); f0=3;} 
TurtForward {f0=step;} 
/* Material f0 is activated */ 
Material {lighting(1); f0=5;}  
Pyramid {f0=4; f1=1; f2=1;} 
TurtForward {f0=step;} 
Sphere {f0=1; f1=1; f2=1;} 
TurtForward {f0=step;} 
Trunk {f0=3; f1=1; f2=0.5;} 
TurtForward {f0=step;} 
Cylinder {f0=3; f1=1; f2=1;} 
TurtForward {f0=step;} 
Cube {f0=1; f1=1; f2=1;} 
TurtForward {f0=step;} 

 
/* A triangle */ 

PolyPush 
PolyVertex 
TurtMoveRel {f0=3; f1= 0; f2=0;} 
PolyVertex 
TurtMoveRel {f0=-1; f1= 3; f2=0;} 
PolyVertex 
PolyPop 

TurtPop 
 

/* Places and draws 4 times L-system number 1 (this code is L-
system number 0) */ 

Do {i=4;} 
 Material {f0=i;d=80-i*10;} 
 TurtMoveAbs {f0=(i-1)*15; f1=2; f2=-2;} 
 RunLsys {f0=1;} 
While {i=i-1; f0=i;} 
 

/* Places the turtle for drawing the following L-system. */ 
TurtMoveAbs {f0=0; f1=0; f2=10;} 
> 

 
Figure 6. The first L-system containing some basic 
symbols. 

 
 
DECLARE 
 
a=3; /* initial segment length */ 
b=0.7; /* segment reduction factor */ 



 
RULES 
 
REPLACE Axiom IF condition = 1; BY 
< 1 
TurtPush 
 TurtPitch {f0=90;}  /* The turtle points upwards now */ 
 S0 (x0=a;) /* the Symbol for a tree */ 
TurtPop 
> 
 

/* All 0.3 time units the production is applied as long as the 
parameter of the parent symbol is bigger than 0.5; in other words: 
the tree iteration is stopped when the branch lenght is smaller than 

0.5 */ 
 

REPLACE S0 IF condition = (px0>0.5) and (t>0.3); BY 
< 1 
 
/* The trunk of the binary tree. It grows smoothly according to the 

hermite function. The parameter x0 determines its length and 
radius */ 

Cylinder (x0=px0;) {f0=x0*hermite(t); f1=f0/9; f2=f0/9;} 
 

/* The first branch of the binary tree */ 
 

TurtPush 
 TurtPitch {f0=d;} 
 S0 (x0=px0*b;) 
  

/* Recursive placement of the symbol S0 representing the tree. 
The parameter x0 is reduced by the factor b */ 

TurtPop 
 

/* The second branch of the binary tree */ 
TurtPush 
 TurtPitch {f0=-d;} 
 S0 (x0=px0*b;) 
TurtPop 
> 

 
Figure 7. The second L-system defining a piecewise 
continously growing binary tree. 

4    Examples 

In this section we present some typical applications that one 
may realize with our rewriting-based animation system. 
Some of the figures illustrate interactive real-time examples 
rendered by OpenGL, others are raytraced pictures rendered 
with the freeware raytracer Rayshade from C. E Kolb, 
which has been adapted to our needs. 

The first example is given in Figure 1. The 3D diagram 
showing the architecture of the animation system is a 
raytraced picture of an L-system that uses extensively 3D 
text and arrow symbols. However, the animation system 
serves not only to make static diagrams, but also to 
visualize and animate processes, procedures, and physical 
behaviors. Figure 8, for instance, is a picture of an 
animation that illustrates some turtle operations represented 
by some symbols of the L-system alphabet. 

 
 

Figure 8. Animation that illustrates some turtle 
commands. 

 
Another type of applications is 3D visualization of 

functions and physical effects. Figure 9 illustrates the 
physics of the differential equation of a damped particle 
fixed by a spring at the origin. This example shows four 
different types of visualization that can be easily realized by 
some rules – the visualization of the particles speed by a 
vector, the visualization of the x-position of the particle by 
a curve, the real-time animation of the particle in 3D, and 
finally the textual display of some values. Note that the 
animation is very dynamic, as all these visualized values 
are time dependent. Figure 10 shows the forces and 
moments of the spiral-like static structure. The built in 
design model of static tree structures visualizes the forces 
and moments at the joints of any tree structure with a fixed 
root that is modeled by an L-system. 

 

 
 

Figure 9. Visualization of a damped particle movement. 



 

 
 

Figure 10. Visualization of the forces and moments of a 
static 3D spiral-like structure by vectors. 

 
Figure 11 illustrates lworld’s features in creating 

complex raytraced landscapes including fractal mountains 
with thousands of automatically placed growing plants and 
group animation realized with a force field based particle 
system. In the example, the butterflies fly around a flower. 
Differential equations that are defined by the designer in the 
corresponding animation file determine their individual 
behavior and are responsible for collision treatment. 

 

 
 

Figure 11. Complex raytraced landscapes with fractal 
mountains, many automatically placed plants, and a 
group of butterflies animated by the built-in particle 
system. 

 

 
 

Figure 12. 3D Hilbert curve in a virtual park (modeled by 
W. Wellauer [13]). 

 
An example of an interactive application is a virtual 

park that can be visited by a user. The visitor can freely 
navigate around. As soon as he approaches a labeled 
pedestal the corresponding object, defined by an L-system, 
starts to grow and its behavior can be watched. When the 
visitor turns to another object the old one is eliminated from 
the scene. The rules responsible for this proximity effect are 
described in [10]. Figure 12 shows a typical fractal object in 
a virtual park. 

Built-in optimization by genetic algorithms (GA) is 
another feature that enriches the animation system. It 
supports interactive and automatic evolution of populations 
producing fit individuals. The first picture of Figure 13 
illustrates an interactive example of GA supported design, 
where the computer proposes a population of flowers to the 
user. He can assess the flowers by giving fitness values to 
them. In a subsequent evolution step a new, fitter 
population is generated. By repeating these steps the flower 
shapes evolve according to the taste of the user. The second 
picture illustrates an automatic 2D function optimization. 
The function value corresponds to the fitness value, and the 
2 arguments of the function represent the individual’s 
genes. Users can observe the optimization process 
embedded in a 3D environment. 



 

 
 

Figure 13. Built-in optimization by using genetic 
algorithms. The upper picture shows an interactive, GA 
supported design of flowers. The lower picture 
illustrates an automatic function optimization (modeled 
by W. Wellauer [13]). 

 
Lworld offers also features for experimenting with 

autonomous synthetic vision-based actors [14]. Figure 14, 
for instance, shows a picture from an animation where an 
actor with synthetic vision looks for the exit of a maze 
containing impasses and circuits. The behavior and the 
maze are completely modeled with rules according to [15]. 
The window of the synthetic vision of the actor is in the 
lower left corner of the user’s window. From this image, 
rendered from the actor’s point of view, it can extract 
information about obstacles in front of it by using color and 
z-buffer values of pixels. Lworld supports this kind of test-
bed for autonomous actors. The rule-language includes 
some procedure calls for declaring actors with synthetic 
vision and for querying color and distance values of pixels. 

 
 

Figure 14. An autonomous actor with synthetic vision 
escaping from a maze. 
 

5    Conclusions and future work 

We present an animation system based on a parallel 
rewriting technique. It includes a language for defining and 
animating virtual worlds. The rule-based paradigm has a 
large potential for high data amplification resulting in 
compact code for complex scenes. Additionally, the 
concept of the language integrates modeling of objects as 
well as animations and behaviors through parametric and 
timed symbols with time-dependent attributes. The 
animation system supports the design of real-time 
interactive worlds as well as raytraced image sequence 
generation for high-quality movie productions. As rewriting 
is not a widespread technique in spite of its unexploited 
potential, we put a PC demonstration version to 
everybody’s disposal. From our WWW site it can be freely 
downloaded. 

Future work will focus on integration of more physical 
modeling and Artificial Life (AL) elements, in order to 
create mutable, interactive, and realistic looking virtual 
environments for virtual reality applications and synthetic 
image by image movie generation. We think that there is 
still a large unexplored potential for virtual worlds 
modeled, animated, and controlled by rules. 
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